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To implement fault-tolerant quantum computation with continuous variables, Gottesman-Kitaev-Preskill
(GKP) qubits have been recognized as an important technological element. However, the analog outcome
of GKP qubits, which includes beneficial information to improve the error tolerance, has been wasted,
because the GKP qubits have been treated as only discrete variables. In this Letter, we propose a hybrid
quantum error correction approach that combines digital information with the analog information of the
GKP qubits using a maximum-likelihood method. As an example, we demonstrate that the three-qubit bit-
flip code can correct double errors, whereas the conventional method based on majority voting on the
binary measurement outcome can correct only a single error. As another example, we show that a
concatenated code known as Knill’s C4=C6 code can achieve the hashing bound for the quantum capacity
of the Gaussian quantum channel (GQC). To the best of our knowledge, this approach is the first attempt to
draw both digital and analog information to improve quantum error correction performance and achieve the
hashing bound for the quantum capacity of the GQC.
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Quantum computation (QC) has a great deal of potential
[1,2]. Although small-scale quantum circuits with various
qubits have been demonstrated [3,4], a large-scale quantum
circuit that requires scalable entangled states is still a
significant experimental challenge for most candidates of
qubits. In continuous variable (CV) QC, squeezed vacuum
(SV) states with the optical setting have shown great
potential to generate scalable entangled states because
the entanglement is generated by only beam splitter (BS)
coupling between two SV states [5]. However, scalable
computation with SV states has been shown to be difficult
to achieve because of the accumulation of errors during the
QC process, even though the states are created with perfect
experimental apparatus [6]. Therefore, fault-tolerant (FT)
protection from noise is required that uses the quantum
error correcting code. Because noise accumulation origi-
nates from the “continuous” nature of the CVQC, it can be
circumvented by encoding CVs into digitized variables
using an appropriate code, such as Gottesman-Kitaev-
Preskill (GKP) code [7], which are referred to as GKP
qubits in this Letter. Menicucci showed that CV-FTQC is
possible within the framework of measurement-based QC
using SV states with GKP qubits [6]. Moreover, GKP
qubits keep the advantage of SV states on optical imple-
mentation that they can be entangled by only BS coupling.
Hence, GKP qubits offer a promising element for the
implementation of CV-FTQC.
To be practical, the squeezing level required for FTQC

should be experimentally achievable. Unfortunately,
Menicucci’s scheme still requires a 14.8 dB squeezing
level to achieve the FT threshold 2 × 10−2 [8–10]. Thus,
another twist is necessary to reduce the required squeezing
level. It is analog information contained in the GKP qubit

that has been overlooked. The effect of noise on CV states
is observed as a deviation in an analog measurement
outcome, which includes beneficial information for quan-
tum error correction (QEC). Despite this, the analog
information from the GKP qubit has been wasted because
the GKP qubit has been treated as only a discrete variable
(DV) qubit, for which the measurement outcomes are
described by bits. Harnessing the wasted information for
the QEC will improve the error tolerance compared with
using the conventional method based on only bit informa-
tion. Such a use of analog information has been developed
in classical error correction against the disturbance such as
an additive white Gaussian noise [11] and identified as an
important tool for qubit readout [12,13]. However, the use
of analog information has been left unexploited to improve
the QEC performance [14].
In this Letter, we propose a maximum-likelihood method

(MLM) using the analog outcome and demonstrate the
advantage of our scheme using numerical simulations for
two remarkable examples. First, we show that the three-
qubit bit-flip code can correct double bit-flip errors
effectively using our method, in contrast to the conven-
tional method that uses DV information that can correct
only a single error. Second, we show that the concatenated
code with Calderbank-Shor-Steane codes, particularly the
C4=C6 code proposed by Knill [8], can achieve the hashing
bound for the quantum capacity of the Gaussian quantum
channel (GQC) [7,15], which implies that our technique
improves the GKP qubit into one of the optimal encoded
states against the disturbance in the GQC.
The GKP qubit.—We review the GKP qubit and error

model considered in this Letter. Gottesman, Kitaev, and
Preskill proposed a method to encode a qubit in an
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oscillator’s q (position) and p (momentum) quadratures to
correct errors caused by a small deviation in the q and p
quadratures. The basis of the GKP qubit is composed of a
series of Gaussian peaks of width σ and separation

ffiffiffi

π
p

embedded in a larger Gaussian envelope of width 1=σ.
Although in the case of infinite squeezing (σ → 0) the GKP
qubit bases become orthogonal, in the case of finite
squeezing, the approximate code states are not orthogonal
and there is a probability of misidentifying j~0i as j~1i, and
vice versa. Provided the measured magnitude deviates less
than

ffiffiffi

π
p

=2 from the peak value, the decision of the bit value
from the measurement of the GKP qubit is correct. The
probability pcorr that we identify the correct bit value is the
portion of a normalized Gaussian of a variance σ2 that lies
between −

ffiffiffi

π
p

=2 and
ffiffiffi

π
p

=2 [6]:

pcorr ¼
Z ffiffi

π
p

=2

− ffiffi

π
p

=2
dx

1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p expð−x2=2σ2Þ: ð1Þ

In addition to the imperfection that originates from the
finite squeezing of the initial states, we consider the GQC
[7,15], which leads to a displacement in the quadrature
during the QC process. The channel is described by
superoperator ζ acting on density operator ρ as follows:

ρ → ζðρÞ ¼ 1

πξ2

Z

d2αe−jαj=ξ2DðαÞρDðαÞ†; ð2Þ

where DðαÞ is a displacement operator in the phase space.
The position q and momentum p are displaced independ-
ently as follows:

q → qþ v; p → pþ u; ð3Þ
where v and u are real Gaussian random variables with
mean zero and variance ξ2. Therefore, the GQC conserves
the position of the Gaussian peaks in the probability density
function on the measurement outcome of the GKP qubit,
but increases the variance as ξ2.
Likelihood function.—We make a decision on the bit

value kð¼ 0; 1Þ from the measurement outcome of the GKP
qubit qm ¼ qk þ Δm to minimize the deviation jΔmj, where
qkðk ¼ 0; 1Þ is defined as ð2tþ kÞ ffiffiffi

π
p ðt ¼ 0;�1;�2;…Þ,

shown in Fig. 1(a). If we consider only digital information
k, as in conventional QEC, we waste the analog information
contained in Δm.
Instead, we propose a likelihood method to improve our

decision for the QEC using analog information. We define
the true deviation jΔ̄j as the difference between the
measurement outcome and true peak value q̄k, that is,
jΔ̄j ¼ jq̄k − qmj. We consider the following two possible
events: one is the correct decision, where the true deviation
value jΔ̄j is less than ffiffiffi

π
p

=2 and equals to jΔmj as shown in
Fig. 1(b). The other is the incorrect decision, where jΔ̄j is
greater than

ffiffiffi

π
p

=2 and satisfies jΔ̄j þ jΔmj ¼
ffiffiffi

π
p

, as
shown in Fig. 1(c). Because the true deviation value obeys
the Gaussian distribution function fðΔ̄Þ, we can evaluate
the probabilities of the two events by

fðΔ̄Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e−Δ̄

2=ð2σ2Þ: ð4Þ

In our method, we regard function fðΔ̄Þ as a likelihood
function. Using this function, the likelihood of the correct
decision is calculated by fðΔ̄Þ ¼ fðΔmÞ. The likelihood of
the incorrect decision, whose jΔ̄j is ffiffiffi

π
p

− jΔmj, is calcu-
lated by fðΔ̄Þ ¼ fð ffiffiffi

π
p

− jΔmjÞ. We can reduce the decision
error on the entire code word by considering the likelihood
of the joint event and choosing the most likely candidate.
Bit-flip code with analog information.—To provide an

insight into our method, we focus on the three-qubit bit-flip
code as a simple example. In this code, a single logical
qubit j ~ψiL ¼ αj~0iL þ βj~1iL, where jαj2 þ jβj2 ¼ 1, is
encoded into three GKP qubits. The two logical basis
states j~0iL and j~1iL are defined as j~0iL ¼ j~0i1j~0i2j~0i3 and
j~1iL ¼ j~1i1j~1i2j~1i3, respectively.
In the QEC with the three-qubit bit-flip code, the error

identification for the GKP qubits is substantially different
from that for DV-QEC. While the parity of the code qubits
is transcribed on the ancilla qubit in DV-QEC, the deviation
of the physical GKP qubits is projected onto the deviation
of the ancillae (see the Supplemental Material [16] for the
details). From the measurement of the three ancillae in q
quadrature, we obtain the outcome qm;Ai ¼ q0 þ Δm;Ai

(i ¼ 1, 2) from ancillae 1 and 2, and qm;A3 ¼ qk þ Δm;A3

(k ¼ 0, 1) from ancilla 3, under the conditions Δm;Ai ∈
½− ffiffiffi

π
p

;
ffiffiffi

π
p � and Δm;A3 ∈ ½− ffiffiffi

π
p

=2;
ffiffiffi

π
p

=2�. We then define
the values δ1 ¼ Δm;A1 − Δm;A2 þ Δm;A3 and δ2 ¼
Δm;A2 − Δm;A3. For i ¼ 1, 2, if δi ∈ ½− ffiffiffi

π
p

;
ffiffiffi

π
p �, then we

FIG. 1. Introduction of a likelihood function. (a) Measurement
outcome and deviation from the peak value in q quadrature. The
dotted line shows the measurement outcome qm equal to ð2tþ
kÞ ffiffiffi

π
p þ Δm ðt ¼ 0;�1;�2;…; k ¼ 0; 1Þ, where k is defined as

the bit value that minimizes the deviation Δm. The red areas
indicate the area that yields code word (kþ 1) mod 2, whereas the
white area denotes the area that yields the codeword k. (b) and (c)
Gaussian distribution functions as likelihood functions of the true
deviation value Δ̄ represented by the arrows. (b) refers to the case
of the correct decision, where the amplitude of the true deviation
value is jΔ̄j < ffiffiffi

π
p

=2, whereas (c) the case of the incorrect
decision

ffiffiffi

π
p

=2 < jΔ̄j < ffiffiffi

π
p

.
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define the valuesMi ¼ δi. Otherwise, if δi ∈ ½ ffiffiffi

π
p

; 2
ffiffiffi

π
p �, we

define the valuesMi ¼ δi − 2
ffiffiffi

π
p

, and if δi ∈ ½−2 ffiffiffi

π
p

;−
ffiffiffi

π
p �,

we define the valuesMi ¼ 2
ffiffiffi

π
p þ δi. Error identification is

executed fromM1 andM2 as follows. If both jM1j and jM2j
are smaller than

ffiffiffi

π
p

=2, we decide that no error occurs on the
logical qubits.Otherwise,we consider two error patterns: one
containing a single error, and the other containing double
errors. For the first pattern,we presume that the true deviation
values Δ̄i (i ¼ 1, 2) and Δ̄3 of the qubits in the logical qubit
are Mi and Δm;A3, respectively. Then, the likelihood of the
first pattern F1 is given by F1 ¼ fðM1ÞfðM2ÞfðΔm;A3Þ. For
the second pattern, if Mi ∈ ½0; ffiffiffi

π
p �, we presume that Δ̄i is

M�
i ¼ Mi −

ffiffiffi

π
p

, and ifMi ∈ ½− ffiffiffi

π
p

; 0�, we presume that Δ̄i

isM�
i ¼ Mi þ

ffiffiffi

π
p

. IfΔm;A3 ∈ ½0; ffiffiffi

π
p

=2�, we presume Δ̄3 to
be Δ�

m;A3 ¼ Δm;A3 −
ffiffiffi

π
p

, and if Δm;A3 ∈ ½− ffiffiffi

π
p

=2; 0�,
we presume that Δ̄3 is Δ�

m;A3 ¼ Δm;A3 þ
ffiffiffi

π
p

. Then, the
likelihood of the second pattern F2 is given by
F2 ¼ fðM�

1ÞfðM�
2ÞfðΔ�

m;A3Þ. Hence, we can use the like-
lihood functions fðjΔmjÞ and fð

ffiffiffi

π
p

− jΔmjÞ to compare the
two error patterns and decide the more likely pattern.
For example, if M1 is in the range ½ ffiffiffi

π
p

=2;
ffiffiffi

π
p �, and both

M2 andΔm;A3 are in the range ½0;
ffiffiffi

π
p

=2�, we consider the first
error pattern as a single error on qubit 1 of the logical qubit
and the second error pattern as double errors on qubits 2 and
3. If F1 > F2, we decide that the first error pattern occurs,
and vice versa. In error identification, the likelihood that jΔ̄ij
is greater than

ffiffiffi

π
p

is not taken into account because it is
always less than

ffiffiffi

π
p

provided jΔ̄ij is less than
ffiffiffi

π
p

. In the
conventional manner, based on majority voting with binary
measurement outcomes, the first error pattern is invariably
selected because an estimation using only digital information
yields a larger probability for a single error than that for
double errors.
We numerically simulated the QEC for the three-qubit bit-

flip code using theMonte Carlomethod. In this simulation, it
is assumed that the encoded data qubit is prepared perfectly,
that is, the initial variances of the data qubit and ancillae are
zero, and thevariances of theGKP qubits of the encoded data
qubit increase independently in theGQC.These assumptions
are set to allow a clear comparison between the conventional
and proposed methods. In Fig. 2, the failure probabilities of
the QEC are plotted as a function of the standard deviation of
the data qubit after the GQC. The failure occurs when the
assumed error pattern is incorrect. The results confirm that
our method suppresses errors more effectively than the
conventional method that uses only digital information.
To obtain a failure probability less than 10−9, the standard
deviation should be less than 0.25 for the proposed method,
whereas it needs to be less than 0.21 for the conventional
method, which corresponds to the squeezing level of 9.0 dB
and 10.6 dB, respectively. This improvement comes from the
fact, asmentioned before, that ourmethod can correct double
errors, whereas the conventional method corrects only a
single error.

Concatenated code with analog information.—In the
following, we demonstrate that the proposed likelihood
method improves the error tolerance on a concatenated
code, which is indispensable for achieving FTQC. The use
of a MLM for a concatenated code was proposed with a
message-passing algorithm by Poulin [17], and later Goto
and Uchikawa [18] for Knill’s C4=C6 code [8]. However,
because previous proposals have been based on the
probability of the correct decision given by Eq. (1), the
error correction provides a suboptimal performance against
the GQC, as shown later using a numerical calculation.
We apply our method to the C4=C6 code modified with

a message-passing algorithm proposed by Goto and
Uchikawa [18]. The QEC in the C4=C6 code is based
on quantum teleportation, where the logical qubit j ~ψiL
encoded by the C4=C6 code is teleported to the fresh
encoded Bell state. The quantum teleportation process
refers to the outcome of the Bell measurement on the
encoded qubits and determines the amount of displace-
ment. If this feedforward is performed correctly, the error is
successfully corrected. From the Bell measurement, we
obtain the outcomes of both bit values and deviation values
for the physical GKP qubits of the encoded data qubit
and encoded qubit of the encoded Bell state. Therefore, we
can improve the error tolerance of the code by introducing
the likelihood method to the Bell measurement (see the
Supplemental Material [16] for the details).
We simulated the quantum teleportation process for the

C4=C6 code with the conventional [18] and proposed
method using the Monte Carlo method. In this simulation,
it is assumed that the encoded data qubit and encoded Bell
state are prepared perfectly, and the variance of the GKP
qubits of the encoded data qubit σ2 increases only by the
GQC. In Fig. 3, the failure probabilities up to level 5 of the
concatenation are plotted as a function of the data qubit’s
deviation. The results confirm that our method suppresses
errors more effectively than the conventional method. It is
also remarkable that our method achieves the hashing
bound of the standard deviation for the quantum capacity
of the GQC ∼ 0.607, which corresponds to the squeezing
level of 1.3 dB and has been conjectured to be an attainable
value using the optimal method [7,15]. The quantum
capacity is defined as the supremum of all achievable rates

FIG. 2. Simulation results for the failure probabilities of the
three-qubit bit-flip code using the conventional (blue line with
open circles) and proposed methods (red line with filled circles).
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at which quantum information can be transmitted over the
quantum channel, and the hashing bound of the standard
deviation is the maximum value of the condition that yields
the nonzero positive quantum capacity. By contrast, the
concatenated code, with only digital information, achieves
the hashing bound ∼0.555 [7,15], which corresponds to the
squeezing level of 2.1 dB. This fact shows that our method
can lead to reduce the squeezing level required for FTQC.
Conclusion.—We proposed a MLM that used not only

digital information but also analog information for an
efficient QEC based on GKP qubits. Numerical results
showed our method improved the QEC performance for the
three-qubit bit-flip code and concatenated codes. In par-
ticular, we provide the first method to achieve the hashing
bound for the quantum capacity of the GQC.
Furthermore, our method can be also applied to various

other codes [19–23]. Therefore, the squeezing level
required for FTQC with a nonconcatenated code, such
as surface code that is used to implement topological QC
[19,20], can be reduced using our method [24].
Although several methods to implement GKP qubits have

been proposed [25–31] and the achievable squeezing level of
a SV state is 15 dB [32], it is still difficult to experimentally
generate GKP qubits with the squeezing level required for
FTQC [33]. Our method can alleviate this requirement, and
it will encourage experimental developments.

This work was funded by ImPACT Program of Council
for Science, Technology, and Innovation (Cabinet Office,
Government of Japan).
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