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It is known that an object translating parallel to a soft wall in a viscous fluid produces
hydrodynamic stresses that deform the wall, which in turn results in a lift force on the
object. Recent experiments with cylinders sliding under gravity near a soft incline, which
confirmed theoretical arguments for the lift force, also reported an unexplained steady-state
rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016)].
Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder
that translates in a viscous fluid parallel to a soft wall at constant speed and separation
distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal
theorem, we show analytically that for small deformations of the elastic layer, the angular
velocity of the cylinder scales with the cube of the sliding speed. These predictions are
confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder
near a soft incline and find qualitative agreement with the experimental observations,
namely, that a softer elastic layer results in a greater angular speed of the cylinder.

DOI: 10.1103/PhysRevFluids.2.074102

I. INTRODUCTION

The topic of hydrodynamically mediated interactions between elastic objects is widely researched
and has applications in engineering, biophysics, and geophysics. Studies have included applications
to roll coating [1] and printing [2], collisions between suspended particles [3], the rheology of
polymer-bearing surfaces [4], the behavior of vesicles near walls [5] and red blood cells in capillaries
[6], the mobility of suspended objects near elastic membranes [7,8], lubrication in cartilagenous
joints [9,10], and the mechanics of seismic faults [11]. Often, the salient coupling between elasticity
and flow is most effective when surfaces are in near contact, allowing the well-developed literature
on lubrication flows [12,13] to be suitably adapted to include the boundary deformation. Recent
studies in the context of lubrication flows with deformable boundaries have quantified the roles
of fluid compressibility [14], inertia of the fluid and the elastic medium [15], and the effect of a
viscoelasticity of the surfaces [16].
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FIG. 1. Sketch of the geometry and coordinate system, showing the translating and rotating cylinder and
the outline of the deformed wall.

A well-known consequence of the reversibility of Stokes flows is that a rigid symmetric object
such as a sphere or a cylinder that translates in a viscous fluid parallel to a rigid wall at zero Reynolds
number experiences no hydrodynamic force normal to the wall. However, if either surface is soft,
the parallel translation of such an object induces stresses in the fluid that deform the surfaces. The
surface deformation breaks symmetry and drives a secondary Stokes flow that can produce a lift
force on the object [4,17]. The consequences of such a lift force have been observed experimentally
and described theoretically in a number of different configurations [4,5,18], including those in which
transient dynamics are important [14,19,20].

By and large, the focus has been on effects of boundary elasticity on the translation of a rigid object
suspended in a viscous fluid [3,16,21,22]. Recent experiments [18] measuring the influence of elastic-
ity on the motion of a rigid cylinder sliding parallel to a soft wall, however, also noted a spontaneous
rotation of the cylinder. On the other hand, asymptotic theory that is accurate to leading order in the
deformation of the elastic wall does not predict an elasticity-dependent rotation of a rigid cylinder that
translates parallel to a soft wall at steady state, even though transient rotation is indeed predicted [20].

In this article, by developing a higher-order asymptotic analysis that accounts for both the force
and the torque balances, we show that the coupling between fluid flow and elastic deformation
induces a self-sustained rotation of a nearby rigid object. Focusing on the case of an infinite cylinder
sliding parallel to a soft elastic layer, we use the Lorentz reciprocal theorem along with previously
known results [4,17,21] to show formally, in the limit of small elastic deformations, that a torque-free
translating cylinder rotates at quadratic order in the deformation amplitude of the layer. These results
are in agreement with numerical solutions with finite deformation amplitudes of the layer. After first
deriving a general expression for the cylinder’s angular velocity in terms of its sliding speed, its
radius, and the dimensionless compliance of the elastic layer, we apply our result to the rotation of
a cylinder free falling under gravity near a soft incline. The results of the analysis are in qualitative
agreement with the experimental observations of [18] for gravity-driven sliding near an incline: The
angular velocity increases with the softness of the elastic layer. We then discuss symmetry arguments
that are generally applicable to systems with deformable boundaries.

II. PROBLEM DESCRIPTION AND SCALING

We consider the motion of an infinite cylinder of radius a in an incompressible viscous fluid of
density ρf and viscosity μ. The cylinder translates and rotates near a wall, as shown in Fig. 1, under
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ROTATION OF AN IMMERSED CYLINDER SLIDING NEAR . . .

the action of an external force. The wall comprises a rigid substrate coated with a soft elastic layer
of thickness he, with shear and bulk moduli G and λ, respectively. We assume that the motion of the
cylinder occurs in such a way that its axis remains tangent to the undeformed reference surface of
the soft layer at all times. The smallest separation distance between the surface of the cylinder and
the nominally flat (undeformed) reference surface of the soft layer is denoted by hf .

We restrict our attention to two-dimensional motion in the xz plane, so the cylinder’s translational
velocity, when expressed in the laboratory frame, is vc = usex + wcez and its angular velocity is
� = �ey (see Fig. 1). The motion of the cylinder drives a fluid flow with a velocity v(x,t) and an
associated stress field σ (x,t) = −pI + μ(∇v + ∇vT ), where p(x,t) is the pressure. If the Reynolds
number is small, the flow is described by the continuity and Stokes equations

∇ · v = 0, ∇ · σ = 0. (1)

The stresses due to the flow deform the soft wall. We denote this deformation by δ(x,t) and use the
convention that δ is negative under compression. The relaxation of stresses in the soft material is
assumed to be rapid relative to the characteristic time scale of the flow so that the wall can be modeled
as a purely elastic medium. Then, in the absence of inertia, the elastic wall responds instantaneously
to the stresses applied on it by the flow. We also assume that the inertia of the cylinder is negligible.

It is convenient to work in a frame of reference that translates with the velocity vc of the cylinder
and whose origin at a time t is at the point on the undeformed position of the wall closest to the
surface of the cylinder (see Fig. 1). In these coordinates, the deformed wall is located at z = δ and
the axis of the cylinder at [x = 0,z = hf (t) + a]. Henceforth it will be understood that all velocities,
including the fluid velocity v(x,t) = u(x,t)ex + w(x,t)ez, are measured relative to the translating
frame of reference. Although the eventual focus is on steady-state parallel translation (wc = 0), we
first develop the theory in more general terms below.

Noting that a perfectly rigid wall, as measured in the translating reference frame, translates
with velocity −vc = (−uc,−wc), the kinematic condition at the deformed wall z = δ(x,t) can be
expressed as w = −wc + D

Dt
[δ(x,t)], where D

Dt
is the material time derivative. Using the no-slip

condition at the wall u = −uc the boundary conditions for the flow are therefore

v = � × r on Sc, (2a)

v = −vc −
(

uc

∂δ

∂x
− ∂δ

∂t

)
ez on Sw, (2b)

where r is a position vector relative to the center of the cylinder (see Fig. 1) and Sc and Sw represent
the surfaces of the cylinder and the deformed wall, respectively. The condition (2a) is a statement of
no slip on the cylinder in the translating reference frame. The term involving ∂ δ

∂t
in (2b) is important

in the transient dynamics of the cylinder, but vanishes for steady-state wall-parallel translation [19].
To complete the description of the problem, it is necessary to specify the relation between the

fluid stresses and the wall deformation. Here we model the elastic deformation as being proportional
to the applied local normal stress (i.e., the Winkler approximation), which is applicable for λ/G =
O(1) and small deformations |δ| � he � �, where � is the characteristic length scale of the stress
distribution along the wall [23]. Within this approximation, the elastic deformation δ can be written
as

δ(x,t) = he

2G + λ
σ : ezez|Sw

. (3)

We henceforth restrict ourselves to the lubrication limit (hf � a) in which � ≡ √
2ahf is

the characteristic length scale of the contact region [13,24]. Note that this places the restriction
|δ|2/a � h2

e/a � hf in order for (3) to remain applicable, i.e., hf cannot be too small. The
elastohydrodynamic lift force on a sliding cylinder arising from the deformation of the wall in
this limit is known in a number of different situations [4,16,21,22]. The effect of elasticity on the
steady-state rotation of the cylinder, however, has not been quantified systematically, although it
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has been observed experimentally [18]. Here we focus on developing an analytic theory for the
induced elastohydrodynamic rotation of a torque-free infinite cylinder sliding parallel to a soft wall
in the limit of small deformations. These predictions are confirmed by numerical solutions for finite
deformations.

Scaling

Before developing a detailed theory, we first present scaling arguments for the rotation rate. In the
lubrication limit, the normal stress is dominated by the pressure of the flow in the lubrication layer,
so |σ : ezez| ≈ p ∝ μuc�/h2

f . The order of magnitude of the deformation of the soft layer can be
estimated using (1) and (3) as δ ∝ μuc�he/h2

f (2G + λ). The characteristic scale of the deformation
relative to the thickness of the lubrication layer hf is thus quantified by the dimensionless parameter

� ≡ μuc�he

h3
f (2G + λ)

=
√

2μuca
1/2he

h
5/2
f (2G + λ)

. (4)

Here � can be interpreted either as a dimensionless elastic compliance or a characteristic amplitude of
elastic deformation relative to the width of the lubrication gap, i.e., |δ|/hf = O(�) by construction.

For small deformations � � 1, the lift force per unit length on a cylinder sliding parallel to a
soft wall is approximately �μuca/hf [17]. On the contrary, a translating cylinder experiences zero
torque up to leading order in �; this was shown to be true for a rigid wall (� = 0) in [13] and at O(�)
in [20] in the lubrication limit. This result, however, does not preclude rotation due to higher-order
contributions: The rotation rate of a torque-free sliding cylinder can be estimated by interpreting
the zero net torque on the cylinder as a superposition of equal and opposite contributions due to
translation and rotation. Since the lubrication gap in between the cylinder and the deformed soft
wall has thickness hf + δ, the torque per unit length on a purely sliding cylinder scales nominally
as μuca�/(hf + δ). Using a Taylor series expansion in � [small deformations δ/hf = O(�)] and
invoking the result that a sliding cylinder experiences no torque up to O(�), we conclude that the
leading-order elastohydrodynamic torque (per unit length) due to sliding scales as μuca��2/hf .
On the other hand, the torque per unit length on a purely rotating cylinder for small deformations is
O(μ�a2�/hf ). Balancing the two contributions and using (4) results in the scaling relation

a�

uc

∝ �2 ∝ μ2u2
cah2

e

h5
f (2G + λ)2

. (5)

Therefore, the rotation of the cylinder is expected to occur at O(�2), in contrast with the lift force,
which depends linearly on � at leading order [4,17]. We quantify this rotational scaling formally
in the sections below by a systematic application of the Lorentz reciprocal theorem for Stokes flow,
which is in agreement with numerical solutions. We then apply our general result to the case of
buoyancy-driven motion of a cylinder near an inclined wall coated with a soft layer.

III. THEORY

A. Reciprocal relation for a cylinder rotating near a deformable wall

First, we develop a reciprocal relation for the angular velocity of a torque-free cylinder near
a weakly deformable wall. While the focus of this article is on the elastic deformations that are
described by the approximation (3) and the lubrication limit hf � a, the methodology described
below is generally applicable to flow problems involving boundary deformations that are small
relative to the smallest geometric length scale.

For small deformations |δ| � hf , it is appropriate to express the no-slip condition (2b) on the
deformed wall Sw by a perturbation of the domain about the undeformed position of the wall (see,
e.g., [25]). We note that since δ/hf = O(�), a formal perturbation expansion for small deformations
involves powers of �. Due to the generality of the technique employed in this section, which only
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relies on |δ|/hf � 1 independent of the constitutive law relating stresses to the deformation of the
wall, we will avoid an explicit expansion in powers of the dimensionless parameter � at this stage,
but instead directly expand in terms of dimensional quantities. Writing v(x) in (2b) using a Taylor
expansion about z = 0, we obtain the equivalent condition

v = −vc −
(

uc

∂δ

∂x
− ∂δ

∂t

)
ez − δ

∂v
∂z

− δ2

2

∂2v
∂z2

+ O

(
δ3 ∂3v

∂z3

)
on Sw0, (6)

where Sw0 denotes the undeformed wall position z = 0. Note that the error term in the expansion
above is O(�3) relative to the leading-order translational velocity of the wall −vc.

To utilize the reciprocal theorem for Stokes flows, we introduce as a model problem the flow due
to a cylinder rotating about its axis with angular velocity �̂ = �̂ ey near a rigid wall at z = 0. The
model velocity field, denoted by v̂(x), satisfies the no-slip conditions v̂ = �̂ × r on the cylinder and
v̂ = 0 at z = 0.

We have therefore defined both the main and model problems on the undeformed domain. The
reciprocal theorem for the two Stokes flows v and v̂ in the same domain and associated, respectively,
with stress tensors σ and σ̂ , states that [26]∫

Sc+Sw0+S∞
n · σ · v̂ dS =

∫
Sc+Sw0+S∞

n · σ̂ · v dS, (7)

where S∞ is the bounding surface at infinity; here we take n as the unit normal pointing into the fluid.
Applying the boundary conditions for v and v̂ and noting that the integral over S∞ is vanishingly
small, (7) yields

�̂ ·
∫

Sc

r × (n · σ )dS = � ·
∫

Sc

r × (n · σ̂ )dS +
∫

Sw0

n · σ̂ · v dS. (8)

Observing that the integrals over Sc on the left and right sides of the equality in (8) are by definition

the hydrodynamic torques per unit length on the cylinder LH = LH ey and L̂
H = L̂H ey in the main

and model problems, respectively, we find, on using (6) and (8), that

� · L̂
H − �̂ · LH =

∫ ∞

−∞
ez · σ̂ ·

{
vc +

(
uc

∂δ

∂x
− ∂δ

∂t

)
ez + δ

∂v
∂z

+ δ2

2

∂2v
∂z2

}∣∣∣∣
z=0

dx. (9)

If in the main problem the cylinder is torque-free, (9) simplifies to

� = 1

L̂H

∫ ∞

−∞
ez · σ̂ ·

{
vc +

(
uc

∂δ

∂x
− ∂δ

∂t

)
ez + δ

∂v
∂z

+ δ2

2

∂2v
∂z2

}∣∣∣∣
z=0

d. (10)

The above expression is generally valid for (i) any type of small surface deformation δ not limited
to the form in (3) and (ii) arbitrary values of hf relative to a. For the remainder of the analysis,
however, we focus on deformations given by (3) and the lubrication limit hf � a. In the sections
immediately following, we summarize known properties of the main and the model problems before
applying the reciprocal relation (10) to compute the angular velocity.

B. Model problem: Cylinder rotating near a rigid wall

We summarize here the well-known solution to the model flow driven by a cylinder rotating near
a rigid plane wall with angular velocity �̂ under the lubrication approximation hf � a [13]. On
introducing the dimensionless variables

X = x

�
, Z = z

hf

, Û = û

a�̂
, Ŵ = ŵ

a�̂hf /�
, P̂ = p̂

μa�̂�/h2
f

, � = √
2ahf , (11)

the shape of the cylinder in the lubrication layer is locally described by the parabolic profile
Z = H (X) = 1 + X2, where X = 0 represents the position along the wall closest to the surface of
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the cylinder. The solution to the model problem is

P̂ (X) = 2X

(1 + X2)2
, (12a)

Û (X,Z) = 1

2

d P̂

dX
Z(Z − H ) − Z

H
, (12b)

from which follow

∂ Û

∂Z

∣∣∣∣
Z=0

= 2(X2 − 1)

(1 + X2)2
, (13a)

∂ Û

∂Z

∣∣∣∣
Z=H

= − 4X2

(1 + X2)2
, (13b)

which are useful in subsequent calculations. The dimensional surface traction ez · σ̂ at the wall,
which appears in (10), is therefore

ez · σ̂ |z=0 = μa�̂�

h2
f

(
−P̂ ez + hf

�

∂ Û

∂Z
ex

)∣∣∣∣∣
Z=0

. (14)

The dimensional hydrodynamic torque per unit length of the cylinder is then

L̂H = μ�̂a2�

hf

∫ ∞

−∞

∂ Û

∂Z

∣∣∣∣
Z=H

dX = −2
√

2πμ�̂a5/2

h
1/2
f

, (15)

where the negative sign indicates that the hydrodynamic torque opposes the rotation [13].

C. Torque-free rotation of a cylinder sliding parallel to a soft wall

We now address the question of whether a torque-free cylinder (i.e., LH = 0) translating parallel
to a soft wall at constant sliding speed uc and constant separation distance hf (i.e., wc = 0) rotates
at a finite angular velocity. In this case, the elastic deformation is time independent in the translating
reference frame and can be written as δ = δ(x). This situation is relevant to the steady-state motion
of the cylinder free falling near a soft incline under gravity [20], which we discuss in greater detail
in subsequent sections. Before evaluating the integrals in (10) to compute �, we give the known
solution [17,21] to the flow up to O(�). We define dimensionless flow variables for the main problem
[similar to definitions (11) relevant to the model problem] as

P = p

μuc�/h2
f

, U = u

uc

, W = w

uchf /�
(16)

and introduce a dimensionless velocity vector

V(X,Z) = v
uc

= U (X,Z)ex + hf

�
W (X,Z)ez. (17)

The dimensionless deformation of the wall can be written using (3) and (4) as


(X) ≡ δ(x)

hf

= −�P (X), (18)

where �, defined in (4), is the dimensionless compliance of the soft material and we have used the
simplification that the normal stress is dominated by pressure in the lubrication limit. The solution
to the flow problem up to O(�) is known analytically [21] and can be written using a perturbation
expansion as

(P,U,W ) = (P0,U0,W0) + �(P1,U1,W1) + O(�2), (19)
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where

P0(X) = 2X

(1 + X2)2
, P1(X) = −3(5X2 − 3)

5(1 + X2)5
. (20)

The expression for U (X,Z) is

U (X,Z) = 1

2

dP

dX
(Z − H )(Z + �P ) − H − Z

H + �P
, (21)

which can be expanded in powers of � to obtain U0(X,Z) and U1(X,Z). The following results will
be required for subsequent calculations:

∂U0

∂Z

∣∣∣∣
Z=0

= 4X2

(1 + X2)2
, (22a)

∂U1

∂Z

∣∣∣∣
Z=0

= −4X(5X2 − 3)

(1 + X2)5
, (22b)

U1|Z=0 = 8X3

(1 + X2)4
. (22c)

Now that we have laid out the (already known) properties of the main and model problems, it is
straightforward to compute � using the reciprocal identity (10). We express both V(X,Y ) and 
(X)
as series expansions in powers of �:

V = V0 + �V1 + O(�2), (23a)


 = −�P0 − �2P1 + O(�3), (23b)

where Vi = Uiex + Wi(hf /�)ez with i ∈ {0,1} [cf. (17) and (19)]. Substituting (14), (17), and (23)
into the reciprocal relation (10) and collecting powers of �, we can write

� = �0 + ��1 + �2�2 + O(�3), (24)

where

�0 = − uc

2πa

∫ ∞

−∞

∂ Û

∂Z

∣∣∣∣
Z=0

dX , (25a)

�1 = − uc

2πa

∫ ∞

−∞

{
P̂

∂P0

∂X
− P0

∂ Û

∂Z

∂U0

∂Z

}∣∣∣∣
Z=0

dX, (25b)

�2 = − uc

2πa

∫ ∞

−∞

{
P̂

∂P1

∂X
− P0

(
∂ Û

∂Z

∂U1

∂Z
+ P̂

∂U1

∂X

)
− P1

∂ Û

∂Z

∂U0

∂Z

+ P 2
0

2

(
∂ Û

∂Z

∂P0

∂X
+ P̂

∂2U0

∂X∂Z

)}∣∣∣∣
Z=0

dX (25c)

and we have used ∂W/∂Z = −∂U/∂X and ∂2U0/∂Z2 = ∂P0/∂X. Note that while the lubrication
solutions are formally valid within the gap where |X| = O(1), it is asymptotically accurate to use
these solutions over the range −∞ < X < ∞, due to the sufficiently rapid decay of the solutions
for X 	 1 [13,24,26]. Recalling that δ/hf = O(�), v = O(uc), and z = O(hf ), we note that the
retention of terms up to O(�2) in (24) is entirely consistent with the quadratic order of approximation
employed in the domain perturbation expansion (6).
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Substituting (13a) into (25b) results in

�0 = − uc

2πa

∫ ∞

−∞

2(X2 − 1)

(1 + X2)2
dX = 0, (26)

which corresponds to the nontrivial but well-known result that a torque-free infinite cylinder
translating parallel to a rigid wall does not rotate in the absence of inertia [13]. Next the integrand
in (25b) is an odd function of X, guaranteeing that

�1 = 0, (27)

which is in agreement with the result of [20] that there is no steady-state rotation of an infinite
cylinder at O(�). At O(�2), upon substituting (12), (13), (20), and (22) into (25c), we find that

�2 = 21

256

uc

a
. (28)

Substituting (26)–(28) in (24) results in a prediction for the rotation rate

a�

uc

= 21

256
�2 = 21

128

μ2u2
cah2

e

h5
f (2G + λ)2

, (29)

placing the scaling relation (5) on a quantitative footing. The softness of the wall therefore causes
the cylinder to rotate with an angular velocity that is quadratic in the dimensionless compliance �.
The sense of rotation is the same as that of frictional (solid-solid) rolling without slip.

The above result can also be stated in terms of the elastohydrodynamic torque LH = LH ey

induced on a cylinder that slides without rotation. Setting � = 0 in (9), we find

LH
�=0 = − 21

256

2πμuca
√

2ahf

hf

�2 = −21
√

2π

64

μ3u3
ca

5/2h2
e

h
11/2
f (2G + λ)2

, (30)

which is quadratic in � and consequently depends on the cube of the sliding speed. By contrast, the
elastohydrodynamic lift force on the cylinder depends linearly on � for � � 1 [20,21].

The asymptotic result (29) is verified against a numerical solution of the Reynolds equation for
the fluid flow in the lubrication layer (derived in Appendix A)

d

dX

(
(H + �P )3 dP

dX
+ 6(H + �P )(1 + β)

)
= 0, (31)

subject to the boundary condition P (X → ±∞) → 0, where P (X) is the dimensionless pressure,
β ≡ a�/uc is the dimensionless rotation rate of the cylinder, and we recall that H (X) = 1 + X2

is the dimensionless shape of the cylinder’s surface in the lubrication region. The value of β is
determined as a part of the solution by the constraint of zero hydrodynamic torque on the cylinder
(Appendix A)

0 =
∫ ∞

−∞

∂U

∂Z

∣∣∣∣
Z=H

dX =
∫ ∞

−∞

1
2

dP
dX

(H + �P )2 + 1 − β

(H + �P )
dX. (32)

The differential equation (31) for P (X) is solved numerically using the MATLAB routine bvp5c, in
conjunction with a shooting method to self-consistently determine the value of β that satisfies the
zero-torque condition (32). The numerical results for the zero-torque rotation rate are plotted as a
function of � in Fig. 2(a), confirming the asymptotic result (29) for � � 1. Numerical results for the
dimensionless deformation of the wall 
(X) = −�P (X) are shown in Fig. 2(b). We also compute
results for the drag and lift forces on the cylinder as functions of �, as discussed in Appendixes
A and B. For the remainder of this article, we will restrict our attention to the small-� asymptotic
limit (29).
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FIG. 2. (a) Dimensionless rotation rate a�/uc at zero external torque as a function of the dimensionless
compliance �, showing the theoretical prediction (28) for � � 1 and numerical solutions (symbols) of the
system (31) and (32). (b) Rescaled dimensionless deformation of the wall [equal to the negative pressure field

(X)/� = −P (X)] obtained from a numerical solution of the nonlinear lubrication equation (31) subject to
the zero-torque condition (32). Curves correspond to � = 0.1, 0.4, 1, and 3 with the dashed arrow indicating
the direction of increasing �.

D. Buoyancy-driven sliding down a soft-coated inclined wall

We now apply the theoretical result (29) to the situation in which an immersed cylinder translates
parallel to a thin soft coating on a wall that makes an angle α with the horizontal (gravity acts
vertically), as sketched in Fig. 3. Here we consider a cylinder of density ρc > ρf and define
ρ∗ = ρc − ρf > 0. At steady state, the translation of the cylinder is determined by a balance between
the net buoyant force on the cylinder and hydrodynamic forces. In particular, the hydrodynamic
drag on the cylinder balances its net weight tangent to the incline (ρ∗ga2 sin α ∼ μuc�/hf ) and the
elastohydrodynamic lift force balances the cylinder’s net weight normal to the incline (ρ∗ga2 cos α ∼
�μuc�

2/h2
f ) [18,20], where � = √

2ahf . At steady state, this balance of forces establishes a constant
speed uc and a constant lubrication gap width hf , which are given by

uc = A
ρ∗ga2 sin α

μ

(
ρ∗ghe cos α

2G + λ

)1/5

(tan α)2/5, (33a)

hf = Ba

(
ρ∗ghe cos α

2G + λ

)2/5

(tan α)4/5, (33b)

FIG. 3. Sketch of a cylinder of density ρf sliding parallel to a soft-coated inclined wall under gravity. The
balance of hydrodynamic forces and the buoyancy of the cylinder maintains a constant sliding speed uc and a
lubrication layer thickness hf . The flow is steady in the frame of reference of the sliding cylinder.
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where A = 31/5

212/5 and B = 32/5

29/5 are numerical constants that are obtained from a detailed hydrodynamic
calculation [20]. Substituting the expressions (33a) and (33b) for uc and hf into (4), the dimensionless
compliance for buoyancy-driven motion is

� =
√

2A

B5/2

(
ρ∗ghe cos α

2G + λ

)1/5

(tan α)−3/5. (34)

Since the cylinder is free of external torque, the above expressions can be substituted into (29) to
obtain

a�

uc

= 21

128

A2

B5

(
ρ∗ghe cos α

2G + λ

)2/5

(tan α)−6/5 (35)

or

� = 21

128

A3

B5

ρ∗ga sin α

μ

(
ρ∗ghe cos α

2G + λ

)3/5

(tan α)−4/5. (36)

The above results for buoyancy-driven motion are applicable in the limit of small �. We note
that the theoretical predictions in Secs. III A and III D (and the corresponding numerical results)
utilize the Winkler approximation (3), wherein λ/G = O(1) is assumed. The limit of an
incompressible layer (λ/G → ∞) must generally be treated separately; we develop scaling laws for
this case in Sec. IV C.

IV. DISCUSSION

We have thus shown that a cylinder that translates parallel to a soft wall in a viscous fluid under
the action of an external force must also rotate if no external torque acts on it. Within the lubrication
limit and the elastic model used here, the rotation rate is determined by a single dimensionless
ratio � that measures the magnitude of the elastic deformation amplitude relative to the fluid gap
thickness. We find that the dimensionless rotation rate approaches zero with increasing modulus
(2G + λ) of the elastic layer, provided all other physical parameters involved in �, in particular the
translational speed uc and the gap height hf , remain unchanged. The numerical results of Fig. 2(a)
show that the induced rotation is relatively weak (a�/uc � 0.1 for � � 100). Also, the rotation
rate approaches zero as � → 0, consistent with previously known results for the rotation of infinite
cylinders [13,20].

For a cylinder that is driven through a viscous fluid along a soft incline by gravity, the translational
speed and the lubrication layer thickness are simultaneously determined by force balances. These
balances self-consistently set the dimensionless compliance � [cf. (34)]. For small deformations
� � 1, the translational speed uc, the thickness of the layer hf , and the angular velocity � all
increase with the softness of layer (decreasing 2G + λ).

A. General remarks on symmetry

We briefly discuss some general geometrical features of the problem for wall-parallel steady
translation of a torque-free cylinder (wc = 0 and LH = 0). First, we note that for translation parallel
to a rigid wall, a torque-free cylinder does not rotate at all. This is a nontrivial but well-known result
that applies only to infinite cylinders, but not more generally to compact objects such as spheres
[12,13,27].

Translation of the cylinder parallel to the wall drives a flow through the gap, which at O(�0)
corresponds to an antisymmetric pressure distribution about the symmetry plane X = 0. This pressure
distribution results in an antisymmetric deformation of the interface at O(�) [17]. The O(�) flow
has the opposite symmetry, i.e., it corresponds to a symmetric pressure distribution P1(X), which
is ultimately responsible for the elastohydrodynamic lift force exerted on the cylinder. By the same
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FIG. 4. Rescaled (a) drag force and (b) lift force on the cylinder per unit length, showing numerical results
(symbols) and theoretical predictions of (37) and (38) (curves). The drag force decays monotonically (but
weakly) with �, while the lift force is found to have a maximum at � ≈ 2.2.

token, the shear stress in the fluid at O(�) has the opposite (odd) symmetry about X = 0 and
therefore cannot produce any torque on the cylinder.

At next order, the symmetries of the pressure and shear stresses become reversed yet again. The
pressure of the O(�) flow creates a symmetric deformation of the wall at O(�2). The corresponding
O(�2) flow is characterized by an antisymmetric pressure distribution P2(X) and a symmetric shear
stress distribution on the surface of the cylinder, about the X = 0 plane. Thus, the O(�2) problem
realizes the symmetry that is required to produce an elastohydrodynamic torque on a purely sliding
cylinder. We remark that additional corrections to the drag are expected at O(�2) due to the same
reasons of symmetry, but no additional lift force is produced on the cylinder at this order. The full
solution to the O(�2) problem is given in Appendix A, in which we both compute the drag force
correction and provide an alternative method to compute the angular velocity �. The drag force is
found to be of the form

FH
drag = −2

√
2πμuca

1/2

h
3/2
f

(
1 − 441

1280
�2 + O(�4)

)
. (37)

Applying the reciprocal theorem as in Sec. III A, we also compute the elastohydrodynamic lift force
on a sliding torque-free cylinder as (see Appendix B)

FH
lift = 2μuca

hf

(
3π

8
� − 2157π

2048
�3 + O(�5)

)
. (38)

The term in (38) proportional to � is the leading-order result that is well known [4,17], but is obtained
here by the use of the Lorentz reciprocal theorem. The O(�3) correction to the lift force utilizes the
solution of the lubrication flow accurate to O(�2) (see Appendix A). The asymptotic predictions
for the lift and drag forces in (37) and (38) are compared against numerical results in Fig. 4.

As a general rule for a symmetric object translating parallel to a wall in the small-deformation
limit, lift forces can only be expected to occur with odd powers of �, and torques and drag forces
to occur with even powers of �. The case of the infinite cylinder is further specialized due to the
vanishing torque at O(�0), which causes the leading-order torque to be effective at O(�2). By a
similar line of argument, the problem in which the cylinder translates perpendicular to the wall
(wc 
= 0 and uc = 0) has the opposite symmetry.

B. Comparison with experiments and open questions

For the case of buoyancy-driven motion of an immersed cylinder near a soft incline, the predictions
of the present theory for the rotation speed [Eqs. (35) and (36)] are in qualitative agreement with the
experimental observation that the rotation rate is typically greater for a soft elastic coating than for a
rigid substrate (see the Supplemental Material of [18]). However, the cylinders were also observed to
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rotate close to a rigid wall in the experiments (albeit very slowly), while the present theory predicts
no rotation in this case (� = 0). Additionally, for finite softness, the experimental rotation rates
appear to be somewhat greater than those predicted by Fig. 2(a).

A likely source of this disagreement is that the theory is strictly applicable in the limit of infinite
cylinders (L/a → ∞), while those used in the experiments have L/a � 2. A finite cylinder can be
expected to rotate with nonzero � even as � → 0 (the limit of a rigid wall) due to end effects; a
well-known analog is that of a sphere translating parallel to a rigid wall, which, in the lubrication
limit, must rotate such that a�

uc
≈ 1

4 [12] in order to remain torque-free. In general, due to the
symmetry arguments of Sec. IV A, we expect the infinite-cylinder theory for rotation (24) to become
modified for finite cylinders according to

� = �0 + �2�2 + O(�4) for � � 1, (39)

where �0 and �2 depend on uc, a, hf , and L and �0 → 0 as L/a → ∞, as in (26). From dimensional
analysis, we expect a�0/uc = f0(hf /a,L/a) and a�2/uc = f2(hf /a,L/a) with f0 and f2 being
unknown functions that approach zero and 21

256 , respectively, as L/a approaches infinity [cf. (26)
and (29)]. Unfortunately, even the form of f0(hf /a,L/a) (the limit of a rigid wall) is not known and
requires a numerical treatment of the three-dimensional flow; we are not aware of such a study of a
finite-aspect-ratio cylinder translating near a rigid wall.

We also note that the modeling of the elastic response as linear and local (the Winkler
approximation) is formally applicable in the limit where |δ|2/a � h2

e/a � hf . For buoyancy-driven
viscous sliding near an incline, this separation of scales becomes increasingly strained for soft
substrates (decreasing 2G + λ) due to a combination of effects. First, the elastic deformation δ

increases with the softness of the substrate. Second, the elastohydrodynamic lift force diminishes
with � for � � O(1) [17], so the steady-state gap thickness hf must decrease in order for the
lift force to support the normal component of the cylinder’s buoyant weight. In this limit of large
deformations, a nonlocal elastic description similar to that of [22] for heavily loaded elastic layers
may be more appropriate. A systematic quantification of steady-state rotation in the experiments,
including the influence of the cylinder ends and the effect of large deformations of the substrate,
should be discussed in future work.

C. Incompressible elastic layer

Retaining the assumption of small deformations and invoking the symmetry arguments of
Sec. IV A, we now develop scaling relations for the angular velocity of a cylinder sliding near
an incompressible thin elastic layer (λ/G → ∞). Incompressibility of the thin elastic layer (we
assume he � �) requires that δ′

x/� ∼ δ′/he, where δ′
x is the scale of elastic deformation in the x

direction (parallel to the sliding) and δ′ is the deformation normal to the wall; the prime denotes
incompressibility of the elastic layer. The stress balance in the thin elastic layer is lubricationlike,
i.e., the pressure in the elastic solid scales as pe = O(Gδ′

x�/h2
e). The elastic pressure must balance

the pressure in the fluid p = O(μuc�/h2
f ) to keep the fluid-solid interface in quasistatic equilibrium.

This balance of pressures p ∼ pe yields [17]

δ′ ∝ μuch
3
e

h2
f �G

. (40)

The dimensionless compliance (the elastic deformation amplitude relative to the lubrication layer
thickness) is therefore

�′ ≡ μuch
3
e

a1/2h
7/2
f G

. (41)
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Following the discussion on symmetry in Sec. IV A, we generically expect

a�

uc

∝ (�′)2 ∼ μ2u2
ch

6
e

ah7
f G2

(42)

for an infinite cylinder.
For a cylinder sedimenting due to buoyancy near an incline coated with a thin incompressible

elastic layer, the balance of hydrodynamic forces and the cylinder’s net weight, assuming small
deformations (�′ � 1), leads to ρ∗ga2 sin α ∼ μuc�/hf (tangent to the incline) and ρ∗ga2 cos α ∼
�′μuc�

2/h2
f (normal to the incline), now resulting in

uc ∝
(

ρga2 sin α

μ

)(
ρghe cos α

G

h2
e

a2

)1/7

(tan α)2/7, (43)

hf ∝ a

(
ρghe cos α

G

h2
e

a2

)2/7

(tan α)4/7. (44)

The rotation rate is then

a�

uc

∝
(

ρgh3
e cos α

Ga2

)2/7

(tan α)−10/7. (45)

The dependence of � with G for an incompressible material is weaker (� ∝ G−3/7) compared with
the prediction of the local model in (3), � ∝ G−3/5 [see (36)].

V. CONCLUSION

Using the Lorentz reciprocal theorem for Stokes flows, we have shown in the lubrication limit
that an infinite cylinder sliding parallel to a soft wall in a viscous fluid without rotation experiences
an elastohydrodynamic torque in addition to the well-known elastohydrodynamic lift force. The
induced torque is quadratic in the deformation δ of the wall, while the lift force scales linearly with
deformation. Thus, we find that a cylinder free of external torque sliding parallel to a soft wall must
rotate with a nonzero angular velocity in the same sense as expected in rigid-body frictional rolling.
The angular velocity � scales as the cube of the sliding speed and the square of the viscosity and
increases with the softness of the elastic layer. The theoretical predictions for the rotation rate in the
limit of small elastic compliances are in agreement with numerical solutions for finite compliances
within the framework of linear elasticity.

The results of the model qualitatively describe previous experiments on an immersed cylinder
free falling and rotating under gravity near an inclined soft-coated wall, namely, that soft coatings
typically result in greater rotation speeds than rigid walls. However, the present theoretical results
appear to underpredict the previously observed rotation rates, likely due to three-dimensional end
effects in the latter. The geometric structure of the problem results in symmetry arguments pertaining
to the motion of symmetric objects such as cylinders or spheres near weakly deformable boundaries.
These general arguments are likely to be useful in hydrodynamically mediated interactions between
soft elastic surfaces, which are important features of some biological and geophysical systems.
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APPENDIX A: DIRECT CALCULATION OF � AND FLOW UP TO O(�2)

A direct calculation of the O(�2) flow by solving the lubrication equations provides an alternative
method to compute �. In addition, we also find the O(�2) correction to the drag force on the cylinder.
We consider only the case where the cylinder is torque-free and its center translates parallel to the
soft wall (i.e., at constant hf ) with constant translational speed uc and rotates at an unknown angular
speed �. If we define a dimensionless angular speed

β ≡ a�

uc

(A1)

and employ the usual lubrication scaling [cf. (11) and (16)], the boundary conditions for the flow
(U and W ) are

U = −β, W = −β
dH

dX
on Z = H (X) = 1 + X2, (A2a)

U = −1, W = −d


dX
on Z = 
(X), (A2b)

where 
 ≡ δ/hf . The momentum equations in the lubrication limit reduce to P = P (X) and

U = 1

2

dP

dX
(Z − H )(Z − 
) − H − Z

H − 

− β

Z − 


H − 

. (A3)

Integrating the continuity equation between Z = 
 and Z = H and applying the boundary
conditions on W yields the following ordinary differential equation for P :

d

dX

(
(H + �P )3 dP

dX
+ 6(H + �P )(1 + β)

)
= 0, (A4)

where we have used 
 = −�P , as per (18). The dimensionless rotation rate β is unknown and must
be determined as a part of the solution using the condition of zero torque on the cylinder, which, in
the lubrication limit, can be written as

0 =
∫ ∞

−∞

∂U

∂Z

∣∣∣∣
Z=H

dX =
∫ ∞

−∞

1
2

dP
dX

(H + �P )2 + 1 − β

(H + �P )
dX. (A5)

The above system can be solved subject to the boundary conditions P → 0 as X → ±∞.
We develop a perturbation solution of the form

(P,U,W,β) = (P0,U0,W0,β0) + �(P1,U1,W1,β1) + �2(P2,U2,W2,β2) + · · · . (A6)

Note that we have also expanded β, since it is determined automatically by the condition of zero
torque. At O(�0), we find from (A4) that

d

dX

(
(1 + X2)3 dP0

dX
+ 6(1 + X2)(1 + β0)

)
= 0, (A7)

which has the solution

P0(X) = 2X

(1 + X2)2
+ 2Xβ0

(1 + X2)2
⇒ ∂U0

∂Z

∣∣∣∣
Z=H

= −2(X2 − 1)

(1 + X2)2
− 4X2β0

(1 + X2)2
. (A8)

The zero-torque condition then yields∫ ∞

−∞

∂U0

∂Z

∣∣∣∣
Z=H

dX = −2πβ0 = 0 ⇐⇒ β0 = 0. (A9)
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At O(�), it follows from (A4) that the equation for the pressure is

d

dX

(
(1 + X2)3 dP1

dX
+ 3(1 + X2)2P0

dP0

dX
+ 6(β1(1 + X2) + P0)

)
= 0, (A10)

which has the solution

P1(X) = −3(5X2 − 3)

5(1 + X2)5
+ 2Xβ1

(1 + X2)2
⇒ ∂U1

∂Z

∣∣∣∣
Z=H

= 4X(X2 − 3)

(1 + X2)5
− 4X2β1

(1 + X2)2
. (A11)

The zero-torque condition again results in∫ ∞

−∞

∂U1

∂Z

∣∣∣∣
Z=H

dX = −2πβ1 = 0 ⇐⇒ β1 = 0, (A12)

as recognized in [20]. The equation for the pressure at O(�2) is

d

dX

(
(1 + X2)3 dP2

dX
+ 3(1 + X2)2

(
P0

dP1

dX
+ P1

dP0

dX

)
+ 3(1 + X2)P 2

0
dP0

dX

+ 6(β2(1 + X2) + P1)

)
= 0, (A13)

which has the solution (obtained using Mathematica)

P2 = −X(6699X10 + 39 237X8 + 95 062X6 + 121 394X4 + 38 815X2 + 87 465)

5600(X2 + 1)8
+ 2Xβ2

(1 + X2)2

⇒ ∂U2

∂Z

∣∣∣∣
Z=H

= 957(X2 + 1)6 − 4480(X2 + 1)2 + 28 672(X2 + 1) − 27 648

320(X2 + 1)8
− 4X2β2

(X2 + 1)2
.

(A14)

The zero-torque condition now results in∫ ∞

−∞

∂U2

∂Z

∣∣∣∣
Z=H

dX = 2π

(
21

256
− β2

)
= 0 ⇐⇒ β2 = 21

256
. (A15)

Thus, we find that a torque-free infinite cylinder sliding parallel to a soft plane has a rotation speed
that is given at leading order by

a�

uc

= 21

256
�2, (A16)

which is identical to the result obtained in (29) using the reciprocal theorem.
We also compute the O(�2) correction to the hydrodynamic drag force. The hydrodynamic drag

force per unit length of the cylinder is given by FH
drag = ∫

Sc
n · σ · exdx, where n is the normal to the

surface of the cylinder directed into the fluid. In the lubrication limit, the above expression reduces
to

FH
drag = −μuc

√
2ahf

h2
f

∫ ∞

−∞

(
∂U

∂Z
+ 2XP

)
Z=H

dX. (A17)

Using the expansions of U and P in powers of �, we obtain

FH
drag = −2

√
2πμuca

1/2

h
1/2
f

(
1 − 441

1280
�2 + O(�4)

)
. (A18)

074102-15



BHARGAV RALLABANDI et al.

Note that FH
drag is independent of the value of β2. The elasticity of the layer lowers the drag on the

cylinder, although this is a weak effect for modest values of �. This is evident in Fig. 4(a), where
the asymptotic form of FH

drag is plotted alongside numerical calculations at finite �.
The perturbation analysis may, in principle, be carried forward to higher order in �, although the

solutions for the pressure distribution P (X) become increasingly unwieldy with increasing powers of
�. However, having developed the solution to the problem up to O(�2), we can now apply the recipro-
cal theorem again to infer some properties of the flow at O(�3). In particular, we compute the correc-
tion to the leading-order lift force prediction in Appendix B, for which the following results are useful:

U2|Z=0 = 8X2(17 − 25X2)

5(X2 + 1)7
, (A19a)

∂U2

∂Z

∣∣∣∣
Z=0

= −957X12 + 5742X10 + 14 355X8 + 19 140X6 − 15 725X4 + 42 862X2 − 2499

320(X2 + 1)8

+ 2β2(X2 − 1)

(X2 + 1)2
. (A19b)

APPENDIX B: LIFT FORCE AT O(�3) USING THE RECIPROCAL THEOREM

To compute the lift force up to O(�3) using the reciprocal theorem, we define a model problem
in which a cylinder translates normal to a rigid wall with velocity Ṽ = Ṽ ez, thereby driving a model
flow (ṽ,σ̃ ). Using this model problem, we now apply the reciprocal theorem in the undeformed
domain in a manner analogous to that in Sec. III A. Doing so results in the following expression for
the normal force per unit length of the cylinder:

FH · Ṽ = −
∫ ∞

∞
ez · σ̃ ·

{
vc +

(
uc

∂δ

∂x
− ∂δ

∂t

)
ez + δ

∂v
∂z

+ δ2

2

∂2v
∂z2

+ δ3

6

∂3v
∂z3

}∣∣∣∣
z=0

dx

+ O

(∣∣∣∣δ4ez · σ̃ · ∂4v
∂z4

∣∣∣∣
)

, (B1)

where the boundary condition at z = 0 in the main problem has now been expanded to one power
of δ higher than in (6). The solution to the model flow is well known in the lubrication limit [13];
the surface traction on the wall in the model problem, which enters (B1), is

ez · σ̃ |z=0 = μṼ �2

h3
f

(
−P̃ ez + hf

�

∂ Ũ

∂Z
ex

)∣∣∣∣
Z=0

, (B2)

where P̃ = − 3
(1+X2)2 and ∂ Ũ

∂Z
|Z=0 = − 6X

(1+X2)2 .

As in (23), we write V = V0 + �V1 + �2V2 + O(�3) and 
(X) = −�P = −�P0 + �2P1 +
�3P2 + O(�4), noting that we now utilize the solution for the flow up to O(�2). Constraining the
cylinder to translate parallel to the wall (wc = 0) and substituting the expansions for v and � into
(B1), we obtain

FH
lift ≡ FH · ez = F0 + �F1 + �2F2 + �3F3 + O(�4), (B3)

where

F0 = −2μuca

hf

∫ ∞

−∞

∂ Ũ

∂Z

∣∣∣∣
Z=0

dX, (B4a)

F1 = −2μuca

hf

∫ ∞

−∞

{
P̃

∂P0

∂X
− P0

∂ Ũ

∂Z

∂U0

∂Z

}∣∣∣∣
Z=0

dX, (B4b)
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F2 = −2μuca

hf

∫ ∞

−∞

{
P̃

∂P1

∂X
− P0

(
∂ Ũ

∂Z

∂U1

∂Z
+ P̃

∂U1

∂Z

)
− P1

∂ Ũ

∂Z

∂U0

∂Z

+ P 2
0

2

(
∂ Ũ

∂Z

∂P0

∂X
+ P̃

∂2U0

∂X∂Z

)}∣∣∣∣
Z=0

dX, (B4c)

F3 = −2μuca

hf

∫ ∞

−∞

{
P̃
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(B4d)

Since ∂Ũ/∂Z is an odd function of X, F0 = 0 identically. At O(�), we recover the leading-order
lift force result [4,17]

F1 = 3π

8

2μuca

hf

. (B5)

Again, by the odd symmetry of its integrand, we find F2 = 0. Finally, the integral expression for F3

evaluates to

F3 = −2μuca

hf

3π (761 − 512β2)

2048
. (B6)

The hydrodynamic lift force per unit length is therefore

FH
lift = 2μuca

hf

(
3π

8
� − 3π (761 − 512β2)

2048
�3 + O(�5)

)
. (B7)

The above expression for the lift force is plotted in Fig. 4(b) for the torque-free case (β2 = 21
256 ).

Note that the O(�3) correction to the lift force is only weakly influenced by whether the cylinder
is torque-free or is held under an external torque so that it does not rotate (β2 = 0). Symmetry
arguments also preclude additional drag or torque contributions at O(�3).
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