

HOKKAIDO UNIVERSITY

Title	Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone
Author(s)	Yamada, Satoshi; Tadano, Shigeru; Fukasawa, Koichi
Citation	Journal of biomechanics, 49(16), 4124-4127 https://doi.org/10.1016/j.jbiomech.2016.10.016
Issue Date	2016-12-08
Doc URL	http://hdl.handle.net/2115/67791
Rights	© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	BM-D-16-00219R2.pdf

*Manuscript

Micro-cantilever Bending for Elastic Modulus Measurements 1

of a Single Trabecula in Cancellous Bone $\mathbf{2}$

- Satoshi YAMADA^{1,*}, Shigeru TADANO¹, Koichi FUKASAWA² 3

4	
5	¹ Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido
6	University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
7	² Division of Human Mechanical Systems and Design, Graduate School of Engineering,
8	Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
9	
10	
11	
12	
13	
14	
15	Types of article: Short Communications
16	
17	Word count: 1940 words (less than 2000 words, from Introduction to Discussion)
18	
19	Key words: Cancellous bone, Single trabecula, Mechanical test, Elastic modulus
20	
21	*Corresponding author:
22	Satoshi Yamada, Ph.D., Assistant Professor
23	Affiliation: Division of Human Mechanical Systems and Design, Faculty of Engineering,
24	Hokkaido University
25	Postal address: N13 W8, Kita-ku, Sapporo, Hokkaido 0608628, Japan
26	Tel/Fax:+81-11-706-6406
27	E-mail:syamada@eng.hokudai.ac.jp

28 Abstract

29 Mechanical tests performed on small bone specimens such a single trabecula remain 30 challenging because their isolation, fixation, and precise loading are complicated. Hence, 31we describe a novel experimental method to measure the elastic properties of a single 32trabecula using micro-cantilever bending (MCB) testing. The method does not require 33 specimens to be completely separated from the cancellous bone, and the specimen can be 34easily fixed during the test. In total, 10 trabecular specimens taken from the proximal 35epiphysis of an adult bovine femur were used in the present study. Measurements were 36 conducted using a small testing device comprising a 1-axial stage, load cell, optical 37microscope, and small plate with a taper bore for applying load at the edge of the 38 specimen. Each specimen was positioned at the edge of the bore and was deformed by 39 displacing the stage. The deflection of the specimen was observed by optical microscopy. 40 The elastic modulus of the specimen was calculated on the basis of the force-deflection 41 relationship, assuming that the shape of the specimen was a vertical circular cylinder. As 42 a result, an average elastic modulus of 9.1 ± 5.4 GPa was obtained for a single trabecula, 43including the values in literature. Thus, the MCB test is a novel simple method for

44 biomechanical analysis of a single trabecula. (214 words)

1. Introduction

46	The cancellous bone is organized into a three-dimensional network of single
47	trabeculae, and the apparent elastic modulus depends on this network. The mechanical
48	properties and nanostructure of each trabecula are important factors in determining the
49	mechanical properties of the cancellous bone. Accordingly, small bone specimens such as
50	a single trabecula must be investigated to understand the impact of aging, osteoporosis,
51	and/or medicines on the risk of cancellous bone fractures. However, few studies have
52	performed mechanical tests on such specimens (Carretta et al., 2013a; Lucchinetti et al.,
53	2000) because such studies remain technically challenging.
54	Tensile tests were performed on a single trabecula in previous studies (Yamada
55	et al., 2014; Carretta et al., 2013b, 2013c; McNamara et al., 2006; Hernandez et al., 2005;
56	Bini et al., 2002; Rho et al., 1993). Although tensile tests present some advantages, it is
57	difficult to completely isolate, fix, and examine small bone specimens. We recently
58	examined trabecular specimens (at least 3 mm in length) by tensile testing; however, the
59	specimens were larger than the standard size and existed in the edges of the cancellous
60	bone (Yamada et al., 2014). Three-point bending tests (Carretta et al., 2013b, 2013c;

61	Hambli and Thurner, 2013; Szabó et al., 2011; Jungmann et al., 2011; Busse et al., 2009)
62	were also performed on a single trabecula. However, such tests generally require
63	complete isolation of the specimen, deflection measurements at high resolution, and very
64	precise loading, which are usually difficult to obtain. Therefore, a simpler and more
65	reliable experimental method is required for biomechanical analysis of a single trabecula.
66	Here we demonstrate a novel experimental method to investigate the elastic
67	properties of a single trabecula on the basis of cantilever bending, as shown in Fig. 1. The
68	micro-cantilever bending (MCB) test does not require the specimen to be isolated
69	completely from the cancellous bone, and the specimen can be fixed easily during the
70	test.
71	
72	2. Materials and Methods
73	Specimen preparation
74	A total of 10 trabeculae were dissected from the proximal epiphysis of an adult
75	bovine femur (two years old) as shown in Fig. 2. First, the proximal epiphysis was sliced
76	vertically to the longitudinal axis of the femur (bone axis; Fig. 2a), and the bone marrow

 $\mathbf{5}$

77	was removed by brief water jetting (Fig. 2b). Second, plate-like cancellous bone samples
78	were cut out from the slices using a low-speed diamond wheel saw (model 650, South
79	Bay Technology Inc., USA). Third, a specific single trabecula of about 1 mm in length
80	aligned in the plane of each plate-like sample was randomly selected and isolated from
81	the cancellous bone, while keeping one extremity connected to the other trabeculae (Fig.
82	2c). Fourth, the remaining attached cancellous bone portion was shaped into a small
83	rectangle such that its height corresponded to the depth of a specimen holder (Fig. 2d).
84	The specimen was placed into the holder almost vertically and fixed by embedding the
85	cancellous bone portion in epoxy resin (Fig. 2e).
86	
87	Trabecular axis and morphology
88	The longitudinal orientation of each trabecula within the femoral epiphysis was
89	visualized by scanning the plate-like samples (Fig. 2c) using a microfocus X-ray CT
90	instrument (inspeXio SMX-90CT, Shimadzu Corporation, Japan) at a tube voltage of 90
91	kV, tube current of 110 μ A, and voxel size of 0.092 mm/voxel. The trabecular orientation,
92	α , was defined as the angle between the longitudinal direction of the trabecula and bone

93 axis (Fig. 3).

94	The shape of the trabecula was determined by high-resolution scanning of the
95	specimens fixed to the jigs (Fig. 2e) using a voxel size of 0.009 mm/voxel. The area (A),
96	circularity, and aspect ratio of the cross-sections were analyzed using ImageJ software.
97	

98 MCB

99	The MCB tests were conducted using a small testing device (Fig. 4),
100	comprising an acrylic plate to apply the displacement and load on the specimen, a 1-axial
101	stage (ALS-4011-G1M, Chuo Precision Industrial Co., Ltd., Japan), and a load cell
102	(LVS-1KA, Kyowa Electronic Instruments Co., Ltd., Japan). The tests were conducted
103	under optical microscopic observation at a 3-µm resolution (VH-5000, Keyence
104	Corporation, Japan). Each specimen was positioned at the edge of a taper bore drilled into
105	the acrylic plate, with the contact position in close proximity with the free end. The plate
106	was displaced horizontally in a stepwise manner using the stage, and microscopic images
107	were captured vertically (Fig. 4a). The deflection, d , was defined as the horizontal
108	displacement of the contact position in the direction of plate displacement and the load, F ,

109	in the same direction was measured by the load cell connected to the plate. The maximum
110	d and F values were $178 \pm 16 \mu\text{m}$ and $0.68 \pm 0.75 \text{N}$, respectively. A drop of water-based
111	ink was applied to the edge of the bore, and the contact position at the surface of the
112	specimen was observed by optical microscopy after the test. Then, the distance, l ,
113	between the fixed end of the specimen and contact position was measured for the
114	calculation of the elastic modulus. Specimens were loaded and then unloaded three times
115	under air-dried conditions.
116	The shape of the specimen was assumed to be a vertical circular cylinder of
116 117	The shape of the specimen was assumed to be a vertical circular cylinder of orthotropic material and the shear stress was considered to be negligible during loading.
116 117 118	The shape of the specimen was assumed to be a vertical circular cylinder of orthotropic material and the shear stress was considered to be negligible during loading. Then, the elastic modulus, <i>E</i> , in the longitudinal direction of the single trabecula was
116 117 118 119	The shape of the specimen was assumed to be a vertical circular cylinder of orthotropic material and the shear stress was considered to be negligible during loading. Then, the elastic modulus, <i>E</i> , in the longitudinal direction of the single trabecula was calculated as in Eq. (1) from the plane curve of the bending axis (e.g., Lekhnitskii, 1963).

121
$$E = \frac{l^3}{3I} \frac{F}{d}$$
(1)

123 , where *I* is a second moment of area and is expressed by Eq. (2) (e.g., Timoshenko and124 Young, 1968).

126
$$I = \frac{\pi D^4}{64}$$
 (2)

127

128 , where *D* is the diameter of cylinder. *D* value was calculated from the average 129 cross-sectional area of each specimen as $2\sqrt{A/\pi}$.

130

131 **3. Results**

132The morphological characteristics and orientation of the trabecular specimens 133are shown in Table 1. The specimens appeared to be rod-like in shape according to 134 microscopic and X-ray CT observations. The longitudinal orientation of the trabecular specimens varied widely from 14° to 87° with respect to the bone axis. 135136 The specimens deflected in the direction of the plate displacement and torsional 137 deformation was not observed. Figure 5 demonstrates the high repeatability of the F-d138relationships obtained for a specimen. The linear region of the relationships was used to calculate the average F/d (N/mm) value of the three measurements, which was then used 139 to determine the elastic modulus. According to the Wilcoxon signed-rank test, the ratios 140

141	of force–deflection trend (F/d) in the second and third measurements compared to the
142	first measurements had no significant difference with the first measurements ($P > 0.05$).
143	In the cancellous bone of a bovine femur, the average elastic modulus of the 10 trabecular
144	specimens was 9.1 ± 5.4 GPa.
145	In the present study, the elastic modulus had no significant correlation with the
146	orientation, size, or shape of the trabeculae. Furthermore, the trabecular orientation had
147	no significant correlation with the size and shape.
148	
149	4. Discussion
150	The present study found that the elastic modulus of trabecular specimens from

151 a bovine femur was 9.1 \pm 5.4 GPa. These values fall within the range reported for a single

trabecula under dry conditions (2–16 GPa; Yamada et al., 2014; Carretta et al., 2013b,

153 2013c; Busse et al., 2009; Bini et al., 2002; Rho et al., 1993), including different species,

154 ages, locations, size, and types of mechanical test. There was also no significant

- 155 difference with the elastic modulus values obtained in our previous study using the same
- age bovine femurs (Yamada et al., 2014). These findings indicate that the new MCB

157 protocol proposed herein can be used to determine the elastic modulus of a single158 trabecula.

159	Tensile and three-point bending tests have been performed on a single trabecula.
160	Tensile tests are among the simplest mechanical tests, and are suited for the observation
161	of the deformation behavior of mineral crystals within a single trabecula by X-ray
162	diffraction (Yamada et al., 2014). However, it is rather difficult to completely isolate, fix,
163	and examine small bone specimens, such as those used in the present study. On the other
164	hand, three-point bending tests do not require fixation of the specimen to a jig with a resin
165	or glue, while complete isolation of the specimens from the cancellous bone is generally
166	required. Furthermore, the rod-shape specimen may move and roll on the support during
167	loading; precise loading therefore needs to be taken into account. High-resolution
168	measurements for the displacement are also required; in fact, the deflection generated by
169	the same force is 16 times smaller by three-point bending than by cantilever bending of a
170	uniform beam. These tests may not be suited for a single trabecula due to technical
171	difficulty. Lorenzetti et al. (2011) conducted fixed-fixed beam tests on a single trabecula
172	in a cancellous bone sample by applying force with a nylon wire. Although this method is

173	quite convenient, it may generate displacement artifacts at the trabecular ends that must
174	be removed from the calculations, and controlling the loading position and direction may
175	be technically challenging. In contrast, the MCB test allows the trabecular specimens to
176	remain attached to the cancellous bone at one extremity and allows for better control of
177	the position during the test, which is a simple and useful experimental method for
178	biomechanical analysis of a single trabecula.
179	In Wolff's law the trabecular orientation plays an important role in the
180	mechanical strength of the bone; however, the elastic modulus of single trabeculae had no
181	significant correlation with the orientation in the present study. Our previous study also
182	did not show this correlation, although the effects of the hydroxyapatite crystal strain
183	ratio on the elastic modulus of single trabeculae were observed (Yamada et al., 2014). It
184	suggests that the variation of the elastic modulus of single trabeculae may depend on its
185	hierarchical structure. Furthermore, the variation may be relatively small locally since the
186	single trabeculae were extracted from the same region, and the trabecular networks are
187	important for the apparent strength of the cancellous bone in the region.
188	The present study has some limitations. First, we examined the 1-mm single

189	trabeculae taken from a relatively close area to the diaphysis, which were easy to extract.
190	Second, a stepwise deformation was applied to all specimens. Although the measured
191	force did not show significant time dependence, a small decreasing force was observed
192	immediately after the applied deflections. Accordingly, deflection was measured from
193	optical images captured during the period of stable force. Third, the linear region of the
194	force-deflection relationship was used to calculate the elastic modulus. In general, a
195	non-linear relationship is observed with curved specimens, inhomogeneous shapes, large
196	deformations, and non-linear elastic properties as well as after yielding. In the present
197	study, the region used for the calculations had high linearity ($R^2 = 0.96 \pm 0.02$), and the
198	specimens appeared as straight rods with linear elastic properties. Fourth, the specimen
199	was assumed to be a vertical circular cylinder for the calculation of the elastic modulus to
200	simplify the method. In general, asymmetrical shape and anisotropic material properties
201	generate oblique deflection and rotation, which complicate the calculation; however, such
202	phenomenon was not detected in the study. Furthermore, although the sample may
203	slightly tilt with respect to the vertical axis, it has less impact on the results because the
204	effects of the cosine of the tilt angle are negligibly small. Fifth, the measured elastic

205	moduli are considerably affected by the elastic properties around the bottom region of the
206	trabeculae in the bending test, and we assumed that the trabeculae had homogenous
207	mechanical properties. Last, the specimens were assumed to be rigidly fixed to the
208	holders. Although the fixation may represent a source of error, the embedded cancellous
209	bone portion was larger than the single trabecula and the stiffness of the portion was
210	considered to be sufficiently high to resist the applied load.
211	
212	Acknowledgments
213	This study was supported by JSPS KAKENHI (Grants no. 15K17929 and 15H02207).
214	

215 **Conflict of interest statement**

216 There is no actual or potential conflict of interest associated with this project.

217	References
217	References

- + ,	
218	Bini, F., Marinozzi, A., Marinozzi, F., Patanè, F., 2002. Microtensile measurements of
219	single trabeculae stiffness in human femur. Journal of Biomechanics 35, 1515-1519.
220	
221	Busse, B., Hahn, M., Soltau, M., Zustin, J., Püschel, K., Duda, G.N., Amling, M., 2009.
222	Increased calcium content and inhomogeneity of mineralization render bone toughness in
223	osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.
224	Bone 45, 1034-1043.
225	
226	Carretta, R., Lorenzetti, S., Müller, R., 2013a. Towards patient-specific material
227	modeling of trabecular bone post-yield behavior. International Journal for Numerical
228	Methods in Biomedical Engineering 29, 250-272.
229	
230	Carretta, R., Stüssi, E., Müller, R., Lorenzetti, S., 2013b. Within subject heterogeneity in
231	tissue-level post-yield mechanical and material properties in human trabecular bone.
232	Journal of the Mechanical Behavior of Biomedical Materials 24, 64-73.
233	
234	Carretta, R., Luisier, B., Bernoulli, D., Stüssi, E., Müller, R., Lorenzetti, S., 2013c. Novel
235	method to analyze post-yield mechanical properties at trabecular bone tissue level.
236	Journal of the Mechanical Behavior of Biomedical Materials 20, 6-18.
237	
238	Hambli, R., Thurner, P.J., 2013. Finite element prediction with experimental validation of
239	damage distribution in single trabeculae during three-point bending tests. Journal of the
240	Mechanical Behavior of Biomedical Materials 27, 94-106.
241	
242	Hernandez, C.J., Tang, S.Y., Baumbach, B.M., Hwu, P.B., Sakkee, A.N., Van der Ham, F.,
243	DeGroot, J., Bank, R.A., Keaveny, T.M., 2005. Trabecular microfracture and the
244	influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links.
245	Bone 37, 825-832.
246	
247	Jungmann, R., Szabo, M.E., Schitter, G., Tang, R.Y., Vashishth, D., Hansma, P.K.,
248	Thurner, P.J., 2011. Local strain and damage mapping in single trabeculae during
	1 5
	10

249	three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials 4,
250	523-534.
251	
252	Lekhnitskii, S.G., 1963. Theory of elasticity of an anisotropic elastic body. Translated by
253	Fern, P., Holden-Day, San Francisco, pp.275-285.
254	
255	Lorenzetti, S., Carretta, R., Müller, R., Stüssi, E., 2011. A new device and method for
256	measuring the elastic modulus of single trabeculae. Medical Engineering & Physics 33,
257	993-1000.
258	
259	Lucchinetti, E., Thomann, D., Danuser, G., 2000. Review Micromechanical testing of
260	bone trabeculae - potentials and limitations. Journal of Materials Science 35, 6057-6064.
261	
262	McNamara, L.M., Ederveen, A.G.H., Lyons, C.G., Price, C., Schaffler, M.B., Weinans,
263	H., Prendergast, P.J., 2006. Strength of cancellous bone trabecular tissue from normal,
264	ovariectomized and drug-treated rats over the course of ageing. Bone 39, 392-400.
265	
266	Rho, J.Y., Ashman, R.B., Turner, C.H., 1993. Young's modulus of trabecular and cortical
267	bone material: ultrasonic and microtensile measurements. Journal of Biomechanics 26,
268	111-119.
269	
270	Szabó, M.E., Taylor, M., Thurner, P.J., 2011. Mechanical properties of single bovine
271	trabeculae are unaffected by strain rate. Journal of Biomechanics 44, 962-967.
272	
273	Timoshenko, S., Young, D.H., 1968. Elements of Strength of Materials. 5th edition. D.
274	Van Nostrand, New York, pp.346-355.
275	
276	Yamada, S., Tadano, S., Fukuda, S., 2014. Nanostructure and elastic modulus of single
277	trabecula in bovine cancellous bone. Journal of Biomechanics 47, 3482-3487.

1 Legends of the figures and table

2 **Figure 1** Schematic of micro-cantilever bending for a single trabecula.

3	Figure 2 Specimen preparation: the proximal epiphysis of a bovine femur (a) was sliced
4	vertically to the longitudinal axis of the femur (bone axis) and the bone marrow was
5	removed using a water jet (b). Plate-like cancellous bone samples were cut out from the
6	slices, and a specific single trabecula of about 1 mm in length aligned in the plane of each
7	plate-like sample was randomly selected. The cancellous bone surrounding the target
8	single trabecula was removed (c). The remaining cancellous bone portion was shaped
9	into a small rectangle (d). The specimen was placed into a holder almost vertically and
10	fixed by embedding the cancellous bone portion into epoxy resin (e). The trabecular
11	specimen was observed by optical microscopy (f). White arrows indicate the bone axis.
12	Figure 3 Definition of the trabecular orientation α .
13	Figure 4 Experimental setup (a) and small testing device designed to conduct
14	micro-cantilever bending tests on a single trabecula (b). The device comprised an acrylic
15	plate (2.3-mm thickness), a 1-axial stage (ALS-4011-G1M, Chuo Precision Industrial Co.,

1

Ltd., Japan) equipped with a high-resolution (2 µm) and high-repeatability (0.3 µm)

17	actuator, and a load cell (LVS-1KA, Kyowa Electronic Instruments Co., Ltd., Japan) with
18	high repeatability ($\leq 0.5\%$) and small hysteresis ($< 0.5\%$). The diameters of the taper bore
19	drilled into the acrylic plate at the upper and bottom side were 6.2 and 4.3 mm,
20	respectively, and the edge of the bore was sharp (approximately 20-µm radius).
21	Figure 5 Force-deflection relationships in a single trabecula. Tests of each specimen
22	were conducted three times, with the same color dots indicating values from the same
23	test.
24	Table 1 Mean values and standard deviations of each parameter measured on the
25	trabecular specimens ($n = 10$): the distance between the fixed end of the specimen and
26	contact position (l) observed by microscopy, which was almost the same as trabecular
27	length; trabecular orientation (α), average cross-sectional area (A), circularity (Cir), and
28	aspect ratio (AR) measured by micro CT scans; diameter of the specimen (D) measured
29	by the approximation of a circular cylinder; elastic modulus (E) and R^2 value of
30	force-deflection relationship from the micro-cantilever bending (MCB) test.

1 Figure and table

Figure 2

Table 1

Experiments	Microscopy	μ-CT					M	MCB	
Parameters	l	α	Α	Cir	AR	D	E	R^2	
Unit	mm	0	mm^2	-	-	mm	GPa	-	
Mean	1.12	49	0.0575	0.67	1.4	0.25	9.1	0.96	
S.D.	0.17	24	0.0515	0.10	0.1	0.10	5.4	0.02	