Sequential Sampling for Seed Viability Testing at CIAT's Genebank

May 23, 2017 Addis Ababa, Ethiopia

Luis Guillermo Santos M.

l.g.santos@cigar.org

Why did we choose to test sequential sampling?

- The CIAT genebank conserves very diverse materials belonging to many species → seed production often limited due to lack of adaptation to regeneration environments.
- High cost of regenerating and producing seeds from some materials like special landraces or wild species.
- Some species don't produce many seeds → need a methodology that minimizes the number of seeds used.

The acceptance sampling problem

An **acceptance-sampling plan** consists of sample size and acceptance/rejection criteria for lot sentencing

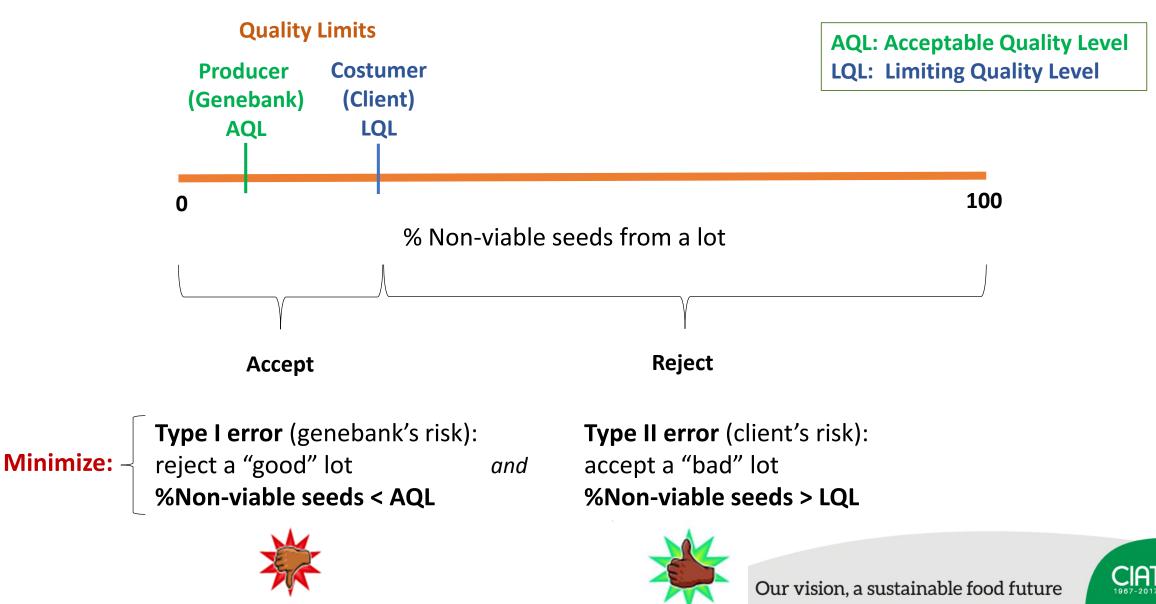
An **acceptance-sampling scheme** is a set of procedures consisting of acceptancesampling plans in which lot sizes, batches sizes, and acceptance/rejection criteria are related

Typical application of acceptance sampling is for **lot disposition**, sometimes referred to as **lot sentencing**:

Rejected lots are sent to be *regenerated*

Accepted lots are forwarded to be *conserved*

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2012 John Wiley & Sons, Inc.

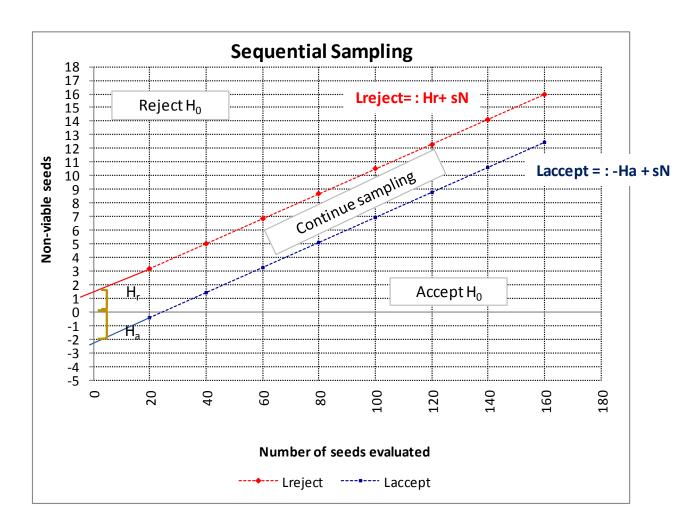

Wald's sequential sampling method

- Sampling procedure for inspection by attributes: **most widely used** acceptance sampling system for attributes
- Two key concepts: Acceptable quality level (AQL) and Limiting quality level (LQL)
- Take sequence of batches from a lot and allow the number of batches tested to be determined entirely by the results of the sampling process (until a desired precision level is reached)
- Estimates of very high or very low viability are promptly obtained; borderline viability estimates need more sampling
- Montgomery (2012) recommends setting up sampling at three times the number of seeds required for estimating viability using fixed-size samples (ISTA: 400 x 3 = 1,200; CIAT: 50 x 3 = 150)

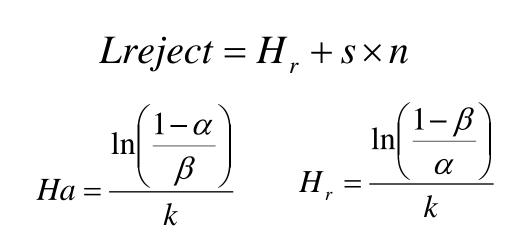
Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2012 John Wiley & Sons, Inc.

Sequential sampling plan:

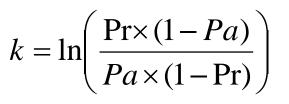
Source: Duque M.C, 2010. CIAT

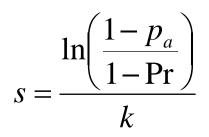

Step-by-step procedure

- 1. Determine the AQL depending on species and lab
- 2. FAO Norms (2014): LQL = 15% non-viable seeds
- 3. Select a preferred batch size
- 4. Set the null hypothesis, selecting an acceptable Type I error level (alpha = genebank risk)
- 5. Set the alternative hypothesis, selecting an acceptable Type II error level (beta = client risk)
- 6. Create table and graph using appropriate formulae
- 7. Perform viability test sequentially until a decision is reached


H₀: The lot is acceptable (%nV <= AQL) <u>Type I error</u> **Alpha** (genebank's risk): Probability to conclude that the lot is not acceptable when it is acceptable H₁: The lot is non acceptable (%nV > LQL) <u>Type II error</u> **Beta** (client's risk): Probability to conclude that the lot is acceptable when it is not acceptable

Graph & formulae

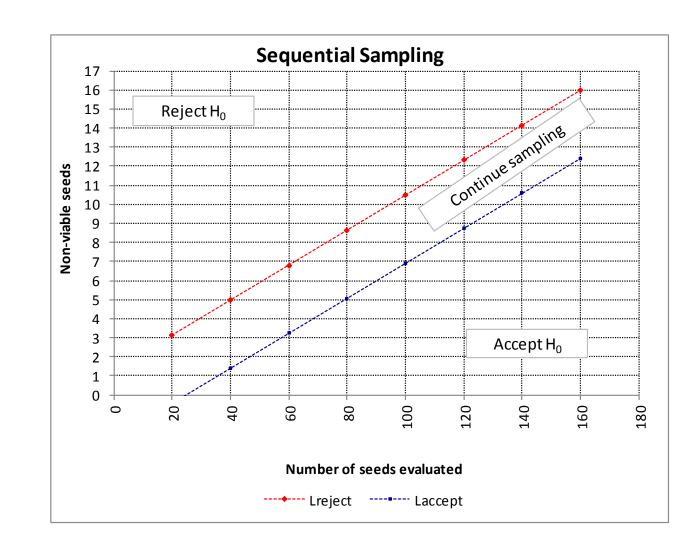


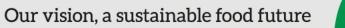

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2012 John Wiley & Sons, Inc.

 $Laccept = -Ha + s \times n$

where

Our vision, a sustainable food future


Implementation for testing beans at CIAT


H ₀ : The lot is Acceptable (%nV<=AQL)							H ₁ : The lot is non acceptable (%nV>LQL)		
AQL : Acceptable Quality Level							LQL: Limiting Quality Level		
	Type I error						Type II error		
Alpha	Alpha : Genebank's risk						Beta: Client's risk		
Probability to conclude that the lot is not acceptable when it is acceptable				Help:		Probability to conclude that the lot is acceptable when it is not acceptable			
т	Type I error	Type II error	Ра	Pr	Num Ha	1.20412	Wald Lines		
-					Num Hr	0.6767			
	Alpha	Beta	AQL	LQL	Num S	0.0483	Laccept:-Ha+sN		
	0.20	0.05	0.05	0.15	den=k	0.5254	Lreject: Hr + sN		
Г	1-alpha	1-beta	1-pa	1-pr	На	2.2917			
Γ	0.8	0.95	0.95	0.85	Hr	1.2879			
-					S	0.0919	1		

Example: batches of 20 seeds...

Ν	Laccept	Lreject	La	Lr
20	-0,4530	3,1266	0	4
40	1,3857	4,9653	1	5
60	3,2244	6,8040	3	7
80	5,0630	8,6426	5	9
100	6,9017	10,4813	6	11
120	8,7404	12,3200	8	13
140	10,5791	14,1587	10	15
160	12,4178	15,9974	12	16
180	14,2565	17,8361	14	18
200	16,0952	19,6748	16	20
220	17,9338	21,5134	17	22
240	19,7725	23,3521	19	24
260	21,6112	25,1908	21	26
280	23,4499	27,0295	23	28
300	25,2886	28,8682	25	29
320	27,1273	30,7069	27	31
340	28,9660	32,5456	28	33
360	30,8047	34,3843	30	35
380	32,6433	36,2229	32	37
400	34,4820	38,0616	34	39

Validation of method

The experiment consisted of evaluating **560 seeds per accession**, randomly selected of each of eight accessions, using germination paper and water imbibition along with supplemental Tetrazolium tests for viability.

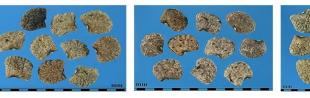
Three species from the *Rugosi* and one from the *Phaseoli* section of *Phaseolus*:

- *Phaseolus angustissimus* (G40685, G40704)
- Phaseolus carteri (G40675)
- *Phaseolus filiformis* (G40501, G40507 and G40547)
- *Phaseolus dumosus* Macfadyen (G35758 and G35877; both as wild forms)

Accessions conserved at -20°C for 10 years (except G40704: 5°C); all showing orthodox behavior.

Rugosi Section

G40704


G40507

Phaseoli Section

G35758

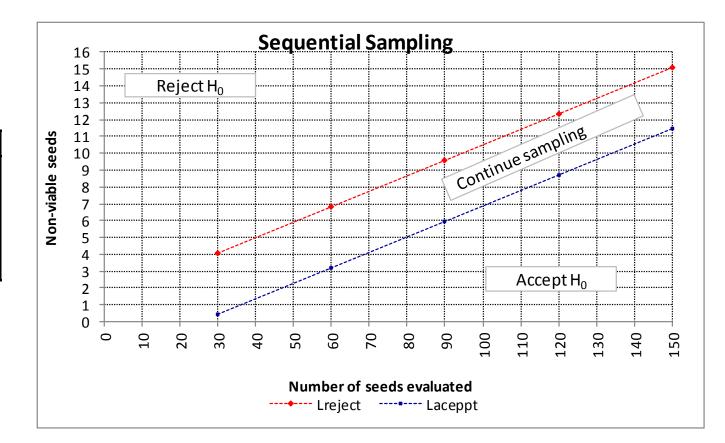
G40685

G40501

G40675

G40547

G35877


Accession	Species	Moisture content (%)	Viability (%V) /Non-viability (%nV)
G40685	Phaseolus angustissimus	5.1	98,4 /1,6
G40675	Phaseolus carteri	6.4	97,9 /2,1
G40507	Phaseolus filiformis	7.5	97,1 /2,9
G40547	Phaseolus filiformis	6.7	96,8 /3,2
G40704	Phaseolus angustissimus	4.2	96,8 /3,2
G35877	Phaseolus dumosus	8.0	95,9 /4,1
G35758	Phaseolus dumosus	8.0	95,4 /4,6
G40501	Phaseolus filiformis	5.8	88,0 /12,0

How many seeds would have been required with sequentially sampling groups of 20, 25 or 30 seeds?

- Performed 1,000 sequential-sampling simulations with batches of 20, 25 and 30 seeds each to determine the total number of seeds required to obtain reliable viability results for each accession
- Best result: batches of 30 seeds; in many cases only 60 seeds required to accept or reject lots

Ν	Laceppt	Lreject	La	Lr
30	0.4663	4.0459	0	5
60	3.2244	6.8040	3	7
90	5.9824	9.5620	5	10
120	8.7404	12.3200	8	13
150	11.4984	15.0780	11	16

Second experiment: comparison fixed-sample (50 seeds) vs. sequential sampling (batches of 30 seeds)

ACCESSIONS	SPECIES	Biological Status	Number of seeds evaluated	Number of seeds Rejected	Results
G 7305	Phaseolus vulgaris	Cultivated	50*	4	92%
07305			30	0	Accepted
G 8170	Phaseolus vulgaris	Cultivated	50*	1	98%
0.01/0			30	0	Accepted
C 9173	Phaseolus vulgaris	Cultivated	50*	1	98%
G 8172			30	1	Continue sampling
G 19694	Phaseolus vulgaris	Cultivated	50*	3	94%
G 19694			30	0	Accepted
C22040	Phaseolus vulgaris	Cultivated	50*	0	100%
G22949			30	0	Accepted
G23654	Phaseolus vulgaris	Wild	50*	0	100%
			30	0	Accepted
G40879	Phaseolus tuerckheimii	Wild	50*	0	100%
			30	0	Accepted

* Fixed sample size to estimate percentages: 85% with 10% maximum permissible error and 90% confidence

Advantages & disadvantages

- In contrast to ISTA norms, Wald's sequential sampling needs fewer seeds (more seeds only used if no decision can be taken with first batch). Often, regeneration decisions can be taken with 60 seeds or less.
- Increased throughput (no. of accessions) for viability testing per staff and time.
- Enables more viability measurements over time.
- Still involves destructive testing.
- Strong dependency on random subsampling.
- Method provides binary answer: seed quality is acceptable or not. It is not designed to estimate the percentage of viable seeds.
- Ability to distinguish between low viability and procedural problems.
- This methodology is more recommended for monitoring testing.

Many thanks to Myriam C. Duque and our seed-viability team!

CIAT

Centro Internacional de Agricultura Tropical Desde 1967 Ciencia para cultivar el cambio

Sede Principal Km 17 Recta Cali-Palmira C.P. 763537 P.O. Box 6713, Cali, Colombia Phone: +57 2 445 0000

■ ciat@cgiar.org www.ciat.cgiar.org

f ciat.ecoefficient

@ @ciat_cgiar

У @CIAT_

Centro de Investigación de CGIAR