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aSPCOM Group, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), C/Jordi Girona 31, 08034,
Barcelona, Spain (e-mail: alba.pages@upc.edu).

bGPSC Group, Universidade de Vigo, Rua Maxwell s/n 36310, Spain (e-mail: valcarce@gts.uvigo.es).

Abstract

We address the problem of distributed estimation of a vector-valued parameter performed

by a wireless sensor network in the presence of noisy observations which may be unreliable

due to faulty transducers. The proposed distributed estimator is based on the Expectation-

Maximization (EM) algorithm and combines consensus and diffusion techniques: a term for

information diffusion is gradually turned off, while a term for updated information averaging

is turned on so that all nodes in the network approach the same value of the estimate. The

proposed method requires only local exchanges of information among network nodes and, in

contrast with previous approaches, it does not assume knowledge of the a priori probability of

transducer failures or the noise variance. A convergence analysis is provided, showing that the

convergent points of the centralized EM iteration are locally asymptotically convergent points

of the proposed distributed scheme. Numerical examples show that the distributed algorithm

asymptotically attains the performance of the centralized EM method.

Keywords: Consensus averaging, diffusion strategies, distributed estimation,

expectation-maximization, maximum-likelihood, soft detection, wireless sensor networks.

1. Introduction

Wireless sensor networks (WSNs) consist of many small, spatially distributed autonomous

nodes, equipped with one or more on-board sensors to collect information from the surrounding

environment, and which collaborate to jointly perform a variety of inference and information

processing tasks. Applications include environmental and healthcare monitoring, event detec-5

tion, target classification, and industrial automation [1, 2]. Distributed processing, by which

computations are carried out within the network in order to avoid raw data transmission to

a fusion center, is a desirable feature of WSNs since it usually results in energy savings and

∗Present Address: CNS Group, Universitat Pompeu Fabra, C/Ramon Trias Fargas, 25-27, 08005 Barcelona,
Spain (e-mail: silvana.silva@upf.edu)

∗∗Corresponding author

Preprint submitted to Signal Processing December 13, 2017



improved robustness [3, 4]. In particular, distributed estimation of unknown parameters in

WSNs is an important problem which has been extensively considered over the past few years10

[5, 6, 7, 8, 9, 10, 11].

In practice, estimation performance may be severely degraded when the information col-

lected by the nodes becomes unreliable due to sensor malfunction [12, 13, 14, 15], and therefore

it is important to efficiently identify faulty nodes [16, 17]. Given that nodes are typically de-

ployed in outdoor, potentially harsh environments, sensor malfunction effects should not be15

lightly dismissed. We consider the problem of distributed estimation of a vector-valued param-

eter from the observations collected by a WSN where some nodes may be subject to random

transducer faults, so that their reports contain only noise [13, 18]. In the presence of such

unreliable observations, one possibility is to run a node classification stage previously to the

estimation stage [19]; however, this entails increased computational complexity and communica-20

tion cost. In relation to algorithms based on prior detection of faulty nodes, the Mixed Detection

and Estimation (MDE) scheme in [18] performs the node classification and estimation tasks in

a jointly distributed manner. However, since MDE classifies nodes based on hard decisions, it

is prone to decision errors whenever the signal-to-noise ratio (SNR) is not sufficiently high. To

avoid this problem, we adopt an approach in which a soft classification of the data is performed25

by means of the expectation-maximization (EM) algorithm, a well-known method for computing

the maximum likelihood (ML) estimate in the presence of hidden variables [20, 21]. The EM

algorithm implicitly and iteratively produces estimates of the class probabilities, alternating

between an expectation step (E-step), where access to the whole network dataset is required,

and a maximization step (M-step), where updated estimates are obtained.30

Distributed implementations of the EM algorithm for Gaussian mixture density estimation

and clustering have been previously proposed. For example, in incremental approaches [22,

23, 24, 25], computations involving global network information at the E-step are addressed

via aggregation strategies, assigning routing paths or junction trees within the network. This

problem is avoided in [26, 27, 29], which apply full-blown gossip- or consensus-based schemes35

at each E-step so that all nodes arrive at an agreement about every intermediate estimate. The

main drawback of these methods, however, is the need to exchange a large amount of information

among neighbor nodes, with the consequent penalty in energy efficiency. In [28] a distributed

EM algorithm based on the alternating direction method of multipliers (ADMM) is proposed for

clustering. In this scheme the communication overhead is reduced but at the cost of significantly40

increasing the computational cost since each node has to solve a convex optimization problem

via, e.g., interior point methods at each iteration. A potential way to overcome these problems

is the use of diffusion strategies [11], by which nodes exchange local information only once per

EM iteration and perform averaging over the values in their neighborhoods [30, 31, 32] (see [33]
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for an extension to general mixture models). Convergence analyses of these schemes either45

assume that an infinite amount of data is available at each node [30, 32], or adopt a stochastic

framework under an independence assumption [31].

The algorithm proposed in this paper is based on a different diffusion-based approach [34, 35],

in which the propagation of information throughout the network is embedded in the iterative

parameter update. This is done by appropriately combining two terms for information diffusion50

and information averaging (consensus) in the update equations. The resulting iteration, termed

diffusion-averaging distributed Expectation-Maximization (DA-DEM), is reminiscent of so-called

consensus+innovations (C+I) algorithms for distributed estimation in linear models [36], whose

updates combine a consensus term and a local innovation term; nevertheless, several important

differences should be highlighted. First, the model underlying C+I schemes is linear, but in55

our setting this property does not apply due to the potential presence of faulty nodes. Sec-

ond, C+I schemes are usually designed for on-line adaptation, i.e., sensors keep acquiring new

observations as time progresses, whereas the DA-DEM algorithm is of batch type in which a

single measurement is available to each sensor. Thus, in our setting, the “innovation” provided

by the diffusion term does not correspond to information provided by new measurements, but60

rather to that provided by the iterative refinement of the estimates. Third, in contrast with

[18, 34, 35, 36] where the diffusion and averaging terms have different asymptotic decay rates,

thus leading to mixed time-scale recursions, in DA-DEM both terms have the same rate. In

contrast with [30, 31, 32], this feature allows for the development of a local convergence analysis

under a deterministic setting with a finite amount of data, showing that any convergent point65

of the centralized EM iteration, and therefore a (possibly local) maximum of the likelihood

function, must be an asymptotically convergent point of DA-DEM. Numerical examples show

that the DA-DEM estimator asymptotically attains the performance of centralized EM in terms

of mean square error (MSE). In addition to the aforementioned convergence analysis, further

contributions with respect to [35] include lack of knowledge about the a priori probability of70

a sensor fault and the consideration of vector-valued parameter. In contrast with incremen-

tal strategies, DA-DEM does not require the computation and management of routing paths

through the network, resulting in sizable reduction in convergence time and thus leading to

energy savings.

The paper is organized as follows. Sec. 2 describes the signal model, and Sec. 3 presents75

the centralized EM-based estimator, the starting point for the development of the distributed

implementation in Sec. 4. The convergence analysis of DA-DEM is developed in Sec. 5. Finally,

simulation results and conclusions are presented in Secs. 6 and 7 respectively.

Notation: We use lowercase, bold lowercase, and bold uppercase symbols to respectively

denote scalars, vectors and matrices. The transpose and inverse of matrix A are denoted by80
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AT and A−1 respectively. The 2-norm of a vector v is denoted by ‖v‖, whereas for a matrix

A, ‖A‖F denotes its Frobenius norm, ‖A‖ its spectral norm (i.e., its largest singular value)

and, for A square, ρ(A) is the spectral radius (largest of the moduli of the eigenvalues). For

an n × n symmetric matrix S, vec {S} is a vector of size n(n + 1)/2 obtained by stacking the

entries of the upper triangular part of S. The composition of two functions f and g is denoted85

by f ◦ g, so that (f ◦ g)(x) = f(g(x)), and E{·} denotes statistical expectation.

2. Problem statement

We consider the problem of estimating a parameter vector x ∈ RL×1 based on a set of

N � L independent observations given by

yi = aih
T
i x+ wi, i = 1, . . . , N, (1)

where hi = [hi(1) · · · hi(L)]T are assumed known ∀i, {wi,∀i} are independent, identically

distributed (i.i.d.) zero-mean Gaussian random variables with variance σ2, modeling the obser-

vation noise, and {ai,∀i} are i.i.d. Bernoulli random variables with Pr(ai=1) = p, independent

of wj ,∀{i, j}. A value of ai = 1 indicates that node i has actually sensed the parameter vector

x, whereas ai = 0 indicates a transducer failure, i.e. the measurement contains only noise. The

equations for the N observations can be written in vector form as

y = AHx+w, (2)

where A = diag{a}, a = [a1 · · · aN ]T , and

y ,


y1

...

yN

 , H ,


hT1
...

hTN

 , w ,


w1

...

wN

 .
Assuming for the moment a centralized framework, in which all N observations in y are available

at the processing entity, a clairvoyant (CV) estimator, i.e., an estimator with knowledge of A,

should average only those observations yi for which ai = 1. The corresponding ML estimate of

x is therefore

x̂CV = (HTAH)−1HTAy, (3)

where we have used ATA = A. Since in practice knowledge of A is not available, a different

approach must be followed. For instance, the Least Squares (LS) estimate is obtained by

neglecting the fact that transducer faults may be present, assuming A = I in (3):

x̂LS = (HTH)−1HTy. (4)
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Note that E{y} = pHx, such that the LS estimate is biased. If the probability p were known,

this bias could be readily removed using

x̂BLUE =
1

p
x̂LS, (5)

which, for asymptotically small SNR, constitutes the Best Linear Unbiased Estimator (BLUE)1 [37].

Alternatively, we consider ML estimation of x under model (2). The ML estimator has the

desirable properties of being asymptotically unbiased and efficient as the number of samples

goes to infinity. Since the observations are i.i.d., the probability density function (pdf) of y in

(2) is parameterized by θ = [xT σ2 p]T and given by

f(y|θ) =
1

(2πσ2)
N
2

N∏
i=1

[
p e−

(yi−hTi x)2

2σ2 + (1− p) e−
y2i
2σ2

]
. (6)

Whereas the matrix of regressors H is assumed perfectly known, the noise variance σ2 and the90

a priori probability p are regarded as unknown nuisance parameters. Maximizing (6) w.r.t. θ in

closed form is not possible, and one has to resort to numerical methods. Since the EM algorithm

is particularly well suited to problems like the one at hand, we start deriving a centralized EM

estimator which implicitly performs a soft detection of the fault events and requires neither

knowledge of the noise variance σ2 nor of the a priori probability p. Then, a distributed version95

suitable for WSNs is derived, in which each node has access to a single observation yi and there

is no central processing unit.

3. Centralized EM Estimator

Starting from an initial estimate, the EM algorithm alternates between an E-step, where

the expected log-likelihood function (LLF) of the observations is computed using the current100

estimates, and an M-step, where the parameters maximizing the expected LLF are obtained;

under mild conditions, the EM will converge to a maximum, possibly local, of the LLF [20, 21].

Consider the observation vector in (2) with pdf given by (6). We regard y as the incomplete

observation and {y, a} as the complete one. Assuming that all the observations are available,

at iteration t one performs the following:105

1. E-step: given an estimate θ̂t = [x̂Tt σ̂2
t p̂t]

T , compute the conditional expectation

Q(θ̃ ; θ̂t) = Ea

{
log f(y,a | θ̃)

∣∣∣ θ̂t,y} , (7)

where θ̃ denotes a trial value of θ.

1In the medium/high SNR regime, the BLUE only exists for L = 1, since for L > 1 it would depend on the

unknown parameter x. Thus, the subscript in x̂BLUE is slightly abusing notation.
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2. M-step: obtain the estimate for the next iteration as

θ̂t+1 = arg max
θ̃

Q(θ̃ ; θ̂t). (8)

The conditional pdf of {y,a} is given by

f(y,a | θ̃) = f(y | θ̃,a) · f(a | θ̃)

=
1

(2πσ̃2)
N
2

· exp

{
−‖y −AHx̃‖

2

2σ̃2

}

·
N∏
i=1

p̃ ai (1− p̃)1−ai (9)

Taking the logarithm yields

log f(y,a | θ̃) ∝ −N
2

log σ̃2 − 1

2σ̃2

[
‖y‖2 + x̃THTAHx̃

− 2x̃THTAy
]
+

N∑
i=1

[ai log p̃+ (1−ai) log(1−p̃)] . (10)

In order to obtain Q(θ̃; θ̂t) we must take the expectation over a of (10) conditioned on the

observations y and on the previous estimate θ̂t. To this end, let âi,t = Ea[ai | θ̂t, yi] =110

Pr
{
ai = 1 | θ̂t, yi

}
denote the a posteriori expected value of ai at time t, and let Ât = diag{ât}

with ât = [â1,t · · · âN,t]T . The a posteriori expected value âi,t can be found using Bayes’ rule

as follows:

âi,t =
f(yi | θ̂t, ai = 1) · Pr

{
ai = 1 | θ̂t

}
f(yi | θ̂t)

=
p̂t · exp

{
− (yi−hTi x̂t)

2

2σ̂2
t

}
p̂t · exp

{
− (yi−hTi x̂t)2

2σ̂2
t

}
+ (1− p̂t) · exp

{
− y2i

2σ̂2
t

} . (11)

Then, from (10) we have

Q(θ̃ ; θ̂t) ∝ −N
2

log σ̃2

− 1

2σ̃2

[
‖y‖2 + x̃T Γ̂tx̃− 2x̃T ψ̂t

]
+

N∑
i=1

âi,t log p̃+

(
N−

N∑
i=1

âi,t

)
log(1− p̃), (12)

where for convenience we have defined115

Γ̂t , HT ÂtH =

N∑
i=1

âi,thih
T
i , (13)

ψ̂t , HT Âty =
N∑
i=1

âi,tyihi. (14)
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The joint maximization of (12) w.r.t. {x̃, p̃, σ̃2} can be solved as follows. First, maximization

of (12) w.r.t. x̃ is a weighted LS problem, whose solution x̂t+1 is that of the linear system

Γ̂tx̂t+1 = ψ̂t. (15)

Then, maximization of (12) w.r.t p̃ and σ̃2 yields

p̂t+1 =
1

N

N∑
i=1

âi,t, (16)

σ̂2
t+1 =

1

N
[yTy − ψ̂Tt x̂t+1]

=
1

N

N∑
i=1

[
y2
i − âi,tyihTi x̂t+1

]
. (17)

Observe that global information is required in order to compute (15)-(17), i.e., one needs

{yi, âi,t,hi} for all i. In Sec. 4 we will introduce a distributed implementation of the EM120

algorithm which is based on the combination of diffusion and consensus strategies.

To close this section, we rephrase the centralized EM iteration above in a way that will be

useful in the sequel. Let P = L(L+3)
2 + 2, and introduce the P × 1 vector

χ̂t ,
1

N

[
‖y‖2 1T ât ψ̂Tt vec

{
Γ̂t

}T ]T
. (18)

Then, given θ̂t, one computes ât by means of (11), after which χ̂t is obtained via (13)-(14).

Thus, we can write χ̂t = g1(θ̂t). On the other hand, it is seen from (15)-(17) that the parameter

estimate θ̂t+1 can be directly computed from χ̂t, i.e., θ̂t+1 = g2(χ̂t). Putting it all together,

we can rewrite (8) as θ̂t+1 = (g2 ◦ g1)(θ̂t) or, in terms of χ̂t, as

χ̂t+1 = g(χ̂t) with g , g1 ◦ g2. (19)

Suppose that θ̂? is a fixed point of the EM iteration: θ̂? = (g2 ◦ g1)(θ̂?). Then χ̂? = g1(θ̂?) is a

fixed point of (19). Moreover, if θ̂? is asymptotically convergent, so is χ̂?[46]. As it will be seen

later in Section 5, this alternative way of expressing the centralized EM iteration as an update

of the entries of vector χ̂t through the mapping g(·) will be used to analize the convergence of125

the proposed distributed implementation of the EM algorithm.

4. A Diffusion-Averaging Distributed EM Estimator

The proposed distributed implementation of the EM estimator hinges on the fact that in

the centralized version the information from the different nodes is aggregated by means of

averages, as can be seen in (13)-(17). This property is similar to that used in [38] for distributed130

computation of a Least Squares estimate. However, in contrast with [38], in our estimation
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problem not all of the quantities to be averaged are available at the nodes from the very

beginning; rather, they depend on the variables âi,t which are updated over time. Because

of this, it becomes necessary to incorporate a diffusion mechanism together with a consensus

averaging procedure, analogous to that from [38], as described next.135

Thus, consider a WSN with N nodes, such that each node can only communicate with

neighboring nodes located within a small area. The information flow among the nodes of the

network is described by means of an undirected graph G= {V,E}, where V is the set of vertices

or nodes and E is the set of bidirectional edges or links eij ∀{i, j} ∈ V with eij = eji [39]. The

set of neighbors of node i is denoted as Ni = {j ∈ V : eij ∈ E} for all i ∈ {1,· · ·, N}. We140

further assume that the network is connected, such that there exists a path between any pair

of nodes {i, j} ∈ V . Consider then a weight matrix W ∈ RN×N , related to the topology of the

underlying graph model, with a nonzero {i, j}th entry Wij only if j ∈ Ni, and satisfying the

following conditions [40]:

Assumption 1. The weight matrix W is symmetric and satisfies:

W1 = 1, ρ(W − J) < 1, (20)

where 1 is an all-ones vector of length N , and

J ,
1

N
11T (21)

is the orthogonal projector onto the one-dimensional subspace spanned by 1.145

Thus, the largest eigenvalue of W equals 1 with algebraic multiplicity one, a fact that is key

to ensuring that a global consensus is achieved throughout the network. A right eigenvector 1

associated with the eigenvalue 1 implies that after reaching a consensus the network will remain

in consensus, and a left eigenvector 1 implies that the average of the state vector is preserved

from iteration to iteration. Moreover, the symmetry of W reflects the fact that the information150

flows in both directions of a link.

The proposed diffusion-averaging scheme is as follows. Each node i keeps track of local

estimates x̂i,k, σ̂2
i,k, p̂i,k at every iteration2 k. From these, a soft estimate ϕ̂i,k of the a posteriori

expected value of ai at node i and at time k is computed as follows:

ϕ̂i,k=

p̂i,k · exp

{
− (yi−hTi x̂i,k)

2

2σ̂2
i,k

}
p̂i,k ·exp

{
− (yi−hTi x̂i,k)

2

2σ̂2
i,k

}
+(1−p̂i,k)·exp

{
− y2i

2σ̂2
i,k

} . (22)

2To stress the difference with respect to the centralized approach, the iteration index for the distributed

algorithm is denoted by k rather than t.
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Notice the main difference between âi,t in (11) and ϕ̂i,k in (22): whereas âi,t is computed

using global estimates, that is x̂t, σ̂
2
t and p̂t in (15)-(17), computation of ϕ̂i,k only uses local

information, namely the initially available {yi,hi} and the current local estimates x̂i,k, σ̂2
i,k and

p̂i,k.155

Next, the information at each node is appropriately diffused over the network via local

communication among neighbors, so that each node can in turn update its local estimates and

reach an agreement asymptotically. To this end, node i computes the following P = L(L+3)
2 + 2

auxiliary variables:

fyi,k = y2
i , f

ψ̂(l)
i,k = ϕ̂i,kyihi(l),

fai,k = ϕ̂i,k, f
Γ̂(l,m)
i,k = ϕ̂i,khi(l)hi(m),

(23)

with 1 ≤ l ≤ m ≤ L. These can be seen as local contributions, up to a factor of 1
N , to the

entries of the vector χ̂t featuring in the centralized EM iteration, see (18). For each of these

variables fνi,k, with the index ν ∈ V belonging in the set

V = {y, a, ψ̂(1), · · · , ψ̂(L), Γ̂(1, 1), Γ̂(1, 2), · · · , Γ̂(L,L)}, (24)

a corresponding variable φνi,k is kept. Then, given fνi,k and the previous value φνi,k−1, node i

computes

φνi,k−1 + αk(fνi,k − φνi,k−1) (25)

with αk > 0 a suitable stepsize sequence. The values in (25) are then exchanged among

neighboring nodes, after which φνi,k is updated at node i via spatial averaging as follows:

φνi,k =
∑
j∈Ni

Wij

(
φνj,k−1 + αk(fνj,k − φνj,k−1)

)
. (26)

Thus, each node i computes a pair of local variables (fνi,k, φ
ν
i,k) ∀ν ∈ V for each one of the entries

of vector χ̂t in (18). Whereas variables fνi,k are the local contribution to the corresponding

entries of vector χ̂t upon substituting âi,t by ϕ̂i,k, variables φνi,k are their counterparts after

combining the values from neighboring nodes via (26). Once (26) are computed for all ν ∈ V,

the local estimates x̂i,k+1, σ̂2
i,k+1 and p̂i,k+1 are updated as follows:160

Γ̂i,kx̂i,k+1 = ψ̂i,k, (27)

p̂i,k+1 = φai,k, (28)

σ̂2
i,k+1 = φyi,k − ψ̂

T
i,kx̂i,k+1. (29)

where

Γ̂i,k(l,m) = φ
Γ̂(l,m)
i,k and ψ̂i,k(l) = φ

ψ̂(l)
i,k . (30)

for 1 ≤ l ≤ m ≤ L, and with Γ̂Ti,k = Γ̂i,k. This procedure is repeated until convergence. For the

sake of clarity, Table 1 summarizes the proposed DA-DEM algorithm. For the initialization, in
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the absence of any a priori knowledge about the probability p of a transducer failure, we choose

to set ϕ̂i,0 = 1
2 ∀i.

Note that DA-DEM requires an exchange of O(L2) scalar quantities per iteration among165

neighboring nodes that is carried out at the so-called Diffusion-Averaging step (see Table 1).

The distributed EM in [22] would need the same communication overhead as DA-DEM of

O(L2) parameters at each iteration but, whereas DA-DEM just requires a connected graph,

the sequential updating strategy used in [22] demands for a cyclic topology. With regard to

the other relevant distributed EM method in [28], we note that it has a lower communication170

overhead of O(L) parameters per iteration, but at the cost of a much higher computational

load. That is, whereas in DA-DEM each node has to solve a linear equation system with a

typical cost of O(L3) operations, the distributed EM method in [28] is based on the ADMM

algorithm and requires each node to solve an optimization problem with O(L) unknowns via,

e.g. interior point methods. Note that the methods in [22, 28] address a different problem of175

Gaussian mixture density estimation and clustering and, therefore, the communication overhead

and computational cost comparison has been done assuming they were appropriately modified

to solve the estimation of x in (2).

In order to gain some insight into the behavior of the DA-DEM algorithm, let us define for

each ν ∈ V in (24) the vectors gathering the local variables at time k, i.e.,180

φνk ,
[
φν1,k φν2,k · · · φνN,k

]T
, (31)

fνk , [ fν1,k fν2,k · · · fνN,k ]T . (32)

According to (26), φνk evolves as follows:

φνk = W
(
(1− αk)φνk−1 + αkf

ν
k

)
= (1− αk)Wφνk−1 + αkWfνk , k ≥ 1 (33)

where α1 = 1 and αk → 0. Although initialization of φνk is irrelevant as long as α1 = 1, we

assume for convenience that φν0 = 0 for all ν ∈ V. As seen in (33), φνk is a convex combination of

two terms, Wφνk−1 and Wfνk . The term Wfνk is responsible for the diffusion over the network

of the updated local information. On the other hand, the purpose of the term Wφνk−1 is to185

drive the state vector φνk toward a consensus, so that all nodes reach the same values for their

estimates (27)-(29). With α1 = 1 and αk → 0, the diffusion term in (33) is dominant at the

beginning of the process. Then, as time progresses, this diffusion term gradually “turns off”

and the consensus term becomes dominant, in order to drive the network towards agreement.

It must be emphasized that, once the observations {yi} are given, and assuming a deter-190

ministic schedule for the stepsize sequence {αk}, the DA-DEM algorithm as detailed in Table 1
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Table 1: The Diffusion-Averaging Distributed EM (DA-DEM) Algorithm

For i = 1, · · · , N , initialize ϕ̂i,0 = 1
2 and

p̂i,1 = ϕ̂i,0, x̂i,1 =
yihi
hTi hi

, σ̂2
i,1 = y2

i (1− ϕ̂i,0).

For k ≥ 1 and ∀i

1. E-Step: given x̂i,k, σ̂
2
i,k and p̂i,k, compute the a posteriori probabilities ϕ̂i,k as

ϕ̂i,k =

p̂i,k · exp

{
− (yi−hTi x̂i,k)

2

2σ̂2
i,k

}
p̂i,k ·exp

{
− (yi−hTi x̂i,k)

2

2σ̂2
i,k

}
+(1−p̂i,k)·exp

{
− y2i

2σ̂2
i,k

} .
2. Diffusion-Averaging Step: for each index ν ∈ V, being

V={y, a, ψ̂(1), · · · , ψ̂(L), Γ̂(1, 1), Γ̂(1, 2), · · · , Γ̂(L,L)},

compute the auxiliary variables fνi,k as

fyi,k = y2
i , f

ψ̂(l)
i,k = ϕ̂i,kyihi(l),

fai,k = ϕ̂i,k, f
Γ̂(l,m)
i,k = ϕ̂i,khi(l)hi(m),

for 1 ≤ l ≤ m ≤ L, and then update

φνi,k =

N∑
j=1

Wij

(
(1−αk)φνj,k−1+αkf

ν
j,k

)
,

for suitable nonnegative stepsizes αk → 0 with α1 = 1. Note that this step

entails the exchange of local variables among neighbouring nodes.

3. M-Step: for 1 ≤ l ≤ m ≤ L, set Γ̂i,k(l,m) = φ
Γ̂(l,m)
i,k and ψ̂i,k(l) = φ

ψ̂(l)
i,k . Solve

for x̂i,k+1 in the linear system

Γ̂i,k x̂i,k+1 = ψ̂i,k,

with Γ̂Ti,k = Γ̂i,k, and update

p̂i,k+1 = φai,k, σ̂2
i,k+1 = φyi,k − ψ̂

T
i,kx̂i,k+1.

4. Repeat steps 1, 2 and 3 until convergence.
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is a completely deterministic process. Consequently, the convergence analysis presented in the

following section is carried out under a purely deterministic framework.

5. Local Convergence Analysis

We analyze now the convergence properties of the DA-DEM algorithm derived in Sec. 4.

Recall from (33) that the step-size sequence αk governs the diffusion/consensus process, grad-

ually switching from one to the other as long as this sequence converges to zero. The use of

vanishing step-sizes is common in stochastic approximation [47] and it is found also in consensus

applications with noisy signals [42, 43]. In particular, we consider the following choice:

αk =
ρ

k + ρ− 1
, ρ > 0, k = 1, 2, . . . (34)

Note that α1 = 1 and that αk is positive and monotonically decreasing to zero at a rate of k−1.195

The larger the value of the user-selectable constant ρ, the more slowly αk decays to zero, thus

delaying the onset of the consensus averaging process in (33).

We note that the choice of stepsize sequence (34) is fundamentally different from those in

[18, 35], which replace the term 1−αk in (33) by 1−βk, with βk converging to zero at a slower

rate than αk. This choice has important and far-reaching consequences, because it results in the200

state variables φνk in (33) not converging to zero as k →∞, which was the case with the method

from [35]. This difference in behavior is due to the alternative choice of stepsize sequence (34)

with respect to that in [35].

The convergence analysis is carried out in two steps. First, Theorem 1 shows that the state

variables φνi,k asymptotically converge to a consensus among the nodes. Then Theorem 2 shows

that, under a mild technical requirement, an asymptotically stable equilibrium of the centralized

EM iteration of Section 3 is an asymptotically convergent point of the DA-DEM algorithm. In

order to proceed, let us first introduce the folowing decomposition of φνk:

φνk = ηνk + ζνk , with

 ηνk , Jφνk,

ζνk , (I − J)φνk.
(35)

Note that this decomposition is orthogonal, i.e., (ηνk)T ζνk = 0, and that one can write ηνk = φ̄νk1,

where

φ̄νk ,
1

N
1Tφνk (36)

is the average of the values of φνi,k across nodes. Therefore, ηνk can be thought of as the

“consensus” component of vector φνk, whereas ζνk represents the“consensus error” or “deviation205

from consensus” component.

The following result given by Theorem 1, whose proof is in Appendix A, states that, for all

ν, the consensus error sequences ζνk approach zero as k → ∞. Or, equivalently, that for all ν

12



the sequences φνi,k, i = 1, . . . , N tend to a consensus as k → ∞, which is given by the average

of the entries of φνk.210

Theorem 1. Consider the DA-DEM algorithm from Table 1 with the choice of stepsize (34).

Then, under Assumption 1,

lim
k→∞

ζνk = lim
k→∞

[φνk − Jφνk] = 0 (37)

for all ν ∈ V with V as in (24).

After establishing asymptotic consensus via Theorem 1, we now focus on the asymptotic

properties of φ̄νk in (36) as k → ∞, which are ultimately provided in Theorem 2. Before that,

however, we establish a relation between the mapping of both the centralized EM iteration and

the DA-DEM iteration. In order to do so, first let φ̄k ∈ RP×1 comprise all of these average

variables {φ̄νk , ν ∈ V}. Premultiplying (33) by 1
N 1T , it is readily found that

φ̄k = (1− αk)φ̄k−1 + αkf̄k, (38)

where f̄k ∈ RP×1 comprises P variables {f̄νk , ν ∈ V} defined, similarly to (36), as the average

of the entries of fνk :

f̄νk ,
1

N
1Tfνk . (39)

Note that f̄k can be seen as the counterpart of χ̂t from (18), but using the local variables

ϕ̂i,k rather than the âi,t variables of the centralized EM method. Indeed, upon defining ϕ̂k ,

[ ϕ̂1,k ϕ̂2,k · · · ϕ̂N,k ]T and Φk , diag { ϕ̂1,k ϕ̂2,k · · · ϕ̂N,k }, in view of (23) one can write

f̄k =
1

N

[
‖y‖2 1T ϕ̂k (HTΦky)T vec

{
HTΦkH

}T ]T , (40)

which is seen to have the same structure as χ̂t in (18). Given that the centralized EM iteration

can be written in terms of χ̂t via the mapping g(·) in (19), it is one’s hope that DA-DEM will

drive f̄k toward a fixed point of (19), i.e., a fixed point of the centralized EM method. To this

end, first we expose the relationship between f̄k and φ̄k−1 through the mapping g(·) in the215

following lemma, whose proof is given in Appendix B.

Lemma 1. Let g : RP → RP be the map of the centralized EM iteration as defined in (19).

The vector sequence {f̄k} satisfies the relation

f̄k = g(φ̄k−1) + ξ̄k−1, (41)

where the sequence ξ̄k converges to zero:

lim
k→∞

ξ̄k = 0. (42)

13



It follows from Lemma (1) that the sequence f̄k converges if φ̄k converges; moreover, if φ̄k

converges to a fixed point of g, then f̄k will converge to the same point. Substituting now (41)

in (38), one has

φ̄k = (1− αk)φ̄k−1 + αkg(φ̄k−1) + αkξ̄k−1, (43)

which constitutes a nonlinear, nonautonomous (i.e., time-varying), forced discrete-time dynam-

ical system [46] with state φ̄k−1 and input ξ̄k−1. The associated unforced system is given by

φ̄k = (1− αk)φ̄k−1 + αkg(φ̄k−1)

, gk(φ̄k−1). (44)

It is readily seen that if φ̄? is a fixed point of g, then it is also an equilibrium of the unforced

system (44), since gk(φ̄?) = (1−αk)φ̄?+αkg(φ̄?) = (1−αk)φ̄?+αkφ̄? = φ̄? for all k. Note that220

the same is not true for the forced system (43), i.e., having φ̄k−1 = φ̄? does not imply φ̄k = φ̄?.

Nevertheless, one could expect such property to hold asymptotically because, in view of Lemma

1, the input ξ̄k−1 of the forced system (43) converges to zero. In fact, the following result shows

that if φ̄? is an attractive fixed point of g, then it is also an asymptotically convergent point of

the DA-DEM algorithm. The proof is given in Appendix C.225

Theorem 2. Let φ̄? be an asymptotically stable equilibrium of the dynamical system φ̄k =

g(φ̄k−1), and assume that:

1. The stepsize αk is given by (34).

2. The Jacobian of g evaluated at φ̄? has all eigenvalues with magnitude less than one.

Then φ̄? is an asymptotically convergent point of (43), in the sense that there exist an integer

k1 and a constant δ > 0 such that

‖φ̄k − φ̄?‖ ≤ δ for some k ≥ k1 ⇒ lim
n→∞

φ̄n = φ̄?. (45)

Recall from (19) that the set of attractive fixed points of g correspond to the set of convergent230

points of the centralized EM iteration. Hence, under the additional condition on the eigenvalues

of the Jacobian matrix, it follows that these points are locally asymptotically convergent for

the DA-DEM scheme with the proposed stepsize (34). Note that for an asymptotically stable

equilibrium φ̄? of the centralized EM iteration, these eigenvalues necessarily have magnitude

no larger than one [46]. Having magnitudes strictly less than one is a technical requirement235

for the linearization approach used in the proof given in Appendix C, and due to the fact that

the linearization method is inconclusive when the Jacobian matrix presents eigenvalues with

magnitude no larger than 1, with some of them having magnitude exactly 1 [46]. Whether it is

possible in practice to find settings in which at least one eigenvalue has magnitude 1, and yet
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the fixed point φ̄? of the centralized EM iteration remains asymptotically stable, is difficult to240

ascertain. Note that even in that case, Theorem 2 does not necessarily imply instability of the

DA-DEM scheme.

6. Simulation Results

The theoretical results from Sec. 5 are supported here with computer simulations of a

network composed of N = 100 nodes randomly deployed over a unit square with connectivity245

radius rc=0.18. The nodes sense a unit-norm parameter vector x∈RL×1 with L=3, randomly

generated and fixed throughout the simulation. Each node has access to one measurement

yi=aih
T
i x+wi, with wi∼N (0, σ2), x is assumed sensed with probability p={0.7, 0.9} and W

is taken as a Metropolis weight matrix [38]. In each run, the matrix H is randomly generated

with zero-mean i.i.d. Gaussian entries and the ai’s are generated as Bernoulli random variables.250

Conditioned on H and assuming p=1, the SNR is

SNR =
xTHTHx

Nσ2
≤ ‖x‖

2‖H‖2F
Nσ2

. (46)

We take the upper bound in (46) as the SNR in the simulations, as it only depends on ‖H‖F
and ‖x‖. The performance metrics used are the normalized MSE and the normalized bias,

defined respectively as

NMSE{x̂} =
1

N‖x‖22

N∑
i=1

E
[
‖x̂i,k − x‖22

]
,

NBias{x̂} =
1

N‖x‖22

N∑
i=1

‖E[x̂i,k]− x‖2.

Results are averaged over 100 independent realizations for each SNR value.255

Fig. 1 and Fig. 2 show respectively the NMSE and the NBias in terms of the SNR = [5, 25]

dB for the centralized clairvoyant (CV) estimator in (3), the LS estimator in (4), the BLUE for

low SNR in (5), the centralized EM (CEM) after t= 500 iterations, and DA-DEM with ρ= 1

and p=0.7 after k=10 000 iterations. We use these iteration numbers to guarantee the NMSE

and NBias are computed once the algorithms have converged for small SNRs. Results for the260

distributed algorithm based on the MDE scheme from [18] are also included, which addresses

the same problem of estimating x in (2). Notice that the original MDE assumes knowledge of

both p and σ2, and relies on hard decisions on the variables ai to estimate a scalar variable x.

For the sake of comparison, the MDE results shown here are obtained with a modified version

of MDE adapted to the signal model in (1), so that p and σ2 are estimated jointly with x265

exactly as in Table 1 but substituting fai,k in (23) by the hard decision on ai that MDE takes

at each iteration. Observe from Fig. 1 that, whereas LS and BLUE exhibit a flooring effect
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with increasing SNR due to the bias, the performance of CEM approaches that of the CV esti-

mator. As expected, DA-DEM approaches the centralized EM solution with a slight deviation

for low SNR values. The reason for this discrepancy is twofold. First, the convergence speed of270

DA-DEM slows down as the SNR decreases, so that a larger number of iterations is required

to get as close to the asymptotic values. Second, at low SNR more realizations are needed

to obtain reliable results for both CEM and DA-DEM. Still, the number of realizations were

limited to 100 due to the overwhelming computational load involved in the simulation of the

whole network. It can be also observed that MDE performs significantly worse than DA-DEM275

in terms of both NBias and NMSE.
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Figure 1: NMSE vs. SNR for the centralized estimators: CV, LS, BLUE and CEM, and for the distributed ones:

DA-DEM and MDE.
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Figure 2: NBias vs. SNR for CV, LS, BLUE and CEM, and for DA-DEM and MDE.

6.1. Effect of parameter ρ280

Although, as stated by Theorem 2, CEM convergent points are DA-DEM convergent points

for all ρ > 0, the value of ρ does have an impact on the convergence speed of DA-DEM. In
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this section we investigate this impact and its relation to the connectivity of the network. Fig.

3 shows the results of a single realization of DA-DEM with SNR = 20 dB and p = 0.9 for

ρ= 0.1, ρ= 1 and ρ= 100. Fig. 3 (a) show the convergence of the local estimates of the three285

components of x for all nodes, and for illustrative purposes, the CEM estimates are depicted

at the last iteration (’o’). Fig. 3 (b) show the convergence of the consensus components to

the CEM estimates, ‖ηk − η?‖, where ηνk is defined in (35) and η∗ is a vector containing the

CEM estimates. Fig. 35 (c) show the evolution of ‖ζk‖, i.e., the deviation from the consensus

component defined in (35), vs. iterations. For the smallest ρ on top of Fig. 3 (a) the nodes290

reach consensus very fast, but this average is far from the CEM estimate. This bias decays

slowly and is noticeable even after 10 000 iterations. With ρ = 1 we can see that the nodes

not only reach an agreement on the estimated values, but also converge to the CEM estimate

significantly faster. With ρ= 100, the nodes converge in average to the CEM estimate much

more quickly, but with a large inter-node variability. This is because consensus among nodes295

becomes delayed further in time for large values of ρ, resulting in a higher variance. This is

in agreement with our discussion in Sec. 5, i.e. the value of ρ should strike the right balance

between allowing sufficient time for the information to diffuse over the network in the initial

stage, and the kickoff of the consensus process in the final stage. Moreover, we observe that

as the value of ρ increases, the convergence of the consensus components gets faster, while the300

convergence of the consensus component error slows down for this set of parameters.

Fig. 4 shows the NMSE curves of DA-DEM averaged over 100 independent realizations

for different values of ρ = {0.1, 0.5, 1, 2, 3, 4}, with SNR = {10, 20} dB and for two different

connectivities: a more connected one with rc=0.18 and average number of neighbors Nave=8,

and a less connected one with rc = 0.1 and Nave = 3.3. Fig. 4 (a) SNR = 10 and rc = 0.18, (b)305

SNR = 10 and rc = 0.1, (c) SNR = 20 and rc = 0.18, (d) SNR = 20 and rc = 0.1. In low SNR

scenarios (Fig. 4 (a, b)), after 10 000 iterations the NMSE has not reached yet its asymptotic

value (given by the NMSE obtained by CEM, shown as benchmark). In the high SNR case (Fig. 4

(c, d)), convergence of the NMSE to its asymptotic value can be observed within the simulation

window of 10 000 iterations if the value of the parameter ρ is appropriately chosen. Again,310

a reduction in network connectivity results in slower convergence and increased sensitivity to

large values of ρ, which turn on the adaptive consensus process later in time. Convergence

is slower for the less connected network (Fig. 4 (b, d)), since with low network connectivity,

consensus is intrinsically delayed and more iterations are needed to reach an agreement. This

results in a slower decrease in NMSE due to a higher dispersion of estimates among the nodes.315

For the more connected network, we see in Fig. 4 (a) that ρ= 1 provides fastest convergence,

whereas for the less connected one in Fig. 4 (b), the best value of ρ is smaller, i.e. ρ= 0.5. A

smaller ρ speeds up the consensus process and somehow compensates for the slowdown due to
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Figure 3: (a) DA-DEM estimates {x̂i,k; ∀i= 1, · · · , N} vs. k obtained with ρ= 0.1, ρ= 1 and ρ= 100. CEM

estimates x̂t obtained after t= 500 iterations are included at k= 10 000 (’o’). (b) Evolution of ||ηνk−η
?|| vs. k

for ρ={0.1, 1, 100} and ν={a,ψ,Γ}. (c) Evolution of ‖ζνk‖ vs. k for ρ={0.1, 1, 100} and ν={a,ψ,Γ}.
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Figure 4: NMSE of the DA-DEM algorithm for p = 0.7 and different values of ρ. The NMSE reached by the CEM

is included as a benchmark. (a) SNR = 10 dB and rc = 0.18. (b) SNR = 10 dB and rc = 0.1. (c) SNR = 20

and rc = 0.18. (d) SNR = 20 and rc = 0.1.

a reduction in connectivity.

320

Fig. 5 shows the results for the same values of ρ and SNR in both deployments but considering

instead p = 0.9. We observe that the NMSE is reduced in all scenarios with respect to the

previous results: (a) SNR = 10 and rc = 0.18, (b) SNR = 10 and rc = 0.1, (c) SNR = 20 and

rc = 0.18, and (d) SNR = 20 and rc = 0.1. Whereas the behavior of the NMSE according to

the parameters is consistent with the previous results, the NMSE is clearly reduced in all cases325

when the probability p is higher.
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Figure 5: NMSE of the DA-DEM algorithm for p = 0.9 and different values of ρ. The NMSE reached by the CEM

is included as a benchmark. (a) SNR = 10 dB and rc = 0.18. (b) SNR = 10 dB and rc = 0.1. (c) SNR = 20

and rc = 0.18. (d) SNR = 20 and rc = 0.1.
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7. Conclusion

We have proposed a diffusion-averaging distributed EM algorithm for estimation of a vector-

valued parameter with a wireless sensor network in the presence of noisy observations and with330

potentially faulty transducers. The DA-DEM recursion combines an initial period where the

process of information diffusion is gradually switched off at the same time as an information

averaging process is gradually switched on. The switching mechanism is controlled by proper

choice of vanishing step-size sequences. The method requires only local exchanges of information

among network nodes and, in contrast with previous approaches, it does not assume knowledge335

of the a priori probability of transducer failures or the noise variance.

The convergence analysis provided shows that the convergent points of the centralized EM

iteration are locally asymptotically convergent points of DA-DEM. Numerical results show that

with a properly tuned DA-DEM scheme it is possible to attain the performance of the centralized

EM estimator at all SNR values. Ongoing work is addressing the applicability of the DA-DEM340

principle to more sophisticated data models.

Appendix A. Proof of Theorem 1

The update equation for the vector φνk defined in (33) can be expressed as

φνk = Wφνk−1 + αkW
(
fνk − φνk−1

)
. (A.1)

Introducing the weight sequence

wk(n) , αn

k∏
l=n+1

(1− αl), 1 ≤ n ≤ k, (A.2)

it can be checked that the recursion above yields

φνk =

k∑
n=1

wk(n)W k−n+1fνn . (A.3)

For the choice of stepsize (34), the weights (A.2) can be written explicitly as

wk(n) =
ρΓ(k)

Γ(k + ρ)
· Γ(n+ ρ− 1)

Γ(n)
, (A.4)

where Γ(x) =
∫∞

0
tx−1e−tdt is the gamma function.

The deviation of (A.3) with respect to Jφνk is then

ζνk = φνk − Jφνk =

k∑
n=1

wk(n)
(
W k−n+1 − J

)
fνn , (A.5)
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where we have used the fact that JW =J . We will show next that the right-hand side of (A.5)

converges to zero. To do so, consider the eigenvalue decomposition of the symmetric weight

matrix W = 1
N 11T +UΛUT , where

Λ = diag {λ2 · · · λN} with 1 > |λ2| ≥ · · · ≥ |λN |.

The inequalities above hold because ρ(W − J) < 1 by Assumption 1. The matrix U =

[ u2 u3 · · · uN ] ∈ RN×(N−1) has orthonormal columns, and satisfies UT1 = 0. There-

fore, for any integer n, it holds that W n = J +UΛnUT . Using this in (A.5), and introducing

f̃νk , UTfνk , s̃νk ,
k∑

n=1

wk(n)Λk−n+1f̃νn , (A.6)

it is found that

ζνk = φνk − Jφνk = Us̃νk. (A.7)

We now show that s̃νk → 0. This vector can be written component-wise as

s̃νi,k =

k∑
n=1

wk(n)λk−n+1
i+1 f̃νi,n, i = 1, · · · , N − 1. (A.8)

Now note that in view of (22), it holds that 0 ≤ ϕ̂i,k ≤ 1 for all k. This in turn implies that the345

sequences {fνk } are bounded, see (23), and therefore f̃νk = UTfνk are bounded as well. Thus,

there exist constants cν > 0 such that |f̃νi,k| < cν for all {i, k}. Using (A.4), it follows that, for

i = 1, · · · , N − 1,

|s̃νi,k| ≤ cν

[
ρΓ(k)

Γ(k + ρ)

]
×

[
k∑

n=1

Γ(n+ ρ− 1)

Γ(n)
|λi+1|k−n+1

]
. (A.9)

Using the following property of the gamma function [44]:

lim
x→∞

Γ(x+ α)

Γ(x)xα
= 1, α ∈ R, (A.10)

it follows that the first term in brackets in (A.9) goes to zero as 1/kρ. To deal with the second

term, we use the fact that350

k∑
n=1

Γ(n+ ρ− 1)

Γ(n)
ak−n+1 =

(
a

a− 1

)ρ [
akΓ(ρ)

− Γ(k + ρ)

Γ(k + 1)
2F1

(
k, 1− ρ; k + 1;

1

a

)]
(A.11)

where 2F1 is the hypergeometric function [45]. Since

lim
k→∞

Γ(k + ρ)

Γ(k + 1)kρ−1
= 1, (A.12)

lim
k→∞

2F1

(
k, 1− ρ; k + 1;

1

a

)
=

(
a− 1

a

)ρ−1

, (A.13)
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and given that |λi+1| < 1, i = 1, . . . , N − 1, it follows that

k∑
n=1

Γ(n+ ρ− 1)

Γ(n)
|λi+1|k−n+1 =

|λi+1| kρ−1

1− |λi+1|
+O(kρ−2). (A.14)

Hence, the right-hand side of (A.9) goes to zero at a rate of k−1. Thus,

lim
k→∞

s̃νi,k = 0, i = 1, · · · , N − 1, (A.15)

yielding limk→∞ [φνk − Jφνk] = 0, in view of (A.7).

Appendix B. Proof of Lemma 1

Let φk ∈ RPN×1 be formed by stacking all vectors {φνk , ν ∈ V}; in view of (35), φk is given

by

φk = ηk + ζk, (B.1)

where ηk ∈ RPN×1 and ζk ∈ RPN×1 are analogously formed by stacking the P vectors {ηνk , ν ∈

V} and {ζνk , ν ∈ V} from (35), respectively. Note that, given φk−1, the i-th node (i) obtains355

its local estimates x̂i,k, p̂i,k and σ̂2
i,k via (27)-(29); (ii) from these, it obtains ϕ̂i,k via (22); and

then (iii) it finally computes fνi,k for ν ∈ V as per (23). We summarize all these operations in

the maps Gνi : RPN×1 → R, ν ∈ V, so that

fνi,k = Gνi (φk−1) = Gνi (ηk−1 + ζk−1)

= Gνi (ηk−1) + ξνi,k−1, (B.2)

where in the second step we have substituted (B.1), and in the third step we have introduced

the quantity360

ξνi,k , Gνi (ηk + ζk)− Gνi (ηk). (B.3)

Now, according to (39) and using (B.2), the average values f̄νk satisfy

f̄νk =
1

N

N∑
i=1

Gνi (φk−1)

=
1

N

N∑
i=1

Gνi (ηk−1) +
1

N

N∑
i=1

ξνi,k−1. (B.4)

Let now Gi : RPN×1 → RP denote the map whose ν-th component is Gνi . Also, let ξi,k ∈ RP×1

comprise the P variables {ξνi,k, ν ∈ V}, and define ξ̄k , 1
N

∑N
i=1 ξi,k. Then, from (B.4), the

vector f̄k ∈ RP×1 comprising {f̄νk , ν ∈ V} can be written as

f̄k =
1

N

N∑
i=1

Gi(φk−1)

=
1

N

N∑
i=1

Gi(ηk−1) + ξ̄k−1. (B.5)
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Regarding the first term in the right-hand side of (B.5), note from (35)-(36) that ηνk = Jφνk =

φ̄νk1, so that ηk−1 can be written as the Kronecker product ηk−1 = φ̄k−1 ⊗ 1. By inspecting

eqs. (22)-(23) and (27)-(30), and in view of (40), it is readily found that

1

N

N∑
i=1

Gi(φ̄k−1 ⊗ 1) = g(φ̄k−1), (B.6)

where g : RP → RP is the map featuring in the centralized EM iteration (19). Therefore, from365

(B.5) and (B.6), the sought relationship (41) between f̄k and φ̄k−1 is obtained. Finally, from

Theorem 1 one has limk→∞ ζk = 0; thus, since the maps Gνi are continuous, limk→∞ ξνi,k = 0 in

view of the definition (B.3), and then ξ̄k−1 in (B.5) converges to zero as stated in the lemma.

Appendix C. Proof of Theorem 2370

Denoting the deviation of the state vector from φ̄? by zk , φ̄k− φ̄?, the forced system (43)

can be rewritten as

zk = (1− αk)zk−1 + αkf(zk−1) + αkξ̄k−1, (C.1)

where f(z) , g(z + φ̄?)− φ̄?. Let B be the Jacobian of g evaluated at φ̄?:

B =

[
∂g

∂φ̄

]
φ̄=φ̄?

. (C.2)

The fact that φ̄? is an asymptotically stable equilibrium of the iteration φ̄k = g(φ̄k−1) implies

that (i) g(φ̄?) = φ̄?, and (ii) all eigenvalues of B have magnitude no larger than one [46]. In

addition, these magnitudes are strictly less than one by assumption, i.e., B is a stable matrix.

Note that f(0) = 0, and that the Jacobian of f at z = 0 is also given by B. Therefore,

there exist positive constants cz, δz such that f0(z) , f(z)−Bz satisfies

‖z‖ ≤ δz ⇒ ‖f0(z)‖ ≤ cz · ‖z‖2. (C.3)

Our goal is to show that (C.1) asymptotically converges to the origin. We can rewrite (C.1)

as

zk = [(1− αk)I + αkB] zk−1 + αkf0(zk−1) + αkξ̄k−1. (C.4)

Since B is stable, there exists a symmetric positive definite matrix P such that BTPB−P =

−I [46]. Let Q be the symmetric square root of P , i. e., P = QQT = Q2, and consider the

change of variables vk = Qzk. Then (C.4) becomes

vk =
[
(1− αk)I + αkB̃

]
vk−1 + αkf̃0(vk−1) + αkξ̃k−1, (C.5)
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where ξ̃k−1 , Qξ̄k−1, and

B̃ , QBQ−1, f̃0(v) , Qf0(Q−1v). (C.6)

Now, in view of (C.3), if we let

cv = cz · ‖Q‖ · ‖Q−1‖2, δv =
δz

‖Q−1‖
, (C.7)

then it holds that

‖v‖ ≤ δv ⇒ ‖f̃0(v)‖ ≤ cv · ‖v‖2. (C.8)

In addition, one has

B̃T B̃ = Q−1BTQ ·QBQ−1

= Q−1(P − I)Q−1 = I − P−1, (C.9)

showing that ‖B̃‖ < 1. Now we can proceed to bound the norm of vk in (C.5) as follows:375

‖vk‖ ≤
∥∥∥(1− αk)I + αkB̃

∥∥∥ ‖vk−1‖

+ αk‖f̃0(vk−1)‖+ αk‖ξ̃k−1‖

≤ [1− αk(1− ‖B̃‖)]‖vk−1‖

+ αk‖f̃0(vk−1)‖+ αk‖ξ̃k−1‖. (C.10)

Let µ , 1− ‖B̃‖ ∈ (0, 1]. Then, if ‖vk−1‖ < δv, one has

‖vk‖ ≤ (1− µαk)‖vk−1‖+ αkcv‖vk−1‖2 + αk‖ξ̃k−1‖. (C.11)

Now pick ε such that 0 < ε < µ. Since limk→∞ ξ̃k = 0, there exists an integer k1 such that

‖ξ̃k‖ < ε ·min

{
δv,

µ− ε
2cv

}
for all k ≥ k1. (C.12)

Now let

δ =
min{δv, µ−ε2cv

}
‖Q‖

, (C.13)

and assume that ‖zk0‖ < δ for some k0 ≥ k1. We will show that this implies zk → 0.

Note that ‖vk0‖ ≤ ‖Q‖ · ‖zk0‖ < min{δv, µ−ε2cv
}. Let k ≥ k0 and assume that ‖vk‖ ≤

min{δv, µ−ε2cv
}. Consider then the following two possible cases:

1. ‖vk‖ < ‖ξ̃k‖/ε. It then follows from (C.11) and (C.12) that

‖vk+1‖ ≤

[
1− αk+1

(
µ− ε− cv

‖ξ̃k‖
ε

)]
‖ξ̃k‖
ε

≤
(

1− αk+1
µ− ε

2

)
‖ξ̃k‖
ε

≤ ‖ξ̃k‖
ε

. (C.14)

In particular, from (C.12), one has ‖vk+1‖ ≤ min{δv, µ−ε2cv
}.380
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2. ‖vk‖ ≥ ‖ξ̃k‖/ε. Then from (C.11),

‖vk+1‖ ≤ [1− αk+1 (µ− ε− cv‖vk‖)] ‖vk‖

≤
(

1− αk+1
µ− ε

2

)
‖vk‖ (C.15)

≤ ‖vk‖, (C.16)

so that ‖vk+1‖ ≤ min{δv, µ−ε2cv
} holds in this case as well.

By induction in k, it follows that

‖vk‖ ≤ min

{
δv,

µ− ε
2cv

}
for all k ≥ k0. (C.17)

Now for each k ≥ k0, let us define the set

Sk = {n ∈ N | k0 ≤ n ≤ k, ‖vn‖ < ‖ξ̃n‖/ε}, (C.18)

and then let

j?(k) =

 k0, if Sk = ∅,

maxn{n ∈ Sk}, otherwise.
(C.19)

Then, in view of (C.15), for n = j?(k) + 1, . . . , k one has

‖vn+1‖ ≤
(

1− αn+1
µ− ε

2

)
‖vn‖, (C.20)

so that

‖vk+1‖ ≤

 k∏
n=j?(k)+1

(
1− αn+1

µ− ε
2

) ‖vj?(k)+1‖. (C.21)

If there exists k′ ≥ k0 such that Sk′ is nonempty (the case when no such k′ exists will be dealt

with shortly), then (C.14) and (C.21) yield

‖vk+1‖ ≤

 k∏
n=j?(k)+1

(
1− αn+1

µ− ε
2

) ‖ξ̃j?(k)‖
ε

(C.22)

for all k ≥ k′. The product in brackets is always less than or equal to 1 (because each factor

is), and it is to be taken as 1 whenever j?(k) = k. Substituting the stepsize values (34), this

product can be written as

k∏
n=j?(k)+1

(
1− αn+1

µ− ε
2

)
=

q(k)

q(j?(k))
≤ 1, (C.23)

where

q(n) ,
Γ(n+ 1 + aρ)

Γ(n+ 1 + ρ)
with a , 1− µ− ε

2
. (C.24)

Observe that the sequence j?(k) either has a limit or goes to infinity. We now analyze the

behavior of ‖vk+1‖ as k →∞ in both cases.385
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Suppose first that limk→∞ j?(k) = ∞. Then it holds that limk→∞ ‖ξ̃j?(k)‖ = 0, and since

(C.22) implies ‖vk+1‖ ≤ ‖ξ̃j?(k)‖/ε, we conclude that limk→∞ ‖vk+1‖ = 0, as desired.

On the other hand, if limk→∞ j?(k) = j? <∞, then from (C.22)-(C.23),

lim
k→∞

‖vk+1‖ ≤
‖ξ̃j?‖
εq(j?)

lim
k→∞

q(k). (C.25)

Using property (A.10), and since 1− a > 0, ρ > 0, it is seen that q(k) goes to zero for k →∞

as 1/(k + ρ+ 1)(1−a)ρ. Hence limk→∞ ‖vk+1‖ = 0.

Finally, if Sk = ∅ (and thus j?(k) = k0) for all k ≥ k0, then (C.16) and (C.21) yield, for all390

k ≥ k0,

‖vk+1‖ ≤

 k∏
n=j?(k)+1

(
1− αn+1

µ− ε
2

) ‖vk0‖
=

q(k)

q(k0)
‖vk0‖, (C.26)

which goes to zero as k →∞, similarly to (C.25).

Since vk → 0 and zk = Q−1vk, we conclude that zk goes to zero asymptotically.
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