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Abstract

Multinomial values were previously introduced by one of the authors in reliability and extended
later to all cooperative games. Here, we present for this subfamily of probabilistic values three
new results, previously stated only for binomial semivalues in the literature. They concern
the dimension of the subspace spanned by the multinomial values and two characterizations:
one, individual, for each multinomial value; another, collective, for the whole subfamily they
form. Finally, an application to simple games is provided.
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1 Introduction

Probabilistic values, introduced by Weber [20], constitute a family of values for cooperative games
axiomatically characterized by means of linearity, positivity, and the dummy player property. Every
probabilistic value allocates, to each player in each game of its domain, a weighted (convex) sum
of all marginal contributions of the player in the game. Among probabilistic values, semivalues
[10] are characterized by the anonymity property or, equivalently, by the fact that each weighting
coefficient depends only on the cardinality of the coalition to which it refers. The Shapley value [19]
is the only efficient semivalue, whereas the Banzhaf value [16] is the only semivalue that satisfies
the total power property.

In this paper, we focus on a subfamily of probabilistic values called multinomial values. These
values were first introduced in reliability by Puente [18] (see also [12]) with the name of “multibinary
probabilistic values.” They were independently defined by Carreras [3], for simple games only—
i.e., as power indices—, in a study on decisiveness (see also [4]) where they were called “Banzhaf
α–indices.” Later on, Carreras and Puente [6] extended them to all cooperative games and began
to use the current term “multinomial”. A deep additional study of interesting properties of these
values can be found in [8].

The main characteristics of the multinomial values are: (1) each one of them is defined by
n parameters (n being the number of players) and (2) the weighting coefficients of the value are
systematically generated in terms of these parameters. We attach to parameter pi the meaning of
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generical tendency of player i to form coalitions, assuming that pi and pj are independent of each
other if i 6= j. We also assume that 0 ≤ pi ≤ 1 for each player i and collect all parameters in a
tendency profile p = (p1, p2, . . . , pn).

These tendency profiles can encompass a variety of situations arising from players’ attitudes.
As is shown in [6], multinomial values offer a flexibility evidently greater than binomial semivalues
[18, 12]—whose monoparametric condition implies a quite limited capability of analysis of such
situations—and, hence, many more possibilities to introduce additional information when eval-
uating a game. In [14], the multinomial values are used to study the effects of the partnership
formation in cooperative games, comparing the joint effect on the involved players with the effect
of the alternative alliance formation. In [7], multinomial values are extended to provide the coali-
tional multinomial probabilistic values, designed to take into account players’ attitudes with regard
to cooperation. This new family of coalitional values applies to cooperative games with a coalition
structure by combining the Shapley value and the multinomial values.

In Fig. 1, we show the position of multinomial values in the framework of probabilistic values.

linearity
positivity

dummy player property + anonymity + efficiency

Probabilistic values ← Semivalues ← Shapley value

↑ ↑

Multinomial values ← Binomial semivalues ← Banzhaf value

n parameters (one per player) 1 parameter parameter = 1/2

Fig. 1: Inclusion relationships between values and families of values

Simple games constitute an interesting class of cooperative games. Not only as a test bed
for cooperative concepts but also for the variety of their interpretations (often far from game
theory). In particular, they are frequently applied to describe and analyze collective decision–
making mechanisms ruled by voting.

In order to fix ideas, let us assume that a single proposal P , such as a bill or an amendment, is
pitted against the status quo Q. Each agent (player) has only two options: voting for P or voting
against it and hence for maintaining the status quo. The rules must state the groups of agents
(coalitions) which can pass the proposal when voting for it (such a collection of winning coalitions
defines a simple game in the set of agents), so abstention is implicitly allowed but it counts for Q.
Usually, each agent controls a number of votes (weight) and the proposal receives approval if and
only if the total weight of the group of agents that vote for it meets or exceeds a given threshold
(quota): we then speak of a weighted majority game as a particular case.

In this context, pi may be understood as the probability of each player i to vote for the proposal
(and hence 1 − pi as the probability to vote against or abstain). The multinomial value attached
to profile p = (p1, p2, . . . , pn) provides a measure of the relative decision power of each agent.

Example 1.1 The staff of a law firm A is made up of five members, the first three of which are
founding members and possess veto right in the decision–making process of the firm. The other
two are young interns of the law firm. A new law firm B of the competition wishes to merge with
A. Each A member will have to choose among two opposite possibilities: accepting to merge with
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B (option 1) or refusing the offer (option 2). Abstention is not allowed. Each A member has an
independent probability of voting for merging. The members of B, who prefer option 1, want to
influence the opinion of the members of A before they take the decision. With this purpose, firm
B will present the merging proposal from a viewpoint very favorable to option 1. In this situation,
(a) which of the A members has more decision power? and (b) if firm B considers the possibility
to bribe one of the A members to the extent that he/she votes option 1 with probability 1, which
of them will be the best candidate? The answers will depend on the view held by each A member.
The details will be given in Section 5.

The remainder of this paper is organized as follows. Section 2 includes some basic preliminaries.
In Section 3, we recall the notion of multinomial value. Section 4 is devoted to extend three results
stated in the previous literature for binomial semivalues only. Thus, we determine the dimension
of the subspace spanned by multinomial values and provide two characterizations: one, individual,
for each multinomial value; another, collective, for the whole subfamily they form. In all cases the
proofs are not straightforward and reveal new features of multinomial values. Finally, in Section 5
we focus on simple games and discuss Example 1.1.

2 Preliminaries

Let N be a finite set of players, usually denoted as N = {1, 2, . . . , n}. A cooperative game in N
is a function v that assigns a real number v(S) to each coalition S ⊆ N , with v(∅) = 0. This
number is understood as the utility that coalition S can obtain by itself, that is, independently of
the remaining players’ behavior.

Game v is monotonic if v(S) ≤ v(T ) when S ⊂ T ⊆ N . Player i ∈ N is a dummy in game v if
v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}, and null if, moreover, v({i}) = 0. Players i, j ∈ N
are symmetric in v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}.

Endowed with the natural operations for real–valued functions, v+ v′ and λv for all λ ∈ R, the
set of all cooperative games in N is a vector space GN . For every nonempty T ⊆ N , the unanimity
game uT in N is defined by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise, and it is easily checked
that the set of all unanimity games is a basis for GN , so that dimGN = 2n− 1. Every permutation
θ of N induces a linear automorphism of GN given by (θv)(S) = v(θ−1S) for all S ⊆ N and all v.

By a value on GN , we mean a map g : GN → Rn, which assigns to every game v a vector g[v]
with components gi[v] for all i ∈ N . The total power of value g in v is

πg(v) =
∑
i∈N

gi[v]. (1)

Following Weber’s axiomatic definition [20], φ : GN → Rn is a (group) probabilistic value if it
satisfies the following properties:

(i) linearity : φ[v + v′] = φ[v] + φ[v′] and φ[λv] = λφ[v] for all v, v′ ∈ GN and λ ∈ R;
(ii) positivity1: if v is monotonic, then φ[v] ≥ 0;
(iii) dummy player property : if i ∈ N is a dummy in game v, then φi[v] = v({i}).

There is an interesting characterization of the probabilistic values, also in [20]: (a) given a set of
n2n−1 weighting coefficients P = {piS : i ∈ N, S ⊆ N\{i}}, such that

all piS ≥ 0 and
∑

S⊆N\{i}

piS = 1 for each i, (2)

1In [20] this property is called monotonicity, but we prefer to call to it positivity as in [10].
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the expression

φi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN (3)

defines a probabilistic value φ on GN ; (b) conversely, every probabilistic value can be obtained in
this manner; (c) the correspondence given by P 7→ φ is one–to–one. Thus, the payoff that a prob-
abilistic value allocates to every player in any game is a convex sum of the marginal contributions
of the player in the game. We quote from [20]:

“Let player i view his participation in a game v as consisting merely of joining some
coalition S and then receiving as a reward his marginal contribution to the coalition.
If piS is the probability that he joins coalition S, then φi[v] is his expected payoff from
the game.”

All probabilistic values are linear, and therefore it is interesting to know their action on una-
nimity games because these form a basis of the space of games. It is as follows:

φi[uT ] =
∑

S⊆N\{i}:
T\{i}⊆S

piS if i ∈ T and φi[uT ] = 0 otherwise. (4)

Among probabilistic values, semivalues, introduced by Dubey et al. [10], are characterized by
the anonymity property: φθi[θv] = φi[v] for all i ∈ N , v ∈ GN and θ. This is equivalent [20] to
saying that, if n = |N |, there is a vector {ps}n−1s=0 such that piS = ps for all i ∈ N and all S ⊆ N\{i},
where s = |S|, so all coalitions of a given size share a common weight and Eq. (3) reduces to

φi[v] =
∑

S⊆N\{i}

ps[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

The weighting coefficients {ps}n−1s=0 of any semivalue φ satisfy two characteristic conditions, derived

from Eq. (2): each ps ≥ 0 and
∑n−1
s=0

(
n−1
s

)
ps = 1.

Among semivalues, the Shapley value [19], denoted here by ϕ and defined by ps = 1/
(
n−1
s

)
n

for all s, is the only efficient semivalue, in the sense that πϕ(v) =
∑
i∈N ϕi[v] = v(N) for every

v ∈ GN . The Banzhaf value [16], denoted here by β and defined by ps = 1/2n−1 for all s, is the
only semivalue satisfying the total power property :

πβ(v) =
∑
i∈N

βi[v] =
1

2n−1

∑
S⊆N

∑
i/∈S

[v(S ∪ {i})− v(S)] for every v ∈ GN . (5)

The Banzhaf value is also the only semivalue with constant weighting coefficients.
Finally, the multilinear extension of a game v ∈ GN , introduced by Owen [15], is the real–valued

function defined in Rn by

f(x1, x2, . . . , xn) =
∑
S⊆N

∏
i∈S

xi
∏

j∈N\S

(1− xj)v(S).

Both the Shapley and Banzhaf values of any game v can be obtained from its multilinear extension.
Indeed, ϕ[v] can be calculated by integrating the partial derivatives of the multilinear extension
of the game along the main diagonal x1 = x2 = · · · = xn of the cube [0, 1]n [15], while the partial
derivatives of that multilinear extension, evaluated at point (1/2, 1/2, . . . , 1/2), give β[v] [16].

4



3 Multinomial values

We recall here the definition of multinomial values for cooperative games established in [6].

Definition 3.1 Let N = {1, 2, . . . , n} be the set of players and let p ∈ [0, 1]n, that is, p =
(p1, p2, . . . , pn) with 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n, be a given profile. Then, the coefficients

piS =
∏
j∈S

pj
∏

k∈N\S:
k 6=i

(1− pk) for all i ∈ N and S ⊆ N\{i} (6)

(the empty product, arising if S = ∅ or S = N\{i}, is taken to be 1) define a probabilistic value
on GN , called the p–multinomial probabilistic value and denoted as λp. Its action is given by

λpi [v] =
∑

S⊆N\{i}

[∏
j∈S

pj
∏

k∈N\S:
k 6=i

(1− pk)
]
[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN . (7)

As was announced in Section 1, we attach to pi the meaning of generic tendency of player i to
form coalitions, and thus we say that p is a tendency profile on N . According to Eq. (6), coefficient
piS , the probability of i to join S, will depend on the positive tendencies of the members of S to
form coalitions and also on the negative tendencies in this sense of the outside players, i.e., the
members of N\(S ∪ {i}). Thus, neither piS nor λpi [v] depend on pi but on all pj for j 6= i.

Remarks 3.2 (a) For example, for n = 2 we have p = (p1, p2) and, if i 6= j,

λpi [v] = (1− pj)[v({i})− v(∅)] + pj [v(N)− v({j})].

Hence, the allocation given by λp to player i does not depend on pi but only on pj . If player j
is not greatly interested in cooperating (say, pj tends to 0), player i’s allocation will tend to his
individual utility v({i}). Instead, if player j is highly interested in cooperating (say, pj tends to 1),
player i’s allocation will tend to his marginal contribution to the grand coalition v(N)− v({j}).

(b) For n = 3 we have p = (p1, p2, p3) and, if i, j, k are distinct players,

λpi [v] = pjpkv({i}) + pjpk[v({i, j})− v({j})] + pjpk[v({i, k})− v({k})] + pjpk[v(N)− v({j, k})]

(where pj = 1− pj and pk = 1− pk for shortness). The comments here would be similar to those
made in (a).

(c) A first extreme case arises whenever pj = 0 for some player j. Then, it is easy to see that
the remaining players obtain the same payoff as in game v−{j}, the restriction of v to N\{j},
with profile p−{j} = (p1, p2, . . . ,

∧
pj , . . . , pn), that is, they bargain among themselves disregarding

player j, who obtains the payoff (independent of pj) in the original game v. A second extreme
case arises whenever pj = 1 for some player j. Then, it is easy to see that the remaining players
obtain the same payoff as in game vj , a new game in N where vj(S) = v(S) if j ∈ S and vj(S) = 0
otherwise, with profile p = (p1, p2, . . . , pj = 1, . . . , pn), that is, they bargain in a new game where
only coalitions containing j matter, whereas j obtains the payoff in the original game v.

(d) It is easy to check that the action of λp on a unanimity game uT is given by

λpi [uT ] =
∏

j∈T\{i}

pj if i ∈ T and λpi [uT ] = 0 otherwise. (8)

(If T = {i} then λpi [uT ] = 1, again by the convention, established in Definition 3.1, that any empty

product equals 1.) Using Eq. (8), it readily follows that, for n ≥ 2, p 6= p′ implies λp 6= λp
′

(if
n = 1 all profiles give rise to a unique multinomial value).
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(e) Whenever, in particular, p1 = p2 = · · · = pn = q for some q ∈ [0, 1], coefficients piS reduce,
for all i ∈ N , to

piS = ps = qs(1− q)n−s−1 for s = 0, 1, . . . , n− 1,

where s = |S| and, by convention, 00 = 1 for q = 0 and q = 1. These coefficients {ps}n−1s=0 define
the q–binomial semivalue ψq introduced in [18] and, obviously, λp = ψq. If, moreover, q = 1/2,
then, we obtain ψ1/2 = β, the Banzhaf value.

(f) The multilinear extension technique adapts well to all binomial semivalues [18, 1] and even
to any multinomial value λp (cf. [18, 12]): if f is the multilinear extension of game v ∈ GN then

λpi [v] =
∂f

∂xi
(p1, p2, . . . , pn) for all i ∈ N.

4 Three theoretical results

We devote this section to extending three results stated in the previous literature on binomial semi-
values. In all cases, the extension is not straightforward and reveals new features of multinomial
values. We assume n ≥ 2 because for n = 1 all is trivial.

4.1 About dimensions

Let L(GN ,Rn) denote the space of all linear maps from GN to Rn, which includes most values
studied in the literature. It is clear that dimL(GN ,Rn) = n(2n − 1). Let BS(GN ,Rn) denote the
subspace spanned by binomial semivalues. As is shown in [12], dimBS(GN ,Rn) = n and, moreover,
BS(GN ,Rn) coincides with the subspace spanned by all semivalues, and any n different binomial
semivalues ψq1 , ψq2 , . . . , ψqn form a basis.

LetMV (GN ,Rn) denote the subspace spanned by multinomial values. Of course, BS(GN ,Rn) ⊆
MV (GN ,Rn). We shall determine dimMV (GN ,Rn) and provide a basis for this subspace. To this
end, an auxiliar notion will be useful.

Definition 4.1 A value g on GN satisfies the property of neutrality (for unanimity games) if, for
each T ⊆ N with 0 ≤ |T | ≤ n− 2,

gi[uT∪{i}] = gj [uT∪{j}] for any i, j /∈ T .

This property is a sort of symmetry condition for players restricted to unanimity games. It is
satisfied by any multinomial value2 since, by Remark 3.2(d), we have

λpi [uT∪{i}] =
∏
k∈T

pk = λpj [uT∪{j}].

Theorem 4.2 Let MV (GN ,Rn) be the subspace spanned by multinomial values within the space
L(GN ,Rn) of linear maps. Then:

(a) dimMV (GN ,Rn) = 2n − 1.
(b) If, for each S ⊂ N (including S = ∅), a profile pS = (pS1 , p

S
2 , . . . , p

S
n) is defined by

pSi =

{
1 if i ∈ S,
0 otherwise,

the family of corresponding multinomial values {λpS

: S ⊂ N} is a basis of MV (GN ,Rn).

2In particular, all binomial semivalues, but also the Shapley value, satisfy this property.
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Proof. (a) Every φ ∈MV (GN ,Rn) is of the form

φ = α1λ
p1

+ α2λ
p2

+ · · ·+ αkλ
pk

,

where α1, α2, . . . , αk ∈ R and λp
1

, λp
2

, . . . , λp
k

are multinomial values. Then, φ satisfies linearity,
the dummy player property for null players, and neutrality. As every game is a linear combination of
unanimity games, by linearity it follows that φ is completely determined by its action on unanimity
games. Moreover, the null player property implies that φi[uT ] = 0 if i /∈ T . Then, at this stage
it is clear that φ is determined by

∑n
t=1 t

(
n
t

)
= n2n−1 linear parameters, namely, the allocations

φi[uT ] for all nonempty T ⊆ N and all i ∈ T .
It remains using neutrality to reduce the number of parameters. For each cardinality t such

that 0 ≤ t ≤ n − 1, there are
(
n
t

)
coalitions T such that |T | = t. If we add to each such T each

i /∈ T , then we get for each t a list of
(
n
t

)
(n − t) coalitions of the form T ∪ {i}, and hence of

cardinality t + 1, but each one is repeated t + 1 times. Then, the set of all φj [uT∪{i}] such that
0 ≤ |T | ≤ n− 1, i /∈ T and j ∈ T ∪ {i} coincides with the set of linear parameters (t+ 1 for each
T ∪ {i}) mentioned at the end of the above paragraph. Therefore, neutrality applies and, for each
T , n− t parameters are reduced to just one of them: e.g., we have

φ1[u{1}] = φ2[u{2}] = · · · = φn[u{n}] (for T = ∅).

Thus, in all, the number of linear parameters necessary to define φ has been reduced to∑n−1
t=0

(
n
t

)
= 2n − 1, and hence dimMV (GN ,Rn) ≤ 2n − 1.

(b) To complete the proof, it will suffice to show that the 2n− 1 multinomial values introduced
in the statement of the theorem are linearly independent. This will imply that dimMV (GN ,Rn) =
2n−1 and these values will form a basis ofMV (GN ,Rn). Assume that, for some set of real numbers
{αS : S ⊂ N},

φ =
∑
S⊂N

αSλ
pS

= 0. (9)

By applying this linear combination only to selected unanimity games and players, we obtain a
homogeneous system of just 2n− 1 linear equations with 2n− 1 unknowns, namely, the coefficients
αS of Eq. (9). The selection is very simple: for every coalition S ⊂ N we choose one external
player i. Then we compute φ for this player in game uS∪{i}. In all, we have 2n − 1 equations.

Let us consider the case n = 4, which clearly illustrates the general (systematic) selection
procedure that works for any n. Table 1 below shows the selected games and players to which

we apply all multinomial values λp
S

. The ordering by which we select a coalition S, add to it an
external player i, and consider in the first column the unanimity game uS∪{i}, coincides with the
ordering of coalitions in the first row of the table, and we always add the player with the lowest
denomination in the natural ordering (indicated in the second column). At the right of this table
we find the matrix of coefficients of the linear system.

Since (here and for all n) we obtain an upper triangular matrix with 1’s on the diagonal, the
only solution of the homogeneous system is obviously

αS = 0 for all S ⊂ N,

and hence the 2n − 1 multinomial values λp
S

are linearly independent and constitute a (natural)
basis for MV (GN ,Rn). Of course, in some cases there may exist different ways to select the
external player, but neutrality guarantees that all choices give rise to the same conclusion. �
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Remarks 4.3 (a) The difference between n = dimBS(GN ,Rn) and 2n − 1 = dimMV (GN ,Rn)
reflects the much greater versatility of multinomial values. Incidentally, notice that the Shapley
value belongs to BS(GN ,Rn), and hence, toMV (GN ,Rn). Thus, the Shapley value can be written
as a unique linear combination of any set of n different binomial semivalues and also of any basis
of MV (GN ,Rn), e.g., the basis given in Theorem 4.2. For n = 2 we find

ϕ =
1

2
λp

{1}
+

1

2
λp

{2}

and, for n = 3,

ϕ =
1

2
λp

∅
− 1

6
λp

{1}
− 1

6
λp

{2}
− 1

6
λp

{3}
+

1

3
λp

{1,2}
+

1

3
λp

{1,3}
+

1

3
λp

{2,3}
.

(b) The property that any family of n different binomial semivalues is a basis of BS(GN ,Rn)
does not extend to MV (GN ,Rn). In effect, e.g for n = 2, profiles pα = (0, α), pβ = (0, β) and
pγ = (0, γ), with α, β, γ different from each other, define different multinomial values according to
Remark 3.2(d), but it is not difficult to check that they are not linearly independent.

(c) The property that the subspace spanned by all semivalues coincides with the subspace
BS(GN ,Rn) does not extend to the multinomial level. The subspace spanned by all probabilistic
values coincides with MV (GN ,Rn) for n = 2, but not for n ≥ 3.

(d) However, using a standard basis of L(GN ,Rn) to discuss this question, we have arrived to
an interesting conclusion: (a) for any n, a probabilistic value belongs to MV (GN ,Rn) if and only
if it satisfies neutrality. The Shapley value is a good example. More generally, (b) a linear value
belongs to MV (GN ,Rn) if and only if it satisfies neutrality and the null player property. Finally,
(c) a value belongs toMV (GN ,Rn) if and only if it satisfies linearity, neutrality and the null player
property. We omit the details.

4.2 Individual characterization of each multinomial value

The notion of total power given by Eq. (1) has proven to be useful in the absence of efficiency. The
total power property of the Banzhaf value given by Eq. (5) was the natural substitute of efficiency
in the well-known axiomatic characterizations of this value reached in [9] and [11]. It was extended
to all binomial semivalues in [5], giving rise to the q–binomial total power property :

πψ
q

(v) =
∑
i∈N

ψqi [v] =
∑
S⊆N

qs(1− q)n−s−1
∑
i/∈S

[v(S ∪ {i})− v(S)] for every v ∈ GN .

For each q ∈ [0, 1], this property characterizes the q–binomial semivalue ψq among semivalues,
and this characterization can be alternatively stated as follows: if ψ is a semivalue such that
πψ(v) = πψ

q

(v) for all v ∈ GN , then ψ = ψq. The natural extension of the property to probabilistic
values must be carried out in the following terms.

Definition 4.4 Let p ∈ [0, 1]n be a profile on N . A (probabilistic or not) value g on GN satisfies
the p–multinomial total power property if, for all v ∈ GN ,

πg(v) =
∑
i∈N

gi[v] =
∑
S⊆N

∑
i/∈S

∏
j∈S

pj
∏

k∈N\S:
k 6=i

(1− pk)[v(S ∪ {i})− v(S)]. (10)

However, this property, which is clearly equivalent to πg(v) = πλ
p

(v), and hence, obviously
satisfied by the p–multinomial value λp, does not characterize this value within the class of prob-
abilistic values. Indeed, it is easy to see, e.g. for n = 2 and using Eqs. (4) and (8), that in general
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not only λp but also infinitely many probabilistic values g satisfy Eq. (10) for a given p. And also
that the only exceptions correspond, for n = 2, to p = (0, 0) and p = (1, 1), in which cases we
get uniqueness and find, respectively, the dictatorial and the marginal index, binomial semivalues
introduced in [17] and defined by ψ0

i [v] = v({i}) and ψ1
i [v] = v(N)− v(N\{i}) for all i and v.

Therefore, we need to introduce a second property in order to characterize each λp within the
class of probabilistic values. The reader will notice that, due to anonymity, this property holds for
all binomial semivalues (where pi = q = pj for all i, j ∈ N), and hence it was irrelevant for them.

Definition 4.5 Let p ∈ [0, 1]n be a profile on N . A value g on GN satisfies the property of
p–weighted payoffs for unanimity games if, for every nonempty T ⊆ N ,

pigi[uT ] = pjgj [uT ] for all i, j ∈ T .

This property means that the symmetry between all members of T in the unanimity game uT
may well be lost when using the value. More precisely: (a) for players i, j such that pi and pj do
not vanish (i.e., pi, pj > 0), the payoff to each such player in uT is inversely proportional to his
tendency; and (b) if pi = 0 then any other player j ∈ T with positive tendency obtains 0 in uT .
By using Eq. (8), it is clear that each λp satisfies this property (with regard to profile p), which
becomes an important characteristic of this value.

Theorem 4.6 (Characterization of each p–multinomial value). Let p be a profile on N . Then,
the unique probabilistic value on GN that satisfies the p–multinomial total power property and the
property of p–weighted payoffs for unanimity games is the multinomial value λp.

Proof. (Existence) As was mentioned after Definitions 4.4 and 4.5, respectively, the multinomial
value λp satisfies both properties.

(Uniqueness) Using linearity and the fact that the unanimity games form a basis of GN , it
suffices to prove that any probabilistic value φ satisfying both properties with respect to the given
profile p is uniquely determined on the unanimity game uT for each nonempty T ⊆ N .

By the dummy player property, φi[uT ] = 0 for all i /∈ T . If |T | = 1, set T = {i}. From the p–
multinomial total power property it follows that φi[u{i}] = 1 since λpi [u{i}] = 1 by the convention
mentioned after Eq. (8).

Now, let |T | ≥ 2. We first consider the case of a positive profile, that is, a profile p with each
pi > 0. If T = {i1, i2, . . . , it}, with t = |T |, by the property of p–weighted payoffs for unanimity
games it follows that

pi1φi1 [uT ] = pi2φi2 [uT ] = · · · = pitφit [uT ] = cT ,

where cT is a constant (depending only on φ and p). Thus, φi[uT ] = cT /pi for each i ∈ T and,
using again the p–multinomial total power property, it follows that

cT
∑
j∈T

1

pj
=
∑
j∈T

λpj [uT ]

and therefore, for each i ∈ T ,

φi[uT ] =

∑
j∈T

λpj [uT ]

pi
∑
j∈T

1

pj

=

∑
j∈T

∏
k∈T
k 6=j

pk

pi
∑
j∈T

1

pj

=
∏
k∈T :
k 6=i

pk = λpi [uT ].
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This completes the proof that φ is determined (and coincides, necessarily, with λp) on each uT
when the profile is positive.

Now, let p be a non–positive profile. Let R = {i ∈ N : pi = 0} and S = {i ∈ N : pi 6= 0}. By
assuming R,S 6= ∅ we disregard the positive profile case, and the dictatorial case (p = 0) where
uniqueness clearly holds. Then, two cases arise for T :

(a) T ∩R = ∅. Then, all φi[uT ] for i ∈ T are determined as for positive profiles.

(b) T ∩ R 6= ∅. Here, using the property of p–weighted payoffs for unanimity games, it follows
that φi[uT ] = 0 for all i ∈ T\R. It remains to consider φj [uT ] for players j ∈ T ∩ R. If

T ∩ R = {j} then φj [uT ] is determined, as it equals
∏

k∈T\{j}

pk by the p–multinomial total

power property. If |T ∩R| ≥ 2 then ∑
j∈T∩R

φj [uT ] = 0

once again by the p–multinomial total power property. However, from the positivity of φ it
follows that φj [uT ] = 0 for all j ∈ T ∩R. Hence, also in the case of a non–positive profile, φ
is determined on uT .3 �

Remark 4.7 Looking at the proof of Theorem 4.6, it is clear that our characterization is adjusted
if one wishes to consider any profile (positive or not), since we apply all conditions required to the
generic value φ: being a probabilistic value (linearity, positivity, and the dummy player property)
and the additional properties referred to a given profile p, that is, the p–multinomial total power
property, and the property of p–weighted payoffs for unanimity games. Nevertheless, if one is
interested in positive profiles only, we could state the characterization within the wider set of
linear values satisfying the dummy player property, since the positivity of the value (which leads
us back to probabilistic values) is used only at the end of the non–positive profile case.

Example 4.8 Theorem 4.6 can be used to verify whether a given probabilistic value is, in fact, a
multinomial value. Let n = 3 and φ be the probabilistic value defined by the weighting coefficients

p1∅ = 0, p1{2} = 0, p1{3} = 0.2, p1{2,3} = 0.8,

p2∅ = 0, p2{1} = 0, p2{3} = 0.7, p2{1,3} = 0.3,

p3∅ = 0.14, p3{1} = 0.06, p3{2} = 0.56, p3{1,2} = 0.24.

In principle, an obvious problem seems to be which profile should be used to check the proper-
ties. There are infinitely many possibilities to choose from. However, the property of p–weighted
payoffs for unanimity games will be very helpful to this end. Indeed, letting for this instance
p = (p1, p2, p3), we easily find that the property holds if and only if

p1
0.3

=
p2
0.8

=
p3
1
.

3The reader might well like to see this argument illustrated for, say, n = 4. Let e.g. p = (p1, p2, 0, 0) with
p1, p2 > 0. For singletons, we have φi[u{j}] = 1 if i = j and 0 otherwise. For any other nonempty T , φi[uT ] = 0 if
i /∈ T . Coalition {1, 2} is the only of type (a), and we get φi[u{1,2}] = pj if {i, j} = {1, 2}. Next, for coalitions {1, 3},
{1, 4}, {2, 3}, {2, 4}, {1, 2, 3} and {1, 2, 4} we have φi[uT ] = 0 if i = 1, 2. Then, from φ1[u{1,2,3}] + φ2[u{1,2,3}] +
φ3[u{1,2,3}] = p1p2 we find φ3[u{1,2,3}] = p1p2, and something analogous occurs for the remaining coalitions of the
list. Finally, for {3, 4}, {1, 3, 4}, {2, 3, 4} and N we find φi[uT ] = 0 for all i ∈ N . Here we are exclusively applying,
as in the proof of Theorem 4.6, linearity (of course), positivity, the dummy player property, the p–multinomial total
power property, and the property of p–weighted payoffs for unanimity games.
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Hence, the profile we are looking for must be of the form p = (0.3µ, 0.8µ, µ) for some µ ∈ [0, 1].
Further, by imposing the p–multinomial total power property, we find that it holds if and only
if µ = 1. Then, the given probabilistic value φ is the multinomial value λp defined by profile
p = (0.3, 0.8, 1). Nevertheless, Theorem 4.12 will provide an alternative and easier procedure.

4.3 Collective characterization of multinomial values

Among semivalues, the binomial family is characterized by the monotonicity of the weighting
coefficients: as was mentioned in [2], a semivalue ψ on GN is binomial if and only if its weighting
coefficients {ps}n−1s=0 are in geometric progression, i.e. satisfy, for some µ, the condition ps+1 = µps
for s = 0, 1, 2, . . . , n−2 (maybe the simplest form of monotonicity). Strictly speaking, the condition
is as follows: (i) ps+1 = µps for all s or (ii) ps = µ′ps+1 for all s.4 The extension is not at all
straightforward and will be given by Theorem 4.12. To this end, we need to consider two special
types of players with regard to the weighting coefficients of a probabilistic value.

Definition 4.9 Let φ be a probabilistic value on GN with weighting coefficients {piS}.

• A player h ∈ N is a φ–ordinary player5 if there is µh ≥ 0 such that, for all i ∈ N , piS =
µhp

i
S\{h} whenever h ∈ S ⊆ N\{i}.

• A player h ∈ N is a φ–magnetic player if piS\{h} = 0 whenever h ∈ S ⊆ N\{i}. This

condition is equivalent to saying that piS = 0 for all S ⊆ N\{i, h}.

These two notions require further detailed explanation before we proceed to use them.

Examples 4.10 (a) For the Banzhaf value β, all players are ordinary, with µh = 1 for all of them.
The same happens for every binomial semivalue ψq, with µh = q/(1− q), with just one exception:
for the marginal index ψ1 all players are magnetic.

(b) The Shapley value ϕ does not admit magnetic players. For n = 2 both players are ordinary,
with µh = 1. For n > 2, there are no ordinary players.

(c) Let n = 3 and assume that, for a given probabilistic value φ, players 1 and 2 are ordinary
and player 3 is magnetic. Then, we have, for some µ1, µ2 ≥ 0,

p1∅ = 0
µ2−→ p1{2} = µ2p

1
∅ = 0, p1{3}

µ2−→ p1{2,3} = µ2p
1
{3},

p2∅ = 0
µ1−→ p2{1} = µ1p

2
∅ = 0, p2{3}

µ1−→ p2{1,3} = µ1p
2
{3},

p3∅
µ1−→ p3{1} = µ1p

3
∅, p3{1}

µ2−→ p3{1,2} = µ2p
3
{1},

p3∅
µ2−→ p3{2} = µ2p

3
∅, p3{2}

µ1−→ p3{1,2} = µ1p
3
{2}.

Eq. (2) gives p1{3}, p
2
{3}, p

3
∅ > 0 and yields these relevant weighting coefficients in terms of µ1, µ2:

p1{3} =
1

1 + µ2
, p2{3} =

1

1 + µ1
, p3∅ =

1

1 + µ1 + µ2 + µ1µ2
.

4The dictatorial index ψ0 satisfies (i) only, with p0 = 1 and µ = 0. The marginal index ψ1 satisfies (ii) only,

with pn−1 = 1 and µ′ = 0. Any other binomial semivalue, with q 6= 0, 1, satisfies (i) and (ii) because µ =
1− q
q
6= 0;

thus, q =
µ

1 + µ
and p0 =

1

(1 + µ)n−1
.

5We use this term to emphasize that exceptionality corresponds to the next option, that of magnetic player.
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Hence, for such a value, p3∅ = p1{3}p
2
{3}. Thus, choosing arbitrarily p1{3} = α and p2{3} = β (with

0 < α, β < 1), we find

p3∅ = αβ, µ1 =
1− β
β

, µ2 =
1− α
α

and the remaining weighting coefficients:

p1∅ = 0, p1{2} = 0, p1{3} = α, p1{2,3} = 1− α,

p2∅ = 0, p2{1} = 0, p2{3} = β, p2{1,3} = 1− β,

p3∅ = αβ, p3{1} = α(1− β), p3{2} = (1− α)β, p3{1,2} = (1− α)(1− β).

Therefore, we have found all multinomial values having 1 and 2 as ordinary players and 3 as a
magnetic player. They form a two–parametric family (with 0 < α, β < 1), and the profile defining
each one of them is of the form p = (1− β, 1− α, 1).

Remarks 4.11 (a) The conditions of Definition 4.9 are incompatible. If there were a simultane-
ously ordinary and magnetic player h then, for any other i ∈ N , we would have piS = 0 for all
S ⊆ N\{i}, contradicting that these coefficients sum up to 1.

(b) The condition of ordinary player means that the relation between piS and piS\{h} follows a
pattern common to all i ∈ N and very similar to the monotonicity in the binomial semivalue case,
although the proportionality factor depends here on player h (cf. footnote 4).

(c) Instead, the existence of a magnetic player h implies that none of the other players would
join a coalition excluding h.

Theorem 4.12 (Collective characterization of all multinomial values). A probabilistic value φ on
GN is a multinomial value if and only if all players h ∈ N are φ–ordinary or φ–magnetic. In this
case, φ = λp, where p = (p1, p2, . . . , pn) is given by

ph =


µh

1 + µh
(for some µh ≥ 0) if h is a φ–ordinary player,

1 if h is a φ–magnetic player.

Proof. (⇒) Let φ = λp for some profile p. Using Eq. (6), if h ∈ S ⊆ N\{i} then

piS = ph
∏

j∈S\{h}

pj
∏

k∈N\S:
k 6=i

(1− pk) and piS\{h} = (1− ph)
∏

j∈S\{h}

pj
∏

k∈N\S:
k 6=i

(1− pk),

so (1−ph)piS = php
i
S\{h}. If ph < 1 then piS = µhp

i
S\{h}, where µh =

ph
1− ph

, and h is λp–ordinary.

If ph = 1 then piS\{h} = 0 and h is a λp–magnetic player.

(⇐) Let φ be a probabilistic value such that every player is φ–ordinary or φ–magnetic.6 If all
h ∈ N are magnetic then, for all i ∈ N , we have piS = 0 for all S ⊂ N\{i} and piN\{i} = 1 by

Eq. (2), so φ = λp where p = (1, 1, . . . , 1), and φ is the marginal index ψ1. Else, let K ⊆ N be the
nonempty set of φ–ordinary players, and hence N\K be the set of φ–magnetic players.

6Some points of the argument that follows are well illustrated by e.g. the particular case n = 4.

13



If i ∈ K and S ⊆ N\{i} is such that N\K 6⊆ S, then piS = 0. The remaining weighting
coefficients satisfy∑

S⊆N\{i}:
N\K⊆S

piS = 1, where piS = piN\K
∏

h∈S∩K

µh for all such S.

If j ∈ N\K and S ⊆ N\{j} is such that N\(K ∪ {j}) 6⊆ S, then pjS = 0. The remaining
weighting coefficients satisfy∑

S⊆N\{j}:
N\(K∪{j})⊆S

pjS = 1, where pjS = pjN\(K∪{j})

∏
h∈S∩K

µh for all such S.

Therefore, if i ∈ K and j ∈ N\K then

piN\K
∑

S⊆N\{i}:
N\K⊆S

∏
h∈S∩K

µh = 1 and pjN\(K∪{j})

∑
S⊆N\{j}:

N\(K∪{j})⊆S

∏
h∈S∩K

µh = 1.

In both cases, the sum is of the form

1 +
∑
r∈L

µr +
∑
r,s∈L:
r<s

µrµs +
∑

r,s,t∈L:
r<s<t

µrµsµt + · · ·+
∏
r∈L

µr, (11)

with L = K\{i} in case of i and L = K in case of j.
Now we define a tendency profile p = (p1, p2, . . . , pn) by setting

ph =


µh

1 + µh
if h ∈ K

1 if h ∈ N\K.

Thus, ph < 1 and hence µh =
ph

1− ph
makes sense for each h ∈ K. By replacing each µk in terms

of pk for each k ∈ L, it is not difficult to verify that the reciprocal of the sum given in Eq. (11) is∏
k∈L

(1− pk)∑
S⊆L

∏
k∈S

pk
∏

`∈L\S

(1− p`)
,

but the denominator equals 1 since the partial derivatives of the multilinear function

f((xk)k∈L) =
∑
S⊆L

∏
k∈S

xk
∏

`∈L\S

(1− x`)

vanish and f(1, 1, . . . , 1) = 1. Thus, piN\K and pjN\(K∪{j}) are of the desired form since, as p` = 1

if ` ∈ N\K, we can write

piN\K =
∏

k∈K\{i}

(1− pk)
∏

`∈N\K

p` and pjN\(K∪{j}) =
∏
k∈K

(1− pk)
∏

`∈N\K:
` 6=j

p`.
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Finally, for any S such that N\K ⊆ S ⊆ N\{i},

piS = piN\K
∏

h∈S∩K

ph
1− ph

=
∏
h∈S

ph
∏

`∈N\S:
6̀=i

(1− p`)

and, for any S such that N\(K ∪ {j}) ⊆ S ⊆ N\{j},

pjS = pjN\(K∪{j})

∏
h∈S∩K

ph
1− ph

=
∏
h∈S

ph
∏

`∈N\S:
` 6=j

(1− p`).

Then φ = λp for the profile p defined above. �

Corollary 4.13 As a consequence of Theorem 4.12, it immediately follows that, if φ = λp is a
multinomial value, then player h ∈ N is φ–ordinary if ph < 1, and φ–magnetic if ph = 1.

Remark 4.14 The difference between monotonicity at individual level established in Theorem
4.12 and uniform monotonicity that characterizes binomial semivalues is a new sample of the
higher versatility of the multinomial values. Moreover, Theorem 4.12 provides an easy procedure
to check whether a probabilistic value is a multinomial value and determine, if it is so, the tendency
profile that defines it—cf. Example 4.10(c) above and Example 4.15(c) below.

Examples 4.15 (a) The Shapley value is multinomial only for n = 2. In fact, in this case ϕ and
β coincide. Thus, Example 4.10(b) does not contradict the theorem.

(b) According to Theorem 4.12, the (two–parametric family of) values obtained in Example
4.10(c) are all multinomial by the simple fact of having only ordinary or magnetic players. Their
individual description given in that example is also possible from Theorem 4.12.

(c) Let φ be the probabilistic value for n = 3 defined by the weighting coefficients

p1∅ = 0, p1{2} = 0, p1{3} = 0.2, p1{2,3} = 0.8,

p2∅ = 0, p2{1} = 0, p2{3} = 0.8, p2{1,3} = 0.2,

p3∅ = 0.4, p3{1} = 0.1, p3{2} = 0.4, p3{1,2} = 0.1.

It is easy to check that, with regard to φ, player 1 is ordinary (with µ1 = 1/4) and player 3 is
magnetic, but player 2 is neither ordinary nor magnetic. Then, using Theorem 4.12 again, φ is not
a multinomial value.

5 An example of application to simple games

As was mentioned in Remark 3.2(f), the calculation of a value in terms of the multilinear extension
of the game was extended to any multinomial probabilistic value [18, 12]: if λp is such a value and
f is the multilinear extension of game v ∈ GN then

λpi [v] =
∂f

∂xi
(p1, p2, . . . , pn) for each i ∈ N. (12)

We begin by introducing a bit more of notation and giving a preliminary result. If v ∈ GN , its
multilinear extension f is, in principle, defined on the whole Euclidean space Rn although, generally,

15



we are only interested in its behavior in the n–cube [0, 1]n. The set 2N of coalitions of N can be
identified with {0, 1}n, the set of vertices of the cube, through the map S 7→ xS = (xS1 , x

S
2 , . . . , x

S
n)

given by xSi = 1 if i ∈ S or else xSi = 0. Then, v(S) = f(xS) for all S ⊆ N . We shall use in the
sequel, for any x = (x1, x2, . . . , xn) ∈ Rn, notation like e.g.

f(1i,x) = f(x1, . . . ,
i
^

1 , . . . , xn).

Proposition 5.1 (Domènech et al. [8]) Let f be the multilinear extension of game v ∈ GN .
(a) For each i ∈ N , f is a linear function of xi, that is, f(x) = a + bxi where a = f(0i,x) and
b = f(1i,x)− f(0i,x) for all x. Then

f(x) = xif(1i,x) + (1− xi)f(0i,x) for all x.

(b) Now, let p be a profile on N . For all i ∈ N ,

λpi [v] =
∂f

∂xi
(p) = f(1i,p)− f(0i,p).

(c) Moreover,
(1− pi)λpi [v] = f(1i,p)− f(p). �

From now on we will focus on simple games. Parliamentary bodies provide conspicuous ex-
amples. If voting discipline within parties holds, then the agents are the parties, and each party
controls the votes of all its representatives. Otherwise, each parliamentarian is an agent with one
vote (symmetric or k–out–of–n game). The US Senate can be viewed in this second way due to the
political freedom to act that each senator enjoys. Other examples where the agents are, actually,
individuals with one vote each are popular juries or the Constitutional Court.

In this context, if pi is the probability of each player i to vote for the proposal (and hence
1 − pi is the probability to vote against or abstain), f(p) = f(p1, ..., pn) yields the probability of
the proposal to be socially accepted and

f(1i,p)− f(p) = (1− pi)λpi [v]

can be viewed as the increment on the probability of acceptance of the proposal when only player i
changes his probability of voting yes from pi to 1 and becomes therefore a magnetic player for the
new multinomial value arising after the change of tendency of this player. This proves the close
relationship between the multinomial values on simple games and the potential decisiveness index
Ωp introduced by Freixas and Pons [13] and defined, for each i ∈ N , by

Ωp
i [v] = f(1i,p)− f(p).

This shows the precise way in which the increase of the acceptance of the proposal depends on the
multinomial value λpi [v]. Taking into account this fact, we can use multinomial values to determine
which player has more influence in order to change the result of the voting process when he ensures
his positive vote. In other words, in situations of corruption, these values play an important role
in order to determine which are the players that may cause, by turning into a magnetic player, the
maximum increase in the probability of passing the proposal, and are therefore the best candidates
to be bribed.

Example 5.2 (Example 1.1 revisited) The simple game v associated to Example 1.1 is defined in
N = {1, 2, 3, 4, 5}, where players 1, 2 and 3 are the founding members, by the family of its winning
coalitions

W (v) = {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 4, 5}}.
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Notice that v = u{1,2,3}. We will compute λp[v] for any profile p. The multilinear extension of v
is

f(x1, x2, x3, x4, x5) = x1x2x3

The calculation of λp[v] derives from Eq. (12):

λp1 [v] = p2p3,

λp2 [v] = p1p3,

λp3 [v] = p1p2,

λp4 [v] = λp5 [v] = 0.

Notice that the introduction of tendency profiles breaks the symmetry between players 1, 2 and
3. Nevertheless, a sort of “structural” symmetry still exists between λp1 [v], λp2 [v] and λp3 [v] since,
for instance, λp2 [v] is obtained from λp1 [v] by replacing p2 with p1. This is due to the symmetric
positions of each pair of players in the game, which translates to the multilinear extension.

Now we will answer question (a) in Example 1.1. To this end, it suffices to compare λp1 [v], λp2 [v]
and λp3 [v]. If i, j, k denote the three distinct nonnull players, we have for all of them

λpi [v]− λpj [v] = pk(pj − pi) ≥ 0 ⇐⇒ pj ≥ pi.

For example, if p1 = p2 > p3 then λp1 [v] = λp2 [v] < λp3 [v], so player 3 has the greatest decision
power.

(b) In order to know which member of firm A must be bribed for firm B we need to consider
Ωp
i [v] = f(1i,p) − f(p) = (1 − pi)λpi [v] for i = 1, 2 and 3. It is easy to see that, if i, j, k denote

these players,
Ωp
i [v]− Ωp

j [v] = pk(pj − pi) = λpi [v]− λpj [v]

and then, if i 6= j, member i is better than member j to be bribed if and only if pj > pi.
If we consider a particular profile, e.g. of the form (p, 1− p, p, p4, p5), with p, p4, p5 ∈ [0, 1], we

obtain
λp1 [v] = (1− p)p
λp2 [v] = p2,

λp3 [v] = p(1− p),
λp4 [v] = λp5 [v] = 0.

We can compare λp1 [v] and λp2 [v] in order to know which is the best candidate to be bribed.

λp1 [v] ≥ λp2 [v] ⇐⇒ p ≤ 1/2

so player 1 (as well as player 3) is the best candidate to be bribed iff p ≤ 1
2 . If member 1 is bribed

and turns therefore into a magnetic player, a new profile (1, 1− p, p, p4, p5) arises and, in this new
situation, according to Remark 3.2(c), if 1 /∈ S then piS = 0 for any i /∈ S. This means that no
other member is interested in joining a coalition not including member 1. If p < 1

2 , under the new
profile member 3 has more decision power than member 2 since 1− p > p.

Remark 5.3 (a) More generally, if N = {1, 2, ..., n} and v = uS for some nonempty S ⊆ N ,
to study players’ decisiveness λpi [v] is equivalent to study players’ potential decisiveness Ωp

i [v] =
(1− pi)λpi [v]. Indeed, for such a game,

f(x1, x2, ..., xn) =
∏
i∈S

xi, λpi [v] =
∏

k∈S\{i}

pk
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and, for all i, j ∈ S,

λpi [v]− λpj [v] = (pj − pi)
∏

k∈S\{i,j}

pk = Ωp
i [v]− Ωp

j [v].

(b) A similar situation occurs if N = {1, 2, ..., n} and the family of minimal winning coalitions
of the game is Wm(v) = {S,N\S} for some nonempty S ⊂ N . In this case,

f(x1, x2, ..., xn) =
∏
i∈S

xi +
∏

j∈N\S

xj −
∏
k∈N

xk

and, for all i, j ∈ S, we have

λpi [v]− λpj [v] =
∏

k∈S\{i,j}

pk

1−
∏

`∈N\S

p`

 (pj − pi) = Ωp
i [v]− Ωp

j [v],

whereas, for all i, j ∈ N\S,

λpi [v]− λpj [v] =
∏

k∈N\S:
k 6=i,j

pk

(
1−

∏
`∈S

p`

)
(pj − pi) = Ωp

i [v]− Ωp
j [v].
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