
CEIG - Spanish Computer Graphics Conference (2017)
F. J. Melero and N. Pelechano (Editors)

Procedural Semantic Cities

Otger Rogla1,2, Nuria Pelechano1,2 and Gustavo Patow1,3

1 ViRVIG
2 Universitat Politècnica de Catalunya

3 Universitat de Girona

Figure 1: Example of a city generated using our framework.

Abstract
Procedural modeling of virtual cities has achieved high levels of realism with little effort from the user. One can rapidly obtain
a large city using off-the-shelf software based on procedural techniques, such as the use of CGA. However in order to obtain
realistic virtual cities it is necessary to include virtual humanoids that behave realistically adapting to such environment. The
first step towards achieving this goal requires tagging the environment with semantics, which is a time consuming task usually
done by hand. In this paper we propose a framework to rapidly generate virtual cities with semantics that can be used to drive
the behavior of the virtual pedestrians. Ideally, the user would like to have some freedom between fully automatic generation
and usage of pre-existing data. Existing data can be useful for two reasons: re-usability, and copying real cities fully or partly
to develop virtual environments. In this paper we propose a framework to create such semantically augmented cities from either
a fully procedural method, or using data from OpenStreetMap. Our framework has been integrated with Unreal Engine 4.

1. Introduction

Procedural modeling has witnessed an explosion in the last decade
since the seminal works by Parish and Muller [PM01], Wonka
et al. [WWSR03] and Muller et al. [MWH∗06]. The introduction
of shape grammars, and the CGA (Computer Generated Architec-
ture) syntax have enabled the production of massive cityscapes with
some simple, basic constructs. The introduction of visual represen-
tations [Esr14, Pat12] have simplified this process even further, al-
lowing artists and designers to use standard, off-the-shelf tools such
as Houdini [Sid12] for city design.

However, in spite of the many efforts in the field, the applica-
tion of procedural models has remained circumscribed to movie

and video-game production [STBB14], with some extensions to
physical simulations [GDAB∗17, VGDA∗12, BMJ∗11]. There has
been little success in using these techniques for providing mean-
ing to these environments, as they typically limit the output to only
a mesh, consisting exclusively of geometry and properties such as
material or texture data. Even if they do use semantics to some
degree internally for the generation, those are discarded once the
geometry is created and therefore cannot be used in further steps in
the pipeline.

In this paper we present Semantic Procedural Cities, a system
that allows intertwining the procedural creation of a city with a
semantic tagging of its elements. Applications range from enhanc-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/ceig.20171217

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20171217

Rogla, Pelechano & Patow / Procedural Semantic Cities

ing the procedural modeling process itself, for instance by allow-
ing specific buildings and spaces to be built at recognizable urban
points of interest, to the control of other urban phenomena like
traffic simulation or pedestrian behavior to achieve richer environ-
ments.

Note that as opposed to traditional building or city generation
software such as CityEngine [Esr14] where the final output is just
a plain mesh, the output of our system provides a hierarchy of ele-
ments that may consist of procedurally generated geometry and/or
reference model assets. This allows us to keep metadata such as
semantics (points of interaction, tags, usage information, special
navmesh areas), whereas outputting a single mesh would discard
it. For example, a typical output from a CGA generated building
would consist of a single mesh with the geometry for all its win-
dows merged into it, whereas we keep semantic information that
allows us to identify that a particular geometry is "a window" so
that an autonomous agent could act on it (e.g., "look through it").

Our main contributions include:

• A procedural tagging system that is naturally blended into the
procedural creation process.

• A set of new procedural commands that extend CGA and allow
a specific, fine tuning semantic tagging of urban spaces.

• A feature extraction mechanism from available GIS data, plus
the possibility of enhancing this with user-customizable defini-
tions.

2. Previous Work

After the seminal work by Parish and Muller [PM01], which
introduced the concept of L-Systems for urban generation; fol-
lowed by the works by Wonka et al. [WWSR03], which dealt
with a mechanism for the definition of buildings; and Muller et
al. [MWH∗06], which presented the CGA grammar construct; the
field of procedural modeling of cities flourished with many inter-
esting works. All these efforts resulted in the origin of commercial
packages, like Esri’s CityEngine [Esr14], or a module of Epic’s
UDK [Epi09], focused on procedural urban design. We refer the
interested reader to the surveys by Watson et al. [WMV∗08], and
Vanegas et al. [VAW∗10] for a more detailed overview of the state-
of-the-art in urban procedural modeling. Some works have used
inverse procedural modeling to extract a procedural model from
examples of the desired productions; for instance in the method by
Van Gool et al. [VGMM13]building photographies are segmented
to detect semantic elements (windows, balconies, etc).

With respect to the technique presented in this paper, the work
by Aliaga et al. [AVB08] is relevant in the sense that it presented
a method to generate urban layouts based on examples, by extract-
ing the street network and per-parcel aerial-view images from real
data to then generate new layouts by synthesizing streets and im-
ages based on data from the example layouts. Later, this technique
was extended by Nishida et al. [NGDA16] to a system where the
user can interactively design a urban layout. The method starts
the process by letting the user select either to design roads from
scratch, or to start with any existing example patch taken from
OpenStreetMap. In their method, roads are generated by growing

Figure 2: Example of multiple CGA-generated buildings forced to
use the same rule file. The main advantage of CGA is its adaptabil-
ity to shapes and sizes, which in this case can be seen in the ground
floor windows.

a geometric graph, where two types of growth are selectively ap-
plied: example-based growth, which uses patches extracted from
the source examples; and procedural-based growth, which uses
the statistical information of the source example while selectively
adapting the roads to the underlying terrain and the already gener-
ated roads. In their system, the user is free to define warping, blend-
ing, and interpolation operations to produce new road network de-
signs. Lipp et al. [LSWW11] developed a technique for interactive
modeling of procedural city layouts that allows intuitive manipula-
tion using drag and drop operations. Taal and Bidarra [TB16] de-
veloped a method to populate urban landscapes with traffic signs by
analyzing the street layout at a local (i.e., a block) level. Although
these works are able to reproduce realistic layouts based on input
examples, their objective is purely geometrical, without taking se-
mantic information into account.

On the other hand, Emilien et al. [EVC∗15] presented World-
Brush, a system that, from an example input landscape, is able
to learn parameters of distributions of elements (e.g., trees, grass,
or rocks) constrained by the terrain’s slope. Then, the system uses
these parameters to consistently populate content in a larger land-
scape, using a copy-paste-like tool or with user-controlled interac-
tive brushes mimicking traditional painting tools. In this work, the
different types of elements are clearly identified and separated, but
the objective is not to use this information any further than restrict-
ing the tools to operate on specific sets.

2.1. CGA

In the framework we propose in this paper, the generation of the
building geometry is based on the popular rule-based system of
Computer Generated Architecture (CGA) [MWH∗06], and specif-
ically the syntax variant used in the commercial CityEngine sys-
tem [Esr14]. This brings us all the power of this procedural ap-
proach, and even though the current result examples use simple
buildings with relatively low variety, skilled artists can unlock its
full potential to generate highly-detailed geometric models with lit-
tle work. Figure 2 shows as an example some buildings generated
using the same set of rules.

The basic syntax of a CGA rule-set consists of a plain text file
containing a list of rules. Each rule is on the form of the rule name

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

114

Rogla, Pelechano & Patow / Procedural Semantic Cities

and an optional list of arguments, followed by an arrow, and the
successor. The successor is a list of one or more rule names and
operations. These items will be executed sequentially, and may also
be called with arguments. An example of a rule definition is:

A -> B C(arg1, arg2, ...) op(arg)

As a shape grammar system, a rule is executed for a “shape”
or part of it, in order to determine how it is modified. Therefore,
rules are executed attached to a context, which in the CGA case
this consists primarily of the scope and its attributes. The scope can
be understood as an oriented bounding box (OBB), and its main
attributes are the geometry (a primitive or a mesh), material, etc.

Some operations allow creating multiple results, each of which
can trigger the execution of further rules. A few of those operations
require the presence of a selector block, which specifies different
successors for different cases. The decision of what item to exe-
cute depends on how the specific operation interprets the selector.
The two most prominent examples of this are the comp operation,
which executes a successor for each type of elements (faces, edges
or vertices) of the current geometry, or the split operation that cuts
the geometry at different offsets and executes a different successor
for each interval. The syntax for these selector blocks is:

op(args) { selector1: successor1 | ... }

For a more complete reference of the language syntax
and control structures, we refer the reader to the manual of
CityEngine [Esr14]. Listing 1 shows an example of the syntax of
a rule set (expanded with some of our new operations). Note that
redundant white spaces and line breaks are ignored (except inside
strings), and expressions, operands, and the call syntax are essen-
tially the same ones as in the C or C++ programming languages.

3. Framework overview

Figure 3 shows the steps and the flow of data of our framework.
Cities are generated in a two-step process: first, the generation
of the city layout; and then the generation of the semantically-
augmented geometry for each lot.

For the generation of the layout, we provide two alternatives: a
fully procedural generation, or importing real-world GIS data. In
our case the city layout consists of the set of lots (defined by their
footprint or shape, location, and the lot usage) as well as the road
network (a graph where each edge is a road).

Since our goal is to provide a semantic tagging system, not a
new method for generating rich city layouts, for the fully procedu-
ral case we have implemented a very simple square-like block gen-
eration algorithm, which generates blocks of buildings in a regular
grid shape. Some parameters can be tweaked, such as the number of
blocks, number of buildings per block, lot dimensions, road size (or
0 for none). All resulting lots in this case are thus square-shaped.
More sophisticated strategies, such as methods based on growing
road networks, could be easily integrated into the framework, but
this lies outside the scope of this work.

The second layout generation alternative is based on load-
ing real-world urban data from standard sources (e.g., Open-
StreetMap [HW08, Ope17]). Our system reads the layout informa-
tion from an input GIS data file, for which we currently support

Figure 3: Overview of the framework and the input and output data
of each step.

the OSM format (in XML syntax). OpenStreetMap was chosen be-
cause it is an open and widely supported format, for which data
files are easily and freely obtainable, while it also supports seman-
tic data. This semantic data contains metadata such as lot types,
which indicates for example whether there is a restaurant, or a shop
in the ground floor. The OpenStreetMap data is then processed in
order to fix several geometric problems (e.g. incoherent vertices or-
der that result in wrong normals, polygons with degenerate regions
that need to be removed, successive collinear edges that are merged
together, etc.), and also to extract the relevant data (such as the lot
type) from the semantic information supported by the input format.

As Figure 3 shows, regardless of the city generation method be-
ing used, we have another input file which contains statistical prob-
abilities for the different lot types. For the case of full procedural
generation, the probabilities file is used to classify all the lots. For
the second method, where we use GIS data, we found that in some
zones there are buildings that lack zone usage information, so in
these cases we complete the original data with building types dis-
tributed according to the probabilities given by this file.

For the generation of building or lot geometry, a custom imple-
mentation of CGA (Computer Generated Architecture [MWH∗06])
is used, which generates building geometry by executing a set of
grammar-based rules written by the user, whilst augmenting the re-
sults with semantic data. For this last purpose, and with the objec-
tive of providing more flexibility in the tagging operations, our sys-
tem incorporates a few simple, but powerful new commands that,
for example, enable the introduction of customizable labels at the
finest level required. For the roads, we first convert the edges (lines)
of the road network into 2D polygons, and then we use CGA to gen-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

115

Rogla, Pelechano & Patow / Procedural Semantic Cities

Figure 4: Generation of a section of the city of Barcelona. Top Left: input OSM data as seen in the official web page. Bottom Left: the
generated layout (lots and road network), where each color represents a different lot type (usage). Bottom Right: aerial view of result after
the CGA generation. Top Right: a close-up of the result.

erate its geometry. This allows us to create, for example, crosswalks
near the intersections.

Figure 4 shows the data at the different steps of the framework,
using the GIS data loader for a region of the city of Barcelona. From
the input OSM data, lots and roads are extracted, and then geometry
and semantics are generated for each. Notice also how there are
some zones with a same lot type (represented by the color), with
red corresponding to residential buildings.

4. Semantically-augmented per-lot generation

The generated cities need to consist of both the geometry and the
semantic information that could be used later on, for example to
drive the citizens’ behavior. As opposed to previous works where
cities and population are two independent elements with no connec-
tion other than the calculated navigation mesh (navmesh) and ad-
ditional manually annotated information, our framework presents a
direct connection between these two entities.

We extend the CGA specification for the generation of the ge-
ometry, to define different kinds of semantic elements within the
process. The primary element is that, in our implementation, we

can define within the lots one or multiple entrances that could be
used as entry/exit locations to plan individual’s trajectories. This
allows, for example, to define a store on the ground level and an
entrance to the residences in the upper floors.

Similarly, we can specify zones of interest during the generation
of each lot, like park areas. This provides the flexibility to generate
results such as a small building with a little interior park within the
same lot, as opposed to having the entire lot occupied exclusively
by a single large building or by a park.

Finally, we take advantage of the recursive refinement nature of
CGA, which intuitively could be visualized as generating a tree
of oriented bounding boxes that are not restricted to their parent
box and have properties attached (e.g., material), and where the
leaves correspond to the actual generated geometry. We allow sub-
sets of the generated geometry (i.e. subtrees) to be tagged with user-
defined tags, which are then created as separated objects. This can
be used for example to mark some of the generated geometry as a
bench or a lamppost.

We also reuse the "instance" (i.e., "insert") operation of CGA,
but we modify its implementation in order to keep track of which
model to instantiate, and do it later, as opposed to immediately

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

116

Rogla, Pelechano & Patow / Procedural Semantic Cities

Figure 5: Visualization of the supported semantics: definition of
navmesh areas (park in blue, impassable in dark red, green for de-
fault), creation of objects during the CGA generation (benches and
trees), and building entry points (the red arrow inside a circle on
the right-hand side).

copying its mesh into the scope geometry. This allows us to pre-
vent duplicating such typically complex geometry, and take advan-
tage of the instanced rendering feature provided by game engines.
Furthermore, this enables us to keep metadata such as points of in-
teraction (e.g., sitting positions) that can be defined on a per-model
basis by the user, instead of at each occurrence.

Figure 5 shows a representation of the different supported se-
mantic elements in the final city as generated by our framework.
In Listing 1 we show a simple but complete example of a CGA
rule file extended with our new semantic elements. It splits the lot
in two along the X axis, generating a building with an entrance on
one side, and a zone marked as a park which also contains a bench
on the opposite side.

The most important aspect of our city generator is that, as the city
is being automatically created, it tags along different elements and
zones with semantics that could be evaluated by a simulation mod-
ule to drive the city dynamics. Also, the city semantics are com-
bined with the final navigation mesh, allowing the user to obtain
a navigation mesh that has been automatically enhanced with rel-
evant information to drive pathfinding and behaviors (i.e., destina-
tion positions, find a closest park to rest, etc).

Once the semantically augmented city is created, it is processed
by the target simulation engine (or game engine), which will store
the generated semantic components (e.g., buildings, zones of inter-
est or interactable objects) to be used during the simulation, and to
generate the navigation mesh taking into consideration such infor-
mation.

To further enhance the flexibility of our framework, there is an
additional layer of interaction at the end of the process. This layer
allows users to inspect the generated city and the defined areas,
allowing them to tune the parameters and the rules if needed. At
this point it is also possible to further refine the city information or
content by manually editing the results (e.g., to add specific unique
landmarks such as monuments). This provides a fine level of con-
trol over the final result.

1 @Sta r tRu le
2 Lot −> s p l i t (x) { 2 : House | ~1 : Park }
3

4 House −> e x t r u d e (8)
5 comp (f) { f r o n t : F r o n t | a l l : Wall }
6 F r o n t −> s p l i t (z) {~1 : Wall | 1 : Door | ~1 : Wall }
7 Door −> e n t r a n c e (" house ")
8 e x t r u d e (−1)
9 comp (f) { back : NIL | a l l : Wall }

10

11 Park −> zone (" pa rk ")
12 s p l i t (x) {~1 : NIL | 0 . 2 : Bench }
13

14 @Object (" bench ")
15 Bench −> s (’ 1 , ’1 , ’ 0 . 5)
16 e x t r u d e (0 . 2)

Listing 1: Example of a semantically augmented CGA rule file.

4.1. Extensions to CGA rule syntax

Formally, the aforementioned extensions to CGA consist of the in-
troduction of two new operations into the CGA language that add
semantic information, which can be written in the body of the rules,
and affect the current CGA scope (i.e., the current “bounding box”).
These operations are:

• entrance("btype"), btype ∈ {school, house, shop, work-
place, leisure, ...}: defines an entrance point to a building of the
user-specified type, at the origin position of the current CGA
scope. The building type is a string, whose possible values are
defined by the user and depend on the intended applications.

• zone("ztype"), ztype ∈ {park, road, bike lane, ...}: defines
a zone of interest of a user-specified type spanning the current
scope. If the current scope is a 2D scope (i.e. polygon), it will
be extruded into a prism of infinite size along its normal direc-
tion. Like in the previous operation, the possible zone types are
defined by the user.

In addition, a new CGA annotation (i.e. a rule metadata tag that
can be written just before a rule) is supported:

• @Object("otype"), otype ∈ {bench, light, fountain, ...}:
tags the production of the rule and all its sub-productions as a
separate entity to the lot geometry, and marks it with the speci-
fied user-defined tag. The tag may be any string, and its meaning
depends on the user.

As indicated earlier, the output of this extended CGA generation
is not just a single final mesh, but a tree-like hierarchy of gener-
ated geometry, which also contains the information generated by
the previous operations. In section 5 we provide details regarding
how this tree is used to generate a city scene as part of the integra-
tion with Unreal Engine 4.

5. Integration with Unreal Engine 4

Our prototype of the framework has been integrated into Unreal En-
gine 4 [Epi12], which is a powerful game engine that offers state-
of-the-art features and tools, as well as an editor program. We con-
sidered other alternatives such as Unity 2017, also available free

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

117

Rogla, Pelechano & Patow / Procedural Semantic Cities

of cost for non-commercial projects, but ultimately we choose Un-
real Engine 4 because the possibility of accessing its source code
as well as its novel features, and support of programming in C++.

For the generation of the buildings geometry, we used a cus-
tom implementation of a CGA interpreter. To implement it we used
Flex [E∗87] and Bison [C∗88] to generate the code to parse the rule
files language. The interpreter does not depend on Unreal Engine
4, and can be used in a standalone manner. Nonetheless, we also
implemented a module to help managing CGA rule files inside the
Unreal Engine editor. Among its features, it accepts rule files as a
new “asset"" type, showing a preview of the generation result on the
Asset Explorer view. Moreover, it can generate the CGA shapes as
a tree of nested components in an object, which allows the user to
inspect the nodes of the CGA tree and render for each one its corre-
sponding CGA scopes. This feature is very helpful as it allows the
user to debug while writing the rule files.

To build the city scene in the engine, the hierarchy resulting from
the modified CGA generation is traversed, and engine “entities” are
created accordingly. Unreal Engine is based on a entity-component
system (ECS), and we create an entity for each building. This entity
is assigned a mesh component containing the building main geom-
etry, as well as additional custom components such as a marker
for entrance positions (which could be then queried to e.g. drive
agent behaviors). And for models loaded using the instantiate ("i")
operation, a "static mesh component" is created in order to take ad-
vantage of the instanced rendering capabilities of the engine. In the
case of zones, a "nav modifier volume" is created. Finally, for nodes
in the hierarchy marked with an @Object tag, an entity separated
from the building geometry is created.

5.1. Manual edition

Currently there are two different possibilities regarding how the
user can manually modify the resulting cities in our prototype.

The first and most obvious choice is by editing the input data,
i.e. the OSM file used as input. For this purpose, there are sev-
eral existing tools to edit the 2D OpenStreetMap data, such as
JOSM [JOS17]. Using this tool the user may edit existing data, but
also create a new map from scratch.

Using editors such as JOSM the user has the flexibility of not
only adding new elements to the map (such as buildings and roads
or punctual objects), but also to attach metadata to the existing or
new elements in the form of tags (string key-value pairs). In this
way they may specify semantic data such as the buildings usage
(residential, bar, shop, etc.) or even opening hours, but also infor-
mation on its shape such as the number of floors or architectonic
style. In the case of the roads the user can add tags with informa-
tion about the type of road, for example secondary, main, or road
with bike lane.

The second choice for editing consists of modifying directly the
results in the Unreal Editor. The generation of the city is performed
in two sequential steps: (1) generation of layout in the form of lots
and streets, and (2) generation of the geometry for each lot. Hence,
the user may alter the layout directly before the geometry genera-
tion, for example by changing a lot type, shape or location, or CGA

Figure 6: Example of editing the city layout directly in the Un-
real Engine 4 Editor, by modifying the footprint of a building. No-
tice how thanks to CGA generation, the generated geometry and
semantics, and in particular the street-level windows and the en-
trance, adapt automatically accordingly.

rule file used to generate its geometry; or even add unique build-
ings such as monuments. Another possibility consists of altering
the final result by adding new semantically tagged items such as
benches, lampposts, etc. Figure 6 shows on the right, an example
of the user editing the shape of a lot. The user has moved a vertex
of a quadrangular footprint, and as result the building geometry re-
generated with the windows at the street level adapting to the new
walls.

6. Results

We have shown results of our framework throughout the paper. Fig-
ures 1 and 2 displayed mostly the visual output of our system. How-
ever in this section we want to emphasize the semantic information
included, as this is the main novelty of our work.

In Figure 4 we showed the data at the different steps of the frame-
work, using a region of the city of Barcelona as input. In the figure
we can also see the final result and a close-up, in which we can
observe the different kinds of buildings being generated. We can
see the correspondence of lots such as parks from the input to the
end result, as well as the relative lack of shops and services (as de-
noted by the presence of fewer icons in the input map) in primarily
residential areas. Note that the colors used in the layout representa-
tion (bottom left), indicate the semantic information regarding the
lot usages, so for example green is used to tag parks and red is

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

118

Rogla, Pelechano & Patow / Procedural Semantic Cities

Figure 7: Aerial view of a fully procedurally generated city, using
the procedural square-block layout generator. Colors indicate the
semantic information associated with each building or lot.

used to tag residential buildings. Other colors represent semantic
information of those buildings which have a business or service at
the ground floor (bar, school, shop, etc). This information is based
on the tags existing in the input map (Figure 4 top left), or auto-
matically generated under an user-defined lot type distribution if
missing in the input data.

Figure 7 shows an example of a generated city using our fully
procedural approach with the simple square-blocks algorithm. As
in the previous example, colors are used to visualize semantic in-
formation which in this case has been fully procedurally created
and attached to the lots. Figure 8 shows a close-up from a street
from this same city, showcasing some semantic objects such as the
benches in the parks, as well as different kinds of buildings, and
shops. In our 3D visualization we use different geometry and tex-
tures on the windows of the street level, to indicate the semantic
information associated with the ground floor of each building (e.g.
offices have only a door, bars have half-wall windows, and shops
have full-wall windows width textures representing the shop type).
Figure 5 showed a visual representation of the semantic elements
of another part of the same city. It prominently features the seman-
tic information associated with the navigation mesh, which can be
relevant to drive the heuristic of the path finding algorithms for sim-
ulating virtual humanoids (for example, assigning higher weight to
crossing the street outside the sidewalks or pedestrian crossings).

Figure 8: Close-up view of a street of the city in Figure 7.

7. Conclusions and Future Work

In this paper we presented a framework that expands the procedural
generation of virtual cities, by augmenting the process to add se-
mantics to its elements. This system does not output a single mesh
as result, but instead, it provides a hierarchy of entities that include
semantic metadata, which prevents the loss of data that may be of
interest for other applications. For example, such semantic can be
of high value to run simulations of virtual inhabitants with pur-
poses. Our main contribution is the augmentation of the CGA pro-
cedural modeling process to include such semantic information.

Our framework focuses on the generation of a semantically aug-
mented city, aiming at enriching the simulation of agents. Therefore
a future line of work is studying methods to perform such simula-
tion for a multi-agent system, with the aim of driving more realistic
and complex behaviors. This is a topic of interest in the fields of
city planning and for the development of solutions for smart cities.
Another relevant fields of application includes videogames and film
industries where more believable crowds are needed.

Currently we use a very simplistic approach for the generation of
the synthetic cities layout, so alternative techniques could be imple-
mented from the wide literature on this topic, such as procedurally
growing road networks [NGDA16].

On the semantic side, an interesting extension would be allow-
ing to "copy and paste" geometric or semantic characteristics of a
certain zone into another zone. This would solve one of the current
issues with the input from OSM data, which is the lack of infor-
mation in certain zones, or even the representation of the buildings
in a blocks as a single building. Examples of data which could be
copied are lot types (density, distance from lots of the same type,
distance from other types), building heights or styles, or individual
semantic objects such as ATM machines. This last kind could be
based on probabilistic distributions such as the ones used in World-
Brush [EVC∗15].

Acknowledgments

This work was partially funded by the TIN2014-52211-C2-1-R and
TIN2014-52211-C2-2-R projects from Ministerio de Economía y
Competitividad, Spain. Otger Rogla has a FPU grant, funded by
the Ministerio de Educación, Cultura y Deporte, Spain.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

119

Rogla, Pelechano & Patow / Procedural Semantic Cities

References

[AVB08] ALIAGA D. G., VANEGAS C. A., BENEŠ B.: Interactive
example-based urban layout synthesis. In SIGGRAPH Asia ’08: ACM
SIGGRAPH Asia 2008 papers (New York, NY, USA, 2008), ACM,
pp. 1–10. doi:http://doi.acm.org/10.1145/1457515.
1409113. 2

[BMJ∗11] BENEŠ B., MASSIH M. A., JARVIS P., ALIAGA D. G.,
VANEGAS C. A.: Urban ecosystem design. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011), I3D
’11, ACM, pp. 167–174. URL: http://doi.acm.org/10.1145/
1944745.1944773, doi:10.1145/1944745.1944773. 1

[C∗88] CORBETT R., ET AL.: GNU Bison. http://savannah.
gnu.org/projects/bison/, 1988. 6

[E∗87] ESTES W., ET AL.: Flex. https://github.com/westes/
flex, 1987. 6

[Epi09] EPIC GAMES: Unreal Development Kit (UDK). http://udk.
com, 2009. 2

[Epi12] EPIC GAMES: Unreal Engine 4. https://www.
unrealengine.com, 2012. 5

[Esr14] ESRI: CityEngine. http://www.esri.com/software/
cityengine, 2014. 1, 2, 3

[EVC∗15] EMILIEN A., VIMONT U., CANI M.-P., POULIN P., BENES
B.: Worldbrush: Interactive example-based synthesis of procedu-
ral virtual worlds. ACM Trans. Graph. 34, 4 (July 2015), 106:1–
106:11. URL: http://doi.acm.org/10.1145/2766975,
doi:10.1145/2766975. 2, 7

[GDAB∗17] GARCIA-DORADO I., ALIAGA D., BHALACHANDRAN S.,
SCHMID P., NIYOGI D.: Fast weather simulation for inverse procedural
design of 3d urban models. ACM Trans. Graph. (2017). 1

[HW08] HAKLAY M. M., WEBER P.: Openstreetmap: User-generated
street maps. IEEE Pervasive Computing 7, 4 (Oct. 2008), 12–18. 3

[JOS17] JOSM: JOSM extensible editor. https://josm.
openstreetmap.de/, 2017. 6

[LSWW11] LIPP M., SCHERZER D., WONKA P., WIMMER M.: In-
teractive modeling of city layouts using layers of procedural content.
Computer Graphics Forum (Proceedings EG 2011) 30, 2 (Apr. 2011),
345–354. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM Trans. Graph.
25, 3 (2006), 614–623. 1, 2, 3

[NGDA16] NISHIDA G., GARCIA-DORADO I., ALIAGA D. G.:
Example-driven procedural urban roads. Comput. Graph. Forum 35, 6
(Sept. 2016), 5–17. 2, 7

[Ope17] OPENSTREETMAP CONTRIBUTORS: Planet dump retrieved
from http://planet.osm.org . http://www.openstreetmap.org,
2017. 3

[Pat12] PATOW G.: User-friendly graph editing for procedural modeling
of buildings. IEEE Computer Graphics and Applications 32 (2012), 66–
75. 1

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of cities.
In SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (2001), pp. 301–308. 1, 2

[Sid12] SIDEFX: Houdini 12, 2012. http://www.sidefx.com. 1

[STBB14] SMELIK R. M., TUTENEL T., BIDARRA R., BENES B.: A
survey on procedural modelling for virtual worlds. Computer Graph-
ics Forum 33, 6 (2014), 31–50. URL: http://dx.doi.org/10.
1111/cgf.12276, doi:10.1111/cgf.12276. 1

[TB16] TAAL F., BIDARRA R.: Procedural generation of traffic signs.
In Eurographics Workshop on Urban Data Modelling and Visualisation
(dec 2016), Eurographics, Eurographics. URL: http://graphics.
tudelft.nl/Publications-new/2016/TB16. 2

[VAW∗10] VANEGAS C. A., ALIAGA D. G., WONKA P., MÜLLER P.,
WADDELL P., WATSON B.: Modelling the appearance and behaviour of
urban spaces. Comput. Graph. Forum 29, 1 (2010), 25–42. 2

[VGDA∗12] VANEGAS C. A., GARCIA-DORADO I., ALIAGA D. G.,
BENES B., WADDELL P.: Inverse design of urban procedural models.
ACM Trans. Graph. 31, 6 (Nov. 2012), 168:1–168:11. 1

[VGMM13] VAN GOOL L., MARTINOVIC A., MATHIAS M.: Towards
semantic city models. Proceedings of the 54th Photogrammetric Week,
Stuttgart, Germany (2013), 11–15. 2

[WMV∗08] WATSON B., MÜLLER P., VERYOVKA O., FULLER A.,
WONKA P., SEXTON C.: Procedural urban modeling in practice. IEEE
Computer Graphics and Applications 28 (2008), 18–26. 2

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY W.: In-
stant architecture. ACM Transaction on Graphics 22, 3 (July 2003), 669–
677. Proceedings ACM SIGGRAPH 2003. 1, 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

120

http://dx.doi.org/http://doi.acm.org/10.1145/1457515.1409113
http://dx.doi.org/http://doi.acm.org/10.1145/1457515.1409113
http://doi.acm.org/10.1145/1944745.1944773
http://doi.acm.org/10.1145/1944745.1944773
http://dx.doi.org/10.1145/1944745.1944773
http://savannah.gnu.org/projects/bison/
http://savannah.gnu.org/projects/bison/
https://github.com/westes/flex
https://github.com/westes/flex
http://udk.com
http://udk.com
https://www.unrealengine.com
https://www.unrealengine.com
http://www.esri.com/software/cityengine
http://www.esri.com/software/cityengine
http://doi.acm.org/10.1145/2766975
http://dx.doi.org/10.1145/2766975
https://josm.openstreetmap.de/
https://josm.openstreetmap.de/
http://www.openstreetmap.org
http://dx.doi.org/10.1111/cgf.12276
http://dx.doi.org/10.1111/cgf.12276
http://dx.doi.org/10.1111/cgf.12276
http://graphics.tudelft.nl/Publications-new/2016/TB16
http://graphics.tudelft.nl/Publications-new/2016/TB16

