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Abstract. In this work we construct overconvergent Eichler-Shimura isomorphisms over Shimura curves

over Q. More precisely, for a prime p > 3 and a wide open disk U in the weight space, we construct a

Hecke-Galois-equivariant morphism from the space of families of overconvergent modular symbols over U to

the space of families of overconvergent modular forms over U . In addition, for all but finitely many weights

λ ∈ U , this morphism provides a description of the finite slope part of the space of overconvergent modular

symbols of weight λ in terms of the finite slope part of the space of overconvergent modular forms of weight

λ + 2. Moreover, for classical weights these overconvergent isomorphisms are compatible with the classical

Eichler-Shimura isomorphism.

Introduction

The classical Eichler-Shimura isomorphism describes the space of weight k ∈ N modular symbols in terms

of elliptic modular forms of weight k + 2. Faltings in [12] gave an arithmetic version of this isomorphism.

In [9] and [10] the authors show that modular eigenforms of finite slope can be p-adically interpolated, in

fact there exists a geometric object parametrizing such modular eigenforms called the eigencurve. On the

other hand, modular symbols have interesting p-adic properties. In fact, Stevens in [19] was able to define

overconvergent modular symbols and showed that classical modular symbols can be interpolated in p-adic

families.

A natural question one could raise is if Faltings’ Eichler-Shimura isomorphorphism could be p-adically

interpolated in the weight variable. In [2] the authors answer affirmatively to this question. More precisely,

they give a description of the finite slope part of p-adic families of overconvergent modular symbols in terms

of the finite slope part of p-adic families of overconvergent modular forms. We can think about this result as

a comparison between two different approaches to construct eigenvarieties: one using the theory of p-adic and

overconvergent modular eigenforms, and the other using cohomology of arithmetic groups (overconvergent

modular eigensymbols).

In the present work we carry out the same study as in [2] in the context of Shimura curves over Q. Let

p > 3 be a rational prime. Let B be an indefinite quaternion algebra over Q of discriminant δ > 1 and

suppose that p 6 |δ. Let N ≥ 5 be such that (N, pδ) = 1. Let L be a finite extension of Qp and denote by GL

the absolute Galois group of L. Let M(N, p) be the Shimura curve of level H(N, p) (see 1.1) defined over

L. If w > 0 is a rational number such that w < p
p+1 and there exists an element pw ∈ L of valuation w, we
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denote by M(w) the strict neighbourhood of width pw of the connected component of the ordinary locus of

M(N, p)an where the canonical subgroup coincides with the level subgroup of order p.

The theory of p-adic modular forms attached to B was developed by Kassaei (see [15]) for integral

weights. In [5] Brasca extended this theory to all weight in the weight space and constructed the relevant

eigencurve. More precisely for every weight λ Brasca constructed an invertible sheaf ωλw on M(w) (for w and

L depending on λ) such that if λ = k ∈ Z then ωkw is the restriction to M(w) of the appropriate weight k

classical modular sheaf. Moreover, if U is a wide open disk in the weight space and λU its universal weight,

then Brasca constructed a sheaf ωλUw (with w and L depending on U) interpolating the sheaves ωλw for every

λ ∈ U(L). The elements of H0(M(w), ωλw) are called overconvergent modular forms of weight λ and degree

of overconvergence w and those of H0(M(w), ωλUw ) are p-adic families of overconvergent modular forms over

U .

Let Γ be a fundamental group of M(N, p)(C) (here we need to fix an embedding of L in C). Let r ∈ N

be such that if λ ∈ U(L) then λ is r-admissible (see notations below). For each λ ∈ U(L) let Dλ be the

L-Banach space of the r-locally analytic distributions on Zp endowed with an action of Γ depending on λ

(see section 3). Moreover, let DU be the ΛU ⊗OL L-Banach module of the r-locally analytic distributions on

Zp with values in ΛU ⊗OL L, here ΛU is the algebra of bounded by 1 rigid analytic functions on U . There is a

natural action of Γ on DU . In the context of Shimura curves over Q, H1(Γ, Dλ) is the space of overconvergent

modular symbols of weight λ and H1(Γ, DU ) that of p-adic families of overconvergent modular symbols over

U .

Let h > 0 and suppose that U satisfies:

1) there exists an integer k0 ∈ U(L) such that k0 > h− 1;

2) both H1(Γ, DU ) and H0(M(w), ωλU+2
w ) have slope ≤ h decompositions (see remark 5.1).

The main result of this paper is:

Theorem 0.1. There exists a finite subset of weights Z ⊂ U(Cp) such that:

(a) For each λ ∈ U(L) − Z there is a finite dimensional Cp-vector space S≤hλ endowed with an action

of the Hecke operators and trivial semilinear GL-action, such that we have a natural Hecke and

GL-equivariant isomorphism

H
1(Γ, Dλ)≤h ⊗L Cp(1) ∼=

(
H

0(M(w), ωλ+2
w )≤h ⊗L Cp

)
⊕
(
S≤hλ (λ+ 1)

)
.

(b) For every wide open disk V ⊂ U defined over L such that V (Cp) ∩Z = ∅ there is a finite free Hecke

ΛV [1/p]⊗̂L Cp-module, S≤hV , with trivial semilinear action of GL and a Hecke and GL-equivariant

exact sequence:

0 //S≤hV (χ · χunivV ) //H1(Γ, DV )≤h⊗̂LCp(1)
Ψ
≤h
V //H0(M(w), ωλV +2

w )≤h⊗̂LCp //0.

Moreover there exists a non-zero b ∈ ΛV ⊗OL L such that the last exact sequence localized at b splits

canonically and uniquely as a sequence of GL-modules.
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This article follows the same general line of arguments as in [2] with the following differences:

a) We work with all the weights in W not only the accessible ones.

b) Working on Shimura curves instead of modular curves, simplifies some problems and complicates

others. Namely, the non-existence of cusps simplifies the log structures on Faltings’ sites. On the other

hand, the universal abelian scheme over the Shimura scheme has relative dimension 2 and one has to use

the quaternionic multiplication in order to obtain objects (Tate modules, sheaves of differentials, canonical

subgroups, etc.) of the right size.

In the recent article [8] the authors have obtained results analogue to ours but their approach is different.

They used the perfectoid Shimura curve associated to the tower of Shimura curves of variable p-power level,

the Hodge-Tate period morphism and the pro-étale site. Instead, we work with Faltings’ sites attached to

formal Shimura curves of finite level in order to compare p-adic families of overconvergent modular symbols

and p-adic families of modular eigenforms

The structure of this paper is as follows. In section 1 we introduce the Faltings’ sites attached to the

Shimura curves. Section 2 is devoted to the classical Eichler-Shimura isomorphism in the context of Shimura

curves. In section 3 we introduce the spaces of overconvergent modular symbols. Section 4 is the technical

part of this work, we define modular sheaves on Faltings’ sites and we construct the map from overconvergent

modular symbols to overconvergent modular forms. Finally in section 5 we prove our main theorem.
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Notations. Let p > 3 be a prime integer and L a finite extension of Qp with residue field L. We fix π ∈ OL
a uniformizer. We denote by L an algebraic closure of L and write GL for the Galois group of L/L. We also

fix an embedding Q ↪→ L, where Q is the algebraic closure of Q in C. We denote by Cp the completion of L,

by v the valuation of Cp normalized such that v(p) = 1 and let | · | denote the absolute value of Cp defined

by |x| = p−v(x) for any x ∈ Cp.

We denote by W the weight space, i.e., the rigid analytic space associated to the complete noetherian

semilocal algebra Zp[[Z×p ]]. For any affinoid algebra A, we have W(A) = Homcont(Z×p , A×). We embed Z in

W attaching to any k ∈ Z the weight t → tk. We say that λ ∈ W(L) is r-admissible if the map Zp → L

given by z → λ(1 + pr+1z) is analytic. We can check that λ is r-admissible if

| λ(1 + p)− 1 |< p
− 1

pr−1(p+1) .

We fix an admissible covering, {Wr}r≥1 , of W as defined in [5, §5]. Remark that any λ ∈ Wr(L) is

r-admissible.
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1. Faltings’ sites and topoi

1.1. The geometric set-up. Let N ≥ 5 be a positive integer not divisible by p. Let B denote an indefinite

quaternion algebra over Q with discriminant δ satisfying (pN, δ) = 1 and let OB ⊆ B denote a maximal

order. We fix isomorphisms B ⊗Q R
∼ //M2(R) and OB ⊗Z Zl

∼ //M2(Zl) for all primes l - δ. Note that

we obtain an isomorphism OB ⊗Z Z/NZ
∼ //M2(Z/NZ). Let ·′ : B → B denote the canonical involution

of B. Since Q(
√
−δ) splits B there is an element t ∈ B such that t2 + δ = 0 and let ·∗ : B → B denote the

map x 7→ t−1x′t which defines another involution of B.

Let m be a positive integer such that (m, δ) = 1 then we have a group homomorphism:

βm : (OB ⊗Z Ẑ)× −→ GL2(Z/mZ).

We denote by Vm the kernel of βm and let V1(m) := β−1
m ({( ∗ ∗0 1 )}). Let H be a compact open subgroup of

(OB ⊗Z Ẑ)× satisfying the following conditions:

• (NH , δ) = 1, where NH is the minimal positive integer m such that Vm ⊆ H;

• H ⊆ V1(m) for some integer m ≥ 4 such that (m, δ) = 1;

• det(H) = Ẑ×.

In particular, we may take H = V1(N) for N > 4 we fixed before.

Let S be any scheme over Zp. A false elliptic curve over S is a pair (A, i), where A is an abelian surface

over S and i : OB ↪→ EndS(A) is an injection of rings with identity. It can be proved that there is a unique

principal polarization on A such that for any geometric point x ∈ S, the corresponding Rosati involution on

End(Ax) restricts to ·∗ on OB . This means that any false elliptic curve is canonically principally polarized

for fixed t. A full level N structure on a false elliptic curve (A, i) over S is an isomorphism of S-group

schemes α : A[N ]
∼ //(OB ⊗Z Z/NZ)S compatible with left actions of OB . If H is as above, an H-level

structure on (A, i) is a full level NH structure defined up to right H-equivalence. Now we fix a compact open

subgroup H ⊆ (OB ⊗Z Ẑ)× of level N satisfying the above conditions, and denote it by H(N). The functor

Zp-schemes → Sets which sends S to the set of isomorphism classes of false elliptic curves with H(N)-level

structure is represented by a geometrically connected scheme M(N) defined over Zp. Moreover, the map

M(N) → Spec(Zp) is smooth, proper, and of relative dimension 1. The universal object will be denoted

A(N)→M(N).

Let C be a pseudo-abelian category (see [7, §1.3]) and let X be an object of C with an action of OB⊗ZZp.

Fixing a non trivial idempotent e ∈ OB ⊗Z Zp ∼= M2(Zp) such that e∗ = e, we obtain a decomposition:

X = X1 ⊕X2, where each Xi has an action of Zp, i = 1, 2.

Now, for any integer r ≥ 0, we define H(N, pr) := H(N)∩β−1
pr ({( ∗ ∗0 ∗ )}) and H(Npr) := H(N)∩Vpr . It is

easy to see that they satisfy the above conditions. There is a regular schemeM(N, pr) (resp. M(Npr)) that

represents the functor Zp−schemes → Sets that sends S to the set of isomorphism classes of quadruples

(A, i, α, C) (resp. (A, i, α, P )), where (A, i) is a false elliptic curve over S, α is an H(N)-level structure

on (A, i) and C is a finite flat subgroup of order pr of A[pr]1 (resp. P is a point of exact order pr of
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A[pr]1 in the sense of Drinfeld). We have that M(N, pr) → Spec(Zp) is proper, and of relative dimension

1, generically smooth but not smooth. If r = 1 the special fiber is a normal crossing divisor with two

components that intersect at the supersingular points (to the definition of supersingulr look at [5, §2]).

Moreover, M(Npr) → Spec(Zp) is proper, generically smooth, and of relative dimension 1. The universal

object will be denoted A(N, pr)→M(N, pr) (resp. A(Npr)→M(Npr)).

Now let H be one of H(N), H(N, pr) or H(Npr) and let M be the corresponding Shimura curve with

universal false elliptic curve A. If e :M→ A is the zero section, we define ω := ωH :=
(
e∗Ω1

A/M

)1

, which

is an invertible sheaf on M.

We fix an integer r ≥ 1 and let w be a rational number such that 0 < w < 1
pr−2(p+1) . Let L be a finite

extension of Qp such that there is an element (which will be denoted by pw) in OL whose valuation is w.

Define

M(N)(w) := SpecM(N)(Sym(ω⊗(p−1))/ < Ep−1 − pw >),

where Ep−1 is a lift of the Hasse invariant (see [15, §5] for details). Note thatM(N)(w) has a natural moduli

interpretation. It classifies couples
(
(A, i, α), Y

)
, where (A, i, α) is a false elliptic curve with level structure

H(N) and Y is a global section of ω⊗(1−p) such that Y · Ep−1 = pw.

From now on to simplify the notation we continue to use M(N), M(N)(w), M(N, pr) and M(Npr) to

denote the corresponding formal schemes over Spf(OL) which are the formal completions of the respective

schemes along their special fibers. We denote by M(N), M(N)(w), M(N, pr), M(Npr) the rigid analytic

generic fibers of the respective formal schemes. The rigid analytic generic fiber of the natural morphism

M(N)(w)→M(N) is an open immersion M(N)(w) ↪→M(N).

Remark 1.1. The above definition of M(N)(w) works well for any rational number 0 ≤ w < 1. The

condition 0 < w < 1
pr−2(p+1) implies that A[pr]1 has a canonical finite and flat subgroup scheme of rank pr,

where A is an object of the moduli problem ofM(N)(w). Then we have a morphismM(N)(w)→M(N, pr)

defined by the canonical subgroup. Moreover its rigid analytic generic fiber is a section of the morphism

M(N, pr)→M(N) over M(N)(w). We also denote by M(N)(w) the image of this section.

Now let Mr(w) be the preimage of M(N)(w) under the map M(Npr) → M(N, pr), i.e., Mr(w) :=

M(Npr) ×M(N,pr) M(N)(w). The natural morphism Mr(w) → M(N)(w) is finite and étale. We consider

M(w) (resp. Mr(w)) as connected affinoid subdomains of M(N) and M(N, pr) (resp. M(Npr)). Then we

define Mr(w) to be the normalization of M(N)(w) in Mr(w), which is a flat and normal formal scheme

over Spf(OL).

Remark 1.2. For any normal, flat, and p-adically complete OL-algebra, there is a natural bijection between

Mr(w)(R) and the set of isomorphism classes of couples
(
(A/R, i, α, P ), Y

)
, where (A/R, i, α, P ) is an object

of the moduli problem of M(Npr) where P generates the canonical subgroup of A[pr]1 and Y is a section

of ω
⊗(1−p)
A/R satisfying Y · Ep−1 = pw (see [5, Prop. 2.2]).
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We have the following natural commutative diagram of formal schemes and rigid analytic spaces:

M(Npr) // M(N, pr) // M(N)

Mr(w)
?�

OO

//

u

��

M(w)
?�

OO

u

��

M(w)
?�

OO

u

��
Mr(w) // M(w)

� _

��

M(w)

��
M(Npr) // M(N, pr) // M(N).

1.2. Log structures. We fix N , r and w as before and denote by M(w), M(N, p) the formal schemes

denoted by M(w), M(N, p) in the previous section. We know that M(w) has an open covering by affines

of the type U = Spf(R) such that:

• R is a p-adically complete OL-algebra;

• Spec(R) is connected, i.e., R has no nontrivial idempotents;

• there is a formally étale morphism Spf(R)→ Spf(R
′
), where R

′
:= OL{X,Y }/(XY −πa) and a ∈ N.

Such affine open is called a small affine.

Let S := Spf(OL) and S := (S,M) be the associated log formal scheme where M is the log structure on

S defined by its closed point. It has a local chart given by ψ : N→ OL sending 1 to π.

Now take a small open affine U = Spf(R) ↪→ M(w). Let P := N2 ⊕N N the amalgamated sum of the

morphisms ∆ : N → N2, n → (n, n) and ψa : N → N, n → an. Then we have the following commutative

diagram of monoids:

R
′ // R

N2 //

ψR

77

P

??

N

∆

OO

ψa

// N

h

OO

GG

ψ
// OL,

XX OO

where ψR(m,n) = XmY n and OL, R, R
′

are the multiplicative monoids associated to the respective rings.

Let NU be the log structure on U associated to the prelog structure given by the composition P 99K R
′ → R.

Moreover the morphism h : N→ P is a local chart for the morphism f :M(w) := (M(w), N)→ S. Actually

M(w) is a fine saturated (we use the short hand notation fs) log scheme and f :M(w) → S is log smooth

(see [2, §2.2] for details).

Now let Nr be the inverse image log structure onMr(w) via the morphismMr(w)→M(w) and denote

by Mr(w) := (Mr(w), Nr) the log formal scheme. Let M(w), Mr(w) be the log rigid generic fibres of the
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log formal schemes M(w) and Mr(w) respectively. Both these rigid analytic generic fibers have trivial log

structures.

Moreover let M(N, p) be the log formal scheme whose underlying formal scheme is M(N, p) and the log

structure is defined by its special fibre which is a divisor with normal crossings. Give M(N, p) :=M(N, p)rig

the trivial log structure and denote by M(N, p) the corresponding log rigid space. We have the following

commutative diagram of log formal schemes and log rigid spaces:

M(w)
ν // M(N, p)

M(w)

u

OO

� � // M(N, p).

u

OO

1.3. The site M and Mr. Let (M,M) be one of the pairs (M(w),M(w)) or (M(N, p),M(N, p)). We will

define Faltings’ site associated to this pair and denote it by M. First let Mket be the Kummer étale site of

M. Then for any object U in Mket we denote by Ufet
L

the finite étale site attached to U over L as defined

in [1, §2.2]. More explicitly an object in Ufet
L

is a pair (W,K) where K is a finite extension of L contained

in L and W is an object of the finite étale site of UK , which is denoted by Ufet
K . Given two objects (W,K)

and (W ′,K ′) in Ufet
L

, the morphisms between them are defined to be:

HomUfet

L

(
(W,K), (W ′,K ′)

)
:= lim−→HomUK′′

(
W ⊗K K ′′,W ′ ⊗K′ K ′′

)
,

where the direct limit is over all finite extensions K ′′ of L contained in L and containing both K and K ′.

Now we define the category EML
as follows:

(i) the objects consist of pairs
(
U , (W,K)

)
such that U ∈ Mket and (W,K) ∈ Ufet

L
;

(ii) a morphism
(
U , (W,K)

)
→
(
U ′, (W ′,K ′)

)
in EML

is a pair of morphisms (α, β), where α : U → U ′

is a morphism in Mket and β : (W,K)→ (W ′ ×U ′
K′
UK′ ,K ′) is a morphism in Ufet

L
.

Remark 1.3. A good reference for the Kummer étale site Mket is [14]. In particular the definition of a

Kummer étale morphism is given in subsection 1.6 of op. cit..

Remark 1.4. The pair
(
M, (M,K)

)
is a final object in the category EML

and fiber products exist in this

category (see [11, Prop. 2.6] for an explicit description of the fiber product). For convenience for the rest

of this paper we write (U ,W ) instead of
(
U , (W,K)

)
for an object in EML

, whenever this does not create

confusion.

A family of morphisms
{

(Ui,Wi)→ (U ,W )
}
i∈I

is a covering family in EML
if it is in one of the following

two cases:

(a)
{
Ui → U

}
i∈I is a covering in Mket and Wi

∼= W ×UL Ui,L for each i ∈ I;

or

(b) Ui → U is an isomorphism for each i ∈ I and
{
Wi →W

}
i∈I is a covering family in Ufet

L
.
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We denote by M the site associated to the category EML
endowed with the topology generated by the

covering families defined above. We will denote by M(w), resp. M(N, p) the Faltings’ sites and topoi

associated to the pairs (M(w),M(w)), resp. (M(N, p),M(N, p)).

Now let M be either the site M(w) or M(N, p). We will describe two important sheaves on this site. We

denote by OM the presheaf of OL-algebras on M defined as:

OM(U ,W ) := the normalization of Γ(U ,OU ) in Γ(W,OW ).

We also define the sub-presheaf of W(L)-algebras Oun
M of OM whose sections over (U ,W ) consist of elements

x ∈ OM(U ,W ) for which there exist a finite unramified extension M of L contained in L, a Kummer log

étale morphism V → U ×OL OM and a morphism W → VL over UL such that x, viewed as an element of

Γ(W,OW ), lies in the image of Γ(V,OV).

Actually these presheaves are sheaves (see [1, §2.2] for details). We then denote by ÔM and Ôun
M the

continuous sheaves on M defined by the projective systems
{
OM/p

nOM

}
n≥0

and
{
Oun

M/p
nOun

M

}
n≥0

respec-

tively.

Finally, we define the site Mr(w) and M(Npr) to be the induced sites

M(w)/(M(w),Mr(w)) and M(N, p)/(M(N,p),M(Npr))

respectively (see [2, §2.4] about induced sites).

1.4. Continuous functors. Now we have defined several sites, namelyMket(w),Mket(N, pr), Mket
L

, M(w),

M(N, pr) and Mr(w). We have the following natural functors which send covering families to covering

families, commute with fibre products and send final objects to final objects. In particular they induce

morphisms of topoi.

(1) µ : Mket(N, pr) −→ Mket(w) induced by the natural morphism of formal log schemes M(w) ↪→

M(N, pr).

(2) ν : M(N, p) −→M(w) with ν
(
(U ,W )

)
:=
(
U ×M(N,p)M(w),W ×M(N,p) M(w)

)
.

(3) vM :Mket −→M with vM(U) := (U ,UK), where M be either M(w) or M(N, p) and M be either

M(w) or M(N, p), respectively. Moreover, we have v∗M(OMket) ∼= Oun
M. We also have the following

commutative diagram of sites:

Mket(N, p)
vM(N,p)

//

µ

��

M(N, p)

ν

��
Mket(w)

vM(w)

// M(w).

(4) u : M −→Mket
L

with (U ,W ) 7−→W .

(5) jr : M(w) −→ Mr(w) sending (U ,W ) 7→
(
U ,W ×M(w) M

r(w), pr2

)
. This morphism of topoi has

the following properties (see [2, §2.5] for proofs):

(i) The functor jr,∗ : Sh(Mr(w))→ Sh(M(w)) is an exact functor.
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(ii) Rijr,∗ = 0 for all i ≥ 1.

(6) vr :Mket(w) −→Mr(w), which is defined to be the composite vr := jr ◦ vM(w). Actually vr(U) =(
U ,UK ×M(w) M

r(w), pr2

)
and vr(M(w)) = (M(w),Mr(w), id). Moreover, we have Rivr,∗ =

Riv∗ ◦ jr,∗.

We denote by OMr(w) := j∗r (OM(w)) and by ÔMr(w) := j∗r (ÔM(w)). By the construction of

Mr(w), we have natural isomorphisms of sheaves on Mket(w):(
vr,∗(OMr(w))

)Gr ∼= OM(w) and
(
vr,∗(ÔMr(w))

)Gr ∼= ÔM(w),

where Gr ∼= (Z/prZ)× is the Galois group of Mr(w)/M(w).

(7) βU : Ufet
K
−→M, for any object U in Mket, sending W 7−→ (U ,W ).

1.5. The localization functor. This section is a brief recall of [2, §2.7]. Now let M be one of the sites

M(w) or M(N, p) and U =
(

Spf(RU , NU )
)

a connected small affine object of Mket. We denote by U := UL
the log rigid generic fibre of U . Write RU ⊗L =

n∏
i=1

RU,i with Spf(RU,i) connected, let NU,i be the monoids

giving the respective log structures and Ui the respective log rigid generic fibres. Let CU,i := Frac(RU,i) and

ηU,i denote the log geometric point of Ui :=
(

Spf(RU,i), NU,i
)

over CU,i. Let GU,i be the étale fundamental

group of Ui. Then the category Ufet
i is equivalent to the category of finite sets with continuous actions

of GU,i. Write (RU,i, NU,i) for the direct limit of all the normal extensions S of RU,i in CU,i such that

Spm(SL)→ Ui is finite étale,. Finally, we let RU :=
n∏
i=1

RU,i, NU :=
n∏
i=1

NU,i and GUL :=
n∏
i=1

GU,i. Then we

have an equivalence of categories,

Sh(Ufet
L

)
∼ //Rep(GUK ), F � // lim−→F(Spm(SL)),

where Rep(GUL) is the category of discrete abelian groups with continuous GUL -action. Composing with

βU,∗, we obtain a localization functor Sh(M) −→ Rep(GUL) and we donote by F(RU , NU ) the image of F

in Rep(GUL).

Let F ∈ Sh(Mr(w)) and fix U =
(

Spf(RU , NU )
)

a connected small affine object of M(w)ket as before.

Let

ΥU :=

{
homomorphisms of RU ⊗ L-algebras ΓU := Γ

(
Ur(w),OUr(w)

)
−→ RU [p−1]

}
,

where Ur(w) := UL ×M(w) M
r(w). For any g ∈ ΥU , write F(RU , NU , g) := lim−→F(U ,Spm(SL)), where the

limit is taken over all ΓU -subalgebra S of RU (via g) such that Spm(SL) → Ur(w) is finite and étale. Let

GUK ,r,g ⊆ GUL be the subgroup fixing ΓU . Similarly as before we get a localization functor Sh(Mr(w)) −→

Rep(GUL,r,g) and donote by F
(
RU , NU , g

)
the image of F ∈ Sh(Mr(w)).

Moreover, given a covering of M(w)ket by open small affines {Ui}i∈I , choosing gi ∈ ΥUi for every i ∈ I,

the map Sh(Mr(w)) −→
∏
i∈I

Rep(GUi,K ,r,gi) is faithful. We also have

jr,∗(F)(RU , NU ) ∼=
⊕
g∈ΥU

F
(
RU , NU , g

)
.
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2. The classical Eichler-Shimura isomorphism

First we fix some notations for this section. Let M := M(N, p), M = M(n, p) and M := M(N, p), the

Faltings’ site associated to the pair (M,M). Let A →M be the universal false elliptic curve and e :M→A

the zero section. Denote T := Tp
(
(A[p∞]1)∨

)
, and ω := ωL =

(
e∗Ω1

A/M
)1

. For any integer k ≥ 0, let

Vk := Symk(T )⊗ L and consider it as an étale sheaf on Met
L

.

Proposition 2.1. With the above notations we have a canonical isomorphism compatible with the actions

of GL and all Hecke operators

H
1
ét

(
ML,Vk

)
⊗ Cp(1) ∼=

(
H

0(M,ωk+2)⊗ Cp
)
⊕
(

H
1(M,ω−k)⊗ Cp(k + 1)

)
.

Proof. Recall that H1
ét

(
ML,Vk

)
⊗Cp(1) ∼= H1

(
M,Vk ⊗ ÔM

)
⊗Cp(1). Take a small affine U = (Spf(R), N)

ofMket such that ωR restricted to U is a free R-module of rank 1. Let A be the corresponding false elliptic

curve defined over R, T := Tp
(
(A[p∞]1)∨

)
, V := Symk(T )⊗ ˆR[p−1] for a non negative integer k and ωR the

pullback of ω to U . We have a continuous functor v :Mket →M sending U to (U ,UL). The Leray spectral

sequence

H
i
(
Mket,R

j v∗(Vk ⊗ ÔM)
)

=⇒ H
i+j
(
M,Vk ⊗ ÔM

)
for i+ j = 1 degenerates to the exact sequence

0→ H
1
(
Mket,R

0 v∗(Vk ⊗ ÔM)
)
→ H

1
(
M,Vk ⊗ ÔM

)
→ H

0
(
Mket,R

1 v∗(Vk ⊗ ÔM)
)
→ H

2
(
Mket,R

0 v∗(Vk ⊗ ÔM)
)

By [2, Lemma 4.10], the sheaf Rj v∗(Vk ⊗ ÔM) is just the sheaf associated to the presheaf on Mket:

U 7−→ H
j
(
∆, (Vk ⊗ ÔM)(R,N)

)
,

where ∆ := Gal
(
R[p−1]/RL

)
is a subgroup of G := Gal

(
R[p−1]/R[p−1]

)
and the localization

(Vk ⊗ ÔM)(R,N) = Symk(T )⊗ R̂[p−1] = V.

First we claim that:

H
0(∆, V ) ∼= ω−kR ⊗ Cp(k),

H
1(∆, V ) ∼= ωk+2

R ⊗ Cp(−1).

Granted this two claims we deduce:

H
0
(
Mket,R

1 v∗(Vk ⊗ ÔM)
)
⊗ Cp ∼= H

0
(
M,ωk+2

)
⊗ Cp(−1),

H
1
(
Mket,R

0 v∗(Vk ⊗ ÔM)
)
⊗ Cp ∼= H

1
(
M,ω−k

)
⊗ Cp(k).

Moreover we have H2
(
Mket,R0 v∗(Vk ⊗ ÔM)

)
⊗ Cp ∼= H2

(
M,ω−k

)
⊗ Cp(k) = 0 since M has dimension

1. Therefore we have an exact sequence of Cp-modules compatible with the actions of GL and the Hecke
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operators

0 // H1 (Mket,R
0 v∗(Vk ⊗ ÔM)

)
⊗ Cp(1) // H1 (M,Vk ⊗ ÔM

)
⊗ Cp(1) // H0 (Mket,R

1 v∗(Vk ⊗ ÔM)
)
⊗ Cp(1) // 0

H
1(M,ω−k)⊗ Cp(k + 1) H

1
ét

(
M
L
,Vk

)
⊗ Cp(1) H

0(M,ωk+2)⊗ Cp.

By the main result of [21], the above sequence splits canonically and we deduce the proposition.

Now we prove our claims. We start with the following Hodge-Tate sequence of R̂-modules with semilinear

∆-actions, associated to A:

0 //ω−1
R ⊗R R̂(1)

a //T ⊗Zp
ˆ̄R

dlogA //ωR ⊗R ̂̄R //0.

Here a is defined by the dlog maps of Tp(A1) and (1) is the Tate twist (see [5]). This sequence is G-equivariant

but not exact in general, it is always exact after inverting p, i.e. the sequence of G-modules

0 //ω−1
R ⊗R

ˆ̄R[p−1](1)
a //T ⊗Zp

ˆ̄R[p−1]
dlogA //ωR ⊗R ˆ̄R[p−1] //0

is exact. Let e0, e1 be an ˆ̄R[p−1]-basis of T ⊗Zp
ˆ̄R[p−1] such that

• e1 is a R-basis of ω−1
R

and

• dlog(e0) is a basis of ωR, i.e., σdlog(e0) = dlog(e0) for any σ ∈ G.

This gives us the following filtration of V :

0 =: Fil−1(V ) ⊆ Fil0(V ) ⊆ Fil1(V ) ⊆ · · · ⊆ Filk−1(V ) ⊆ Filk(V ) := V,

where Fili(V ) :=
i∑

n=0

ˆ̄R[p−1]ek−n1 en0 , for i = 0, 1, . . . , n. For example,

Fil0(V ) = ˆ̄R[p−1]ek1 and Fil1(V ) = ˆ̄R[p−1]ek1 + ˆ̄R[p−1]ek−1
1 e0.

In [12, Thm.3], Falting proved the following two important results:

(i) H0(∆, ˆ̄R[p−1]) = RCp ,

(ii) H1(∆, ˆ̄R[p−1]) = ω2
R⊗̂Cp(−1),

where RCp denote the completed tensor product R⊗̂Cp. Remark that in (ii) we used the Kodaira-Spencer

isomorphism (see for example [15, Cor. 3.2.]). Using these we have:

H
0(∆,Fil0(V )) ∼= H

0(∆, ω−kR ⊗
ˆ̄R[p−1](k)) ∼= ω−kR ⊗H

0(∆, ˆ̄R[p−1](k)) ∼= ω−kR ⊗̂Cp(k),

H
1(∆,Fil0(V )) ∼= H

1(∆, ω−kR ⊗
ˆ̄R[p−1](k)) ∼= ω−kR ⊗H

1(∆, ˆ̄R[p−1](k)) ∼= ω−k+2
R ⊗̂Cp(k − 1).

Moreover, for any 0 ≤ i ≤ k − 1, we have

H
0(∆,Fili+1 /Fili) ∼= H

0(∆, ω2i+2−k
R ⊗ ˆ̄R[p−1](k − i− 1)) ∼= ω2i+2−k

R ⊗̂Cp(k − i− 1),

H
1(∆,Fili+1 /Fili) ∼= H

1(∆, ω2i+2−k
R ⊗ ˆ̄R[p−1](k − i− 1)) ∼= ω2i+4−k

R ⊗̂Cp(k − i− 2).
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The class of extension

0→ Fili /Fili−1 → Fili+1 /Fili−1 → Fili+1 /Fili → 0

in H1
(
∆, ω−2

R ⊗R
ˆ̄R[p−1](1)

) ∼= ω−2
R ⊗R H1(∆, ˆ̄R[p−1](1)) ∼= RCp can be computed from the Kodaira-Spencer

class and turns out to be a unit. Then by induction, for any i = 1, 2, . . . , k, we have:

H
0(∆,Fili) = ω−kR ⊗̂Cp(k), H

1(∆,Fili) = ω−k+2+2i
R ⊗̂Cp(k − 1− i).

In particular,

H
0(∆, V ) = H

0(∆,Filk) = ω−kR ⊗̂Cp(k), H
1(∆, V ) = H

1(∆,Filk) = ωk+2
R ⊗̂Cp(−1).

This proves the claims and the proposition. �

Remark 2.2. The analogue result for modular curves was proved by Faltings in [12]. The above proof

follows the main lines of the arguments in Faltings’ paper.

3. Distributions

3.1. Definitions. Let r ∈ N and U ⊂ Wr be a wide open disk defined over L. We denote by O(U) the

L-algebra of rigid functions on U and ΛU ⊂ O(U) the OL-algebra of bounded by 1 rigid functions i.e. the

set of f ∈ O(U) such that | f(λ) |≤ 1 for each λ ∈ U . The algebra ΛU is a local algebra and let mU be its

maximal ideal. Let ord : ΛU → Z∪{∞} be defined by ord(x) = sup{n ∈ N |x ∈ πnΛU}, recall that π ∈ OL
is a uniformizer. We denote by λU : Z×p → Λ×U the character defined by λU (s)(λ) = λ(s) for each s ∈ Z×p
and λ ∈ U(Qp). Then there exists a sequence in ΛU , {bn}n∈N, such that ord(bn) → +∞ if n → +∞ and

λU (1 + pr+1z) =
∑
n≥0 bnz

n for any z ∈ Zp.

In the rest of this section we will denote by (B, λ) one the following pairs: (ΛU , λU ) or (OL, λ), where

λ ∈ U(L). We denote by m the maximal ideal of B. Remark that there exits a bλ ∈ BL := B ⊗OL L such

that λ(1 + pr+1y) = exp(bλlog(y)) for all z ∈ Zp (see [5, §5]).

Definition 3.1. Let A◦λ be the set of functions f : Z×p ×Zp → B such that:

i) f(aw, az) = λ(a)f(w, z) for each a ∈ Z×p and (w, z) ∈ Z×p ×Zp;

ii) for each i ∈ {0, ..., pr − 1} there exist {ci,m}m≥0 ∈ BN such that ord(ci,m) → ∞ if m → ∞, and

f(1, z) =
∑
m≥0 ci,m

(
z−i
pr

)m
for each z ∈ i+ pr Zp.

We denote D◦λ := HomC0,B(A◦λ, B) the B-module of continuous homomorphisms where we consider A◦λ

(respectively B) endowed with the m-adic topology i.e. the topology given by the family {mhA◦λ}h∈N (re-

spectively the family {mh}h∈N). In general, if M is a B-module then the topology given by the family

{mhM}h∈N will be called the m-topology.
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We consider the following BL-modules Dλ := D◦λ ⊗OL L and Aλ := A◦λ ⊗OL L. We know that BL is

an L-Banach algebra. Moreover Aλ is an orthonormalizable Banach BL-module. Explicitly an orthonormal

basis of Aλ, {fi,m | i = 0, ..., pr − 1,m ∈ N} which is defined by:

(1) fi,m(1, z) =

(
z − i
pr

)m
1i+pr Zp(z),

where 1i+pr Zp is the characteristic function of the set i+ pr Zp.

We denote ∆p = {
(
a b
c d

)
∈ M2(Zp) | ad − bc 6= 0, a ∈ Z×p , c ∈ pZp}. We define an action of ∆p on A◦λ

and D◦λ as follows. Let f ∈ A◦λ and γ =
(
a b
c d

)
∈ ∆p then the function γf : Z×p ×Zp → B is defined by

(γf) (w, z) = f(aw + cz, bw + dz).

Lemma 3.2. For any f ∈ A◦λ and γ =
(
a b
c d

)
∈ ∆p we have γf ∈ A◦λ.

Proof. Let e ∈ Z×p , then it is straightforward to verify that (γf)(ew, ez) = λ(e)(γf)(w, z) for any (w, z) ∈

Z×p ×Zp.

Let i ∈ {0, ..., pr − 1}, then there is an unique j ∈ {0, ..., pr − 1} such that b+dz
a+cz ∈ j + pr Zp for any

z ∈ i + pr Zp. By definition there exist {cm}m≥0 ∈ BN such that ord(cm) → ∞ if m → ∞, and f(1, z) =∑
m≥0 cm

(
z−j
pr

)m
for any z ∈ j + pr Zp. Then for any z ∈ i+ pr Zp we have:

(γf)(1, z) = λ(a+ cz)
∑
m≥0

cmp
−rm

(
b+ dz

a+ cz
− j
)m

.

The function λ(a+ cz) is analytic for z ∈ i+ pr Zp.

Moreover if z ∈ i+ pr Zp, z = i+ pry with y ∈ Zp then:

∑
m≥0

cmp
−rm

(
b+ dz

a+ cz
− j
)m

=
∑
m≥0

cm

(
b′ + d′y

a′ + c′y

)m
,

where a′ = a+ic, b′ = p−r(b+id−j(a+ci)), c′ = cpr, d′ = d−jc. Remark that b′ ∈ Zp and then ( a
′ b′

c′ d′
) ∈ ∆p.

Moreover, by hypothesis on λ we can write λ(1 + a−1cz) = λ(1 + a−1ci)λ(1 + pr+1βy) =
∑
m≥0 b

′
my

m where

β = c
p(a+ci) and ord(b′m)→∞. Then we can write (γf)(1, z) =

∑
m≥0 dmy

m for any z = i+ pry ∈ i+ pr Zp
where dm ∈ B and ord(dm)→ +∞. So we deduce condition ii) for (γf)(1, z). �

Remark 3.3. (1) We obtain a left action of ∆p on A◦λ. For each γ ∈ ∆p the morphism induced on A◦λ is

clearly continuous, then we get a right action of ∆p onD◦λ: for γ ∈ ∆p and µ ∈ D◦λ we have (µ | γ) (f) = µ(γf)

for any f ∈ A◦λ. We also obtain actions of ∆p on Aλ and Dλ.

Using the family (1), we obtain the following description of D◦λ:

Lemma 3.4. There exists an isomorphism of B-modules ψ : D◦λ
// ∏pr−1

i=0

∏
m∈NB, defined by µ →

(µ(fi,m))i,m. This morphism is a homeomorphism, where we consider the m-adic topology on the left side

and the product topology of the m-adic topologies on each term of the right side.
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3.2. Filtrations. In this subsection we will define a filtration of D◦λ which is stable under the action of ∆p.

Definition 3.5. Let h ∈ N. We define the following B-module:

Filh(D◦λ) := {µ ∈ D◦λ | µ(fi,m) ∈ mh−m ∀m = 0, .., h− 1 and i = 0, .., pr − 1}

Remark 3.6. Consider another system of representatives Ω ⊂ Zp of Zp /pr Zp other than {0, 1, 2, ..., pr−1}.

We can define a basis of Aλ as before: fj,m(1, z) =
(
z−j
pr

)m
1j+pr Zp(z) for j ∈ Ω. The same definition of the

filtration of D◦λ also works and it is not difficult to verify that the filtration does not depend on the choice

of Ω.

Proposition 3.7. The module Filh(D◦λ) is stable under the action of ∆p and D◦λ/Filh(D◦λ) is an artinian

OL-module with an action of ∆p. Moreover, we have a natural isomorphism of B-modules:

D◦λ −→ lim←−
h

D◦λ/Filh(D◦λ)

Proof. The image of Filh(D◦n,λ) under the map ψ defined in 3.4, is given by
∏pr−1
i=0

(∏h−1
m=0 m

h−m ×
∏
m≥hB

)
.

ThenD◦λ/Filh(D◦λ) is isomorphic to
∏pr−1
i=0

∏h−1
m=0B/m

h−m as a B-module. By hypothesis each term B/mh−m

is an artinianOL-module, thenD◦λ/Filh(D◦λ) is an artinianOL-module. Finally the mapD◦λ −→ lim←−hD
◦
λ/Filh(D◦λ)

is an isomorphism because ψ is an isomorphism.

Now we verify that Filh(D◦λ) is invariant under the action of ∆p. Let µ ∈ Filh(D◦λ) and γ ∈ ∆p. Fix

any i and m < h we need to verify that µ(γfi,m) ∈ mh−m. To do that remark that we have the following

decomposition ∆p = N−T+N where:

N− = {( 1 0
c 1 ) | c ∈ pZp}, N = {( 1 b

0 1 ) | b ∈ Zp}, T+ = {( a 0
0 d ) | a ∈ Z×p , d ∈ Zp−{0}}.

If γ = ( 1 b
0 1 ) ∈ N there is a unique j ∈ {0, .., pr − 1} such that i − b = j − b′ for some b′ ∈ pr Zp,

then it is straightforward to obtain γfi,m =
∑m
k=0

(
m
k

)
(b′)kfj,m−k. So by definition we get that µ(γfi,m) ∈∑m

k=0 m
h−m+k ⊂ mh−m.

If γ = ( 1 0
c 1 ) ∈ N− using the notations of remark 3.6 we have γfi,m(w, z) = Gm( zw )fj,m(w, z) where

Gm(x) = (1− ip)mλ(1 + cx)/(1 + cx)m and j = i
1−ic . By the hypothesis on λ if x ∈ j + pr Zp we can write

Gm(x) =
∑
k≥0 dk(x−jpr )k with dr ∈ mr and ord(dr) → ∞. To prove that µ(γfi,m) ∈ mh−m it is enough to

prove that: if s ∈ N and d ∈ ms then µ(dfi,m+s) ∈ mh−m. This last claim is trivial if s ≥ h −m, finally if

s < h−m we have m+ s < h then µ(dfi,m+s) = dµ(fi,m+s) ∈ mh−m−s+s = mh−m.

If γ = ( a 0
0 d ) ∈ T+ by definition we have γfi,m(1, z) = λ(a)( daz − i)

m1i+pr Zp( daz). We deduce that there

exists J ⊂ {0, ..., pr − 1} such that γfi,m =
∑
j∈J

∑m
k=0 aj,kfj,m−k for some aj,k ∈ B, so we obtain that

µ(γfi,m) ∈
∑m
k=0 m

h−m+k ⊂ mh−m. �

Let Γ be the fundamental group associated to M(N, p)(C) for some base point. As Γ is torsion free it

can be embedded as a subgroup of the étale fundamental group of M(N, p)(C) for the same base point.

The argument of the beginning of section 3.5 shows that there is a group homomorphism Γ → I, where

I ⊂ GL2(Zp) is the Iwahori subgroup, which induces left actions of Γ on D◦λ and D◦λ/Filh(D◦λ) for any h ∈ N.
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Corollary 3.8. We have canonical isomorphisms:

H
1(Γ, D◦λ) ∼= lim←−

h

H
1(Γ, D◦λ/Filh(D◦λ)) ∼= H

1
cont(Γ, (D

◦
λ/Filh(D◦λ))h∈N),

where on the right side we consider the continuous Γ-cohomology of the projective system (D◦λ/Filh(D◦λ))h∈N.

Proof. The proof is exactly the same as that of theorem 3.15 of [2]. For each h ∈ N the quotient D◦λ/Filh(D◦λ)

is an artinian OL-module, then the projective system (D◦λ/Filh(D◦λ))h∈N satisfies the Mittag-Leffler condition

and so we have a natural isomorphism:

H
1
cont(Γ, (D

◦
λ/Filh(D◦λ))h∈N) ∼= lim←−

h

H
1(Γ, D◦λ/Filh(D◦λ)).

The first isomorphism in the statement of the corollary follows in the same way as lemma 3.13 in [2]. �

3.3. Specialization. We will introduce some notations:

• if (B, λ) = (ΛU , λU ), then we write A◦U := A◦λU and D◦U := D◦λU . Recall that on A◦U we consider the

mU -topology. Moreover, we denote AU := AλU and DU := DλU .

• now let (B, λ) = (OL, λ), where λ ∈ U(L). In this case we use the notations of subsection 3.1 i.e.

A◦λ, D◦λ, Aλ and Dλ.

These two cases are related as follows. We fix a function πλ ∈ ΛU which vanishes of order 1 at λ and

nowhere else; we call this function a uniformizer at λ. We define ρλ : A◦U → A◦λ by ρλ(f)(w, z) = f(w, z)(λ),

here f ∈ A◦U and (w, z) ∈ Z×p ×Zp. Moreover we define ηλ : D◦U → D◦λ as follows. For each f ∈ A◦λ we

denote fU ∈ A◦U the function defined by fU (w, z) = λU (w)f(1, z/w). Then for each µ ∈ D◦U we define ηλ(µ)

by the formula ηλ(µ)(f) = µ(fU ), for any f ∈ A◦λ.

It is not difficult to prove that for each h ∈ N we have ηλ(Filh(D◦U )) ⊂ Filh(D◦λ). Moreover following the

arguments in [13, §3] we can prove that the following two sequences of ∆p-modules are exact:

0 // A◦U
·πλ // A◦U

ρλ // A◦λ // 0 and 0 // D◦U
·πλ // D◦U

ηλ // D◦λ // 0

Consider the case when λ ∈ U(L) is an algebraic weight i.e. there exists k ∈ N such that λ(t) = tk for

each t ∈ Z×p . Let V ◦λ ⊂ A◦λ be the OL-module of homogeneous polynomials of degree k. We can verify that

V ◦λ is stable under the action of ∆p. We denote Vλ := V ◦λ ⊗OL L, we have a natural inclusion Vλ ↪→ Aλ, then

we obtain a natural map of ∆p-modules: Dλ → V ∨λ .

3.4. Slope decompositions. Let l be a prime integer such that (l, δ) = 1. Using the action of the matrix

( 1 0
0 l ) we define, in the usual way, a Hecke operator on H1(Γ, DU ), H1(Γ, Dλ) and on H1(Γ, V ∨λ ) if λ is an

algebraic weight. As usual we denote this operator by Tl if l - Np and Ul if l | Np.

The L-vector space H1(Γ, Dλ) admits a slope decomposition with respect to Up. To prove this statement

we can proceed as follows. Firstly, we remark that the action of ( 1 0
0 l ) on Dλ induces a compact operator,

secondly, we use [20, Prop. 2.3.13] and the arguments given in [20, §4.2] to deduce the statement. Moreover,

suppose that λ is an algebraic weight attached to k ∈ N, then the space H1(Γ, V ∨λ ) is finite-dimensional,
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so it is clear that it admits a slope decomposition with respect to Up. The map of ∆p-modules Dλ → V ∨λ ,

induces a morphism of cohomology groups: H1(Γ, Dλ) → H1(Γ, V ∨λ ). This map is Hecke equivariant and if

h < k + 1, then we have a canonical isomorphism:

H1(Γ, Dλ)≤h
∼ // H1(Γ, V ∨λ )≤h

To proof this sentence we follow the same steps that in the proof of [18, Thm. 5.4]. Alternatively, it is a

consequence of [20, Prop. 4.3.10].

Now we deal with the problem of the existence of slope decomposition of H1(Γ, DU ) with respect to Up.

Following the proofs of [2, Lemma 3.5] and [2, Cor. 3.6] we obtain:

Lemma 3.9. Let {µj}j∈J be a family of elements in D◦U such that its image in the L-vector space D◦U/mD
◦
U

is a basis. Then for each m > 0 the natural map ⊕j∈J(ΛU/m
m)µj → D◦U/m

mD◦U is an isomorphism of

ΛU -modules. Moreover, for each µ ∈ D◦U there exists a unique family {aj}j∈J in ΛU such that i) for the

weak topology aj → 0 in the cofinite filter on J , and ii) µ =
∑
j∈J ajµj.

Proposition 3.10. Let λ ∈ W(L) then there exists a wide open disk U ⊂ W defined over L such that

λ ∈ U(L) and H1(Γ, DU ) admits a slope ≤ h decomposition with respect to Up.

Proof. The proof follows the same steps as those of [2, Thm. 3.17]. If U ⊂ W is a wide open disk, using

[20, §4.2.1] we obtain a complex C•(Γ, DU ) which calculates H•(Γ, DU ) such that each term Ci(Γ, DU ) is

isomorphic to finitely many copies of DU and we can lift the Hecke operators on it. It is enough to prove

the theorem for this complex.

Fix a wide open disk U ′ ⊂ W defined over L such that λ ∈ U ′(L). Using lemma 3.9 and [4, Thm. 4.5.1],

there exists a closed disk V ⊂ U ′ centered at λ such that the Fredholm determinant F •V of Up acting on

C•(Γ, DV ) admits a slope ≤ h-decomposition. Let U ⊂ V be a wide open disk centered at λ. Using the

family of lemma 3.9, we can define the Fredholm series, F •U , of Up acting on C•(Γ, DU ). In fact, we have

F •V = F •U because both series are computed using the same basis. Using the results of [4, §4.6] we deduce

the theorem. �

3.5. Distributions on the Faltings’ Site. Let (B, λ) be as in 3.1 and consider the modules defined there:

A◦λ, Aλ, D◦λ, Dλ and Filh(D◦λ) for h ∈ N.

We fix η = Spec(K) a geometric generic point of M(N, p). Let G be the geometric étale fundamental group

attached to M(N, p) and η. Let C1 →M(N, p) be the level p-subgroup of the universal object A →M(N, p).

Let T := lim←−nA
∨[pn]1L,η and let π be the composition of the natural maps T → A∨[p]1L,η → (C∨1 )L,η. Remark

that T is a free Zp-module of rank 2 and moreover we have an action of G on it. We fix a basis {ε0, ε1} of

T such that π(ε1) = 0. The action of G on this basis gives us a group homomorphism G → GL2(Zp) and

the condition π(ε1) = 0 implies that the image of this homomorphism is contained in the Iwahori subgroup

I ⊂ GL2(Zp). Then for each h ∈ N the finite OL-modules A◦λ/m
hA◦λ and D◦λ/Filh(D◦) can be considered

as G-modules and we denote A◦λ,h,D◦λ,h ∈ Sh(M(N, p)ét
L

) the étale sheaves attached to this G-modules. We
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obtain continuous sheaves A◦λ := (A◦λ,h)h∈N,D◦λ := (D◦λ,h)h∈N ∈ Sh(M(N, p)ét
L

)N and ind-continuous sheaves

Aλ,Dλ ∈ Ind− Sh(M(N, p)ét
L

)N.

Using the natural functor u∗ : Sh(M(N, p)ét
L

) → Sh(M(N, p)), from the sheaves A◦λ,h and D◦λ,h on

M(N, p)ét
L

we obtain sheaves on M(N, p). We will use the same symbols to denote these sheaves. In

the same way as before we get A◦λ,D◦λ ∈ Sh(M(N, p))N and Aλ,Dλ ∈ Ind− Sh(M(N, p))N.

On the modules H1(M(N, p)ét
L
,Dλ) and H1(M(N, p),Dλ) we can define Hecke operators in the same way

as in [2, §5].

Proposition 3.11. We have the following isomorphisms of Hecke modules:

H
1(Γ, Dλ) = H

1(M(N, p)ét
L
,Dλ) = H

1(M(N, p),Dλ)

Proof. Let F be a finite representation of G and let F the sheaf on M(N, p)ét
L

attached to F . Using the

fact that M(N, p)C is K(π, 1) and using the same argument as in [2, Prop. 3.18] (in fact, our case is easier

because there are no cusps) we obtain that H1(Γ, F ) ∼= H1(M(N, p)ét
L
,F). Then using corollary 3.8 and the

same argument as in the proof of [2, Prop. 3.18] we obtain:

H
1(Γ, Dλ) = H

1(M(N, p)ét
L
,Dλ).

We use the same argument as in [2, Prop. 3.19] to prove the second isomorphism. As before, our case is

easier because there are no cusps. Finally these isomorphisms are compatible with the Hecke operators. �

Remark 3.12. 1) These isomorphisms are compatible with specializations (see subsection 3.3). We can

verify this statement following each step in the proof of the last proposition.

2) Moreover, the second isomorphism in the statement of proposition 3.11 is compatible with the action

of the Galois group of L.

4. The morphism

In this section we carry out the construction of the analogous of the modular sheaves constructed in [5] on

Faltings’ sites. Moreover we give an explicit description of a map relating overconvergent cohomology with

overconvergent modular forms. The construction of this map is the main step towards the proof of theorem

0.1.

4.1. A torsor. Let r > 0 be an integer and w > 0 such that w < 1
pr−2(p+1) if r > 1 and w ≤ 1

p if r = 1. We

denote v = w
p−1 . Moreover we suppose that the field L contains a primitive prth root of the unity and an

element of valuation w.

Consider the functor v : M(w)ket −→ M(w) defined in section 1, then we define ωM(w) = v∗(ω) (see

section 1 for the definition of ω). The sheaf ωM(w) is a continuous sheaf on M(w). In fact, it is an Ôun
M(w)-

module.

Let A → M(w) be the universal object of M(w) and C1 → M(w) the canonical subgroup of A[p]1.

Moreover by hypothesis the canonical subgroup of A[pr]1 exists and is denoted by Cr →M(w).
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Let n ∈ N theM(w)-scheme (A[pn]1)∨ induces a sheaf on M(w)ét
L

which we denote by the same symbol:

(A[pn]1)∨. We consider the continuous sheaf T = ((A[pn]1)∨)n∈N ∈ Sh(M(w)ét
L

)N. By considering the

M(w)-scheme C∨1 as a sheaf on M(w)ét
L

we obtain a morphism of sheaves π : T → C∨1 . We define the

sheaf T 0 ⊂ T as the inverse image of C∨1 − {0} under π. Using the functor u∗ : Sh(M(w)ket
L

) → Sh(M(w))

described in 1.4, we obtain sheaves on M(w) denoted by the same symbols: (A[pn]1)∨, C∨1 , T and T 0. Using

the construction in [5, §3] and the definition of the site M(w) we obtain a morphism of ÔM(w)-modules:

(2) dlogM(w) : T ⊗ ÔM(w) → ωM(w) ⊗Ôun
M(w)

ÔM(w).

Let FM(w) := Im(dlogM(w)). Considering the localization at each small affine object and using [5, Thm.

4.2], we deduce in the same way as in [2, Lemma 4.3] that FM(w) is a locally free sheaf of ÔM(w)-modules of

rank 1. Moreover using [5, Prop. 4.4] we obtain an isomorphism of ÔM(w)-modules:

(3) FM(w)/p
r−vFM(w)

∼ // C∨r ⊗OM(w)/p
r−vOM(w)

In subsection 1.4 we have described the functor jr : M(w) → Mr(w). From FM(w) we obtain a sheaf on

Mr(w) denoted by FMr(w). Using the same functor we consider C∨r as a sheaf on Mr(w), denoted by the

same symbols. We have an isomorphism of ÔMr(w)-modules:

(4) FMr(w)/p
r−vFMr(w)

∼ // C∨r ⊗OMr(w)/p
r−vOMr(w).

Remark that over the site Mr(w) the sheaf C∨r is constant (see [5, §3]). We denote by F ′Mr(w) the inverse

image of the sheaf C∨r − C∨r [pr−1] under the map FMr(w) → C∨r ⊗ OMr(w)/p
r−vOMr(w), which is obtained

by composition of (4) and FMr(w) → FMr(w)/p
r−vFMr(w). Then F ′Mr(w) is a sheaf of sets endowed with

an action of the sheaf of groups SMr(w) := Z×p (1 + pr−vÔMr(w)). Following the proof of [2, Lemma 4.4] we

obtain the following result:

Lemma 4.1. We have that F ′Mr(w) is a SMr(w)-torsor. Moreover, it is trivial over a covering of the type

{(Ui,Ui ×Mr(w))}i∈I , where {Ui}i∈I is a covering of M(w) by small affine objects.

4.2. Modular sheaves. Let (B, λ) be a couple as in subsection 3.1. In this subsection and in the rest of this

paper we need to consider the w adapted to λ: we suppose that w satisfies the conditions at the beginning

of subsection 4.1 and w < (p − 1)
(

ord(bλ) + r − 1
p−1

)
, recall that bλ was introduced at the beginning of

section 3.

Consider the following continuous sheaf on Mr(w) defined by OMr(w)⊗̂B := ((OMr(w)/π
nOMr(w)) ⊗

B/mn)n∈N. We denote by ÔλMr(w) the continuous sheafOMr(w)⊗̂B endowed with the action of SMr(w) defined

as follows. Let (U ,W, u) be an object of Mr(w). Let ax ∈ SMr(w)(U ,W, u) = Z×p (1 + pr−vÔMr(w)(U ,W, u))

and y ∈ (OMr(w)⊗̂B)(U ,W, u), then we put:

(ax) · y := xbλλ(a)y ∈ (OMr(w)⊗̂B)(U ,W, u),

this action is well defined because w is adapted to r.
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For each n ∈ N we denote by ÔλMr(w),n the sheaf (OMr(w)/π
nOMr(w))⊗ B/mn endowed with the action

of SMr(w) defined in the same way as above.

Let Gr be the Galois group of the étale covering Mr(w) → M(w). This group acts on the site Mr(w).

Let σ ∈ Gr and an object (U ,W, u) of Mr(w), then we define σ ·(U ,W, u) := (U ,W, σ◦u). Acting by identity

on the morphisms we obtain a continuous functor on Mr(w). This induces an action of Gr on the sheaves

of the site Mr(w). Moreover, if F is a sheaf on Mr(w) such that σ · F = F for each σ ∈ Gr then we have

a canonical action of Gr on the sheaf jr,∗(F) on M(w) (to prove this sentence we repeat the proof of [2,

Lemma 4.5]).

Definition 4.2. 1) We define the following sheaves on Mr(w):

ΩλMr(w) := HomSMr(w)
(F
′

Mr(w), Ô
λ−1

Mr(w)) and ωλMr(w) := ΩλMr(w)[1/p].

2) We define the sheaves on M(w):

ΩλM(w) := jr,∗(Ω
λ
Mr(w))

Gr and ωλM(w) := jr,∗(Ω
λ
Mr(w)[1/p])

Gr .

Remark 4.3. We can verify that we have the following isomorphism of sheaves on Mr(w):

HomOMr(w)⊗̂B(Ωλ
−1

Mr(w),OMr(w)⊗̂B) ∼= ΩλMr(w).

When (B, λ) = (OL, λ) we denote by ωλM(w) the invertible sheaf on M(w) constructed in [5, Prop. 5.12].

Let (B, λ) = (ΛU , λU ), then using [5, Prop. 5.17] we obtain an invertible sheaf on U × M(w). We can

consider this sheaf as a sheaf of OM(w)⊗̂B-modules on M(w) and we denote it by ωλM(w). We have:

Proposition 4.4. The sheaf ωλM(w) is a locally free OM(w)⊗̂B[1/p]-module of rank 1. We have ωλM(w)
∼=

ωλM(w)⊗̂ÔM(w)
ÔM(w). Moreover, we have a Hecke-equivariant isomorphism of B⊗̂Cp-modules with a semi-

linear action of GL:

H1(M(w), ωλM(w)(1)) ' H0(M(w), ωλ+2
M(w))⊗̂L Cp .

Proof. From lemma 4.1 we deduce that the sheaf ωλM(w) is a locally free OM(w)⊗̂B[1/p]-module of rank 1.

To prove the isomorphism ωλM(w)
∼= ωλM(w)⊗̂ÔM(w)

ÔM(w) we localize at connected small affine objects and

use lemma 4.1.

To prove the last statement we use the Leray spectral sequence (see [1, §2.2.7]):

Hp(M(w)ket, RqvM(w),∗(ω
λ
M(w)(1)))⇒ Hp+q(M(w), ωλM(w)(1)).

Following [1, Prop. 2.12] and [1, Lemma 2.24], we prove that RqvM(w),∗(ω
λ
M(w)(1)) is the sheaf associated

to the presheaf on M(w)ket: U = (Spf(R), N) 7→ Hq(GU , ωλM(w)(1)(R,N)), here GU is the Kummer étale

geometric fundamental group of U for a base point.
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Using the identification ωλM(w)
∼= ωλM(w)⊗̂ÔM(w)

ÔM(w), [12, Thm. 3], [12, Rmk. page 138] and the

Kodaira-Spencer isomorphism we deduce that:

RqvM(w),∗(ω
λ
M(w)(1)) =


0 if q > 1

ωλ+2
M(w) ⊗K Cp if q = 1

ωλM(w) ⊗K Cp(1) if q = 0

Finally, the theorem follows from the fact that M(w) is an affinoid and then Kiehl’s theorem imply that:

H1(M(w)ket, ωλM(w) ⊗K Cp(1)) = H1(M(w), ωλM(w) ⊗K Cp(1)) = 0.

�

4.3. The morphism. In subsection 3.5 we have constructed the sheaves A◦λ,h,D◦λ,h,A◦λ,D◦λ,Aλ and Dλ
on M(N, p). We use the functor ν∗ : Sh(M(N, p)) → Sh(M(w)) (see subsection 1.4) to obtain sheaves on

M(w) denoted respectively by A◦λ,h(w), D◦λ,h(w), A◦λ(w), D◦λ(w), Aλ(w) and Dλ(w). Remark that we have

a morphism of sheaves on M(w), ν∗(OM(N,p))→ OM(w), then we deduce in the way as at the end of [5, §3]

that for each n ∈ N we have a morphism:

(5) H
1(M(N, p),Dλ,n ⊗OM(N,p)/π

n)→ H
1(M(w),Dλ,n(w)⊗OM(w)/π

n).

The rest of this subsection is devoted to constructing the morphism from the overconvergent cohomology

to the overconvergent modular forms. To do that we proceed in three steps:

Step 1) By definition the map (2) induces a map of sheaves on Mr(w), j∗rT0 → F
′

Mr(w), then we obtain

a morphism:

(6) α : Ωλ
−1

Mr(w) → HomZ∗p(j∗rT0, ÔλMr(w)).

Let n ∈ N, we have an inclusion of OL-modules

A◦λ/π
nA◦λ ↪→ HomZ×p (Z×p ×Zp, (B/πn)λ),

here Z×p acts on Z×p ×Zp by multiplication on each coordinate and on B/πn by λ. From this map we obtain

a map of sheaves on M(w): A◦λ,n(w)⊗ (ÔM(w)/π
nÔM(w))→ HomZ×p (j∗rT0, ÔλMr(w),n). Applying the functor

j∗r and varying n we obtain a morphism of continuous sheaves on Mr(w):

(7) β : j∗rA◦λ(w)⊗ ÔM(w) → HomZ×p (j∗rT0, ÔλMr(w)).

Lemma 4.5. There exists a morphism γ : Ωλ
−1

Mr(w) → j∗rA◦λ(w)⊗ ÔMr(w) such that the following diagram is

commutative:

Ωλ
−1

Mr(w)

α //

γ

��

HomZ×p (j∗rT0, ÔλMr(w))

j∗rA◦λ(w)⊗ ÔMr(w)

β
55
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Proof. We write Ωλ
−1

Mr(w) := (Ωλ
−1

Mr(w),n)n∈N, then it is enough to prove that for each n ∈ N there exists a map

γn : Ωλ
−1

Mr(w),n → j∗rA◦λ(w)⊗ ÔMr(w)/π
nÔMr(w) such that we have the following commutative diagram:

Ωλ
−1

Mr(w),n

αn //

γn

��

HomZ×p (j∗rT0, ÔλMr(w),n)

j∗rA◦λ(w)⊗ ÔMr(w)/π
nÔMr(w)

βn
44

We fix n ∈ N. It is enough to prove this statement after applying the localization functors (see 1.5). Let

U = (R, N) be a connected small affine object of M(w), g ∈ ΥU and η := Spec(K) be a geometric generic

point of Spm(RL). In the same way as in 1.5 we consider the Zp-module T := lim←−n(AL,η[pn]1)∨ and T0 ⊂ T

the inverse image of C∨1,L,η − {0} under the map π : T → A∨1,η → C∨1,L,η. Moreover, we fix a basis {ε0, ε1} of

T such that π(ε1) = 0. Let x, y : T → Zp defined by x(aε0 + bε1) = a and y(aε0 + bε1) = b here a, b ∈ Zp. If

we denote D = ÔMr(w)/π
nÔMr(w)(R,N, g) then we have:

j∗rA◦λ(w)⊗ ÔMr(w)/π
nÔMr(w)(R,N, g) = ⊕p

r−1
i=0 ⊕

∞
h=0 Dλ(x)

(
y/x− i
pr

)h
1i+pr Zp(y/x),

HomZ×p (j∗rT0, ÔλMr(w),n)(R,N, g) = {f : T0 → D | f is continuous, f(cx) = λ(c)f(x),∀c ∈ Z×p , x ∈ T0}.

Let {ε0, ε1} be a R̂-basis of T ⊗Zp R̂ such that dlogA(ε0) ≡ ε0 mod pr−v and ε1 ≡ ε1 mod pr−v, here

dlogA is the map defined in [5, §3]. Moreover we denote by X,Y : T ⊗Zp R̂ → R̂ the maps defined by

X(uε0 + vε1) = u and Y (uε0 + vε1) = v, then we have:

Ωλ
−1

Mr(w),n(R,N, g) = HomS(Sw0, D
λ) = Dλ(X),

here S = Z×p (1 + pr−vR̂), w0 = dlogA(ε0), Dλ means D considered with the action given by λ and λ(X) :

Sw0 → D is defined by λ(X)(axw0) = λ(a)xbλw0. From these descriptions it is clear that we need to verify

that αn(λ(X)) ∈ Image(βn). We can write X = ux + vy for u, v ∈ R̂ such that u ≡ 1 mod pr−vR̂ and

v ≡ 0 mod pr−vR̂, then we have αn(λ(X)) = λ(x)(u+ vy/x)bλ . From the conditions on u and v we deduce

that (u+ vy/x)bλ ∈ 1 + pr−vR̂〈y/x〉, then we deduce that αn(λ(X)) ∈ Image(βn). �

Remark 4.6. It is natural to consider Tr ⊂ T defined as the inverse image of C∨r −C∨r [pr−1] under the map

T → C∨r . But it is not difficult to prove that we have Tr = T0.

Step 2) From remark 4.3, the identification HomÔMr(w)
(j∗rA◦λ(w)⊗ÔMr(w), ÔMr(w)) ∼= HomB(j∗rA◦λ(w), B)⊗B

ÔMr(w) and the last lemma we obtain the morphism:

δ : HomB(j∗rA◦λ(w), B)⊗OL ÔMr(w) → ΩλMr(w).
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Lemma 4.7. For each n ∈ N there exists mn ≥ n and a morphism j∗rD◦λ,mn(w) ⊗ ÔMr(w)/π
nÔMr(w) →

ΩλMr(w),n such that the following diagram is commutative:

HomB(j∗rA◦λ,n(w), B)⊗ ÔMr(w)/π
n //

��

ΩλMr(w),n

HomB(j∗rA◦λ,mn(w), B)⊗ ÔMr(w)/π
mn // j∗rD◦λ,mn(w)⊗ ÔMr(w)/π

mn .

OO

Proof. Fix n ∈ N. Using notations as in the proof of lemma 4.5 we have:

HomB(j∗rA◦λ,n(w), B)⊗ ÔMr(w)/π
n(R,N, g) = ⊕p

r−1
i=0 ⊕

∞
h=0 D(λ(x)

(
y/x− i
pr

)h
1i+pr Zp(y/x))∨,

ΩλMr(w),n(R,N, g) = Dλ(X)∨.

From the proof of lemma 4.5 we can write αn(λ(X)) =
∑∞
h=0 ahλ(x)(y/x)h. Any m ∈ N such that m >

n+ max{h ∈ N | ah 6≡ 0 modπn}, satisfy conditions of lemma. �

Step 3) Let n ∈ N, then from step 2) we obtain a map:

D◦λ,mn(w)→ (jr,∗j
∗
rD◦λ,mn(w))Gr → ΩλM(w),n

This map induces a morphism (D◦λ,mn(w))n∈N[1/p] → ωλM(w) of ind-continuous sheaves on M(w). Using

proposition 3.11 and the morphism (5) we obtain a morphism:

(8) H
1(M(N, p),Dλ ⊗ ÔM(N,p))→ H

1(M(w), ωλM(w))

Remark 4.8. Consider the case (B, λ) = (ΛU , λU ). Proposition 3.11, the map (8) and proposition 4.4 allow

us to define a morphism:

H
1(Γ, DU )⊗̂L Cp(1)→ H

0(M(w), ωλU+2
M(w))⊗̂L Cp,

where ωλU+2
M(w) is the modular sheaf constructed in [5, Prop. 5.17] (in fact using the characters λU + 2 instead

of λU ). If (B, λ) = (OL, λ) and λ ∈ U(L), then in the same way as before we construct a morphism:

H
1(Γ, Dλ)⊗̂L Cp(1)→ H

0(M(w), ωλ+2
M(w))⊗̂L Cp .

These morphisms are equivariant for the actions of the Galois group GL and the Hecke operators. Moreover,

it is straightforward from the definitions that the following diagram is commutative:

H1(Γ, DU )⊗̂L Cp(1) //

��

H0(M(w), ωλU+2
M(w))⊗̂L Cp

��

H1(Γ, Dλ)⊗̂L Cp(1) // H0(M(w), ωλ+2
M(w))⊗̂L Cp
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5. Main Results

We fix first an integer r > 0, w ∈ Q, 0 < w < 1
pr−2(p+1) and a finite extension of Qp, L, satisfying

conditions at the beginning of subsection 4.2. Fix U ⊂ Wr, a wide open disk defined over L and let

λU : Z×p → Λ×U denote the associated universal weight, i.e., if t ∈ Z×p then tλU (x) = tx for all x ∈ U(L).

Define BU := ΛU ⊗OL L. Then BU is a Banach L−algebra and moreover it is a principle ideal domain. Let

us then fix a slope h ∈ Q, h ≥ 0. We suppose that U satisfies:

(1) There exists a classical weight λ0 ∈ U(L) such that if k0 is the integer attached to λ0, then k0 > h−1;

(2) Both H1(Γ, DU ) and H0(M(w), ωλU+2
w ) have slope h decompositions.

Remark 5.1. Condition (2) is satisfied for U small enough. This is a consequence of proposition 3.10 and

[5, §6] (see also [6, Prop. 7.9] and discussion before [6, Prop. 7.10]).

Recall that we have a (BU ⊗̂Cp)-linear homomorphism

ΨU : H
1(Γ, DU )⊗̂LCp(1) −→ H

0(M(w), ωλU+2
w )⊗̂LCp,

which is equivariant for the actions ofGL and Hecke operators. Moreover it is compatible with specializations,

i.e., we have:

Proposition 5.2. If λ ∈ U(L) is a classical weight, then the following diagram commutes:

H1(Γ, DU )⊗̂LCp(1)
ΨU //

��

H0(M(w), ωλU+2
w )⊗̂LCp

α

��

H1(Γ, Dλ)⊗L Cp(1)
Ψλ //

��

H0(M(w), ωλ+2
w )⊗L Cp

H1(Γ, Vλ(1))⊗L Cp
Ψclλ // H0(M(N, p), ωλ+2)⊗L Cp,

β

OO

where the left vertical maps and the map α are induced by the specializations (see 3.3 for details), the map

β is a restriction and Ψcl
λ is the first projection obtained from proposition 2.1.

In fact, ΨU induces a (BU ⊗̂Cp)-linear map

Ψ≤hU : H
1(Γ, DU )≤h⊗̂LCp(1) −→ H

0(M(w), ωλU+2
w )≤h⊗̂LCp,
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equivariant for the actions of GL and Hecke operators and compatible with specializations. In other words,

the diagram

H1(Γ, DU )≤h⊗̂LCp(1)
Ψ
≤h
U //

��

H0(M(w), ωλU+2
w )≤h⊗̂LCp

α

��

H1(Γ, Dλ)≤h ⊗L Cp(1)
Ψ
≤h
λ //

��

H0(M(w), ωλ+2
w )≤h ⊗L Cp

H1(Γ, Vλ(1))≤h ⊗L Cp
Ψclλ // H0(M(N, p), ωλ+2)≤h ⊗L Cp

β

OO

is also commutative.

For any wide open disk V ⊂ U , we denote by χunivV the universal cyclotomic character attached to V ,

which is defined by the following composition:

GL
χ
//Z×p

λV //B×V
//(BV ⊗̂Cp)×,

where χ is the cyclotomic character of L. We prove the following theorem:

Theorem 5.3. There exists a finite subset of weights Z ⊂ U(Cp) such that:

(a) For each λ ∈ U(L) − Z there is a finite dimensional Cp−vector space S≤hλ endowed with trivial

semilinear GL-action and Hecke operators, such that we have natural GL and Hecke equivariant

isomorphisms

H
1(Γ, Dλ)≤h ⊗L Cp(1) ∼=

(
H

0(M(w), ωλ+2
w )≤h ⊗L Cp

)
⊕
(
S≤hλ (λ+ 1)

)
,

where the first projection is Ψ≤hλ .

(b) For every wide open disk V ⊂ U defined over L such that V (Cp) ∩ Z = ∅, there is a finite free

BV ⊗̂L Cp−module S≤hV endowed with trivial semilinear GL-action and Hecke operators, for which

we have a GL and Hecke equivariant exact sequence

0 //S≤hV (χ · χunivV ) //H1(Γ, DV )≤h⊗̂LCp(1)
Ψ
≤h
V //H0(M(w), ωλV +2

w )≤h⊗̂LCp //0.

Moreover, for any such open disk V , there is finite subset Z ′ ⊂ V with the property that for any wide

open disk V ′ ⊂ V with V ′(Cp) ∩ Z ′ = ∅, we have a natural GL and Hecke equivariant isomorphism

H
1(Γ, DV ′)

≤h⊗̂LCp(1) ∼=
(

H
0(M(w), ωλV ′+2

w )≤h⊗̂LCp
)
⊕
(
S≤hV ′ (χunivV ′ · χ)

)
,

where the first projection is determined by Ψ≤hV .

(c) Let V be as in (b) and λ ∈ V (L), let πλ be a uniformizer of BV at λ. Then S≤hV /πλS
≤h
V
∼= S≤hλ as

Hecke modules.

The proof of the above theorem is similar to the proof of [2, Theorem 6.1] so we provide a sketch of the

proof:
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(1) First, let λ ∈ U(L) and πλ ∈ BU a uniformizer at λ. We prove that the specialization maps DU → Dλ

and ωλUw → ωλw induce exact sequences:

H1(Γ, DU )
πλ //H1(Γ, DU ) //H1(Γ, Dλ) //0,

and

0 //H0(M(w), ωλUw )
πλ //H0(M(w), ωλUw ) //H0(M(w), ωλw) //0.

(2) Then we show that there is a nonzero element b ∈ (BU ⊗̂Cp) such that b · Coker(Ψ≤hU ) = 0. To

do that we use proposition 5.2, classicality results for modular symbols (see subsection 3.4) and for

overconvergent mudular forms (see [17]).

(3) Let Z1 ⊂ U(Cp) be the finite set of zeros of b and let V ⊂ U be a wide open disk defined over

L such that V (L) contains a classical weight λ with attached integer k satisfying k > h − 1 and

V (Cp) ∩ Z1 = ∅. We show that the restriction to V gives an exact sequence

0 // T≤hV
// H1(Γ, DV )≤h⊗̂LCp(1)

Ψ
≤h
V // H0(M(w), ωλV +2

w )≤h⊗̂LCp // 0,

(4) For each wide open V in (3), let S≤hV := T≤hV (χ−1 · (χunivV )−1). Using Sen’s theory in families, we

prove that S≤hV is a finite free (BV ⊗̂Cp)-module with trivial semilinear GL-action.

(5) Then we show that for each V as in (3) and S≤hV as in (4), there is a nonzero element c ∈ BV such

that the localized exact sequence

0 //
(
S≤hV (χ · χunivV )

)
c

//
(

H1(Γ, DV )≤h⊗̂LCp(1)
)
c

//
(

H0(M(w), ωλV +2
w )≤h⊗̂LCp

)
c

//0,

uniquely splits as a sequence of GL-modules.

(6) Now let Z ′ ⊂ V (Cp) be the finite set of zeros of c in (5) and let V ′ ⊂ V be a wide open disk defined

over L such that V ′(L) contains a classical weight λ with attached integer k satisfying k > h−1 and

V ′(Cp) ∩ Z ′ = ∅. We have a canonical splitting of the exact sequence of GL-modules:

0 //S≤hV ′ (χ · χunivV ′ ) //H1(Γ, DV ′)
≤h⊗̂LCp(1)

Ψ
≤h
V ′ //H0(M(w), ω

λV ′+2
w )≤h⊗̂LCp //0.

This proves part (b) of the theorem.

(7) Now let Z1 and V be as in (3) and S≤hV be as in (4). For any λ ∈ V (L), specializing the exact sequence

in (5) we obtain an exact sequence of Cp-vector spaces with continuous, semilinear GL-action

0 //S≤hλ (λ+ 1) //H1(Γ, Dλ)≤h⊗̂LCp(1)
Ψ
≤h
λ //H0(M(w), ωλ+2

w )≤h⊗̂LCp //0.

Now let Z2 := {λ ∈ U(L)−Z1 | λ = (s, i), s = −1} and let Z := Z1 ∪Z2. Then part (a) follows from

the main result of [21].
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