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Abstract

This paper deals with the development of several strategies for associating users to base stations (BSs) in
heterogeneous networks. These strategies are able to balance the rate among users and BSs and increase the overall
network utility. Constraints related to the energy availability at BSs are considered explicitly in the design, assuming
that the BSs are equipped with batteries that are recharged through energy harvesting. We develop a general
association strategy, and then we present several suboptimum but less complex solutions suitable for scenarios with
high mobility or deployments of BSs with low computational capabilities. We also present an implementation that is
to be executed in a distributed way among users and BSs without the need of having a central entity gathering all the
information. The performance of the proposed strategies is evaluated through simulations in terms of rate balancing
and the effect of the energy harvesting capabilities on the network throughput is shown. We also compare the
proposed strategies with the traditional max-SINR user association approach.
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1 Introduction
Traffic demands are currently increasing extremely fast
[2, 3], which implies that technical solutions have to be
provided to face this fact. Among these solutions, multi-
tier Heterogeneous Networks (HetNets) [4] are being
considered as a way to increase the system capacity
and coverage. The main concept behind HetNets is the
joint deployment of small base stations (BSs) of different
sizes (e.g., picocells, femtocells, etc.) with already existing
macro BSs. Themain difference among these BSs relies on
characteristics such as the transmit power, physical size,
size of coverage areas, and cost, among others. HetNets
enable a more flexible, easy to install, and economical
deployment as new infrastructure can be deployed when
and where necessary, thus, reducing the deployment cost.
In this paper, we are targeting scenarios where energy

harvesting (based, for example, on solar panels) is the only
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power source at the BSs. An example is a rural deploy-
ment in developing countries, where access to the electric
power grid is too expensive or impossible. In such loca-
tions, some main challenges arise: cost of BSs, cost of
solar panels and batteries, cost of terminals, and business
models adapted to people with low incomes. The solution
adopted in some real deployments consists of an access
network based on 3G BSs empowered by solar panels of
limited size in outdoor scenarios [5]. 3G is usually the only
viable technology to be deployed thanks to the low costs
of the equipment and the terminals.
In these scenarios where small cells and macro BSs have

often overlapping coverage regions, users will have sev-
eral possible BSs to connect with. This implies that user
association strategies need to be developed. Classical solu-
tions adopted by the 3GPP standard based on maximizing
the received signal to interference plus noise ratio (SINR)
may lead to situations where the macro BS will be heav-
ily loaded whereas small cells will provide service only to
a few users. This will imply that a load imbalance will hap-
pen, which in turn may produce a heavy reduction of the
overall network throughput. This motivates the need for
the development of dynamic user association strategies
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that offload traffic from the macro BSs to the small cells
in order to obtain a more fairly balanced rate among users
and load among all BSs.
Another aspect to be taken into account is the fact that

the BSs have batteries with limited capacity that can only
be recharged through energy harvesting. This should be
taken into account explicitly in the design of the user
association strategies; otherwise, the batteries of the BSs
providing larger data rates would get empty very fast.
Although the problem of user association under the

objective of balancing the load in the network has been
studied so far, most works have addressed only the case
of networks composed of macro BSs (see examples [6–9]).
The generalization to the case of HetNets has been con-
sidered only recently, such as in [10]. In this paper, some
simple heuristic user association techniques for long-term
evolution (LTE) setups are proposed taking into account
the interference among cells. Another strategy for user
association based on the dual coordinate descent method
is derived in [11] in order to balance the network load
by adopting a design criterion driven by the network uti-
lization and proportional fairness. One of the drawbacks
of this proposed solution is that the transmit powers of
the BSs are considered fixed and not optimized. The opti-
mization of the long-term data rate for user association
is addressed in [12]. Unlike the previous papers, there
are only a few works that present joint resource alloca-
tion and mechanisms for BS assignment. One of them is
[13], where the authors consider the joint resource allo-
cation and cell selection in code division multiple access
(CDMA) networks. In this paper, a pricing-based dis-
tributed algorithm is developed taking into account the
congestion of the BSs in addition to the channel states of
the mobile terminals. The case of orthogonal frequency-
divisionmultiple access (OFDMA) networks is considered
in [14], where the joint BS selection and the resource allo-
cation is analyzed. The main drawback of the previous
proposals is that the proposed user association techniques
are run at the same time scale as the scheduling, whereas
in practice this is not realistic since the mobility of the
users is slower than the changes of the wireless channels.
Regarding user association strategies with BSs powered

by energy harvesting sources, only a few works are avail-
able in the literature. In [15], authors propose a user asso-
ciation problem where the average traffic delay is modeled
using queuing theory and optimized. In [16], authors
propose a strategy that aims to maximize the number
of accepted users and minimize the radio resource con-
sumption where the available energy of BSs is dependent
on the harvested energy in a certain period of time. A
lexicographic minimization of on-grid energy consump-
tion is proposed in [17], which involves the optimization
in both the space and time dimensions, due to the tem-
poral and spatial dynamics of mobile traffic and green

energy generation. Finally, the authors in [18] propose a
user association based on the concept of topology poten-
tial which takes the traffic load of users and the available
renewable energy of base stations into consideration for
energy-load tradeoffs.
In this paper, we generalize our previous conference

version [1] by, first of all, presenting a generalized formu-
lation of the user association problem taking into account
the temporal evolution of the scenario. Then, based on a
previous strategy by ourselves (summarized and extended
in Section 4.1.1) we derive several new user association
algorithms that perform load balancing (based on user
connections to BSs) among the different network tiers and
that consider explicitly the battery status of the BSs as well
as the energy that is being harvested. We also consider
that the coverage areas depend explicitly on the available
energies at the batteries. We propose a general centralized
approach as well as several new suboptimum ones featur-
ing reduced complexity solutions. We also design a new
distributed strategy that is to be executed at each individ-
ual. As it will be discussed in the corresponding section,
the decision to apply either the centralized or the dis-
tributed approach depends on several aspects, character-
stics, and requirements of the concrete scenario at hand
since each approach has its own pros and cons. Finally, we
also study the asymptotic behavior of the evolution of the
batteries.
The organization of the paper is as follows. Section 2

introduces the description of the system model and the
assumptions considered. Then, in Section 3 we intro-
duce the formulation of the most general user association
scenario. Later in Section 4, we introduce some simplifica-
tion and develop the proposed centralized and distributed
user association techniques. Some results concerning
the asymptotic behavior of the batteries are derived in
Section 5. Simulation results are presented in Section 6,
and finally, conclusions are drawn in Section 7.

2 Systemmodel
2.1 System description
Let us consider a Downlink (DL) cellular multi-tier Single-
Input Single-Output (SISO) system composed of several
BSs. Each of these BSs belongs to a particular BS class,
each having different capabilities (transmission power,
battery size, etc.), where each class is categorized as a tier.
Each BS is indexed by i and the set of all BSs is denoted
as B. We consider that there are two types of users: users
that demand a fixed service rate and users that request
a flexible service rate. This could correspond to a cellu-
lar system comprised of voice users1, that demand a fixed
service rate, and data users, who are usually provided with
a dynamic flexible rate depending on the system load and
the channel conditions. Let us denote the set of voice
users as UV and the set of data users as UD. U (i)

V and U (i)
D
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represent the set of voice and data users that are associ-
ated to BS i, respectively. The set that contains all users in
the system is denoted as UT = UV ∪ UD and the set of all
users connected to BS i as U (i)

T = U (i)
V ∪ U (i)

D .
We assume a wide band code division multiple access

(WCDMA) network [13, 19], which implies that users are
multiplexed using codes. As we mentioned in the intro-
duction, energy harvesting HetNets are usually applied
in low cost rural scenarios, where network operators can
only deploy 3G-based systems in order to have a success-
ful business. However, the methodology presented in this
paper could be easily extended to consider 4G systems
by just considering the specific rate-power function and
multiplexing users with carriers instead of codes. In any
case, we assume that the network operator has already
reserved a set of codes for the voice users and the remain-
ing codes are to be allocated among the data users. Thus,
the amount of available codes in each set is known and
fixedat eachBS, a strategy followedbynetwork operators [20].
Each BS is solely powered with its own harvesting

source and battery. The energy harvesting sources allow
the BSs to collect energy from the environment and
recharge the batteries. We consider that, at a given
moment of time, only information of the past and current
harvesting and battery dynamics of the BSs will be avail-
able to perform the user association, yielding to an online
approach.
Let us denote the time instants (epochs) between asso-

ciation periods by index τ ∈ ϒ and the duration of
these epochs as Te. Let us also denote the scheduling
periods by t ∈ T with a duration of Tf . In general, the
user association procedure should be executed in a time
scale longer than the scheduling periods. This makes the
association problem very challenging since the decision
has to be taken considering, amongst others, the cur-
rent channel state information (CSI), but the channel may
vary during the whole association period. As a conse-
quence, the association decision should be implemented
considering the expected throughput (over the chan-
nel realizations) within the duration of the association
period.

2.2 Power consumptionmodel and battery dynamics
The power consumption at any BS is modeled as the addi-
tion of the radiated power, which is divided into the power
devoted to the common DL channels, PiCPICH, the power
consumed by the user-specific physical channels, PiBS(t),
and a fixed power consumed by the electronics and cool-
ing, Pic. Let PiRAD(t) = PiBS(t) + PiCPICH be the overall
radiated power by the i-th BS.
We consider that the amount of power that can be used

for traffic services is limited in each BS and is denoted
by Pmax

BSi , so PiBS(t) ≤ Pmax
BSi ∀i. Let Ci(t) be the energy

stored at the battery of the i-th BS at the beginning of the

t-th scheduling period and let Ei(t) be the overall energy
consumed during this scheduling period:

Ei(t) = Tf · (
PiCPICH + PiBS(t) + Pic

)
. (1)

Then, at period t + 1, the battery level is updated in
general as [21]

Ci(t + 1) = (Ci(t) − Ei(t) + Hi(t))
Ci
max

0 , t ∈ T , (2)

where Hi(t) is the energy harvested in Joules during the
whole scheduling period t, (x)ba is the projection of x onto
the interval [ a, b], i.e., (x)ba = min{max{a, x}, b}, which
accounts for possible battery overflows and assures that
the battery levels are non-negative, andCi

max is the battery
capacity. Notice that the whole harvest collected during
period t is assumed to be available in the battery at the end
of the epoch for simplicity.

2.3 Energy harvesting model
In this paper we assume a discretized model for the
energy arrivals as also did in [21–23]. In the formula-
tion and algorithms proposed for the user association in
Sections 3 and 4, we assume no concrete model for the
energy arrivals. However, in Section 5, devoted to the
analysis of the asymptotic behavior of the batteries and in
the simulations (Section 6), we will assume that Hi(t) fol-
lows an ergodic Bernoulli process. As a result, only two
values of harvested energy are possible, i.e.,Hi(t) ∈ {0, ei},
where ei is the amount of Joules contained in an energy
packet. The probability of receiving an energy harvesting
packet during one epoch depends on the actual harvest-
ing intensity (in the case of solar energy, it depends on
the particular hour of the day) and is denoted by pi(t).
Note that a higher value of pi(t)will be obtained in epochs
where the harvesting intensity is higher, e.g., during the
day, and a lower value of pi(t) during the night or during
cloudy days. Note that, in some cases, it is possible to pre-
dict or estimate partially the expected energy available to
be harvested. This situation can be included in our formu-
lation by adjusting our model parameters by knowing that
E[Hi(t)]= pi(t) · ei. As a result, the majority of harvest-
ing sources can be modeled with the previous stochastic
model. Nevertheless, that analysis and also the simula-
tions results could be extended to other statistics for the
energy arrivals.

2.4 System assumptions
Let us define a set of indicator variables xji(τ ) ∈ {0, 1} to
denote whether a given user j is associated to a particular
BS i during the τ -th epoch as follows

xji(τ ) =
{
1, if user j ∈ U (i)

T ,
0, otherwise.

(3)

Let x(τ ) � {xji(τ ), j ∈ UT , i ∈ B} be the set containing
the indicator variables.We consider that a user can only be
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connected to one BS at a given epoch. This is formulated
through the following unique association constraint:

∑

i∈B
xji(τ ) = 1, ∀j ∈ UT , ∀τ ∈ ϒ . (4)

In order to be able to connect to a given BS, users need
to receive its pilot signals above a minimum SINR thresh-
old to estimate the channel. Thus, a particular user j will
only be able to connect to the following set of BSs:

Sj(t) =
{

i ∈ B
∣
∣∣
∣
∣

PiCPICH
PiBS(t) + Aji(t)

≥ γCPICH

}

⊆ B, (5)

where Aji(t) = σ 2
j +Iji(t)
h̃ji(t)

, being σ 2
j the noise power at

j-th receiver, Iji(t) the inter-cell interference, i.e., Iji(t) =
∑

m∈B,m �=i h̃jm(t)PmRAD(t), and h̃ji(t) the instantaneous
channel between BS i and user j. Given that, from (5), we
obtain the following association constraints:

xji(τ ) = 0, ∀i /∈ Sj(t), (6)

for all scheduling periods t corresponding to the same
epoch τ . The traffic power, PiBS(t) can be split into power
for voice and data connections as PiBS(t) = ∑

j∈U (i)
V

˜̌pji(t)+
∑

k∈U (i)
D
p̃ki(t), where ˜̌pji(t) and p̃ki(t) are the instanta-

neous powers corresponding to the transmission toward
the j-th and k-th voice and data user connected to the
i-th BS, respectively. The set of voice users request a fixed
rate service and we assume that just one code is assigned
to each of them. This is translated into a minimum SINR
requirement (γj) as follows:

∑

i∈B

xji(τ ) ˜̌pji(t)MV

θ
(
PiRAD(t) − ˜̌pji(t)

)
+ Aji(t)

≥ γj, ∀j ∈ UV , (7)

where MV is the spreading factor for voice codes and θ is
the orthogonality factor [19]. The set of data users request
a flexible rate service. As it was commented before, the
user association procedure should be executed in a longer
time scale compared to the coherence time of the chan-
nel. For this reason, the user association strategy should
not take decisions based on the instantaneous channels, as
they will vary over the entire epoch. As a consequence, we
propose to take decisions based on the expected value of
the throughputs (through the application of the rate func-
tion based on expected channels as will be shown next).
Hence, the expected throughput (expressed in b/s/Hz)
achieved during one particular scheduling period by the
i-th user connected to the j-th BS is

Rji(t) = Eh̃

[

Ep̃,ñ|h̃

[

ñji(t)

log2

(

1 + MDp̃ji(t)
ñji(t)

(
θ

(
PiRAD(t) − p̃ji(t)

) + Aji(t)
)

)]]

,
(8)

where MD is the spreading factor for data codes, p̃ �
{p̃ji j ∈ UD, i ∈ B} and ñ � {ñji j ∈ UD, i ∈ B} are the
power and code allocation variables (random variables),
and where we have assumed that the same power is allo-
cated to all the codes of the same user. The code allocation
variable ñji(t) refers to the number of codes that the j-th
BS assigns to the i-th user. Note that the instantaneous
allocated powers and codes depend upon the concrete
scheduling policy and, generally, they do not only depend
on the instantaneous channels, but also on other factors.
That is why we model p̃ and ñ as random variables, and
average w.r.t. them have to be applied in (8).
We use the power and code variables to measure the

load that a given BS is experiencing so that a well load-
balanced network can be obtained by a proper user asso-
ciation strategy.

3 General user association formulation
In systems where variables with temporal evolution affect
the long-term system performance (such as, for exam-
ple, the energy available in the battery that constrains the
amount of power that can be allocated among the users),
it is important to take decisions considering not only the
current impact on the overall system performance, but
also taking into account the future impact. It is evident
that if we spend much power in the current epoch and
the conditions of the wireless channels are poor, we may
be missing the opportunity to use better this energy in
the near future when the channel conditions improve. In
this sense, the user association procedure should be cou-
pled in time, and associations that are being carried out at
present time should consider the past knowledge as well
as the future impact. For example, if a given BS is har-
vesting a lot of energy, this BS should accept more users
as more energy will be available in the future. If, on the
other hand, the energy is decaying fast, then an intelligent
strategy would be to allocate such users to the neighboring
BSs gracefully (an aggressive strategy would not be smart
either since if there was a massive reallocation of users,
the neighboring BSs would need a lot of energy to satisfy
the users demands).
Another point to consider is the fact that the association

strategy should run in real time. This implies that the asso-
ciation strategy must be implemented considering only
current information of the channels, the batteries, and
the harvesting being collected. Contrary, offline solutions
that require future knowledge, i.e., non-causal knowl-
edge of the channel, the batteries, the harvesting, etc.,
have been proposed extensively in situations where net-
work nodes are provided with energy harvesting sources
[22, 24]. However, the assumption of knowing when the
energy will be available in future instant times is usually
hard to accept. Therefore, in this paper we focus only on
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online approaches that are more suitable for a realistic
implementation.
A formal way to model the dynamic behavior and

consider only causal information consists in the use of
Dynamic Programming (DP) techniques [25]. DP has been
shown to be a good mathematical tool to solve time-
coupled problemswhen only past and current information
is available, i.e., an online approach, and we desire to have
a control over how the resources used in the current time
instant can affect the future performance. Unfortunately,
in such DP problems, the optimum value of the variables
are functionals instead of scalars as in classical optimiza-
tion. In addition, the computation of such functionals is
usually extremely difficult and computationally challeng-
ing. In any case, let us present now the most general user
association strategy and then propose some simplifica-
tions that will make the problem tractable and solvable
with a reasonable computational complexity. The system
performance under consideration is the sum-utility of the
overall expected throughput of all data users in the sys-
tem. For the sake of generality, we consider a general utility
function denoted by Uj(·) for the j-th user. Let us intro-
duce the following definitions: r̃ = {R̃j, j ∈ UD}, p̃(t) =
{p̃ji(t), j ∈ UD, i ∈ B}, ˜̌p(t) = {˜̌pji(t), j ∈ UV , i ∈ B},
n(t)={nji(t), j ∈ UD, i ∈ B}, x(τ )={xji(τ ), j ∈ UT , i ∈ B},
and pRAD(t) � {PiRAD(t), i ∈ B}. The association pro-
cedure is formulated through the following optimization
problem:

maximize
r̃, p̃(t), ˜̌p(t),
ñ(t), x(τ ),
pRAD(t)

∑

j∈UD

Uj
(
R̃j

)

subject to

(9)

C1 : R̃j ≤ 1
|T |

∑

t∈T

∑

i∈B
Rji(t), ∀j

C2 :
∑

i∈B

MV ˜̌pji(t)
θ

(
PiRAD(t) − ˜̌pji(t)

)
+ Aji(t)

≥ γj , ∀j ∈ UV , ∀t

C3 :
∑

i∈B
xji(τ ) = 1, ∀j ∈ UT , ∀τ ∈ ϒ

C4 :
∑

j∈UD

ñji(t) ≤ n(i)
D , ∀i ∈ B, ∀t

C5 : Tf

⎛

⎝
∑

j∈UD

p̃ji(t) +
∑

j∈UV

˜̌pji(t) + PiCPICH + Pic

⎞

⎠ ≤ Ci(t)

C6 : Ci(t + 1) = (Ci(t) − Ei(t) + Hi(t))
Ci
max

0 , ∀i, ∀t
C7 : PiRAD(t) =

∑

j∈UD

p̃ji(t) +
∑

j∈UV

˜̌pji(t) + PiCPICH, ∀i, ∀t

C8 : 0 ≤ ñji(t) ≤ xji(τ )n(i)
D , ∀i ∈ B,∀j ∈ UD, ∀t ∈ T

C9 : 0 ≤ Tf ˜̌pji(t) ≤ xji(τ )Ci(t), ∀i ∈ B,∀j ∈ UV , ∀t ∈ T

C10 : xji(τ ) = 0, ∀i /∈ Sj(t),∀j ∈ UT , ∀τ ∈ ϒ

C11 : xji(τ ) ∈ {0, 1}, ∀i ∈ B,∀j ∈ UT , ∀τ ∈ ϒ

C12 : p̃ji(t) ≥ 0, ∀i ∈ B,∀j ∈ UD, ∀t ∈ T .

where |T | is the cardinality of set T and n(i)
D is the num-

ber of available codes for data users at BS i. Notice that we
have considered a general per-user utility functionUj(·) as
long as it is an increasing, strictly concave, and continu-
ously differentiable function [26]. The problem presented
in (9) is extremely difficult to solve and very challenging
for the following reasons: i) the expected rate expression
that appears in constraint C1 is very difficult to handle; ii)
it is time-coupled through constraints C1 and C6; iii) the
interference term in the rate expression makes the whole
expression not concave; iv) the coverage areas depend
on the radiated powers and, hence, they should also be
optimized jointly; and v) the association variables xji(τ )

are integer variables, making the whole problem a com-
binatorial optimization problem. In this regard, all this
complicating issues should be handled before presenting
the association strategy. Since the user association algo-
rithmmust be executed regularly in real time, the solution
of the previous problem based on DP will not be con-
sidered as the computational complexity is prohibitively
high. Instead, in this paper, we develop simpler and less
complex association strategies that could be closer to
a real implementation. The basic idea of the proposed
strategy is to decouple the problem in time and solve
it for each time instant independently as will be shown
later.

4 Proposed greedy-based user association
strategies

In the previous section, we defined the most general
user association strategy. However, the resolution of the
problem was impractical. In the section, we are going to
propose a simplified version of the problem 9 in which we
simplify the time-coupling issues and solve the association
at each time independently. Note that, even though we do
not provide a method for solving problem 9, it is crucial to
have it defined if one wants to understand the simplifica-
tions that we provide along this section. Having said that,
the simplifications of the challenging issues presented in
the previous section that we are considering now are the
following:

i) The expected rate expression given in (8) is very
difficult to compute as it depends on the probability
density function (PDF) of the powers, the codes, and
the channels. Instead, an approximation of the
average rate is considered in this paper following the
same criteria used in papers like [12, 27, 28]. In this
approximation, we consider average channels instead
of instantaneous ones so that the channels now
change from epoch to epoch, i.e., hji(τ ) = Eh[ h̃ji(t)],
which includes shadowing, path loss, and antenna
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gain. Now, all the variables change at the time scale
given by τ and the expectations w.r.t. the powers and
the codes are also removed since these new variables,
pji(τ ), p̌ji(τ ), and nji(τ ), can be interpreted as
average allocation variables, i.e., estimates of the
average values of the instantaneous powers and codes
allocated by the scheduler during one epoch. By
carrying out this can be approximated as (again in
b/s/Hz)

R̄ji(τ )

= nji(τ ) log2

(

1 + MDpji(τ )

nji(τ )
(
θ

(
PiRAD(τ ) − pji(τ )

) + Aji(τ )
)

)

.

(10)

Since all variables now depend on τ , there are no
more short-term variables dependent on t and,
hence, there is no need to compute the user
scheduling together with user association as the
output of the optimization problem.
Note that all other variables depending on the
powers, such as Aji(τ ), will be considered dependent
on the average channels hji(τ ). However, the battery
evolution will be updated with the “true” radiated
powers that are the outcome of the scheduler running
at time scale t. In any case, we will use the notation
dependent on τ , which means that Ci(τ ) is the battery
level at the beginning of epoch τ once all powers
allocated by the scheduler have been incorporated.
Additionally, in order to guarantee that constraints in
(5) are still fulfilled (with a certain outage probability
since they cannot be strictly fulfilled for all possible
channel realizations), we could increase the threshold
γCPICH to make the constraints more restrictive.

ii) The most important simplification is described next.
We are transforming the DP problem (9) into a
standard optimization problem. Regarding constraint
C1, we will not consider the summation term over all
time instants. Then, instead of having constraint C6
that couples the battery evolution and, hence, couples
all allocation variables, our online user association
strategy is executed at each epoch independently by
allowing each BS to spend just a given fraction of the
energy available at the battery during that particular
epoch. The amount of energy to be spent at each
epoch can be further optimized offline (see [29]).
This can be seen as a greedy policy, where at each
epoch we execute the association strategy with just
past and current information of the battery levels,
channel states, etc.
In general, the total energy consumed by a given BS
during one epoch, i.e., Ei(τ ), is limited by a function
of the current battery level as

Te · (
PiCPICH + PiBS(τ ) + Pic

) ≤ gi(Ci(τ )), ∀i, τ ,
(11)

where the function gi(·) is defined as gi(Ci(τ )) �
min

{
Te · (

(PiCPICH + Pmax
BSi + Pic

)
,αiCi(τ )

}
, where

0 ≤ αi ≤ 1. Note that αi controls the fraction of
energy that is allowed to be used in a given epoch.

iii) For simplicity in the notation, in the expression in
(10), wewill approximate θ

(
PiRAD(τ ) − pji(τ )

)+Aji(τ )

by θPiRAD(τ ) + Aji(τ ) throughout the paper2. Notice
that now R̄ji(τ ) is jointly concave in nji(τ ) and pji(τ )

and R̄ji(τ ) = 0 if nji(τ ) = 0, for any pji(τ ) ≥ 0.
iv) Note that the power variables affect both the

coverage (see (5)) and the data rates. However, it is
extremely difficult to deal with both effects jointly.
For this reason, we assume a worst-case approach
when defining the coverage areas assuming that the
interference is maximum3. The worst-case coverage
sets are, therefore, defined as
Sj(τ ) =

{
i ∈ B

∣
∣
∣∣

PiCPICH
P̄iBS(Ci(τ ))+Āji(τ )

≥ γCPICH

}
, where

Āji(τ ) = σ 2
j +∑

m∈B,m�=i hjm(τ )(P̄mBS(Cm(τ ))+PmCPICH)
hji(τ )

. With
this, the coverage areas only depend on the current
battery and channel state.

v) Due to the integrity of the variables xji(τ ), it is a
combinatorial problem, whose computational burden
grows asO(|B||UT |). A typical approach to follow in
this situation is to relax the association variables so
that xji(τ ) ∈[ 0, 1], ∀i, j [12]. Notice that this
relaxation will result in another optimization
problem with a different optimum objective value as
the constraint set has been expanded. If the optimum
solution of the relaxed problem is integer, this
corresponds to the optimum solution of the original
problem. Otherwise, we can, for example, round the
relaxed association variables so that xji(τ ) ∈ {0, 1}.

Now, we present the different user association tech-
niques developed assuming the previous simplifications.

4.1 General epoch-by-epoch user association formulation
In this section, we develop the most general epoch-by-
epoch user association strategy. Let us introduce the fol-
lowing definitions: p(τ ) � {pji(τ ), j ∈ UD, i ∈ B}, p̌(τ ) �
{p̌ji(τ ), j ∈ UV , i ∈ B}, and n(τ ) � {nji(τ ), j ∈ UD, i ∈ B}.
Given that, we formulate the optimization problem for the
association strategy to be solved at the beginning of each
epoch, which involves finding the indicators x(τ ) corre-
sponding to the association as well as the average resource
allocation variables, p(τ ), p̌(τ ), and n(τ ), that maximizes
the aggregate utility function as follows:
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maximize
p(τ ), p̌(τ ),n(τ ),
x(τ ),pRAD(τ )

∑

j∈UD

Uj

(
∑

i∈B
R̄ji(τ )

)

subject to

(12)

C1 :
∑

i∈B

p̌ji(τ )MV

θPiRAD(τ ) + Aji(τ )
≥ γj , ∀j ∈ UV

C2 :
∑

i∈B
xji(τ ) = 1, ∀j ∈ UT

C3 :
∑

j∈UD

nji(τ ) ≤ n(i)
D , ∀i ∈ B

C4 :
∑

j∈UD

pji(τ ) +
∑

j∈UV

p̌ji(τ ) ≤ P̄iBS(Ci(τ )), ∀i ∈ B

C5 : PiRAD(τ ) =
∑

j∈UD

pji(τ ) +
∑

j∈UV

p̌ji(τ ) + PiCPICH, ∀i ∈ B

C6 : 0 ≤ nji(τ ) ≤ xji(τ )n(i)
D , ∀i ∈ B,∀j ∈ UD

C7 : 0 ≤ p̌ji(τ ) ≤ xji(τ )P̄iBS(Ci(τ )), ∀i ∈ B,∀j ∈ UV

C8 : xji(τ ) = 0, ∀i /∈ Sj(τ ),∀j ∈ UT

C9 : xji(τ ) ≥ 0, ∀i ∈ B,∀j ∈ UT

C10 : pji(τ ) ≥ 0, ∀i ∈ B,∀j ∈ UD.

It is important to note that, even though we are using
average resource allocation to model the BS load, the
previous problem only models the user association proce-
dure, which needs to be run at time scale τ . After running
the user association procedure, it is required to run a user
scheduling algorithm4 at time scale t to obtain the instan-
taneous resource allocation variables (powers and codes),
see Fig. 1. The final output of the previous optimization
problem is solely the variable xji(τ ).
In the previous optimization problem, P̄iBS(Ci(τ )) �(
gi(Ci(τ ))/Te − (

(PiCPICH + Pic
))∞

0 is the maximum power
that the BS can use for traffic and pilot channels taking
into account that the overall radiated power is limited and
also the current battery level. Note that, even though at
a particular epoch just the current battery is present in
the formulation, the past harvesting and battery spendings
also affect the current performance of the epoch as they
appear in Ci(τ ) through (2) (even though in (2) we used
the time dependence t). Note that constraint C6 assures

that if x�
ji = 0, then n�

ji = 0 and the rate R�
ji = 0. In this

case, the allocated power will also be zero, p�
ji = 0, as it

does not improve the objective function but wastes power
if p�

ji > 0. Note that, at the optimum, C4 is attained with
equality. Otherwise, if C4 is not fulfilled with equality,
we could re-scale all the powers with a common posi-
tive factor higher than 1 until C4 is fulfilled with equality.
This would increase the objective function and all the
other constraints would still be fulfilled. Then, Pi�RAD(τ ) =
P̄iBS(Ci(τ )) + PiCPICH and we can eliminate constraint C5
in problem (12).
Note that problem (12) is a convex optimization prob-

lem that can be solved using standard numerical algo-
rithms [30]. However, less complex algorithms can be
derived by making use of the analytical structure of the
problem. According to this, we propose in the following a
more efficient algorithm based on the dual problem and
the subgradient method.

4.1.1 Primal-dual solution
In this subsection, we develop the association algorithm
based on the dual problem of (12). The optimal solution
will be presented first as a function of the Lagrange mul-
tipliers (or dual variables). A gradient-type scheme will
later be developed for computing the optimummultipliers.
Let ν = {νj, j ∈ UV }, β = {βj, j ∈ UT }, μ = {μi, i ∈ B},
λ = {λi, i ∈ B}, π = {πji, j ∈ UD, i ∈ B}, and
ξ = {ξji, j ∈ UV , i ∈ B} denote the vectors of dual vari-
ables associated to constraints C1, . . . ,C4, C6, and C7 in
problem (12). We collect all the Lagrange multipliers in
� = {ν, β , μ, λ, π , ξ}.
For a given set of Lagrange multipliers, � , we need

to minimize the Lagrangian of problem (12), denoted by
L(p, p̌, n, x,�), w.r.t. the primal variables [30]. As it will
be shown next, the structure ofL(p, p̌, n, x,�) allows the
minimization w.r.t. p and n to be found in closed-form.
Because L(p, p̌, n, x,�) is strictly convex and differen-
tiable w.r.t. p and n, minimization w.r.t. these variables
require equating the corresponding partial derivatives of
L(p, p̌, n, x,�) to zero. Differentiating the Lagrangian

Fig. 1 Schematic description of the user association and the user scheduling processes
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w.r.t. the data powers, equating the derivatives to zero and
solving such expression for the data powers yields

p�
k� (n,p,�) =

(
Gk� (n,p) nk�

ln(2)λ�

−
(
θP��

RAD + Ak�
)
nk�

MD

)∞

0
,

(13)

where the projection guarantees that the allocated
powers are nonnegative (constraint C10 in (12)) and
Gk�(n,p) � U̇k

(
sk� + nk� log2

(
1 + MDpk�

nk�(θP��
RAD+Ak�)

))
,

where U̇k(·) is the derivative of function Uk(·) and sk� =
∑

i∈B/{�} nki log2
(
1 + MDpki

nki(θPi�RAD+Aki)

)
is a constant term

for all users connected to BS �. Notice that the bisection
method can be used to calculate numerically the optimum
power allocation (13). Proceeding similarly in the calcu-
lation of the optimum code allocation, we calculate the
partial derivatives of the Lagrangian w.r.t. nji, equate them
to zero and solve such equations for the codes, obtaining
the expression

n�
k� (n,p,�)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜
⎝

Gk�(n,p)MDpk�
((

θP��
RAD+Ak�

)
ln(2)

)−1

Gk�(n,p) log2

(

1+ MDpk�
nk�

(
θP��

RAD+Ak�
)

)

−μ�−πk�

− MDpk�
θP��

RAD+Ak�

⎞

⎟⎟
⎠

∞

0

if � ∈ Sk ,

0 if � /∈ Sk ,

(14)

where the projection guarantees that the codes satisfy the
nonnegative constraints C6 and the definition by parts of
the function of the codes is due to constraint C8. Notice
that the bisection method can also be used in this case to
compute the optimum code allocation, nk�.
Unfortunately, the minimization of the Lagrangian

w.r.t., the association variables xji, and the voice powers
p̌ji cannot be obtained by differentiating the Lagrangian as
they appear through linear terms. In order to obtain the
optimum power allocation for voice users and the associ-
ation variables, we employ an iterative projected gradient
approach to minimize the Lagrangian. The gradient for
the j-th voice user power connected to the i-th BS is
given by

sji � ∇p̌jiL
(
p, p̌, n, x,�

)

= νjMD

θPi�RAD + Aji
+ λi + ξji, ∀j ∈ UV ,∀i ∈ B, (15)

and the update equation of the projected gradient method
is given by

p̌(k+1)
ji (τ ) =

(
p̌(k)
ji (τ ) − δ(k)sji(τ )

)∞
0
, ∀j ∈ UV ,∀i ∈ B,

(16)

where k is the iteration index, the projection guarantees
the nonnegativity constraints in (12), and δ(k) = K√

k‖∇L‖2
is the step size chosen such that the diminishing condi-
tions are fulfilled, i.e., limk→∞ δ(k) = 0,

∑∞
k=1 δ(k) = ∞,

being ∇L the gradient of the Lagrangian (w.r.t. all vari-
ables) [31]. Note that we have introduced the time depen-
dence in order to clearly show the different time scales.
For the association variables, the gradient is given by

tji � ∇xjiL
(
p, p̌, n, x,�

)

= βj − ξjiP̄iBS(Ci) − πjin(i)
D , ∀j ∈ UT ,∀i ∈ B, (17)

and the update equation of the projected method is

x(k+1)
ji (τ ) =

(
x(k)
ji (τ ) − δ(k)tji(τ )

)∞
0
, ∀j ∈ UT ,∀i ∈ B.

(18)

At this point, we have the expressions of the optimum
primal variables, either in closed-form in (13) and (14)
or iteratively in (16) and (18), for given dual variables.
If the dual variables were optimum, then the expressions
for the primal variables would yield the optimum values.
The optimum Lagrange multipliers can be obtained from
the dual problem by maximizing the dual function in (not
presented for brevity) [30]. As the dual function is con-
cave and generally not differentiable, we can apply any
subgradient-type algorithm to find the optimum solution.
A valid supergradient for each particular dual variable
is given by the constraint it is associated with [31]. The
update equations of the dual variables are not presented
due to space constraints.
Once we know the optimal dual variables ��, we can

obtain the optimum associations x�(��). The last step
requires the quantization or rounding of such variables
since the solution of (12) will provide, in general, a value of
x�
ji ∈[ 0, 1], but, for the actual implementation of the user
association, we require x�

ji ∈ {0, 1} with ∑
i∈B x�

ji = 1, ∀j.
The proposed user association algorithm is based on

the primal-dual block coordinate descent method for the
update of the primal variables pji and nji (see Algorithm 1).
The optimal association policy for any user j can be
written in closed form using the indicator function as

x�
ji
(
β�, ξ �,π�

) = 1{
i=argmaxi′

{
xji′(β�,ξ�,π�)

}}. (19)

If multiple maximums exist simultaneously in (19), we
propose to select just one randomly.



Rubio et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:204 Page 9 of 20

Algorithm 1 Primal-dual general user association algorithm

1: input: Ci(τ ), ∀i ∈ B
2: repeat (index τ )
3: compute Pi�RAD(τ ) = P̄iBS(Ci(τ )) + PiCPICH, ∀i ∈ B
4: calculate Sj(τ ), ∀j ∈ UT
5: primal-dual algorithm:
6: initialize ν(τ ) � 0,β(τ ),μ(τ ) � 0,λ(τ ) � 0,π(τ ) � 0, ξ(τ ) � 0
7: repeat (index q)
8: initialize n(τ ) � 0
9: repeat (index k)

10: p(q,k+1)
ji (τ ) = p�

ji
(
n(q,k),p(q,k),�(q), τ

)
using (13) ∀j, i

11: n(q,k+1)
ji (τ ) = n�

ji
(
n(q,k),p(q,k+1),�(q), τ

)
using (14) ∀j, i

12: until p(q,k+1)
ji (τ ) and n(q,k+1)

ji (τ ) converge
13: repeat (index k)
14: p̌(q,k+1)

ji (τ ) =
(
p̌(q,k)
ji (τ ) − δ(k)s(q)ji (τ )

)∞
0

∀j, i
15: until p̌(q,k+1)

ji (τ ) converges
16: repeat (index k)
17: x(q,k+1)

ji (τ ) =
(
x(q,k)
ji (τ ) − δ(k)t(q)ji (τ )

)∞
0

∀j, i
18: until x(q,k+1)

ji (τ ) converges
19: update dual variables with subgradient method using p(q)

ji (τ ), p̌(q)
ji (τ ), n(q)

ji (τ ), x(q)
ji (τ ) [31]

20: until ν(q+1)(τ ),β(q+1)(τ ),μ(q+1)(τ ),λ(q+1)(τ ),π (q+1)(τ ), ξ (q+1)(τ ) converge
21: end of primal-dual algorithm:
22: quantization of xji(τ ) :
23: ∀j ∈ UT −→ i� = argmaxi∈B xji(τ )

24: x�
ji� (τ ) = 1, x�

ji(τ ) = 0,∀i �= i�
25: update batteries with power allocated by the scheduler:

26: Ci(τ + 1) = (Ci(τ ) − Ei(τ ) + Hi(τ ))
Ci
max

0 , ∀i ∈ B
27: for all epochs τ ∈ ϒ

28: end algorithm

4.2 Suboptimum user association strategies: low
complexity solutions

In this section, we develop some strategies with lower
complexity than the solution presented in the previ-
ous section. The goal is to provide algorithms with a
reduced computational burden that could be of inter-
est in scenarios where there is high mobility and
the association procedure has to be executed more
frequently.

4.2.1 Association of voice and data users separately
The first approach to consider is to split the two sets of
users, namely the sets of voice and data users, and solve
the association procedure for each group separately, first
the voice users and then the data users. This is a good
approach if the users are more or less spread out through-
out the network. The assumption would not be valid if
most of the data users are concentrated around just one BS
and the voice users are connected to that BS, even though

they could be connected to the neighboring BSs due to
their overlapping coverage areas. In any case, if the num-
ber of voice users is relatively low compared to the number
of data users, such approximation is reasonably fair.

Voice users association We first perform the association
of voice users. As we saw earlier, each particular voice
user has to fulfill a minimum quality constraint in terms
of SINR to guarantee a fixed rate service:

∑

i∈B
xji(τ )

MV p̌ji(τ )

θPi�RAD(τ ) + Aji(τ )
≥ γj, ∀j ∈ UV . (20)

In order not to waste power unnecessarily, the previ-
ous constraint should be tight at the optimum. Given that,
in the following, we present the procedure for the asso-
ciation of the voice users: for all users j ∈ UV , find the
BS i′ such that θPi′�RAD(τ ) + Aji′(τ ) is minimum and i′ ∈
Sj(τ ), i.e., constraint C8 from problem (12) is not violated.
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According to this, the association of voice users can be
written in closed form using the indicator function as

x�
ji(τ ) = 1{

i= argmini′
{
θPi′�RAD(τ )+Aji′ (τ ) | i′∈Sj(τ )

}}, ∀j, i.
(21)

The optimum power to be allocated to voice user j
associated to BS i′ is given by

p̌�
ji′(τ ) =

⎧
⎨

⎩
γj

θPi′�RAD(τ )+Aji′ (τ )

MV
, if x�

ji(τ ) = 1,
0, if x�

ji(τ ) = 0.
(22)

The association is feasible if P(i)
V (τ ) �

∑
j∈UV p̌�

ji(τ ) ≤
P̄iBS(Ci(τ )), ∀i ∈ B, otherwise there is not enough energy
at the batteries to fulfill all the minimum SINR con-
straints. In such case, a few users should be dropped from
the system or their target SINR, γj, should be reduced.

Data users association Assuming that the voice user
association is feasible, we can focus on the association
of the data users. We model the association procedure
through the following convex problem:

maximize
p(τ ),n(τ ), x(τ )

∑

j∈UD

Uj

(
∑

i∈B
R̄ji(τ )

)

subject to

C1 :
∑

j∈UD

pji(τ ) ≤ P̄iBS(Ci(τ )) − P(i)
V (τ ), ∀i ∈ B

and C2,C3,C6,C8,C9,C10 from problem (12).
(23)

Notice the similarities of the previous optimization
problem w.r.t. (12). We have eliminated the constraints
involving the voice users. Strong duality also holds for
this problem and, therefore, it can be solved using the
primal-dual approach presented in the previous section.
The details of the procedure employed to solve this prob-
lem will not be presented in the paper. This association
strategy will be referred as first-voice then-data (FVTD).

4.2.2 Fixed resources per data user
We can go one step further and reduce the complexity of
the previous algorithm by considering that the number of
codes or the power assigned to data users are fixed. In this
case, similar to the approach from [12], only one variable
(code or power) will be used as a load metric of the BS.
There is a slight conceptual difference between these two
approaches (fixed codes and fixed power) when compared
to the previous approach or the general approach in (12).
In the two previous cases, the association strategy did not
force to assign resources to all users, i.e., some data users
could be assigned to a particular BS but the average rate
they are assigned could be zero. However, as in this case a

given user is already assigned a portion of the total power
or a certain number of codes, the associated rate will be
greater than zero, i.e., the BS will spend resources as long
as such user is associated to it.

Fixed power allocation per data user In this case, we
consider that all users get a given portion of the power

available at the BS, i.e., pi(τ ) � P̄iBS(Ci(τ ))−P(i)
V (τ )

Ki
, ∀i ∈ B,

where Ki is the fixed maximum number of users that the
BS iwants to accept. In the most general case, this portion
is different for each BS, where such portion together with
the total available power constrains themaximumnumber
of users that are allowed to be connected to each particu-
lar BS. The user association strategy is formulated through
the following convex optimization problem:

maximize
n(τ ), x(τ )

∑

j∈UD

Uj

(
∑

i∈B
R̄ji(τ )

)

subject to

C1 :
∑

j∈UD

xji(τ ) ≤ P̄iBS(Ci(τ )) − P(i)
V (τ )

pi(τ )
, ∀i ∈ B

and C2,C3,C6,C8,C9 from problem (12).
(24)

We will not present the details of the solution of this
problem for the sake of space as we have already presented
the methodology for the previous two association prob-
lems.We will just evaluate the performance of the strategy
in the simulations section.

Fixed code allocation per data user Now we consider
that a given number of codes are assigned to each partic-

ular data user, i.e., ni � n(i)
D
Ki

, ∀i ∈ B, where Ki is again the
maximum number of users that BS i wants to accept. In
this case, the power is the resource that is optimized. The
association strategy is, thus, formulated as

maximize
p(τ ), x(τ )

∑

j∈UD

Uj

(
∑

i∈B
R̄ji(τ )

)

subject to

C1 :
∑

j∈UD

xji(τ ) ≤ n(i)
D
ni

, ∀i ∈ B

C2 :
∑

j∈UD

pji(τ ) ≤ P̄iBS(Ci(τ )) − P(i)
V (τ ), ∀i ∈ B

C3 : 0 ≤ pji(τ ) ≤ xji(τ )
(
P̄iBS(Ci(τ )) − P(i)

V (τ )
)
, ∀i, j

and C2,C8,C9 from problem (12).

(25)
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Also in this case, we will not present the details of the
solution of the problem as we have already presented the
methodology for the previous two association problems.
We will just evaluate the performance of the strategy in
the numerical sections.

4.3 Distributed algorithm
In this section, we extend the concept presented in pre-
vious sections where the association strategy was exe-
cuted by a centralized entity that required the knowledge
of all the parameters involved in the association deci-
sion, such as the channels of all users to all BSs, the
current battery levels of all BSs, etc. Usually, the dis-
tributed solutions may overcome some of the difficulties
of the centralized approaches. Some of the advan-
tages of the distributed algorithms are presented in the
sequel:

• All link connections among the BSs and the
central entity are required to operate in the
centralized approach. If one link fails, it is not
possible to solve the optimization problem. The
distributed algorithms are usually more robust
in this sense since they require only connections
with neighbor BSs and if one link does not work
the rest of the network can still compute the user
association.

• Usually, the information sharing in the distributed
approach is only required among neighbor nodes,
which are physically close. Hence, there is no
need to deploy long backhaul connections from all
BSs to the central entity. However, in the particular
solution that we will present, backhaul connections
are not needed since BSs do not need to exchange
any message among them.

• The computational load required at each individual
element to solve the distributed approach is lower
than its centralized counterpart since fewer variables
are considered.

• For the aforementioned issues, the distributed
solution is more scalable than the centralized
one.

It is important to note that we decided to present
first the centralized approach and then the distributed
one. This is so since distributed solutions are derived
from centralized optimization problems and, therefore,
it is required to first mathematically model the central-
ized approach and then derive the distributed one. The
distributed solution has some drawbacks as well. For
example, it is known that distributed solutions require
more iterations than the centralized ones to converge

and more frequent message exchange among BSs and
users [32], which means than the centralized approach
is preferable to the distributed one when the conver-
gence speed is important, that is, when the dynamics of
the users are high and the network should adapt quickly.
Also, if a centralized entity exists collecting all the needed
information, then there is no reason to resort to a dis-
tributed approach since this would imply increasing the
computational effort of the individual entities (both BSs
and users in the distributed approach proposed in this
section) unnecessarily. In other words, both the central-
ized and the distributed approaches have pros and cons,
and the final decision on what approach to apply depends
on the different aspects mentioned before and the con-
crete requirements and characteristics of the scenario
at hand.
In this section, we propose a distributed algorithm of

the general problem presented in (12) via Lagrange dual
decomposition [32]. We can apply a dual decomposition
to the original problem in (12) and solve it separately by
users and BSs. This implies that only local information is
required to solve the subproblems, i.e., users only need to
know the available resources of the BSs they are able to
connect to and the individual propagation channels with
them.
Having introduced the motivation behind the dis-

tributed solution, we proceed now to explain the steps of
the procedure. As the objective function of the problem
cannot be decomposed for each BS, the users will be the
ones carrying out the computation of the association. The
role of the BSs will be to provide certain prices to the users
as a function of the association demands. Because each
user selects the preferred BS, the criterion to be employed
for the voice users is the one explained in Section 4.2.1. As
a consequence, the voice users and data users must select
the BSs separately, first the voice users and then the data
users.
Once the voice users have selected the BSs they pre-

fer and the problem is feasible, we focus on the data
users by applying a dual decomposition method to prob-
lem (23). The coupling constraints are C1 and C3 as we
have just one constraint for all users not allowing to split
the optimization problem for each user. This motivates us
to dualize both constraints and decouple the problem as
explained in the sequel. Let μ(τ ) = {μi(τ ), i ∈ B} and
λ(τ ) = {λi(τ ), i ∈ B} be the Lagrange multipliers associ-
ated to constraints C1 and C3 and let pj(τ ) = {pji(τ ), i ∈
Sj(τ )}, nj(τ ) = {nji(τ ), i ∈ Sj(τ )}, and xj(τ ) = {xji(τ ), i ∈
Sj(τ )}. Then, the j-th data user must solve the following
optimization problem (where, for simplicity in the nota-
tion and the resulting algorithm, we have eliminated the
terms that do not depend on the optimization variables,
i.e., constant terms, in the objective function as they do
not affect the optimization variables):
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maximize
pj(τ ),nj(τ )xj(τ )

Uj

⎛

⎝
∑

i∈Sj(τ )

R̄ji(τ )

⎞

⎠ −
∑

i∈Sj(τ )

μi(τ )nji(τ ) −
∑

i∈Sj(τ )

λi(τ )pji(τ )

subject to

C1 :
∑

i∈Sj(τ )

xji(τ ) = 1

C2 : 0 ≤ nji(τ ) ≤ xji(τ )n(i)
D , ∀i ∈ Sj(τ )

C3 : xji(τ ) ≥ 0, ∀i ∈ Sj(τ )

C4 : pji(τ ) ≥ 0, ∀i ∈ Sj(τ ).

(26)

Notice that the knowledge of the Lagrange multipliers
μ(τ ) and λ(τ ) is required to solve the previous problem.
Notice also that only local information is needed, which is
represented by the set of available BSs for each particular
user given by Sj(τ ) for the j-th user. The previous opti-
mization problem is convex and can be solved using any
standard procedure as the one explained in this document
(primal-dual iteration) in Section 4.1.1.

4.3.1 Complexity, exchangemessages, and convergence
It is true that the complexity of distributed approaches
is usually larger than the complexity of centralized ones
since more iterations are required to obtain the opti-
mum solution. However, the exchange of these messages
in each iteration between BSs and users only require
local information. Besides, in this particular case, BSs
do not need to exchange information among them and

hence there is no need to deploy backhaul connections,
see Fig. 2.
In terms of exchange messages among users and BSs,

when data users execute the user association strategy (26),
they convey the results of the optimum variables, (p�

j (τ ),
n�
j (τ ), and x�

j (τ )), to the BSs they can connect to. Then,
the BSs are responsible for iterating to solve the dual
problem to obtain asymptotically the optimum Lagrange
multipliers μ(τ ) and λ(τ ) using the expressions

μ
(q+1)
i (τ ) =

⎛

⎜
⎝μ

(q)
i (τ ) + δ(q)

⎛

⎜
⎝

∑

j∈U (i)
D

n(q)
ji (τ ) − n(i)

D

⎞

⎟
⎠

⎞

⎟
⎠

∞

0

, ∀i ∈ B

(27)

λ
(q+1)
i (τ )

=
⎛

⎜
⎝λ

(q)
i (τ ) + δ(q)

⎛

⎜
⎝

∑

j∈U (i)
D

p(q)
ji (τ ) − P̄iBS(Ci(τ )) + P(i)

V (τ )

⎞

⎟
⎠

⎞

⎟
⎠

∞

0

, ∀i ∈ B.

(28)

Then, the BSs broadcast the information of the updated
values of the Lagrange multipliers to the users, and then
users execute again the association procedure.
It is important to note that since the dual problem is

convex, any subgradient-type algorithm yields asymptot-
ically the optimum solution. Because Slater’s condition is
satisfied, strong duality holds and the original problem
(23) can be equivalently solved in a distributed fashion

Fig. 2 Representation of the exchange messages and backhaul connections in the distributed scenario
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without coordination among the users or the BSs and the
convergence is guaranteed.

4.3.2 Detailed steps of the distributed algorithm
The final distributed algorithm is shown in Algorithm 2.
In the algorithm, δ(q) is the step size. The multipliers μ(τ )

and λ(τ ) work as messages between data users and BSs.
They represent the price of the resources of the particu-
lar BS determined by the load situation. If, for example,
the demand of code resources for a given BS i,

∑
j nji(τ ),

is larger than the maximum number that the BS can offer,
∑

j nji(τ ) > n(i)
D then, the price μi increases, which means

that the users will have to pay more to utilize its code
resourcesmaking the users consider other BS options with
lower prices that would improve its objective function

(and, thus, its throughput). The same reasoning can be
applied to the power. If a given BS is underutilized, then
its corresponding prices will be low making it appealing
for the users achieving a well load-balanced network.

5 Asymptotic analysis of the battery evolution
In this section, we present the asymptotic behavior of the
battery evolution of the system. This analysis will help us
understand how the system works when the number of
epochs grows up to infinity. Note that the performance of
an energy-limited network, such as the one considered in
this paper, depends on the sizes of the batteries. According
to this, the usefulness of the analysis in this section relies
on the fact that we can study which is the energy that is
asymptotically stored in the batteries. This could be taken

Algorithm 2 User association strategy based on the distributed algorithm

1: input: Ci(τ ), ∀i ∈ B
2: repeat (index τ )
3: compute Pi�RAD(τ ) = P̄iBS(Ci(τ )) + PiCPICH, ∀i ∈ B
4: calculate Sj(τ ), ∀j ∈ UT
5: distributed algorithm:
6: voice users:
7: x�

ji(τ ) = 1{i= argmini′ {θPi′�RAD(τ )+Aji′ (τ ) | i′∈Sj(τ )}}, ∀j ∈ UV ,∀i ∈ B

8: p̌�
ji(τ ) = x�

ji(τ )
γj(θPi�RAD(τ )+Aji(τ ))

MV
, ∀j ∈ UV ,∀i ∈ B

9: P(i)
V (τ ) �

∑
j∈UV p̌�

ji(τ ), ∀i ∈ B
10: if P(i)

V (τ ) > P̄iBS(Ci(τ ))

11: find any j′ such that x�
j′i(τ ) = 1

12: set x�
j′i(τ )=0, x�

j′k(τ )=1{k = argmink′ {θPk′�RAD(τ )+Aj′k′ (τ ) | k′∈Sj′ (τ )\{i}}}
13: go to 8
14: end if
15: initialize μ(τ ) � 0,λ(τ ) � 0
16: repeat (index q)
17: data users:
18: solve problem (26) and obtain p(q)

j (λ(q), τ) and n(q)
j (μ(q), τ), ∀j ∈ UD

19: each user sends p(q)
ji (λ(q), τ) and n(q)

ji (μ(q), τ) to the corresponding BSs
20: BSs:
21: update dual variables using p(q)

j (τ ) and n(q)
j (τ ), and broadcast them:

22: μ
(q+1)
i (τ )=

(
μ

(q)
i (τ ) + δ(q)

(∑
j∈U (i)

D
n(q)
ji (τ ) − n(i)

D

))∞
0
, ∀i ∈ B

23: λ
(q+1)
i (τ )=

(
λ

(q)
i (τ ) + δ(q)

(∑
j∈U (i)

D
p(q)
ji (τ ) − P̄iBS(Ci(τ )) + P(i)

V (τ )
))∞

0
24: until μ(q+1)(τ ) and λ(q+1)(τ ) converge
25: quantization of xji(τ ) :
26: ∀j ∈ UD −→ i� = argmaxi∈B xji(τ )

27: x�
ji� (τ ) = 1, x�

ji(τ ) = 0,∀i �= i�
28: update batteries with power allocated by the scheduler:

29: Ci(τ + 1) = (Ci(τ ) − Ei(τ ) + Hi(τ ))
Ci
max

0 , ∀i ∈ B
30: for all epochs τ ∈ ϒ

31: end algorithm
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as a basis for an initial calculation of the sizes of the bat-
teries that will be needed to avoid overflowing, that is, as a
basis study for the energy-dimensioning of the network so
that all the energy that is harvested can be used effectively
and not lost due to overflowing.
We will assume that function gi(·) is linear (or affine)

w.r.t. the battery, and that the BSs do not have physical
limitations (Pmax

BSi = ∞), i.e., gi(Ci(τ )) = α ·Ci(τ ), ∀i. This
implies that the lower limit of the battery is never reached
as long as E[Hi(τ )]> 0. Let us consider that the harvest-
ing is stationary (otherwise no convergence is guaranteed
unless the time window where the harvesting intensity
does not change is sufficiently large). We will also assume
for simplicity in the development that the battery never
reaches its maximum limit, Ci

max and, thus, the battery
dynamics equation that governs the battery evolution is
given by

Ci(τ +1) = Ci(τ )−Ei(τ )+Hi(τ ) = (1−α)Ci(τ )+Hi(τ ),
(29)

where in the right hand side of (29) we have assumed that
Ei(τ ) = αi ·Ci(τ ) (this is true because constraintC4 in (12)
is fulfilled with equality). Recall that Hi(τ ) is a Bernoulli
stochastic process such that its components {Hi(τ )}τ are
identically distributed (i.i.d.) random variables and, thus,
Ci(τ ) is also a stochastic process. If 0 < αi < 1, then the
recursive relation in (29) is stable since the input,Hi(τ ), is
bounded and the solution to (29) is given by

Ci(τ + 1) =
∞∑

j=0
(1 − αi)

j Hi(τ − j), (30)

where the previous sum converges in quadratic mean
since |1 − αi| < 0 implies that

∑∞
j=0 |(1 − αi)j| =

1
αi

< ∞. Given this, the expected value of the battery in
convergence is, thus, given by

lim
τ→∞E [Ci(τ )] = E [Hi(τ )]

αi
= pi · ei

αi
. (31)

This implies that the expected energy allowed to be
extracted from the battery is limited by the energy col-
lected through harvesting, E[Hi(τ )], as E[ g(Ci(τ ))]=
E[Hi(τ )]. As a result, the expected performance in terms
of throughput does not depend on the value of αi that is
configured or the initial battery level. In fact, this is true if
the upper limit of the battery is never reached or Ci

max =
∞. Notice that, if α ≈ 0, then overflows may occur,
incurring a loss of energy and, thus, a loss in throughput
performance. Therefore, in reality, there is an optimum
value of α�

i > 0 that achieves the maximum throughput
performance. Unfortunately, an analytical expression of
the optimum value of α has not been found and numerical

simulations are needed (see [29]). The variance of the
expected battery in convergence is expressed as

var(Ci(τ )) = var

⎛

⎝
∞∑

j=0
(1 − αi)

j Hi(τ − j)

⎞

⎠ (32)

=
∞∑

j=0
(1 − αi)

2j var(Hi(τ − j)) (33)

=
∞∑

j=0
(1 − αi)

2jpi(1 − pi)e2i (34)

= pi(1 − pi)e2i
1 − (1 − αi)2

. (35)

6 Simulations results
In this section we evaluate the performance of the pro-
posed strategy5. The scenario under consideration is com-
posed of 15 BSs with four tiers. The deployment layout is
shown in Fig. 3, where we also show the number of avail-
able BS at each point of the scenario (at a given epoch).
BS 1 belongs to tier 1, BSs {2, . . . , 9} belong to tier 2, BSs
{11, . . . , 13} belong to tier 3, and BSs {14, 15} belong to
tier 4. The maximum radiated power, Pmax

BSi + PiCPICH, is
46 dBm, 24 dBm, 20 dBm, and 13 dBm for each tier. The
pilot power, PiCPICH, is 5% of Pmax

BSi . The fixed power, Pic, is
33 dBm, 17 dBm, 13 dBm, and 6 dBm for each tier. The
system contains 85 data users and 15 voice users. All the
users in the system are mobile with a speed of 4 km/h. The
instantaneous channel, h̃ji, incorporates Rayleigh fading
with unitary power and a path loss based on Okumura-
Hata for open areas. The orthogonality factor is θ = 0.35
[33]. The code gain of data codes is MD = 16 and the
minimum SINR normalized by gain is, γj

MV
= −13.7 dB.

The minimum SINR for pilot signals is γCPICH = −20
dB. The noise power is σ 2 = −102 dBm. The battery

Fig. 3 Reference scenario and available BSs at a given epoch. The
color bar represents the number of BSs available at each point



Rubio et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:204 Page 15 of 20

capacities, Ci
max, are 1200 Joules, 30 Joules, 12 Joules, and

2.5 Joules, for each tier and the quantity of energy in an
energy harvesting packet is, ei = Ci

max/10 Joules. The
number of epochs considered is 300 and the time between
epochs is Te = 10s. The utility function considered is
Uj(·) = log(·) since the log(rates) tends to provide fairness
among user rates [26] . In the simulations, for each partic-
ular user association, Proportionally Fair (PF) scheduling
with instantaneous channels is run at each particular BS
for assigning the instantaneous resources. Thus, in this
section, instantaneous data rates will be evaluated and
shown in the figures and the batteries will be updated with
the actual (instantaneous) powers radiated by the BSs. For
a more complete description of the deployment, see [5].
In the max-SINR strategy, the users are associated with

the strongest BS in terms of received pilot power with-
out considering the actual load of the BS nor its current
battery level. Figure 4 presents the user association for
the first epoch, considering that the batteries are full and
α = 0.1. As we can conclude from the figures, some of the
users connected to the BS1 (macro BS) are transferred to
smaller cells if a proper load balancing mechanism is con-
sidered (see for example BS8, BS11, BS14). If we compare
the number of users associated to the macro BS (BS1) for
both approaches, i.e., max-SINR and our strategy, we con-
clude from the figures that, with the max-SINR approach,
themacro is serving 40more users than with the proposed
strategy. This makes the macro BS saturate and assign
very little resources to the users while the small cells are
operating with few users.
Figure 5a presents the cumulative distribution function

(CDF) of the rates for themore complex strategy proposed
in this paper in (12), denoted as “G” (or ‘General’ in some
subsequent figures) in the legend, and themaximum SINR
association strategy, denoted as ’MS’, for different values
of α and harvesting p6. Notice that α = 1 allows to use
all the battery at each particular epoch. As we can see,
the proposed scheme provides two to three times higher
rates in the low-rate regime compared to the max-SINR

and outperforms the traditional approach up to rates in
the order of 0.4 bits/s/Hz, which represents around 70%
of the user rates. Note that the CDF in the figure shows
that, by using the proposed approach, the probability of
a user receiving a very low rate is much lower than with
the max-SINR strategy, which means that more users will
have a connection with a minimum quality. Another con-
clusion is that the proposed approach provides a fair load
balancing network in terms of user distribution which is
translated into an improvement of the overall network
throughput. However, this comes with a small reduction
in terms of peak rates (lower than 20%). An interesting
insight is that for larger energy harvested values, the influ-
ence of the value of α is lower. However, if more energy is
available, a better load-balanced network is created. This
is due to the fact that small cells have more power and
the coverage radius are larger offering more possibilities
for the users to associate to BSs. Contrarily, for larger val-
ues of α we obtain larger peak rates, but a worse balanced
network. Thus, from a load-balancing perspective, it is
better to control how the energy is being used at different
epochs.
Figure 5b presents the CDF of the rates of the data

users with α = 0.1 and p = 0.6 for the low-complexity
approaches derived from (24) and (25), the distributed
solution from (26), and the max-SINR. In this case, the
distributed solution yields the same performance as the
FVTD strategy (even though it is not shown in the figure).
This is expected as both problems attempt to solve the
same optimization problem. As we can see, even if we use
the simple low-complexity solution fixing the power or the
codes to be allocated, the performance obtained is quite
close to the rest of the strategies proposed in this paper.
All the strategies outperforms the max-SINR providing a
better balanced network. The results obtained from (24)
and (25) are similar to the results that would be obtained
from the method in [12] as the measure of the load is only
based on one variable, but now we also consider battery
limitations and time evolution.

a b

Fig. 4 Snapshot of the user association for different policies. a User association policy: max-SINR. b User association policy: problem (12)
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a b

Fig. 5 CDF of the instantaneous user rates for different user association strategies. a CDF of the user rates for different energy harvesting intensities
(p = 0.3; p = 0.6; and p = 0.9) and the value of α for the proposed strategy and the max-SINR strategy. b CDF of the user rates for the different
proposed strategies and the max-SINR

Figures 6 and 7 depict the battery evolution of the BSs
in tier 1, tier 2, tier 3, and tier 4 for different values of
harvesting p and α considering the traditional max-SINR
approach and the proposed strategy. As expected, if the
harvesting increases, the expected battery also increases.
Also the value of α impacts the battery evolution. For
larger values of α, we obtain lower residual battery levels

at convergence (after the transient period). In fact, it can
be shown that if the battery converges in average terms,
i.e., 0 < limt→∞ E[Ci(τ )]< Ci

max, then, as we mentioned
before, limt→∞ E[Ci(τ )]= E[Hi(τ )]

αi
= pi·ei

αi
. The vari-

ance can also be checked to fulfill the expression in (35).
Notice, however, that this is not always the behavior of
tier 4. Recall that, through the development in Section 5,

Fig. 6 Average battery evolution (among BSs) of tier 1 and tier 2
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Fig. 7 Average battery evolution (among BSs) of tier 3 and tier 4

we assumed that constraint C4 was attained with equality.
This will only happen if there is at least one data user con-
nected to any BS of the tier. Because there are just two BSs
in tier 4, it is very likely that no data users are within the
coverage area of these two BSs at a given epoch. This phe-
nomenon is what we can see in the figure. The batteries
increase due to harvesting.
The evolution of the average number of users associ-

ated to a particular tier as time evolves (average among
the BSs of the same tier) is shown in Figs. 8 and 9 for
different values of α, different harvesting intensities, and
different association strategies. Each vertical cut of these
plots would yield the snapshot user association presented
in Fig. 4 (epoch 1 was considered in those previous plots).
The main insight that we obtain from these figures is that,
for the max-SINR strategy, the tier 1 tends to have more
users than the proposed strategies. As time evolves, the
macro BS (tier 1) tends to reduce its battery level (as it is
widely used) and the number of users that associate with it
decreases a little. This effect is more notable with the pro-
posed strategies. If we have a look at tier 2, for example,
the number of users increases as time evolves. In general
terms, users associated to the macro BS when the max-
SINR strategy is considered are transferred to other tiers
if a load balancing technique is implemented. Users asso-
ciated to tier 4 are almost double in average terms when
comparing max-SINR strategy with the proposed one. In
terms of the macro BS, there are roughly 20 users less

in average, if we compare the proposed approach with
the max-SINR strategy. The solutions of the user asso-
ciation for the general case derived from (12) and the
FVTD strategy are quite similar. Another insight is that for
larger values of α we see that the fluctuation of the curves
increases. This is because the batteries of the BSs tend to
run out of energy and users tend to associate to other BSs
more frequently.
Finally, Figs. 10 and 11 show the computational

complexity associated with the centralized approaches
proposed in the paper. We show the computational com-
plexity7 in relative terms with respect to the most com-
putational demanding solution. We show two different
scenarios to see the scalability of the algorithms. As it
can be seen in the figures, the low complexity solutions
presented in the paper require half the computational bur-
den of the most general approach whereas the FVTD
approach demands a computational burden between 20
to 30% lower than the most general solution. Hence, in
situations with limited computational resources or where
the algorithms must be run quite frequently (due to, for
example, high mobility), the low complexity approaches
represent a practical solution with good performance.

7 Conclusions
In this paper, we have proposed several user association
strategies driven by DL metrics in a scenario composed
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Fig. 8 Evolution of user association in tier 1 and tier 2

Fig. 9 Evolution of user association in tier 3 and tier 4
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Fig. 10 Relative computational complexity of centralized algorithms
presented in the paper. The scenario is composed of 15 BSs and 100
users (reference scenario considered in the simulations section)

of several BSs to achieve load balancing in terms of bal-
anced network throughput for heterogeneous networks.
In this scenario, the BSs were solely powered with finite
batteries and energy harvesting sources that allowed them
to recharge their batteries. An iterative solution based on
a primal-dual approach has been derived that considers
explicitly the current and the past energy at the batter-
ies. We have also proposed a distributed solution to be
solved by each user and the BSs with just local infor-
mation. Several low-complexity solutions aimed at high
mobility scenarios have also been developed. We have
compared the proposed strategies with the classical max-
SINR approach and showed that improvement in terms of
load-balancing is possible if a proper balancing technique
is designed and the information of the battery status is
considered in the user association procedure.

Fig. 11 Relative computational complexity of centralized algorithms
presented in the paper. The scenario is composed of 5 BSs and 50
users

Endnotes
1 From now on, we will assume that the users that

request a fixed service rate are voice users, but this set
could indeed contain any type of service requiring fixed
service rates.

2 If the number of users is relatively high, then
PiRAD(τ ) � pji(τ ), and the approximation is fair. In any
case, the approximation provides a lower bound of the
actual SINR value.

3 It is a worst-case solution as the BSs may not necessar-
ily be transmitting at full power all the time.

4The modelling of the user scheduling is out of the
scope of this paper. In the simulations section of this
paper, we comment on the type of user scheduling used to
run the simulations.

5 The scenario considered has been taken similar to that
taken as reference in our previous conference paper [1].

6 The CDFs are presented instead of the average values
of the rates since this allows to evaluate the rates of all
the users in the scenario. For example, the CDFs allow to
evaluate which is the probability of a user of receiving a
very low rate for the different strategies, which could not
be done by resorting only to the average values.

7 The computational complexity shown in these figures
has been measured in terms of the ’simulation time’ of
each algorithm in relative terms with respect to the gen-
eral solution ‘G’. These results have been obtained through
simulations running each algorithm in the same server
without any other process running simultaneously. The
simulation time includes, thus, not only the complexity
in terms of mathematical operations, but also the time
required to manage the data, the memory, etc. Of course,
if a different server or a different way of implementing
the optimization procedures were used, the results could
change slightly, although the main conclusions would
remain the same. Note that an analytical study of the
complexity is not possible, or at least extremely compli-
cated, in this case since it should account for the number
of iterations needed for convergence, the complexity of
the numerical method used to solve the problems, the
scenario, etc.
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