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11, 08022 Terrassa, Spain
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Abstract

In this paper a heuristic procedure is proposed for the the Facility Location Problem
with General Bernoulli demands. This is a discrete facility location problem with stochas-
tic demands that can be formulated as a two-stage stochastic program with recourse. In
particular, facility locations and customer assignments must be decided here-and-now,
i.e., before knowing the customers who will actually require to be served. In a second
stage, service decisions are made according to the actual requests. The heuristic proposed
consists of a GRASP followed by a path relinking. The heterogeneous Bernoulli demands
make prohibitive the computational effort for evaluating feasible solutions. Thus, the
expected cost of a feasible solution is simulated when necessary. The results of extensive
computational tests performed for evaluating the quality of the heuristic are reported,
showing that high-quality feasible solutions can be obtained for the problem in fairly
small computational times.

keywords: discrete facility location, Bernoulli demands, GRASP, path relinking.

1 Introduction

In this paper we propose a heuristic framework for the discrete Facility Location Problem
with Bernoulli Demands (FLPBD). The FLPBD consists of a two-stage decision process. In
the first stage, facility locations and customer assignments are decided. This must be done
here-and-now, i.e. before knowing the customers who will actually require to be served. Each
facility has a capacity in terms of the number of customers it can serve. Moreover, a minimum
number of customers must be allocated to every open facility. This threshold is exogenous and
location-dependent. In the second stage of the decision process, the customers who actually
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call for the service are served from their allocated facility, as long as the service capacity is not
exceeded. Demand exceeding the service capacity is outsourced and an extra cost is incurred.

The FLPBD aims at modeling situations where a facility provides a service and demand
refers to whether a customer requires to be served. Companies providing repair or main-
tenance services are potential users of the modeling framework we propose. In this case
customers can be grouped (e.g. according to their location) and assigned to a facility that
should handle the existing demand. The term “facility” should be looked at in a very general
way. For instance, we may be referring to a worker or a team. Moreover, facilities may be
mobile. One example concerns elevator maintenance: each repair or maintenance team must
assist a prespecified set of customers in case they call for service. If the actual demand turns
out to be higher than the service capacity, then the service still has to be provided, which may
call for temporary relocation of workers from other teams or simply for outsourcing the service
to a third party. Another potential application of the FLPBD concerns mobile health clinics.
This type of facility is usually set to assist some specific area or region previously assigned
to it. In case the occurring demand is higher than the service capacity, extra personnel is
necessary, which may lead to additional costs. Other examples of settings fitting the FLPBD
include target-oriented advertisement activities, door-to-door product demonstration, etc. In
all these cases, potential customers are previously assigned to the facility and may or may
not have actual demand.

Although stochastic facility location problems have received much less attention than
their deterministic counterparts, a variety of models and approaches have been studied in
this context (Louveaux 1993; Snyder 2006; Correia and Saldanha-da-Gama 2015). In par-
ticular, the FLPBD was introduced by Albareda-Sambola et al. (2011) together with two
different outsourcing policies. Although the problem is presented in its general version, that
paper concentrates mainly on the particular case where all customers share the same demand
probability, which is referred to as homogeneous case. For this case closed forms for the
recourse functions associated with the two outsourcing policies are presented, and compact
formulations of the deterministic equivalent problem are developed, which allow solving the
problem exactly for moderate instance sizes. Nevertheless, the methodology proposed by the
authors becomes computationally demanding as the sizes of the instances increase and it is
only valid for the homogeneus case. More recently, Bieniek (2015) showed that the expressions
of the recourse function can be extended to some distributions different from the Bernoulli,
as long as the assumption of homogeneity among customers is kept.

In this work we focus on the general version of problem, i.e., the demand probabilities
are not necessarily equal. We consider the two outsourcing strategies studied by Albareda-
Sambola et al. (2011). To the best of the authors’ knowledge no methodology has been
proposed so far for this problem. The only exception is the companion paper Albareda-
Sambola et al. (2016), where different outsourcing policies are analyzed and compared for the
situation where the uncertainty is captured by a moderate number of scenarios. As shown in
that work, MIP formulations can be used within a sample average approximation algorithm to
tackle the FLPBD. Nevertheless, this renders a rather inefficient approach, that easily becomes
unaffordable even for moderate-sized instances. We observe that in the general FLPBD
computing the exact cost of a particular solution is already computationally unaffordable
since it requires computing the expected value of a random variable by enumerating all its
possible values. Therefore, at all phases of the heuristic we resort to simulating these costs.

In order to obtain high-quality feasible solutions we have designed a heuristic based on
GRASP and path relinking (PR). PR algorithms focus on exploring the feasible region by
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following trajectories connecting pairs of different feasible solutions (Glover 1997, Glover et al.
2000) and have been successfully combined with GRASP for many combinatorial optimization
problems using different strategies (Festa and Resende 2013). In our particular case, we
combine them within a two-phase algorithm. The first phase applies a GRASP for building
two pools of feasible solutions, one focusing on quality and the other focusing on diversity. For
the construction phase of the GRASP some structural constraints are temporarily relaxed.
Therefore, a feasibility restoration mechanism may be required. Additionally, a local search
is applied for improving the solution. Once the two pools have been built, the second phase
of the heuristic starts, which makes use of the actual PR procedure. The idea is to consider
repeatedly one solution selected from the quality pool and another one selected from the
diverse pool and then explore a “path” linking these solutions in an attempt to find better
feasible solutions. The process continues until some stopping criteria are met.

Many authors have combined intensification and diversification strategies in their heuris-
tics (Vidal et al. 2013; Cataruzza et al. 2014). In our case this is accomplished by building
the two different solution pools in the GRASP phase. Taking one solution from each pool in
each iteration of the PR phase gives the algorithm a large degree of flexibility, which allows
overcoming the inefficiencies that GRASP alone might have for large instances.

The results of extensive computational tests performed using different types of instances
are reported. These results show that within very small computational times the new heuristic
finds high-quality solutions for the FLPBD with heterogeneous demand probabilities as well
as for the particular case of homogeneous demand, where our solutions can be contrasted
against the optimal ones.

The remainder of this paper is organized as follows. In Section 2, we formally define
the FLPBD. In Section 3 we introduce the new heuristic and in Section 4 we report and
discuss the computational experience performed. The paper finishes with Section 5 where we
summarize the main findings of this work.

2 Problem definition

Let I and J (with m = |I| and n = |J |) denote the sets of indices for the potential locations of
facilities and for the customers, respectively. We assume that the demand for service of each
customer j ∈ J is given by a binary random variable that we denote by ξj , indicating whether
or not customer j requests the service. Additionally, we assume that ξj variables follow
independent Bernoulli probability distributions with parameters pj , j ∈ J . Furthermore, we
impose that if a facility is opened then the number of customers assigned to it must be above
some threshold. Finally, we assume a limited service capacity in each location.

Imposing to assign a minimum number of customers to each opened facility is a way of
guaranteeing a (potential) minimum workload for the open facilities. Additionally, looking
into the literature, we can find an increasing number of applications (e.g., in logistics systems
design), calling for such minimum thresholds at the stage of dimensioning facilities (see, e.g.,
Melo et al. 2006, 2009). We note that when such constraints are not necessary, we can simply
set the minimum threshold to 0 and the proposed methodology is still fully valid.

For i ∈ I, we consider the following notation:
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fi, fixed setup cost for opening facility i;
`i, minimum number of customers that have to be assigned to facility i if it is opened;
Ki, maximum number of customers that can be served from facility i if it is opened;
cij , cost for serving customer j from facility i (j ∈ J).

In a particular realization of the random vector there may exist customers who do not
request the service. Hence, we distinguish between the assignment of customers to the
facilities—which is done a priori and is independent of the potential realizations—and the
service provided to customers from the open facilities—which is decided a posteriori, once
the realization of the random vector is known. Throughout the text customers calling for
service in a particular realization of the uncertainty are referred to as demand customers. We
consider single assignment, i.e., each customer is assigned to one and only one open facility.

An a priori solution for the FLPBD is defined by a set of operating facilities together
with an assignment of all the customers to these facilities. It should be noted that the service
capacity of the facilities (Ki) does not affect the feasibility of a priori solutions.

For an a priori solution we denote by Ji (with zi = |Ji|) the set of customers assigned to
facility i and by ηi the random variable counting the number of demand customers in Ji. An
a posteriori solution specifies the decisions to make once demand customers are known, i.e.,
it explicitly states how demand customers are served. If zi ≤ Ki for some i ∈ I then in the a
posteriori solution all the demand customers indexed in Ji receive service from facility i, each
of them incurring a service cost cij , j ∈ Ji. However, if zi > Ki then we may also observe
ηi > Ki. In this case, the a posteriori solution serves Ki out of the ηi demand customers from
plant i and outsources the service of the remaining ones. We assume that the requests for
service arrive before the second stage decision is made. Therefore, the arrival order of service
requests can be used as a criterion to prioritize customers when some outsourcing is needed.
A cost gi is incurred for every outsourced demand customer.

The FLPBD is to find a set of facilities to open and an allocation of the customers to
those facilities satisfying the lower bounds `i. The goal is to minimize the sum of the fixed
costs associated with the open facilities plus the recourse function. Albareda-Sambola et al.
(2011) introduced the following sets of decision variables in order to present a formulation for
this problem: yi is a binary variable equal to 1 if facility i ∈ I is opened and 0 otherwise; xij
is a binary variable equal to 1 if customer j ∈ J is allocated to i ∈ I and 0 otherwise. The
FLPBD can be formulated as follows:

(P ) minimize
∑
i∈I

fiyi +Q(x), (1)

subject to
∑
i∈I

xij = 1, j ∈ J, (2)

xij ≤ yi, i ∈ I, j ∈ J, (3)

`iyi ≤
∑
j∈J

xij , i ∈ I, j ∈ J, (4)

yi ∈ {0, 1}, i ∈ I, (5)

xij ∈ {0, 1}, i ∈ I, j ∈ J. (6)

The objective function (1) includes the fixed costs for opening the facilities plus the re-
course function. The latter can be decomposed according to Q(x) = Eξ,η(Service cost +
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Penalty cost). Constraints (2) ensure that all customers are assigned to (exactly) one facility
while constraints (3) impose that these assignments are only made to operating facilities. Con-
straints (4) state the minimum number of customers that must be assigned to each operating
facility. Finally, (5) and (6) define the domain of the decision variables.

2.1 Outsourcing policies

Albareda-Sambola et al. (2011) proposed two outsourcing strategies (recourse actions) within
the context of the FLPBD that we also consider in this paper.

Facility outsourcing.

Under this strategy an open facility i ∈ I serves all the demand customers assigned
to it. However, when ηi > Ki the facility acquires the extra resources needed for
serving ηi −Ki customers—the number of outsourced customers—at a unitary cost gi.
Then the facility serves each demand customer j ∈ Ji assigned to it at the service cost
cij . Therefore, the recourse cost in this case does not depend on who are the ηi −Ki

outsourced customers.

This recourse action models situations where a temporary expansion of the serving
capacity of the facilities is possible.

Customer outsourcing.

Under this strategy when the number of demand customers assigned to facility i exceeds
the service capacity, Ki exactly Ki customers are served from the facility, each of them
at the corresponding service cost cij . The remaining ηi − Ki customers are served
directly from an external service provider at a unitary cost gi.

We assume that the customers to be served from the facility are selected according to
a FIFO policy, i.e., according to the order in which service requests have arrived. We
further assume that service requests arrive in a random order and every sorting can
occur with the same probability.

Similarly to Albareda-Sambola et al. (2011) we consider unitary outsourcing costs gi,
i ∈ I, which are facility dependent. This is motivated by the fact that when the service
capacity is exceeded, the facility providing the service remains responsible for assuring that
the customers are served. This holds, for instance, at the expenses of extra workforce—facility
outsourcing—or by contracting the service from a third party—customer outsourcing.

As we have already mentioned, due to the heterogeneous demand probabilities, evaluating
feasible solutions is computationally unaffordable for both outsourcing policies. This is par-
ticularly true for customer outsourcing since the order by which the customers call for service
is also needed to define a particular realization of the uncertain data.

3 A GRASP with path relinking for the FLPBD

GRASP (Greedy Randomized Adaptive Search Procedure) is a well-known multi-start meta-
heuristic (Feo and Resende 1995). Each iteration consists of two phases: (i) construction, and
(ii) local search. The construction phase aims at building a feasible solution; the local search
attempts to improve it.
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GRASP has been successfully used in the context of many complex optimization prob-
lems and, in particular, deterministic discrete location problems (see, for instance, Resende
and Werneck 2006, Delmaire et al. 1999, and Dı́az and Fernández 2006). It has also been
applied successfully to different types of stochastic problems such as those investigated by
Ballest́ın and Leus (2009) and Held and Woodruff (2005). The interested reader is referred
to Resende and Ribeiro (2008) and Resende and Ribeiro (2013) for comprehensive surveys on
this methodology.

Path relinking was originally proposed by Glover (1997) as an intensification scheme. It
explores trajectories connecting pairs of feasible solutions found by metaheuristics such as tabu
search and scatter search (Glover and Laguna 1997). The original idea consists of taking two
elite solutions at a time—a leading solution and a target solution—and then progressively
changing the leading solution in order to reach the target by repeatedly performing local
moves. In this process, better feasible solutions may be found due to the combination of good
attributes of the target and leading solutions.

The use of path relinking combined with GRASP was first proposed by Laguna and Mart́ı
(1999) and led to many other extensions and successful applications to well-known discrete
combinatorial optimization problems (see Resende and Ribeiro 2013, as well as the references
therein). Several strategies are possible. Two popular ones are the following: (i) path relinking
is applied to all pairs of elite solutions (during the GRASP or after all GRASP iterations are
performed); (ii) path relinking is used as an intensification strategy taking a locally optimal
solution produced by each GRASP iteration after local search, and an elite solution.

AKI
In this work we propose a heuristic for the FLPBD that consists of a GRASP followed

by a PR. The GRASP aims at building two pools of solutions. One—the so-called elite
pool—focuses on quality and contains a certain number of the best solutions found during
the execution of the GRASP. The other one—diverse pool—focuses on diversity and consists
of solutions that were not good enough to be part of the elite pool but that are the most
diverse ones among the solutions currently in both pools. Both pools have a limited size that
we denote nElite and nDiverse for the elite pool and the diverse pool, respectively. When one
pool is full and we want to insert one solution there, then the worst solution in the pool is
removed.

When both pools have been built, a PR procedure starts. It repeatedly chooses a target
solution from the elite pool and then, starting from a diverse solution selected at random,
explores a path linking them in an attempt to find better feasible solutions.

The overall procedure is summarized in Algorithm 1, where we can clearly observe the two
above mentioned phases. In the first phase (lines 1 to 17) the GRASP is executed max iter
times. In each execution, a solution S is constructed (line 5—function GreedyRandomized-

Construction(α,p+)) and repaired (RepairSolution(S)) if it is infeasible (lines 6 and 7). A
local search (LocalSearch 1(S)) is applied at the end. All moves are evaluated by estimating
their impact in the solution cost.

Once a solution is built, we decide whether to insert it in one of the pools—lines 9 to
16. The actual value of the feasible solution resulting from the local search is estimated
(estimateCost(S,highPrecision)) and we check if its quality indicates that it should be in-
serted into the elite pool. If this is the case we insert the solution in the pool (insertInElite-
Pool(S,worstV alueElite)), updating (when necessary) the worst value among all solutions
of the pool. Otherwise, we check whether the solution should be inserted into the di-
verse pool. In this case the solution enters that pool (function insertInDiversePool(S,
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Algorithm 1 Heuristic framework for the FLPBD.

// initialization

1: elite pool ← ∅; worstV alueElite←∞;

2: diverse pool ← ∅; worstDiverseV alue← 0.0;

3: initializeConstruction()

// phase 1: GRASP used for building two pools of solutions.

4: for k = 1, . . . ,max iter do

5: S ← GreedyRandomizedConstruction(α,p+);

6: if S not feasible then

7: S ← RepairSolution(S);

8: S ← LocalSearch 1(S) // cost variation estimated in all moves

9: f(S) ← estimateCost(S,highPrecision) // solution cost estimated at the end

of the local search

10: if S /∈ elite pool and f(S) < worstV alueElite then

11: elite pool← insertInElitePool(S,worstV alueElite);

12: else

13: if S /∈ diverse pool then
14: dist(S) ← pool distance(S);

15: if dist(S) > worstDiverseV alue then

16: diverse pool← insertInDiversePool(S,worstDiverseV alue);

17: Sincumbent ← arg minS∈elite pool{f(S)}; // best solution so far

// end of phase 1.

// phase 2: a PR procedure is used for improving the solution.

18: for ` = 1, . . . , nRep do

19: for all S ∈ elite pool do
20: Starget ← S;

21: Scurrent ← getRandom(diverse pool);

22: Sincumbent ← pathRelinking(Scurrent,Starget,Sincumbent);

23: return Sincumbent.

// end of phase 2.

worstDiverseV alue)) and the worst diverse value among solutions in the pool is updated (if
necessary).

The implementation details of the function estimating the cost of a solution (estimate-
Cost(S, highPrecision)) are provided in Section 4.2.

At the end of the GRASP (line 17) we set as the incumbent solution the best one found
in all executions of the GRASP. This solution is the one in the elite pool with the smallest
estimated cost. Then we start the PR procedure (lines 18–23). One path is explored for pairs
of feasible solutions such that one is selected from the elite pool and the other one is selected
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from the diverse pool. The former is selected sequentially and is set as the target solution;
the latter is taken randomly and is set as the current solution. After defining a target and a
current solution, a path linking them is explored. The incumbent solution is updated every
time a solution is found with a better cost estimate. As we can observe in Algorithm 1, the
PR procedure is repeated |elite pool| × nRep times.

In the next subsections we detail the different functions invoked by this heuristic.

3.1 The greedy randomized procedure

The construction phase of a GRASP is the randomization of a greedy algorithm. At each
iteration the set of candidate elements consists of all components that can be incorporated
into the solution under construction and satisfy some pre-specified criterion. All candidate
elements are evaluated according to a greedy function and a restricted candidate list (RCL) is
created considering the best elements relative that function. The element to be incorporated
into the solution under construction is randomly selected from the RCL.

At each iteration of the constructive phase we have a partial solution (a subset of open
facilities) and a set of candidate elements (facilities that are not open). Furthermore, our
constructive phase ignores constraints (4) concerning the minimum number of customers
assigned to open facilities. Accordingly, the outcome of this phase may be infeasible. In these
situations a feasibility restoration mechanism is applied. Finally, a local search procedure
is employed in an attempt to improve the feasible solution obtained. All these elements are
detailed next.

Observe first that the construction phase uses auxiliary assignment capacities for all fa-
cilities, which remain constant for all executions of the GRASP. We set them proportional to
the corresponding service capacities, but large enough to allow the allocation of all customers
to the facilities. In particular, for each i ∈ I we define such capacities according to

ui = max

`i,Ki,

n
p

Ki∑
t∈I

Kt

 ,

where p denotes the average of the demand probabilities pj , j ∈ J .

3.1.1 Construction phase

This phase starts by choosing one single facility to open and then assigning all customers to
it. The facility is chosen randomly from the RCL. In a general step k, a new facility is opened
and some customers are reassigned to it, thus producing a new partial solution (ỹk, x̃k). At
the end of each step k, we denote by Ik the set of open facilities and by i(j) the plant customer
j ∈ J is currently assigned to. The full procedure is detailed in Algorithm 2.

Typically, the greedy evaluation function used in the constructive phase of a GRASP
estimates the increase in the objective function due to the incorporation of an element into
the partial solution under construction. In our case we evaluate differently the incremental
costs of the candidates in the first and the subsequent iterations. In the first iteration each
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candidate is evaluated according to

δ0i ←
1

ui

fi +
∑
j∈J

cij

 . (7)

This initialization is made in line 2. Instead, in subsequent iterations, for a candidate facility
i we estimate the incremental cost δki (line 18) as the sum of the setup cost of the facility
plus an estimate of the variation in the service costs when reassigning customers from their
current assignments to the candidate facility i, including the expected saving in the penalty
for unserved customers as well as Ki. For each customer j ∈ J the estimated variation in its
service cost is computed as (line 15)

σij = cij − ci(j)j − pj × g(i(j))
(zi(j) −Ki(j))

+

zi(j)
. (8)

We recall that zi denotes the number of customers assigned to facility i ∈ I. The actual
number of customers that would be assigned to facility i if it is open, ri, is determined in
line 17, taking into account the upper bound ui, but aiming at satisfying the lower bound `i
and also trying to reallocate as many customers as possible, among the ones with negative
estimate of their reassignment costs. Then, in line 21 the RCL is built with the non-open
facilities that seem most promising if opened.

The criterion we apply for defining the elements of the RCL also changes from the first to
subsequent iterations. In all cases the RCL contains all closed facilities with an incremental
cost within the interval [δmin, δkmin + αk(δkmax − δkmin)], where, for each iteration k, δkmin

and δkmax denote, respectively, the smallest and largest non-positive incremental costs as
defined above. In the initial iteration (k = 0) αk = 2α, where α is a parameter to be defined,
whereas in subsequent iterations (k > 0) αk = α. The next facility to open is randomly
chosen from the RCL.

Preliminary tests showed that the choice of the first facility to open has a great influence
on the resulting solution. For this reason, with the goal of generating diverse solutions, we use
a wider RCL in the first step (α0 = 2α). More sophisticated techniques can be used to auto-
tune the parameter αk. One such possibility is the so-called reactive GRASP considered by
Delmaire et al. (1999) and Ŕıos-Mercado and Fernández (2009). In that case the range of the
RCL is adjusted during the GRASP phase. We did not attempt such alternative since high
quality solutions could be obtained for the FLPBD by the procedure we propose considering
a fixed RCL range.

Usually the constructive phase would continue until all facilities are open or until all
the non-open facilities have a non-negative incremental cost. Preliminary computational
testing, however, indicated that these criteria tend to produce solutions with too many open
facilities. For this reason we have introduced one additional parameter, p+, which denotes the
probability with which we continue the process even if none of the above termination criteria
are met (lines 10, 11).
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Algorithm 2 GreedyRandomizedConstruction(α,p+, u)

// choose the first facility to open

1: k ← 0

2: Compute {δki }i∈I using (7).

3: RCL ←
{
i ∈ I : δkmin 6 δki 6 δkmin + 2α(δkmax − δkmin)

}
;

4: ik ← RandomSelect(RCL);

5: Ik ← {ik}
6: i(j)← ik, j ∈ J ;

7: zik ← n, zi ← 0, i ∈ I \ {ik};
// main loop

8: repeat

9: k ← k + 1

10: β ← RandomSelect([0, 1])

11: if (β > p+) then Stop.

12: else

13: for (i ∈ I) do

14: for (j ∈ J) do

15: compute σij according to (8)

16: {j[1], . . . , j[n]} ← sort σ increasing(J)

17: ri ← min
{
ui,max

{
`i,max{q : σij[q] < 0}

}}
18: δki ← fi +

ri∑
t=1

σij[t]

19: δkmin ← min
{

0,min{δki : i ∈ I}
}

; δkmax ← min
{

0,max{δki : i ∈ I}
}

20: if δkmin < 0 then

21: RCL ←
{
i ∈ I : δkmin 6 δki 6 δkmin + α(δkmax − δkmin)

}
22: if RCL 6= ∅ then
23: ik ← RandomSelect(RCL)

24: Ik ← Ik−1 ∪ {ik}
25: for (j = [1], . . . , [rik ]) do

26: zi(j) ← zi(j) − 1; i(j)← ik

27: zik ← rik

28: until δkmin ≥ 0

29: return Ik and i(j), j ∈ J

3.1.2 Feasibility restoration

When the outcome of the construction phase violates some of the lower bounds `i for the as-
signments to the open facilities, a feasibility restoration procedure is required (Algorithm 1—
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function RepairSolution(S)).
The feasibility restoration mechanism that we propose completely redefines (if necessary)

the assignments of customers to the plants opened in the constructive phase. This is accom-
plished in two steps:

1. We check whether
∑

i∈Ik `i > n for the constructed solution. If this is the case then at
least one facility must be closed. Accordingly, we start closing facilities (one each time)
until

∑
i∈Ik `i ≤ n. In each iteration, we choose for closing a facility i∗ such that

i∗ ∈ arg max
i∈Ik | (`i−zi)>0

f(i) +
∑

j∈J | i(j)=i

cij + g(i) (pi × zi −Ki)
+

 ,

where pi denotes the average demand probability of all customers assigned to facility i.

When a facility is closed all the customers who are assigned to it must be reassigned to
the remaining facilities. This is done in a greedy way, i.e., the reassignment chosen is the
one that contributes the least to the (estimated) increase in the solution cost. We start
by considering reassignments only to the facilities that remain infeasible. When such
facilities no longer exist, we consider reassignments to the other facilities. We estimate
the cost of reassigning some customer j to a facility i as follows:

cij + max{zi + 1−Ki, 0}pj
gi ×Ki

zi × (zi + 1)
.

2. By ensuring that
∑

i∈Ik `i ≤ n (which is done in the previous step) we know that with
the currently open facilities constraints (4) can be satisfied. However, the solution is
not necessarily feasible even when this condition is met. Indeed, for some facility i we
may still have zi < `i. In this case we reassign customers who are currently assigned
to facilities i′ such that zi′ > `i′ to facility i. Again this is done in a greedy way:
the reassignment chosen is the one that increases the least the solution cost. The
reassignment cost is estimated according to

pj(cij − ci′j) + max{zi + 1−Ki, 0}pj
gi ×Ki

zi × (zi + 1)
−max{zi′ −Ki′ , 0}pj

gi′ ×Ki′

zi′ × (zi′ − 1)
.

3.1.3 Local search

The local search attempts to iteratively improve the solutions obtained in the previous phases.
This is accomplished by successively replacing the current solution by a better one from its
neighborhood, according to its estimated cost. The search terminates when no such solution
can be found so that the current solution seems to be locally optimal.

The neighborhoods that we considered for the local search in our GRASP do not change
the set of open facilities; they only affect the assignment of customers within that set. In
particular, we consider two different neighborhoods: (i) those induced by reassignments of
customers within the set of open facilities, and (ii) those induced by interchanges of assign-
ments between pairs of customers.

In both cases we apply a first improving policy relative to the estimated variations in the
solution cost. They are computed as follows:
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Reassignments

The variation in cost when reassigning customer j from plant i1 = i(j) to i2 can be
approximated by:

σj,i2 = pj(ci2j − ci1j) + max{zi2 + 1−Ki2 , 0}gi2pj ×
zi2∑

s=Ki2

bin(zi2 , p̄i2 , s)

−max{zi1 −Ki1 , 0}gi1pj ×
zi1∑

s=Ki1
+1

bin(zi1 , p̄i1 , s),

where pi1 and pi2 represent the arithmetic average of the demand probabilities for the
customers currently assigned to i1 and i2, respectively, and bin(z, p, s) stands for the
probability that a binomial random variable with parameters z and p takes value s; i.e.
bin(z, p, s) =

(
z
s

)
ps(1− p)z−s.

In the above expression, we combine three estimates: (i) the increase of the service
costs, (ii) the increase of the expected penalty in plant i2, which will have one more
customer now, and (iii) the reduction of the expected penalty in plant i1. Feasibility is
kept by considering only customers j with zi(j) > `i(j).

Since cost variations are estimated, we may end up with a cycle of reassignments. In
order to avoid this we estimate the variation in the cost associated with the reverse
move before reassigning a customer. We only perform the reassignment if this estimate
is larger than the estimated variation for the direct move.

Interchanges

We consider the interchange in the assignment of two customers j1, j2, with i1 =
i(j1), i2 = i(j2), where, without loss of generality, we assume that pj1 > pj2 . Our
estimate of the cost variation is:

σj1j2 = ci1j2 + ci2j1 − ci1j1 − ci2j2

+ gi2 (pj1 − pj2)

[
(zi1 −Ki1)+

zi1
− (zi2 −Ki2)+

zi2

]
.

Both for the reassignments and for the interchanges, we set a maximum number of times
the same assignment of a customer to a facility can be made. We alternate the exploration
of the two neighborhoods until no promising moves are identified.

3.1.4 Diversity measure

In the GRASP phase, when a solution S is not inserted in the elite pool we try to insert it
into the diverse pool. In order to do so we measure the diversity of S (pool distance(S)).
This is done by comparing S with every solution in one of the pools and counting the number
of different customer assignments. In particular, we compute

1

ne + nd

 ∑
Se∈elite pool

|{j ∈ J : iSe(j) 6= iS(j)}|+
∑

Sd∈diverse pool

|{j ∈ J : iSd
(j) 6= iS(j)}|

 ,
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where ne (nd) is the current number of elite (diverse) solutions and isolution(j) denotes the
facility to which customer j is assigned in solution.

3.2 Path relinking

As we have already mentioned, the first phase of our heuristic ends with two pools of solutions:
the elite pool and the diverse pool. We recall that in the elite pool the solutions are sorted in
non-increasing order based on their (estimated) cost.

In the second phase of our heuristic we consider pairs of solutions (Scurrent, Starget) as
detailed in Algorithm 1. For each pair a path linking the solutions is explored using our PR
procedure. Every time a solution is found whose evaluation is better than the incumbent
solution, we update the incumbent. Therefore, the outcome of one execution of the PR is the
previous incumbent solution if it was not improved or a new incumbent solution otherwise.

Algorithm 3 pathRelinking(Scurrent,Starget,Sincumbent)

// initialization

1: nOpenCurrent ← countFacilitiesOpen(Scurrent)

2: nOpenTarget ← countFacilitiesOpen(Starget)

// end of initialization

3: β ← RandomSelect([0, 1])

4: while (β ≤ p++) and (nOpenCurrent > nOpenTarget) do

5: Scurrent ← closeFacility(Scurrent)

6: nOpenCurrent ← nOpenCurrent-1

7: Sincumbent ← updateIncumbent(Sincumbent,Scurrent)

8: β ← RandomSelect([0, 1])

9: Scurrent ← exchangeFacilities(Scurrent)

10: Sincumbent ← updateIncumbent(Sincumbent,Scurrent)

11: Scurrent ← closingFacilities(Scurrent)

12: Sincumbent ← updateIncumbent(Sincumbent,Scurrent)

13: Scurrent ← openingFacilities(Scurrent)

14: Sincumbent ← updateIncumbent(Sincumbent,Scurrent)

15: Sincumbent ← localSearch 2(Scurrent,Sincumbent)

Three types of local moves are considered for transforming the current solution into the
target: (i) opening a facility that is open in the target solution, (ii) closing a facility that
is closed in the target solution, or (iii) interchanging one facility that is open in the current
solution but closed in the target by a facility that is closed in the current and open in the
target. The above moves include the reassignment of customers if necessary. After the target
solution has been reached (which will be the case in line 13 or before), we perform a local
search that considers only one type of move: reassignment of customers. We provide all the
details below.
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The PR procedure is sketched in Algorithm 3. Here after the initialization we perform a
while loop (lines 3–8). The goal is to start by iteratively closing facilities. Nevertheless, this
loop is regulated by a probability p++ of moving to other neighborhoods before the current
and the target solutions have the same number of open facilities.

We also note that we have considered an alternative version of the PR without lines 3–8.
We call PR1 the procedure depicted in Algorithm 3 and PR2 the version that omits those
lines.

Intuitively, PR1 should work better than PR2 since in general fixed costs for opening
facilities are large and, therefore, exploring many solutions with a number of opened facilities
larger than necessary does not seem very promising. However, our results will show that, on
average, PR2 performs slightly better.

Before giving the details about the local moves performed in Algorithm 3 we focus on the
incumbent update.

As we will explain in Section 4.2.2 when estimating the cost of a solution we can consider
an estimate with higher precision (more time is required to compute it) or an estimate with
a lower precision (computationally cheaper). In both versions of the PR, we only estimate
the cost of a feasible solution using the higher precision when we wish to update the incum-
bent. In Algorithm 4 we give the details of this process. In particular, we detail function
updateIncumbent(Sincumbent, Scurrent).

Algorithm 4 updateIncumbent(Sincumbent,Scurrent)

1: f(Scurrent)← estimateCost(Scurrent, lowPrecision)

2: if f(Scurrent) < (tolerance× f(Sincumbent)) then

3: f(Scurrent)← estimateCost(Scurrent, highPrecision)

4: if f(Scurrent) < f(Sincumbent) then

5: Sincumbent ← Scurrent

6: return Sincumbent

Note that, since the solution costs are not exactly computed but estimated, a tolerance
factor is used to exclude a given solution as a candidate for leading to an incumbent update.

3.2.1 Facility moves

As mentioned above, three different facility moves are considered for reaching the target
solution. We next detail these moves.

Closing facilities

When some of the facilities that are open in Scurrent are closed in Starget we choose one
of them for closing. This is done in a greedy way. First, we estimate the increment in
the solution cost by closing a facility. In particular, for some open facility i we compute

−fi +
∑

j∈J |i(j)=i

pj(c
min
j − cij),
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where cmin
j represents the minimum service cost for customer j computed among the

open facilities in Scurrent (except for facility i that is being checked for closing).

When a facility is eventually closed each customer assigned to it is taken in turn. If the
facility to which it is assigned in Starget is open, it is directly assigned to that facility.
Otherwise, it is assigned greedily using the function defined in the GRASP constructive
procedure.

Opening facilities

Facilities that are open in Starget but are closed in Scurrent are the candidates for
being opened. Again, the facility chosen to be opened is the one producing the least
(estimated) increase in the solution cost. Such estimate for a facility i is taken to be

fi +
∑

j∈J |i(j)=i in Starget

pj(cij − ci(j),j),

where i(j) is the facility to which customer j is assigned in Scurrent.

All customers who are assigned to a given plant in Starget are automatically assigned to
it when it is opened. When doing so infeasibilities with respect to the lower bound on
the number of customers assigned to a plant can occur. In this case we use the repair
mechanism introduced in Section 3.1.2.

Exchange facilities

The goal in this case is to swap one facility in Scurrent by another one in Starget. Sup-
pose that i1 is open in Starget but closed in Scurrent. Additionally, let i2 be a facility
that is closed in Starget but open in Scurrent. In this case we can open i1 and close i2 in
Scurrent. When doing so we reassign to i1 all the customers initially assigned to i2. If
`1 > `2 and there are less than `1 customers initially assigned to i2, we end up with a
violation in the lower bound constraints. This situation is tackled by considering again
the restoration mechanism introduced in Section 3.1.2.

What remains to clarify is the selection of the pair (i1,i2) to swap. Let us assume,
without loss of generality, that we have a candidate pair (i1,i2). We estimate the incre-
ment in the solution cost for doing this move as follows. Let Ji2 be the set of customers
assigned to i2 in Scurrent (and thus that have to be reassigned due to the closing of
i2). We can partition Ji2 into two subsets: J1

i2
= {j ∈ Ji2 | i(j) = i1 in Starget} and

J2
i2

= Ji2 \ J1
i2

. The solution cost increment is estimated according to

fi1 − fi2 +
∑
j∈J1

i2

pj(ci1j − ci2,j) +
∑
j∈J2

i2

pj(c
min
j − ci2,j),

where cmin
j represents the minimum service cost for customer j computed among the

open facilities in (Scurrent \ {i2})∪{i1} (excluding facility i2 that is going to be closed).

3.2.2 Customer moves

After performing all the facility moves (and the corresponding customer reassignments) we
perform a local search (Algorithm 3—LocalSearch 2(S)) involving the customers. We con-
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sider a reassignment procedure that is different from the one proposed in the GRASP. The
procedure is now based on the following estimation for the variation in cost when reassigning
customer j from plant i1 = i(j) to i2:

ci2j − ci1j + gi2
pj

zi2 + 1
max{zi2 + 1−Ki2 , 0} − gi1

pj
zi1

max{zi1 − ki1 , 0}.

In the above expression we combine three estimates: (i) the increase of the service costs,
(ii) the increase of the expected penalty in plant i2, which will have one more customer now,
and (iii) the reduction of the expected penalty in plant i1.

4 Computational experience

In this section we report the computational experience carried out for evaluating the new
heuristic framework proposed. We start by describing briefly the test instances considered
and then we present and discuss several implementation details. Finally, we report the results
obtained, firstly for a set of instances of the homogeneous FLPBD (solutions values can be
computed exactly and, moreover, optimal values are known) and afterwards for a set of
instances of the general problem.

For each instance we focus our attention on three solutions: (i) the solution obtained by
the GRASP procedure alone, (ii) the solution obtained when using PR1 after the GRASP,
and (iii) the solution obtained when using PR2 after the GRASP.

For evaluating the heuristic in general we compare its results with those obtained with
the sampling average approximation approach developed in Albareda-Sambola et al. (2016).

All algorithms were coded in C++ and the computational tests were performed on a
machine running an Intel Core i7 4770K with 32GB of RAM.

4.1 Test instances

In our computational experience, we considered two different sets of instances. They are
available as supplementary material to this paper. The first one contains instances for the
homogeneous case, selected from those generated by Albareda-Sambola et al. (2011). The
second set consists of instances generated by Albareda-Sambola et al. (2016) for the general
FLPBD. In order to make this paper self-contained, we provide a few details about the
instances.

Regarding the instances for the homogeneous FLPBD we recall that they were gen-
erated from 11 Traveling Salesman Problem instances available at http://comopt.ifi.

uni-heidelberg.de/software/TSPLIB95/ namely, berlin52, eil51, eil76, kroA100, kroB100,
kroC100, kroD100, kroE100, pr76, rqt99, and st70. From those instances, small and large
FLPBD instances (|I| = 15/|J | = 30 and |I| = 20/|J | = 60, respectively) were generated. For
each combination of plants and customers, the remaining data was generated varying several
parameters as follows: (i) three different values for the probability of demand (0.1, 0.5, and
0.9), (ii) three different levels of variability for the set-up costs (0, µ/10, and µ/3, where µ is
the expected value set for the setup costs), (iii) low, medium, and high capacity levels, and
(iv) two different possibilities for `i (0 and a value greater than 0). In total, Albareda-Sambola
et al. (2011) generated 2754 instances divided into 17 groups (11 groups of small instances and
6 groups of large instances). For the current work, we selected a subset of 306 such instances,
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consisting of the 18 instances in each group corresponding to the intermediate value for the
variability for the set-up costs (µ/3), low and high capacity levels (the intermediate value was
discarded), and `i > 0, i ∈ I.

Concerning the heterogeneous FLPBD, we consider the 306 instances introduced by
Albareda-Sambola et al. (2016). These instances were generated from the 306 homogeneous
instances just mentioned, considering three types of customers: low-, medium- and high-
probability demand customers. The demand probabilities were drawn from U(0.10, 0.25),
U(0.40, 0.60), and U(0.75, 0.90) distributions, respectively, for the three customer types. Ad-
ditionally, three patterns for the demand were considered: in pattern 1 there are 60% of
low-probability demand customers, 20% medium and 20% high. In pattern 2 these percent-
ages are 20%, 60% and 20%, respectively; and in pattern 3 the values are 20%, 20% and 60%,
respectively. The reader is referred to Albareda-Sambola et al. (2016) for all the details.

Each homogeneous instance is identified by a label of the form name_id_pr_γ_h, where,
name is the name of the original TSP instance (with the prefix L for large instances), id

∈ {1, 2, 3} identifies the instance among the three generated from the same original TSP
instance, pr ∈ {1, 5, 9} indicates the homogeneous demand probability (‘1’ corresponds to 0.1,
‘5’ corresponds to 0.5, and ‘9’ corresponds to 0.9), γ ∈ {1, 4} is the value of the parameter γ
used for generating the capacities of the facilities, and finally, h stands for “homogeneous”.

Each non-homogeneous instance is identified by a label of the form name_id_pr_γ_n, with
a similar interpretation as above, where now the last suffix n stands for non-homogeneous.

4.2 Implementation details

In this section we detail some aspects related to the implementation of the heuristic. In
particular, we discuss the exact and simulated computation for the cost of a feasible solution,
and we present the parameter tuning.

4.2.1 Evaluating a feasible solution

Recall that the exact evaluation of the recourse function amounts to enumerating, for each
open facility i, all the possible sets of demand customers among Ji (or, at least, all those with
cardinality greater than Ki). Since |Ji| can be very large, particularly for instances with low
demand probabilities, this can become unaffordable, even for one single evaluation.

In the case of facility outsourcing the service costs for a given demand vector are not much
involved and thus, even if it takes some considerable CPU time, it is possible to evaluate
exactly the cost of a solution by enumerating for each facility all possible subsets of demand
customers among the ones assigned to it. This is not the case when customer outsourcing is
considered, since the order by which the demand customers call for being served influences
the service cost. Therefore, Enumerating all possible scenarios would require to enumerate
all possible call sequences for each possible set of demand customers. Accordingly, even if we
are willing to allow a large CPU time for evaluating a solution, that might not be possible.
Thus, we simulate the expected service cost of an open facility when the number of demand
customers assigned a priori to that facility is beyond some threshold, nMax.

Since the above type of evaluation cannot be used repeatedly, we decided to apply it only
once, for the final solution returned by the heuristic.
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4.2.2 Estimating the cost of a feasible solution (General FLPBD)

To evaluate a feasible solution it is necessary to evaluate the recourse function, that is, the
expected costs of service plus outsourcing. In our case we apply Monte Carlo simulation and
use as an estimate of this cost the average cost associated with a sample of scenarios. We do
not fix the sample size, instead we keep sampling scenarios until the average converges:

100×
∣∣∣∣previous average− current average

previous average

∣∣∣∣ < precision, (9)

where ‘precision’ is a small value defined exogenously.
Different strategies exist to accelerate the computation of this average. Preliminary tests

suggested the use of antithetic estimators (Breimer et al. 2012). The idea is simple. By taking
at each iteration the average of two unbiased estimators of the same value with negative
correlation we obtain a new unbiased estimator with smaller variance. In our particular case
from each sequence of n pseudo-random numbers U(0,1), ρ1, . . . , ρn, we generate two different
scenarios. In the first of them the set of demand customers is defined as {j ∈ J : ρj 6 pj}
and in the second one it is {j ∈ J : 1 − ρj 6 pj}. Since the solution costs associated with
either scenario are negatively correlated estimators of the solution cost, their mean value is a
more efficient estimator than any of them alone. Therefore, our final estimate is the average
of such values over a large enough number of simulations.

In the case of facility outsourcing, the order by which the customers call for service is
not relevant to determine a scenario and its associated solution cost. However, this is not
the case with customer outsourcing. For the latter, in addition to generating the demand
customers, we also need to simulate the order by which they call for being served. This is
needed in order to know exactly which customers are served from their assigned facilities and
which ones are outsourced. As soon as all the above information is available for a particular
scenario, it is straightforward to compute the cost of a solution associated with it. Both for
facility outsourcing and for customer outsourcing we can repeat this process as many times
as we want. Every time we repeat the process we get another antithetic estimate for the
solution cost. We stop the process when condition (9) is met.

In our heuristic we consider two different precision levels: high precision and low precision
(see Algorithms 1 and 4). In the first phase of our heuristic (Algorithm 1, lines 1–17) we only
consider simulating solution costs using high precision. In the second phase (Algorithm 1,
lines 18–23) we always consider low precision except when we find a solution that is potentially
better than the incumbent. In this case, before updating the incumbent, we deepen the
simulation by considering high precision in order to have a more accurate estimate of the
potential new incumbent.

Preliminary experiments were carried out using different functions for the approximation
of the solution costs such as (i) the exact evaluation of the cost function (see above); (ii) the
exact evaluation function associated with the homogeneous case using the average demand
probability; (iii) the exact cost evaluation assuming that all customers assigned to the same
facility have an equal demand probability given by their average probability; (iv) the cost
function simulated as above but always using the lower precision; (v) the cost function sim-
ulated as above but always using the higher precision. The obtained results showed that the
above described simulation function is the most effective one, among those we tested.

Since for the homogeneous case an exact evaluation of the cost is possible by making use
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of the probabilities corresponding to a binomial distribution, when Algorithm 1 is applied to
an instance of that problem, function estimateCost(S,precision) is replaced by a function
that returns the exact value.

4.2.3 Parameter tuning

Before presenting and discussing the results obtained we present the final values chosen for
all the parameters involved in our heuristic. Tuning these parameters was quite a relevant
step in all this process, which led us through many preliminary tests whose results do not
fit the reasonable length of a research paper and are thus omitted. Nevertheless, we briefly
mention some of the experiences carried out and then we present the final values chosen for
the complete experiments.

• α (parameter defining the range of the RCL in the GRASP). We tested values between
0.1 and 0.4.

• p++ (probability ruling the first attempt to closing facilities in PR1). We tried the
values 0.1, 0.5, and 0.9.

• tolerance (used in Algorithm 4). We tried the values 0.999 and 1.05.

After all the preliminary computations we set the parameters values according to Table 1.
We also tested alternative estimations of the cost variations in the moves involved in the
algorithms, specifically devised for the customer outsourcing policy. The increase in the
computing times did not yield better results and, therefore, these estimates were discarded.

4.3 Results for the homogeneous Case

To assess precisely the quality of the solutions produced by our heuristic, we run a first set of
experiments with the homogeneous FLPBD instances. Since in this case optimal solutions are
known (see Albareda-Sambola et al. 2011), we can measure the exact percentage optimality
gaps of the heuristic solutions obtained.

For each instance 5 runs were performed and the minimum, average, and maximum CPU
time (in seconds) and gap (%) were computed.

In Figures 1 and 2 we show aggregated results for the different sets of 18 instances as-
sociated with each original TSP instance. For each set we present three vertical bars: the
first one gives the average of the 5-run average gaps (%) with respect to the optimal solutions
obtained in Albareda-Sambola et al. (2011) after executing the GRASP procedure alone. The
following two bars depict a similar average when each of the two variants of the PR are added
to the process. The values used for drawing these figures are given in Tables 2 and 3 of the
Appendix, which present average results over the set of homogeneous instances associated
with each original TSP instance for the facility outsourcing and the customer outsourcing
policies, respectively. In particular, for each tested heuristic (GRASP, GRASP+PR1 and
GRASP+PR2) %Gap indicates the average percentage gap at termination, relative to the
optimal value, %Opt the average percentage of optimal solutions found over all the runs, and
CPU(secs.) the average computing time in seconds.

As we can conclude from Figures 1 and 2, and Tables 2 and 3, the best feasible solution
obtained with GRASP is on average already good. In fact, the largest average gaps obtained
with GRASP were 1.81% for facility outsourcing and 1.62% for customer outsourcing. When
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Table 1: Values set for the parameters.

Parameter Usage Description value

nElite GRASP (Algorithm 1) Maximum number of solutions in
the elite pool

15

nDiverse GRASP (Algorithm 1) Maximum number of solutions in
the diverse pool

15

max iter GRASP (Algorithm 1) Number of GRASP iterations 500

α GRASP (Algorithm 2) Range for the RCL 0.15

p+ GRASP (Algorithm 2) Probability ruling the process of
opening further facilities while
the stopping criteria are not met

0.9

nMoves GRASP

(LocalSearch 1(S))

Maximum number of times the
same reassignment can be done
in the interchange and reassign-
ment moves

2

rep Algorithm 1 Number of times each elite solu-
tion will be used

2

p++ PR1 Probability of keeping closing fa-
cilities in the first phase of con-
verting the current solution into
the target

0.9

lower

precision

PR 1 and PR2

(Algorithm 4)

Lower precision for simulating
the cost of an a priori solution

5E-4

higher

precision

GRASP, PR1 and PR2

(Algorithms 1 and 4)

Higher precision for simulating
the cost of an a priori solution

1E-5

tolerance GRASP, PR1 and PR2

(Algorithms 1 and 4)

Tolerance used to exclude a given
solution as a candidate to be-
come an incumbent

1.05

iterMin Antithetic estimator Minimum number of random se-
quences to generate indepen-
dently of the stopping criteria

500

ntop Solution evaluation

(customer outsourcing)

Maximum number of demand
customers assigned a priori to
one facility for which we compute
the service cost exactly

20

the proposed PR procedures are applied after GRASP we observe a clear decrease in the
average gaps. Additionally, for the homogeneous case the two variants of the PR seem to
produce very similar average results although, the detailed results observed in Tables 2 and
3 show that PR1 is able to find the optimal solution in more instances than PR2.

In Figures 3 and 4 we can observe the average CPU time required by each of the three
procedures considered. Accordingly, when we consider the GRASP followed by one of the PR
variants we should add both averages to obtain the average CPU time required by GRASP
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Figure 1: Homogeneous case — Facility outsourcing — gap (%).
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Figure 2: Homogeneous case — Customer outsourcing — gap (%).

together with PR.
Observing the average CPU times depicted in Figures 3 and 4 we conclude that they are

negligible, even for the larger instances since they never exceed 0.7 seconds on average for the
two considered outsourcing policies.

Summing up the information depicted in Figures 1–4 we can say that the new heuristic
framework proposed is extremely effective for the homogeneous FLPBD. Although the gaps
obtained using GRASP are already small, both variants of the PR are able to significantly
reduce them further. Moreover, the CPU time required by GRASP increases significantly
with the size of the instances, which is not the case with PR. Indeed, the number of iterations
and the size of the pools of solutions do not change with the size of the instance.
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Figure 3: Homogeneous case — Facility outsourcing — CPU (sec.).
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Figure 4: Homogeneous case — Customer outsourcing — CPU (sec.).

4.4 Results for the general problem

For the problem with non-homogeneous demand probabilities we compare the results with
those obtained by the sample average approximation (SAA) procedure proposed in Albareda-
Sambola et al. (2016) since an enumerative algorithm is not computationally affordable.

A summary of the results can be observed in Figures 5–8. The data depicted in these
figures can be found in the Appendix, Tables 4 and 5. These tables give average values of
%Gap and CPU(secs) for the instances of the general non-homogeneous case. Since optimal
solutions are not known for these instances the gaps are computed with respect to the best
solution found for each instance over all runs of all the tested algorithms. The extensive
results (with the specific instances tested for customer outsourcing) can be found in the
Appendix—Tables 6–8.
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Figure 6: Non-homogeneous case — Customer outsourcing — gap (%).

For each instance tested we obtained four values, namely those associated with the best
feasible solution obtained using: (i) the SAA procedure, (ii) GRASP alone, (iii) GRASP with
PR1, and (iv) GRASP with PR2. We take the smallest among these four values as the best-
known upper bound for the instance. Then, we compute the gaps of the other three values
with respect to this one.

The average such gaps computed for the set of instances associated with each original
TSP instance can be observed in Figures 5 and 6. Looking into these figures we can draw two
interesting conclusions: (1) the gaps relative to the best-known solutions are rather small. The
largest average gap for facility outsourcing was 1,69% and for customer outsourcing 3,17%;
(2) Using SAA the average gap is above zero which is an indication that not always the best
feasible solution was obtained with SAA but with GRASP and PR.

The above observations have even more impact when we look into Figures 7 and 8. In
these figures we can observe the average CPU times (in seconds) required by each of the
four tested procedures. When we consider the GRASP followed by one of the PR variants,
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Figure 7: Non-homogeneous case — Facility outsourcing — CPU (sec.).
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Figure 8: Non-homogeneous case — Customer outsourcing — CPU (sec.).

we should add both averages to obtain the average CPU times required by GRASP together
with PR. In the case of SAA, since the magnitude of the CPU times was totally different we
considered a secondary axis (the right-hand-side axis) for indicating those values.

Observing the average CPU times depicted in Figures 7 and 8 we conclude that, like for
the homogeneous case, they are negligible when using GRASP combined with PR. However,
they are quite significant when using SAA.

All the computations performed indicate that the heuristic framework proposed is robust
as evidenced by the outcome of the five runs executed for each instance, which yielded similar
results.

We can also observe a slight superiority of PR2 on average, even if PR1 is able to find
the optimal solution in more instances.
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Figure 9: Non-homogeneous case — Facility outsourcing — CPU (sec.).
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Figure 10: Non-homogeneous case — Facility outsourcing — gap (%).
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Figure 11: Non-homogeneous case — Customer outsourcing — CPU (sec.).

5 Conclusions

In this paper we have presented a heuristic that combines GRASP with path relinking for
the general case of the Facility Location Problem with Bernoulli Demands with two different
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Figure 12: Non-homogeneous case — Customer outsourcing — gap (%).

outsourcing policies: facility outsourcing and customer outsourcing. In both cases we have
applied two variants of this heuristic both to the homogeneous and to the general case of the
problem. Since the problem with homogeneous demand probabilities can be exactly solved
quite efficiently, homogeneous instances were used to give a precise evaluation of the quality
of the solutions provided by the algorithm. In the general case the solutions were compared
with those provided by a sample average approximation procedure. In both cases the quality
of the solutions is high and the algorithm found them in short CPU times, specially if they are
compared with those required by sample average approximation. To the best of our knowledge
this is the first time that an algorithm is proposed in the literature to solve the general case
of the Facility Location Problem with Bernoulli Demands.
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Appendix

In this appendix we present some detailed results.
In Tables 2 and 3, for each set of homogeneous FLPBD instances associated with one

original TSP instance we present the average gap (%Gap) with respect to the optimal solutions
obtained in Albareda-Sambola et al. (2011), the average percentage of optimal solutions found
(%Opt) over all the runs on each instance, and the CPU time(CPU(secs)). In Tables 4
and 5 we can find the values of %Gap and CPU(secs) for the instances of the general non-
homogeneous case. Since optimal solutions are not known for these instances the gaps are
now computed with respect to the best solution found for each instance over all runs of all
the tested algorithms.

In Tables 6–8 we detail the results for the general case. In the first two tables we have
results for facility outsourcing (small and large instances in different tables). SAA was unable
to solve the large instances with customer outsourcing. Therefore, in this case we only present
results for small instances. Since we performed five runs of the GRASP with PR for every
instance, each line in these three tables corresponds to the averages of five-run averages. For
all instances SAA was executed only once.

Table 2: Homogeneous case — facility outsourcing — average results.

%Gap (% Opt) CPU (sec.)

GRASP GRASP+PR1 GRASP+PR2 GRASP GRASP+PR1 GRASP+PR2

berlin52 0.13 (27.8) 0.14 (44.4) 0.14 (41.1) 0.71 0.23 0.24

eil51 0.13 (0.0) 0.15 (30.0) 0.15 (28.9) 1.14 0.22 0.27

eil76 0.12 (16.7) 0.15 (46.7) 0.14 (36.7) 0.73 0.21 0.27

kroA100 0.12 (20.0) 0.14 (46.7) 0.14 (45.6) 0.56 0.22 0.20

kroB100 0.13 (16.7) 0.15 (47.8) 0.16 (44.4) 1.07 0.35 0.36

kroC100 0.13 (16.7) 0.16 (40.0) 0.16 (37.8) 0.79 0.27 0.28

kroD100 0.12 (20.0) 0.15 (45.6) 0.15 (42.2) 0.78 0.19 0.23

kroE100 0.11 (10.0) 0.09 (47.8) 0.09 (48.9) 0.96 0.39 0.42

pr76 0.11 (16.7) 0.09 (35.6) 0.09 (30.0) 0.79 0.17 0.18

rat99 0.11 (2.2) 0.09 (46.7) 0.08 (45.6) 0.85 0.21 0.28

st70 0.11 (5.6) 0.09 (38.9) 0.08 (31.1) 0.98 0.19 0.20

LkroA100 0.60 (11.1) 0.16 (26.7) 0.15 (28.9) 1.53 0.78 0.78

LkroB100 0.60 (0.0) 0.16 (27.8) 0.16 (25.6) 1.24 0.37 0.41

LkroC100 0.61 (21.1) 0.16 (25.6) 0.16 (25.6) 1.63 0.72 0.76

LkroD100 0.58 (0.0) 0.16 (30.0) 0.16 (30.0) 1.37 0.44 0.51

LkroE100 0.60 (4.4) 0.16 (14.4) 0.16 (15.6) 1.81 1.01 0.98

Lrat99 0.60 (5.6) 0.16 (16.7) 0.16 (15.6) 1.32 0.74 0.74
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Table 3: Homogeneous case — customer outsourcing — average gaps and computing times

%Gap (% Opt) CPU (sec.)

GRASP GRASP+PR1 GRASP+PR2 GRASP GRASP+PR1 GRASP+PR2

berlin52 0.84 (7.8) 0.20 (35.6) 0.25 (30.0) 0.13 0.11 0.09

eil51 1.07 (5.6) 0.22 (35.6) 0.26 (36.7) 0.13 0.11 0.10

eil76 0.79 (15.6) 0.27 (40.0) 0.34 (44.4) 0.13 0.12 0.10

kroA100 0.68 (15.6) 0.35 (47.8) 0.32 (45.6) 0.12 0.10 0.09

kroB100 1.00 (11.1) 0.34 (34.4) 0.34 (36.7) 0.12 0.11 0.10

kroC100 1.01 (16.7) 0.43 (41.1) 0.41 (40.0) 0.15 0.20 0.19

kroD100 0.91 (11.1) 0.30 (38.9) 0.34 (42.2) 0.16 0.22 0.21

kroE100 0.89 (12.2) 0.20 (40.0) 0.21 (40.0) 0.15 0.18 0.17

pr76 0.82 (16.7) 0.14 (37.8) 0.19 (26.7) 0.15 0.19 0.18

rat99 0.99 (11.1) 0.32 (40.0) 0.35 (35.6) 0.16 0.20 0.18

st70 0.96 (0.0) 0.32 (13.3) 0.32 (7.8) 0.15 0.19 0.17

LkroA100 1.41 (6.7) 0.77 (16.7) 0.78 (16.7) 0.67 0.25 0.22

LkroB100 1.32 (0.0) 0.59 (16.7) 0.66 (16.7) 0.70 0.38 0.35

LkroC100 1.62 (11.1) 0.81 (14.4) 0.79 (15.6) 0.67 0.23 0.19

LkroD100 1.11 (0.0) 0.55 (16.7) 0.56 (13.3) 0.71 0.37 0.35

LkroE100 1.54 (0.0) 0.68 (13.3) 0.67 (13.3) 0.70 0.37 0.35

Lrat99 1.29 (11.1) 0.63 (16.7) 0.68 (15.6) 0.70 0.38 0.36

Table 4: Non-homogeneous case — facility outsourcing — average gaps and computing times

Gap (%) CPU (sec.)

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

berlin52 1.13 0.56 0.60 0.27 15.74 14.03 14.13 404.81

eil51 0.95 0.51 0.53 0.23 17.18 9.64 9.55 290.49

eil76 0.85 0.40 0.38 0.49 14.86 9.56 9.44 322.52

kroA100 1.03 0.62 0.61 0.32 18.65 14.99 14.96 287.21

kroB100 1.42 0.81 0.80 0.23 16.93 12.26 12.26 311.72

kroC100 1.25 0.75 0.92 0.21 19.68 14.22 14.24 306.77

kroD100 0.90 0.45 0.44 0.22 16.94 9.63 9.60 310.06

kroE100 1.09 0.64 0.64 0.34 20.61 19.58 19.52 267.27

pr76 1.11 0.37 0.44 0.40 15.87 13.14 13.02 329.08

rat99 1.50 0.78 0.79 0.25 17.08 13.49 13.48 297.70

st70 1.21 0.91 0.99 0.21 19.30 13.20 13.17 319.16

LkroA100 1.56 0.84 0.83 0.30 15.75 25.73 25.91 1404.45

LkroB100 0.97 0.65 0.66 0.59 16.50 24.82 24.31 1639.59

LkroC100 1.67 0.89 0.88 0.33 16.52 29.24 29.11 2161.80

LkroD100 1.69 0.71 0.70 0.51 14.45 18.47 18.19 1531.23

LkroE100 1.53 0.94 0.96 0.42 16.26 20.42 20.65 1945.34

Lrat99 1.53 0.85 0.83 0.52 16.39 21.72 21.77 1693.76
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Table 5: Non-homogeneous case — facility outsourcing —average gaps and computing times

Gap (%) CPU (sec.)

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

berlin52 1.91 1.02 0.73 1.00 1.37 1.02 1.00 34615.26

eil51 3.02 1.52 0.34 0.96 0.84 0.98 0.96 27304.23

eil76 0.86 0.87 0.50 1.05 0.92 1.05 1.05 34450.98

kroA100 1.97 1.10 0.73 1.52 1.22 1.50 1.52 42384.18

kroB100 1.13 1.49 0.92 1.01 1.12 1.04 1.01 41402.15

kroC100 3.17 0.98 0.48 1.20 0.91 1.22 1.20 39698.78

kroD100 2.21 1.32 0.67 1.02 1.16 1.03 1.02 23983.36

kroE100 1.98 0.81 0.42 1.21 1.08 1.22 1.21 29975.07

pr76 1.74 0.87 0.37 1.09 0.96 1.09 1.09 37301.19

rat99 1.75 1.21 0.83 1.03 1.04 1.04 1.03 27534.38

st70 2.10 0.61 0.40 1.03 1.07 1.04 1.03 46208.92
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Table 6: Non-homogeneous case — Facility outsourcing — small instances.

Percent gaps Computing times

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

berlin52 1 1 1 n 0.80 1.51 0.96 1.85 0.80 1.51 0.00 24.17 26.78 5.59 9.04 4.73 6.66 551.77

berlin52 1 1 4 n 1.30 1.96 0.71 1.57 0.85 1.57 1.61 24.02 26.06 15.07 20.61 16.13 22.36 207.83

berlin52 1 5 1 n 1.39 2.24 1.01 1.55 1.00 1.96 0.00 11.87 12.56 2.46 3.26 2.42 2.80 566.48

berlin52 1 5 4 n 1.90 3.19 0.35 0.73 1.02 2.05 0.13 13.12 14.90 7.29 10.88 8.17 9.38 245.00

berlin52 1 9 1 n 0.09 0.13 0.13 0.32 0.08 0.13 0.20 4.76 5.13 1.21 1.44 1.18 1.28 609.86

berlin52 1 9 4 n 0.67 1.08 0.11 0.57 0.11 0.57 0.52 7.68 8.19 12.44 15.49 12.99 16.65 301.45

berlin52 2 1 1 n 1.70 2.24 1.77 2.12 1.67 2.12 0.00 12.77 14.06 4.99 5.50 4.83 5.61 440.20

berlin52 2 1 4 n 2.65 3.04 1.16 1.48 1.00 1.48 0.00 18.34 19.87 8.53 10.42 7.65 9.46 193.83

berlin52 2 5 1 n 0.60 0.90 0.29 0.53 0.25 0.42 0.00 28.73 31.81 6.53 7.09 6.39 7.07 554.27

berlin52 2 5 4 n 1.48 2.30 0.00 0.00 0.00 0.00 1.45 16.31 17.38 31.24 39.34 31.14 39.14 211.45

berlin52 2 9 1 n 0.12 0.23 0.09 0.12 0.07 0.12 0.00 14.47 15.15 0.97 1.39 0.98 1.28 531.52

berlin52 2 9 4 n 1.84 1.84 0.38 0.98 0.78 1.09 0.00 9.08 9.88 8.70 10.57 8.94 12.15 255.32

berlin52 3 1 1 n 1.14 1.79 0.50 1.08 0.44 1.06 0.57 18.03 19.03 6.71 8.58 6.71 8.66 595.57

berlin52 3 1 4 n 0.77 1.21 0.01 0.04 0.01 0.03 0.07 30.42 31.65 74.96 89.72 76.20 93.10 204.58

berlin52 3 5 1 n 0.89 1.22 0.71 1.10 0.89 1.24 0.02 11.52 12.25 4.06 5.10 4.12 5.24 719.02

berlin52 3 5 4 n 1.19 1.61 0.12 0.61 0.12 0.61 0.04 22.14 23.70 50.99 57.24 51.05 62.93 191.26

berlin52 3 9 1 n 0.53 0.99 0.49 0.82 0.34 0.82 0.29 4.71 5.29 1.10 1.17 1.06 1.10 684.87

berlin52 3 9 4 n 1.33 2.91 1.31 2.87 1.31 2.87 0.00 11.23 12.58 9.77 12.13 9.69 12.17 222.37

eil51 1 1 1 n 0.84 0.93 0.44 0.49 0.55 0.93 0.00 12.52 14.59 2.53 2.94 2.30 2.84 381.18

eil51 1 1 4 n 2.08 2.08 0.70 0.80 0.80 0.80 0.00 19.93 22.20 18.06 20.72 16.90 22.53 184.89

eil51 1 5 1 n 1.30 1.46 1.30 1.46 1.56 2.16 0.00 34.38 35.66 1.35 1.51 1.46 1.66 428.17

eil51 1 5 4 n 0.33 0.33 0.20 0.33 0.40 0.70 0.27 14.77 15.70 8.01 9.13 8.06 9.69 194.38

eil51 1 9 1 n 0.61 0.82 0.70 0.93 0.49 0.93 0.72 6.40 6.75 0.82 0.97 0.83 0.98 444.36

eil51 1 9 4 n 1.55 3.99 1.06 3.33 0.97 2.89 0.00 6.91 7.47 7.27 8.84 6.69 8.30 262.24

eil51 2 1 1 n 0.09 0.23 0.02 0.11 0.07 0.23 0.31 23.06 24.11 6.02 7.46 4.51 6.08 344.53

eil51 2 1 4 n 0.73 0.73 0.00 0.00 0.00 0.00 0.83 25.67 29.36 25.61 29.63 29.18 32.25 116.56

eil51 2 5 1 n 1.88 2.34 1.43 2.19 1.33 2.34 0.00 29.44 30.53 4.29 4.88 4.11 4.58 449.50

eil51 2 5 4 n 1.67 1.67 0.23 1.16 0.20 1.02 0.00 15.59 15.97 24.88 29.45 24.45 26.20 152.95

eil51 2 9 1 n 0.54 0.58 0.33 0.58 0.39 0.58 0.36 6.57 6.94 0.77 0.84 0.77 0.84 440.48

eil51 2 9 4 n 1.13 3.01 0.01 0.01 0.01 0.01 0.00 12.27 13.20 23.91 28.70 23.96 29.37 176.32

eil51 3 1 1 n 1.07 2.60 1.06 2.60 1.06 2.60 0.00 27.03 29.30 5.58 9.81 4.96 6.67 281.70

eil51 3 1 4 n 0.39 0.39 0.35 0.39 0.35 0.39 0.00 22.64 24.72 17.33 20.83 16.88 21.55 151.58

eil51 3 5 1 n 1.00 1.36 0.40 0.62 0.43 0.62 0.94 22.31 23.36 3.02 3.49 2.98 3.33 395.92

eil51 3 5 4 n 1.13 1.16 0.40 0.62 0.33 0.62 0.21 13.83 15.16 5.36 6.49 5.55 6.69 147.55

eil51 3 9 1 n 0.51 0.79 0.33 0.70 0.43 0.79 0.21 8.15 8.38 1.41 1.84 1.41 1.91 493.80

eil51 3 9 4 n 0.17 0.86 0.17 0.86 0.17 0.86 0.33 7.67 8.19 17.22 22.29 16.89 22.11 182.78

eil76 1 1 1 n 0.74 0.74 0.48 0.74 0.45 0.74 0.13 16.31 16.86 5.88 7.24 4.90 6.81 439.73

eil76 1 1 4 n 0.78 0.78 0.00 0.00 0.00 0.00 1.10 17.53 19.27 17.62 20.68 18.50 22.02 173.95

eil76 1 5 1 n 0.61 1.00 0.57 1.00 0.51 1.00 0.00 7.77 8.97 1.37 1.63 1.28 1.56 492.25

eil76 1 5 4 n 0.64 0.64 0.92 1.04 0.97 1.28 0.00 11.22 12.23 12.86 15.50 13.27 15.77 153.09

eil76 1 9 1 n 0.76 1.17 0.77 1.35 0.68 1.35 0.18 6.84 7.11 1.21 1.34 1.24 1.34 508.63

eil76 1 9 4 n 0.05 0.05 0.02 0.05 0.00 0.00 0.71 11.27 12.25 2.52 3.22 2.55 3.40 208.41

eil76 2 1 1 n 1.10 1.92 0.33 0.89 0.26 0.89 0.09 18.74 19.95 4.66 5.15 4.70 5.61 351.85

eil76 2 1 4 n 2.84 3.34 0.14 0.70 0.14 0.70 0.48 24.41 26.45 44.66 59.81 44.88 59.39 131.19

eil76 2 5 1 n 2.03 3.21 0.92 1.79 0.97 1.79 0.21 30.79 31.43 2.15 2.84 2.12 2.76 404.98

eil76 2 5 4 n 1.66 3.53 0.81 1.38 0.73 1.38 0.00 12.74 13.79 13.75 20.71 13.60 20.24 182.61

eil76 2 9 1 n 0.83 1.60 0.63 1.22 0.55 0.93 0.00 12.83 13.52 1.29 1.47 1.28 1.38 452.79

eil76 2 9 4 n 0.07 0.07 0.00 0.02 0.00 0.00 0.24 11.99 12.55 5.24 6.25 5.34 5.78 196.35

eil76 3 1 1 n 0.75 1.86 0.65 1.86 0.61 1.86 0.60 24.61 24.94 6.03 8.66 5.65 7.69 414.45

eil76 3 1 4 n 0.32 0.46 0.06 0.29 0.12 0.29 1.50 23.63 25.61 30.76 35.13 28.54 34.45 187.77

eil76 3 5 1 n 0.79 1.85 0.28 1.08 0.17 0.77 0.48 15.83 16.73 1.55 1.89 1.54 1.76 511.25

eil76 3 5 4 n 1.01 2.25 0.44 0.62 0.42 0.93 1.66 8.03 8.54 9.24 12.61 9.26 12.60 235.23

eil76 3 9 1 n 0.12 0.24 0.12 0.24 0.20 0.36 1.43 6.14 6.69 2.73 2.92 2.69 2.96 482.14

eil76 3 9 4 n 0.16 0.37 0.16 0.37 0.16 0.37 0.00 6.82 7.17 8.60 10.04 8.62 9.92 278.73

kroA100 1 1 1 n 2.16 2.35 2.21 2.35 2.27 2.83 0.00 25.83 27.82 13.99 16.90 14.75 18.58 283.36

kroA100 1 1 4 n 2.07 2.53 1.23 1.42 1.23 1.42 0.00 30.91 33.89 70.24 83.44 70.05 81.84 123.87

kroA100 1 5 1 n 2.10 2.99 1.31 1.95 1.34 1.88 1.04 32.31 33.43 17.77 21.55 17.58 21.55 410.90

kroA100 1 5 4 n 0.59 0.62 0.13 0.13 0.13 0.13 0.00 22.03 23.76 40.45 45.49 40.12 45.59 160.72
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kroA100 1 9 1 n 0.27 0.42 0.21 0.42 0.21 0.42 0.13 7.88 8.71 4.18 4.92 4.01 4.65 460.07

kroA100 1 9 4 n 1.16 1.47 0.28 0.70 0.25 0.70 0.72 12.96 14.08 18.54 24.64 18.83 24.53 197.00

kroA100 2 1 1 n 1.29 1.29 1.48 1.75 1.29 1.29 0.00 17.64 19.09 9.62 11.56 9.75 11.55 286.59

kroA100 2 1 4 n 1.79 1.79 0.00 0.00 0.00 0.00 0.30 20.54 21.78 8.64 9.78 8.55 9.62 122.15

kroA100 2 5 1 n 0.41 0.64 0.09 0.12 0.09 0.12 0.00 29.00 32.09 3.42 4.42 3.54 4.45 614.53

kroA100 2 5 4 n 0.73 1.72 0.72 1.72 0.72 1.72 0.04 14.75 16.28 29.83 37.67 29.23 35.77 150.27

kroA100 2 9 1 n 0.53 0.53 0.07 0.12 0.02 0.12 0.39 6.07 6.16 1.15 1.33 1.17 1.42 575.25

kroA100 2 9 4 n 0.11 0.11 0.00 0.00 0.00 0.00 0.91 25.70 27.73 13.45 16.39 13.43 18.27 147.87

kroA100 3 1 1 n 1.46 1.50 1.61 1.78 1.55 1.78 0.00 16.52 18.53 4.00 5.38 3.77 3.95 247.12

kroA100 3 1 4 n 0.58 0.58 0.53 0.58 0.58 0.58 0.00 25.54 26.60 19.64 20.98 19.38 22.20 122.67

kroA100 3 5 1 n 1.63 1.79 0.54 0.60 0.48 0.62 0.38 20.31 21.39 3.05 3.46 2.99 3.38 389.55

kroA100 3 5 4 n 0.46 0.46 0.16 0.45 0.34 0.88 0.00 13.37 14.42 7.26 8.46 7.22 8.40 162.18

kroA100 3 9 1 n 0.46 0.46 0.46 0.46 0.46 0.46 0.00 3.28 3.42 0.73 0.81 0.75 0.81 503.07

kroA100 3 9 4 n 0.79 0.79 0.07 0.26 0.06 0.14 1.76 11.08 11.36 3.94 4.32 4.18 4.72 212.59

kroB100 1 1 1 n 1.31 2.03 1.36 2.35 1.55 2.33 0.00 22.48 23.04 2.87 3.88 3.32 5.46 356.95

kroB100 1 1 4 n 3.80 3.94 3.65 3.94 3.80 3.94 0.00 29.99 33.85 25.95 28.58 26.25 31.00 147.89

kroB100 1 5 1 n 1.16 1.57 0.85 1.47 1.24 1.34 0.39 21.95 23.89 2.22 2.56 2.20 2.53 444.88

kroB100 1 5 4 n 5.52 6.22 1.29 6.08 1.29 6.08 0.00 13.62 14.41 5.82 7.16 5.96 7.18 153.06

kroB100 1 9 1 n 0.01 0.01 0.01 0.01 0.01 0.01 1.15 12.14 12.90 1.07 1.14 1.09 1.12 514.89

kroB100 1 9 4 n 0.59 0.59 0.00 0.00 0.00 0.00 0.07 14.77 15.44 9.26 10.73 9.45 10.84 156.28

kroB100 2 1 1 n 1.02 1.28 0.80 1.28 0.73 0.90 0.00 17.48 19.52 9.58 12.62 9.65 11.57 414.85

kroB100 2 1 4 n 0.56 1.98 0.12 0.49 0.07 0.23 0.19 18.68 20.71 21.53 24.69 21.79 25.02 203.35

kroB100 2 5 1 n 0.87 1.42 0.79 1.26 0.79 1.26 0.00 19.91 21.32 2.36 2.82 2.38 2.80 575.65

kroB100 2 5 4 n 1.64 1.64 0.59 1.01 0.48 1.00 1.04 9.37 10.36 19.80 25.48 19.04 25.40 249.44

kroB100 2 9 1 n 0.99 1.38 0.99 1.38 0.99 1.38 0.00 7.58 8.77 1.37 1.68 1.36 1.61 535.35

kroB100 2 9 4 n 0.77 1.05 0.60 1.05 0.54 0.74 0.00 4.67 5.17 11.39 13.92 11.87 14.35 190.94

kroB100 3 1 1 n 2.10 3.43 0.71 1.13 0.55 0.92 0.00 24.39 26.87 18.92 23.13 17.94 21.47 270.72

kroB100 3 1 4 n 1.35 1.70 0.85 1.45 0.85 1.49 0.00 23.34 24.94 33.24 39.44 33.13 40.29 151.17

kroB100 3 5 1 n 1.39 2.06 0.46 1.04 0.34 0.69 0.08 24.80 25.52 8.32 11.21 8.37 11.32 480.82

kroB100 3 5 4 n 0.66 0.92 0.15 0.25 0.15 0.25 0.02 20.50 21.91 30.30 38.70 30.29 38.85 146.28

kroB100 3 9 1 n 0.21 0.62 0.24 0.62 0.18 0.62 1.16 12.32 13.72 3.57 4.14 3.53 3.94 455.15

kroB100 3 9 4 n 1.64 2.29 1.18 1.62 0.75 0.92 0.00 6.78 7.67 13.19 13.58 13.01 13.41 163.26

kroC100 1 1 1 n 0.44 1.15 0.44 1.15 0.42 1.06 0.22 15.91 17.70 6.04 8.30 5.45 6.53 282.29

kroC100 1 1 4 n 2.40 2.92 0.17 0.87 0.17 0.87 0.03 20.24 24.91 75.95 84.20 71.87 78.97 114.32

kroC100 1 5 1 n 1.25 1.48 1.19 1.51 1.26 1.51 0.00 43.87 45.70 12.18 15.50 11.72 16.59 410.05

kroC100 1 5 4 n 1.52 2.00 0.04 0.07 0.36 1.00 0.33 17.43 19.69 23.31 31.98 23.25 32.73 122.18

kroC100 1 9 1 n 0.00 0.00 0.00 0.00 0.00 0.00 0.36 6.84 7.14 4.32 5.15 4.33 5.16 515.84

kroC100 1 9 4 n 0.03 0.17 0.03 0.17 0.03 0.17 0.34 18.90 21.44 17.18 20.60 17.82 20.05 168.15

kroC100 2 1 1 n 2.62 3.70 1.92 2.64 1.83 2.64 0.00 22.83 23.98 11.79 16.16 10.53 12.13 333.87

kroC100 2 1 4 n 6.36 6.52 2.90 5.18 5.48 5.73 0.00 21.09 22.86 15.63 21.29 21.53 22.40 127.66

kroC100 2 5 1 n 0.90 1.13 0.61 0.80 0.82 1.13 0.78 38.02 39.54 4.11 4.91 4.23 4.94 454.73

kroC100 2 5 4 n 0.02 0.04 0.03 0.04 0.04 0.04 0.42 23.76 24.47 19.62 20.52 19.66 20.42 150.64

kroC100 2 9 1 n 0.75 1.14 0.57 0.77 0.60 0.82 0.00 7.02 7.24 1.30 1.51 1.33 1.52 540.57

kroC100 2 9 4 n 0.00 0.00 0.00 0.00 0.08 0.19 0.75 18.01 18.75 6.80 7.36 6.81 7.36 191.29

kroC100 3 1 1 n 1.20 1.69 1.13 1.49 1.06 1.66 0.00 15.09 17.19 4.23 5.35 4.60 8.14 361.65

kroC100 3 1 4 n 0.00 0.00 0.00 0.00 0.00 0.00 0.62 25.74 27.20 7.01 9.73 6.65 11.96 164.53

kroC100 3 5 1 n 1.44 2.11 1.23 1.48 1.20 1.28 0.00 23.68 24.21 2.41 3.19 2.44 3.19 587.70

kroC100 3 5 4 n 2.13 2.13 1.83 2.13 1.83 2.13 0.00 15.09 16.43 23.40 29.32 23.45 29.25 205.17

kroC100 3 9 1 n 0.21 0.31 0.25 0.31 0.14 0.31 0.00 12.78 13.02 3.33 3.64 3.38 3.62 591.41

kroC100 3 9 4 n 1.31 3.00 1.19 2.43 1.17 2.31 0.00 7.94 9.00 17.39 23.02 17.27 22.93 199.79

kroD100 1 1 1 n 1.30 2.18 1.14 2.18 1.14 2.18 0.75 23.30 23.67 3.81 5.61 4.00 6.02 364.71

kroD100 1 1 4 n 2.02 3.86 0.73 1.36 0.55 1.20 0.93 21.34 22.36 33.04 37.88 33.12 36.70 201.73

kroD100 1 5 1 n 1.13 1.33 0.55 0.95 0.48 0.59 0.00 21.25 21.84 1.55 1.88 1.51 1.72 384.04

kroD100 1 5 4 n 0.94 1.28 0.03 0.15 0.09 0.45 0.56 17.31 19.06 27.32 29.34 26.93 28.41 180.79

kroD100 1 9 1 n 1.21 1.59 0.67 0.71 0.65 0.71 0.00 10.76 10.94 1.21 1.35 1.22 1.35 570.46

kroD100 1 9 4 n 1.33 1.74 0.26 0.46 0.26 0.46 0.95 14.47 15.42 19.97 20.80 19.98 20.92 222.16

kroD100 2 1 1 n 1.11 1.73 0.89 1.55 0.68 1.35 0.46 28.37 29.31 4.96 6.44 4.40 5.20 287.53

kroD100 2 1 4 n 0.56 1.04 0.42 0.44 0.42 0.44 0.00 27.66 28.36 19.98 25.18 20.40 26.41 132.82

kroD100 2 5 1 n 1.58 1.58 0.28 0.97 0.28 0.97 0.00 18.90 21.50 2.29 2.83 2.27 3.44 468.96

kroD100 2 5 4 n 0.16 0.16 0.00 0.02 0.00 0.00 0.07 10.92 11.91 17.89 22.11 17.76 23.16 147.03

kroD100 2 9 1 n 0.09 0.31 0.06 0.31 0.06 0.31 0.00 4.28 4.64 1.33 1.49 1.35 1.60 560.76
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kroD100 2 9 4 n 0.08 0.08 0.08 0.08 0.08 0.08 0.00 13.22 13.88 6.45 7.13 6.85 7.27 224.74

kroD100 3 1 1 n 1.41 2.39 1.20 2.22 1.36 2.22 0.00 18.92 20.86 6.05 6.80 6.28 7.14 309.95

kroD100 3 1 4 n 0.71 0.71 0.57 0.71 0.57 0.71 0.22 20.88 23.17 8.02 10.12 7.80 9.50 151.14

kroD100 3 5 1 n 0.39 1.12 0.39 1.12 0.39 1.12 0.00 23.63 25.02 1.39 1.59 1.40 1.78 458.09

kroD100 3 5 4 n 1.76 1.76 0.38 0.38 0.38 0.38 0.00 16.54 16.80 9.71 10.17 9.25 9.89 156.12

kroD100 3 9 1 n 0.28 0.30 0.28 0.30 0.28 0.28 0.00 4.07 4.22 1.16 1.22 1.11 1.18 561.03

kroD100 3 9 4 n 0.19 0.19 0.19 0.19 0.19 0.19 0.00 9.09 9.91 7.16 8.52 7.09 8.33 198.96

kroE100 1 1 1 n 2.48 3.17 1.16 1.99 1.37 1.99 0.00 24.37 25.53 33.79 45.81 34.83 43.52 265.28

kroE100 1 1 4 n 0.47 1.56 0.47 1.56 0.47 1.56 0.00 20.79 23.31 30.00 34.53 30.15 36.07 116.49

kroE100 1 5 1 n 0.42 0.59 0.41 0.54 0.39 0.54 0.00 29.91 33.34 4.69 5.63 4.63 5.69 394.95

kroE100 1 5 4 n 0.43 1.20 0.41 1.20 0.41 1.20 0.48 12.56 13.26 29.04 33.81 27.61 33.69 139.76

kroE100 1 9 1 n 0.34 0.74 0.16 0.72 0.18 0.74 0.48 10.25 10.91 2.42 3.22 2.44 3.14 509.73

kroE100 1 9 4 n 1.91 1.91 0.34 0.34 0.27 0.34 0.41 15.67 16.61 21.21 22.61 21.15 23.40 161.34

kroE100 2 1 1 n 1.28 2.26 1.09 1.76 1.06 1.76 0.00 18.86 21.89 10.60 18.26 10.07 15.89 240.69

kroE100 2 1 4 n 2.53 5.45 1.90 4.63 1.90 4.63 1.35 30.29 33.03 41.53 63.89 40.69 63.71 120.60

kroE100 2 5 1 n 0.27 0.62 0.34 0.98 0.27 0.62 0.00 31.48 34.06 6.10 8.01 6.06 7.97 436.50

kroE100 2 5 4 n 0.75 1.03 0.72 1.03 0.72 1.03 0.00 10.79 12.14 11.44 13.46 11.87 15.03 120.78

kroE100 2 9 1 n 0.82 1.48 0.71 1.41 0.74 1.50 0.84 23.80 25.06 4.45 5.58 4.47 5.56 445.33

kroE100 2 9 4 n 1.26 2.73 1.00 2.75 1.00 2.73 0.00 10.31 10.81 5.47 7.64 5.64 7.48 150.73

kroE100 3 1 1 n 1.17 2.01 0.85 1.03 0.80 1.03 0.00 24.56 26.52 48.07 67.64 48.91 67.40 242.78

kroE100 3 1 4 n 0.00 0.00 0.00 0.00 0.00 0.00 1.52 23.64 24.84 24.56 28.22 24.63 27.41 133.85

kroE100 3 5 1 n 2.27 2.69 0.87 1.04 0.92 1.70 0.78 27.11 28.80 21.23 23.23 22.95 29.42 444.11

kroE100 3 5 4 n 0.76 0.76 0.00 0.00 0.00 0.01 0.21 21.44 22.39 40.64 44.18 38.89 45.66 181.30

kroE100 3 9 1 n 1.47 1.64 0.78 1.27 0.56 0.87 0.00 17.22 18.29 4.05 4.42 4.21 5.10 537.14

kroE100 3 9 4 n 0.91 0.91 0.33 0.91 0.41 0.91 0.00 17.93 18.53 13.12 15.45 12.16 14.23 169.54

pr76 1 1 1 n 0.64 1.07 0.81 0.97 0.71 1.18 0.00 26.52 28.19 16.88 20.37 18.04 22.39 426.12

pr76 1 1 4 n 2.67 2.72 1.57 1.68 1.52 1.68 0.00 27.97 28.91 38.90 47.52 37.75 45.84 171.78

pr76 1 5 1 n 1.48 1.52 0.91 1.12 0.82 1.12 0.00 25.62 26.82 5.71 7.05 5.76 6.65 452.26

pr76 1 5 4 n 0.07 0.07 0.07 0.07 0.07 0.07 0.00 6.63 7.28 17.63 19.58 21.13 22.79 145.92

pr76 1 9 1 n 0.42 0.47 0.36 0.41 0.37 0.47 0.00 5.40 5.61 1.53 1.70 1.44 1.76 520.93

pr76 1 9 4 n 1.21 1.24 0.00 0.00 0.00 0.00 0.58 17.78 18.38 15.49 16.88 15.42 16.27 204.58

pr76 2 1 1 n 1.86 1.86 0.81 1.03 1.14 1.59 0.00 20.01 20.83 7.21 9.83 7.03 8.87 387.18

pr76 2 1 4 n 1.61 1.61 0.04 0.22 0.00 0.00 0.41 32.70 34.61 61.90 72.71 58.00 72.28 174.58

pr76 2 5 1 n 1.70 1.94 0.78 0.84 1.12 2.08 0.00 23.39 25.25 1.53 1.77 1.65 1.94 545.86

pr76 2 5 4 n 2.91 5.13 0.02 0.08 1.10 1.10 0.41 16.26 17.27 4.98 5.77 3.97 4.74 205.93

pr76 2 9 1 n 0.03 0.07 0.01 0.07 0.01 0.07 3.46 8.78 9.69 1.24 1.40 1.26 1.41 470.54

pr76 2 9 4 n 0.07 0.07 0.07 0.07 0.07 0.07 0.00 3.63 3.75 6.20 6.44 6.12 6.53 222.37

pr76 3 1 1 n 0.68 1.00 0.57 1.08 0.47 1.20 0.00 18.80 19.64 3.05 3.69 3.01 3.33 381.82

pr76 3 1 4 n 0.57 0.57 0.17 0.23 0.13 0.21 0.56 25.50 27.00 35.85 42.28 34.43 41.73 201.08

pr76 3 5 1 n 1.01 1.29 0.01 0.03 0.02 0.03 1.09 8.14 8.81 0.97 1.07 1.05 1.13 456.17

pr76 3 5 4 n 1.65 3.12 0.00 0.00 0.00 0.00 0.70 12.13 12.68 11.03 14.23 10.97 13.49 218.08

pr76 3 9 1 n 0.56 0.80 0.21 0.33 0.21 0.26 0.00 2.05 2.16 0.96 1.02 0.94 1.02 477.13

pr76 3 9 4 n 0.80 0.80 0.16 0.16 0.13 0.16 0.07 4.28 4.54 5.39 6.12 6.38 6.74 261.13

rat99 1 1 1 n 0.67 1.00 0.67 1.00 0.67 1.00 0.30 19.20 21.84 5.90 7.01 5.62 6.83 310.21

rat99 1 1 4 n 1.29 1.29 0.51 0.62 0.62 0.62 0.00 21.10 22.58 16.57 21.55 16.90 21.19 155.93

rat99 1 5 1 n 2.26 3.45 2.28 3.45 2.28 3.39 0.00 25.29 26.60 1.83 2.31 1.67 2.19 654.61

rat99 1 5 4 n 0.15 0.15 0.06 0.15 0.06 0.15 0.23 13.94 14.47 10.82 13.47 10.68 12.75 148.20

rat99 1 9 1 n 0.60 1.09 0.58 1.00 0.61 1.10 0.49 18.94 19.75 1.63 1.94 1.67 2.06 596.39

rat99 1 9 4 n 2.01 3.13 0.61 1.13 0.55 1.08 0.39 10.28 11.69 7.67 9.59 7.24 9.49 242.38

rat99 2 1 1 n 1.85 2.39 1.49 1.82 1.44 1.80 0.00 20.56 22.80 12.79 17.44 15.70 22.25 325.52

rat99 2 1 4 n 4.16 4.51 1.57 1.97 1.57 1.97 0.13 20.79 21.80 17.38 19.69 17.79 21.10 161.05

rat99 2 5 1 n 1.59 1.73 0.48 0.97 0.66 1.16 1.00 19.80 21.47 5.84 7.02 5.95 7.33 369.15

rat99 2 5 4 n 1.17 1.78 0.55 0.55 0.51 0.55 0.00 20.55 21.53 39.13 42.73 38.79 40.82 143.56

rat99 2 9 1 n 1.02 1.39 0.08 0.24 0.14 0.56 0.63 14.20 14.85 1.99 2.08 1.92 2.05 512.19

rat99 2 9 4 n 1.90 2.57 0.03 0.08 0.03 0.08 0.57 9.50 10.13 21.07 25.89 21.39 27.50 200.02

rat99 3 1 1 n 2.77 2.99 1.80 2.99 1.74 2.70 0.00 17.89 18.86 9.73 10.19 8.40 9.89 288.43

rat99 3 1 4 n 1.59 1.84 1.86 2.55 1.98 2.55 0.00 14.14 15.56 21.86 28.09 20.08 25.64 116.46

rat99 3 5 1 n 0.62 1.12 0.48 0.70 0.36 0.70 0.00 24.77 26.64 14.17 15.47 13.88 15.52 368.72

rat99 3 5 4 n 2.02 2.02 0.01 0.07 0.04 0.07 0.63 19.12 20.10 24.22 30.95 24.43 28.10 118.18

rat99 3 9 1 n 1.13 1.14 0.68 0.94 0.81 0.94 0.18 7.15 7.33 6.01 7.23 6.21 7.28 469.99

rat99 3 9 4 n 0.30 0.58 0.20 0.22 0.20 0.22 0.00 10.24 11.00 24.26 25.73 24.28 25.63 177.68
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st70 1 1 1 n 1.61 1.99 1.56 2.23 1.46 1.99 0.00 22.41 24.56 21.28 28.56 21.66 28.08 304.68

st70 1 1 4 n 1.88 1.88 1.43 1.43 1.43 1.43 0.00 33.14 36.45 53.92 55.47 52.70 56.10 144.88

st70 1 5 1 n 0.36 0.71 0.33 1.13 0.28 0.88 0.77 29.61 32.20 2.92 3.33 2.98 3.23 447.60

st70 1 5 4 n 0.71 0.71 0.47 0.47 0.47 0.47 0.00 29.36 30.00 25.39 27.97 24.83 27.73 200.65

st70 1 9 1 n 0.27 0.80 0.18 0.50 0.19 0.50 0.18 13.10 13.52 3.97 5.33 3.94 5.30 529.11

st70 1 9 4 n 0.04 0.04 0.12 0.47 0.11 0.47 0.09 11.20 11.96 5.45 6.73 5.45 6.39 214.73

st70 2 1 1 n 0.00 0.00 0.00 0.02 0.05 0.21 0.57 21.03 23.25 1.67 2.14 1.55 1.66 416.17

st70 2 1 4 n 0.87 0.87 0.80 0.87 0.87 0.89 0.00 25.82 27.59 6.39 7.14 6.09 7.57 172.07

st70 2 5 1 n 1.27 1.88 0.65 1.28 0.65 1.05 0.00 22.90 23.94 6.29 10.83 6.22 11.05 460.69

st70 2 5 4 n 1.36 1.36 0.29 1.06 0.73 1.31 0.00 5.90 6.19 7.60 8.38 8.82 11.54 193.02

st70 2 9 1 n 0.23 0.47 0.37 0.72 0.12 0.44 1.10 4.82 5.06 0.86 0.89 0.87 0.89 533.52

st70 2 9 4 n 0.19 0.19 0.00 0.00 0.04 0.19 0.02 10.65 11.46 9.80 11.73 10.01 12.18 229.69

st70 3 1 1 n 1.73 1.93 1.74 2.24 1.71 1.91 0.00 24.18 25.73 18.93 23.12 17.68 23.19 320.20

st70 3 1 4 n 7.39 7.39 5.91 7.39 7.39 7.39 0.25 33.73 35.38 22.03 27.95 23.21 27.28 159.71

st70 3 5 1 n 1.21 1.21 1.21 1.21 1.21 1.21 0.00 23.93 24.69 10.71 14.11 10.96 13.82 464.47

st70 3 5 4 n 0.89 0.89 0.39 0.45 0.32 0.45 0.00 13.95 14.38 25.86 29.50 25.54 29.19 179.66

st70 3 9 1 n 0.29 0.59 0.18 0.44 0.23 0.68 0.35 11.85 12.38 3.19 3.35 3.17 3.39 554.51

st70 3 9 4 n 1.51 1.51 0.68 1.05 0.63 1.05 0.43 9.86 10.22 11.33 13.06 11.31 13.85 219.59

Table 7: Non-homogeneous case — Facility outsourcing — large instances.

Percent gaps Computing times

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

LkroA100 1 1 1 n 1.69 2.33 1.69 2.33 1.69 2.33 0.00 17.59 18.58 5.80 7.22 5.75 7.39 3278.88

LkroA100 1 1 4 n 0.25 0.64 0.03 0.09 0.03 0.09 0.75 27.86 31.86 82.90 93.70 86.36 93.59 643.83

LkroA100 1 5 1 n 1.10 1.63 0.52 0.95 0.42 0.71 0.00 12.44 12.91 3.32 4.28 3.34 3.99 2592.66

LkroA100 1 5 4 n 0.03 0.03 0.03 0.03 0.02 0.03 0.11 16.19 16.69 55.38 83.52 54.40 79.74 702.93

LkroA100 1 9 1 n 1.41 1.95 0.52 1.03 0.52 0.97 0.81 11.79 13.01 2.28 2.36 2.27 2.39 1867.62

LkroA100 1 9 4 n 1.59 2.06 1.02 1.35 1.15 1.93 0.00 6.93 7.72 24.32 26.89 23.58 25.74 841.98

LkroA100 2 1 1 n 2.42 3.14 1.46 2.44 1.47 2.44 0.00 14.63 14.90 6.41 7.76 6.37 7.59 1841.93

LkroA100 2 1 4 n 1.24 1.65 0.63 1.25 0.63 1.25 0.00 22.12 23.89 85.53 95.15 86.20 96.47 547.49

LkroA100 2 5 1 n 1.87 2.19 0.44 0.79 0.39 0.75 0.01 22.82 24.61 9.39 14.06 9.76 14.30 1409.38

LkroA100 2 5 4 n 2.58 2.96 0.79 2.15 0.85 2.15 0.42 13.99 15.30 66.56 83.73 66.28 83.96 645.66

LkroA100 2 9 1 n 0.35 0.73 0.35 0.73 0.35 0.73 0.50 18.86 20.38 2.82 3.09 2.86 3.05 1681.89

LkroA100 2 9 4 n 1.20 1.76 0.42 1.04 0.42 1.04 0.00 13.16 14.85 25.62 35.93 26.05 37.43 887.90

LkroA100 3 1 1 n 2.71 3.15 2.59 3.18 2.64 3.14 0.00 15.01 16.33 2.84 3.54 2.92 3.54 2431.68

LkroA100 3 1 4 n 2.09 2.92 2.19 2.92 1.93 2.92 0.00 14.58 15.96 8.00 11.59 8.34 10.69 684.68

LkroA100 3 5 1 n 1.65 2.38 0.87 1.41 0.85 1.32 0.00 16.96 18.00 4.49 5.07 4.49 5.13 1587.61

LkroA100 3 5 4 n 1.83 2.19 0.15 0.26 0.13 0.26 1.06 16.46 18.77 56.40 59.45 56.83 63.18 861.81

LkroA100 3 9 1 n 1.72 2.27 1.35 1.59 1.37 1.59 0.00 14.50 15.48 2.60 2.88 2.59 2.83 1941.49

LkroA100 3 9 4 n 2.32 2.53 0.04 0.09 0.08 0.23 1.82 7.66 8.27 18.48 25.44 18.05 25.13 830.75

LkroB100 1 1 1 n 1.16 1.45 1.11 1.45 0.98 1.45 0.00 17.55 19.86 9.46 10.68 9.28 11.29 2778.91

LkroB100 1 1 4 n 1.57 1.94 0.21 0.44 0.21 0.44 0.00 23.04 25.02 76.41 99.65 76.22 102.57 553.42

LkroB100 1 5 1 n 0.87 1.69 0.85 1.59 0.97 1.59 0.00 18.12 19.61 5.16 6.69 5.06 6.40 5034.00

LkroB100 1 5 4 n 0.56 0.79 0.22 0.53 0.22 0.53 0.28 15.26 16.38 56.25 62.54 56.35 62.09 616.14

LkroB100 1 9 1 n 0.55 0.74 0.48 0.70 0.51 0.74 0.00 20.64 21.30 6.41 7.31 6.48 7.63 1872.38

LkroB100 1 9 4 n 1.13 1.52 0.45 1.21 0.46 1.21 0.69 6.65 7.22 21.60 28.74 21.86 28.45 938.80

LkroB100 2 1 1 n 1.64 2.14 1.74 2.08 1.85 2.50 0.00 10.72 11.71 2.14 2.33 2.13 2.48 2770.65

LkroB100 2 1 4 n 0.46 0.80 0.38 0.80 0.35 0.80 1.01 17.92 20.17 31.58 38.83 25.69 37.55 838.79

LkroB100 2 5 1 n 1.29 1.51 0.88 1.24 0.81 1.24 0.00 12.18 13.01 2.59 2.70 2.61 2.69 2422.38

LkroB100 2 5 4 n 0.63 0.81 0.15 0.51 0.15 0.63 3.18 14.96 16.14 21.90 32.50 21.53 32.31 624.22

LkroB100 2 9 1 n 0.60 0.90 0.41 0.70 0.38 0.59 0.17 9.60 10.31 2.51 2.66 2.50 2.62 1702.19

LkroB100 2 9 4 n 2.01 2.82 0.38 0.88 0.42 0.88 0.98 7.89 8.38 25.07 32.17 24.61 32.35 818.41

LkroB100 3 1 1 n 1.79 2.31 1.79 2.31 1.85 2.31 0.00 14.31 15.18 3.40 3.80 3.38 3.87 2190.11

LkroB100 3 1 4 n 0.34 0.83 0.34 0.83 0.34 0.83 0.48 22.27 23.27 44.06 50.61 43.84 50.37 787.56

LkroB100 3 5 1 n 0.61 0.95 0.27 0.65 0.27 0.65 0.11 32.46 33.96 11.35 13.84 10.88 13.46 1983.17
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Table 7 – Non-homogeneous case — Facility outsourcing — small instance — Continued from previous page

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

LkroB100 3 5 4 n 1.29 1.88 1.18 2.48 1.15 2.33 0.55 28.16 29.64 78.97 103.16 78.68 103.25 693.63

LkroB100 3 9 1 n 0.60 1.17 0.53 1.00 0.61 1.00 0.46 11.44 11.94 2.28 2.41 2.28 2.42 1966.84

LkroB100 3 9 4 n 0.43 0.57 0.40 0.46 0.34 0.52 2.63 13.87 14.37 45.67 54.79 44.17 59.03 921.10

LkroC100 1 1 1 n 1.75 1.97 1.67 1.97 1.67 2.19 0.00 15.10 16.80 4.36 5.33 4.35 5.33 3043.67

LkroC100 1 1 4 n 0.97 1.25 0.91 1.25 0.92 1.25 0.00 23.86 26.25 141.61 160.02 141.71 159.98 514.48

LkroC100 1 5 1 n 0.36 0.62 0.40 0.66 0.38 0.63 0.12 14.63 15.36 2.62 2.81 2.66 2.97 5340.08

LkroC100 1 5 4 n 3.30 3.42 0.50 0.64 0.41 0.64 0.57 17.37 18.11 105.51 132.61 106.64 126.52 721.03

LkroC100 1 9 1 n 0.35 1.03 0.35 1.03 0.33 0.93 0.10 20.84 21.52 2.11 2.27 2.11 2.25 2066.34

LkroC100 1 9 4 n 0.45 1.80 0.45 1.82 0.22 0.69 0.87 8.94 9.92 14.57 24.08 13.57 23.82 942.67

LkroC100 2 1 1 n 2.10 2.80 2.12 2.80 2.16 2.97 0.00 16.36 18.05 5.71 6.39 5.54 6.50 5130.06

LkroC100 2 1 4 n 2.53 3.04 0.59 1.66 0.59 1.66 0.57 15.38 16.04 37.82 50.60 36.36 49.66 1058.05

LkroC100 2 5 1 n 1.31 1.62 0.47 0.75 0.41 0.78 0.00 23.41 24.46 3.63 3.86 3.60 3.83 5843.53

LkroC100 2 5 4 n 2.83 3.70 0.18 0.46 0.26 0.43 1.01 25.69 27.72 81.92 97.59 82.57 99.12 722.84

LkroC100 2 9 1 n 1.73 2.14 1.70 1.85 1.69 1.97 0.00 19.58 20.25 3.04 3.50 3.08 3.44 2334.59

LkroC100 2 9 4 n 2.32 2.42 1.36 2.27 1.38 2.27 0.18 13.29 14.14 12.36 15.33 12.53 14.58 787.01

LkroC100 3 1 1 n 1.18 1.61 1.18 1.61 1.26 1.73 0.00 15.17 16.13 3.78 4.32 3.61 4.16 3437.77

LkroC100 3 1 4 n 1.89 2.54 1.72 2.44 1.68 2.44 0.00 17.57 18.52 23.58 33.46 22.66 33.39 862.13

LkroC100 3 5 1 n 1.30 1.63 0.80 1.14 0.87 1.43 0.16 8.01 9.20 2.79 2.86 2.82 2.89 2513.94

LkroC100 3 5 4 n 2.05 2.30 0.12 0.12 0.09 0.12 0.51 19.88 21.44 57.78 65.30 57.21 64.85 616.86

LkroC100 3 9 1 n 1.11 1.69 0.65 1.08 0.78 1.08 1.65 16.14 16.67 2.41 2.57 2.50 2.70 2148.79

LkroC100 3 9 4 n 2.61 3.56 0.79 1.77 0.79 1.92 0.19 6.23 7.03 20.77 22.77 20.47 25.34 828.55

LkroD100 1 1 1 n 2.16 3.08 1.51 2.40 1.43 2.40 0.00 11.40 12.24 3.19 3.41 3.25 3.52 3403.21

LkroD100 1 1 4 n 0.73 0.98 0.64 0.98 0.36 0.98 0.18 10.83 12.02 30.01 36.06 28.60 35.85 919.39

LkroD100 1 5 1 n 3.20 3.76 0.66 1.33 0.79 1.67 0.22 18.57 20.11 5.37 5.91 5.99 6.80 1585.46

LkroD100 1 5 4 n 2.17 4.06 1.03 1.89 1.05 1.80 0.30 11.25 11.62 24.56 30.35 26.91 34.36 847.41

LkroD100 1 9 1 n 0.56 0.72 0.19 0.19 0.27 0.48 0.00 8.86 9.00 2.58 2.66 2.59 2.72 1710.02

LkroD100 1 9 4 n 2.35 2.88 0.12 0.14 0.14 0.28 1.42 8.87 10.03 16.74 21.03 16.69 20.79 812.18

LkroD100 2 1 1 n 2.44 3.09 2.00 2.43 2.08 2.48 0.00 14.07 14.53 3.21 4.21 3.00 3.34 1739.17

LkroD100 2 1 4 n 0.98 1.19 0.38 0.70 0.30 0.70 0.00 15.95 17.55 35.74 44.19 35.29 43.95 792.00

LkroD100 2 5 1 n 2.27 2.87 0.88 1.77 0.83 1.77 1.74 29.52 30.09 3.43 4.26 3.45 4.53 1546.24

LkroD100 2 5 4 n 2.48 2.94 0.47 1.27 0.47 1.27 0.63 26.16 28.88 41.19 63.41 41.15 62.85 798.67

LkroD100 2 9 1 n 0.53 0.98 0.48 1.13 0.41 0.83 0.94 9.12 9.48 2.31 2.48 2.30 2.48 1814.16

LkroD100 2 9 4 n 1.49 2.61 0.66 1.16 0.66 1.16 0.51 10.54 10.77 20.68 24.83 20.36 25.06 705.07

LkroD100 3 1 1 n 1.69 2.55 1.48 2.22 1.69 2.31 0.00 11.86 12.66 3.08 3.64 2.92 3.52 4107.31

LkroD100 3 1 4 n 1.64 1.76 0.81 2.09 0.79 1.68 0.16 14.21 15.05 40.02 52.44 35.02 48.22 771.62

LkroD100 3 5 1 n 1.02 1.26 1.01 1.19 0.97 1.19 0.00 16.67 18.03 2.99 3.20 2.96 3.00 2286.23

LkroD100 3 5 4 n 1.86 1.86 0.11 0.15 0.14 0.45 0.97 17.05 17.83 47.22 50.55 47.23 50.91 900.89

LkroD100 3 9 1 n 1.04 1.39 0.25 0.59 0.26 0.59 0.42 15.36 17.09 2.52 2.63 2.55 2.72 1963.83

LkroD100 3 9 4 n 1.83 1.96 0.06 0.23 0.02 0.09 1.66 9.73 10.23 47.65 51.06 47.23 50.16 859.19

LkroE100 1 1 1 n 0.80 1.75 0.77 1.62 0.77 1.62 0.00 18.52 19.85 3.05 3.54 3.13 3.61 3058.29

LkroE100 1 1 4 n 1.16 1.66 0.95 1.53 0.95 1.53 0.45 20.52 22.16 24.36 28.94 24.39 28.90 828.17

LkroE100 1 5 1 n 0.89 1.10 0.73 1.10 0.68 1.09 0.00 6.80 7.53 2.88 3.16 2.94 3.30 2258.17

LkroE100 1 5 4 n 1.32 2.40 1.10 1.33 1.16 1.33 0.00 16.07 17.97 28.18 32.72 28.43 34.18 823.02

LkroE100 1 9 1 n 1.08 1.32 0.34 0.68 0.33 0.78 0.49 7.16 8.52 2.69 2.77 2.67 2.72 1722.24

LkroE100 1 9 4 n 0.82 1.19 0.02 0.12 0.02 0.12 0.72 10.44 11.23 29.58 33.87 29.71 33.90 956.13

LkroE100 2 1 1 n 1.20 1.78 1.15 1.78 1.33 1.90 0.00 20.47 22.11 2.68 3.11 2.68 3.09 4782.04

LkroE100 2 1 4 n 2.23 2.71 1.99 2.56 2.11 3.16 0.00 21.29 23.42 12.32 20.14 12.22 19.66 651.00

LkroE100 2 5 1 n 1.57 2.63 1.11 1.53 1.04 1.41 0.00 19.93 20.56 2.74 3.02 2.71 2.86 5691.25

LkroE100 2 5 4 n 3.76 4.23 1.72 3.04 1.72 3.04 0.78 20.31 20.78 61.90 90.82 62.28 91.28 739.98

LkroE100 2 9 1 n 1.17 1.75 0.65 1.19 0.65 1.47 0.08 24.49 25.14 3.05 4.22 3.13 4.84 2583.16

LkroE100 2 9 4 n 0.44 0.64 0.44 0.64 0.44 0.64 0.00 11.96 12.44 18.21 23.75 21.72 32.21 967.16

LkroE100 3 1 1 n 2.71 3.20 2.22 3.02 2.21 3.16 0.00 16.16 17.72 11.06 16.31 10.98 16.53 2397.99

LkroE100 3 1 4 n 1.58 1.84 0.96 1.45 1.18 1.59 0.00 19.54 21.16 65.83 80.12 64.95 80.22 674.51

LkroE100 3 5 1 n 1.63 1.98 0.95 1.06 0.74 1.12 0.00 16.81 17.97 6.27 7.46 6.35 7.90 4048.27

LkroE100 3 5 4 n 3.13 3.62 0.75 1.48 0.83 1.48 3.03 11.48 12.40 58.28 80.16 59.30 81.86 681.51

LkroE100 3 9 1 n 1.22 1.34 1.02 1.30 1.03 1.30 0.00 21.32 22.60 5.64 7.04 5.47 6.18 1472.62

LkroE100 3 9 4 n 0.86 1.50 0.06 0.14 0.08 0.17 1.98 9.36 10.10 28.80 34.53 28.68 35.00 680.67

Lrat99 1 1 1 n 1.85 2.09 1.86 2.09 1.85 2.09 0.00 14.30 15.03 3.35 5.25 3.36 5.03 3562.83

Lrat99 1 1 4 n 2.04 2.41 0.39 1.40 0.19 0.35 0.87 14.21 15.19 67.93 82.62 75.38 82.27 839.65

Lrat99 1 5 1 n 3.29 3.63 1.17 2.00 1.17 2.00 0.60 24.90 25.92 18.67 25.02 18.58 25.10 1666.21
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GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

Lrat99 1 5 4 n 1.76 1.91 0.08 0.19 0.08 0.19 0.76 21.77 22.70 45.31 54.12 45.48 54.77 682.31

Lrat99 1 9 1 n 0.51 0.88 0.46 0.73 0.46 0.78 0.27 21.45 23.41 2.46 2.59 2.50 2.58 1719.44

Lrat99 1 9 4 n 1.68 1.94 0.92 1.23 0.89 1.23 0.43 4.14 4.61 46.14 52.39 45.68 52.55 762.78

Lrat99 2 1 1 n 2.37 2.49 2.43 2.78 2.19 2.78 0.00 20.39 21.03 5.50 9.46 5.53 8.69 4870.12

Lrat99 2 1 4 n 1.14 3.60 0.61 1.87 0.62 1.91 0.03 23.96 24.77 27.63 34.54 25.67 32.80 938.21

Lrat99 2 5 1 n 0.78 1.24 0.72 0.91 0.81 1.39 0.00 20.72 21.94 2.31 2.56 2.31 2.50 2700.29

Lrat99 2 5 4 n 0.48 1.12 0.23 0.82 0.23 0.82 0.40 18.61 19.32 30.52 41.21 29.53 41.69 879.20

Lrat99 2 9 1 n 1.16 1.52 0.54 0.91 0.56 1.11 0.68 15.62 16.98 2.45 2.62 2.53 2.80 2103.34

Lrat99 2 9 4 n 0.71 0.72 0.43 0.62 0.34 0.71 2.32 5.55 5.77 36.48 41.89 34.57 40.91 901.90

Lrat99 3 1 1 n 2.41 3.16 2.41 3.16 2.40 3.16 0.00 17.39 18.11 2.09 2.20 2.04 2.20 2187.23

Lrat99 3 1 4 n 1.97 3.81 1.28 2.35 1.59 2.35 0.84 19.49 20.84 21.82 30.59 20.42 30.64 787.41

Lrat99 3 5 1 n 2.09 2.62 0.82 1.69 0.61 1.01 0.41 18.37 19.51 2.66 2.88 2.62 2.77 2261.62

Lrat99 3 5 4 n 2.53 2.72 0.61 1.57 0.62 1.57 0.11 16.57 17.77 41.08 66.17 41.23 60.17 914.36

Lrat99 3 9 1 n 0.57 0.93 0.34 0.70 0.28 0.70 0.72 12.27 13.88 2.39 2.64 2.41 2.63 1855.90

Lrat99 3 9 4 n 0.13 0.15 0.09 0.13 0.09 0.13 0.85 5.29 5.65 32.24 35.72 31.95 35.73 854.88

Table 8: Non-homogeneous case — Customer outsourcing — small in-
stances.

Percent gaps Computing times

GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

berlin52 1 1 1 n 1.49 2.75 1.27 2.62 1.27 2.61 1.37 2.51 2.81 1.15 1.26 1.16 1.36 31643.27

berlin52 1 1 4 n 0.89 1.04 0.62 1.28 0.69 1.04 2.19 1.12 1.16 0.97 1.07 0.92 0.95 4236.97

berlin52 1 5 1 n 1.84 2.01 1.25 1.99 1.13 1.88 1.76 2.00 2.20 1.14 1.22 1.14 1.21 50331.34

berlin52 1 5 4 n 0.71 0.71 0.37 0.86 0.74 1.30 1.49 1.02 1.08 0.99 1.08 1.01 1.18 26335.80

berlin52 1 9 1 n 0.45 0.83 0.45 0.83 0.38 0.80 1.19 0.87 0.91 0.96 1.00 0.88 0.92 87818.44

berlin52 1 9 4 n 0.72 1.01 0.44 1.02 0.40 1.02 3.46 0.67 0.70 0.93 0.96 0.91 1.03 7325.74

eil51 1 1 1 n 0.39 0.49 0.38 0.94 0.39 0.49 3.31 0.86 0.91 1.08 1.18 1.08 1.14 26017.56

eil51 1 1 4 n 2.95 3.10 0.21 1.05 2.17 2.24 0.72 0.97 1.03 0.94 1.05 0.89 0.95 5756.55

eil51 1 5 1 n 1.22 1.64 1.02 1.81 1.14 1.95 2.51 1.00 1.05 1.08 1.15 1.06 1.21 97438.22

eil51 1 5 4 n 0.00 0.00 0.00 0.00 0.00 0.00 1.97 0.69 0.72 1.00 1.19 1.01 1.08 15021.36

eil51 1 9 1 n 1.08 2.19 0.41 1.30 0.42 1.14 2.64 0.87 0.91 0.93 1.02 0.91 1.05 10658.00

eil51 1 9 4 n 3.45 4.32 0.00 0.00 0.00 0.00 6.93 0.67 0.69 0.86 0.91 0.81 0.93 8933.70

eil76 1 1 1 n 2.22 4.29 0.31 1.25 0.84 2.40 2.07 0.94 0.95 1.20 1.33 1.23 1.34 38476.67

eil76 1 1 4 n 2.18 2.18 2.18 2.18 2.18 2.18 0.00 0.79 0.81 0.87 0.92 0.86 0.91 7013.58

eil76 1 5 1 n 0.35 0.59 0.29 0.72 0.41 0.94 0.54 1.12 1.16 1.21 1.28 1.19 1.24 70026.88

eil76 1 5 4 n 0.05 0.06 0.14 0.35 0.08 0.35 0.27 0.70 0.73 0.94 1.02 0.93 1.08 14561.11

eil76 1 9 1 n 0.13 0.33 0.07 0.33 0.00 0.00 0.63 1.23 1.31 1.09 1.13 1.07 1.11 66291.17

eil76 1 9 4 n 0.31 1.13 0.03 0.11 0.03 0.03 1.64 0.75 0.78 1.03 1.11 1.02 1.08 10336.49

kroA100 1 1 1 n 0.51 1.27 0.61 1.77 0.51 1.27 3.82 2.57 2.83 1.00 1.11 1.06 1.13 24919.27

kroA100 1 1 4 n 1.23 1.72 0.38 0.65 0.54 1.06 1.20 0.97 0.99 2.62 3.06 2.60 2.98 6956.27

kroA100 1 5 1 n 1.37 2.20 0.89 1.40 1.00 1.80 1.80 1.23 1.30 1.67 1.80 1.67 1.78 109627.97

kroA100 1 5 4 n 0.96 1.44 0.47 0.80 0.37 0.77 3.79 0.83 0.89 0.93 1.03 0.98 1.11 15284.99

kroA100 1 9 1 n 1.17 1.71 1.18 1.71 1.17 1.71 0.00 0.97 1.00 1.88 2.13 1.92 2.17 76521.17

kroA100 1 9 4 n 1.37 1.37 0.88 1.64 1.01 1.37 1.20 0.78 0.84 0.88 0.98 0.89 1.02 20995.44

kroB100 1 1 1 n 0.78 1.73 0.40 0.62 0.41 0.62 0.44 1.03 1.13 0.95 0.99 0.94 0.99 23952.41

kroB100 1 1 4 n 2.31 4.19 2.58 5.56 2.31 4.19 0.00 0.95 1.01 0.85 0.93 0.82 0.92 5193.89

kroB100 1 5 1 n 0.77 1.38 0.47 1.22 0.44 0.63 3.19 1.00 1.09 1.56 1.66 1.46 1.52 80178.92

kroB100 1 5 4 n 3.16 3.82 1.82 2.77 1.74 2.75 1.88 0.77 0.83 0.77 0.82 0.77 0.83 26318.86

kroB100 1 9 1 n 0.32 0.57 0.14 0.47 0.12 0.24 0.21 2.16 2.61 0.99 1.03 0.98 1.03 94085.58

kroB100 1 9 4 n 1.62 1.62 0.09 0.43 0.09 0.43 1.07 0.79 0.84 1.10 1.21 1.08 1.25 18683.25

kroC100 1 1 1 n 0.31 0.97 0.40 0.78 0.17 0.60 2.68 0.97 1.05 1.32 1.47 1.32 1.41 14273.67

Continued on next page
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GRASP GRASP+PR1 GRASP+PR2 SAA GRASP GRASP+PR1 GRASP+PR2 SAA

avg max avg max avg max avg avg max avg max avg max avg

kroC100 1 1 4 n 1.33 2.52 0.62 2.12 0.50 2.52 2.88 0.74 0.78 1.29 1.47 1.27 1.45 3986.08

kroC100 1 5 1 n 0.45 2.26 0.61 1.95 0.28 1.40 3.42 1.31 1.41 1.48 2.03 1.39 1.63 94485.06

kroC100 1 5 4 n 3.17 3.47 0.74 1.45 1.08 1.58 5.31 0.87 0.95 0.93 1.05 0.96 1.08 12873.92

kroC100 1 9 1 n 0.41 1.21 0.37 1.01 0.37 1.01 2.53 0.87 0.91 1.20 1.31 1.20 1.34 103566.05

kroC100 1 9 4 n 0.22 0.45 0.13 0.43 0.13 0.43 2.21 0.71 0.75 1.11 1.22 1.06 1.14 9007.88

kroD100 1 1 1 n 2.41 3.85 2.14 3.21 1.99 3.11 3.39 2.19 2.47 1.08 1.24 1.01 1.11 29718.97

kroD100 1 1 4 n 2.60 3.20 0.47 1.29 0.48 1.31 1.53 1.10 1.14 1.01 1.06 1.02 1.16 6279.09

kroD100 1 5 1 n 0.90 1.11 0.59 0.84 0.53 0.88 1.35 1.28 1.34 1.10 1.16 1.12 1.22 77163.94

kroD100 1 5 4 n 0.56 0.60 0.34 0.87 0.29 0.61 0.76 0.77 0.81 0.80 0.88 0.78 0.84 14585.13

kroD100 1 9 1 n 0.38 0.98 0.31 0.62 0.42 0.73 4.07 0.96 0.98 1.13 1.24 1.14 1.25 7377.02

kroD100 1 9 4 n 1.10 1.54 0.15 0.45 0.21 0.45 2.13 0.65 0.69 1.06 1.22 1.05 1.25 8776.03

kroE100 1 1 1 n 1.06 2.27 0.54 1.00 0.38 1.00 1.89 0.93 0.98 1.78 2.19 1.82 2.27 20631.14

kroE100 1 1 4 n 0.17 0.28 0.28 0.83 0.17 0.28 1.06 0.82 0.84 0.88 0.94 0.87 0.96 4429.39

kroE100 1 5 1 n 0.30 1.00 0.30 1.00 0.47 1.00 2.67 1.89 1.92 1.46 1.85 1.43 1.74 63229.84

kroE100 1 5 4 n 0.47 0.73 0.02 0.06 0.01 0.06 4.10 0.69 0.70 0.95 1.00 0.93 0.97 14158.50

kroE100 1 9 1 n 0.59 0.89 0.56 0.87 0.59 0.89 0.00 1.22 1.28 1.14 1.23 1.16 1.19 69202.53

kroE100 1 9 4 n 2.25 2.25 0.84 2.25 0.84 2.25 2.14 0.93 1.06 1.08 1.13 1.06 1.14 8199.02

pr76 1 1 1 n 0.15 0.50 0.09 0.23 0.19 0.23 1.75 1.41 1.50 1.53 1.63 1.49 1.61 25683.59

pr76 1 1 4 n 3.33 3.97 1.35 1.77 1.38 2.00 1.83 0.95 1.01 1.13 1.26 1.16 1.27 4649.45

pr76 1 5 1 n 0.00 0.00 0.28 0.62 0.16 0.39 2.10 1.19 1.30 1.29 1.47 1.24 1.45 136427.13

pr76 1 5 4 n 0.45 0.67 0.15 0.44 0.23 0.64 0.28 0.71 0.73 0.92 1.02 0.94 0.99 11323.27

pr76 1 9 1 n 0.35 0.51 0.12 0.59 0.16 0.78 2.86 0.81 0.84 0.92 0.94 0.94 1.03 16642.84

pr76 1 9 4 n 0.92 1.29 0.24 0.83 0.29 0.93 1.61 0.69 0.72 0.77 0.80 0.80 0.86 29080.86

rat99 1 1 1 n 3.00 3.82 2.74 3.71 2.00 3.29 2.47 1.31 1.39 1.16 1.25 1.19 1.31 17285.69

rat99 1 1 4 n 1.03 2.65 0.11 0.23 0.08 0.23 1.11 0.96 0.99 1.18 1.41 1.19 1.43 6542.63

rat99 1 5 1 n 0.15 0.27 0.11 0.27 0.10 0.27 0.11 0.96 0.97 1.05 1.11 1.03 1.11 87151.74

rat99 1 5 4 n 0.46 0.46 0.00 0.00 0.18 0.46 0.81 0.79 0.85 0.90 0.93 0.85 0.91 15986.58

rat99 1 9 1 n 0.62 1.44 0.62 0.98 0.46 0.91 2.92 1.20 1.28 0.95 1.01 0.95 0.97 8223.08

rat99 1 9 4 n 2.02 2.86 1.40 2.05 1.00 1.80 3.08 1.03 1.14 1.01 1.10 0.99 1.05 30016.55

st70 1 1 1 n 1.23 2.25 0.76 1.46 0.76 1.46 1.63 1.21 1.25 1.24 1.44 1.19 1.39 20808.30

st70 1 1 4 n 0.00 0.00 0.00 0.00 0.09 0.47 1.93 1.03 1.06 1.15 1.41 1.12 1.38 6354.81

st70 1 5 1 n 0.45 0.93 0.33 0.58 0.29 0.58 1.61 1.41 1.56 1.37 1.41 1.36 1.42 175558.63

st70 1 5 4 n 0.65 1.12 0.41 1.12 0.63 1.28 3.80 0.91 1.00 0.77 0.84 0.75 0.78 16933.95

st70 1 9 1 n 0.59 1.04 0.59 1.04 0.63 1.24 2.04 1.11 1.17 0.94 0.97 0.96 0.99 51513.94

st70 1 9 4 n 0.77 0.77 0.31 0.77 0.61 0.77 1.59 0.75 0.77 0.79 0.83 0.80 0.88 6083.91
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