
PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 1

FINAL DEGREE PROJECT

DEGREE IN INDUSTRIAL TECHNOLOGIES

ENGINYEERING

PROGRAMMING AN INTELLIGENT

PERSONAL ASSISTANT FOR

BIOMEDICAL DATABASE ANALYSIS

REPORT

Student: Pliego Prim, Ignacio

 Tutor: Perera Lluna, Alexandre

 Announcement: September 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/141674722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 2

SUMMARY

Technology has had a great impact on society when it comes to medicine. Medical technology has

been around since the first days of humanity, and since then these two terms, technology and

medicine, have become much closer to each other. Their connection is increasingly useful and

necessary in uncountable ways so progress in this area is unstoppable.

The purpose of this document is to establish this connection, trying to improve the relation between

human and technology making it way more intuitive, comfortable and dynamic. The area chosen to

work on is data analysis. This data will be biomedical as the intention is to assist medicine, making

life easier for medical staff or even patients themselves. It is not the same to have to look at hundreds

of data lines and analyze them manually or with the help of a software than doing the same by having

a relaxed conversation with a device. What's more, anyone can have a dialogue and ask the correct

questions, but few now how to work with data. So this project is a way of bringing data manipulation

closer to normal people who don't have the required knowledge to treat it.

But how can this be done? As seen in the project title there is an intelligent personal assistant

responsible for all the interaction human-technology. This is the Echo device from Amazon. Echo is

a hands-free speaker controlled by voice. Alexa is the name for the intelligence behind Echo. Amazon

provides several skills already built and also allows users to develop skills and publish them which is

what’s going to happen during this project. Alexa will receive voice commands, it will understand

them and match them with the operations they refer to. Then the Python code will do all the analyzing,

operating and plotting required. The result will be sent on a JSON structure to the Java-code page

which will interact with the Django-based web page "talktoyourdata.upc.edu". There is where the

outcome will be shown as a set of blocks following the BlockChain technology. Blocks will be added,

deleted, enlarged or even modified to the taste of the user, of course always inside the programmed

possibilities.

The result is a interactive system where the users can take control of the actions performed on the

different blocks. Finally, an interesting detail is that the outcome will be visible in any device, from

laptops to phones, by only entering the web page.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 3

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 4

INDEX

Summary 2

Index of code fragments 7

Index of figures 8

Abbreviations 9

Preface 10

1. Introduction 11

 1.1 Objectives 11

 1.2 The project's scope 11

2. State of the art 12

 2.1 Speech recognition 12

 2.2 UPC's B2SLab work with Alexa 13

3. Amazon's Alexa 14

 3.1 Alexa: the brain behind Echo 14

 3.2 Developing the skill: "talktoyourdata" 14

 3.2.1 Skill information 15

 3.2.2 Interaction model 15

 3.2.3 Configuration 16

4. Methodology 17

 4.1 Overview 17

 4.2 Alexa.py 18

 4.3 Consumers.py 20

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 5

4.4 BlockChain 21

 4.4.1 BlockChain.py 21

 4.5 Blocks 22

 4.5.1 Common functions 22

 4.5.1.1 getNode() 22

 4.5.1.2 getData() 23

 4.5.1.3 showBlock() 23

 4.5.1.4 getOption() 24

 4.5.2 BaseBlock.py 25

 4.5.3 Functional blocks 26

 4.5.3.1 Main structure 26

 4.5.3.2 IO_Block.py 27

 4.5.3.3 TrainTestBlock.py 28

 4.5.3.4 StatisticsBlock.py 28

 4.5.3.5 HistogramBlock.py 28

 4.5.3.6 BoxplotBlock.py 29

 4.5.3.7 LinearRegressionBlock.py 29

 4.5.3.8 ChoosecolumBlock.py 29

 4.5.3.9 OutliersBlock.py 29

 4.5.3.10 RegressionBlock.py 29

 4.5.3.11 SOFABlock.py 29

 4.6 live.html 30

5. Results 32

 5.1 Voice User Interface 32

 5.1.1 Table of intents 32

 5.2 Web User Interface 35

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 6

 5.2.1 Main view 35

 5.2.2 Blocks 37

 5.2.2.1 IO_Block 38

 5.2.2.2 TrainTestBlock 38

 5.2.2.3 StatisticsBlock 39

 5.2.2.4 HistogramBlock 39

 5.2.2.5 LinearRegressionBlock 40

 5.2.2.6 BoxplotBlock 41

 5.3 Sequential Organ Failure Assessment score (SOFA) 41

 5.3.1 Definition of the score 41

6. Economical, environmental and social impact 44

 6.1 Economical analysis 44

 6.2 Environmental impact 44

 6.3 Social impact 44

7. Conclusions 45

 7.1 Results achieved 45

 7.2 Further work 45

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 7

INDEX OF CODE FRAGMENTS

4.1 Intent example: showImg 18

 4.2 Intent with slot defining 19

 4.3 Alexa intents 19

 4.4 Alexa utterances 19

 4.5 Group function 20

 4.6 getSessChain function 20

 4.7 "click" command functioning 20

 4.8 BlockChain.py 21

 4.9 GetNode() function for text 22

 4.10 GetNode() function for images 22

 4.11 getData() function 23

 4.12 showBlock() function 23

 4.13 getOption() function 24

 4.14 BaseBlock.py 25

 4.15 Main structure of a class 26

 4.16 IO_Block.py. Example of a complete class 27

 4.17 socket_onmessage function 30

 4.18 <div> creation example 30

 4.19 new_grid_block() function 31

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 8

INDEX OF FIGURES

 2.1 Examples of speech recognition devices 12

 2.2 B2SLab logo 13

 3.1 Amazon Echo device 14

 3.2 Amazon's skill information 15

 3.3 Intent and slot implementation example 16

 3.4 Sample utterances for delBlock 16

 3.5 Amazon's endpoint configuration 16

 4.1 Global process representation 17

 5.1 Main UI view 35

 5.2 Login rectangle 35

 5.3 Block populated UI 36

 5.4 Image block example 37

 5.5 showBlock in action 37

 5.6 IO_Block 38

 5.7 TrainTestBlock 38

 5.8 StatisticsBlock 39

 5.9 HistogramBlock 39

 5.10 LinearRegressionBlock scatterplot 40

 5.11 LinearRegressionBlock after passOption intent 40

 5.12 BoxplotBlock 41

 5.13 SOFA score block path 43

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 9

ABBREVIATIONS

 ICU Intensive Care Unit

 API Application Program Interface

 UI User Interface

 SOFA Sequential Organ Failure Assessment

 SAPS Simplified Acute Physiology Score

 JS JavaScript

 JSON JavaScript Object Notation

 CNS Central Nervous System

 AWS Amazon Web Services

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 10

PREFACE

Origin and motivation of the project

Medicine is one of the most important fields in our world as humanity depends on it. Any

improvement, even if it's not directly a cure to a disease, is very positive and helpful. That's the initial

motivation on relating the project to medical purposes.

Writing personally, it was a big chance as I started to relate my work to future ambitions and studies,

as I'm looking forward to begin the Master in Industrial Engineering specialized in Biomedicine.

Also, computing and programming have always been a challenge and this project allowed me to

improve my skills even more than I thought at the beginning. All together make

UPC's B2SLab has the support of different hospitals which provide real patient datasets to work with,

a great agreement which benefits the two parts. This has been very useful as it gives credibility and

makes the work more real.

All this mixed subjects working towards a common goal make this project possible.

Previous requirements

This project involves several areas of knowledge which are necessary to understand before starting

to program.

First of all there is Alexa. It's a must to comprehend how it responds and interacts with people and all

the previous work to establish the correct connection with it.

Then there is the programming side. For the most part is Python and the taught subjects in computing

at ETSEIB have been really useful but there is also some Java programming that needs some learning

and understanding.

Statistics are also a big part of the project. The subjects given in class and the facilities Python

packages such as scikit-learn offer have been a real help.

Also, this project wouldn't have been possible without the previous work done by the B2SLab,

explained later on the state of art.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 11

1. INTRODUCTION

1.1 Objectives

The main goal trying to be accomplished in this project is to make something unknown or not

understood by a collective (medical staff in this case) more reachable. Not only more reachable but

also easy, comfortable and intuitive for anyone. It can be called as a way of improving ergonomics

between user and computer. Medical staff such as doctors or nurses work with machines and

computers which store thousands of data every day but understanding and molding it for study is not

easy for them. Data analysis featuring statistics is one of the most powerful tools for comprehension,

evaluation and prediction nowadays. And it's also very trustful so it's not difficult to imagine the

advantages medical crew would have if they had fast and direct access to it.

Inside this major objective there is another one: demonstrating the first one by achieving a goal. As

the project relates medicine and statistics this goal will include medical data analysis until finding a

predictive model for future patients. Starting from a clinical dataset from the ICU, the goal will be to

find the variables related with the Simplified Acute Physiology Score (SAPS) and the Sequential

Organ Failure Assessment (SOFA) and then build two predictive models, each one predicting the

SOFA and SAPS ratings.

1.2 The project's scope

Even though the project is faced to a specific dataset and analysis it has bigger applications. There is

a IO_Block which loads the datasets and converts them into workable matrices. This block reaches

more than one dataset as it can load .csv, .txt, .png, .jpg, etc. So the future intention is to be able to

insert any data and work with it without caring about its type or extension. Also the purpose is to play

with data any way the user wants to. It is understandable that as a final degree project working out

all this is impossible so at the end this work is a demonstrator of how big this could be and opens

imagination to thousands of possibilities that could be applied.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 12

2. STATE OF THE ART

2.1 Speech recognition

Speech recognition is the ability of a device or program to identify words ans phrases in spoken

language and convert them into text. The most frequent applications of speech recognition include

call routing, speech-to-text processing, voice dialing and voice search. Many people think that voice

recognition and talking to your devices is a technology still stuck in the past and only find it useful

for asking easy questions or requesting their phone to call someone from their contacts. But nowadays

that's far from truth. Although it's true this field is not as sophisticated as others may be, big companies

are trying to improve it every day. At the end, prevailing depends on speed and accuracy. There is no

point on using a controlled-by-voice device if the same can be done faster by typing it.

Let's see some different examples that are starting to succeed in today's market:

Ivee: smart alarm clock that turns off by telling it to shut up. It also provides some fresh morning

information such as news, weather, etc.

Samsung smart TV: operable without touching any button, it allows to turn it on and off, change

channels, access apps or even navigate the web by using only voice.

Skully smart helmet: as it sounds; this helmet is controlled by voice. Aiming to make motorcycle

riding safer Skully is equipped with a heads-up display system with GPS navigation, Bluetooth

connectivity, a full 180-degree rear view camera. All voice-controlled. No need to talk about the price,

of course.

Apple's Siri: Siri is Apple's personal intelligent assistant. It's maybe the most famous voice

recognition software as it is integrated in any iPhone, iPad or other Apple devices. It allows users

phone and text actions, check basic information, schedule events, searching and navigating through

the web, taking pictures and many more useful stuff.

Google Now: appearing in Androids with version 4.1 or higher, Google Now allows the same kind

of matters as Siri. People argue that it seems to have been built with the knowledge that not a great

amount of people are that keen on using a voice assistant.

Window's Cortana: It’s not just a speech assistant, but rather a Siri-like voice assistant and an

intelligent text analyzer – so you can type, not just talk, to Cortana.

 Figure 2.1: Examples of speech recognition devices

Ivee Skully helmet

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 13

Amazon Echo: the device on which this project depends. Working through the on-the-cloud-

intelligence Alexa, it is probably the most complete and it has the advantage of allowing users create

their own skills to improve it, and improvements can be seen and used by every user as it all remains

in the cloud, not in the device.

2.2 UPC's B2SLab work with Alexa

The Bioinformatics and Biomedical Signals Laboratory (B2SLab) is a research group located at the

Research Center for Biomedical Engineering (CREB) of the Universitat Politècnica de Catalunya

(UPC) in Barcelona, Spain. The B2SLab is focused on the analysis of bioinformatic and biomedical

signals, high throughput screening (genetic association, gene expression, metabolisms) and

physiological signals. This laboratory is currently lead by Dr. Alexandre Perera, tutor of this project.

At this point it is important to talk about Moritz Krügener. He is a German student who did an

internship in Barcelona during four months at the B2SLab under Dr. Alexandre's tuition. Moritz

started the work on the project named Complex Workflows Through Natural Language Processing,

which this project aims to continue and improve. Moritz created all the complex and interactive

system and this project is built on top of that. He did all the background work so that now all it takes

to improve it is creating the blocks and connecting them.

Figure 2.2: B2SLab logo

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 14

3. AMAZON'S ALEXA

3.1 Alexa: the brain behind Echo

Amazon Echo, referred from now on as Echo, is a hands-free speaker controlled by voice. The device

connects to the intelligent personal assistant service Alexa, which responds to the wake word ''Alexa''.

The device is capable of voice interaction, music playback, making to-do lists, setting alarms,

streaming podcasts, playing audiobooks, and providing weather, traffic and other real time

information. It can also control several smart devices using itself as a home automation hub.

Examples of things that can be said to Alexa could be: "Alexa, play Top Hits playlist on Spotify",

"Alexa, volume up". For it to respond is necessary to start with the wake word "Alexa".

Amazon provides users with the Alexa Skills Kit. It is a collection of self-service APIs (Application

Program interface), tools, documentation and code samples that make it fast and easy for you to add

skills to Alexa. All of the code runs in the cloud — nothing is installed on any user device. With the

Alexa Skills Kit, you can create compelling, hands-free voice experiences by adding your own skills

to Alexa. Customers can access these new skills on any Alexa-enabled device simply by asking Alexa

a question or making a command.

Figure 3.1: Amazon Echo device

3.2 Developing the skill: "talktoyourdata"

New skills for Alexa are created on the website for developers from Amazon:

https://developer.amazon.com. When developing a new skill Amazon provides different types. The

one that's interesting for this project is the custom skill. A custom skill can handle any kind of request,

as long as you can create the code to fulfill the request and provide the appropriate data in the

interaction model to let users invoke the request. This is the most flexible kind of skill you can build,

but also the most complex, since you need to provide the interaction model.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 15

Let's see the steps on building the new skill:

3.2.1. Skill information:

In the skill information there are some gaps to fill in: the type, the skill name and the invocation name.

This last one is how you must refer to the skill so that Alexa works in it. A good way to start is saying:

"Alexa, open live session". This way Alexa is already inside the skill. See below that the invocation

name of TalkToTourData is live session. Application Id is the identification given by Amazon.

Figure 3.2: Amazon's skill information

3.2.2. Interaction model:

When you create a custom skill, you implement the logic for the skill, and you also define the voice

interface through which users interact with the skill. To define the voice interface, you map users’

spoken inputs to the intents your cloud-based service can handle. To do this it's necessary to define

the following:

 - Intents: the actions that take place to fulfill the users requests. It can optionally have

arguments called slots. You define the set of valid intents in a JSON structure called an intent schema.

- Slots: they are the arguments that intents optionally have. Each slot included in an intent

must have a slot type. This can be either a built-in slot type or a custom slot type. Amazon provides

buit-in slot types as numbers ("AMAZON.NUMBER"), dates ("AMAZON.DATES"), etc. Custom

slots are made by users and must include the slot name and the values for it.

Here's an example of an intent in JSON structure. The "intent" property gives the name of the intent;

"delBlock" in this case. The "slots" property lists the slots associated to the intent. In this case there

is only one: "num" which refers at the built-in slot "AMAZON.NUMBER".

Figure 3.3 Intent and slot example

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 16

- Sample utterances: they are all the spoken phrases assigned to the intents. An intent can have as

many utterances as the user wants, and seems obvious that the more it has the easier communication

with Alexa becomes.

Examples of utterances for the intent delBlock could be: "delete block {num}", "delete {num}",

"{num} delete", "block {num} eliminate", etc. All this phrases call the delBlock intent when spoken.

To map utterances with intent the following method has to be used:

· Name of the intent on the left

· The phrase a user might speak on the right

Figure 3.4: Sample utterances for delBlock

3.2.3. Configuration:

Amazon let users decide whether they prefer using AWS Lambda or HTTPS. The easiest way to build

a custom skill is by using AWS Lambda as it executes the code only when needed and there is no

need to run servers every time. But in this project AWS Lambda is not enough so the skill is hosted

as a web service. The chosen domain is one bought by UPC's B2SLab:

https://talktoyourdata.upc.edu/alexa/ask.

Figure 3.5: Amazon's endpoint configuration

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 17

4. METHODOLOGY

4.1 Overview

The process from speaking a phrase till having the web giving a response follows a few steps:

 1. Relating the different intents with the functions they must activate, in Alexa.py or handling UI

inputs from the browser with the consumers.py.

 2. Once inside the intent, navigating through the BlockChain with the help of BlockChain.py.

 3. Creating the block in a Python class format. Each block is a different class, but all of them

inherit from the BaseBlock class, in BaseBlock.py. This step doesn't always happen as some intents don't

give way to creating a block, for example the delBlock.

 4. Sending the block information via JSON structure to a Java file (live.html). The JSON is

created in each class in the getNode() function.

 5. Trough live.html create the interaction with the web.

 6. Watching the result in the web page (https://talktoyourdata.upc.edu).

Figure 4.1: Process representation

Lynux machine located at B2SLab

Python code

Browser

https://talktoyourdata.upc.edu

websockets

Amazon server

Alexa

Matching intents

https://talktoyourdata.upc.edu/

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 18

4.2 Alexa.py

This Python file is the only one that interacts directly with Alexa. This file is where all Alexa intents

and utterances are defined. The django app has a rest API endpoint at /alexa/ask/ that will handle all

the incoming request and route them to the intents defined in any Alexa.py file. Each intent must return

a valid Alexa response dictionary. To aid in this the django-alexa API provides a helper class called

ResponseBuilder. This class has a function to speed up building these dictionaries for responses.

To clarify the explanation will be based on an example; the intent that enlarges the image in a block.

Before starting some things must be imported.

from django_alexa.api import fields, intent, ResponseBuilder

Code fragment 4.1: Intent example: showImg

class Num(fields.Amazon.slots):
 num = fields.Amazon.Number()
 #this class creates a custom slot named “num” and type Amazon.Number

@intent(slots=Num, app=”AlexaHandler”)
def showImg(session, num=0):
 “””
 Showing block with number X in new tab

 Show block {num}
 show {num}
 {num} show
 show #list of sample utterances that the user can say
 show larger {num}
 {num} show larger
 show larger
 larger
 enlarge
 “””
 SessChain = consumers.getSessChain() # gets the actual BlockChain session
 if type(num) is int:
 if num < SessChain.getBlockListLength():
 msg = "showing block " + str(num)
 try:
 SessChain.getBlock(num).showBlock(num)

 #gets the block nunber and calls the showBlock function if it is

 available in the class.
 except:
 msg = "function not available for block " + str(num)
 else:
 msg = "Block with number " + str(num) + " does not exist. Maximum block number is " +

str(SessChain.getBlockListLength() - 1)
 else:
 print("\033[94m Amazon provided " + str(type(num)) + " type \033[0m")
 try:
 SessChain.getBlock(-1).showBlock()
 msg = "showing last block"

 #gets the last block and calls the showBlock function if its available
 except:
 msg = "Function not available for last block"

 return ResponseBuilder.create_response(message=msg,
 reprompt="",
 end_session=False,
 launched=True)

 #ResponseBuilder generates the reponse Alexa gives the user; the message. Reprompt is

 what Alexa says in case the user remains silent.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 19

All the intents have this structure. Once the class Num is created, the slot num is available for any

intent. But what if the slots in the utterances are not predefined in fields.Amazon? Then the user must

create them. This happens for example in the intent passOption, and it works like this:

Code fragment 4.2 Intent with slot defining

The alexa_option slot gets its possible words from the new list of strings "OPTIONS". So an example

of utterance could be: "Alexa, pass option histogram to block 5".

The django-alexa framework also provides two django management commands that will build intents

and utterances schema for the user by inspecting the code.

In the showImg intent:

>>> python manage.py alexa_intents

Code fragment 4.3: Alexa intents

>>> python manage.py alexa_utterances

Code fragment 4.4: Alexa utterances

 {
 "slots": [
 {
 "name": "alexa_option",
 "type": "OPTIONS"
 },
 {
 "name": "number",
 "type": "AMAZON.NUMBER"
 }
],
 "intent": "passOption"
 },

showImg show block {num}
showImg show {num}
showImg {num} show
showImg show
showImg show larger {num}
showImg {num} show larger
showImg show larger
showImg larger
showImg enlarge

OPTIONS = ["sand", "glass", "void", "histogram", "regression", “regression line”]

class OPT(fields.AmazonSlots):
 alexa_option = fields.AmazonCustom(label="OPTIONS", choices=OPTIONS)
 number = fields.AmazonNumber()

@intent(slots=OPT, app="AlexaHandler")
def passOption(session, number=-1, alexa_option=""):
 """
 option passing

 pass option {alexa_option} to block {number}
 option {alexa_option} block {number}
 block {number} option {alexa_option}
 """
 .
 .
 .
 .

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 20

4.3 Consumers.py

The consumers.py mission is to handle the incoming socket messages with its three functions ws_add,

ws_message and ws_disconnect. As the names imply, they get called on client connection events and incoming

messages. ws_message has to handle most of the messages, mainly it handles UI input directly from a

client browser coming in as a JSON and manipulating the BlockChain accordingly. In general, any

function anywhere on the server can broadcast to the Group channel and distribute messages, so

consumers.py is only really important for new clients and incoming new IU traffic.

If a message should be sent from anywhere, import the Group. That means everyone inside the

https://talkyoyourdata.upc.edu/ can contemplate action at the same time; live.

from channels import Group
data has to be a JSON file adhering to the protocol

raw JSON

Group("alexa").send({

 "text": json.dumps(data)

})

block data
Group("alexa").send({

 "text": block.GetNode()

})

Code fragment 4.5 Group function

consumers.py also includes an important function that gets the actual session and identifies the

BlockChain to work on it. It's the getSessChain():

def getSessChain():

 global SessChain
 if SessChain != "init":

 return SessChain

 else:
 try:

 print("getSessChain loading:")

 oldT = time.time()
 SessChain = cache.get("alexa")

 print("done after: ", (time.time() - oldT), "seconds")

 return SessChain
 except NameError("getSessChain Error"):

 print("\033[91m SessChain currently not defined \033[0m")

Code fragment 4.6: getSessChain function

So to work on the current BlockChain a variable SessChain = consumers.getSessChain() must be added. This

SessChain contains the actual chain. Once in the current chain actions from the BlockChain class in

BlockChain.py can be performed on SessChain, such as Sesschain.getBlock(), SessChain.getBlockListLength(), etc.

As said, ws_message handles UI input directly from the browser, i.e. for example pressing buttons. It is

discouraged to use the buttons but some of them have been implemented and work as a command.

Below an example of clicking the button "boxplot", which creates a boxplot block.

SessChain = consumers.getSessChain()

elif data['cmd'] == "click": # for clicking commands enters here
 elif "boxplot" in str(data['opt']): # looks if "boxplot" is the button's name

 block = SessChain.getBlock(data['num'])

 data = block.getData()
 Box = Boxplot(data=data, session="alexa", name="Boxplot")

 SessChain.addBlock(Box)

 Group("alexa").send({
 "text": Box.GetNode() # sending the info to all clients

 })

Code fragment 4.7: "Click" command functioning

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 21

4.4 BlockChain

The way blocks are displayed and connect follow the BlockChain technology. Together with ts

concept of "distributed ledger technologies, Blockchain is presented as a set of technologies (P2P,

time stamping, cryptography, etc.) that combine to make it possible for computers and other devices

to manage their information by sharing a distributed, decentralized and synchronized registry of all

of them, instead os using the traditional databases. But not only that; the information is transmitted

and stored in an extremely secure way respecting identity and privacy thanks to the use of

cryptographic keys. It also doesn't allow alteration, i.e. undoing or rewriting off the already registered,

which is also visible to any participant in the network if it's public, adding a great transparency. The

most known example is Bitcoin.

4.4.1 BlockChain.py

On the BlockChain.py file basic functions for it to work out are implemented in the BlockChain class.

Code fragment 4.8: BlockChain.py

class BlockChain:
 def __init__ (self, name="", session=""):
 ''' initial save '''
 ...
 def addBlock (self, Block):
 ''' add Block to BlockList, add Vars from Block to VarList, add Connections '''
 def getBlock (self, index)
 def getBlockList (self)
 def getBlockListLength (self)
 ‘’’ returns the number of blocks ‘’’
 def delBlockByIndex (self, index)
 ‘’’ deletes block by sayin its number ‘’’
 def delBlockByElement (self, Block):
 ''' del associated elements in VarList->call Block.delBlock() for cleanup of cache data ‘’’
 def getBlockId (self, Block)
 def delBlocksAll(self):
 ''' reset everything but keep Session alive '''
 ...
 def Chain_pickle (self):
 ''' pickle self in cache folder '''
 def __str__(self):
 ''' provide summary of status '''

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 22

4.5 Blocks

4.5.1 Common functions

Each block (class) has it's own functions and the only contact with other blocks comes with the

getData function. But there are some functions that appear in more than one class and are interesting

to study individually.

4.5.1.1 GetNode(self):

The GetNode function it's really important ans shows up in every block with no exception. It is in

charge of storing the block information and content and send it in a JSON structure to the Javascript

file live.html. Two examples for it's structure are:

def GetNode(self):

 print("get IO Node")

 IO_data = ["Variable Name:", self.vars, "Dimensions:", str(len(self.data))+ "x"+ str(len(self.data[0])), "Type:", self.display_type]
 data = {"type": "block",

 "block_type": self.type,

 "block_num": self.block_num,
 "file_name": self.file_name,

 "content_type": "IO_data",

 "IO_data": IO_data,
 "options": self.options,

 "vars": self.vars,

 "call_path": self.call_path,
 }

 return json.dumps(data)

Code fragment 4.9: GetNode() function for text

Above the structure for a text information storing block. It creates a python dictionary and sends it as

a JSON. The information provided is vital to separate and treat the block once in the live.html.

def GetNode(self):

 call_path = settings.CACHE_URL + "/" + self.session + "/" + self.name + '.png'

 data = {"type": "block",
 "block_type": self.type,

 "block_num": self.block_num,

 "file_name": self.file_name,
 "content_type": "image",

 "call_path": call_path,
 "options": self.options,

 "vars": self.vars,

 "update": self.update,
 }

 return json.dumps(data)

Code fragment 4.10: GetNode() function for images

Above the structure for an image showing block. The call_path gives the image location in the server (CACHE_URL =

"https://talkyotourdata.upc.edu/AlexaHandler/cache") or in the local environment (CACHE_URL =

"http://localhost:8000/AlexaHandler/cache") for working in localhost. Changing the work environment is done

by settling ENV variable to "SERVER" or "LOCAL" in the settings.py.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 23

4.5.1.2 getData(self):

The getData function is the responsible for communication between blocks. A block that follows

another gets information from it trough getData. Below two examples of the structure. They consist

in Python dictionaries with their keys attached to the blocks information.

def getData(self):

 data = {"name": self.data_name, "type": self.file_type, "data": self.data, "titles":self.titles}
 return data

def getData(self):

 data = {"name":self.name, "type": self.type, "data": self.train, "train_data": self.train, "test_data": self.test, "titles":self.titles,

"vars":self.vars}

 return data

Code fragment 4.11: getData() function

The point of this function is to store any data, variable or information of any type which is going to

be used by other block. All blocks have it except those ones that are at the end of the chain; no one

gets information from them.

4.5.1.3 showBlock(self, num=""):

This function only works for images. Its duty is to enlarge them so the user has a better visual

experience. To activate it the word "show" should be enough, and to return it to the initial size all it

takes is the word "minimize".

def showBlock(self, num=""):

 call_path = settings.CACHE_URL + "/" + self.session + "/" + self.name + '.png'

 data = {"type": "cmd",
 "block_num": num,

 "cmd": "show",

 "call_path": call_path,
 }

 print("executing showImageBlock")

 Group("alexa").send({

 "text": json.dumps(data)

 })

Code fragment 4.12: showBlock() function

The showBlock function requires a number that indicates which block has to be enlarged. If no number is given it will perform on the las one if it has

the property.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 24

4.5.1.4 getOption(self, number, para):

If a Block accepts to be called with options via the passOption intent, it has to provide a getOption

function that deals with the incoming option string. This function is called by saying, for example,

"Alexa, option regression, block 3". In this case, blocks may themselves create more blocks and add

them to the BlockChain or update the existing block. After adding a Block, it is necessary to distribute

the new display information to all clients, through the Group.send. The inputs for the function are the

option (para) and the block number (number).

def getOption(self, para, number):

 SessChain = consumers.getSessChain()
 .

 . #coding for a new block

 .

 .

 self.name = self.name + '.'+para

 self.cache_path = settings.CACHE_DIR + "/" + self.session + "/" + self.name + '.png'
 self.options = ["show"]

 self.update = "true" #updating the new atributes

 self.block_num = number
 Group("alexa").send({ #sending the update to all clients, in this case the

 "text": self.GetNode() new JSON provided by GetNode()

 })
 # reset state

 self.update = "false" #setting update to initial value again

 SessChain.Chain_pickle() #saving the session

Code fragment 4.13: getOption() function

Every getOption function must include a self.update attribute. When the block is first created its value must be

set to "false". If the state of the block is to be changed it must be set to "true", then send the information to all clients

and finally set it to "false" again. It is important as live.html starts by checking: if (data.update != "true") {, and it treats

different new blocks from updated ones, for example setting the correct block numbers for them.

This way, a message block can turn into an image block or vice versa, or just an updated image. The

content of the block is loaded as if it was a new block. Options and variables can also be changed by

changing self.options and self.vars. An implementetion of this can be found for example in the

LinearRegressionBlock in the getOption.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 25

4.5.2 BaseBlock.py

As said before, each block is a Python class that has it's own functions. There are blocks designed to

only store data, others to provide information through messages and others to show images as graphs.

But they all have one thing in common: they inherit from the class BaseBlock:

class BaseBlock:

 def__init__(self,name="base",type="base",session="", content_type=""):

 self.name = name

 self.type = type

 self.session = session

 self.content_type = content_type

 self.options = []

 self.vars = []

 self.block_num = ""

 def getName(self):

 return self.name

 def setName(self, name):

 self.name = name

 def getSession(self):

 return self.session

 def setSession(self, session):

 self.name = session

 def getType(self):

 return self.type

 def setType(self, type):

 self.type = type

 def getOptions(self):

 return self.options

 def addOption(self, s):

 self.options.append(s)

 def GetNode(self):

 import json

 data = {"type": "block",

 "block_type": self.type,

 "block_num": self.block_num,

 "content_type": self.content_type,

 "options": self.options,

 "vars": self.vars,

 }

 return json.dumps(data)

 def delBlock(self):

 del self

 def getData(self):

Code fragment 4.14 BaseBlock.py

The Baseblock gives any block the basic attributes which can be changed later in the blocks

themselves if necessary.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 26

4.5.3 Functional blocks

4.5.3.1 Main structure

The main structure of any block is the following:

class ClassName(BaseBlock):

 def __init__(self):

 self.name = name

 self.session = session #defines all the attributes
 self.block_num = ""

 self.type = "matrix"

 self.options = ["option1","option2","option3"]
 self.vars = []

 self.update = "false"

 .
 .

 . #where the block is created

 .

 def getData(self):

 return data

 def GetNode(self):
 data = {"type": "block",

 "block_type": self.type,

 "block_num": self.block_num,
 "content_type": "content",

 "data": data,

 "call_path": settings.CACHE_URL + "/" + self.session +"/" + self.name,
 "options": self.options,

 "vars": self.vars,

 }
 return json.dumps(data)

 def showBlock(self, num=""): #if the block contains an image

 call_path = settings.CACHE_URL + "/" + self.session + "/" +self.name

 data = {"type": "cmd",

 "block_num": num,
 "cmd": "command",

 "call_path": call_path,

 }
 Group("alexa").send({

 "text": json.dumps(data)

 })

 def getOption(self, parameters): # if necessary

 SessChain = consumers.getSessChain()
 .

 . # updating the block

 .
 .

 self.name = self.name + '.'+para

 self.cache_path = settings.CACHE_DIR + "/" + self.session + "/" + self.name
 self.options = ["show"]

 self.update = "true" # gives new values to attributes

 self.block_num = number
 Group("alexa").send({

 "text": self.GetNode() # sending modifications to everyone

 })
 # reset state

 self.update = "false"

 SessChain.Chain_pickle() #saving the session

 def AnyOtherFunction(): # other functions that the block may require
 .

 .

 .

Code fragment 4.15: Main structure of a class

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 27

4.5.3.2 IO_Block.py

The IO_Block is the first one in use as it's the one in charge of loading files. At the moment it can load text files

(.csv, .txt, .dat) or images (.png, .jpg, .jpeg). When loading data in text format, it uses the numpy function

np.genfromtext(data) which displays the data as a matrix where each line is a observation and each column is a variable.

This matrix is ready for manipulation. For images it uses pl.imread(path) from matplotlib.pylab. All the files to be

loaded are stored in the /import folder.

class IO_Block(BaseBlock):

 def __init__(self, file_name, name="IO", session="", abs_path=""):
 self.name = name

 self.type = "IO"

 self.session = session
 self.vars = []

 self.file_name = file_name

 self.data_name = ".".join(self.file_name.split(".")[:-1])

 self.file_type = ".".join(self.file_name.split(".")[-1:])

 self.display_type = ""

 self.call_path = ""
 self.block_num = ""

 self.options = []

 if abs_path == "":
 self.path = settings.IMPORT_DIR + "/" + self.file_name

 else:

 self.path = abs_path
 if self.file_type in ["csv", "txt", "dat"]:

 self.data = np.genfromtxt(self.path, delimiter=",", dtype=None, names=True)

 self.titles = self.data.dtype.names
 self.display_type = "matrix"

 self.type = "matrix"

 elif self.file_type in ["png", "jpg", "jpeg"]:
 self.data = pl.imread(self.path)

 self.display_type = "image"

 self.type = "image"
 self.cache_path = settings.CACHE_DIR + "/" + self.session + "/" + self.file_name

 self.call_path = settings.CACHE_URL + "/" + self.session + "/" + self.file_name

 try:
 copyfile(self.path, self.cache_path)

 except:

 print("\033[93m Errror importing:", sys.exc_info(), "\033[0m")
 else:

 raise NameError("unsupported format")

 def showBlock(self, num=""):

 # displays if it's an image

 def getData(self):
 data={"name":self.data_name,"type":self.file_type,"data":self.data, "titles":self.titles}

 return data

 def getTitles(self):
 return self.titles #all the variable names

 def GetNode(self):

 IO_data = ["Variable Name:", self.vars, "Dimensions:", str(len(self.data))+ "x"+ str(len(self.data[0])), "Type:",
self.display_type]

 data = {"type": "block",

 "block_type": self.type,

 "block_num": self.block_num,

 "file_name": self.file_name,

 "content_type": "IO_data",
 "IO_data": IO_data,

 "options": self.options,

 "vars": self.vars,
 "call_path": self.call_path,

 }

 return json.dumps(data)

Code fragment 4.16: IO_Block.py. Example of a complete class.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 28

4.5.3.3 TrainTestBlock.py

This block's mission is to separate the data into two sets. One for training data and the other for

testing. The goal is to analyze the train data, build a predictive model and test the results with the test

data.

The split is done with the sklearn.model_selection package function train_test_split, which divides arrays and

matrices into random train and test subsets:

self.train, self.test = train_test_split(self.data, train_size=u)

The data is taken from the getData() function in the IO_Block, and train_size is a parameter that decides the

percentage of data stored in the train subset; and consequently the stored in the test subset.

The __init__() includes some code lines that look in every variable and separate the binary ones from

the not binary. After, it stores them in the self.vars list which will be displayed on the UI; and knowing

the category of the variable is helpful when asking for actions to perform on them.

The other functions available in this block are getData() and getNode().

4.5.3.4 StatisticsBlock.py

The statistics block receives two inputs: data and parameter. The data is taken from a IO_Block or a

TrainTestBlock. The parameter must be a number related to a variable. This variables in the code are

called "titles", and its a list of all the variable title names. For calculating statistics the function library

used is statistics.py. The information provided by the block is:

 · Mean: stat.mean()

 · Median: stat.median()

 · Mode: stat.mode()

 · Standard deviation: stat.pstdev()

 · Variance: stat.pvariance()

 · Maximum value: max()

 · Minimum value: min()

The other functions available are getData() and getNode().

4.5.3.5 Histogramblock.py

As seen in its name, this block creates and displays histogram images. The inputs necessary are the

data and a parameter. The histograms are created with the functions available in the matplotlib.pyplot

library. Imported as plot, the ones used are: plot.hist() for doing the histogram, plot.xlabel() to name the

abscissa, plot.savefig() to save it in the /cache/alexa folder and plot.close() for closing it.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 29

The parameter can have two different type of values and because of that there are two ways of creating

a Histogram:

 1. If parameter is a str (it gets "default" as the default value): the previous block must be a

 StatisticsBlock. A number is not required as it takes the one from the block and makes the

 plot. At the moment it plots the mean,but it is easy to implement another type of histogram.

 2. If parameter is a int (number): the previous block must be a IO_Block or a

 TrainTestBlock. It gets the number and makes the plot of this variable.

Its other functions are getNode(), getData() and showBlock().

4.5.3.6 Boxplotblock.py

Obviously for creating Boxplot diagrams. It works similar to the HistogramBlock, having the data

and parameter as inputs. It uses the matplotlib.pyplot library and the functions called are: plt.figure(),

plt.add_subplot(), plt.boxplot(), plt.set_xlabel, plt.savefig() and plt.close().

There are two ways of creating the BoxplotBlock and it works equal to the HistogramBlock.

4.5.3.7 LinearRegressionBlock.py

This block consists of two parts. First one draws a scatter plot with two variables. The second one

uses the getOption() function to update the block and shows the same scatter plot but with the regression

line and gives the Pearson correlation.

It uses the following libraries: matplotlib.pyplot for drawing the graph, numpy for finding the regression line

and scipy.stat.stat for calculating the Pearson correlation value.

4.5.3.8 choosecolumnBlock.py

This block's only function is to store the data from the columns the user wants, making them

easy to be used afterwards. It includes a SOFA exception that selects automatically the SOFA-

related columns.

4.5.3.9 RegressionBlock.py

This block build a linear regression model with the given variables. At the moment it only

takes data from the choosecolumnBlock.

4.5.3.10 outliersBlock.py

Deletes the outliers from the data. A way of cleaning it and making the results more coherent.

4.5.3.11 SOFABlock.py

Estimates the SOFA score value for a specific patient.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 30

4.6 live.html

The live.html is the responsible file for interacting directly with the web. It is a JavaScript file and is

in charge of handling all the web structure, creating the web style and all the visuals. It also handles

all the incoming messages from the blocks, i.e. the JSONs with the block information.

Commands are delivered sequentially in individual socket messages. All incoming socket traffic is

handled by the socket.onmessage function and routed to functions such as new_grid_block(data) for further

processing.

socket.onmessage = function(e){
 data = JSON.parse(e.data);

 // routing

 if(data.type == "cmd")
 // route commands

 if(data.cmd == "ready")

 socket.send(JSON.stringify({"type": "cmd", "cmd": "init"}))
 else if (data.cmd == "file_list")

 // handling the UI fileList

 else if (data.cmd == "reset")
 // reset UI

 else if (data.cmd == "del_block")
 // delete block from UI

 else if (data.cmd == "show")

 // animate block image zoom
 else if (data.cmd == "listening")

 // indicate active Alexa session

 // etc.
 else if(data.type == "block")

 new_grid_block(data);

}

Code fragment 4.17: socket.onmessage function

New UI elements are handled by JavaScript. If for example a new block carries the var keyword in it's

JSON, everything in the list is added appropriately to the left-hand varList. Same goes for all opt entries,

that are generated as grey buttons for any incoming block.

Block div id's follow the naming scheme grid_block+block_number with class content, mdl-cell and it's mdl options.

The div can be filled with the content such as tags or <p>. Paragraphs should get the Info css-class

for unified display style. Width of the block can be influenced by the mdl-cell--X-col option replacing X
with a number between 1-12. Below this, the button-group div is rendered automatically.

<div id="grid_block0"> class="content mdl-cell mdl-cell--middle mdl-shadow--6dp mdl-cell--5-col">

 <p class="Info mdl-shadow--6dp">

 Info text
 </p>

 <div id="button_group" class="button_group">...

 </div>
</div>

Code fragment 4.18: <div> creation example

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 31

Block creation is done via JavaScript only:

function new_grid_block(data){

 // ABBREVIATED AND SIMPLIFIED function, see source

 // get parent and create new block div
 var parent = document.getElementById("grid");

 //update happens also in this funciton

 if(data.update != "true"){
 name = "grid_block" + grid_count;

 var div = document.createElement("div");

 div.id = name;
 }

 else{

 name = "grid_block" + grid_count;
 var div = document.getElementById(name);

 div.innerHTML = "";

 }
 div.className = "content mdl-cell mdl-cell--middle mdl-shadow--6dp";

 // add variables to list and jquery Data
 if(data.hasOwnProperty("vars")){

 new_Var(data.vars, grid_count);

 jQuery.data(div, "vars", {
 vars: data.vars

 });

 // specific block_type, it creates the block depending on if its an image, text, etc..

 if(data.block_type == "rich_image"){
 var img = document.createElement("img");

 img.src = data.call_path;

 var p = document.createElement("p");
 p.className = "Info mdl-shadow--6dp";

 p.appendChild(document.createTextNode("Info: " + data.add_data));

 div.appendChild(img);
 div.appendChild(p);

 div.className += " " + "mdl-cell--5-col"

 }
 // else if other types

 // ...

 // automatic button-group creation

 // ...

 div.appendChild(but_group);
 if (data.update != "true"){

 grid_count +=1;

 $(parent).append(div);
 }

 // add full block to grid

 // screen size and loading handling here
 // ...

}

Code fragment 4.19: new_grid_block() function

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 32

5. RESULTS

5.1 Voice user interface

One of the chased results of this project is to be able to speak to Alexa and obtain visual and verbal

outcomes. All the phrases a user can say are the utterances defined and the outputs will rely on the

intents to which they are matched. The verbal outcomes are defined in the Alexa.py file and stored in

the msg variable (see code fragment 4.1).

5.1.1 Table of intents

The following table shows the intents existing now, its use and the matched utterances:

INTENT ABILITY UTTERANCES

SessionEndedRequest Ends the session end

quit

showImg Enlarges the image in the block show block {num}

show {num}

{num} show

show

show larger block {num}

show larger {num}

{num} show larger

show larger

larger

enlarge

enlarge block {num}

enlarge {num}

{num} enlarge

loadFile loads different types of files

turning them into workable

matrices

read file {num}

read {num}

{num} read

load file {num}

load {num}

{num} load

file {num}

{num} file

passOption Calls the getOption function of

the block, allowing

modifications in it

pass option {alexa_option} to

block {number}

option {alexa_option} block

{number}

block {number} option

{alexa_option}

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 33

INTENT ABILITY UTTERANCES

TrainTest Separates train from test data block {num} separate train data

with train size {train_size} per

cent

block {num} choose train data

with train size {train_size} per

cent

block {num} separate train data

from test with {train_size}

separate train data from test

separate test from train

separate train from test

separate test data from train

Boxplot Makes box plot graph Block {num} boxplot with

variable {var}

Boxplot block {num} variable

{var}

Boxplot block {num} with

variable {var}

Boxplot block {num} column

{var}

Boxplot

Create boxplot

Do boxplot with variable {var}

Do boxplot with column {var}

Block {num} boxplot

Boxplot block {num}

Statistics Creates an information block

showing some descriptive

statistics

Block {num} show statistics for

column {col}

Block {num} show statistics for

{col}

Show statistics for {col}

Show statistics

Block {num} do statistics

Do statistics to block {num}

Do statistics

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 34

INTENT ABILITY UTTERANCES

minimize Minimizes after showImg minimize

make small

hide

back

Scatterplot Draws a scatterplot for two

variables

Block {num} draw a scatterplot

for variables {num1} and

{num2}

Block {num} draw a scatterplot

for {num1} and {num2}

{num1} and {num2} scatterplot

Make a scatterplot for {num1}

and {num2}

{num1} {num2} scatterplot

delBlock Deletes the block delete {num}

{num} delete

delete block {num}

{num} delete block

choosecolumnBlock Chooses the columns to store in

the block

choose columns {num1}.....

choose columns for sofa score

choose columns for sofa

RegressionBlock Build a linear regression model build a regression model

block {num} regression model

outliersBlock deletes the outliers rows clear datab

clean data

block {num} clean

delete outliers

block {num} delete ouliers

SOFABlock calculates the sofa score with

the formula taken from the

RegressionBlock

what is the sofa score for patient

{num}

sofa score for patient {num}

patient {num} sofa score

predict the sofa score for {num}

predict the sofa score for patient

{num}

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 35

5.2 Web user interface

5.2.1 Main view

Figure 5.1 Main UI view

Shown above is the user interface; where all the results from interaction with the browser or Alexa

are visualized. In the image the server is running in localhost:8000 for testing purposes, but the web page

where the results are showed is https://talktoyourdata.upc.edu/alexa/ask, as Amazon is currently pointed towards

https://yourURL.com/alexa/ask to send all the Alexa requests. For changing where the server runs the only thing

to do is modify the ENV variable to "LOCAL" or "SERVER" in settings.py.

For getting the web working Django must be running, and that is done through the command >>>python

manage.py runserver

Before entering a user name and password are required for entry as there are functioning buttons

inside which everyone can use.

Figure 5.2 Login rectangle

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 36

The UI consists of three main elements:

Figure 5.3 Block populated UI

 · Taking up most of the screen is where action takes place. Is where blocks and elements are

located. Users populate this area either by inputs in the browser window (buttons) or by sending

requests to Alexa.

 · To the left there are two lists. One stores all the available files which can be loaded at any

moment and the other shows the current variables related to the last block if it has any. If not it saves

the ones from the previous block. On small screens (lower than 1024px wide) the left bar is retracted

into a menu icon and can be accessed that way.

 · Finally, at the top a tool bar showing the title, B2SLab logo and a few buttons with not much

use in this project but for resetting or loading files. Plus, the blue bar pulsates when an Alexa Session

is active so that the user doesn't have to look at the Echo to know its listening.

Nearly every element has a number assigned. That is because Amazon doesn't encourage free form

speaking to Alexa. It all relies in a series of slots which are predefined or can be customized. But in

predefined slots voice recognition is significantly better so the easiest and handiest way to give inputs

is to assign elements a number they can be called by. For example loading a file by saying "Alexa,

load file 4" instead of trying to pronounce the file name.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 37

5.2.2 Blocks

Each block has a content div to store either text or image and a group of buttons div. Text or image can't

be modified once created the block.

First of the buttons is the one for numbering. It is disabled as it works as a block counter only. All

blocks share it and it is impossible to have two blocks with the same number. Also every block has a

delete button that can be pressed and deletes the block from the BlockChain. It can also be requested

by voice to Alexa. Grey buttons show the options each block gives the user to continue the chain.

This options are stored in a list of strings in each block. They can have functionality implemented or

not but as the intended experience for users is to interact with Alexa it is discouraged. So its final

utility is to prompt users with available actions to perform on the block.

Figure 5.4 Image block example

A common button appears in every image block: show. It enlarges the image for a better view. It can

be minimized by sending a request to Alexa or by clicking anywhere on the screen.

Figure 5.5 showBlock() in action

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 38

5.2.2.1 IO_Block

The IO_Block displays some block information as the type or name. But the most important are the

File from where it gets the data, ICU.csv, and the dimensions of the result matrix. Below the options

that the user can perform from now on.

Figure 5.6 IO_Block

5.2.2.2 TrainTestBlock

This block divides the initial matrix dimensions by separating it into two sets: train and test. It shows

the adjustable dimensions for the two sets.

Figure 5.7 TrainTestBlock

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 39

5.2.2.3 StatisticsBlock

Shows all the basic statistics of a variable. It indicates the number and name of the variable.

Figure 5.8 StatisticsBlock

5.2.2.4 HistogramBlock

Figure 5.9 HistogramBlock

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 40

5.2.2.5 LinearRegressionBlock

Figure 5.10. LinearRegressionblock scatter plot

Once called the regression line option with the passOption intent:

Figure 5.11 LinearRegressionBlock after passOption intent

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 41

5.2.2.6 BoxplotBlock

Figure 5.12 BoxplotBlock

5.3 Sequential organ failure assessment score (SOFA score)

5.3.1 Description of the score

Sequential organ failure assessment score (SOFA score), is used to track a person's status during the

stay in an intensive care unit (ICU) to determine the extent of a person's organ function or rate of

failure. The score is based on six different scores, one each for the respiratory, cardiovascular, hepatic,

coagulation, renal and neurological systems. The score is also known as Sepsis-related organ failure

assessment score, as it assists health care providers in estimating the risk of mortality due to sepsis.

Sepsis is a life-threatening condition that arises when the body's response to infection causes injury

to its own tissues and organs.

The patients variables related with the SOFA score are the following:

Respiration [PaO2 / FiO2 mmHg]

PaO2 / FiO2 mmHg SOFA Score

<400 1

<300 2

<200 3

<100 4

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 42

Coagulation [Platelets x 103/μl]

Platelets x 103/μl SOFA Score

<150 1

<100 2

<50 3

<20 4

Liver [Bilirubin mg/dl]

Bilirubin mg/dl SOFA Score

1,2-1,9 1

2,0-5,9 2

6,0-11,9 3

>12,0 4

Cardiovascular [Hypotension]

Mean arterial pressure OR administration of

vasopressors required

SOFA Score

MAP < 70 mm/Hg 1

Dopamine≤5µg/kg/min or Doboutamine (any) 2

dopamine > 5 µg/kg/min OR

epinephrine ≤ 0.1 µg/kg/min OR

norepinephrine ≤ 0.1 µg/kg/min

3

dopamine > 15 µg/kg/min OR

epinephrine > 0.1 µg/kg/min OR

norepinephrine > 0.1 µg/kg/min

4

CNS [Glasgow Coma Scale]

Glasgow coma scale SOFA Score

13-14 1

10-12 2

6-9 3

<6 4

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 43

Renal [Creatinine mg/dl or Urine Output]

Creatinine mg/dl or Urine Output SOFA Score

1.2–1.9 1

2.0–3.4 2

3.5–4.9 3

> 5.0 4

5.3.2 Prediction of the score

The prediction of the score is done by calculating the weight each parameter has in it and then building

the best-fitting regression model. That will permit predicting future values from patients whose live

is in danger.

The path it follows until the prediction is the following:

IO_Block

TrainTestBlock

choosecolumnBlock

OutliersBlock

Intermidiate blocks (stats, graphs, etc)

RegressionBlock

SOFABlock

Figure 5.13: SOFA score block path

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 44

6. ECONOMICAL, ENVIRONMENTAL AND SOCIAL

IMPACT

6.1 Economic analysis

This section details the estimated viability of the project from the developer's view (the student) as if

it was to be sold for users.

During the fulfillment of the project there are some expenses to be considered:

 · Student's work at an average 4 h/day during 5 months. If paid at 10€/h that equals 4.000€.

 · The project director's work involved in 2h/week, which paid at 50€/h equals 2.000€.

 · Personal computer bought the same year for the amount of 1000€.

 · Amazon Echo device, which is valued in 149€ aprox.

If it was to be sold as a service for the amount of 10€/month, it would only take 60 people to use it to

start producing benefits after one year. So it's clear it's a very viable project where money is not a

problem. This project is thought for improving medical issues, so hospitals could have a discount as

the main idea is helping and not profiting. Of course anyone who would like to use it will also have

to buy the Echo device and the required equipment to make it work.

6.2 Environmental impact

The project's environmental impact is minimum. Office material and furniture is recyclable, whereas

the personal computer and the cluster comply with the European regulation. We could study it's

energy consumption and estimated negative emissions as CO2 but, aside it's nearly negligible, it's

only caused by office work which would have been done if not with this project with another.

6.3 Social impact

In terms of social impact, this project development does not directly create a negative impact on any

society sector or group. What's more, it is thought to improve on a very important part of society with

the only goal making things easier for medical staff, so it can only be looked by good eyes.

However, the data about the experiments may have a human precedence and follows a proper data

protection policy. The datasets used in this project contain personal data that has been properly

anonymized.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 45

7. CONCLUSIONS

7.1 Results achieved

The results achieved are really satisfactory as all the implemented things work correctly. Even though

there are some unfinished blocks, most of them show as expected and respond to Alexa the way it's

supposed.

This project challenges on lots of problem solving issues which require big implication, heavy

research and technical thinking.

Also, all the learning this project has supposed has been enormous. I've learned a whole new world

with speech recognition and specifically in Amazon's Alexa. Also there's been great improvements

on Python coding and introduction to Java programming.

7.2 Further work

This project was born with the idea of being a demonstrator of what could be done in a future. So

there can be never-ending improvements on top of the work done which would make it much more

powerful and even give way to a future useful tool. Forward programmers who enter this project have

the background work already done for continuing building blocks and all it requires is people

dreaming big and predicting future needs.

Further improvements examples could be:

 · Creating a full patient comparison structure to ease medical staff work.

 · Building a patient structure which gives all the possible treatments and previous scenarios

where this treatments have proven useful.

 · Identifying similar patient diseases and connecting them to find solutions for both.

This are some examples but expansion of this project can be infinite only delimited by people's

imagination.

PROGRAMMING AN INTELLIGENT PERSONAL ASSISTANT FOR BIOMEDICAL DATABASE ANALYSIS 46

ACKNOLEDGEMENTS

To Alexandre, for giving me the opportunity of joining them in this project and helping when

needed.

To Moritz. This project wouldn’t have been possible without his collaboration and teaching.

To UPC, for supporting the B2SLab.

