
End of Bachelor Degree Project

Industrial Technology Engineering

Reconstruction of scenes using a hand-held
range imaging camera

MEMORY

Author: Javier Gallostra Acín
Director: Federico Thomas Arroyo
Rapporteur: Manuel Moreno Eguilaz
Call: September 2017

Escola Tècnica Superior

d’Enginyeria Industrial de Barcelona

Reconstruction of scenes using a hand-held range imaging

camera

Javier Gallostra Aćın

September 2017

This project has been developed at

Institut de Robòtica i Informàtica Industrial (IRI, CSIC-UPC)

Abstract

The current final degree project covers the development of a C++ program to reconstruct 3D
scenes from a stream of incoming RGBD images from the Kinect for Windows v2 sensor using the
PCL library and the libfreenect2 open source Kinect drivers. A background analysis is performed
to analyze state of the art registration algorithms and similar registration applications which are
already distributed.

All the computing steps are explained and detailed, from the data acquisition through the
coarse and fine alignment steps to the final surface reconstruction algorithm. Several algorithms
are discussed for each step, giving reasons for the final algorithm choice and the parameters set.

Finally, a brief discussion on the results and problems encountered during the development of
the project serves as the basis of a proposal of improvements for future work on the subject. The
project budget and the environmental impact are analyzed before the final conclusion chapter.

Reconstruction of scenes using a hand-held range imaging camera Page 1

Contents

Contents 3

List of Figures 6

List of Tables 7

1 Glossary 9

2 Introduction 11

2.1 Objectives . 12

2.2 Scope . 12

3 Analysis of background 13

3.1 Range Imaging Techniques . 13

3.1.1 Stereo Vision . 13

3.1.2 Structured Light . 14

3.1.3 Time of Flight . 14

3.2 Range Imaging Devices . 15

3.2.1 ASUS Xtion . 16

3.2.2 Intel RealSense . 16

3.2.3 Kinect for Windows . 16

3.3 3D Registration Algorithms . 17

Page 2 Memory

3.3.1 Iterative Closest Point . 17

3.3.2 Feature Based Algorithms . 19

3.3.2.1 Keypoint Detection . 20

3.3.2.2 Feature Description . 22

3.3.2.3 Feature Matching . 22

3.3.2.4 Transformation Estimation . 24

3.3.3 Algorithm Weaknesses and Limitations 24

3.4 Point Cloud Filtering . 25

4 Development of the Program 27

4.1 Development Environment . 27

4.1.1 Hardware . 27

4.1.2 Software . 27

4.2 Program Structure . 28

4.3 Image Acquisition . 31

4.3.1 From 2.5 D to 3 D . 32

4.4 Preprocessing . 34

4.4.1 Cropping by Z values . 34

4.4.2 Subsampling . 34

4.4.3 Noise Removal . 34

4.4.4 Results . 35

4.5 Coarse Alignment . 36

4.5.1 ISS Keypoint Detection . 36

4.5.2 Feature Matching and RANSAC Rejection 37

4.5.3 SVD Transformation Estimation . 38

4.5.4 Runtime . 39

4.5.5 Results . 40

Reconstruction of scenes using a hand-held range imaging camera Page 3

4.6 ICP Fine Alignment . 42

4.6.1 Results . 43

4.7 Surface Reconstruction . 46

5 Results 47

6 Project Budget 51

7 Environmental Impact 53

8 Conclusions 55

8.1 Future Work . 56

Bibliography 59

Page 4 Memory

Reconstruction of scenes using a hand-held range imaging camera Page 5

List of Figures

3.1 Simplified stereovision system . 14

3.2 Principle of structured light based systems . 14

3.3 Principle operation mode of a time-of-flight camera 15

3.4 Consumer range imaging devices . 16

3.5 ICP Algorithm basic structure . 18

3.6 Illustration of an ICP process . 19

3.7 Pairwise registration pipeline using Feature detection and matching 20

3.8 Comparison of keypoints detected by three different methods 22

3.9 Example of Point Feature Histograms of differenttwo points 23

3.10 RANSAC outlier rejection algorithm . 23

3.11 Example of the effect of the VoxelGrid Filter on Kinect data 26

4.1 ImageGrabber class . 29

4.2 CloudFilters class . 29

4.3 SurfaceReconstructor class . 29

4.4 FineAligner class . 29

4.5 CoarsePairwiseAligner and KeypointDetector classes 30

4.6 Viewer class . 30

4.7 Kinectv2 fields of view compared . 31

4.8 Example output of mapping Depth onto RGB . 32

Page 6 Memory

4.9 Illustration of the pinhole camera model . 32

4.10 ImageGrabber’s captureFrame function . 33

4.11 Point cloud before and after preprocessing . 35

4.12 Computing times of the different keypoint detection methods 36

4.13 Runtime of the coarse alignment steps . 39

4.14 Closer look at RANSAC runtime . 39

4.15 Correspondence example 1 . 40

4.16 Coarse alignment example 1 . 41

4.17 Correspondence example 2 . 41

4.18 Coarse alignment example 2 . 42

4.19 ICP single iteration times . 43

4.20 Fine alignment example 1: initial guess . 44

4.21 Fine alignment example 1: after ICP . 44

4.22 Fine alignment example 2: initial guess . 45

4.23 Fine alignment example 2: after ICP . 45

4.24 Example output of the surface reconstruction of a single cloud 46

5.1 Different viewports displayed by the program . 47

5.2 Example final result 1: Library 1 set . 48

5.3 Example final result 2: Long table set . 48

5.4 Example final result 3: Library 2 set . 49

5.5 Example final result 4: Sofas set . 49

Reconstruction of scenes using a hand-held range imaging camera Page 7

List of Tables

3.1 Comparison between stereo vision, structured light and time-of-flight 15

3.2 Comparison between range imaging cameras . 17

4.1 Percentage of points removed by the filters . 35

4.2 Comparative test of ISS3D, SIFT3D and NARF detection algorithms 36

6.1 Calculation of the project budget . 51

Page 8 Memory

Reconstruction of scenes using a hand-held range imaging camera Page 9

1 Glossary

• CPU : Central Processing Unit

• FOV : Field Of View

• FPFH : Fast Point Feature Histogram

• GPU : Graphics Processor Unit

• HMI : Human Machine Interface

• ICP : Iterative Closest Point

• IR : Infrared

• ISS : Intrinsic Shape Signatures

• LED : Light Emitting Diode

• LIDAR : Laser Imaging Detection And Ranging

• LM: Levenberg-Marquardt

• MLS : Moving Least Squares

• NARF : Normal Aligned Radial Feature

• PC : Personal Computer

• PCL : Point Cloud Library

• PFH : Point Feature Histogram

• RAM : Random Access Memory

• RANSAC : Random Sample Consensus

• RGB : Red Green and Blue

• RGBD : Red Green Blue and Depth

• SIFT : Scale Invariant Feature Transform

• SL : Structured Light

Page 10 Memory

• SSD : Solid State Drive

• SVD : Singular Value Decomposition

• TOF : Time Of Flight

• USB : Universal Serial Bus

• VRAM : Video Random Access Memory

Reconstruction of scenes using a hand-held range imaging camera Page 11

2 Introduction

The field of robotics is one of the fastest growing fields in scientific research. Every day we hear
of innovations and ground breaking discoveries which bring robotics closer to a wider public and
promise to make life easier to everyone, for example in the fields of health and services. This
rapid development of the field has also generated a debate on the ethics of robotics, which has
grouped worldwide known scientists in an effort to define the moral of robotics. Meanwhile,
researchers from around the world devote their lives and efforts to improve the abilities of robots
and develop new strategies to enable them perform more difficult and challenging tasks.

One of this research areas is the world of sensing. A robot communicates with the real world
with sensors and actuators, and the information gathered by the sensors is then processed to
obtain a desired result. Sensing ranges from obtaining black and white images of the surroundings
of the robot to measuring electromagnetic waves or atmospheric parameters. In this wide range
of ways to get world data we find the world of 3D sensing and RGBD cameras.

In the past years, the development of affordable RGBD cameras has enabled a growth in the
research on 3D sensing which was limited by the cost of expensive lasers and 3D equipment. In
2010 Microsoft presented Kinect, a RGBD camera for their XBOX gaming system which became
a break-through in affordable 3D sensing equipment. Since then, a vast amount of research has
been done to let robots know how the real world is.

In this context we find the launch of the second version of the Kinect: Kinect v2. With a new
technology it promises more accurate measures with less processing needed. This project aimed
at developing a program that gets a stream of data from the Kinect v2 and aligns it to obtain a
final 3D model of a real world scene.

This is done by using several C++ open source libraries. For the interaction with Kinect v2
and image acquisition, libfreenect21 is used. As for data processing we use the well known Point
Cloud Library2, an open source standalone project for 2D/3D image and point cloud processing.

1See https://github.com/OpenKinect/libfreenect2 for more details.
2All the information about Point Cloud Library (manuals, examples, documentation) can be found at

http://pointclouds.org/

Page 12 Memory

2.1 Objectives

The main objective of the project is to write a C++ program which reconstructs a 3D scene
from a stream of Kinect v2 RGBD images. This general objective can be subdivided into:

• Carry out a background analysis and a state of the art study to choose the point cloud
processing strategy.

• Learn the C++ programming language, its programming paradigms and structure, in order
to code the program and integrate the required libraries.

• Learn to use the libfreenect2 library and the PCL environment for acquiring Kinect data
and processing the resulting point clouds.

• Develop a well structured program that fulfills the main objective of the project.

• Document the program to make it easy to understand and use in future applications.

• Analyze the results and propose future work and improvements on the finished program.

2.2 Scope

The project will be qualified as successful if it is able to reconstruct accurately a real world 3D
scene from a stream of Kinect v2 RGBD image data. This reconstruction does not need to occur
in real time3 for the project to be satisfactory.

3We consider real time reconstruction when the process of aligning two consecutive RGBD images can be done
before the next image from the stream is received.

Reconstruction of scenes using a hand-held range imaging camera Page 13

3 Analysis of background

3.1 Range Imaging Techniques

The process of acquiring 3-D representations of the real world is not a trivial issue. Many
researchers and scientists have devoted years of study to develop a technique for the acquisition
of precise 3-D data resulting in a vast amount of different approaches and solutions. These
solutions try to provide efficient methods specifically suited to their field of application: industry,
biomedicine, robotics, computer vision, tracking and mapping, HMI...

In the present work only the techniques known as “Range Imaging”[4] will be considered. A
Range Image is a 2-D image whose pixel values represent real world depth measurements relative
to a known point. Several range images can be aligned applying the appropriate transformations
in order to obtain a final 3-D representation of an object or a scene. The process of acquisition
of range images aims to provide a fast, precise, and computationally cost-effective stream of data
for its further analysis and processing. Thus, a technique must be chosen among the wide variety
of possibilities trying to meet the requirements of the present application.

In order to reconstruct a scene with a hand-held device its volume and weight play a relevant
role in the decision process. It is, however, the cost of the hardware, the quality of the data and
the frame rate what most frequently determine the option to choose. A brief overview of the
most commonly used techniques with their advantages and drawbacks will provide the key to
success in selecting the adequate device.

3.1.1 Stereo Vision

The Stereo Vision approach to the problem consists of two cameras aligned with each other
but separated which take photos from different viewpoints. The 2-D images can be matched by
complex algorithms that find correspondences between them and finally calculate the distance
of the points to the baseline that links the cameras.

It is a passive solution because it does not need any artificial light source and does not require
moving parts. Furthermore, the overall cost of the hardware is very low. However, the compu-
tational time required to align the images and obtain the depth data is high and the results are
not robust, due to the presence of shades and occlusion in the scenes which can lead to failure
in solving the correspondence problem.

Page 14 Memory

Figure 3.1: Simplified stereovision system. Source: [19]

3.1.2 Structured Light

Another commonly used method is to project a known pattern onto the surface to scan and cap-
ture an image of the projected pattern. By carefully analyzing the distortion in the pattern and
knowing the relative position between the projector and the camera, the depth of the projected
area can be obtained. The pattern is projected using IR light and captured by IR sensors.

Figure 3.2: Principle of structured light based systems. Source: [24]

This is a far more precise method than Stereo Vision, providing a higher acquisition rate
and a good performance even under various ambient light conditions. It still requires a com-
putation process to analyze the projected pattern in order to calculate the depth image, but
its implementation is reasonably affordable so it has become a widely used technique for range
imaging.

3.1.3 Time of Flight

The TOF (Time Of Flight) technique relies on the precise knowledge of the constant value of the
speed of light. By measuring the time it takes for a beam of light to travel from a light source to
a receiver and knowing their relative position, the distance to the reflecting surface can be easily
calculated.

Reconstruction of scenes using a hand-held range imaging camera Page 15

There are various types of light sources for TOF applications, the most common ones being
IR LED arrays and laser beams. Laser based applications such as LIDAR are more expensive
and involve moving parts due to the fact that only one depth point can be acquired at a time,
whereas the IR arrays are capable of capturing the entire FOV at once, providing depth images
at a higher frame rate. As stated by Maged Aboali et al. [4], this significant difference leads to
TOF mainly referring to IR applications and not Laser ones.

Figure 3.3: Principle operation mode of a time-of-flight camera. Source: [29]

Due to its direct measuring of depth, the computational costs of TOF are very low thus
enabling a high frame rate. Since it also uses IR light it provides good results both at bright
and low lighting conditions but it reaches a low range compared to the Structured Light and
Stereo Vision options. TOF devices have received great attention in the past decades due to the
advances in electronics and have become one of the best alternatives for capturing range images.
Table 3.1 shows a brief comparison between the reviewed techniques.

Characteristic Stereo vision Structured light TOF
Correspondence problem Yes Yes No

Extrinsic calibration Yes Yes No
Auto illumination No Yes Yes

Performance on untextured surfaces Bad Good Good
Image resolution High High Medium

Table 3.1: Comparison between stereo vision, structured light and time-of-flight. Source: [4]

3.2 Range Imaging Devices

Image acquisition has to provide good quality data in order to solve the problem of registration.
It must be considered that even the best algorithm will strive to produce acceptable results if
fed with noisy and highly distorted images, so the quality of the acquisition equipment plays a
vital role in the registration process. However, better equipment is often expensive and difficult

Page 16 Memory

to use and the recent development of affordable and open source devices has led the scientific
community to search for a midway solution.

This is where devices such as the Microsoft Kinect [2], the Asus Xtion [3] or the Intel RealSense
[1] provide the necessary tools for developing both affordable and reliable solutions.

(a) ASUS Xtion 2 (b) Intel RealSense SR300 (c) Kinect for Windows v2

Figure 3.4: Consumer range imaging devices. Sources: [5], [15], [11]

3.2.1 ASUS Xtion

The Asus Xtion 2 is a compact device (11 x 3.5 x 3.5 cm) with a 5MP RGB camera and a 640x480
depth sensor which provides images at a rate of 30 Hz. It can sense objects from 0.8 to 3.5 m
from the camera, and its FOV is 74 by 52 degrees. It costs 269.99 $ and uses the structured light
technique.

3.2.2 Intel RealSense

Intel has developed several versions of depth sensors based on its RealSense technology. The Intel
RealSense SR300 has a depth resolution of 640x480 at a nominal frame rate of 60 Hz and a FOV
of 71.5 by 55 degrees. It also provides a 1920x1080 RGB image stream and costs 135.99 $. The
RealSense technology uses the coded or structured light technique for depth image acquisition,
providing a depth range from 0.3 to 2 meters.

3.2.3 Kinect for Windows

The Kinect 2 is a range imaging camera which operates with the TOF principle, providing a
525x424 depth image and a 1920x1080 RGB image at a frame rate of 30 Hz. It has a FOV of 70.6
by 60 degrees and a depth range of 0.5 - 4 m1 making it adequate for capturing indoor scenes
and small objects. It costs 99.99 $ and the development kit for PC costs another 39.99 $.

In the present work all the images have been acquired with a Kinect 2 sensor. A comparison
between the presented range imaging devices is shown in Table 3.2.

1According to the Kinect manufacturers, the physical depth range of the Kinect goes from 0.5 to 8 m, but
measurement precision drops significantly for points further than 4 m from the camera.

Reconstruction of scenes using a hand-held range imaging camera Page 17

Characteristic ASUS Xtion 2 Intel RealSense SR300 Kinect for Windows v2
RGB image 2560x1920 1920x1080 1920x1080
Depth image 640x480 640x480 515x424
Frame rate 30 Hz 60 Hz 30 Hz

Imaging technique SL SL TOF
Price 269.99 $ 135.99 $ 139.99 $

Table 3.2: Comparison between range imaging cameras. Own source.

3.3 3D Registration Algorithms

The problem of consistently aligning two different images to produce a final combined image
emerged before the development of 3D imaging systems. Over the years, a broad range of
techniques were developed for aligning 2D images which in turn led to algorithms for 3D image
registration. Several authors have worked on surveys of the different methods developed over
time, such as L.G. Brown [10], B. Zitová and J. Flusser [32] or B. Bellekens et al. [8] among
others.

When it comes to RGB-D image registration, two main approaches follow. The first one uses
RGB data to align the images as if they were in plain 2D and then performs a fine alignment of
the 3D data based on the first transformation. The second approach uses only 3D information
for aligning the images, as is the case of the present work. The reason for choosing the second
approach was not robustness nor efficiency but rather the simplicity of the desired solution. We
wanted to keep the registration algorithms within the tools provided by the PCL library and the
usage of RGB image registration algorithms implied the need of specific third party libraries.

The process of registration can be simplified by considering only the problem of aligning one
image to another. Once this problem is solved, the next acquired image can be aligned to the
previous one and so on in a process called pairwise registration. This simplification can be done
when working with a continuous stream of data, and the registration can be performed between
each acquisition (real time registration) or after the acquisition process has finished.

In both cases the first decision to make is which pipeline will be used for the pairwise registra-
tion. Based on its program work flow, almost every 3D registration application can be gathered
under one of the following categories: Iterative Closest Point or Feature based applications.

3.3.1 Iterative Closest Point

The ICP algorithm was first proposed by Besl and McKay [9] for registration of 3-D shapes. It
has been since then one of the most used registration algorithms, with many different variants
of the original algorithm being developed over the years until today. The idea of the algorithm
is to iterate over two steps: the matching step to determine correspondences between the two
point sets, and the alignment step, to compute the global distance error (usually the sum of the
squared differences between corresponding pairs) and calculate a transformation to minimize the
error. These steps are carried out iteratively until certain convergence criteria is met.

Page 18 Memory

The point sets are called target and source, the result of the algorithm being the transformation
applied to the source in order to register it with the target. The basic structure of ICP is shown
in Figure 3.5.

input : Point sets target and source, ConvergenceCriteria
output: Transformation of source into target

1 while ConvergenceCriteria not met do
2 foreach point in source do find closest point of target;
3 compute error;
4 find transformation to minimize error;
5 apply transformation and compute transformedError;
6 if | transformedError − error | < threshold then
7 end algorithm;
8 else
9 iterate again;

10 end

11 end

Figure 3.5: ICP Algorithm basic structure. Own source.

While all the variants of ICP present this basic structure each of them has its advantages and
drawbacks. Ones differ in the way of computing the error metric, others in the transformation
estimation procedure, and most of them try to find an efficient and robust method for finding
corresponding point pairs. This step is crucial for the outcome of the iterative process and has
thus become a broad field of study for many scientists.

The most common methods for pairing are point-to-point and point-to-plane. The first one
finds the closest point by minimizing the euclidean distance of a source point and the target point
set, whereas the second method uses normal information of the point sets to minimize the per-
pendicular distance from the source point to the tangent plane of a target point. Moreover, after
the corresponding pairs have been found it is a common practice to reject bad correspondences
by means of a certain criteria (maximum distance, normal compatibility, duplicate matches, etc.)
in order to better estimate the transformation.

Every iteration of the algorithm is computationally expensive so another goal is to optimize the
nearest-neighbor search procedure to speed up the process. Therefore, many ICP applications
use kd-trees or octrees for rapid searches and most of them also perform a subsampling of the
clouds prior to the matching step. Subsampling must be done carefully so as to preserve all the
relevant points of the point clouds. However, the main drawback of ICP is not its speed but
the fact that the algorithm can get caught in local minima if the clouds are not initially roughly
aligned or they only partially overlap. This leads in many cases to a previous step for a rough
alignment of the clouds before they are passed to ICP.

Reconstruction of scenes using a hand-held range imaging camera Page 19

Figure 3.6: Illustration of an ICP process. Source: [30]

3.3.2 Feature Based Algorithms

Although ICP is a robust and well-known registration algorithm, the fact that it may converge
to local minima does not make it suitable for every application. For example, in the case of a fast
moving sensor consecutive images are only partially overlapped and need to be roughly aligned
before they can be processed by ICP. This is where Feature based algorithms play a vital role in
the registration process.

The main difference between ICP and Feature based algorithms2 is the usage of Descriptors
for the matching step. This makes the alignment of partially overlapped clouds a feasible task
although the resulting transformation is not as precise as the ICP transformation. This is why
the process is often called Coarse Alignment and is usually followed by a fine alignment via ICP
registration.

The steps of Feature based algorithms are the following:

1. Keypoint Detection: detect interest points which are distinctive, repeatable and robust

2. Feature Description: describe the interest points using 3D information of their sur-
roundings

2Also known as Descriptor Matching

Page 20 Memory

3. Feature matching and rejection: match interest points of both clouds based on their
descriptors and reject bad correspondences

4. Transformation estimation: use keypoint matches to estimate a transformation between
the clouds

Each of these steps is relevant to the outcome of the whole process but the Keypoint Detection
and Feature Description stages are the most discussed topics of Feature algorithms. Many
variants of Keypoint Detectors and Feature Descriptors have been developed over the years and
PCL library includes a wide range of implementations. The ones considered in this work are
presented in the following points.

Figure 3.7: Pairwise registration pipeline using Feature detection and matching. Source: [13]

3.3.2.1 Keypoint Detection

Descriptor Matching differs from ICP in that only a selected subset of points is used for the
alignment process. This reduces the number of calculations needed and also ensures that the
correspondences are not ambiguous. These points must be therefore carefully extracted to be
easily and robustly paired between clouds. To do that they must be:

• Distinctive: the area surrounding a keypoint should have a unique shape or appearance.

Reconstruction of scenes using a hand-held range imaging camera Page 21

• Repeatable: the keypoint should be detected even if the cloud is rotated, scaled or if the
image is taken from a different viewpoint.

A distinctive keypoint will have a unique descriptor that can easily be matched with its corre-
sponding pair in another cloud. As an example, corners are distinctive keypoints whereas points
of a plane are similar to each other and are prone to generating bad correspondences in the
matching step.

Repeatibility is a condition sine qua non for Feature based algorithms because the objective
of the resulting transformation is to align points that are the same in both clouds.

The keypoint detectors considered in the present work are SIFT3D, ISS and NARF, which
are both included in the PCL library. An example of the keypoints detected by each method is
shown in Figure 3.8.

• SIFT3D: SIFT3D is a 3D implementation of the SIFT (Scale Invariant Feature Transform)
algorithm presented by D.G. Lowe [16]. It was designed as a novel method for detecting
and describing scale-invariant keypoints in 2D images. It must be noted that scale is an
important factor in 2D images, where two shots taken from different distances to an object
produce very different images. In 3D clouds, however the difference between a close and a
far shot of the same scene is the density of the cloud.

SIFT extracts keypoints by computing the Difference of Gaussian of the image intensity
through different scales. A slightly modified version of SIFT adapted to 3D clouds was
introduced in PCL and has been tested in this work due to its short computational time[6].

• ISS: Intrinsic Shape Signatures was presented in 2009 by Y. Zhong [31] as a novel method
to characterize a region of a point cloud, and was ported to PCL by G. Ballin during the
Google Summer of Code ’12.

ISS is based on the eigenvalues λ1, λ2, λ3 of the covariance matrix of the support region
around a certain point. It computes two ratios: λ2/λ1 and λ3/λ2 which must be smaller
than a user defined threshold to pass to the next stage. Then the saliency of the points
is computed and after a Non Maxima Suppression (NMS) stage the final keypoints are
obtained.

• NARF: Normally Aligned Radial Features is an algorithm developed by B. Steder et al.
[27] in 2010. It uses range images and not point clouds as the source for keypoint detection,
aiming at detecting borders and keypoints where a surface is stable but the neighboring
points present substantial change.

NARF requires the computation of a range image from a point cloud in order to detect the
keypoints. It is a fast algorithm which performs best in non-noisy clouds.

ISS yielded the best results in terms of invariance and repeatability in the comparative eval-
uation by S. Filipe and L.A. Alexandre[14]. Although the tests performed by G.Ballin [6] show
that ISS is slower than SIFT3D and NARF, computing time was reduced significantly by using
4 threads instead of 1 for keypoint detection. Furthermore, the initial alignment provided with
ISS keypoints proved to be the most robust of the three.

Page 22 Memory

(a) NARF Keypoints (b) SIFT3D Keypoints (c) ISS Keypoints

Figure 3.8: Comparison of keypoints detected by three different methods. Own source.

3.3.2.2 Feature Description

A feature descriptor is a compact representation of the surrounding region of a point aimed at
detecting similarities between surfaces. Among the various types of descriptors included in PCL,
the present work uses the Fast Point Features Histogram (FPFH) descriptor. It was developed
by R.B. Rusu et. al [21] for its usage in 3D point cloud applications.

FPFH is an extension of PFH (Point Feature Histogram) to make the computation of features
faster. PFH creates a histogram for each desired point pq that can be compared to establish
correspondences. To compute the histogram, the algorithm follows these steps:

1. Define a set of points P which are neighbors to the desired point pq.

2. For each point pair in the neighborhood of pq, define a point source ps and point target pt.

3. With the information of the normals ns and nt, compute three values which express the
mean curvature at point ps.

4. Quantizise the values and increment the correspondent bin of the histogram of pq.

5. Repeat until all combinations of point pairs in point set P have been considered.

The quantizing step makes b subdivisions of the three values, so b3 possible combinations of
value ranges exist and the final histogram has b3 bins. The default subdivision size of PFH is
5 and the correspondent histogram is stored as a vector of 125 values which represents surface
variations around point pq.

FPFH has proven to be very useful with 2.5D images (range images) and thus has been used
in our work, although point clouds have to be filtered to remove significant noise for FPFH to
produce robust results.

3.3.2.3 Feature Matching

The next step of Feature based algorithms is to establish correspondences between the keypoints
of two clouds using their Feature information. This is done by searching the nearest point to each

Reconstruction of scenes using a hand-held range imaging camera Page 23

source cloud point in the feature-space of the target cloud. A naive approach would search then
estimate a transformation to bring all the corresponding points together. However, it is common
to have points with similar features which do not correspond to each other in the 3D space. A
correspondence rejection step is therefore needed prior to the transformation estimation.

Figure 3.9: Example of Point Feature Histograms of two different points. Source: [12]

The most common algorithm for rejecting false correspondences is the Random Sample Consen-
sus or RANSAC. RANSAC is a random iterative method for detecting outliers in a mathematical
model, and it is used in registration applications to detect which correspondences will lead to
an incorrect transformation. To do so, it selects a random subsample of correspondences and
rapidly estimates a transformation using the subsampled points. The transformation is then
evaluated with the rest of correspondences, keeping the ones which lie under a certain threshold.
If the number of correct correspondences is higher than a minimum amount, it is considered to
be a good transformation. This process is iteratively repeated until a certain level of inliers is
found.

input : Point sets target and source, correspondences
output: Inlier correspondences and best transformation

1 while not maximumIterations do
2 select a random subset of correspondences;
3 compute best transformation according to subset correspondences;
4 apply transformation to evaluate the rest of correspondences;
5 define the accuracy of transformation by the number of correspondence inliers;
6 if inlierProportion > threshold then
7 end algorithm;
8 else
9 iterate again;

10 end

11 end

Figure 3.10: RANSAC outlier rejection algorithm. Own source.

Page 24 Memory

3.3.2.4 Transformation Estimation

The final step of the coarse alignment performed by Feature based algorithms is to estimate
a transformation between the source and target clouds using the inlier correspondences from
the rejection step. In some cases, such as the PCL RANSAC outlier rejection algorithm, this
rejection step provides a transformation based on the best random subset of correspondences
used to detect inliers. However, after all the inliers have been identified, it is recommended to
recalculate the transformation using all the inliers and a more accurate estimation method.

PCL provides two different methods for estimating a transformation:

• SVD Transformation Estimation: this method uses the singular value decomposition
of the covariance matrix of the data to estimate the best possible transformation of one
cloud into another in a single step.

• LM Transformation Estimation: this is a method based on the Levenberg-Marquardt
least squares algorithm. It is an iterative process which requires an initial guess which can
handle non-linear least squares problems.

The LM algorithm is used by some ICP variants included in PCL, especially in those whose
cost function changes at each iteration. In our case, it is better to use the SVD method as it
computes a transformation in a single step.

When a transformation has been calculated, the pairwise registration process has finished and
an initial coarse alignment of both clouds has been found. This coarse alignment serves as the
initial guess for the fine ICP alignment which should now converge to a global minimum instead
of a local one.

3.3.3 Algorithm Weaknesses and Limitations

Both ICP and Feature based algorithm have their limitations. We have discussed that ICP can
converge to local minima due to the initial relative position of both clouds. In the case of point-
to-plane ICP, the result of the iterative process depends highly on the precision with which the
point normals are calculated.

When it comes to Feature based algorithms, there are more steps where a small error can lead
to a failure in the process. For example, detecting few keypoints makes it harder for RANSAC
to find an appropriate transformation, and if the matching step produces a high amount of false
correspondences or the rejection algorithm identifies many false correspondences as inliers the
transformation estimation will not provide a successful transformation.

It is therefore necessary to perform a series of tests with real data to adjust the parameters
and conditions of every algorithm of the process. It must be taken into account that there is a
trade-off between precision and speed, and that the result of the process does not only depend
on algorithm parameters but also on the quality of the data. The solution presented in this
work has been adjusted to provide a result in a computation time less than 10 seconds. For
real time applications many variations and optimization techniques exist but they have not been
considered in our case.

Reconstruction of scenes using a hand-held range imaging camera Page 25

3.4 Point Cloud Filtering

Due to the relevance of the data quality in terms of robustness for the registration algorithms,
it is necessary to refine the raw data provided by the range imaging sensor. Sometimes a down-
sampling is also carried out in order to reduce the number of points and speed up the process.
This must be done carefully to not lose any relevant information of the cloud.

PCL provides a wide range of filters for this purpose. A group of them are focused on smoothing
surfaces or removing noise from the data:

• Fast Bilateral Filter : it is a nose reduction algorithm that preserves edges of the cloud
and produces a smooth result. It is derived from the filter designed for 2D images, which
replaces the intensity of each pixel with a weighted value based on a Gaussian distribution.
An implementation of the Bilateral Filter is also included in the libraries used for Kinect
v2 image acquisition.

• Radius Outlier Removal : given a spherical radius r and a minimum number of neighbors
minNeighbors, it removes the points of the cloud which have less than minNeighbors
points in a sphere of radius r centered in the point. If the cloud comes from a range image,
the computation of the neighbors is fast because the points can be transformed to a 2.5D
space in a pixel-like structure.

• Statistical Outlier Removal : the principle of operation of the Statistical Outlier Removal
method is the same as the Radius Outlier Removal. In this case, a point is removed if its
average distance to its k nearest neighbors is statistically larger than the average distance
of the rest of cloud points. The usual threshold for removing points lies between one or
two standard deviations from the mean distance, and is slower than the Radius Outlier
Removal filter.

• Moving Least Squares: it is a surface reconstruction method for smoothing and resampling
noisy data. It fits a polynomial surface to the sampled points and then moves the points
to a new position in the fitted surface. It is a relatively slow method and thus is not
suitable for real time applications. In this work it is used as a final smoothing method for
reconstructing the surface of the final registered clouds.

• PassThrough Filter : the PassThrough Filter does not qualify as a noise reduction algorithm
but as a conditional filter. It removes the points which do not meet a condition defined by
the user such as a maximum z value. In our case it is used to crop the depth data by a z
value to avoid the farther points due to their planar distortion.

As for downsampling, PCL presents two methods which are based on dividing the 3D space
in a grid and downsampling the points within each grid:

• Sampling Surface Normal : it divides the space into grids until each grid contains a maxi-
mum on N points. Then it computes a normal using all the points in the grid, randomly
samples a ratio of points from the grid and assigns them the same normal vector.

• Voxel Grid Filter : the Voxel Grid Filter is the most used filter of PCL for downsampling
clouds. It divides the space into equal voxels and replaces all the points in a voxel with

Page 26 Memory

their centroid. It is a more stable method than Sampling Surface Normal and it produces a
cloud with constant point density. An optimization of this filter called Approximate Voxel
Grid Filter can be used for speeding up the computation but it reduces the quality of the
result. An example of the effect of a Voxel Grid Filter is shown in Figure 3.11.

Figure 3.11: Example of the effect of the VoxelGrid Filter on Kinect data. Source: [18]

Reconstruction of scenes using a hand-held range imaging camera Page 27

4 Development of the Program

4.1 Development Environment

4.1.1 Hardware

The hardware used in the development of the project consists in one Kinectv2 sensor and an
Acer Aspire E15 laptop computer. The Kinectv2 specifications have already been presented in
the Analysis of Background. As for the Acer specifications, they are the following:

• CPU : Intel Core i5-7200U 2.5 GHz1

• RAM : 8 Gb DDR4 RAM

• Graphics Card : NVIDIA GeForce 940 MX with 2 Gb dedicated VRAM

• Storage: 256 Gb SSD

Another required specification for the computer was to have at least one USB 3.0 port because
due to the high data transmission rate of the Kinectv2, it does not work with USB 2.0 connectivity
ports. No additional hardware was required for the development of the project.

4.1.2 Software

Three main software components were used for the programming of the registration program:
the C++ programming language, libfreenect2 open source library and the Point Cloud Library in
its 1.7 development version. Everything was programmed in an Ubuntu 16.02.3 LTS distribution
using Sublime 3 for text editing and Cmake for compilation. The code of the project is distributed
as free software and available at GitHub.

1Up to 3.1 GHz with Turbo Boost

https://github.com/javigallostra/kinect-registration

Page 28 Memory

4.2 Program Structure

In order to organize the code in an efficient way and avoid unnecessary repetitions, it is structured
following the Object Oriented Programming paradigm. In this way the program is subdivided
into several classes which interact with each other in an organic way. From this code subdivision
follows a file subdivision: the program is divided into files, each of them storing the code of a
respective class. In order to include all the different C++ files in the main program, we use C++
header files.

The program classes are the following:

• ImageGrabber: located in the file acquisition.cpp, it provides methods for capturing
new frames, saving them in the .pcd format and stopping the communication with the
Kinectv2 device. When an ImageGrabber object is instantiated it automatically searches
for any Kinectv2 connected to the computer and starts to communicate with it.

• CoudFilters: located in the file filterCloud.cpp, it provides several cloud filtering methods:
Radius Outlier Removal, PassThrough and Voxel Grid filters. It also has a method for
applying all three filters to a cloud, one after another.

• CoarsePairwiseAligner: located in the file coarse align.cpp, it includes the Feature based
algorithm for the coarse alignment of one cloud into another. This class makes use of the
KeypointDetector class for the calculation of point cloud keypoints. It has to main methods:

– align: takes a source and a target cloud as an input and returns the transformation
of target into source

– alignToLast : takes a source cloud as an input and uses the last inputted cloud as the
target to compute the transformation.

Using these two methods we can perform a coarse pairwise alignment of a stream of incom-
ing data, aligning the new image to the last processed one. This class also provides methods
for getting useful data calculated within the process such as cloud normals, keypoints or
features, in case this data is required by other algorithms or for visualization purposes.

• KeypointDetector: the KeypointDetector class provides several keypoint detector algo-
rithms which can be used by the CoarsePairwiseAligner to compute point cloud keypoints.
Currently there are three different keypoint types: SIFT3D, NARF and ISS3D keypoints,
with ISS3D as the default type. It is located in the kp detectors.cpp file.

• FineAligner: this class implements the PCL ICP point-to-plane algorithm to perform a
fine alignment of two point clouds. Its main method is called align, which takes a source
cloud, a target cloud and an initial guess transformation matrix as an input and returns
the final transformation outputted by the ICP algorithm. It also provides a method for
setting the maximum number of iterations of ICP and is located in the fine align.cpp file.

• SurfaceReconstructor: located in the surface reconstruction.cpp file, this class provides
one method with two different options for the reconstruction of surfaces from a point cloud:
the Greedy Projection Triangulation and the Poisson algorithm. Prior to passing the cloud
to any of the reconstructors, it applies a Moving Least Squares filter to smoothen the
surfaces of the cloud and then downsamples them with a Voxel Grid filter.

Reconstruction of scenes using a hand-held range imaging camera Page 29

• Viewer: this is the last class of the program and it is designed for visualizing the results
using the PCLVisualizer class. It is located in the visualization.cpp file and provides several
methods for updating the displayed point clouds as the registration process gets new input
data. This class also handles the keyboard input for the interaction with the user.

A detailed representation of the public methods of each class can be seen in the following
figures.

ImageGrabber

+ captureFrame() : void
+ getCurrentFrameCloud() : PointCloud::Ptr
+ saveFrameAsPCD() : void
+ stopDevice() : void

Figure 4.1: ImageGrabber class

CloudFilters

+ radiusOutlierRemovalFilter(PointCloud::Ptr cloud in, PointCloud::Ptr cloud out) : void
+ passthroughFilter(PointCloud::Ptr cloud in, PointCloud::Ptr cloud out) : void
+ voxelFilter(PointCloud::Ptr cloud in, PointCloud::Ptr cloud out) : void
+ applyAllFilters(PointCloud::Ptr cloud in, PointCloud::Ptr cloud out) : void
+ setVerbose(bool verb) : void

Figure 4.2: CloudFilters class

SurfaceReconstructor

+ reconstruct(PointCloud::Ptr cloud in, PointCloudNormal::Ptr cloud out,
pcl::PolygonMesh::Ptr mesh out) : void

+ setReconstructionMethod(std::string new method) : void

Figure 4.3: SurfaceReconstructor class

FineAligner

+ align(PointCloudNormal::Ptr source cloud, PointCloudNormal::Ptr target cloud,
Eigen::Matrix4f transformation guess) : void

+ getFinalTransformation() : Eigen::Matrix4f
+ setMaximumIterations(int max iterations) : void

Figure 4.4: FineAligner class

Page 30 Memory

KeypointDetector

+ computeKeypoints(PointCloud::Ptr cloud, PointCloud::Ptr keypoints out,
Normals::Ptr cloud normals) : void

+ setKeypointType(std::string kp type) : void
+ getKeypointType() : std::string

CoarsePairwiseAligner

+ align(PointCloud::Ptr source cloud, PointCloud::Ptr target cloud) : void
+ alignToLast(PointCloud::Ptr source cloud) : void
+ getFinalTransformation() : Eigen::Matrix4f
+ getSourceKeypoints() : PointCloud::Ptr
+ getTargetKeypoints() : PointCloud::Ptr
+ getCorrespondences() : pcl::CorrespondencesPtr
+ getFilteredCorrespondences() : pcl::CorrespondencesPtr
+ getSourceFeatures() : Features::Ptr
+ getTargetFeatures() : Features::Ptr
+ getSourceNormals() : Normals::Ptr
+ getTargetNormals() : Normals::Ptr
+ getKeypointDetectorType() : std::string
+ setKeypointDetectorType(std::string type) : void

Figure 4.5: CoarsePairwiseAligner and KeypointDetector classes

Viewer

+ getViewer() : Visualizer::Ptr
+ updateGrabber(PointCloud::Ptr grabberCloud) : void
+ updateClouds(PointCloud::Ptr sourceCloud, PointCloud::Ptr targetCloud,

PointCloud::Ptr composCloud, PointCloud::Ptr sourceKp,
PointCloud::Ptr targetKp) : void

+ updateCorrespondences(pcl::CorrespondencesPtr correspondences,
PointCloud::Ptr sourceKp,
PointCloud::Ptr targetKp) : void

+ updateCorrespondenceTransform(Eigen::Matrix4f new transform) : void
+ addFinalMesh(pcl::PolygonMesh::Ptr mesh in) : void
+ updateFPS(std::string fps) : void
+ getPressedID () : int
+ setPressedID (int newID) : void

Figure 4.6: Viewer class

Reconstruction of scenes using a hand-held range imaging camera Page 31

4.3 Image Acquisition

The first step of the program is to acquire RGBD images from the Kinectv2 and store them in
a format which can be later processed using the PCL toolbox. To do this the libfreenect2 open
source Kinectv2 drivers were used.

The libfreenect2 library provides the necessary tools to acquire RGB, Depth and IR data from
the Kinectv2. It also includes useful functions for registering RGB data onto the Depth image
and vice-versa, in order to obtain a RGBD image. It must be noted that the resolution of RGB
and Depth images differ from each other: RGB has 1920x1080 pixels while Depth has 512x424
pixels.

If one chooses to register RGB onto Depth data, he result will be a 512x424 depth image with
colour. However, if the real FOV of the RGB camera does not fully overlap the Depth camera
FOV some pixels will not have color information. The same principle applies for registering
Depth onto RGB data: the result will be a 1920x1080 color image with depth, but in this case
adjacent color pixels might have the same depth value or even no depth data if the Depth FOV
does not fully overlap the RGB FOV.

Roland Smeenk developed a web tool called Kinect FOV explorer2 which illustrates this prin-
ciple. In Figure 4.7 it can be seen that the real RGB FOV is wider than the Depth one whereas
the Depth FOV is higher than the RGB one. This results in RGB to Depth registered images
having two black bands in the upper and lower image sections and in Depth to RGB registered
imaged having no depth data in the left and right image borders, as shown in Figure 4.8.

(a) RGB FOV (b) Depth FOV

Figure 4.7: Kinectv2 fields of view compared. Source: own elaboration from [25]

In this project the RGB to Depth registration has been used for two main reasons. The first
one is that registering Depth to RGB means that some RGB pixels will be assigned the depth
value of its nearest pixel of the depth image3. This approximation can create fake depth pixels

2Available here
3This happens due to the difference in point density between RGB and Depth images

http://www.smeenk.com/webgl/kinectfovexplorer.html

Page 32 Memory

(a) RGB capture (b) Depth capture (c) Depth mapped onto RGB

Figure 4.8: Example output of mapping Depth onto RGB. Own source.

that may difficult the registration process. The second one is that even if no fake pixels are
created, the 1920x1080 RGBD image has no additional depth information than the 512x424
RGBD image but it does have 9.5 times more depth points. Having such an amount of points
will greatly increase the computational time required to process them. This is the second reason
why the RGB to Depth registration was used in this project.

4.3.1 From 2.5 D to 3 D

An example output of the RGB to Depth registration can be seen in Figure 4.11a. However,
the data is currently in a so called 2.5 D format: the program has an image made of pixels with
their respective i, j pixel indices and two information fields: a float representing the color of the
pixel in a RGB format and a depth value in meters4. This gives us the real world Z value of
each pixel, but for a point cloud representation the X and Y real world coordinates need to be
obtained.

Figure 4.9: Illustration of the pinhole camera model. Source: [20]

Thankfully there is an easy way of computing these values. Due to the fact of Kinectv2 being
a camera and not a rotating scanner, the data captured by it follows the pinhole camera model.
Figure 4.9 illustrates this principle, where it can be seen that given the focal length of the camera
f in pixels, the real world Z distance of the point to the camera and the indices i, j of a given
pixel pij , the real world X, Y coordinates of pij can be easily calculated as:

j = f × Y

Z
=⇒ Y = j × Z

f
and X = i× Z

f
(4.1)

4The depth data collected from the Kinectv2 using libfreenect2 is stored as a float and the units used are
meters

Reconstruction of scenes using a hand-held range imaging camera Page 33

Libfreenect2 provides an implementation of this calculation which uses default Kinectv2 focal
distances. After the computation of each pixel’s X and Y values, the last step is to store the
data in the PCL format. The program iterates through all the pixels of the registered RGBD
frame, computes the real world coordinates of each pixel and stores them in a PCL PointCloud
object5 which can be processed by the PCL toolbox.

One last annotation that must be made to the acquisition process is that we only store the
central 400x400 pixels from the RGBD image. This is because the borders of the depth image
present significant noise, with values that clearly do not correspond to real depth values. To
avoid storing false measurements, only the center part of the image is stored. All this process is
done by the function captureFrame. An example of a resulting cloud is shown in Figure 4.11a.

void ImageGrabber::captureFrame ()

{

// Release previous frames

listener->release(frames);

// Wait for frames

listener->waitForNewFrame(frames);

// Get frames

rgb_frame = frames[libfreenect2::Frame::Color];

ir_frame = frames[libfreenect2::Frame::Ir];

depth_frame = frames[libfreenect2::Frame::Depth];

// Register rgb to depth

registration->apply(rgb_frame, depth_frame, undistorted_frame, registered_frame);

// Fill pcl cloud

frame_cloud->width = image_width;

frame_cloud->height = image_height;

frame_cloud->is_dense = false;

frame_cloud->points.resize (frame_cloud->width * frame_cloud->height);

float X, Y, Z, RGB;

int counter = 0;

// For each pixel inside the desired range

for (int xi = width_gap; xi < (registered_frame->width - width_gap); xi++)

{

for (int yi = height_gap; yi < (registered_frame->height - height_gap); yi++)

{

// Get real world coordinates

registration->getPointXYZRGB(undistorted_frame,registered_frame,yi,xi,X,Y,Z,RGB);

frame_cloud->points[counter].x = -X; // mirror image

frame_cloud->points[counter].y = Y;

frame_cloud->points[counter].z = Z;

frame_cloud->points[counter].rgb = RGB;

counter++;

}

}

}

Figure 4.10: ImageGrabber’s captureFrame function. Own source.

5In this process, the real X values relative to the origin of the camera are inverted due to the original Kinect
image being mirrored

Page 34 Memory

4.4 Preprocessing

A closer look to the raw image provided by libfreenect2 shows that it presents significant planar
distortion in the farther points and some noise in those points closer to the camera, thus requiring
point cloud filtering prior to any in-depth data analysis. The planar distortion could be corrected
by performing an accurate calibration of the camera. However, even though there is significant
distortion in the farther points, if the interest points lay in the middle range of the camera no
extrinsic calibration is needed. This is the case of the present work, and it motivates the first
filter used in the preprocessing pipeline prior to the registration algorithms6.

4.4.1 Cropping by Z values

In the analysis of background we have presented the specifications of the Kinectv2, one of which
is the depth range of the camera: from 0.5 to 4 meters. To discard the points with planar
distortion, we use a PassThrough filter and erase all the points of the cloud with a Z value of
more than 2 meters. This is a very fast process which gives us a new point cloud with which
theoretically do not present distortion, although there are still some chunks of noisy points which
have to be removed.

4.4.2 Subsampling

The second preprocessing step aims at reducing computation time while keeping the point cloud
as close as possible to the original. In order to reduce the calculations needed in the following
processes, we carry out a subsampling with a Voxel Grid Filter. The only parameter to set is
the leaf size i.e. the length of the side of the cubes used for dividing the space into a 3D grid.
In this case we use 0.01 meters as a leaf size. The Voxel Grid filter also helps to unify the point
cloud density.

4.4.3 Noise Removal

The final step aims at removing the noisy data from the point cloud. For that purpose we have
chosen to use the Radius Outlier Removal Filter. The principle of the filter has been discussed
in the second chapter, stating that the parameters that define the rejection threshold are: the
spherical radius which defines the neighbors of a point and the minimum number of neighbors a
point needs in order to be considered not noisy. If we estimate that the surface of interest will
stand 1.5 meters away from the camera, given pixel density of the Kinectv2 (7 pixels per degree)
and an approximate focal length of 370 pixels, this 7 pixels will be within:

7× 1.5

370
≈ 0.03 meters (4.2)

from the considered point. Given that this means 7 points just in one direction, if we consider a
whole sphere of radius 0.03 it is fairly easy for a good point to have at least 20 neighbors. These

6There is a previous step to the first filter which removes all the points of the cloud which have NaN (Not a
Number) values

Reconstruction of scenes using a hand-held range imaging camera Page 35

are the parameters used for the Radius Outlier Removal Filter which have proved to produce
non-noisy clouds from Kinectv2 data.

Voxel Grid Filter Radius Outlier Removal All filters
Points removed 64.82% 6.01% 70.83%

Table 4.1: Percentage of points removed by the filters*. Own source.
*Relative to the points which pass the PassThrough filter

4.4.4 Results

A series of tests took a mean time of 0.1 seconds for applying the three filters to real point clouds.
More results can be seen in Table 4.1. After the preprocessing step, we obtain a cloud with low
planar distortion, small amount of noise and with an almost constant point density, as shown in
Figure 4.11 This cloud can then be passed onto the alignment algorithm.

(a) Non-filtered cloud

(b) Filtered cloud

Figure 4.11: Point cloud before and after preprocessing. Own source.

Page 36 Memory

4.5 Coarse Alignment

Once the depth data is filtered it can be processed by the coarse alignment algorithm. The
steps of this algorithm were discussed in the analysis of background: keypoint detection, feature
description, correspondences estimation and rejection and finally compute an estimation of the
best transformation. The methods selected for carrying out these steps are presented in the
following.

4.5.1 ISS Keypoint Detection

The ISS 3D Keypoint Detector has proven to be the most robust keypoint detector method when
working with our Kinect data. Even though it is not the fastest detector (see Figure 4.12 - the
time required for computing keypoints increases linearly with the size of the input cloud for all
three methods), it yields enough keypoints for the correspondence estimation step.

Figure 4.12: Computing times of the different keypoint detection methods. Own source.

Both SIFT3D and NARF are faster but detect a significantly smaller amount of keypoints
which are too few for establishing correspondences. A comparative test shows that with similar
threshold parameters7 and with the same input point cloud, ISS3D is the best option for detecting
keypoints which lead to a good correspondence estimation.

ISS3D SIFT3D NARF
% of keypoints detected (relative to ISS3D results) 100.00% 17.82% 4.89%

% of true correspondences (relative to ISS3D results) 100.00% 16.34% 9.01%
true to total detected correspondences ratio 19.18% 16.58% 31.46%8

Table 4.2: Comparative test of ISS3D, SIFT3D and NARF detection algorithms. Own source.

7The parameters used were the default parameters suggested by the authors of each detector algorithm
8NARF results are misleading because in many cases the number of detected correspondences was almost the

minimum number of correspondences which RANSAC samples for estimating a transformation, thus giving a
higher ratio of true to total correspondences

Reconstruction of scenes using a hand-held range imaging camera Page 37

As seen in in Table 4.2, SIFT3D detects 82.18% less keypoints than ISS3D, with NARF de-
tecting 95.11% less. The correspondences found with these keypoints are then evaluated to reject
false ones. Even though this true-to-total correspondences ratio is similar between SIFT3D and
ISS3D, SIFT3D keypoints provide 83.66% less true correspondences than ISS3D (NARF results
cannot be compared because they are close to the random sample size of RANSAC rejection
algorithm). This leads to 83.66% less information for estimating a good initial transformation
between the two point clouds. We have thus decided to use the ISS3D keypoint detector in our
project.

However, the fact that ISS3D yields the most keypoints does not mean that it passes all the
cloud points to the next alignment steps: its goal is to select a number of reliable candidate
keypoints in order to speed up the process. Even though there is no ”input cloud size to number
of keypoints detected” ratio, the tests performed with our data show that by applying the
ISS3D detector the detected keypoints are on average 2.1% of the input cloud points9. Thus the
computation time of the next steps is greatly reduced because they only need to process 2.1% of
the original cloud points while the results obtained are still accurate.

The ISSKeypoint3D class implemented by G. Ballin[7] can be run in two different modes: with
and without performing a boundary estimation. The border estimation step detects boundary
points which are discarded while computing the final keypoints. This has a time penalty but
we consider that due to the keypoint detection step not being the bottleneck of the process, the
border estimation is worth applying.

The algorithm parameters recommended by the author are the following:

• gamma_21: 0.975 - upper threshold for λ2/λ1

• gamma_32: 0.975 - upper threshold for λ3/λ2

• min_neighbors: 5 - minimum neighbors required for the NMS algorithm

• salient_radius: 4·model_resolution10- spherical radius used to compute the scatter
matrix

• non_max_radius: 4·model_resolution - spherical radius used in the NMS algorithm

• normal_radius: 4·model_resolution - spherical radius used for estimating the cloud
normals

• border_radius: 1·model_resolution - spherical radius used for border detection

4.5.2 Feature Matching and RANSAC Rejection

The keypoints detected by the ISS algorithm are passed to the next step, where a FPFH descrip-
tor is computed for each keypoint using the FPFHEstimationOMP PCL class. This class follows
the Open Multi-Processing standard which enables parallel processing for a rapid computation.

9Values ranged from 1.5% to 2.5%
10The resolution of the point cloud, calculated as the average nearest neighbor distance of the whole cloud

Page 38 Memory

Another class which uses this standard is NormalEstimationOMP, used for calculating the nor-
mals of the point cloud which are required by the FPFH estimator. The parameters used for the
normal estimation are NumberOfThreads = 8 and RadiusSearch = 0.03 meters, whereas for the
FPFH estimation they are set to 4 and 0.03 respectively.

The keypoints and their features can be then passed to a CorrespondenceEstimation object
which carries out the matching step. It uses the feature descriptors to compare the clouds and
establish feature correspondences. This can be performed in two different ways:

• Source to target correspondence estimation: for each keypoint in cloud source, establish its
correspondences of cloud target in the feature space. One source keypoint can have zero,
one or several target keypoints as correspondence candidates.

• Reciprocal correspondence estimation: for each keypoint in cloud source, establish its cor-
respondences of cloud target in the feature space and vice versa. Only the reciprocal
correspondences are kept so one source keypoint can only have either one or no target
keypoint as a correspondence candidate.

This project uses the reciprocal estimation approach and then passes the keypoints and the
estimated correspondences to the RANSAC rejection algorithm in order to detect and remove
false correspondence pairs. PCL’s CorrespondenceRejectorSampleConsensus class provides
the necessary methods for correspondence rejection. The algorithm parameters defined are:

• InlierThreshold: the maximum distance between two corresponding points. A pair of
points which is farther than this threshold will not be considered as inliers. It is set to 0.2
meters because the fine aligner algorithm can still handle clouds misaligned by 0.2 meters.

• MaximumIterations: if the algorithm does not find the minimum number of inliers it will
continue sampling random subsets of keypoints until it either considers all the possible
combinations or it reaches a predefined number of maximum iterations. In this project the
maximum iterations is set to 1000.

This parameter values yield the results discussed in the previous section: an average of 80.82%
of the initial correspondences are rejected by the RANSAC algorithm. The last step is to compute
the best possible transformation using the true correspondences.

4.5.3 SVD Transformation Estimation

In order to compute the final coarse transformation, TransformationEstimationSVD class is
used. It first computes the optimal rotation R by computing the SVD of the covariance matrix
of both clouds and then finds the translation t using the centroids q̄, p̄ of target and source clouds
respectively, according to the equation

t = q̄ −Rp̄ (4.3)

Reconstruction of scenes using a hand-held range imaging camera Page 39

A detailed description of the steps to compute the best-fitting rigid transformation that aligns
two sets of corresponding points can be found in this note by O. Sorkine-Hornung and M.
Rabinovich [26].

4.5.4 Runtime

We performed several tests to analyze the runtime of each coarse alignment step. Figure 4.13
shows that the most time consuming step is the keypoint detection, which depends linearly on
the number of input points.

Figure 4.13: Runtime of the coarse alignment steps. Own source.

Figure 4.14: Closer look at RANSAC runtime. Own source.

Page 40 Memory

The second step which takes more time is the RANSAC rejection algorithm, although it does
not show any correlation with the point number. It seems, however, that there is a significant
increase in the computation time for clouds larger than 20000 points. A closer look in Figure
4.14 shows an increase of almost 400 ms when surpassing the 20000 cloud point size.

All in all the total runtime of the coarse alignment step ranges from 0.75 to 2.75 seconds, with
keypoint detection being the slowest operation of all the steps.

4.5.5 Results

There is not a fast-forward way to compute the accuracy of a coarse alignment algorithm if the
ground truth coordinates of the camera are not known. Such a validation can be performed
by manually aligning the clouds and then comparing the algorithm results with the manual
transformation. Instead of carrying out this tedious process, a visual validation was performed.
The following figures show two typical results when aligning two consecutive point clouds.

Figure 4.15: Example 1 - correpondences after the RANSAC rejection algorithm. Own source.

Reconstruction of scenes using a hand-held range imaging camera Page 41

Figure 4.16: Example 1 - final transformation of the coarse alignment process. Own source.

Figure 4.17: Example 2 - correpondences after the RANSAC rejection algorithm. Own source.

Page 42 Memory

Figure 4.18: Example 2 - final transformation of the coarse alignment process. Own source.

These results show that the coarse alignment final transformation provides an accurate initial
guess for the ICP algorithm to converge to the global minimum.

4.6 ICP Fine Alignment

The final step for aligning the clouds is to perform a fine alignment based on the transformation
estimated in the coarse alignment step. For this purpose we use PCL’s implementation of the
point-to-plane ICP algorithm: IterativeClosestPointWithNormals. The parameters used for
this project are the following:

• MaxCorrespondenceDistance: 0.1 meters - threshold distance for rejecting point pairs
which are too far from each other

• MaximumIterations: 30

• TransformationEpsilon: 1e-8 - if the translation squared difference between two con-
secutive transformations is lower than this threshold, the algorithm is considered to have
converged

With the coarse alignment transformation as an initial guess, ICP has proved to converge in
an average of 10 iterations. It is the most time-consuming step of the whole aligning process,
ranging from 400 ms to 4 seconds to compute a final fine alignment. The computation time is
highly dependent on the quality of the coarse alignment, and even though it sometimes takes up

Reconstruction of scenes using a hand-held range imaging camera Page 43

to 4 seconds, average values lie around 1 second. This wide time range is due to the variable
quality of the initial alignment which may require more iterations to converge. Moreover, there is
a correlation between the number of inputted points and the runtime of one algorithm iteration,
as shown in Figure 4.19. It can also be seen that the variability of the runtime for a single
iteration increases with the input point number.

Figure 4.19: ICP single iteration times. Own source.

4.6.1 Results

An example of the results obtained with the point to plane ICP approach can be seen in Figures
4.20 - 4.23. There are some cases where the algorithm still converges to a local minimum, for
example when both clouds have large planar areas and no corners or distinct shapes. In this
cases the algorithm sometimes makes the two clouds ”slide” along their planar surfaces until the
convergence criteria is met. Another case of failure occurs when the initial transformation guess
does not properly align the clouds.

Page 44 Memory

Figure 4.20: Example 1 - initial guess. Own source.

Figure 4.21: Example 1 - after ICP. Own source.

Reconstruction of scenes using a hand-held range imaging camera Page 45

Figure 4.22: Example 2 - initial guess. Own source.

Figure 4.23: Example 2 - after ICP. Own source.

Page 46 Memory

4.7 Surface Reconstruction

At this point the 3D reconstruction is finished. However, there is an additional step which can
be easily added to the pipeline and provides a beautiful visualization result as well as serving as
a base for further computations: surface reconstruction.

Once the consecutive clouds have been pairwise aligned, we use the Moving Least Squares
algorithm to smoothen the surfaces and adjust the points to polynomial surface models of grade
2. Then another Voxel Grid Filter is applied in order unify the point density and finally the 3D
scene is passed onto the surface reconstruction algorithm.

In this project we use the GreedyProjectionTriangulation which is an algorithm focused
on speed[17] rather than accuracy - suitable for the visualization purpose of this project. It
searches for neighbors around a point and if certain conditions are met it creates a triangle and
assigns a color for the surface. There are many parameters which can be modified to produce
different results. In this project we have used the ones recommended by the authors of PCL’s
implementation, setting the maximum edge length of a triangle to 0.1 meters.

MLS and Voxel Grid filtering are fast algorithms but the Greedy Triangulation is slow11, so
it is only performed when all the clouds are aligned i. e. there are no more frames in the input
stream. An example of the reconstruction of a single point cloud is shown in Figure 4.24.

Figure 4.24: Example output of the surface reconstruction of a single cloud. Own source.

11Greedy Triangulation is a fast surface reconstruction method but slow when compared to the rest of algorithms
of the application

Reconstruction of scenes using a hand-held range imaging camera Page 47

5 Results

All the previous processing steps are managed by the main program, which offers different options
(loading files from disk, saving captured images, switching between different keypoint detectors,
visualizing the ICP iterations, etc.). The main loop captures images from the Kinectv2 (if the
load from disk option is not activated) until the Enter key is pressed. It then captures the current
image from the Kinectv2 or from a file directory, applies the preprocessing filters and if it is not
the first capture it performs a coarse and a fine alignment with the previous image. This process
can be repeated indefinitely until the BackSpace key is pressed. At that point the program
applies the surface reconstruction algorithm to the resulting cloud of all the registrations.

During this process, the program displays 4 viewports: the Kinectv2 current view, the key-
points of the last two frames, the correspondences of the last two frames and the registration
result of all the previous clouds (see Figure 5.1.)

Figure 5.1: Different viewports displayed by the program. Own source.

We have tested the final program in different environments obtaining the following results.

Page 48 Memory

Figure 5.2: Example final result 1: Library 1 set, 33 images aquired using continuous mode -
note the effect of carrying small errors. Own source.

Figure 5.3: Example final result 2: Long table set, 6 images acquired moving the sensor along
the x axis. Own source.

Reconstruction of scenes using a hand-held range imaging camera Page 49

Figure 5.4: Example final result 3: Library 2 set, 9 images obtained by rotating the Kinectv2
around the z axis. Own source.

Figure 5.5: Example final result 4: Sofas set, 9 images - note the noise of the reflecting ground
material. Own source.

Page 50 Memory

Reconstruction of scenes using a hand-held range imaging camera Page 51

6 Project Budget

The project budget has been estimated diving the costs into hardware and work hours. The
cost per hour of work has been set to 40, while the hardware cost only includes its amortization
because both the Kinectv2 and the laptop PC were acquired before the beginning of the project
for their use in several applications. We have considered a life cycle of 5 years for both products
and 4 months as the time they have been used for the project, so only 6.7% of their initial cost
will be included in the costs of the project. As for the software used, all of it is distributed as
free software: Ubuntu, LATEX, LibreOffice, CMake, Sublime 3, libfreenect2 and PCL. Table 6.1
shows the calculation of the project budget.

Table 6.1: Calculation of the project budget

The final budget is 12053 euros, 99.56% of which is spent in work hours and the rest 0.44%
on hardware.

Page 52 Memory

Reconstruction of scenes using a hand-held range imaging camera Page 53

7 Environmental Impact

The environmental impact of this project can be analyzed from two different viewpoints: the
effects derived from using the Kinectv2 and the impact that the project might have in future
applications.

Regarding the first point, the Kinect for Windows v2 has been designed for human use and
its IR emitters are as harmful as a conventional IR LED can be. The light they emit does not
harm the environment nor the people in front of it. In this sense we can assure that this project
does not have a harmful impact on the environment.

Nonetheless, the Kinectv2 will eventually fail, break or become unusable. In order to reduce
the environmental impact, at the end of its life cycle it must be recycled properly. For a proper
recycling of the Kinectv2 sensor it must be taken to an electronics waste management center,
where the contaminant materials of the sensor will be properly taken care of while the recyclable
materials such as plastics and metals will be treated for their reuse.

As for the impact of future applications which make use of this project, we must analyze the
range of fields were the project can be applied. For example, if an autonomous car implements
the 3D reconstruction program described in this memory, it might help the car system find the
shortest possible route to its destiny and save energy for the transport. This example shows how
the future applications of this project can have a beneficial impact on the environment.

Page 54 Memory

Reconstruction of scenes using a hand-held range imaging camera Page 55

8 Conclusions

In the context of 3D scene reconstruction and point cloud registration many solutions have
already been proposed, even final real time applications are available such as Kinect Fusion1,
a real time 3D object scanning and model creation tool developed by Microsoft. The scientific
community has also produced a wide range of applications for this purpose and even PCL has
its own tutorial on image registration.

However, it is not easy to find a full implementation of the whole registration process. All
the necessary steps are scattered as separate pieces of code which are often aimed at different
devices and produce results specifically suited to certain applications. Moreover, a great deal of
these closed solutions make use of a long list of libraries for each registration step. This project
provides an easy implementation of a complete registration application: from the connection to
the Kinectv2 device to the final point cloud surface reconstruction, using only the open source
libraries PCL and libfreenect2. It can serve as a basic tool for testing new algorithms, as a func-
tional starting point for more complex registration applications, or as a 3D scene reconstructor
which provides 3D models of scenes for their further analysis.

The problems that arouse during the project were mainly related to coding. Even though
many researchers use PCL in their projects and the library was released almost 7 years ago,
most of its modules are poorly documented. This is due to an assumption that the users of PCL
have previous knowledge of the algorithms it offers. However, for a user that begins to study
the 3D vision field it can be very tedious to find specific documentation about the algorithms.
Many hours were spent trying to fix coding problems which could have been solved much faster
if the library had a broader documentation.

Apart from the coding issues, there are still some problems which have not been solved. For
example, in scenes where the predominant figures are large planar areas, the algorithm is prone
to failing at aligning two images if there is few overlap or a large rotation between them. This
type of frames also take a much longer time to align. These problems could be addressed by
using the RGB data to help align the clouds.

Despite the issues described above, final results show that the main objective of the project
has been fulfilled: we have written a C++ program that reconstructs 3D scenes from a stream
from Kinect v2 RGBD images. Furthermore, the program is well structured and documented
both in code comments and in the present memory for its future use in other applications. There
is one objective which has yet to be addressed: suggest improvements as future work.

1More information on Kinect Fusion available here.

https://msdn.microsoft.com/en-us/library/dn188670.aspx

Page 56 Memory

8.1 Future Work

The two main areas which could be improved are the robustness and speed of the program.
These improvements could be addressed in the following points:

• The keypoint detection time cloud be reduced by using RGB detection algorithms instead
of 3D based detectors. This is a common approach used in real time applications, but
currently there is not an implementation of such algorithms in the PCL library. In order
to keep the program simple, the possibility of porting RGB keypoint detection algorithms
into the PCL code trunk should be considered.

• The overall speed of the coarse alignment step could be enhanced by using RGB data for
feature description and correspondence matching and rejection. The final coarse transfor-
mation estimation would then be computed applying the found correspondences to the 3D
point clouds.

• The runtime of the ICP iterations could be improved by replacing the current approach
for a GPU implementation of the algorithm.

• To improve the robustness of the algorithm, an in-depth study of the best keypoint detectors
and feature descriptors for Kinectv2 data could be performed. Moreover, if the overall speed
of the process is improved, more complex and accurate algorithms could be used in the
coarse alignment pipeline.

• The surface reconstruction step has been included in the current project only as a way
of providing a better visual representation of the registration result. There are many
algorithms which cloud be considered for improving this process, such as Marching Cubes
or Alpha Shapes.

• The PassThrough Filter limits the range of the Kinectv2 to 2 meters due to the planar
distortion of the farther points. An extrinsic calibration of the camera could be used to
correct the distortion and enhance the range to 4 meters.

• For minimizing the carrying error due to the pairwise registration approach, a loop closure
detection algorithm could be implemented.

Reconstruction of scenes using a hand-held range imaging camera Page 57

Bibliography

[1] IntelR© RealSenseTM Technology. https://www.intel.com/content/www/us/en/

architecture-and-technology/realsense-overview.html. Accessed: 05-06-2017.

[2] Kinect hardware. https://developer.microsoft.com/en-us/windows/kinect/

hardware. Accessed: 05-06-2017.

[3] Xtion 2. https://www.asus.com/3D-Sensor/Xtion-2/. Accessed: 05-06-2017.

[4] Maged Aboali, Nurulfajar Abd Manap, Darsono Abd Majid, and Zulkalnain Mohd Yusof.
Review on Three-Dimensional (3-D) Acquisition and Range Imaging Techniques. Interna-
tional Journal of Applied Engineering Research, 12(10):2409–2421, 2017.

[5] ASUS. Asus Xtion 2. https://www.asus.com/media/global/products/

W0aYrhbhOBInh4gD/P_setting_fff_1_90_end_500.png. Accessed: 05-06-2017. [Im-
age].

[6] Gioia Ballin. Detectors evaluation: repeatability and time performances, 2012. Available at
http://www.pointclouds.org/blog/gsoc12/gballin/tests.php.

[7] Gioia Ballin. How to use the ISS 3D keypoint detector, 2012. Available at http://www.

pointclouds.org/blog/gsoc12/gballin/iss.php.

[8] Ben Bellekens, Vincent Spruyt, Rafael Berkvens, and Maarten Weyn. A Survey of Rigid
3D Pointcloud Registration Algorithms. The Fourth International Conference on Ambient
Computing, Applications, Services and Technologies, 2014.

[9] Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):239–254, February 1992.

[10] Lisa Brown Gottesfel. A Survey of Image Registration Techniques. ACM Computing Surveys,
24:326–376, January 1992.

[11] Microsoft Corporation. Microsoft Kinect. https://news.microsoft.com/wp-content/

uploads/2014/04/KinectforWindowsv2_03_Web.png. Accessed: 05-06-2017. [Image].

[12] PCL Documentation. Point Feature Histograms (PFH) descriptors. http://pointclouds.
org/documentation/tutorials/pfh_estimation.php. Accessed: 10-07-2017. [Image].

[13] PCL Documentation. The PCL Registration API. http://pointclouds.org/

documentation/tutorials/registration_api.php. Accessed: 20-06-2017. [Image].

https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://www.asus.com/3D-Sensor/Xtion-2/
https://www.asus.com/media/global/products/W0aYrhbhOBInh4gD/P_setting_fff_1_90_end_500.png
https://www.asus.com/media/global/products/W0aYrhbhOBInh4gD/P_setting_fff_1_90_end_500.png
http://www.pointclouds.org/blog/gsoc12/gballin/tests.php
http://www.pointclouds.org/blog/gsoc12/gballin/iss.php
http://www.pointclouds.org/blog/gsoc12/gballin/iss.php
https://news.microsoft.com/wp-content/uploads/2014/04/KinectforWindowsv2_03_Web.png
https://news.microsoft.com/wp-content/uploads/2014/04/KinectforWindowsv2_03_Web.png
http://pointclouds.org/documentation/tutorials/pfh_estimation.php
http://pointclouds.org/documentation/tutorials/pfh_estimation.php
http://pointclouds.org/documentation/tutorials/registration_api.php
http://pointclouds.org/documentation/tutorials/registration_api.php

Page 58 Memory

[14] Silvio Filipe and Lúıs A. Alexandre. A comparative evaluation of 3D keypoint detectors in
a RGB-D object dataset. In Computer Vision Theory and Applications (VISAPP), 2014
International Conference on, volume 1, pages 476–483. IEEE, 2014.

[15] Intel. Intel RealSense Developer Kit (SR300). https://click.intel.com/

intelrealsense-developer-kit-featuring-sr300.html. Accessed: 05-06-2017. [Image].

[16] David G. Lowe. Object recognition from local scale-invariant features. In Computer vision,
1999. The proceedings of the seventh IEEE international conference on, volume 2, pages
1150–1157, 1999.

[17] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz. On Fast Surface Recon-
struction Methods for Large and Noisy Datasets. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Kobe, Japan, May 2009.

[18] Matteo Munaro. The effect of the Voxel Grid filter on Kinect
3D data. https://www.researchgate.net/profile/Matteo_Munaro/

publication/286624443/figure/fig3/AS:306520454647810@1450091579067/

Fig-4-The-effect-of-the-voxel-grid-filter-on-Kinect-3D-data.png, 2013.
Accessed: 15-07-2017. [Image].

[19] Dinesh Nair. Simplified stereovision system. http://www.aerodefensetech.com/

component/content/article/14925?start=1, 2012. Accessed: 02-06-2017. [Image].

[20] Carlo Nicolini. A C++ code to compute OpenGL 4x4 GL MODELVIEW MATRIX
from 2D-3D points homography. https://braintrekking.wordpress.

com/2013/06/02/a-c-code-to-compute-opengl-4x4-gl_modelview_

matrix-from-2d-3d-points-homography/, 2013. Accessed: 23-07-2017. [Image].

[21] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (FPFH)
for 3D registration. In Robotics and Automation, 2009. ICRA’09. IEEE International Con-
ference on, pages 3212–3217. IEEE, 2009.

[22] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In Robotics
and automation (ICRA), 2011 IEEE International Conference on, pages 1–4. IEEE, 2011.

[23] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. Kinect Range Sensing: Structured-
Light versus Time-of-Flight Kinect. Computer Vision and Image Understanding, 139:1–20,
2015.

[24] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. Principle of structured light based
systems. Reproduced as Figure 1 in [23], 2015. [Image].

[25] Roland Smeenk. Kinect V1 and Kinect V2 fields of view compared. http://smeenk.com/

kinect-field-of-view-comparison/. Accessed: 22-06-2017.

[26] Olga Sorkine-Hornung and Michael Rabinovich. Least-Squares Rigid Motion using SVD.
Departament of Computer Science, ETH Zurich, January 2016.

[27] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. NARF: 3D
range image features for object recognition. In Workshop on Defining and Solving Realistic
Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), volume 44, 2010.

https://click.intel.com/intelrealsense-developer-kit-featuring-sr300.html
https://click.intel.com/intelrealsense-developer-kit-featuring-sr300.html
https://www.researchgate.net/profile/Matteo_Munaro/publication/286624443/figure/fig3/AS:306520454647810@1450091579067/Fig-4-The-effect-of-the-voxel-grid-filter-on-Kinect-3D-data.png
https://www.researchgate.net/profile/Matteo_Munaro/publication/286624443/figure/fig3/AS:306520454647810@1450091579067/Fig-4-The-effect-of-the-voxel-grid-filter-on-Kinect-3D-data.png
https://www.researchgate.net/profile/Matteo_Munaro/publication/286624443/figure/fig3/AS:306520454647810@1450091579067/Fig-4-The-effect-of-the-voxel-grid-filter-on-Kinect-3D-data.png
http://www.aerodefensetech.com/component/content/article/14925?start=1
http://www.aerodefensetech.com/component/content/article/14925?start=1
https://braintrekking.wordpress.com/2013/06/02/a-c-code-to-compute-opengl-4x4-gl_modelview_matrix-from-2d-3d-points-homography/
https://braintrekking.wordpress.com/2013/06/02/a-c-code-to-compute-opengl-4x4-gl_modelview_matrix-from-2d-3d-points-homography/
https://braintrekking.wordpress.com/2013/06/02/a-c-code-to-compute-opengl-4x4-gl_modelview_matrix-from-2d-3d-points-homography/
http://smeenk.com/kinect-field-of-view-comparison/
http://smeenk.com/kinect-field-of-view-comparison/

Reconstruction of scenes using a hand-held range imaging camera Page 59

[28] Agnes Anna Swadzba. Estimation of Camera Motion from Depth Image Sequences. Master’s
thesis, University Erlangen-Nuremberg, 2006.

[29] Agnes Anna Swadzba. Principle operation mode of a time-of-flight camera. Reproduced as
Figure 2.1 in [28], 2006. [Image].

[30] Taylor Wang. Iterative Closest Point algorithm-point cloud/mesh
registration. https://taylorwang.wordpress.com/2012/04/06/

iterative-closest-point-algorithm-point-cloudmesh-registration/, 2012. Ac-
cessed: 17-06-2017. [Image].

[31] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference
on, pages 689–696. IEEE, 2009.

[32] Barbara Zitová and Jan Flusser. Image registration methods: a survey. Image and Vision
Computing, 21(11):977–1000, June 2003.

https://taylorwang.wordpress.com/2012/04/06/iterative-closest-point-algorithm-point-cloudmesh-registration/
https://taylorwang.wordpress.com/2012/04/06/iterative-closest-point-algorithm-point-cloudmesh-registration/

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Objectives
	Scope

	Analysis of background
	Range Imaging Techniques
	Stereo Vision
	Structured Light
	Time of Flight

	Range Imaging Devices
	ASUS Xtion
	Intel RealSense
	Kinect for Windows

	3D Registration Algorithms
	Iterative Closest Point
	Feature Based Algorithms
	Keypoint Detection
	Feature Description
	Feature Matching
	Transformation Estimation

	Algorithm Weaknesses and Limitations

	Point Cloud Filtering

	Development of the Program
	Development Environment
	Hardware
	Software

	Program Structure
	Image Acquisition
	From 2.5 D to 3 D

	Preprocessing
	Cropping by Z values
	Subsampling
	Noise Removal
	Results

	Coarse Alignment
	ISS Keypoint Detection
	Feature Matching and RANSAC Rejection
	SVD Transformation Estimation
	Runtime
	Results

	ICP Fine Alignment
	Results

	Surface Reconstruction

	Results
	Project Budget
	Environmental Impact
	Conclusions
	Future Work

	Bibliography

