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Abstract 

Brain inflammaging is increasingly considered as contributing to age-related cognitive loss and 

neurodegeneration. Despite intensive research in multiple models, no clinically effective 

pharmacological treatment has been found yet. Here, in the mouse model of brain senescence 

SAMP8, we tested the effects of proinsulin, a promising neuroprotective agent that was 

previously proven to be effective in mouse models of retinal neurodegeneration. Proinsulin is the 

precursor of the hormone insulin but also upholds developmental physiological effects, 

particularly as a survival factor for neural cells. Adeno-associated viral vectors of serotype 1 

bearing the human proinsulin gene were administered intramuscularly to obtain a sustained 

release of proinsulin into the blood stream, which was able to reach the target area of the 

hippocampus. SAMP8 mice and the control strain SAMR1 were treated at 1 month of age. At 6 

months, behavioral testing exhibited cognitive loss in SAMP8 mice treated with the null vector. 

Remarkably, the cognitive performance achieved in spatial and recognition tasks by SAMP8 

mice treated with proinsulin was similar to that of SAMR1 mice. In the hippocampus, proinsulin 

induced the activation of neuroprotective pathways and the downstream signaling cascade, 

leading to the decrease of neuroinflammatory markers. Furthermore, the decrease of astrocyte 

reactivity was a central effect, as demonstrated in the connectome network of changes induced 

by proinsulin. Therefore, the neuroprotective effects of human proinsulin unveil a new 

pharmacological potential therapy in the fight against cognitive loss in the elderly. 

*Abstract
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Abstract 

Brain inflammaging is increasingly considered as contributing to age-related cognitive loss 

and neurodegeneration. Despite intensive research in multiple models, no clinically effective 

pharmacological treatment has been found yet. Here, in the mouse model of brain senescence 

SAMP8, we tested the effects of proinsulin, a promising neuroprotective agent that was 

previously proven to be effective in mouse models of retinal neurodegeneration. Proinsulin is 

the precursor of the hormone insulin but also upholds developmental physiological effects, 

particularly as a survival factor for neural cells. Adeno-associated viral vectors of serotype 1 

bearing the human proinsulin gene were administered intramuscularly to obtain a sustained 

release of proinsulin into the blood stream, which was able to reach the target area of the 

hippocampus. SAMP8 mice and the control strain SAMR1 were treated at 1 month of age. At 

6 months, behavioral testing exhibited cognitive loss in SAMP8 mice treated with the null 

vector. Remarkably, the cognitive performance achieved in spatial and recognition tasks by 

SAMP8 mice treated with proinsulin was similar to that of SAMR1 mice. In the 

hippocampus, proinsulin induced the activation of neuroprotective pathways and the 

downstream signaling cascade, leading to the decrease of neuroinflammatory markers. 

Furthermore, the decrease of astrocyte reactivity was a central effect, as demonstrated in the 

connectome network of changes induced by proinsulin. Therefore, the neuroprotective effects 

of human proinsulin unveil a new pharmacological potential therapy in the fight against 

cognitive loss in the elderly. 

Keywords: proinsulin; therapy; adeno-associated virus vector; cognitive loss; inflammaging 

Abbreviations: A2M, α-2-macroglobulin; Aβ, amyloid β peptides; AβPP, amyloid β protein 

precursor; AAV, adeno-associated virus; AD, Alzheimer’s disease; Akt, protein kinase B; 

ANOVA, analysis of variance; ATF1, activating transcription factor 1; BDNF, brain-derived 

neurotrophic factor; cDNA, complementary DNA; CRE, cAMP response element; CREB,

cAMP response element-binding protein; ELISA, enzyme-linked immunosorbent assay; 

ERK, extracellular signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase; GFAP, glial fibrillary acidic protein; GSK3-β; Glycogen synthase kinase 3 β; 

hPi, human proinsulin; Iba1, ionized calcium-binding adapter molecule 1; IGF, insulin-like 
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growth factors; IL-1β, interleukin 1 β; IL1R, interleukin 1 receptor type I; i.p., 

intraperitoneally; LTP, long-term potentiation; MWM, Morris water maze; NFĸB, Nuclear 

factor ĸB p65 subunit; NORT, novel object recognition test; OLT, Novel object location test; 

p-, phosphorylated-; PI3K, phosphatidylinositol-3; qPCR, quantitative polymerase chain 

reaction; RIPA buffer, radioimmunoprecipitation assay buffer; SAMR1, senescence-

accelerated mouse resistant 1; SAMP8, senescence-accelerated mouse-prone 8; s.c., 

subcutaneous; SEM, standard error of the mean; TNFα, Tumor necrosis factor α.
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Introduction 

Cognitive deficits associated with normal aging are exacerbated in the case of precocious 

aging or some neurodegenerative diseases (Deak et al., 2016). The prevalence of these 

conditions and the lack of clinically effective treatments drive the exploration of any 

available potential therapy. Proinsulin is a signaling protein with demonstrated 

neuroprotective properties beyond its nature as the precursor of the hormone insulin (de la 

Rosa and de Pablo, 2011; Steiner et al., 1967). A potential autocrine/paracrine effect of 

insulin/proinsulin in the brain has been suspected for some time, because moderate 

insulin/proinsulin levels were found in the brain independently of peripheral levels 

(Havrankova et al., 1978). At present, local production has been fully corroborated in brain 

tissue and cultured neurons (de Pablo and de la Rosa, 1995; Nemoto et al., 2014). Specific 

functions of insulin in brain include regulation of food intake, body weight, reproduction, and 

glycemic control in the hypothalamus, in addition to the promotion of learning and memory 

in the hippocampus (Ghasemi et al., 2013; Wada et al., 2005). Efficient insulin signaling is 

essential for healthy brain aging (Taguchi and White, 2008). The impairment of glucose 

metabolism and other insulin signaling pathways found in the Alzheimer’s disease (AD) 

brain (Chami et al., 2016) has led to the study of insulin as a potential therapeutic agent 

against AD (Chen et al., 2016). Remarkably, its precursor, proinsulin, has gained recognition 

as a bioactive molecule beyond its role as a prohormone (Hernández-Sánchez et al., 2006). 

Early work demonstrated that the family of proinsulin, insulin, and insulin-like growth factors 

(IGF) modulates neuronal survival, proliferation, and differentiation during embryonic 

development (de Pablo and de la Rosa, 1995). Proinsulin may act in coordination with or 

independently of insulin and IGF to regulate specific pathways of embryonic neural cell 

death (Chavarría et al., 2007; Valenciano et al., 2006). Besides this developmental role, 

proinsulin exerts neuroprotective effects in animal models of the human disease retinitis 

pigmentosa, a retinal neurodegenerative condition causing vision loss (Corrochano et al., 

2008; Fernández-Sánchez et al., 2012; Isiegas et al., 2016). Although the physiological 

relevance of proinsulin in adult mammals has not yet been elucidated, it appears as a 

promising neuroprotective agent meriting its being tested in diverse scenarios (de la Rosa and 

de Pablo, 2011). Specifically, proinsulin may have a potential pharmacological use under 

neural insulin-resistance conditions and in preventing abnormally increased neuronal cell 

death, as occurs in AD. 
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A widely used mouse model in the study of age-related neurodegeneration is the senescence-

accelerated mouse-prone 8 (SAMP8). This mouse strain is a spontaneous model of 

senescence that demonstrates age-related brain pathologies and cognitive loss (Tomobe and 

Nomura, 2009). The defective learning and memory capacities of SAMP8 mice have been 

shown in different experimental tasks, including hippocampus-based spatial learning and 

memory and object recognition tasks (Dobarro et al., 2013; López-Ramos et al., 2012; 

Miyamoto et al., 1986; Wang et al., 2009; Yanai and Endo, 2016). Pathological changes are 

mainly present in the hippocampal area and include the following: (i) reduced synaptic 

plasticity with impaired long-term potentiation (LTP) (López-Ramos et al., 2012; Taniguchi 

et al., 2015) and lower activation of plasticity pathways (Li et al., 2009; Lin et al., 2014); (ii) 

increased levels of hyperphosphorylated tau (p-tau) with tau-related enzyme disorder 

(Álvarez-García et al., 2006; Canudas et al., 2005; Dobarro et al., 2013); (iii) higher 

accumulation of amyloid β peptides (AE) (Dobarro et al., 2013; Kumar et al., 2009; Zhang et 

al., 2011) which would be caused by an abnormally elevated synthesis of Aβ protein 

precursor (AβPP) (Griñán-Ferré et al., 2016; Morley et al., 2000) in addition to disturbances 

in the blood-brain barrier (Banks et al., 2011); (iv) oxidative stress (Álvarez-García et al., 

2006; Butterfield et al., 1997; Morley et al., 2012); and (v) increased inflammation (Álvarez-

López et al., 2014; Griñán-Ferré et al., 2016; Tha et al., 2000). 

In this work, we assessed the therapeutic potential of proinsulin against cognitive loss and 

age-related neurodegeneration in the SAMP8 mouse model. To obtain a sustained chronic 

treatment, human proinsulin (hPi) was delivered into the blood stream through administration 

of recombinant adeno-associated viral (AAV) vectors of serotype 1 in the skeletal muscle. 

SAMP8 mice, as well as control senescence-accelerated mouse resistant 1 (SAMR1) mice, 

underwent muscle injection with AAV-hPi or control AAV-null vectors. For the experimental 

treatment, hPi, instead of mouse proinsulin, was chosen. This is an important requisite to 

obtain a proof of concept valid for human therapy. Nevertheless, the amino acid identity 

between human and the two mouse proinsulin proteins (there are two insulin genes in 

rodents) is high (~80%), allowing for the experimental use of hPi in mice (Supplementary 

Table 1). We have previously demonstrated that chronic production of hPi in skeletal muscle 

induced sustained levels of hPi and neuroprotective effects in a rat model of retinitis 

pigmentosa (Fernández-Sánchez et al., 2012). Our aim in this work was to extend the proof of 

concept of proinsulin as a neuroprotective agent to the complex scenario of age-related 

cognitive loss with a focus on hippocampal changes. 
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1. Materials and Methods

1.1.  Animals and experimental design 

Male mice of the strains SAMP8 and SAMR1 were used in the present study. Animal 

handling and experimental procedures were approved by the Ethics Committee for Animal 

Experimentation (CEEA) of the University of Barcelona (UB) [Ref: DAAM-6921, CEEA, 

UB, Barcelona, Spain], in accordance with Spanish legislation and the European Union (EU) 

Directive 2010/63/EU for animal experiments. Original breeding couples of SAMP8 and 

SAMR1 mice were obtained from the Council for SAM Research, Kyoto, Japan. Animal 

breeding, treatment, and behavioral studies were performed at UB animal house. Mice were 

maintained in Makrolon® cages under standard laboratory conditions of food and water ad 

libitum, 22 ± 2°C, and 12h:12h light-dark cycles. 

Mice received a single intramuscular AAV-hPi or control (AAV-null) injection (see Section 

1.2) at 1 month of age. Experimental groups were the following: SAMR1-null, N = 15; 

SAMR1-hPi, N = 20; SAMP8-null, N = 22; and SAMP8-hPi, N = 25. Animals were tested for 

behavioral and cognitive changes at 6 months of age. Peripheral blood and hippocampus 

brain tissues were obtained at termination. 

An additional group of 3-month-old animals (SAMR1, N = 5; and SAMP8, N = 5) were 

utilized to check diffusion in the hippocampus and the possible metabolic effects of hPi after 

a subcutaneous (s.c.) bolus injection of 20 or 40 µg of hPi. Blood, hippocampus, and retina 

were obtained for analysis 2 h after injection. 

1.2.  Generation of adeno-associated viral vectors and mouse administration 

Recombinant AAV serotype 1 viral  (AAV1) vectors bearing the hPi complementary DNA 

(cDNA) under control of the cytomegalovirus promoter (AAV-hPi vector) or without hPi 

cDNA (AAV-null vector) were generated in the Center of Animal Biotechnology and Gene 

Therapy at the Universitat Autònoma de Barcelona. Vectors were produced by triple 

transfection of HEK293 cells with (i) a plasmid carrying the AAV rep2 and cap1 genes; (ii) a 

plasmid carrying the expression cassette flanked by the AAV2 viral Inverted Terminal 

Repeats (ITRs); and (iii) a plasmid carrying the adenovirus helper functions. AAV vectors 

were purified with an optimized method based on two consecutive cesium chloride gradients, 

dialyzed against PBS, filtered and stored at -80ºC until use (Ayuso et al., 2010). Titers of 

viral genomes were determined by quantitative polymerase chain reaction (qPCR) following 
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established protocols (Lock et al., 2010). AAV-hPi was injected intramuscularly at a dose of 

0.72 x 109 vector genomes/g of body weight into SAMP8 and SAMR1 mice. Control animals 

received the same dose of AAV-null. Body weight was 23.07 ± 0.76 and 22.39 ± 0.57 g, for 

SAMR1 and SAMP8 mice, respectively; therefore they received an average of 16.6 x 109 and 

16.1 x 109 vector genomes per mouse, respectively. The total dose of vectors was distributed 

between the gastrocnemius muscles of both hind limbs. AAV transduction of non-dividing 

cells, such as the skeletal muscle cells and liver cells, is predominantly non-integrative and 

supports long-term transgene expression, as demonstrated in studies with experimental 

animals (Arruda et al., 2010; Bernardes de Jesús et al., 2012; Binny et al., 2012; Callejas et 

al., 2013; Haurigot et al., 2010; Jaén et al., 2017; Nathwani et al., 2011) and in clinical 

studies (Buchlis et al., 2012; Nathwani et al., 2014). 

1.3. Testing of cognitive and non-cognitive behavior 

Cognitive changes were evaluated by three tests. (i) The Novel object recognition test

(NORT) was employed to evaluate recognition memory based on the spontaneous tendency of 

rodents to spend more time exploring a novel than a familiar object. Animals were placed in 

the middle of a black maze with two arms angled at 90º (arms of 25 cm x 5 cm; 20-cm-high 

walls). After 2 previous days of a 10-min habituation in the empty maze, the animals were 

submitted to a 10-min acquisition trial in the presence of two identical novel objects (A1 + 

A2) placed at the end of each arm. A 10-min retention trial occurred 2 h later, replacing 

object A2 with object B. Another 10-min retention trial took place 24 h later, replacing object 

A1 with object C. Discrimination index was calculated as (tN–tF)/(tN+tF) where tN is time 

spent exploring the new object and tF is time spent exploring the familiar object (Bevins and 

Besheer, 2006; Vogel-Ciernia and Wood, 2014). The criterion used to score object 

exploration was that the mouse touched the object while looking at it or sniffed the object 

maintaining a distance of less than or equal to 2 cm between the nose and the object 

(Ennaceur and Delacour, 1988). (ii) The Novel object location test (OLT) was employed to 

evaluate spatial memory and discrimination. This test is based on the spontaneous tendency 

of rodents to spend more time exploring a novel than a familiar object, and also to recognize 

when an object has been relocated. The test is performed in a black open-field box (30 cm x 

40 cm; 30-cm-high walls). Habituation to the apparatus has performed for 10 min on the day 

prior the acquisition trial. On that day, mice were allowed to explore, for 5 min, two identical 

objects (A1 + A2) that were placed in the corners of the experimental apparatus. Two h later, 

the test trial was conducted for 5 min with one of the objects (A2) moved to a different 
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location (A2’), while the other object (A1) remained in the same position. Discrimination 

index was calculated as (tD–tND)/(tD+tND) where tD is time spent exploring the displaced 

object (A2’) and tND is time spent exploring the non-displaced object (A1) (Murai et al., 

2007; Vogel-Ciernia and Wood, 2014). (iii) The Morris water maze (MWM) test was 

employed to evaluate spatial learning and memory. Briefly, animals were trained to locate a 

hidden platform 10 cm in diameter in a circular water tank (100 cm in diameter and 40-cm-

high walls, with 25ºC opaque water, surrounded by black curtains) by relying on distinctive 

landmarks as visual cues. Acquisition consisted of 1 day of cue learning and 6 days of place 

learning, with 4 trials per day. The scape platform was made visible with a flag during the 

cue learning; this was a control condition to test that the animals had similar motor and visual 

capabilities (Vorhees and Williams, 2006). To notice that SAMP8 mice sensorimotor 

performance deteriorates with age at a higher pace than in SAMR1 mice (Markowska et al., 

1998). However, the previous visual platform test might reduce the progression of the 

acquisition curve with the hidden platform. On day 7, after one place-learning trial, the 

platform was removed and the mice performed a 60-sec probe trial to test learning retention. 

A single learning trial was introduced to facilitate the memory response of animals whereas it 

did not change the response of impaired animals (Morris, 1984). A computerized tracking 

system (SMART; Panlab, Barcelona, Spain) allowed escape latency during the learning tasks 

to be measured, along with time spent in each pool quadrant after removal of the platform in 

the probe trial. 

Non-cognitive behavior was tested to discard unwanted effects of the treatment. A Battery of

sensorimotor tests permitted evaluating of reflexes (visual reflex and posterior limb-extension 

reflex), motor coordination and equilibrium (distance covered on a rod), and prehensility and 

muscle strength (distance and latency on falling from a metal wire). Motor activity, 

exploration, and emotionality were assessed by the analysis of patterns of horizontal and 

vertical activities in the Open field test. Neophobia for a new home cage was assessed by 

corner and rearing patterns in the Corner test. These non-cognitive tests were performed as 

previously described (García-Mesa et al., 2012); see complete description in Supplementary 

methods. 

All behavioral testing was carried out during the first hours of the light period, from 09:00 h 

to 14:00 h local time. 

At the completion of the behavioral testing, blood serum samples were obtained, animals 

were euthanized and the brain preserved for further analysis as described below. 
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1.4.  Proinsulin and insulin levels, and glycaemia 

The usage of hPi allows for unequivocally detection and distinction of the pharmacologically 

tested molecule from the endogenously produced. Circulating and tissue human proinsulin 

and insulin protein levels were determined with commercial Enzyme-linked immunosorbent 

assay (ELISA) kits, i.e., Human Total Proinsulin and Human Insulin (EZHI-15K and EZHI-

14K, respectively, both from Merck, Millipore, Darmstadt, Germany), following the 

manufacturer’s instructions. The kits are highly selective for the respective molecules. Serum 

and tissue preparation for ELISA was performed as previously described (Isiegas et al., 

2016). Glycaemia was directly measured in a blood sample with the GlucocartTM Gmeter kit 

(A. Menarini Diagnostics, Ltd., Berkshire, UK).

1.5. Immunoblotting analysis 

Levels of selected signaling proteins that may be related with proinsulin action were analyzed 

in the hippocampus, as the main target area for novel pro-cognitive therapy in SAMP8. 

Hippocampus tissue was homogenized in ice-cold Radioimmunoprecipitation assay (RIPA) 

buffer supplemented with protease and phosphatase inhibitors and analyzed for Western blot 

analysis by standard procedures (Revilla et al., 2014). Thirty micrograms of protein extract 

were employed to test the levels of the following proteins: phospho-Protein kinase B Ser473 

(p-Akt), p-Akt Thr308, Akt, p-Extracellular signal-regulated kinase Thr202/Tyr204 (p-ERK), 

p-cAMP response element-binding protein Ser133 (p-CREB)/p-Activating transcription

factor 1 Ser63 (p-ATF1), CREB and p-Nuclear factor ĸB p65 subunit Ser276 (p-NFĸB) 

(antibody dilution 1:1,000, purchased from Cell Signaling, Danvers, MA, USA); pan-ERK 

(1:1,000; BD Biosciences, San Jose, CA, USA); Brain-derived neurotrophic factor (BDNF) 

and Glycogen synthase kinase 3 β Ser9 (p-GSK3-β) (1:1,000, Santa Cruz, Dallas, TX, USA); 

Synaptophysin (1:10,000; Dako, Glostrup, Denmark); Glial fibrillary acidic protein (GFAP), 

pan-Actin 20–33 and β-Tubulin (1:1,000, 1:10,000 and 1:10,000, respectively, Sigma-

Aldrich, St Louis, MI, USA); Ionized calcium-binding adapter molecule 1 (Iba1) (1:2,000, 

Wako, Richmond, VA, USA); p-Tau Ser396 (1:500; Invitrogen, Thermo Fisher Scientific, 

Waltham, MA, USA); AβPP C-terminal fragment (1:1,000; Covance, Princeton, NJ, USA); 

and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:2,000; Assay Designs, Ann 

Arbor, MI, USA). Secondary antibodies were horseradish peroxidase-conjugated (1:2,000; 

Amersham, Arlington Heights, IL, USA). The immunoreactive bands were detected by a 

chemiluminiscence method and digitized. Densitometric results were normalized to pan-

Actin, β-Tubulin or GAPDH. 
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1.6. Histology and immunostaining 

The brains of three mice per experimental group were histologically processed to confirm the 

presence of reactive astrocytes and/or microglia in the hippocampus. Mice were perfused 

with 4% paraformaldehyde in phosphate buffer under anesthesia of 10 mg/kg xylazine 

(Rompun 2%, Bayer, Leverkusen, Germany) intraperitoneally (i.p.) and 80 mg/kg ketamine 

(Ketolar 50 mg/mL, Pfizer, Alcobendas, Madrid, Spain) i.p. Brains were postfixed for 24 h, 

cryopreserved in 30% sucrose solution, and frozen on dry ice. Twenty-µm slices were 

double-stained with primary antibodies against GFAP (1:1000; Dako, Glostrup, Denmark) 

and Iba1 (1:500; Wako, Richmond, VA, USA). The secondary antibodies utilized included 

Alexa Fluor 488 and Alexa Fluor 546 (1:1,000; Molecular Probes, Thermo Fisher Scientific). 

Tissue sections were mounted on Mowiol® (Calbiochem, San Diego, CA, USA). 

1.7. Real-time quantitative PCR 

Total RNA was isolated from mouse hippocampus using the mirVana™ RNA Isolation Kit 

(Applied Biosystems, Carlsbad, CA, USA) following the manufacturer’s instructions. RNA 

yield, purity and quality were determined employing a NanoDrop™ ND1000 

spectrophotometer (Thermo Fisher Scientific). RNA with a 260/280 ratio of >1.9 was 

selected. Random-primed cDNA synthesis was performed using the Superscript III Kit and 

random primers (Thermo Fisher Scientific). 

Gene expression was measured with the ABI Prism 7900HT Sequence Detection System 

using TaqMan FAM-labeled specific probes (Thermo Fisher Scientific). Genes and their 

corresponding TaqMan probes were the following: A2m, Mm00558642_m1; Tnfα, 

Mm00443260_g1; Il1b, Mm00434228_m1; Il1r1, Mm00434237_m1; and Tbp, 

Mm00446971_m1. Data were normalized to the expression of the TATA-binding protein 

gene (Tbp). 

1.8. Statistics 

Results were expressed as mean ± standard error of the mean (SEM). Data normality was 

tested by means of the Shapiro–Wilks test. Data were analyzed by two-way analysis of 

variance (ANOVA); factors were mouse strain and proinsulin treatment. Interaction and 

factor effects were analyzed for significance. Significant interaction was followed by simple 

main effect analysis. Association between pairs of variables was evaluated by Pearson 

correlation test; the weight of eventual spurious correlations was minimized through the 
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subsequent network analysis (see Section 1.9). P-values <0.05 were considered significant. 

Statistical analyses were performed using IBM SPSS Statistics ver. 22.0 software (IBM 

Corporation, Armonk, NY USA) and GraphPad Prism ver. 6.0 (GraphPad Software, Inc., CA 

USA). 

1.9.  Network analysis 

Graph theory tools were used to jointly analyze the results of the main variables measured in 

the study, specifically those corresponding to cognition, plasticity, neuroprotection, 

inflammation, and pathology. Data of the additional mice utilized to test proinsulin delivery 

and the treatment effects on the peripheral metabolism of glucose were not included in the 

network analysis. Pairs of variables showing statistically significant correlations (P-values < 

0.05) were selected to build a network, as described elsewhere (García-Mesa et al., 2016). 

Briefly, the correlation network was analyzed with the PageRank centrality algorithm (Page 

et al., 1999) using Mathematica ver. 9 software (Wolfram Research, Champaign, IL USA). 

This algorithm assigns a weight to each network node. Node weight is the PageRank of the 

node and ranks its importance within the set of nodes. A node (variable) that has links 

(correlations between pairs of variables), either directly or through other nodes, to many 

nodes that have a high PageRank value receives a high PageRank itself and it is said to be 

more central in the network. 

2. Results

2.1.  Serum and hippocampus proinsulin levels 

A single administration of AAV-hPi into skeletal muscle induced the sustained production of 

hPi and its delivery into the blood circulation. Peripheral-blood serum hPi levels at the end of 

the five-month study were 24.32 ± 8.26 pM and 13.06 ± 2.97 pM, for SAMR1-hPi and 

SAMP8-hPi, respectively. No hPi was detected in the serum of mice injected with the control 

vector, AAV-null. hPi concentration in the hippocampus of AAV-hPi-treated mice was found 

under the detection threshold of the assay. However, hPi levels were readily detectable in the 

hippocampus after a single in-vivo administration of a s.c. bolus of 20 or 40 µg hPi in both 

SAMP8 and SAMR1 mice (Fig. 1A). Levels in the retina were used for comparison (Fig. 

1A), because we have previously demonstrated that hPi produced in mouse skeletal muscle 

exerts a neuroprotective role on the retinal tissue (Corrochano et al., 2008). Furthermore, 

there was a positive correlation between hPi concentration in hippocampus and serum upon 
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the bolus administration (Fig. 1B) [r = 0.79, N = 10, P = 0.006]. There also was a positive 

correlation between hPi levels in hippocampus and retina (Fig. 1C) [r = 0.80, N = 10, P = 

0.009]. Incidentally, the serum levels found in the SAMP8 mice were always lower, 

independently of the treatment method. We may speculate that senescence alterations 

reported in SAMP8 kidney and liver may influence hPi metabolism (Baltanás et al., 2013; 

Bayram et al., 2013). However, this aspect is out of the scope of this work. 

The glycaemia of the AAV-hPi treated mice, exhibiting levels of hPi in the picomolar range, 

was not altered in comparison to untreated animals, as previously reported (Corrochano et al., 

2008; Fernández-Sánchez et al., 2012). Accordingly, no differences in animal weight were 

observed in the AAV-hPi treated mice respect to the AAV-null treated ones after five 

months. The body weight for the different experimental groups at termination was as follows: 

37.09 ± 1.53 and 39.81 ± 1.02 g, for SAMR1-null and SAMR1-hPi mice, respectively; and 

32.25 ± 0.66 and 33.43 ± 1.50 g, for SAMP8-null and SAMP8-hPi mice, respectively. Only 

when the mice were subjected to a very high doses (20 or 40-µg bolus) of hPi, which resulted 

in levels of hPi in the nanomolar range, they presented a modest decrease in glycaemia that, 

however, remained above critical hypoglycemia values (data not shown). This could be 

partially due to that human insulin was found in serum at concentrations of 4.7% (1-14%) of 

those of hPi. Remarkably, we have never been able to detect human insulin in the serum or 

the tissues of AAV-hPi -treated mice. 

2.2.  Proinsulin induced the Akt pathway in SAMP8 hippocampus 

We assayed, by immunoblotting, the activation of any pathway characteristic of proinsulin 

signaling (Malaguarnera et al., 2012). Skeletal muscle expression of hPi induced a significant 

increase of the levels of Akt phosphorylated at Ser473 in the hippocampus of both the SAMP8 

and SAMR1 mouse strains (Fig. 2A). Our long-term, sustained, in vivo treatment displayed a 

well-established sign of activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway 

(Kumar et al., 2007). Two-way ANOVA demonstrated an effect of the factor treatment for 

AktSer473 levels [F(1,22) = 12.2, P = 0.002]. Next, we tested the levels of the downstream 

transcription factors of the CREB/ATF family, which is involved in plasticity signaling. 

CREB and ATF1 are highly related at the functional and structural levels, and their 

phosphorylated forms were recognized by the same antibody (Fig. 2B). Proinsulin did not 

induce a recovery of the p-CREB levels found decreased in SAMP8 mice [factor strain, F(1, 

22) = 11.1, P = 0.003]. However, proinsulin induced a general increase in p-ATF1 [factor
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treatment, F(1, 23) = 4.5, P = 0.045]. These results support that hPi reaches the target tissue 

and activates the Akt signaling pathway. 

Immunoblotting analysis of other key molecules involved in trophic factor signaling 

(synaptophysin, pro-BDNF, BDNF, p-ERK, ERK, p-GSK3β and p-NFĸB) and in SAMP8 

pathology (AβPP and p-tau) did not show statistically significant changes induced by 

proinsulin (Supplementary Fig. 1). However, the expression levels of these proteins exhibited 

significant correlations with other variables in the statistical study (Supplementary Table 2); 

therefore, they were included in the network analysis. 

2.3.  Proinsulin protected against inflammaging in SAMP8 hippocampus 

Next, we analyzed the gene-expression of inflammatory markers and the effects of proinsulin 

on these. The hippocampus of SAMP8-null mice demonstrated more prominent signs of 

neuroinflammation than that of SAMR1-null mice, as expected. The expression of the pro-

inflammatory cytokines Tumor necrosis factor α (TNFα) and Interleukin 1 β (IL-1β), and the 

cytokine transporter α-2-Macroglobulin (A2M) were found increased by 85%, 50% and 50% 

respectively in the hippocampus of SAMP8-null when compared with SAMR1 mice, whereas 

Interleukin 1 receptor type I (IL1R) did not change. Skeletal muscle administration of AAV-

hPi in SAMP8 mice induced a decrease of TNFα, IL-1β and A2M expression to SAMR1 

levels as well as a 22% decrease of IL1R expression (Fig. 3A). The analysis of the expression 

pattern of inflammatory genes showed an effect of interaction between the mouse strain and 

the gene treatment [two-way repeated measures ANOVA, strain x treatment interaction 

F(1,23) = 6.4, P = 0.019]. Subsequent analysis showed a simple main effect of strain factor in 

the AAV-null mice (P = 0.007) and of treatment factor in the SAMP8 mice (P = 0.010).  

Therefore, proinsulin decreased neuroinflammation in the hippocampus of SAMP8 mice. 

The analysis of the glial cells, astrocytes and microglia, that are involved in the 

neuroinflammatory processes demonstrated a significant astrocyte activation in SAMP8. The 

GFAP level determined by immunoblotting was higher in SAMP8 than SAMR1 

hippocampus (Fig. 3B). Remarkably, proinsulin treatment decreased GFAP levels in both 

SAMP8 and SAMR1 strains, driving astrocytes of SAMP8-hPi mice to normal reactivity 

levels. ANOVA indicated an effect of strain [F(1,33) = 10.00, P = 0.0033] and treatment 

[F(1,33) = 8.6, P = 0.006]. Immunostaining with GFAP antibody showed a lower presence of 

reactive astrocytes in the hippocampus of SAMP8-hPi mice than SAMP8-null ones by visual 

inspection of the microscope slides (Fig. 3C), thus reinforcing the Western blot results. In the 

case of microglia, no differences were detected by Iba1 immunoblotting (Fig. 3 D) or 
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immunostaining (Fig. 3E), but a non-significant trend to increase this reactive marker by 

AAV-hPi treatment. 

2.4.  Proinsulin protected against cognitive deficits in SAMP8 mice 

Therapy with AAV-hPi induced important neuroprotective effects that counteracted SAMP8 

deficits in learning and memory. Five months after treatment application, cognitive testing in 

three different paradigms involving hippocampus-based behavior, with NORT (Clark et al., 

2000; Broadbent et al., 2010), OLT (Assini et al., 2009; Barker and Warburton, 2015) and 

MWM test (Laeremans et al., 2015; Riedel et al., 1999) was performed. Six-month-old 

SAMP8-null mice showed cognitive loss, whilst SAMP8-hPi mice showed cognitive 

capacities at the level of SAMR1 mice. No effects were induced in SAMR1 mice. 

In the NORT (Fig. 4A), all mice demonstrated no preference in exploration of identical 

objects during task acquisition. SAMP8-null mice, those injected with control AAV-null, 

exhibited a deficit of recognition memory in the NORT, while SAMP8-hPi mice showed 

capacity of discriminating novel-type from familiar objects at 2 h and at 24 h, as did SAMR1 

mouse groups. ANOVA indicated effect of strain [F(1,76) = 5.3, P = 0.024] and treatment 

[F(1,76) = 9.7, P = 0.002] at 2 h time and effect of strain [F(1,76) = 8.4, P = 0.005] at 24 h.

Therefore, AAV-hPi treatment generally improved cognitive performance in both mouse 

strains at the 2 h time recall of recognition memory. However, the cognitive improvement 

trend clearly shown by SAMP8-hPi mice at 24 h did not reach statistical significance. 

In the OLT (Fig. 4B), the mice demonstrated similar exploration of the objects at both 

locations during task acquisition. After 2 h, SAMP8-null mice exhibited impaired ability to 

discriminate the displaced object, while SAMP8-hPi and both groups of SAMR1 mice 

showed the capacity to recall the initial position of the object. ANOVA indicated an effect of 

strain [F(1,38) = 5.3, P = 0.026] and treatment [F(1,38) = 8.6, P = 0.006]. Therefore, AAV-

hPi therapy increased the cognitive ability in the OLT paradigm of both mouse strains. 

Remarkably, SAMR1-hPi OLT average index duplicated that of SAMR1-null group. 

In the MWM test (Fig. 4C), the learning acquisition curve of SAMP8-hPi showed a trend to 

improvement by proinsulin as compared with SAMP8-null. Two-way repeated-measures 

ANOVA revealed an effect of strain [F(1,78) = 11.7, P = 0.001], whereas the interaction of 

strain x treatment factors reached borderline significance [F(1,78) = 3.7, P = 0.057]. In the 

memory retrieval, SAMP8-hPi demonstrated total recovery of cognitive capacity as 

compared with the low performance of SAMP8-null. ANOVA showed strain and treatment 

effects and interaction between both factors [F(1,67) = 6.0, P = 0.017, F(1,67) = 6.5, P = 
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0.013 and F(1,67) = 4.4, P = 0.040, respectively]. No effect of mouse strain or treatment 

factors was found in the analysis of the swimming speed throughout the acquisition days or 

during the 60-sec probe trial. 

Motor activity and ambulation was tested in both mouse strains to discard any local effect of 

the vector injection. Furthermore, SAMP8 mice are reported to display non-cognitive 

alterations, such as sensorimotor impairment, hyperactivity, and reduced anxiety-like 

behavior compared with SAMR1 (Markowska et al., 1998; Miyamoto et al., 1992; Sawano et 

al., 2013). These non-cognitive behaviors were also tested for proinsulin-induced changes. 

We found that transduction of gastrocnemius muscle cells with AAV-hPi did not impaired 

the sensorimotor responses of the mice, nor induced substantial effects on exploratory and 

emotionality-based behaviors in SAMP8 or SAMR1 mice (Supplementary Fig. 2). Non-

cognitive behavior was not included in the graph theory study. 

2.5.  Astrocyte reactivity emerged as a central node of inflammaging 

Correlation analysis including all mice of the four experimental groups showed a total of 59 

significant correlations (links) between 28 variables (nodes) of the study (Supplementary 

Table 2A), which were utilized to build a network (Fig. 5). The PageRank algorithm allowed 

ordering the variables according to their centrality in the network. GFAP (PageRank #1) was 

the variable most highly connected with many other important nodes. The following variables 

were the removal test in the MWM (PageRank #2), p-CREB/CREB hippocampus level 

(PageRank #3), NORT at 2 h (PageRank #4), pro-BDNF hippocampus level (PageRank #5) 

and serum levels of hPi (PageRank #6) (See figure legend for the full PageRank list). GFAP 

correlated negatively with some learning and memory variables, neuroplasticity markers, and 

neuroprotective signaling pathways, and correlated positively with neuroinflammatory 

markers and amyloid and tau pathology. These and other connections in the network 

demonstrated that improvement of cognition is generally linked with proinsulin treatment, 

with decreased astrocyte reactivity and inflammation markers, and with increased 

neuroplasticity markers. The markers of the neuroprotective signaling pathways analyzed 

showed robust connectivity among themselves and with neuroplasticity and serum levels of 

hPi. Correlation analysis performed separately for SAMR1 mice (Supplementary Table 2B) 

lacked most correlations of learning and memory parameters because of the absence of 

cognitive deficiencies, but generally maintained those between parameters of neuroplasticity 

markers and neurotrophic signaling. The corresponding network analysis (Supplementary 

Fig. 3A) showed high weight of the nodes of hippocampal protein levels:  p-CREB (Page 
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Rank #1), p-NFκB (Page Rank #2), p-ATF1 (Page Rank #3), p-CREB/CREB (Page Rank #4), 

p-GSK3β (Page Rank #5) and synaptophysin (PageRank #6) (See figure legend for the full

PageRank list). 

Correlation analysis performed separately for SAMP8 mice (Supplementary Table 2C) 

showed an increased number of correlations between the pathological traits of the mice, 

including cognition parameters, hippocampal protein markers and neuroinflammatory 

markers. The subsequent network analysis (Supplementary Fig. 3B) maintained GFAP as the 

variable with highest centrality (Page Rank #1), followed by the removal test in the MWM 

(PageRank #2), NORT at 2 h (PageRank #3), synaptophysin hippocampus level (PageRank 

#4), expression hippocampus levels of IL-1β (Page Rank #5) and p-Akt-Thr308 hippocampus 

levels (Page Rank #6) (See figure legend for the full PageRank list). 

3. Discussion

Pharmacological levels of circulating hPi, obtained through intramuscular administration of 

AAV-hPi vectors in the SAMP8 murine model of precocious aging and cognitive loss, 

demonstrated the potential of this signaling molecule of the insulin family for the treatment of 

age-related cognitive pathologies. Six-month old SAMP8 mice, sustainably exposed to 

proinsulin, exhibited preserved spatial memory and recognition memory, two paradigms that 

require a fully functional hippocampus. The use of AAV vectors is emerging as a promising 

approach for neurological disorders (for review, see: Choundhurt et al., 2016). Here we 

assayed a further advantageous approach with the transduction of an accessible peripheral 

tissue. 

Hippocampus is an essential brain structure in memory formation and in maintaining 

memories throughout the lifetime (Bataglia et al., 2011). Damage within this region of the 

central nervous system and its neuronal networks, including connections to directly related 

cortical areas, is a common feature in neurodegeneration and AD (Moodley and Chan, 2014). 

Moreover, subtle dysfunctions in the hippocampus are thought to cause age-related memory 

impairment across species (Leal and Yassa, 2015). Our model system, the SAMP8 mouse, 

presents early deficits in hippocampal plasticity and functionality that are considered the 

major cause of their cognitive loss (Taniguchi et al., 2015; Bayod et al., 2015; Tomobe et al., 

2007; Lopez-Ramos et al., 2012). Preservation of learning and memory abilities after 

proinsulin therapy may indicate functional improvement of hippocampus circuitry and also 

beneficial effects in related cortical brain areas. Cortical areas functionally connected with 
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the hippocampus that are relevant for the recognition memory analyzed here, in addition to 

spatial memory, are the perirhinal and the medial prefrontal cortices (Barker and Warburton, 

2011, 2015). Therefore, proinsulin generally reduced brain senescence pathology in these 

mice. 

Insulin receptors are distributed in discrete areas of the brain, being the hippocampus one of 

the regions with highest levels (Doré et al., 1997; Marks et al., 1990). Insulin receptor 

signaling plays a central role in several critical Central Nervous System functions including 

energy homeostasis, food intake and cognition. Activation of hippocampal insulin receptors 

has been associated to enhancement of learning and memory functions (reviewed by Biessels 

and Reagan, 2015). The receptors mediating proinsulin action are not fully characterized. 

However, it has been reported that proinsulin preferentially exerts its biological effects 

through binding to insulin receptor isoform A (IR-A) while displaying low affinity for the 

more metabolic insulin receptor isoform B (Malaguarnera et al., 2012). IR-A is 

predominantly expressed during prenatal life, whereas in adult tissues, it is especially 

expressed in neural tissue (Hernández-Sánchez et al., 2008), including hippocampus (Belfiore 

et al., 2009). Consequently, proinsulin and insulin activate similar neuroprotective pathways 

in the brain, including the PI3K/Akt route (van der Heide et al., 2006), with negligible impact 

of proinsulin on glucose homeostasis. Our observations agree with the expected proinsulin 

mode of action. Analysis of signaling pathways that may underlie proinsulin neuroprotection 

revealed the involvement of Akt pathway in the hippocampus, as demonstrated by the 

increase in Akt phosphorylation in both SAMR1-hPi and SAMP8-hPi. Similarly, proinsulin 

stimulates the Akt pathway and preserves neuronal cells in a neurodegenerative model of 

retinitis pigmentosa (Isiegas et al., 2016). Supporting activation of the Akt pathway by 

proinsulin in hippocampus, we found activation of downstream transcription factor ATF1. 

The members of the CREB/ATF family include CREB, cAMP response element modulator 

(CREM) and ATF1. These are activated, directly or indirectly, by Akt. Then, they bind to 

CRE in the promoter regions of specific genes and activate their transcription in response to 

external stimuli. These transcription factors induce neuronal gene expression in the process of 

information processing and memory consolidation (Lonze and Ginty, 2002; Pittenger et al., 

2002). Here we found activation of ATF1, but no significant changes in CREB. Noticeably, 

ATF1 function has been shown to compensate for CREB deficiency in mouse brain 

(Hummler et al., 1994). Therefore, here, proinsulin increased hippocampus plasticity mainly 

through ATF1. Furthermore, ATF1 is implicated in the regulation of many genes in addition 

to cAMP-inducible genes (Hai et al., 1989). Proinsulin activated downstream Akt pathway in 
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both strains SAMR1 and SAMP8. Furthermore, control SAMP8 mice did not show a down 

regulation of this pathway. Taking into account that some degree of memory improvement 

was also detected in proinsulin-treated SAMR1 mice, we can suggest that proinsulin induced 

a general pro-cognitive effect. This cognitive enhancement might be at least partially 

independent of the presence of previous cognitive pathologies. 

SAMP8 mice undergo a moderate level of systemic and brain inflammation as an element of 

their precocious senescence (Álvarez-López et al., 2014; Griñán-Ferré et al., 2016; Tha et al., 

2000; Wang et al., 2015). Proinsulin protected against signs of neuroinflammation in the 

SAMP8 hippocampus, both decreasing generation of pro-inflammatory cytokines and 

reducing astrocyte reactivity. Proinsulin-induced cognitive improvement in SAMP8 mice 

may be at least partially mediated by decreasing IL-1β and TNFα expression to normal levels. 

IL-1β impairs synaptic plasticity by blocking LTP. The underlying mechanisms suggested 

here comprise an increase of reactive oxygen species followed by activation of the stress-

activated protein kinases (Vereker et al., 2000) and inhibition of calcium currents 

(Cunningham et al., 1996). The significance of IL-1β in hippocampus neural plasticity is 

supported by the high concentration of its receptor IL1R in hippocampal neurons (Ban et al., 

1991). The other main cytokine tested, TNFα, similarly impairs LTP (Cunningham et al., 

1996). Furthermore, TNFα may potentiate excitotoxicity through inhibition of glutamate 

uptake (Zhou et al., 2005). IL-1β and TNFα are synthesized by reactive glial cells, both 

microglia and astrocytes; their expression and that of their receptors are high, especially in 

hippocampus among the brain areas (Hopkins et al., 1995). A2M has not been, to our 

knowledge, previously determined in SAMP8. Glycoprotein A2M is a proteinase inhibitor 

and a specific carrier of cytokines, including TNFα and IL-1β. A2M can inhibit the 

proteolytic degradation of pro-inflammatory cytokines leading to sustained inflammatory 

processes (Gourine et al., 2002). A2M is synthesized in the brain primarily by astrocytes, and 

its receptor is expressed in neurons and astrocytes (Moestrup et al., 1992). A2M is increased 

in the AD brain, where it can be neurotoxic to neurons (Kovacs, 2000). The significant 

contribution of neuroinflammatory processes to age-related cognitive impairment was further 

corroborated by the discovery of several polymorphisms in pro-inflammatory genes, 

including the genes of TNFα, IL-1β and A2M, which increase the risk of AD (McGeer and 

McGeer, 2001). The observed anti-inflammatory effects of proinsulin in the hippocampus are 

in agreement with that of insulin in peripheral tissues in which insulin seems to modulate 

vascular permeability and cytokine production by an uncharacterized mechanism (Kothari et 

al., 2016). 
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SAMP8 mice showed reactive astrocytes in the hippocampus. Previous authors have 

demonstrated that the number of astrocytic cell bodies remained constant with age in the 

SAMP8 hippocampus despite increased GFAP immunoreactivity, thus indicating a change in 

hypertrophic reactivity (Sawano et al., 2013). SAMP8 reactive astrocytes appear to play a 

significant role in exaggerated and long-lasting brain inflammatory responses against stress 

factors and subsequent impairment of memory in SAMP8. In addition, SAMP8 astrocytes 

expressed degenerative markers (Díez-Vives et al., 2009) and dysfunctions leading to a 

reduction of vital support to neurons in vitro (García-Matas et al., 2008). Astrocyte reactivity 

involves morphological, transcriptional and functional changes (Ben Haim et al., 2016). 

Interaction among the pathways triggering astrocyte reactivity and neuroprotective pathways 

activated by proinsulin such as PI3K/Akt would return astrocytes to their physiologically 

normal state. It is noteworthy that these were responsive to the lowering of their reactivity by 

proinsulin, as measured by the decrease in GFAP expression. Microglia, another player in 

neuroinflammation did not show significant changes in activation after proinsulin treatment 

or in baseline conditions in SAMP8. 

In conclusion, the pharmacological circulating levels of hPi obtained through intramuscular 

AAV-hPi administration allowed for a sustained, systemic, low level of proinsulin able to 

reach the mouse brain. Proinsulin treatment led to significant protection, lasting several 

months, against cognitive impairment in the SAMP8 mouse model of senescence and 

decreased the signs of brain inflammaging. Inhibition of astrocyte reactivity comprised a 

central event in the connectivity network built with the data of the study. The successful 

outcome of proinsulin therapy in SAMP8 mice opens new pharmacological avenues in the 

treatment of inflammaging and age-related neurodegeneration. 
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Figure legends 

Figure 1. Human proinsulin levels after a subcutaneous bolus injection in SAMP8 and 

SAMR1 mice (A) Human proinsulin (hPi) injected subcutaneously at the indicated doses in 

SAMR1 and SAMP8 mice was detected by ELISA in blood serum, as well as in tissue 

extracts from hippocampus and retina. Values represent the mean ± SEM, N = 3. (B) Levels 

in the hippocampus correlated with those in blood serum. Individual mouse values are shown, 

N = 10. (C) Levels of hPi in the hippocampus correlated with those in the retina. Individual 

mouse values are shown, N = 10; see text for correlation values. 

Figure 2. Proinsulin administered through an AAV vector in the skeletal muscle induced the 

Akt pathway and activated the plasticity transduction factor ATF1 in the hippocampus. (A) 

Increased ratio of p-Akt/Akt was found in the hippocampus of both 6-month-old SAMR1 and 

SAMP8 mice treated with AAV-hPi at 1 month of age. (B) AAV-hPi induced an increase in 
the ratio p-ATF1/CREB, although the increase in p-CREB/CREB ratio was not significant. In 

all cases, values represent the mean ± SEM. Statistics: two-way ANOVA; $P < 0.05, $$P < 

0.01 effect of factor treatment, &&P < 0.01 effect of factor strain. 

Figure 3. Proinsulin reduced astrocyte reactivity and neuroinflammation in the hippocampus 

of SAMP8 mice. (A) The genes A2m, Tnfα, Il1E and Il1r1, codifying for α-2-Macroglobulin 

(A2M), Tumor necrosis factor α (TNFD), Interleukin 1 β (IL1β) and Interleukin 1 receptor 

type I (IL1R), respectively, showed increased expression in SAMP8-null compared to 

SAMR1-null mice. SAMP8 injected with the vector coding for proinsulin displayed similar 

expression levels than SAMR1-null mice. (B) Protein levels of the astrocyte reactivity marker 

GFAP were reduced in mice treated with AAV-hPi. SAMP8-hPi showed levels of GFAP 

similar to those of SAMR1 mice. (C) GFAP immunofluorescence images of the hippocampus 

of SAMP8-null and SAMP8-hPi; CA3 area; representative images from 3 mice per group; 

scale bar = 200 µm. (D) Protein levels of the microglia reactivity marker Iba1 showed a non-

significant trend to increase after AAV-hPi injection. (E) Iba1 immunofluorescence images of 

the hippocampus of SAMP8-null and SAMP8-hPi; CA3 area; representative images from 3 

mice per group; scale bar = 200 µm. In A, B and D, values represent the mean ± SEM. 

Statistics: two-way ANOVA (repeated measures in A and univariate in B and D); &&P < 0.01 
effect of factor strain, $$

null and ##

P < 0.01 effect of factor treatment; **P < 0.01 compared to SAMR1-

P < 0.01 compared to SAMP8-hPi by simple main effect analysis of strain and 

treatment, respectively. 
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Figure 4. Proinsulin protected SAMP8 against cognitive impairment. (A) In the Novel object

recognition test, SAMP8 mice administered with control vector AAV-null did not show any 

preference for a new object whereas those mice injected with the vector bearing the human 

proinsulin gene AAV-hPi recognized the new object. Memory for a new object was 

maintained after 24 h in SAMP8-hPi mouse group. (B) In the Novel object location test, all 

mice explored similarly two identical objects at time 0 h. After 2 h, SAMP8-null did not 

show preference for an object displaced to a new location whereas SAMP8-hPi mice were 

able to recognize the change of position and preferentially explored the displaced object. (C) 

In the Morris water maze test, SAMP8-null mice did not learn to find the escape platform 

during the acquisition learning nor preferentially swam in the platform quadrant at the probe 

trial. However those mice administered with AAV-hPi demonstrated memory capacities 

similar to SAMR1 mice in the probe trial. No differences in the average swimming speed 

were found. In all cases, values represent the mean ± SEM. Statistics: two-way ANOVA; &P

< 0.05, &&P < 0.01 effect of strain factor; $$P < 0.01 effect of treatment factor; **P < 0.01 
compared to SAMR1 and ###P < 0.001 compared to SAMP8-null by simple main effect 
analysis. 

Figure 5. Network of the connectivity between learning and memory, neuroplasticity 

markers, neuroprotective and neurotrophic signaling, neuroinflammation, reactive gliosis, 

amyloid and tau pathology, and levels of human proinsulin. Levels of human proinsulin were 

the result of human proinsulin secreted from gastrocnemius muscles transduced with AAV-

hPi. Nodes show the variables measured in the study and links indicate positive (continuous 

line) or negative (dotted line) correlations between pairs of them (Pearson’s, at least P < 

0.05). Links with greater thickness indicate higher correlation value. Nodes with greater size 

indicate higher centrality of the variables in the network. Centrality rank of the variables 

obtained by graph algorithm resulted as follows: 1, GFAP protein levels; 2, time in platform 

quadrant in the probe test of memory, MWM; 3, p-CREB/CREB protein ratio; 4, 

discrimination index at 24 h in NORT; 5, pro-BDNF protein; 6, human proinsulin in blood 

serum; 7, AβPP protein; 8, CREB protein; 9, p-ATF1 protein; 10, p-ERK protein; 11, p-

GSK3β; 12, distance swam to find the escape platform at day 6 in acquisition of learning, 

MWM; 13, ERK protein; 14, IL1R mRNA; 15, discrimination index at 2 h in NORT; 16, p-

CREB protein; 17, synaptophysin protein; 18, p-NFĸB p65 protein; 19, discrimination index 

at 2 h in OLT; 20, p-ERK/ERK protein ratio; 21, TNFα mRNA; 22, BDNF protein; 23, A2M 

mRNA; 24, IL-1β mRNA; 25, p-Akt Thr308 protein; 26, p-tau protein; 27, p-Akt Ser473 
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protein; 28, Iba1 protein. The parameters are classified as follows: discrimination index at 2 h 

in NORT, discrimination index at 24 h in NORT, discrimination index at 2 h in OLT, 

distance swam to find the escape platform at day 6 in acquisition of learning in MWM, and 

time in platform quadrant in the probe test of memory in Learning and memory; 

synaptophysin protein, pro-BDNF protein and BDNF protein in Neuroplasticity; p-ERK 

protein, ERK protein, p-ERK/ERK protein ratio, p-Akt Thr308 protein, p-Akt Ser473 protein, 

p-GSK3β, p-ATF1 protein, p-CREB protein, CREB protein and p-CREB/CREB protein ratio

in Neuroprotective and neurotrophic signaling; p-NFĸB p65 protein, A2M mRNA, IL-1β 

mRNA, TNFα mRNA and IL1R mRNA in Neuroinflammation; Iba1 protein and GFAP in 

Reactive gliosis; and AβPP protein and p-tau protein in Amyloid and tau pathology. 
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