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Abstract

Fetch engine performance is seriously limited by the
branch prediction table access latency. This fact has lead
to the development of hardware mechanisms, like predic-
tion overriding, aimed to tolerate this latency. However,
prediction overriding requires additional support and re-
covery mechanisms, which increases the fetch architecture
complexity.

In this paper, we show that this increase in complexity
can be avoided if the interaction between the fetch archi-
tecture and software code optimizations is taken into ac-
count. We use aggressive procedure inlining to generate
long streams of instructions that are used by the fetch engine
as the basic prediction unit. We call instruction stream to a
sequence of instructions from the target of a taken branch
to the next taken branch.

These instruction streams are long enough to feed the
execution engine with instructions during multiple cycles,
while a new stream prediction is being generated, and thus
hiding the prediction table access latency. Our results show
that the length of instruction streams compensates the in-
crease in the instruction cache miss rate caused by inlining.
We show that, using procedure inlining, the need for a pre-
diction overriding mechanism is avoided, reducing the fetch
engine complexity.

1 Introduction

High performance superscalar processors require high
fetch bandwidth to exploit all the available instruction-level
parallelism. The development of accurate branch prediction
mechanisms has provided important improvements in the
fetch engine performance. However, it has also increased
the fetch architecture complexity. Our approach to achieve
high fetch bandwidth, while maintaining the complexity un-
der control, is the stream fetch engine [14].

This fetch engine design is based on the next stream pre-
dictor, an accurate branch prediction mechanism which uses
instruction streams as the basic prediction unit. We call
stream to a sequence of instructions from the target of a
taken branch to the next taken branch, potentially contain-
ing multiple basic blocks. Although a fetch engine based
on streams is not able to fetch instructions beyond a taken
branch in a single cycle, streams are long enough to provide
a high fetch bandwidth. In addition, since streams are se-
quentially stored in the instruction cache, the stream fetch
engine does not need a special-purpose storage, nor a com-
plex dynamic building engine.

However, taking into account current technology trends,
accurate branch prediction is not enough. The continu-
ous increase in processor clock frequency, as well as the
larger wire delays caused by modern technologies, prevent
branch prediction tables from being accessed in a single cy-
cle [1, 8]. This limits fetch engine performance because
each branch prediction depends on the previous one, that
is, the target address of a branch prediction is the starting
address of the following one.

A common solution for this problem is the prediction
overriding technique [8, 19]. A small and fast predictor
is used to obtain a first prediction in a single cycle. A
slower but more accurate predictor provides a new predic-
tion some cycles later, overriding the first prediction if they
differ. This mechanism partially hides the branch predic-
tor access latency. However, it also causes an increase in
the fetch architecture complexity, since prediction overrid-
ing requires a complex recovery mechanism to discard the
wrong speculative work based on overridden predictions.

An alternative to the overriding mechanism is using long
basic prediction units. A stream prediction contains enough
instructions to feed the execution engine during multiple cy-
cles [14]. Therefore, the longer a stream is, the more cycles
the execution engine will be busy without requiring a new
prediction. If streams are long enough, the execution engine
of the processor can be kept busy during multiple cycles
while a new prediction is being generated. Overlapping the

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04) 

0-7695-2061-8/04 $20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/141674576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


execution of a prediction with the generation of the follow-
ing prediction allows to partially hide the access delay of
this second prediction, removing the need of an overriding
mechanism, and thus reducing the fetch engine complexity.

Since instruction streams are limited by taken branches,
the best way to obtain longer streams is removing taken
branches through code optimizations. Code layout opti-
mizations have a beneficial effect on the length of instruc-
tion streams [14]. These optimizations try to map together
those basic blocks which are frequently executed as a se-
quence. Therefore, most conditional branches in optimized
code are not taken, enlarging instruction streams. However,
code layout optimizations are not enough for the stream
fetch engine to completely overcome the need of an over-
riding mechanism [18].

In this paper, we show that more aggressive optimiza-
tions provide longer instruction streams, increasing the
stream predictor ability of tolerating the access latency. In
particular, we focus on procedure inlining. This optimiza-
tion replaces a procedure call by the procedure itself, re-
moving the call and return instructions. Since both proce-
dure calls and return instructions are taken branches, proce-
dure inlining involves an increase in the length of instruc-
tion streams. In addition, removing procedure boundaries
enables more opportunities for code optimizations.

We use the ALTO [10] tool to perform an aggressive pro-
cedure inlining. The main drawback of this optimization is
that it increases the code size, and thus increases the num-
ber of instruction cache misses. However, the beneficial ef-
fect of longer streams compensates this increase in the in-
struction cache miss rate. Moreover, this aggressive proce-
dure inlining optimization provides streams long enough to
hide the branch predictor access latency without requiring
an overriding mechanism, reducing the fetch architecture
complexity. These results illustrate how taking advantage of
code optimizations allows the design of high performance
fetch architectures with a low cost and complexity.

The remainder of this paper is organized as follows. Sec-
tion 2 presents previous related work. Section 3 explains
our experimental methodology. Section 4 describes the ef-
fect that procedure inlining has on the length of instruction
streams. Section 5 shows that prediction overriding can
be avoided thanks to procedure inlining. Finally, Section
6 presents our concluding remarks.

2 Related Work

Procedure inlining is a frequently used code optimiza-
tion. Allen and Johnson [2] describe a procedure inliner for
C programs. However, they consider that only small proce-
dures should be inlined to avoid an increase in the number
of instruction cache misses. Hwu and Chang [7] present
profile-driven algorithms for applying inlining and code re-
ordering. The profile information is used to decide whether

inlining a procedure will be beneficial for the program ex-
ecution, allowing to inline bigger procedures. In addition,
reordering the program code is an effective technique to al-
leviate the increase in the instruction cache misses caused
by inlining big procedures.

Ayers et al. [4] describe an aggressive inliner, based on
profile information, that is able to inline procedures at al-
most any call site without restriction. Their results show
that aggressive inlining can provide important performance
improvements in some benchmarks. Likewise, the ALTO
[10] optimizer is able to aggressively inline procedures, us-
ing profile-based code reordering to reduce the negative ef-
fects of inlining on the instruction cache. Aydin and Kaeli
[3] take this one step further implementing cache line color-
ing algorithms. They use ALTO to aggressively inline pro-
cedures, showing that cache line coloring is beneficial for
reducing the negative impact of inlining on the instruction
cache miss rate.

As Aydin and Kaeli, we use ALTO to perform aggres-
sive procedure inlining. However, we focus our research on
the length of basic prediction units instead of the instruc-
tion cache miss rate. Long prediction units, for example
instruction streams [14], allow to tolerate the prediction ta-
ble access latency by feeding the execution engine with in-
structions during multiple cycles. Inlining enlarges instruc-
tion streams by removing dynamic taken branches, that is,
function calls and returns. Our claim is that the increase in
the number of instruction cache misses caused by inlining
is compensated by the increase in the length of instruction
streams and the additional optimizations enabled by inlin-
ing, improving the overall processor performance.

In particular, adequately balancing the number of in-
struction cache misses and the length of instruction streams,
we show that the next stream predictor can tolerate the
prediction table access latency without requiring additional
hardware mechanisms, like prediction overriding [8, 19].
This mechanism provides two predictions, a first predic-
tion coming from a fast branch predictor, and a second pre-
diction coming from a slower, but more accurate predictor.
When a prediction should be generated, the first prediction
is used while the second one is still being calculated. Once
the second prediction is obtained, it overrides the first one
if they differ, since the second predictor is considered to be
the most accurate.

The advantage of prediction overriding is that it benefits
those binaries that have already been compiled without code
optimizations specifically devoted to hide the prediction ta-
ble access latency. However, the main problem of predic-
tion overriding is that it requires an important increase in
the fetch engine complexity. An overriding mechanism re-
quires a fast branch predictor to obtain a prediction each
cycle. This prediction should be stored for being compared
with the main prediction. Some cycles later, when the main
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prediction is generated, the fetch engine should determine
whether the first prediction is correct or not. If the first pre-
diction is wrong, all the speculative work done based on it
should be discarded. Therefore, the processor should track
which instructions depend on each prediction done in order
to allow the recovery process.

In this way, the stream fetch engine reduces the fetch
engine complexity by taking advantage of code optimiza-
tions. There are other fetch architectures able to exploit
code optimizations. The trace cache architecture [13, 16, 5]
provides high fetch performance by buffering and reusing
dynamic instruction traces. These traces are long enough
to partially hide the prediction table access latency [18].
The rePLay microarchitecture [12] uses a front-end derived
from the trace cache to generate even longer traces. These
traces, called frames, are built making an extensive use of
the branch promotion technique [11] and later applying dy-
namic optimizations.

The main advantage of these approaches over the stream
fetch engine is that they should not stop fetching instruc-
tions when a taken branch is found. In addition, the stream
fetch engine is not able to make dynamic optimizations,
like rePLay does. A performance comparison against these
mechanism is out of the scope of this paper. However, it
is important to note that, since instruction streams are con-
secutively stored in the instruction cache, the stream fetch
engine does not require an additional special-purpose stor-
age, nor a dynamic building mechanism like the trace cache
and rePLay. This involves an important reduction in the
fetch engine complexity, which is the main objective of this
paper.

3 Experimental Methodology

The results in this paper have been obtained using trace
driven simulation of a superscalar processor. Our simulator
uses a static basic block dictionary to allow simulating the
effect of wrong path execution. This model includes the
simulation of wrong speculative predictor history updates,
as well as the possible interference and prefetching effects
on the instruction cache.

We simulate the SPECint2000 benchmarks optimized
using ALTO [10]. First, the benchmarks were compiled
with the Compaq C V5.8-015 compiler on Compaq UNIX
V4.0, using the -O2 optimization level without inlining.
These binaries were later optimized with ALTO1 using pro-
file information collected by the pixie V5.2 tool using the
train input set. We use the ALTO tool to generate our base-
line binaries, optimized without inlining, as well as several
sets of binaries with different levels of inlining.

Since we evaluate different sets of binaries, we simulate
all benchmarks until completion to assure a fair compari-

1We do not simulate the benchmark 252.eon because our ALTO version
is unable to optimize it.

Table 1. Benchmark suite used and the corre-
sponding input set.

benchmark input input set
164.gzip input.random minnespec
175.vpr place minnespec
176.gcc cccp.s test
181.mcf inp.in minnespec

186.crafty crafty.in test
197.parser red.in minnespec

253.perlbmk makerand.pl minnespec
254.gap test.in test

255.vortex persons.1k test
256.bzip2 input.source minnespec
300.twolf test test

son. In order to explore a wide range of setups and binaries,
we have chosen benchmark inputs from the MinneSPEC [9]
input set. This input set has been specially designed to facil-
itate efficient simulations, avoiding excessively large simu-
lation times. However, not all SPECint2000 benchmarks
had a MinneSPEC input available when we selected our in-
put set. In addition, we have discarded MinneSPEC inputs
derived from the train input set. For those benchmarks that
do not have an adequate MinneSPEC input available, we
selected an input from the official test input set. Our bench-
mark input set is shown in Table 1.

3.1 Processor Setup

In order to analyze the effect of different processor
widths, we simulate two processor setups: a 4-wide and an
8-wide superscalar processor. The main values of these se-
tups are shown in Table 2. Our simulator models the stream
fetch engine [14], shown in Figure 1. This fetch model is
based on a specialized branch predictor, the next stream pre-
dictor, which provides stream-level granularity, that is, it
steps trough the code one stream at a time.

The next stream predictor access is decoupled from the
instruction cache access using a fetch target queue (FTQ)
[15]. The stream predictor generates requests which are
stored in the FTQ. These requests are used to drive the in-
struction cache, obtain a line from it, and select which in-
structions from the line should be executed. Our instruction
cache setup uses wide cache lines, that is, 4-times the pro-
cessor fetch width, as described in [14]. We vary the total
instruction cache hardware budget from 8KB to 64KB in
order to explore the impact of inlining on different cache
sizes.

3.2 Stream Predictor Setup

In this paper, we evaluate the next stream predictor us-
ing realistic prediction table access latencies. We have mea-
sured the access time for the stream predictor tables using
the CACTI 3.0 tool [20], a detailed wire and transistor struc-
ture model of cache memories. Data we have obtained cor-
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Figure 1. Stream fetch engine.

Table 2. Configuration of the simulated processors.
4-wide processor 8-wide processor

fetch width 4 instructions 8 instructions
rename/commit width 4 instructions 8 instructions
integer issue width 4 instructions 8 instructions
floating point issue width 4 instructions 8 instructions
load/store issue width 2 instructions 4 instructions
fetch target queue 4 entries 4 entries
instruction fetch queue 16 entries 32 entries
integer issue queue 32 entries 64 entries
floating point issue queue 32 entries 64 entries
load/store issue queue 32 entries 64 entries
reorder buffer 128 entries 256 entries
integer registers 96 160
floating point registers 96 160
level-1 instruction cache 8/16/32/64 KB, 2-way associative, (4*fetch width) byte block
level-1 data cache 64 KB, 2-way associative, 64 byte block
level-2 unified cache 1 MB, 4-way associative, 128 byte block, 10 cycle latency
main memory latency 100 cycles

responds to a 0.10µm technology. For translating the access
time from nanoseconds to cycles, we assumed an aggres-
sive 8 fan-out-of-four delays clock period, that is, a 3.47
GHz clock frequency as reported in [1]. It has been claimed
by Hrishikesh et al. [6] that 8 fan-out-of-four delays is the
optimal clock period for integer benchmarks in a high per-
formance processor implemented in 0.10µm technology.

In order to find the optimal stream predictor setup, we
have evaluated the stream fetch engine varying the predictor
size from small and fast tables to big and slow tables. Fig-
ure 2 shows the stream prediction table access time obtained
using CACTI. We have measured the access time for pre-
diction tables ranging from 32 to 4096 entry tables. These
tables are assumed to be 4-way associative because 2-way
associative tables require the same number of cycles to be
accessed in the evaluated setups, while direct mapped tables
provide a poor performance.

Taking into account realistic table access latencies, the
best performance is achieved using the larger three cycle
latency tables [17]. Although bigger predictors are slightly
more accurate, their increased access delay harms processor
performance. On the other hand, predictors with a lower la-
tency are too small and provide a poor performance. There-

Table 3. Configuration of the simulated
stream predictor.

next stream predictor 1-cycle predictor
1024 entry, 4-way, first level 32 entry, 1-way, predictor

4096 entry, 4-way, second level DOLC 0-0-0-5
DOLC 10-2-4-10

fore, we have chosen to evaluate the stream predictor using
the bigger table that can be accessed in three cycles, that is,
4096 entries.

Table 3 shows the configuration of the stream predictor
simulated. The stream predictor actually has two prediction
tables [14], a first level indexed using the stream starting
address and a second level indexed using correlation with
the starting address of previous streams. The first level is
smaller than the second one because a larger first level ta-
ble does not provide a significant improvement in prediction
accuracy. We have also explored a wide range of DOLC his-
tory register [14] configurations, and selected the best one.

Since we use prediction overriding as comparison base-
line, we also model a prediction overriding mechanism
[8, 19]. A small stream predictor, which is supposed to be
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Figure 2. Access time to stream prediction
tables in 0.10µm technology with a 3.47 GHz
clock frequency.

implemented using very fast hardware, provides a stream
prediction in a single cycle. Three cycles later, when the
main stream prediction is generated, both predictions are
compared. If they differ, the main prediction overrides the
first one, discarding all the speculative work based on it. Ta-
ble 3 shows the setup of the single-cycle predictor used by
the overriding mechanism.

4 The Impact of Inlining on the Length of In-
struction Streams

The ALTO [10] optimizer is able to perform an ag-
gressive procedure inlining. This inlining optimization
is mainly controlled by the maximum resultant code size
(MRCS), that is, the maximum number of instructions that
an inlined portion of code should have. A procedure is never
inlined if the resultant code size is higher than MRCS. If
the inlined procedure is called from a loop, then the num-
ber of instructions belonging to the loop plus the number
of instructions belonging to the inlined procedure cannot
be higher than MRCS. Otherwise, the number of instruc-
tions belonging to the caller procedure plus the number of
instructions belonging to the inlined procedure cannot be
higher than MRCS.

The higher the MRCS value is, the more aggressive is the
procedure inlining performed. As a measure of procedure
inlining effectivity, Figure 3.a shows the average number of
return instructions. This number is equivalent to the average
number of executed procedures. We evaluate the MRCS pa-
rameter varying from 256 to 16384 instructions, and com-
pare it against our baseline code, that is, code optimized
using ALTO without inlining. Higher values of MRCS in-
volve a more aggressive inlining, and thus a higher reduc-
tion in the total number of return instructions. The more
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Figure 3. Average number of return instruc-
tions and average stream length varying the
maximum resultant code size (MRCS) from
256 to 16384 instructions.

aggressive inlining provides a reduction over 70% of return
instructions against the code optimized without inlining.

The aggressivity of procedure inlining has a direct im-
pact on the length of instruction streams, as shown in Figure
3.b. By definition, instruction streams are limited by taken
branches. Procedure inlining removes a big amount of taken
branches: function calls and return instructions. The reduc-
tion in the number of taken branches involves an enlarge-
ment of instruction streams. This enlargement is limited
by the removal of instructions associated with the proce-
dure call overhead. Nevertheless, the overall effect is that
the more aggressive the inlining is, the longer instruction
streams are.

However, this enlargement of instruction streams is not
for free. Aggressive inlining duplicates big amounts of the
program code, increasing the number of instruction cache
misses. Figure 4 shows the average number of instruction
cache misses varying the MRCS value from 256 to 16384
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Figure 4. Average instruction cache misses
varying the maximum resultant code size
(MRCS) from 256 to 16384 instructions.

instructions, and the total instruction cache hardware bud-
get from 8KB to 64KB. Although, in general, more aggres-
sive inlining involves a higher number of instruction cache
misses, this is not always a direct relationship. For ex-
ample, the 8KB instruction cache has a lower number of
misses using a 1024-instruction MRCS value than using a
512-instruction MRCS value.

This happens because increasing the code size is not the
only effect caused by procedure inlining. As mentioned be-
fore, inlining eliminates the instructions associated with the
calling overhead. Aggressive inlining involves the removal
of a higher number of these instructions, limiting the in-
crease in the number of instruction cache misses. Moreover,
inlining removes procedure boundaries, increasing the vis-
ibility of the code to other optimizations, like dead code
elimination or code scheduling, potentially reducing the
number of instruction cache misses. Nevertheless, this only
happens for intermediate values of the MRCS parameter,
that is, when the impact on the cache miss rate is not too
high. The higher values of MRCS always cause a higher
number of instruction cache misses.

To summarize, aggressive inlining involves an increase
in the length of instruction streams, increasing the ability
of the next stream predictor of tolerating the prediction ta-
ble access latency, and thus improving the processor per-
formance. On the other hand, aggressive inlining causes an
increase in the number of instruction cache misses, which
degrades the processor performance. In order to find the
optimal setup, we explore this tradeoff in the next section.

5 Performance Evaluation

Both the length of instruction streams and the number of
instruction cache misses have an important impact on the
overall processor performance. In this section, we evaluate

the processor performance looking for a balance between
the average stream length and the instruction cache miss
rate. We provide data for two processor setups, a 4-wide
processor and an 8-wide processor. The wider processor
requires longer streams to keep the execution engine busy
while a new prediction is being generated, limiting the ben-
efits of an aggressive inlining. Finally, to achieve a better
understanding of our results, we provide data for each indi-
vidual benchmark.

5.1 4-Wide Processor Performance

Figure 5 shows the 4-wide processor performance using
a realistic prediction table access latency (3 cycles) without
prediction overriding. We vary the MRCS value from 256
to 16384 instructions, and the total instruction cache hard-
ware budget from 8KB to 64KB. The bigger the cache is,
the more aggressive is the inlining that can be performed.
Thus, the optimal value of MRCS is higher for the bigger
cache sizes. Both the 8KB and 16KB instruction caches
achieve their optimal performance using a 1024-instruction
MRCS value, while the 32KB and the 64KB instruction
caches achieve their optimal performance using a more ag-
gressive 8192-instruction MRCS value.

The best performance is achieved by the 64KB instruc-
tion cache due to its lower miss rate. Using this cache, the
code inlined using the optimal MRCS value achieves a 7%
performance improvement over the non-inlined code. How-
ever, this improvement is not necessarily caused by the abil-
ity of tolerating the predictor access latency. It can also be
caused by the higher fetch bandwidth provided by longer
streams and the additional code optimizations enabled by
our aggressive inlining. In order to provide more insight
about this, we have measured the performance achieved by
a processor with a 1-cycle latency predictor, where overrid-
ing has no impact on performance.

With this ideal latency predictor, the code inlined using
the optimal MRCS value achieves a 6% performance im-
provement over the non-inlined code. Since the predictor
access latency is not a problem for the ideal latency pre-
dictor, this improvement can be attributed not to the ability
of tolerating the access delay, but to the higher fetch band-
width and the additional code optimizations enabled by in-
lining. However, the performance improvement achieved
by the realistic latency predictor is higher. Therefore, this
additional 1% performance improvement is caused not only
by the improved fetch bandwidth and the additional code
optimizations, but also by the ability of longer streams of
hiding the prediction table access latency.

Figure 6 shows the performance achieved by the 4-wide
processor using the optimal MRCS value for each instruc-
tion cache size. As mentioned before, these results cor-
respond to a realistic prediction table delay without over-
riding. This data is compared against the performance
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Figure 5. Average performance of a 4-wide
processor varying the maximum resultant
code size (MRCS) from 256 to 16384 instruc-
tions.
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achieved by a code optimized without inlining but using a
hardware prediction overriding mechanism. The main ob-
servation is that, when using aggressive procedure inlining,
a 4-wide processor using the stream fetch engine without
overriding is able to outperform a similar processor using
code optimized without inlining, even if it uses prediction
overriding. Using a 64KB instruction cache, the processor
without overriding executing inlined code achieves a 5% re-
duction in the total number of execution cycles over the pro-
cessor executing non-inlined code using overriding. This il-
lustrates how the fetch engine complexity can be reduced by
exploiting the advantages provided by code optimizations.

5.2 8-Wide Processor Performance

A wider processor increases the pressure over the fetch
architecture. Instructions are read from the fetch engine at a
higher rate because the processor is able to execute a higher
number of instructions per cycle. This fact limits the ben-
efits achievable by using long streams of instructions, and
thus the benefits obtained using aggressive procedure inlin-
ing. Therefore, an 8-wide processor requires either longer
instructions streams than a 4-wide processor, or new stream
predictions more often.

Figure 7 shows the 8-wide processor performance us-
ing a realistic 3-cycle prediction table access delay with-
out prediction overriding. The MRCS value is varied from
256 to 16384 instructions, and the instruction cache is var-
ied from 8KB to 64KB. The optimal MRCS values are the
same found for the 4-wide processor setup, that is, 1024 in-
structions for the 8KB and 16KB caches, and 8192 instruc-
tions for the 32KB and 64KB caches. This means that the
length of instruction streams is the same for both processor
setups. Since the higher number of instructions per cycle
needed by the 8-wide processor cannot be obtained from
longer streams, it requires new predictions more often. This
involves that the ability of tolerating the prediction table ac-
cess latency is reduced.

Therefore, obtaining longer streams is more necessary
for this processor setup than for the 4-wide setup. Once
again, we have measured the performance achieved by a
processor with a 1-cycle latency predictor in order to dis-
tinguish between the benefits of tolerating the access la-
tency and the other factors that improve performance, i.e.
the higher fetch bandwidth and the additional optimizations
enabled by our aggressive inlining. Using a 64KB instruc-
tion cache and the ideal latency predictor, inlining provides
a 6% performance improvement. When the predictor ac-
cess latency is taken into account, that is, using the realistic
3-cycle latency predictor, the improvement rises up to 8%.
This additional 2% improvement, caused by the ability of
tolerating the access latency, is higher than the one obtained
in the 4-wide setup. This fact highlights the importance of
having long prediction units in wide processors.

Figure 8 shows the performance achieved by the 8-wide
processor using a realistic predictor delay without overrid-
ing. Each instruction cache size is evaluated using the opti-
mal MRCS value. This data is compared against the perfor-
mance achieved by a code optimized without inlining but
using a hardware prediction overriding mechanism. In spite
of the higher fetch bandwidth requirements of the 8-wide
processor, the stream fetch engine without overriding is still
able to outperform a similar processor using code optimized
without inlining, even if it uses prediction overriding.

However, the improvement is lower than in the 4-wide
setup. Using a 64KB instruction cache, the processor
without overriding executing inlined code only achieves a
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Figure 7. Average performance of an 8-wide
processor varying the maximum resultant
code size (MRCS) from 256 to 16384 instruc-
tions.
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Figure 8. Average performance of an 8-wide
processor with prediction overriding not us-
ing inlining, and without prediction overrid-
ing but using inlining and the optimal MRCS
value.

1.5% reduction in the total number of execution cycles over
the processor executing non-inlined code using overriding.
This reduction in the benefit of aggressive procedure inlin-
ing shows that there is still room for improvement. If we
can obtain longer streams, maintaining the instruction cache
miss rate under control, the execution engine of wide su-
perscalar processors can be feed during multiple cycles by
a single stream, hiding the latency of the next stream pre-
diction. Thus, longer streams will allow wide processors
to achieve performance improvement results as good as the
achieved by the 4-wide processor or even better.
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Figure 9. Stream length for individual bench-
marks using an 8KB instruction cache, and
for both code optimized without inlining and
with inlining.
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Figure 10. Instruction cache misses for indi-
vidual benchmarks using an 8KB instruction
cache, and for both code optimized without
inlining and with inlining.

5.3 Individual Benchmark Performance

To achieve a better understanding of our results, we show
individual benchmark data for the 8-wide processor setup
using an 8KB instruction cache with the optimal MRCS.
We selected this cache because its small size aggravates the
problem of instruction cache misses. Figure 9 shows the
average length of instruction streams for both the code op-
timized without inlining and with inlining. There is a clear
stream enlargement in six of the eleven evaluated bench-
marks, specially in 255.vortex, while the other five bench-
marks present little variation. This enlargement is due to an
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Figure 11. Processor performance for individ-
ual benchmarks in an 8-wide processor using
an 8KB instruction cache, and for both code
optimized without inlining and with inlining.

important reduction in the number of taken branches. The
six benchmarks that obtain longer streams using inlining
achieve a reduction over 20% in the total number of func-
tion calls and return instructions, reaching a reduction over
90% in benchmarks like 164.gzip. Both procedure calls and
returns are specially frequent in 255.vortex, which explains
the high increase this benchmark achieves.

As stated before, this enlargement of instruction streams
is obtained at the cost of a higher number of instruction
cache misses. Figure 10 shows the number of instruction
cache misses for the 8KB instruction cache using both the
code optimized without inlining and with inlining. Inlining
causes an increase in the number of instruction cache misses
for 176.gcc, 253.perlbmk, and, specially, 255.vortex. The
increase in 255.vortex is expected due to the great increase
in the length of instruction streams. This is the price that
must be paid for obtaining so long streams.

Figure 11 shows the performance achieved by the eleven
benchmarks in the 8-wide processor using the 8KB instruc-
tion cache setup, and both the code optimized without in-
lining using prediction overriding, and the code optimized
with inlining not using overriding. The performance of
both processors is close in most benchmarks. The proces-
sor without overriding, in spite of being less complex, is
even better in five benchmarks. A clear example is 255.vor-
tex, which obtains an important reduction in the execution
time using aggressive procedure inlining. Although it suf-
fers from a higher number of instruction cache misses, the
longer streams obtained in 255.vortex when using inlining
compensate this effect, allowing to achieve a better perfor-
mance by hiding the prediction table access latency. This
shows that software optimization techniques are able to re-

place a complex hardware mechanism, like prediction over-
riding, reducing the fetch engine cost and complexity with-
out sacrificing performance.

6 Conclusions

Current technology trends create new challenges for the
fetch architecture design. Higher clock frequencies and
larger wire delays cause branch prediction tables to require
multiple cycles to be accessed [1, 8], limiting the fetch en-
gine performance. This has lead to the development of
complex hardware mechanisms, like prediction overriding
[8, 19], to hide the prediction table access delay.

In order to avoid this increase in the fetch engine com-
plexity, we propose to use a software approach to hide the
prediction table access delay. The next stream predictor
[14] is a branch predictor specially designed to take advan-
tage of code optimizations. It uses instruction streams as
basic prediction unit. We call stream to a sequence of in-
structions from the target of a taken branch to the next taken
branch. If instruction streams are long enough, the execu-
tion engine can be kept busy executing instructions from
a stream during multiple cycles, while a new stream pre-
diction is being generated. Therefore, the prediction table
access delay can be hidden without requiring any additional
hardware mechanism.

Our previous work [14] shows that profile-directed code
reordering is able to enlarge instruction streams. In this
paper, we use aggressive procedure inlining for obtaining
even longer instruction streams. Inlining is a commonly
used code optimization that replaces a procedure call by
the procedure itself. Procedure inlining enlarges instruction
streams by reducing the number of function calls and return
instructions, that is, reducing the number of taken branches.
This enlargement of streams involves that each prediction
generated by the stream predictor contains a higher num-
ber of instructions, increasing its ability for tolerating the
prediction table access latency.

However, aggressive inlining also involves an increase
in the number of instruction cache misses due to the code
increase. Therefore, it is important to correctly balance the
stream length and the instruction cache miss rate in order to
achieve the best performance. We have explored different
levels of inlining aggressivity, showing the optimal one for
different instruction cache sizes. As can be expected, larger
instruction caches tolerate more aggressive procedure inlin-
ing, allowing to obtain longer streams. In general, proce-
dure inlining provides streams long enough for allowing a
processor not using overriding to outperform a similar pro-
cessor executing code optimized without inlining, even if it
does use prediction overriding. These results show that tak-
ing into account the interaction between software code opti-
mizations and the fetch architecture, it is possible to achieve
a high performance at a low cost and complexity.
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