
1

Abstract— Instruction queues consume a significant amount of
power in high-performance processors, primarily due to
instruction wakeup logic access to the queue structures. The
wakeup logic delay is also a critical timing parameter. This paper
proposes a new queue organization using a small number of
successor pointers plus a small number of dynamically allocated
full successor bit vectors for cases with a larger number of
successors. The details of the new organization are described and
it is shown to achieve the performance of CAM-based or full
dependency matrix organizations using just one pointer per
instruction plus eight full bit vectors. Only two full bit vectors are
needed when two successor pointers are stored per instruction.
Finally, a design and pre-layout of all critical structures in 70nm
technology was performed for the proposed organization as well
as for a CAM-based baseline. The new design is shown to use 1/2
to 1/5th of the baseline instruction queue power, depending on
queue size. It is also shown to use significantly less power than the
full dependency matrix based design.

Index Terms— CAM, Direct Wakeup, Issue Queue, Low-Power,
Out-of-Order Processors, Wakeup Instructions.

I. INTRODUCTION

ut-of-order processors issue instructions even before their
source operands are available. The instructions are

typically entered into an Instruction Queue (IQ) where they
wait for their operands. An instruction is dispatched to its
execution unit when its operands are ready. This is
accomplished using wakeup and select logic.

The wakeup logic is responsible for detecting when an
instruction operand is ready. An instruction is considered for
execution when all of its operands are ready.

This work was supported in part by the Ministry of Science and Technology
of Spain under contract TIN2004-07739-C02-01 and HiPEAC, the European
Network of Excellence on High Performance Architectures and Compilers,
the program of scholarships ANUIES-SUPERA and COTEPABE-IPN from
Mexico and by the National Science Foundation in the U.S.A under grant
NSF CCR-0311738.

M. A. Ramírez S. and Luis Villa are with the Research Center for Computing
from National Polytechnic Institute, Mexico, phone: +52 55-57296000
Ext.56519; e-mail: mars@cic.ipn.mx, mramirez@ac.upc.es).

 The select logic chooses a subset of instructions flagged by
the wakeup logic for execution. The operands may come from
a register file or from a previously issued instruction via
bypass logic. For instructions with a 1-cycle execution
latency, wakeup and select logic have to have a latency of one
cycle to avoid IPC loss.

Two types of instruction wakeup logic are typically discussed:
a CAM-based IQ logic and a dependency-matrix based logic.
The latter was described in an Intel patent [25] and [11].while
the former was used in the MIPS R10K processor [21].
Neither one of these approaches is scalable with respect to
instruction queues size, in particular for sizes being discussed
for future processors. The approach proposed here aims to
overcome this limitation and allow large IQ implementations
while maintaining a 1-cycle wakeup-select cycle. In addition, it
is also more energy efficient.

Consider a CAM-based wakeup logic implementation. An out-
of-order processor inserts an instruction in the instruction
queue after first decoding and renaming it. At that time it
checks if the source register operands are ready and sets up
CAM register tags and Ready flags for each source operand.
Each completing (or selected) instruction broadcasts its
destination register tag to the CAMs, which set Ready flags for
all instructions that are waiting on this result. An Instruction
Ready flag is set for an instruction when all of its source
operands are ready. A vector of Instruction_Ready bits is the
input to the select logic. The speed and scalability of this
approach are limited by the CAM size, the number of ports,
and the size of the register tag (number of registers).

The IQ CAM structure has to be multi-ported since multiple
instructions complete each cycle. As the size and the number
of ports of the IQ grow, this structure becomes
unimplementable. For example, an 8-issue processor requires
an instruction queue CAM with 16 comparison ports and 8
write ports for each source operand.

The Dependency-matrix approach uses a resource bit vector

Direct Instruction Wakeup for Out-Of-Order
Processors

Marco A. Ramírez1, 4, Adrian Cristal1, Alexander V. Veidenbaum 2,Luis Villa 3, Mateo Valero 1

1 Computer Architecture Department, U.P.C., Barcelona Spain,
 2 dept. of Computer Science, University of California Irvine, USA,

3 Mexican Petroleum Institute, Mexico. 4 National Polytechnic Institute, México.

e-mails: {mramirez, adrian, mateo}@ac.upc.es, alexv@ics.uci.edu, lvilla@imp.mx

O

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

2

for each instruction that specifies which of the processor
resources need to be available for the instruction to become
ready. Individual bits in the resource vector correspond to
functional units and instruction(s) producing source operands
for the instruction in this vector. An instruction is ready when
all the resources it requires are available. The scalability of
this type of wakeup logic is limited by the number of entries in
the Dependency matrix, which is proportional to the number of
instructions in the IQ.

There have been several proposals for organizing the wakeup
logic using pointers rather than using either of the approaches
described above. This approach stores a pointer(s) to
dependent instruction(s) with each instruction. The wakeup
logic uses such a pointer to directly wakeup dependent
instruction(s). This approach has it own difficulties and
scalability limitations. For instance, the number of successors
may be very large. Also, branch misprediction recovery
becomes more complex since cancelled instructions are
pointed to by valid instructions in the IQ. This requires a
pointer cleanup.

The pointer-based approach proposed in this paper has two
main advantages. Its design allows a simple pointer cleanup
mechanism. In addition, it utilizes the knowledge of successor
distribution to minimize storage required for pointers and to
speedup multiple successor wakeup. The new mechanism
combines the best parts of the pointer and full dependency
matrix approaches. It provides space for one or two pointers in
each instruction IQ entry. This is based on previously observed
predominance of instructions with very few successors. For all
other cases a small number of full dependency vectors is
available. This almost completely eliminates stalls for
instructions with more than 2 successors but requires a lot
fewer resources than a full dependency matrix.

The new approach also provides a mechanism for fast pointer
update on branch misprediction. The complexity of this update
is one of the main difficulties encountered by previous
approaches. This is accomplished by check-pointing a small
amount of additional information on each conditional branch.

One of the main goals of the approach proposed in this paper
is power minimization. Accurate power evaluation is difficult
and requires hardware design and layout to be performed first.
This paper presents the results of such an evaluation, where the
design and pre-layout of the major IQ structures have been
performed for a 70nm CMOS process. These structures
include CAMs, RAMs, latches, etc as well as the wires
connecting them. Based on these designs and their layout
SPICE simulations were performed to evaluate the power
consumption in the instructions queue.

Paper is organized as follows. First, the direct wakeup
mechanism and microarchitecture to support it are described.

Next, simulation results for a 4-issue processor modeled after
COMPAQ Alpha 21264 processor are presented. The results
of power consumption in the wakeup mechanism based on
Spice simulations are presented next and compared with a
CAM-based and full dependency matrix mechanism. Finally,
related work is presented in the last section.

II. DIRECT INSTRUCTION WAKEUP

Direct instruction wakeup refers to a mechanism that uses
successor pointer(s) for wakeup, where the successor pointer
points to an IQ location. This has been discussed in the
literature; however the existing proposals have difficulties
dealing with multiple successors and branch misprediction
recovery. The approach proposed here solves both of these
problems. The key to the solution is the use of a physical
register tag as a unique identifier of an instruction. This
simplifies successor detection and handling as well as
misprediction recovery.

The goal of this approach is to use RAM rather than CAM in
the IQ design and to complete successor processing in one half
of the clock cycle so that the Ready bit vector can be presented
to the select logic. It is assumed that the Ready bits are latched
at the end of first phase of the clock. As will be seen below,
this requires a RAM access and a pointer decode to be
completed. The RAM does not require an address decoder
since it is driven by the select logic bit vector output. The
overall design of the instruction queue using a Mapping Table
(MT) and Multiple Wake-up Table (MWT) to keep track of
successor information is shown in Figure 1.

A. The Mapping and Multiple Wake-up Tables

The mapping table (MT) contains dependent instruction
information. This information is added to the MT as each new
instruction is placed into the Instruction Queue (IQ) after
decoding and renaming. MT entries for each instruction that
produces source operands for the new instruction may need to
be updated with successor information. The MT update
consists of writing the IQ-Pointer of the new instruction in
locations indexed by its two source operand register tags (src1
and src2).

E0 E1 E2 E3 En

0

1

2

3

E4 E5 E6 E7

SELECTION & ISSUE LOGIC

ISSUE QUEUE

C-POINTER

0

1

2

3

n-1

n-2

FREE M-POINTERVALUE

ALLOCATION LOGIC

MAPPING TABLE

MULTIPLE
WAKE UP TABLE

 IQ SIZE

 BUFFER

INSTRUCTIONS FROM
DECODER

TO EXECUTION

A
L

L
O

C
A

T
IO

N
L

O
G

IC

BUFFER

STATUS

IQ POINTER

C-POINTER
STATUS

Figure 1. Direct Wakeup Mechanism (1C-Pointer , 4-Entry MWT)

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

3

It is assumed that an instruction is uniquely identified by its
destination register, with the IQ size assumed to be less than or
equal to the physical register file size. For simplicity the rest of
the paper assumes the two are actually equal and the MT is of
the same size as the physical register file. The MT has the
following fields in each entry (assuming one dependent-
instruction pointer):

Status:
00–No dependents,
01–One dependent,
10–Multiple dependents,
11–Completed (ready).

C-Pointer: A dependent instruction pointer.
M-Pointer: A pointer to a Multiple Wake-up Table entry
identifying additional successors.

The C-Pointer is used for the first detected dependent
instruction. The M-pointer is used when the Status field value
is equal or greater than 10 indicating more than one dependent.

The MT hardware configuration necessary for a 4-way
processor is a RAM with eight write ports and four read ports.
The status fields are independent state-machines with eight
parallel inputs that can change the state on each access to a
physical register. The Multiple Wake-up Table has eight 1-bit
write ports and four n-bit read ports, where n is the number of
entries in the queue. The number of entries in the MWT is less
than or equal to n. Each entry is n bits long, one bit for each
instruction in the queue.

Note that while the initial processing of each instruction may
be complex it does not need to be performed in one cycle. The
front-end takes multiple cycles to enter an instruction in the
instruction window and the MT/MWT processing can be
performed during this time.

III. MECHANISM OPERATION

A. The Instruction Queue

Each instruction queue RAM entry contains a 2-bit Ready
counter used in wakeup to indicate when the operands became
available. The counter is appropriately initialized for single-
operand, ready at issue operands (source register status of 11),
and other special cases. The counter inputs come from the
dependent pointers in the MT and MWT tables.

The IQ also contains information necessary to read the register
file and issue the instruction to the functional units: Opcode,
Operand1 register tag, Operand2 Register tag, Destination
register tag, etc. These are used after the wakeup-select cycle.

B. Direct Instruction Wakeup

The wakeup mechanism proposed in this paper operates as
follows. After an instruction is issued, both its IQ Ready

counter and its MT entries are setup as described above. The
MT entry and possibly an allocated MWT entry are updated as
its dependent instructions are added to the IQ. Instruction issue
stalls if an MWT entry is needed but is unavailable.

Consider the following code segment (with physical register
numbers):

0 ADD $2,$7, $8 ; $2 <= $7 + $8
1 SUB $4,$12, $2 ; $4 <= $12 - $2
2 OR $6,$9, $2 ; $6 <= $9 V $2

Let us track the changes to the MT entry for the ADD. Assume
that the ADD is just added to the IQ. At this time its Status
field 00-no dependents. When SUB instruction is added to the
IQ, the status field of MT entries are changed for instructions
producing registers $2 and $12 need to be changed. The Status
field in the MT entry for the ADD is changed to 01(one
dependent) and the C-pointer field is updated to point to SUB's
IQ entry. Next, when OR is added to the IQ, the status field in
the MT entry for the ADD is changed again, to 10 (multiple
dependents). The C-pointer field in the ADD's entry was
already allocated to the SUB, so for the 2nd successor (the OR)
an MWT entry is allocated. The location of the MWT entry is
stored in the M-pointer. One bit of the MWT entry which
corresponds to the OR's position in the IQ, is set to 1.

When an instruction is selected to issue its successors are
processed by the wakeup logic. The C-Pointer is decoded and
ORed with an MWT entry if the latter is present. The resulting
bit for each IQ position is an input to the Ready counter. The
counter decrements and the result is available at the start of 2nd

phase of the clock. A counter with a value of zero indicates to
the select logic that the instruction is ready for issue. (The
counter is used only to simplify this explanation; a faster logic
can be designed to perform this function but is beyond the
scope of this paper).

C. Branch Misprediction Recovery

On a branch misprediction all instructions allocated after the
branch are cancelled in the queue. To recover the successor
information the Free and status bits of the mapping table MT
are check-pointed on each conditional branch, similarly to the
register map. Misprediction recovery restores status bits. The
new status determines if the C- and M-Pointers are valid. The
C-Pointer is completely recovered at this point. The MWT
entry pointed to by the M-Pointer still needs fixing if the status
is 10.

The MWT entry may contain successors that have been
canceled. The new free bits vector of the instruction queue
indicates which instruction queue entries are valid at this point.
The Free bit vector of the queue is ANDed into every MWT
entry invalidating any cancelled successors. It is possible that
an entry in the MT change its status from 10 to 01, in this case

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

4

the MWTentry pointed by M-Pointer field will have a value of
zero after the recovery process. Such an entry in the MWT is
marked as free.

IV. RESULTS AND ANALYSIS

The performance of the direct wakeup mechanism was
evaluated via simulation. The power consumption was
evaluated with Spice after a design and pre-layout of the main
structures was performed for a 70nm process. The
microarchitecture of the Direct Wakeup scheme was evaluated
using a modified SimpleScalar 3.0 Tools.

The simulator was modified to model separate integer, floating
point and load/store queues, and was configured to emulate the
Alpha 21264 organization (albeit with different parameters).
The processor configuration is shown in Table 1.

The workload used was the SPEC2000 benchmark suite
compiled for the Alpha. A dynamic sequence of instructions
representing its behavior was chosen for each benchmark and
200M committed instructions were simulated, with statistics
gathered after a 100M-instruction “warm-up” period.

The number of dependent-instruction pointers and the size of
MWT determine required hardware resources. First, let us
study the distribution of successor instructions in the selected
benchmarks.

A. Number of successors

The multiple-wake-up table (MWT) is a memory of M rows by
E columns, where E is the size of the instruction queue and
M≤E. The required size of the MWT can be estimated by
studying the distribution of the number of instruction’s
successors.
As can be seen in Figures 2 and 3 below, on average nearly

18% of instructions in SPEC2000 have two or more
successors. In some cases the average is as high as 38% for
SPECint and 60% for SPECfp benchmarks, respectively.

One integer and one f.p. benchmark have more than twice the
average: 40% and 60%, respectively. Even more interestingly,
a large number of benchmarks has a small percentage of
instructions with 3, 4, and more successors.

These results indicate that one or two C-pointers should be
sufficient for the direct wakeup implementation. They also
indicate that a small number of MWT entries should suffice
and that limiting the number of MWT entries is unlikely to
significantly affect performance.

B. Performance

The study of successor instruction distribution above showed
that one or two C-Pointers should be sufficient to achieve
near-optimal performance. These two configuration parameters
will be used in the remainder of this study. The other critical
parameter is the size of the MWT table.

This section presents the evaluation of the effect of the MWT
size on performance using IPC (instructions per cycle) as the
evaluation metric. The results in Figures 4-7 show the impact
of these parameters on the average performance. They are
shown for 4- and 8-issue processors with 32- and 64-entry IQs
and with one or two C-Pointers.

TABLE I
PROCESSOR CONFIGURATION

ELEMENT CONFIGURATION

Reorder Buffer 256 entries
Load/Store Queue 64 entries
Integer Queue 32-64 entries
Floating Point queue 32-64 entries
Fetch/decode/commit
width

4/4/4

Functional units 4 integer/address ALU, 2 integer mult/div, 4 fp
adders, 2 mult/div and 2 memory ports.

Branch predictor 16 K-entry GShare
Branch penalty 8 cycles
L1 Data cache 32 KB, 4 way, 32 byte/line, 1 cycles
L1 Instruction cache 32 KB, 4 way, 32 byte/line, 1 cycles
L2 Unified cache 512 KB, 4 way, 64 byte/line, 10 cycles
TLB 64 entries, 4 way, 8KB page, 30 cycles
Memory 100 cycles
Integer Register file 128 Physical Registers

FP Register file 128 Physical Registers

0%

20%

40%

60%

80%

100%

in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp

32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr Avg

ONE TWO THREE FOUR FIVE MORE

Figure 2: Distribution of instruction successors for SPECint

0%

20%

40%

60%

80%

100%

in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp in
t

fp

32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise Avg

ONE TWO THREE FOUR FIVE MORE

Figure 3: Distribution of instruction successors for SPECfp

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

5

The results are presented separately for integer and floating-
point benchmarks.

Two extreme cases can be distinguished in the results. First,
the case of MWT0 corresponds to not having the MWT and
only using one or two direct pointers. In this case the processor
stalls when all pointers in the MT entry have been allocated.

The other extreme is the case of MWT equal to the IQ size, i.e.
the equivalent of the full dependency matrix (plus one
pointer).

The latter case corresponds to the highest performance
possible (in terms of successor handling) since there can be no
stall due to lack of pointer space. It can be seen in Fig. 4 that
for a 4-issue processor with a a 32-entry IQ, one C-pointer,
and eight MWT entries the performance reaches its peak. With
two C-pointers only two MWT entries are sufficient. However,
even a smaller MWT results in near-optimal performance: a 4-
entry MWT results in approximately 2% IPC loss. It can even
be argued that performance loss with a 2-entry MWT is small.
Furthermore, with two C-pointers a single-entry MWT is near
the maximum performance.

Similarly, the near-optimal results are achieved with an 8-entry
MWT for an 8-issue processor (Figure 6) with a 32-entry IQ
and one C-pointer.

The absolute performance loss for going to 4-entry MWT is
slightly higher in this case. The performance loss for using a 1-
entry MWT is almost negligible when two C-Pointers are used.

For larger instruction queue with 64-entries the performance
loss increases when small MWT is used. For instance, the
performance loss with a 1-entry MWT is almost double
compared to the same configuration but a 32-entry IQ. The
average performance with two C-pointers is again near-optimal
with just four MWT entries for f.p. codes. For integer codes
two MWT entries suffice.

Another optimization may be possible given that the
architecture evaluated here uses separate integer and f.p.
instruction queues, and thus separate MWT tables. Thus an
integer MWT and the f.p. MWT can be of different size.

C. Power Evaluation

The energy and timing of CAM and RAM structures used in
the instruction queues were evaluated using Spice3 tools for
the 70nm technology. CMOS transistor and interconnect
technology parameters used in the evaluation were obtained
from BPTM provided by the Device Group at UC Berkeley. A
design and pre-layout of all major structures were performed
for different wakeup mechanisms, taking into account wires.

0

0,5

1

1,5

2

2,5

3

MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT32 MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT32

SPECfp SPECint

IQ32

4 Way

A
ve

ra
g

e
IP

C

P1 P2

Fig. 4. Average IPC for different MWT sizes.
 4-way processor, 32 entry IQ, 1and 2 C-pointers.

0

0,5

1

1,5

2

2,5

3

MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT64 MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT64

SPECfp SPECint

IQ64

4 Way

P1 P2

Fig. 5. Average IPC for different MWT size
. 4-way processor, 64 entries IQ, 1 and 2 C-pointers.

0

0,5

1

1,5

2

2,5

3

MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT32 MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT32

SPECfp SPECint

IQ32

8 Way

A
ve

ra
g

e
IP

C

P1 P2

Fig. 6. Average IPC for different MWT sizes. 8-way processor, 32 entries
IQ, 1 and 2 C-pointers.

0

0,5

1

1,5

2

2,5

3

3,5

MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT64 MWT0 MWT1 MWT2 MWT4 MWT8 MWT16 MWT64

SPECfp SPECint

IQ64

8 Way

A
ve

ra
g

e
IP

C

P1 P2

Fig. 7. Average IPC for different MWT size. 8-way processor, 64 entries
IQ, 1 and 2 C-pointers.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

6

An MWT with eight entries and a single pointer was laid out
for a 4-way processor. This required 8 write ports and 6 read
ports for MT. The status fields were designed as independent
state-machines with eight parallel inputs that can change the
state (OR their inputs) on each access to each physical register.
The MWT, needed eight 1-bit write ports, and four, 32-bit (or
64-bit) read ports.

The average access power was computed taking into account
all three components of IQ operation: allocation, issue, and
wakeup. The power dissipation was measured using an
equivalent circuit with capacitance obtained from Spice and
analyzing the supply current flow using the transient analysis
[19]. As seen in the results below, it is necessary to consider
all three components of the total power to have accurate
estimates. Only considering the wakeup energy, for example,
significantly underestimates the total. The results in Table 2
show the average power for all three types of IQ organizations.

The results show that the direct wakeup is the most energy
efficient mechanism. This is the result of a much more
efficient allocation than in the other two schemes. Dependency
matrix has a somewhat lower wakeup-only power for a 64-
entry queue and a much lower wakeup power for a 32-entry
queue, but not the total power. But the total power is lowest
for the direct-wakeup case.

V. RELATED WORK

The energy consumption of a modern dynamically scheduled
superscalar processor is between 50 and 100 Watts. At the
micro-architecture level, the issue logic is one of the main
consumers of energy responsible for approximately 25% of the
total energy consumption [3]. Many approaches to designing
the wakeup logic have been proposed, both to reduce delay
and to reduce energy consumption. [4] proposed a pointer-
based solution, where each instruction has a pointer to its
dependent instruction for direct wakeup. This was done for a
singe-issue, non-speculative processor, however.

[5] extended the above solution to modern processors with
wide issue and speculation. The effect of one, two, or three
successor pointer entries per instruction was evaluated. Three
approaches to deal with the case of an instruction with more
successors than pointer entries were proposed. The first one
stalled the instruction issue. The second one stopped recording
successors and instead woke the instruction up when it reached
the top of the instruction window. Both of these approaches
lead to a loss of IPC. The third approach added a scoreboard
to avoid stalls, an expensive approach to say the least. Finally,
successor pointers were saved on speculated branches, which
is quite expensive. Overall, the solution does not require the
use of CAM and thus significantly reduces both the delay and
the energy consumption of the wakeup logic.

[6] proposed a circuit design to adaptively resize an instruction
queue partitioned into fixed size blocks (32 entries and 4
blocks were studied). The resizing was based on IPC
monitoring. The use of self-timed circuits allowed delay
reduction for smaller queue size. [7] further improved this
design using voltage scaling. The supply voltage was scaled
down when only a single queue block was enabled.

[8] used a segmented bit line in the IQ RAM/CAM design.
Only selected segments are used in access and comparison. In
addition, a form of bit compression was used and a special
comparator design to reduce energy consumption on partial
matches.

[3] proposed a design, which divided the IQ into blocks (16
blocks of 8 entries). Blocks which did not contribute to the
IPC were dynamically disabled using a monitoring mechanism
based on the IPC contribution of the last active bank in the
queue. In addition, their design dynamically disabled the wake
up function for empty entries and ready operands1.

[9] split the IQ into 0-, 1-, and 2-tag queues based on operand
availability at the time an instruction enters the queue. This
was combined with a predictor for the 2-operand queue that
predicted which of the two operands would arrive last. The
wakeup logic only examined the operand predicted to arrive
last. This approach reduces the IPC while saving energy. First,
an appropriate queue with 0-, 1-, or 2-tags must be available at
issue, otherwise a stall occurs. Second, the last-operand
prediction may be incorrect, requiring a flush.

[10] also used a single dependent pointer in their design.
However, a tag comparison is still always performed requiring
a full CAM. In the case of multiple dependent instructions a
complex mechanism using Broadcast and Snoop bits reduces
the total number of comparisons. The Broadcast bit indicates a
producer instruction with multiple dependents (set on the
second dependent). Each such dependent is marked with a
Snoop bit. Only instructions with a Snoop bit on perform a
comparison when an instruction with a Broadcast bit on

TABLE II
POWER EVALUATION

Issue Queue power for 70nm technology

IQ
entries

CAM Wakeup

Allocation
(mW)

Issue
(mW)

Wakeup
(mW)

Total
Avg PowerT

32 43.74 11.50 94.30 149.54

64 120.85 13.75 190.54 325.14

Dependency Matrix Wakeup

32 90.03 11.50 8.90 110.70

64 182.40 13.75 22.00 218.15

Direct Wakeup

32 16.44 11.50 21.38* 49.32

64 23.87 13.75 27.64* 65.26

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

7

completes. Pointer(s) to squashed dependent instructions may
be left dangling on branch misprediction and cause
unnecessary comparisons, but tag compare guarantees
correctness.

[11] used a full bit matrix to indicate all successors of each
instruction in the instruction queue. Optimizations to reduce
the size and latency of the dependence matrix were considered.
This solution does not require the use of CAM but does not
scale well with the number of physical registers and the IQ size
which keep increasing. [12] also described a design of the
Alpha processor using a full register scoreboard.

[13] proposed a scalable IQ design, which divides the queue
into a hierarchy of small, and thus fast, segments to reduce
wakeup latency. The impact on energy consumption was not
evaluated and is hard to estimate.
In addition, dynamic data compression techniques ([14], [15])
have been proposed as a way to reduce energy consumption in
processor units. They are orthogonal to the design proposed
here.

Several mechanisms were also proposed for speeding up the
wakeup/select critical timing loop in high-performance
processors. [21] described speculative wakeup, which
pipelines the scheduling logic over two cycles while having
only a minor impact on IPC. Speculative wakeup uses a
dependency lookahead scheme to stretch the critical
scheduling loop (wakeup + select) over two cycles while still
allowing dependent instructions to schedule in consecutive
cycles.

[22] proposed a pointer-like scheme for keeping track of the
first use of each result. A first-use queue indexed by the
destination register tag keeps track of such instructions. There
is also a (completely) Ready queue from which instructions are
scheduled.

[23] proposed tag elimination, a scheme combining specialized
windows, each with a different number of tags required, and
last-tag speculation to speed up the wakeup logic. [24]
proposed a “half-price” architecture which simplified the
wakeup logic by using only one CAM tag and serializing
wakeup when both sources became ready simultaneously.

VI. CONCLUSIONS

This paper presented a new instruction queue organization
using pointers for dependent instruction wakeup. The new
organization also uses a number of “multiple successor” bit
vectors, similar to the dependency matrix approach but with a
much smaller number of entries. It was shown that using one
or two successor pointers per instruction plus a small number
of entries in the multiple wakeup table result in high processor
performance (measured by IPC). The results show
performance for both a limited number of multiple wakeup

entries and a full dependency matrix, with the former
achieving the performance of the latter with just 4 or 8 entries
and a single direct pointer.

The proposed IQ checkpoints 3 bits per instruction on each
branch: the IQ valid bit and two status bits. The latter two bits
store the number of successors at the time of the branch. This
allows a simplified branch misprediction recovery mechanism
to be used, in which the successor information is easily
restored. The “multiple successor” bit vector is ANDed with
the IQ valid bits in the case of multiple successors, eliminating
any dangling pointers.

In addition to performance the power consumption of IQ
access was evaluated for three IQ organizations: CAM-based,
full dependency matrix, and the organization proposed in this
paper. All major hardware elements of the three organizations
were designed and laid out for a 70nm process. The new
organization is shown to use 1/3rd of the total power of the
CAM-based mechanism and 1/2 the power of the dependency
matrix based mechanism for 32-entry IQ on a 4-issue
processor. The power used becomes 1/5th and 1/3rd,
respectively, for 64-entry IQs.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and
Technology of Spain, under contract TIN2004-07739-C02-01
and HiPEAC, the European Network of Excellence on High
Performance Architectures and Compilers, the program of
scholarships SUPERA-ANUIES and COTEPABE-IPN from
Mexico, and by the National Science Foundation in the U.S.A
under grant NSF CCR-0311738.

REFERENCES

[1] S. Palacharla, "Complexity effective Superscalar processors" PhD
Thesis, University of Wisconsin, Madison 1998.

[2] Alper Buyoktusunoglu, Stanley E. Shuster. David Brooks, Pradid Bose,
Peter W. Cook, and David H. Albonesi, "An Adaptive Issue Queue for
Reduced Power at High Performance", Workshop on Power Aware
Computer Systems, in conjunction with ASPLOS-IX, November 2000.

[3] Daniel Folegnani and Antonio González, "Energy Effective Issue
Logic", Proceedings of 28th Annual of International Symposium on
Computer Architecture, 2001. Page(s): 230-239, Göteborg Sweden.

[4] Shlomo Weiss, James E. Smith, "Instruction Issue Logic for Pipelined
Supercomputers", Proceedings of 11th Annual International Symposium
on Computer Architecture, 1984 Page(s): 110-118.

[5] Toshinori Sato, Yusuke Nakamura, Itsujiro Arita, “Revisiting Direct Tag
Search Algorithm on Superscalar Processors”, Workshop Complexity-
Effective Design, ISCA 2001.

[6] Alper Buyoktusunoglu, Stanley E. Shuster. David Brooks, Pradid Bose,
Peter W. Cook, and David H. Albonesi, "An Adaptive Issue Queue for
Reduced Power at High Performance", Workshop on Power Aware
Computer Systems, in conjunction with ASPLOS-IX, November 2000.

[7] Vasily G. Moshnyaga, "Reducing Energy Dissipation of Complexity
Adaptive Issue Queue by Dual Voltage Supply", Workshop on
Complexity Effective Design, June 2001.

[8] Vasily G. Moshnyaga, "Reducing Energy Dissipation of Complexity
Adaptive Issue Queue by Dual Voltage Supply", Workshop on
Complexity Effective Design, June 2001.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

8

[9] Dan Ernst, Todd Austin, “Efficient Dynamic Scheduling Through Tag
Elimination”, Proceedings of 29th Annual of International Symposium
on Computer Architecture, 2002.

[10] Michael Huang, Jose Renau and Josep Torrellas, "Energy-Efficient
Hybrid Wakeup Logic", Proceedings of ISLPED August 2002 Page(s):
196-201, Monterrey California, USA.

[11] Masahiro Goshima, Kengo Nishino, Yasuhiko Nakashima, Shin-ichiro
Mori, Toshiaki Kitamura, Shinji Tomita, "A high-Speed Dynamic
Instructions Scheduling Scheme for Superscalar Processors"
Proceedings of 34th Annual International Symposium on
Microarchitecture, 2001.

[12] James A. Farrell and Timothy C. Fisher, "Issue Logic for a 600-Mhz
Out-of-Order Execution Microprocessors" IEEE Journal of Solid State
Circuits Vol. 33, No. 5 , May 1998. Page(s): 707-712.

[13] Steven E. Raasch, Nathan L. Binkert and Steven K. Reinhardt, "A
Scalable Instruction Queue Design Using Dependence Chains",
Proceedings of 29th Annual of International Symposium on Computer
Architecture, 2002 Page(s): 318-329.

[14] L. Villa, M. Zhang M. and K. Asanovic, “Dynamic Zero Compression
for Cache Energy Reduction”, Micro-33, Dec. 2000.

[15] Vasily G. Moshnyaga, "Energy Reduction in Queues and Stacks by
adaptive Bit-width Compression",. Proceedings of International
Symposium on Low Power Electronics and Design, August 2001
Page(s): 22-27 Huntington Beach California, USA.

[16] Manoj Franklin, Gurindar S. Sohi "The Expandable Split Window
Paradigm for Exploiting Fine Grain Parallelism", Proceedings of 19th
Annual of International Symposium on Computer Architecture, 1992
Page(s): 58-67.

[17] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A framework for
architectural-level power analysis and optimizations. Proceedings of
27th Annual International Symposium on Computer Architecture, June
2000.

[18] Marco A. Ramírez, Adrian Cristal, Alexander V. Veidenbaum ,Luis
Villa, Mateo Valero. “A Simple Low-Energy Instruction Wakeup
Mechanism”, Proceedings Intl. Symposium on High-Performance
Computing (ISHPC-IV), Oct. 2003

[19] Sun Mo Kang, "Accurate Simulation of PowerDisipation in VLSI
Circuits", IEEE Journal of Solid-State Circuits, vol. SC-21, No. 5,
October 1996.

[20] Gregory J. Fisher, "An Enhanced Power Meter for Spice2 Circuit
Simulation", IEEE Transaction on Computer-Aided Design. Vol.7 No. 5
May 1988.

[21] Kenneth C. Yeager, “The MIPS R10000 Superscalar Processor,” IEEE
Micro, April 1996.

[22] R. Canal, A. Gonzalez, “A Low-Complexity Issue Logic,” Intl.
Conference on Supercomputing, May 2000.

[23] D. Ernst,T. M. Austin, Efficient dynamic scheduling through tag
elimination, Intl. Symposium on Computer Architecture, 2002.

[24] lhyun Kim, Mikko H. Lipasti, “Half-price Architecture,” Intl.
Symposium on Computer Architecture, June 2003.

[25] Alexander Henstrom US patent number 6557095 “Scheduling
operations using a dependency matrix” December 27, 1999. Intel Co.

Proceedings of the Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA’04)
1527-1366/04 $ 20.00 IEEE

