UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Facultat d’Informatica de Barcelona

UNIVERSITAT POLITECNICA DE CATALUNYA
(UPC) - BARCELONATECH

FACULTAT D’INFORMATICA DE BARCELONA (FIB)

MASTER IN INNOVATION AND RESEARCH IN
INFORMATICS (MIRI)

HIGH PERFORMANCE COMPUTING (HPC)

Enabling Analytic and HPC Workflows with
COMPSs

FINAL MASTER THESIS (FMT)

2016-2017 | AUTUMN SEMESTER

Author: Supervisor:
Cristidn RAMON-CORTES Dra. Rosa M. BADIA SALA
VILARRODONA

(rosa.m.badia@bsc.es)
(cristian.ramoncortes@bsc.es)

COMPUTER ARCHITECTURE DEPARTMENT (DAC)

©

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

HTTP://WWW.UPC.EDU/
HTTP://WWW.UPC.EDU/
HTTP://WWW.FIB.UPC.EDU/
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING

ii

"En esto, descubrieron treinta o cuarenta molinos
de viento que hay en aquel campo, y asi como
don Quijote los vio, dijo a su escudero:

-La ventura va guiando nuestras cosas mejor
de lo que acertdramos a desear; porque ves alli,
amigo Sancho Panza, donde se descubren treinta,
o pocos mds, desaforados gigantes, con quien
pienso hacer batalla y quitarles a todos las vidas,
con cuyos despojos comenzaremos a enriquecer;
que ésta es buena guerra, y es gran servicio de
Dios quitar tan mala simiente de sobre la faz de la
tierra.

-:Qué gigantes? -dijo Sancho Panza.

-Aquéllos que alli ves -respondié su amo- de los
brazos largos, que los suelen tener algunos de casi
dos leguas.

-Mire vuestra merced -respondié Sancho- que
aquéllos que alli se parecen no son gigantes,
sino molinos de viento, y lo que en ellos parecen
brazos son las aspas, que, volteadas del viento,
hacen andar la piedra del molino.

-Bien parece -respondié don Quijote- que no
estds cursado en esto de las aventuras: ellos son
gigantes...que yo voy a entrar con ellos en fiera y
desigual batalla.

Y diciendo esto, dio de espuelas a su caballo Roci-
nante, sin atender a las voces que su escudero San-
cho le daba, advirtiéndole que, sin duda alguna,
eran molinos de viento, y no gigantes...”

Miguel de Cervantes Saavedra,
Don Quijote de la Mancha

1ii

Dedication

Facing a challenging work needs self-efforts as well as the
patience of the people around us, especially from our peers.

To my loving mother and father, Dolors and Joan, whose love,
encouragement and gentle prodding guided me to such a
success. I hope that this work will complete the dream they
had for me many years ago when they chose to give me the
best education they could.

Special thanks to my sweet sister, Marta, whose affection and
support keeps me always up.

Last but not least, I cannot forget Laura, who did more than her
share around the house as I was locked in the computer room.
Without her unconditional love and constant encouragement,
this would not have been possible.

Wholeheartedly,
Cristidn Ramon-Cortés Vilarrodona

vii

Declaration of Authorship

I hereby declare that, except where specific reference is made to the work of others, this
Master’s thesis has been composed by me and it is based on my own work. None of the
contents of this dissertation have been previously published nor submitted, in whole or in
part, to any other examination in this or any other university.

Signed:

Date:

ix

Acknowledgements

I gratefully thank my supervisor Rosa M. Badia Sala for all her assistance during my

career at the Barcelona Supercomputing Center (BSC-CNS) and for giving me the opportunity
to collaborate on this project.

I would also like to thank all my colleagues, current and former members of the Work-
flows and Distributed Computing team from the Barcelona Supercomputing Center (BSC) for their
useful comments, remarks and engagement through the learning process of this Master’s
thesis: Jorge Ejarque, Francesc Lordan, Francisco Javier Conejero, Raul Sirvent, Daniele

Lezzi, Pol Alvarez, Ramon Amela, Sandra Corella, Albert Serven, Adria Aguila and Ser-
gio Rodriguez.

Special thanks to Kim Serradell Maronda for giving me the opportunity to work with
the NMMB application and guiding me through its internals.

xi

UNIVERSITAT POLITECNICA DE CATALUNYA (UPC) - BARCELONATECH

Facultat d’'Informatica de Barcelona (FIB)

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS (MIRI)
High Performance Computing (HPC)

Abstract

Enabling Analytic and HPC Workflows with COMPSs

by Cristidn RAMON-CORTES VILARRODONA

In the recent joint venture between High-Performance Computing (HPC) and Big-Data
(BD) Ecosystems towards the Exascale Computing, the scientific community has realized
that powerful programming models and high-level abstraction tools are a must. Within this
context, the Barcelona Supercomputing Center (BSC) is developing the COMP Superscalar
(COMPSs) programming model, whose main objective is to develop applications in a se-
quential way, while the Runtime System handles the inherent parallelism of the application
and abstracts the programmer from the different underlying infrastructures. The parallelism
is achieved by defining an application Interface that allows COMPSs to detect methods that
operate on a set of parameters (called tasks), and execute them distributedly and transpar-
ently.

This Master Thesis aims to enhance COMPSs, adapting it to the needs of the Big-Data
Ecosystems, by supporting Analytic and HPC workflows. To this end, we propose a straight-
forward integration with the execution of binaries, and MPI and OmpSs applications. Al-
though the COMPSs programming model is kept untouched, we extend the COMPSs An-
notations and some of the COMPSs internals such as the task schedulers and the worker
executors.

To support our contribution, we have ported to COMPSs two real use cases. On the
one hand, NMMB BSC-Dust, a workflow to predict the atmospheric life cycle of the desert
dust and, on the other hand, Guidance, an integrated solution for Genome and Phenome
association analysis.

Keywords: HPC, Distributed Computing, Workflows, COMPSs, PyCOMPSs

HTTP://WWW.UPC.EDU/
http://www.fib.upc.edu/
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
http://masters.fib.upc.edu/masters/master-high-performance-computing

xiii

Contents

Dedication v
Declaration of Authorship vii
Acknowledgements ix
Abstract xi
1 Introduction 1
1.1 Motivation e e 1

1.2 Context e e 2

1.3 Objectives 2
1.3.1 Detailed Objectives 2

1.4 Document Structure e e e 2

2 State of the art 5
2.1 Distributed libraries. 5
211 MPL. . . e e 5

212 Sockets e 8

2.2 Workflow Frameworks e 11
2.2.1 Frameworks with explicit workflows’ definition 11

2211 Taverna e e e 11

2212 Fireworks e 12

2213 Kepler 14

2214 Galaxy. e 15

2.2.2 Frameworks with implicit workflows” definition 16

2221 MapReduce. oo 16

2222 Spark 18

2223 Swift. . .. 20

2224 COMP Superscalar (COMPSs) 22

3 COMPSs overview 23
3.1 ProgrammingModel L L o 24
32 RuntimeSystem 27
3.3 TaskWorkflow e 29

4 Tools and methodology 31
41 Tools e e e 31
42 Methodology 31
421 Scientific methoddesign 0. 31

422 Developmentstrategy 32

423 Validationstrategy 32

Xiv

5 Implementation

51 Programming model annotations L0 0L
5.1.1 New taskannotations
5.1.2 Environment variables as annotations
513 Versioning task annotation
5.1.4 SchedulerHints task annotation
5.1.5 New stream parameter annotation
5.1.6 New prefix parameter annotation
52 Scheduling modifications 0o L.
5.2.1 Treatmentof non-nativetasks
5.2.2 Multi-node execution actions
5.2.3 Treatment of SchedulerHints
5.3 Worker enhancements e
531 Invokers e
5.3.2 External executors enhancement

6 Results and evaluation

6.1 Proofsofconcept
6.1.1 BLAST e e
6.1.1.1 Application descriptiono L.

6.1.1.2 Purpose

6.1.1.3 Evaluation

6.1.2 Matmul
6.12.1 Applicationdescriptiono oL

6.1.22 Purpose

6.1.2.3 Hybrid COMPSs and MPI Matmul implementation

6.1.24 Evaluation

6.2 USECASES . . . v v i e i e e e e
6.21 NMMB/BSC-Dust e
6.2.1.1 Applicationdescription L

6212 Purpose

6.2.1.3 NMMB/BSC-Dust implementation with COMPSs

6.2.1.4 Evaluation

6.2.2 GUIDANCE e e
6.22.1 Applicationdescription oo oL

6222 Purpose

6.2.2.3 GUIDANCE implementation with COMPSs

6.224 Evaluation

7 Conclusions and Future work
Bibliography
Appendices

A Blast: complete code
Al Blastjava
A2 Blastltfjava.
A3 Blastlmpljava
A4 BINARYjava e

B Matmul: complete code
Bl Matmuljava
B.2 Matmulltfjava
B.3 Matmullmpljava
B4 MPLjava
B5 Matmulc
B.6 Blockjava

C NMMB/BSC-Dust: code highlights
C1 Nmmbjava. e
C2 Nmmbltfjava

D GUIDANCE: code highlights
D.1 Guidancejava
D.2 Guidanceltfjava

XV

89
89
91
92
93
93
95

112

List of Figures

21 MPIHelloexampleinC
2.2 MPIHello executionexample
2.3 MPIHello diagram of execution
2.4 Main code of Java Hello example with Sockets
2.5 Master process code of Java Hello example with Sockets
2.6 Slave process code of Java Hello example with Sockets
2.7 Execution example of Hello with Sockets
2.8 BLAST design example using Taverna
2.9 FireWorkscomponents
2.10 Workflows’ components in FireWorks
2.11 Example of Workflow using FireWorks
2.12 Lotka-Volterra workflow example using Kepler
2.13 Galaxy graphical web-based platform to define Workflows
2.14 Galaxy graphical web-based platform to execute Workflows
2.15 Wordcount example on top of Hadoop
2.16 Execution example of Wordcount using MapReduce
217 Spark’s Components o
2.18 Wordcount examplein Javausing Spark Lo oL
2.19 Swift programming language L 0oL
2.20 Swift simulation workflow example
2.21 Swift simulation codeexample

3.1 COMPSS OVEIVIEW o i v i it e e e e e e e e e e e
3.2 Incrementmainclass
3.3 Increment helper methodsclass
3.4 IncrementInterface
3.5 Sequential execution example of Increment L 0L
3.6 COMPSs execution example of Increment
3.7 COMPSsstructure i e e e
3.8 COMPSs Runtime overview o v i i i it ittt e
3.9 COMPSs task executionworkflow

5.1 Binaryannotation L o
5.2 Complete Binary annotation
53 MPlannotation e
54 Complete MPl annotation
55 OmpSsannotation
5.6 Complete OmpSs annotation
5.7 WordcountInterface
5.8 Wordcount executions with different constraint values
5.9 Wordcount Interface with environment variables
5.10 Wordcount executions with environment variables as constraints
5.11 Example with an Interface with all the available environment variables

Xvii

0NN NN

e

11
12
12
13
13
14
15
16
17
18
19
20
21
21
22

23
24
25
25
26
26
27
28
29

34
34
34
34
35
35
35
36
36
36
37

xviii

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
522
5.23
524
5.25
5.26
5.27
5.28
5.29
5.30
5.31

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

6.24
6.25

Example of complex environment variables on the workingDir field 38
Example of previous versionning maincode 38
Example of previous versionning implementation1code 38
Example of previous versionning implementation2code 39
Example of the Interface of previous versionning 39
Example of the Interface of previous versionning with constraints 39
Example of the new Annotation Interface 40
Extended example of the new Annotation Interface 40
Example of an Interface with SchedulerHints 41
Example of the different return types of the non-native tasks 41
Example of the different stream annotations for non-native tasks 42
Binary Tasks example for joint prefixes 43
Main code example for joint prefixes 43
Interface example of an application with prefixes 44
Example of the main code calls to tasks with prefixes 44
Example of the command executed inside each task using prefixes 45
Example of a singlenode task flow 46
Example of a multi-node taskflow 47
New structure of the COMPSs Worker Executors 50
Execution time versus number of ProcessBuilders or Pipes 51
Execution arguments of the COMPSs BLAST application 53
Example of BLAST executionwithN=8. 54
COMPSs BLAST application: new align task implementation 54
COMPSs BLAST application: old align task implementation 55
COMPSs BLAST application: new align taskcall 55
COMPSs BLAST application: old align taskcall 56
COMPSs BLAST application: new align’s interface annotation 56
COMPSs BLAST application: old align’s interface annotation 56
Multiplication of a Matrix divided inblocks 58
Task execution graph of a Matmul example 59
Hybrid COMPSs and MPI block layers 60
Main multiplication loop of the Hybrid Matmul 60
multiplyAccumulative’s interface annotation for the Hybrid COMPSs and MPI

Matmul 61
Matmul Strong Scaling analysis 62
Matmul Weak Scaling analysis 62
Example of four hour average AOD from NMMB/BSC-Dust 64
NMMB/BSC-Dust step workflow 65
NCVIEW plots of FIS 3D variable for both implementations 66
NCVIEW plot of PS 3D variable for both implementations 66
NCVIEW plot of SLP 3D variable for both implementations 67
Tasks graph of NMMB/BSC-Dust with COMPSs 68
Paraver task view of the NMMB/BSC-Dust execution with COMPSs 68
GUIDANCE’s schematic representation of the typical complete Genome and

Phenome associationanalysis 70
Example of previous GUIDANCE binary task implementation 71

GUIDANCE’s partial task graph 72

Xix

List of Tables

3.1

51
52

6.1
6.2
6.3
6.4

6.5

Useful arguments for the runcompss command 27
Available fields for the SchedulerHints annotation 40
Available stream types with their valid directions and execution behaviour . 42
Execution parameters of the BLAST application 57
Tasktimes 57
NMMB/BSC-Dust code summary 65
Execution times of the different NMMB/BSC-Dust implementations for the

simulation of 1 day of global domain with64cores 67
GUIDANCE codesummary 73

xxi

List of Abbreviations

API
COMPSs
CPU

GUI

1/0

MPI

NEMS
NMMB
NOAA
0S
PyCOMPSs
RAM

SSH

VM

WSDL

Application Programming Interface

COMP Superscalar

Central Processing Unit

Graphical User Interface

Input / Output

Message Passing Interface

NOAA Environmental Modeling System
Nonhydrostatic Multiscale Model on the B-grid
National Oceanic and Atmospheric Administration
Operating System

Python binding for COMP Superscalar
Random Access Memory

Secure SHell

Virtual Machine

Web Services Description Language

xxiii

Glossary

CPU

The Central Processing Unit (CPU) is the part of the computer that contains all the ele-
ments required to execute the instructions of software programs. Its main components are
the main memory, the Processing Unit (PU) and the Control Unit (CU). Modern computers
use multi-core processors, which are a single chip containing one or more cores.

Core
A core is an individual processor that actually executes program instructions. Current
single chip CPUs contain many cores and are referred as multi-processor or multi-cores.

MareNostrum III

MareNostrum III is the most powerful supercomputer in Spain with 3056 nodes (48.896
processors), 115.5 TB of main memory and a peak performance of 1.1 Petaflops. It is hosted
by the Barcelona Supercomputing Center (BSC).

Node
A compute node refers to a single system within a cluster of many systems.

Scratch Space
Supercomputers generally have what is called scratch space: disk space available for
temporary use and only accessible from the compute nodes.

SSH
A protocol to securely connect to a remote computer. This connection is generally for a
command line interface, but it is possible to use GUI programs through SSH.

Environment Variable

In Linux systems, each process has an execution environment. This environment can
be inherited from the user session environment and can be extended with specific process
variables. An Environment Variable is a value stored in the process environment that can
affect its execution.

API
An Application Programming Interface (API) is a set of methods and functions that are
used by another software to produce an abstraction layer.

Operating System
A system software that manages the hardware and provides services for computer soft-
ware.

XXiv

Framework

Framework stands for a set of standardized concepts, practices or criterias used to face a
given problem. Specifically, it defines a set of programs, libraries, languages, and program-
ming models used jointly in a project.

Workflow

A workflow is composed of tasks and dependencies between tasks. Workflows are com-
monly represented as graphs, with the nodes beeing tasks and the arrows representing the
dependencies. Somehow, tasks must represent an action that must be done (i.e. the ex-
ecution of a binary), and the dependencies must represent the requirements that must be
satisfied to be able to execute the task (i.e. the machine availability or the required data).

Binary
A file containing a list of machine code instructions to perform a list of tasks.

WSDL
Web Services Description Language (WSDL) is an Extensible Markup Language (XML)
used to describe web services.

Graphical User Interface
The GUI is a software that graphically interacts with the user of a computer to ease the
data manipulation.

Chapter 1

Introduction

1.1 Motivation

Several years ago the industry required the research community to shift from sequential
computing to parallel computing. The extreme increase in the computational loads and the
decrease of the acceptable system’s response time forced the community to “think in paral-
lel”. Although writing parallel codes is not as easy as writting sequential programs, we can
assume that the actual computing resources of a multi-core processor are already able to ex-
ploit the inherent instruction-level parallelism of an application in a completely transparent
way for programmers.

However, the next generation of applications were requiring more high-performance
computing resources than those that a single computing resource could offer. Thus, it
was necessary to use many machines communicated through networks to achieve a larger
amount of computing capabilities. That is what we know today as Distributed Computing.
Distributed applications exploit the task-level parallelism and are even more difficult to han-
dle for programmers. One of the major issues that araise from both parallel and distributed
programming is that writing in parallel is not as easy as writting sequential programs and,
more often than expected, people that can develop useful and complete end-user applica-
tions is not capable of writting efficient parallel code (and the other way arround). We can
somehow consider that scientists interpreting results do not care about the computational
load or distribution (how results are computed), but care of the results quality, the time spent
to retrieve the results and the robustness of the system. In this line of “writing programs that
scale with increasing number of cores should be as easy as writing programs for sequential com-
puters” [3] several programming models have araised to help the programmer handle the
underlying infrastructure.

Nowadays, the scientific community not only wants to work in parallel and distributed
systems but also needs to handle a large amount of data. In this sense, Big-Data (BD) Ecosys-
tems appeared some years ago; allowing the community to store, check, retrieve and trans-
form enormous amounts of data in acceptable response times. For this purpose, several
programming models have also arised but are completely different to the ones used by the
High Performance Computing community.

In the race towards the Exascale Computing [2], the scientific community has realized
that unifying High Performance Computing (HPC) platforms and Big-Data (BD) Ecosystems is a
must. Nowadays, these two ecosystems differ significantly at hardware and software level
but “programming models and tools are perhaps the biggest point of divergence between the scientific-
computing and big-data ecosystems” [50]. In this respect, “there is a clear desire on the part of a
number of domain and computer scientists to see a convergence between the two high-level types of
computing systems, software, and applications: Big Data Analytics (BDA) and High Performance

2 Chapter 1. Introduction

Computing (HPC)” [22]. We can then conclude that the joint venture between HPC and BDA
ecosystems opens a great oportunity for programming models that is worth to investigate.

1.2 Context

The current project is conducted as the Final Master Thesis in the Master of Innovation and
Research in Informatics - High Performance Computing (MIRI - HPC) offered by the Universitat
Politecnica de Catalunya (UPC) [16] and has been funded by the Barcelona Supercomputing
Center (BSC) [7].

The project has been developed as a research support engineer in the Workflows and Dis-
tributed Computing group of the Computer Science department at the BSC. The main goal of
this group is to ease the development of applications and services for distributed infras-
tructures (such as Clusters, Grids and Clouds) through the COMP Superscalar (COMPSs)
[19] programming model. The group also covers Big-Data and HPC applications, energy
constrained environments, GPU offloading and execution in mobile devices.

1.3 Obijectives

To take profit of the abovementioned join venture between HPC and BDA ecosystems
this Final Master Thesis enhances the COMPSs Framework to support Analytic and HPC
workflows. In next subsection we provide detailed information about the specific objectives
that have been considered to successfully achieve this contribution.

1.3.1 Detailed Objectives

The following points summarize the main goals of the project:

O1 Conduct a survey among the Analytic and HPC workflows to determine the most
common used technologies, compare them to the solutions proposed by other state of
the art Workflow Managers and determine the most adequate and feasible features for
COMPSs.

02 Extend the current COMPSs syntax to support the selected features in a non-invasive
way; keeping the backward compatibility. More specifically, extend the COMPSs anno-
tations to support binary, MPI and OmpSs tasks.

O3 Enhance the current COMPSs Runtime by implementing the required mechanisms
to schedule and execute the new type of tasks. At scheduling level, this objective in-
cludes the treatement of multi-node tasks and the inclusion of scheduler hints for a cer-
tain type of tasks. At execution level, the COMPSs workers must transparently execute
the different kind of tasks.

04 Demonstrate that the proposal is able to execute Analytic and HPC Workflows by
executing and analysing real use-cases.

1.4 Document Structure

The rest of the document is organized as follows. Chapter 2 gives an overview of the cur-
rent state of the art of HPC and Analytic workflows, describing the most used technologies
and comparing them to what is supported in the most common Workflow Managers. Chap-
ter 3 introduces the COMPSs programming model, describing its main features before our

1.4. Document Structure 3

contribution. Chapter 4 introduces describes the tools and the development methodology
followed during all the project. Chapter 5 accurately describes our contribution to provide
the reader a closer look of the solutions that we have chosen to face each specific challenge.
Chapter 6 evaluates the obtained results and the performance of our proposal. Chapter 7
provides a brief summary of the thesis and, finally, in Chapter 8 we discuss the conclusions
and state the guidelines for the future work.

Chapter 2

State of the art

Scientific programs from different fields (such as bioinformatics, biomechanics, earth sci-
ences or engineering simulations) that are either computationally intensive or require a huge
amount of storage capabilities are known as e-Science applications. In the past decade, the
computational and storage requirements of these e-Science applications have grown enough
to do not fit in a single machine. This fact has forced e-Science applications to move from par-
allel computing to distributed computing because the computing resources within a multi-
core processor are limited by the architecture and the technology of the system and were
already fully exploited. However, in the distributed computing paradigm, the only room
for improvements is to exploit the task-based parallelism between nodes.

Considering that writing applications for parallel or distributed environments is much
more difficult than writing sequential programs due to the concurrency issues, the IT com-
munity has developed several libraries and frameworks to ease the development of applica-
tions (and consequently, the development of e-Science applications). In an attempt to classify
all the tools provided by the community that can be used for the design of e-Science applica-
tions, we have divided them into two groups: Distributed Libraries and Workflow Frameworks.
Next, Section 2.1 defines and provides examples of some state of the art Distributed Libraries
and, Section, 2.2 defines and introducing some state of the art Workflow Frameworks.

2.1 Distributed libraries

On the one hand, distributed computing can be achieved by programming the low-level
communication between processes. Although using distributed libraries can lead to excel-
lent performance results, it is a tedious work for the programmer to develop efficient code
for a complex application using such libraries. Next subsections provide some examples of
these libraries.

211 MPI

The Message-Passing Interface (MPI) standard “includes point-to-point message-passing,
collective communications, group and communicator concepts, process topologies, environmental
management, process creation and management, one-sided communications, extended collective op-
erations, external interfaces, 1/O, some miscellaneous topics, and a profiling interface” [38]. The
MPI standard includes bindings for C and Fortran, and its goal is “to develop a widely used
standard for writing message-passing programs”[38]. It has several different implementations
but the most well-known are OpenMPI[54] and IMPI[30]).

For the end user, using MPI requires handling explicitly the spawn of the processes, the
code executed by each process and the communication between them. All this management
is done by using API calls, and thus, the application code must be compiled and executed
with the MPI compiler of the specific MPI implementation. The main advantage is that the
users have full control of all the processes and the communication between them which, for

6 Chapter 2. State of the art

experienced users, leads to high efficient codes. However, for inexperienced users, an effi-
cient code can become unreadable and handle many processes can become a tedious work.
Moreover, when porting a sequential application to an MPI application, the users must ex-
plicitly distribute the data between the processes and retrieve back the results (which can
lead to load imbalance or inefficient communications). Additionally, another inconvenience
of MP1 is that, once the application’s execution has started, the number of processes cannot
be changed dinamically, limiting the maleability of the applications.

Figure 2.1 shows an example of an MPI application written in C. The code spawns a
given number of processes, sets up one process as coordinator and the rest as slaves that
send back a message to the coordinator saying that they are ready to work. As seen in the
figure, each process has a unique identifier, and the communication between them is done
by using the MPI_Send or MPI_Receive API calls (obviously, more complex programs will
require more complex API calls).

FIGURE 2.1: MPI Hello example in C.
Source: Wikipedia, Message Passing Interface

2.1. Distributed libraries

Figure 2.2 shows the command line result and Figure 2.3 shows a diagram of executing
the aforementioned code with 4 processes. Notice that the spawn time of the processes and
the communication between them is not always done at the same time and thus, the diagram
is only one of the possible execution diagrams of the same code. For instance, Process 0 will
always send messages to Processes 1, 2 and 3 in the same order and will receive the messages
back in the same order, but Processes 1, 2 and 3 can receive the message in different orders
and send the reply in different orders. This issue is one of the hardest things to overcome
when developing applications with MPI because blocking processes in a receive call can lead
to significant overheads. For instance, in our diagram, Processes 2 and 3 have sent all their
data, but Process 0 does not receive the message until the data from Process 1 is received.

$ mpicc example.c
$ mpirun -n 4 ./a.out

We have 4 processes.
Process 1 reporting for duty.
Process 2 reporting for duty.
Process 3 reporting for duty.
FIGURE 2.2: MPI Hello execution example
AN | | | |
| | | |
MPLInit | . | o o |
7 7 7 7
MPI_Send
_— MPI_Recv(0) MPI_Recw(0)
MP|_Send \
7
MP|_Send N
7
MPI_Recw(1) MPI_Recw(Q)
K MP|_Send
<
y MPI_Send
<
s MP|_Finalize
& .
, MPI_Finalize '
< i |
MP|_Send | |
< | |
MPI_Recv(2) : :
, MPI_Finalize | |
- | | |
MPI_Recw(3) | | |
, MPI_Finalize ' ' '
< ' | | |

FIGURE 2.3: MPI Hello diagram of execution

8 Chapter 2. State of the art

2.1.2 Sockets

A Socket[42] is an endpoint on a machine to send and receive data and can be used
either to communicate processes within the same machine or through the network. Each
process refers to a socket by means of a Socket Descriptor and then establishes a connection
through the socket creating a Channel. The underlying Operating System of the machine
provides a socket API, but applications normally use a higher-level API implementation
that depends on its language (for example, sys/socket.h for C [26], socket library for Python
[49] or java.net.Socket for Java [40]).

Like the previous case, for the end user, using Sockets only enables the communication
between different processes. Thus, it requires handling explicitly the spawn of the pro-
cesses, the code executed by each process and the communication between them. Since the
application will also use an API, the source code must be developed using this underly-
ing technology and compiled accordingly. However, contrary to MP]I, it does not require a
specific compiler.

The next figures show the same example than the MPI case but written in Java and using
Java Sockets. Figure 2.4 contains the main code to initialize and spawn all the processes.

FIGURE 2.4: Main code of Java Hello example with Sockets

2.1. Distributed libraries

Figure 2.5 contains the code for the main process (the coordinator).

FIGURE 2.5: Master process code of Java Hello example with Sockets

Chapter 2. State of the art

Figure 2.6 contains the code for the slave processes.

FIGURE 2.6: Slave process code of Java Hello example with Sockets

Notice that, like in the previous case, since the master process reads the messages in an
ordered manner, the execution output is always the same (see Figure 2.7) even if the process
spawn order and the messages’ arrival can vary between executions.

N

2.2. Workflow Frameworks 11

$ javac helloSocket/x

$ jar cf hello.jar helloSocket/

$ java -cp helloSocket.jar helloSocket.HelloSocket 4
We have 4 processes

Process 1 reporting for duty.

»|Process 2 reporting for duty.

Process 3 reporting for duty.

FIGURE 2.7: Execution example of Hello with Sockets

2.2 Workflow Frameworks

On the other hand, distributed computing can also be achieved by using a workflow
framework. Frameworks are designed to encapsulate a programming model, a runtime
or even a programming language that eases the development of distributed applications.
Although all the frameworks hide the communication mechanisms between the different
processes, they can be classified regarding its task definition. Thus, subsection 2.2.2 pro-
vides several examples of frameworks with implicit workflows” definition and subsection 2.2.1
provides several other examples of frameworks with explicit workflows’ definition.

2.2.1 Frameworks with explicit workflows” definition

Frameworks with explicit workflows” definition allow the users to design the full appli-
cation workflow using a receipt file or a visualization tool. The main advantage is that the
users can specifically control the dependencies between the different stages and, thus, they
have a clear overview of how their application is executed by the framework. However, its
main advantage is also its main disadvantage, because designing complex workflows can
result in a tedious work.

2.2.1.1 Taverna

Taverna [44] is a Workflow Management System that includes a set of tools to design
and execute scientific workflows. The Taverna Suite consists of three components: Taverna
Engine (used for enacting workflows), Taverna Workbench (the desktop client application)
and the Taverna Server (to execute the remote workflows). It has been recently moved to
the Apache Incubator project, and it is beeing used in a wide variety of domains such as
bioinformatics, biodiversity, chemistry, astronomy, data mining, digitalisation and image
analysis.

Although Taverna has a command line interface, its most powerful tool is the visual
workflow design. This tool allows the users to graphically define workflows by constructing
a diagram with inputs, outputs, actions and dependencies between actions. Each action
defines its input and output ports so that users can incrementally build a diagram by linking
the input and output ports of the different actions or by adding static content values to the
input ports. Notice that the actions can be of any type of service since Taverna provides a
set of internally configured services but allows the users to add any service by providing its
WSDL address. Moreover, when the workflow is finished, Taverna can validate and run it;
allowing the users to check the execution status and the partial results.

Figure 2.8 shows a Taverna diagram example of a BLAST application. The workflow has
four outputs generated by different actions and does not have any input since the values are
obtained from static content values (i.e. program value or database value). The light blue,

12 Chapter 2. State of the art

green and magenta actions are services; beeing the green one the invocation to BLAST with
program, database and query sequence.

. Workflow Inputs |

program_value || database value ” hsapiens_gene_ensembl | ' N

/

blast_ddbj

...

FIGURE 2.8: BLAST design example using Taverna
Source: myExperiment[51]. Taverna workflows

As previously demonstrated, Taverna is a powerful tool to design workflows for inexpe-
rienced users since they do not have to deal directly with parallelism issues. However, this
framework is only oriented to applications that can be defined as a pipeline of services and
thus, its execution relies on the service availability. In this sense, the community has done a
hard work in making available several services and predefined workflows that can be used
as nested workflows at the end user applications.

2.2.1.2 Fireworks

FireWorks [32] is an open source Framework to define, manage and execute workflows.
Workflows are defined using Python, JSON [46] or YAML [47], stored using MongoDB [37]
and can be monitored through a web interface. The workflows” execution can be automated
over arbitrary computing resources, and the framework provides fault-tolerant mechanisms
and multiple execution modes (to run on different underlying infrastructures such as multi-
core machines or clusters managed by queues). FireWorks includes two components (see
Figure 2.9): LaunchPad (a server that manages the workflows) and one or more FireWorkers
(a worker to run the jobs).

LAUNCHPAD

FIREWORKER FIREWORKER

FIGURE 2.9: FireWorks components. Source: FireWorks[32]

2.2. Workflow Frameworks 13

Workflows in FireWorks have three main components (see Figure 2.10). Firstly, the users
can define a FireTask which represents an atomic computing job. FireTasks must execute a
single shell script or a Python function. Secondly, users can define a FireWork, which con-
tains all the information needed to bootstrap the job execution. For example, a FireWork
may contain a list of FireTasks to execute sequentially and its parameters. Finally, a Work-
flow is a set of Fireworks with dependencies between them.

Firework 1

Spec: {input}
FireTask

FireTask

FWAction FWAction

Firework 2 Firework 3

Spec: {input} Spec: {input}
FireTask FireTask

FireTask

FireTask

FIGURE 2.10: Workflows” components in FireWorks
Source: FireWorks|[32]

Next, Figure 2.11 shows a Python example using FireWorks. At left, we provide the code
to create the workflow and, at right, a diagram of the obtained workflow. Notice that the
FireTasks and FireWorks are easily created but that the Workflow must be explicitly con-
structed which, for complex workflows, can be difficult to understand. Thus, although the
users do not need to lead with parallelism directly, they must define the workflow explicitly.

from fireworks import Firework, Workflow, FWorker, LaunchPad, ScriptTask
from fireworks.core.rocket_launcher import rapidfire

set up the LaunchPad and reset it e
launchpad = LaunchPad() Ingrid is CEO.
launchpad.reset('', require_password=False)

define four individual FireWorks used in the Workflow
taskl = ScriptTask.from_str('echo "Ingrid is the CE0."')
task2 ScriptTask.from_str('echo "Jill is a manager."')

= (
task3 = ScriptTask.from_str('echo "Jack is a manager."')
task4 = ScriptTask.from_str('echo "Kip is an intern."') . _—
Jack is a manager. Jillis a manager.
fwl Firework(task1)
fw2 Firework(task2)

fw3 = Firework(task3)
fw4 = Firework(task4)

assemble Workflow from Fireworks and their connections by id
workflow = Workflow([fwl, fw2, fw3, fw4], {fwi: [fw2, fw3], fw2: [fw4], fw3: [fwd]})

Kip is an intern.
store workflow and launch it locally
launchpad.add_wf (workflow)
rapidfire(launchpad, Fworker())

FIGURE 2.11: Example of Workflow using FireWorks
Source: FireWorks[32]

14 Chapter 2. State of the art

2.2.1.3 Kepler

Kepler [5] is designed to create, execute and share models and analyses of scientific and
engineering workflow applications. It can easily merge R [24] scripts, compiled C code or
facilitate the execution of models remotely. The users use a Graphical User Interface to select
and connect analytical components and data sources to define a scientific workflow.

Scientific Workflows in Kepler consist of customizable components, relations, and ports.
On the one hand, the components can be either a director (to control the execution of a work-
flow), an actor (to execute the instructions given by the director) or a parameter (to add a
configurable value). On the other hand, relations and ports are used to facilitate commu-
nication between the different components. Figure 2.12 shows a Lotka-Volterra workflow
defined in the Kepler Interface where the components, the relations, and the ports are iden-
tified with callouts.

K file:/C: Program® 20Fikes Keplet /demos. _arted/02 LothaVolterraPredatorPrey sml JaE!
Bl Edt Yew ‘Workflow Took Wndow Help
c-ﬂ;_;m : - -
TemedPioler .'"-, H 1
[7] Soarch regostory rﬁ@
+ acw
b Propects | P
@ Decoines ! Ports |
v O et R | R T X
{ Relation | gn2iot :
o
L e
Fie Tock loesd Fel
o TimedPietter _::ihnnmm :\-_.TE.E
o s S e g i
0 resuts found. | XY PinTer ol
ol — e L
ﬂ_ﬂ et | HE . .
| 10} | T A 1 RN LR il 1
]_ i | I | (il |
r— 1} | T RIS 1| l
£ I.u:‘ |
: an (1 g |
E et freshen it e ot e o o] 48
{1] a1 { ¥ 03 (-1] s L or [1] a8 |
1%
II\‘.\
L] | rl 3 L]] [) L] ¥ 19

FIGURE 2.12: Lotka-Volterra workflow example using Kepler
Source: Kepler examples

Although the Kepler Interface remembers to Taverna, this Framework does not restrict
the users to execute services but rather allows them to orchestrate any type of execution.

2.2. Workflow Frameworks 15

However, like Taverna, Kepler is designed for users with little experience in parallel com-
puting and all its efforts are intended to make the workflow design easier.

2214 Galaxy

Galaxy [28] is a web-based platform for biomedical research. It is designed for users
without programming experience, providing a graphical interface to easily specify param-
eters and run tools and workflows. One of the greatest advantages of Galaxy is to share,
publish, access and reproduce any analysis of the other users in an interactive web-based
framework.

Galaxy workflows are graphically defined through its web-based platform (see Figure
2.13) by combining the execution of different tools. Several tools are provided for every
user (such as retrieving data, calculating statistics or performing complex genome opera-
tions) but the users can also define custom tools. To build a workflow, the users define data
dependencies between the tools” execution.

Using 493.0 CB

Workflow Canvas | galaxy101-2015 o Detalls
Input dataset
Input dataset x Name:
output Features

Edit Step Attributes

Annotation / Notes:

Input dataset ®
Sort x
oin x
output j) Sart Dataset Add an annotation or notes to this
Jain e step; annotations are available
out_filel when a workflow is viewed.

with

output {interval)

FIGURE 2.13: Galaxy graphical web-based platform to define Workflows
Source: Galaxy Project tutorials

Galaxy also provides a section to execute the workflow. On execution time, the platform
retrieves information of the execution of each tool, providing a live monitoring of the whole
workflow (see Figure 2.14). Once the application has finished, the users can also analyze the
output data.

16 Chapter 2. State of the art

Analyze Data

Tools _!-, History Sﬁ:
o Successfully ran workflow "galaxy101-2015" The following datasets have [

[x] been added to the queue: [x)
Cet Data 1: UCSC Main on Human: knownCene (genome) Exons vs. Repeats 2015
Send Data 2: UCSC Main on Human: rmsk (genome) it
Lift-Qver 3: Join on data 2 and data 1 240.76 M8 & % -
Text Manipulation 4: Group on data 3 &) 7: Top Exons - & un
Convert Formats

5: Sort on data 4
Filter and Sort @ 6:Select first on data @ & x
Join, Subtract snd Group B: Select first on data 5 5
NGS: QC and manipulation e ERte s © 5: Sort on data 4 &7 %
NGS: Mapping
NGS: RNA-seg @ 4 Group on data 3 ® & X
NGS: SAMtools f:3joinondata2 and @ & x
NGS: BAM Tools data 1
: Picar
B ZCIS) = Z: UCSC Main on Human: @ & x
MGS: VCF Manipulation rmsk (genome)
Extract Features
L UCSC Main on Human: @ # %

Fetch Sequences
Fetch Alignments

knownCene (genome)

Get Genomic Scores
Statistics
Craph/Display Data
Phenotype Association
snpEff

Regional Variation

FIGURE 2.14: Galaxy graphical web-based platform to execute Workflows
Source: Galaxy Project tutorials

Notice that Galaxy is built for specific biomedical research tools, rather than a general
purpose platform. Although it provides a very clean, easy and fast way to build, execute
and analyse workflows, it is only designed for biomedical applications.

2.2.2 Frameworks with implicit workflows’ definition

Frameworks with implicit workflows” definition use different technologies to define the
parallelism automatically. Users develop applications in an almost sequential manner and
they do not need to handle explicitly the tasks spawned by a method call (that are dis-
tributed among the available resources). Consequently, the different frameworks differ on
this “almost sequential manner” to develop the application. The main advantage of these
frameworks is that the complexity of distributed programming is almost reduced to zero.
However, the main disadvantage is that the users do not know beforehand how the frame-
work will execute their application (for example, how many tasks will be created in a specific
call).

2.2.21 MapReduce

MapReduce [21] is a programming model (and an underlying runtime) for processing
and generating large datasets. The underlying runtime can automatically handle the par-
allelism; managing the inter-machine communication, taking advantage of the data locality
and providing fault-tolerant mechanisms (recovering from partial failures of servers and
storages by rescheduling the task jobs). In this sense, the users are unaware of the paral-
lelism.

2.2. Workflow Frameworks 17

However, although it is a powerful and simple programming model, it is only suitable
for applications that can be expressed in terms of mappers and reducers. This means that
the applications must be designed with a map and a reduce function so that the MapReduce
framework can only exploit the inherent parallelism.

FIGURE 2.15: Wordcount example on top of Hadoop
Source: Hadoop Map Reduce tutorial

18 Chapter 2. State of the art

Figure 2.15 shows the implementation of a Wordcount application using the Hadoop [43]
implementation of the MapReduce programming model. The Wordcount application counts
the number of occurrences of each word in a given text, and it is a commonly used example
for MapReduce because it is conceptually easy to define the map and the reduce functions.
Notice that, in opposite to the previous frameworks, the user defines the map, reduce and the
main code in a sequential-like way; without directly dealing with parallelism and without
specifying the execution workflow.

When executing the previous MapReduce application (see Figure 2.16), the runtime pro-
cesses the input, divides it into smaller sub-problems and distributes each subproblem to
one of the available worker nodes. A worker can then repeat this step, leading to a multi-
level tree structure where the intermediate nodes merge their worker results and send them
back to their master node, or simply compute the result of the subproblem. In any case, the
last master node merges all the intermediate values, collecting and combining the answers
of all the sub-problems to obtain the final output.

User Program

Split Data

i Go through all the words in
i the document and produce a
—i set of partial histograms of
i words, i.e. <word, count> list

| -
| :Collec‘tlon of output data
| from Map tasks

-

FIGURE 2.16: Execution example of Wordcount using MapReduce
Source: SALSA Group, PTI Indiana University, Wordcount User Guide

As a final note, we must highlight that the MapReduce programming model is very
popular since it has been implemented in several programming languages (including C++,
Python, and Java) and implementations like Hadoop are widely used.

2222 Spark

Apache Spark [52] is a fast and general-purpose large-scale data processing engine that
supports general execution graphs, and that can run on top of Hadoop, Mesos, standalone

2.2. Workflow Frameworks 19

or in the cloud (see Figure 2.17). It extends the MapReduce programming model to effi-
ciently support other types of computations (such as batch applications, interactive algo-
rithms, SQL queries or streaming) and by allowing in-memory processing. These features
make easy and inexpensive for users to combine different workloads and define complex
pipelines. Moreover, it has been designed to be highly accessible, providing a simple APIin
Java, Scala [17], Python, R and SQL, and supporting a rich set of high-level tools including
Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for
graph processing, and Spark Streaming.

Spark SOL Spark Streaming m?c%:ibn " Gr?ar;)hhx
structured data real-time learning prgcessin q
Spark Core
Standalone Scheduler YARN Mesos

FIGURE 2.17: Spark’s Components
Source: Learning Spark [35]

“At a high level, every Spark application consists of a driver program that runs the user’s main
function and executes various parallel operations on a cluster. The main abstraction Spark provides is
a Resilient Distributed Dataset (RDD), which is a collection of elements partitioned across the nodes
of the cluster that can be operated on in parallel”[52]. For the RDD creation, Spark relies on its
underlying file system.

Figure 2.18 provides the Wordcount implementation in Java using the Spark API. Al-
though the code can be written in a more compact way, we have kept it unrolled for the sake
of clarity and to be easily mapped to the functions defined by the MapReduce programming
model. Thus, as in the MapReduce example shown before, the functions provided are the
Map and Reduce functions, and the main code is written in a sequential-like way. Notice
that the code becomes significantly more readable than in the previous example and, as
expected, the user does not explicitly define the workflow. In fact, when using Spark to de-
velop an application, the user is unaware of the underlying infrastructure and the workflow
diagram.

We must highlight that Apache Spark is widely used nowadays and it is becoming one
of the most powerful Big Data engines. Although it still relies on the MapReduce program-
ming model (making difficult the implementation of sophisticated algorithms which depend
on the state of the processes running on other nodes), Spark provides an efficient and com-
plete framework that separates the user from the common distributed programming issues
such as data dependency analysis, task scheduling, fault-tolerant mechanisms and workers
communication.

20 Chapter 2. State of the art

FIGURE 2.18: Wordcount example in Java using Spark

2.2.2.3 Swift

Swift [53] is a fast and easy scripting language for executing distributed and parallel
applications. The programming language is structured like a Shell script and builds a data-
flow oriented workflow. The Swift programs run many copies of ordinary applications as
soon as their inputs are available. The main advantage is that its workflows can be fast
and easily defined, and can run over any underlying architecture (multicore computers,
clusters, clouds or grids). The users must consider that Swift it is not designed to process
large collections of data but to orchestrate programs that do that processing. In this sense,
it is intended to be a pure Workflow Manager: handling the execution of such programs on
remote sites, staging input and output files from these sites and choosing these sites.

2.2. Workflow Frameworks 21

In opposition to the previous cases, Swift is a programming language itself built on top of
Java. Consequently, it provides data types, mapped data types, mapped functions, conven-
tional expressions, structured data, loops and data flow instructions so that users can define
their workflows (see Figure 2.19). Additionally, Swift uses a configuration file to specify the
underlying infrastructure.

" Datatypes = Structured data
string s “hello world”; i G =

= image A[]<array mapper..>;
int 1 4:;
int A[];

* Loops
= Mapped data types foreach £,1 in A {
type image; B[i] = convert(A[i]);
image filel<“snapshot.jpg”>; }
= Mapped functions
app (file o) myapp(file £, int i) = Data flow
{ mysim "-s" i @f @o; | analyze(B[0], B[1]);
) 2 analyze(B[2], B[3]);
= Conventional expressions
if (= 3)
Vi x+2;

s Bstrcat(™y: Y, ¥);

FIGURE 2.19: Swift programming language. Source: Swift [53]

To exemplify how Swift works, Figure 2.20 shows the simulation workflow of the Swift
code shown in Figure 2.21. Notice that the code first defines the two applications that the
workflow will invoke: the simulation and the analysis. For both applications, it also defines
their input and output parameters, and their execution instructions (in both cases, the ex-
ecution is an invocation of a bash script to launch the simulation or the analysis). Next, it
retrieves the workflow arguments and define the intermediate variables needed to execute
the workflow. In a third step, it spawns nsim simulations; storing its result into separated
files. Finally, it launches an analyze application that uses the output files of all the previously

launched simulations.

sims[0] sims[1] | o o o | SIMSINI

analyze
average
.out

FIGURE 2.20: Swift simulation workflow example. Source: Swift tutorial[53]

22 Chapter 2. State of the art

FIGURE 2.21: Swift simulation code example

We must highlight that Swift builds the workflow considering the data dependencies
between applications and exploits the maximum parallelism between applications. Thus,
users must define the workflow regarding data dependencies between applications but do
not need to build the workflow structure explicitly. Moreover, the applications can be any
type of executable, like a shell does, and do not need to follow any convention (like MapRe-
duce obligates users to define Map and Reduce functions).

2.22.4 COMP Superscalar (COMPSs)

Since this project is based in COMP Superscalar (COMPSs) [19] we have decided to pro-
vide a more in-depth view of it in Chapter 3.

23

Chapter 3

COMPSs overview

COMP Superscalar (COMPSs) [4] [33] is a task-based programming model that belongs
to the family of Frameworks with implicit workflows. COMPSs applications consist of three
parts: the application’s code developed in a totally sequential manner, an application inter-
face where the programmers specify which functions can be remotely executed (tasks) and
a configuration file that describes the underlying infrastructure. With these three compo-
nents, the COMPSs Runtime system exploits the inherent parallelism of the application at
execution time by detecting the task calls and the data dependencies between them.

COMPSs natively supports Java applications but also provides bindings for Python (Py-
COMPSs [23]) and C/C++. Furthermore, COMPSs allows applications to be executed on
top of different infrastructures (such as multi-core machines, grids, clouds or containers)
without modifying a single line of the application’s code (see Figure 3.1). It also has fault-
tolerant mechanisms for partial failures (with job resubmission and reschedule when task or
resources fail), has a live monitoring tool through a built-in web interface, supports instru-
mentation using the Extrae [8] tool to generate post-mortem traces that can be analysed with
Paraver [15], has an Eclipse IDE, and has pluggable cloud connectors and task schedulers.

Python C/Catat Java
App | App App

v v
Y
COMPSSs runtime

§ amazon
webservices™

Javassist

’ : docker
Grid Cluster Cloud Containers

FIGURE 3.1: COMPSs overview

Additionally, the COMPSs model has three key characteristics:

e Sequential Programming: The users do not need to deal with any parallelization and
distribution issue such as thread creation, synchronization, data distribution, messag-
ing or fault-tolerance. COMPSs programmers only select which methods must be con-
sidered as tasks and the COMPSs Runtime spawns them asynchronously on a set of
resources instead of executing them locally and sequentially.

24 Chapter 3. COMPSs overview

e Infrastructure Agnostic: COMPSs model abstracts the application from the underly-
ing infrastructure. Hence, COMPSs applications do not include any platform related
detail such as deployment or resource management. This feature makes applications
portable between infrastructures with different characteristics.

e No APIs: When using COMPSs native language, Java, the model does not require
any special API, pragma or construct in the program. Since COMPSs instruments the
application’s code at execution time to detect the tasks, everything can be developed
in the standard Java syntax and libraries.

3.1 Programming Model

The COMPSs programming model mainly involves choosing the right tasks for a se-
quential application. To illustrate how COMPSs applications are built from a sequential
code, Figure 3.2 provides the main code and Figure 3.3 provides the helper methods of a
sequential Increment application in Java. The Increment is a didactic application that takes
N counters, initializes them to a random value and increments them by U units.

FIGURE 3.2: Increment main class

3.1. Programming Model 25

FIGURE 3.3: Increment helper methods class

After implementing the sequential code, the users must create an Interface to transform
their sequential application into a COMPSs application. COMPSs requires this Interface to
annotate which methods must be considered tasks that can be remotely executed.

COMPSs Interfaces must be defined inside a file with the same name than the main class
of the users” application but with the “Itf” suffix (for instance, in the previous example, the
Interface must be stored in the Incrementltf.java file). Regarding its content, the interface
must contain one entry per task, which is annotated with the @M ethod annotation . For
each Method annotation the users must also provide the declaring class and the parameters
description. On the one hand, the declaring class of a function is the class containing the
implementation of the task and its required to link the task to the method implementation.
On the other hand, the parameters description is indicated by adding a @Parameter an-
notation to every task parameter. This annotation is required to build the task dependency
graph since COMPSs uses data-flow graphs. The mandatory contents of the Parameter an-
notation are the Type (that must refer to any Java basic type, a string, an object or a file) and
the Direction (where the only valid values are IN, OUT and INOUT).

FIGURE 3.4: Increment Interface

Figure 3.4 shows the Interface for the previous Increment application example. Notice
that it only contains one task declaration, increment, with defined inside the IncrementImpl
class and with two parameters. The first parameter is the return value of the function which
has type Integer and, by default, has direction OUT. The second parameter is the counter

'There are more complex COMPSs annotations that are beyond the scope of this section. However, for
any interested reader, the COMPSs annotations are described in-depth in the COMPSs User Guide: Application
Development [19]

N

26 Chapter 3. COMPSs overview

argument which has type Integer and direction IN because the function requires the input
value of the parameter to increase it but does not modify it.

Since the COMPSs annotations do not interfere with the applications” code, all COMPSs
applications can be sequentially executed. To do so, Figure 3.5 compiles the previous code
and executes the application with N = 2 counters that must be increased by U = 3.

$ javac increment/x*

$ jar cf increment.jar increment/

$ java —-cp increment.jar increment.Increment 2 3
[LOG] Initial Counter 0 value is 7

[LOG] Initial Counter 1 value is 1

[LOG] Final Counter 0 value is 10

[LOG] Final Counter 1 value is 4

FIGURE 3.5: Sequential execution example of Increment

On the other hand, the code can also be executed with COMPSs without recompiling
the application’s code. To do so, the users must invoke the runcompss command instead
of the traditional java command. When done, the COMPSs Runtime will be setup and the
application will be distributedly executed. Figure 3.6 provides the execution output of the
Increment application and the task graph generated by its execution.

$ runcompss -g increment.Increment 2 3

[INFO] Using default execution type: compss

[INFO] Using default location for project file

[INFO] Using default location for resources file
[IWFO] Using default language: java

----------------- Executing:. increment. INCrEmMenE -ri-s-c-casinmcasacicinacacan

WARNING: IT FProperties file is null. Setting default wvalues
[(78@) AFI] - Starting COMFSs Runtime vZ.@

[LOG] Initial Counter @ walue 1s 5

[LOG] Initial Counter 1 walue 1s 2

[LOG] Final Counter © value 1s B8

[LOG] Final Counter 1 value 1s 5

[(5050) AFI] - Execution Finished

increment I

FIGURE 3.6: COMPSs execution example of Increment

The runcompss command has several command line arguments (that are fully detailed

when executing runcompss —help) but Table 3.1 provides a short description of those we have
found to be more useful.

3.2. Runtime System 27

Argument Description

-d Enables the debug mode

-g Enables the final graph generation

-m Enables the monitor tool

-t Enables the tracing tool

- -sumary Provides a task summary at the end of the
execution

- -lang=<str> Enables the Python and C/C++ bindings

- -project=<str> Sets an specific project configuration file

- -resources=<str> Sets an specific resources configuration
file

- -classpath=<str> Adds an specific classpath to the execu-

tion environment

TABLE 3.1: Useful arguments for the runcompss command

3.2 Runtime System

To abstract applications from the underlying infrastructure, COMPSs relies on its Run-
time System to spawn a master process on the machine where the application is running and
a worker process per available resource (see Figure 3.7). These processes are communicated
through the network (using different communication adaptors) and can send messages to
each other to orchestrate the distributed execution of the application.

Tools Master Workers

COMPSs

COMPSs
Worker

FIGURE 3.7: COMPSs structure

Monitor Runtime

Once a Java application starts, the COMPSs Runtime [34] triggers a custom Java Class-
Loader that uses Javassist [18] to instrument the application’s main class. The instrumenta-
tion modifies the original code by inserting the necessary calls to the COMPSs API to gen-
erate tasks, handle data dependencies and add data synchronizations. To achieve the same
purpose on Python applications, the Python Binding (PyCOMPSs) parses the decorators of
the main code and adds the necessary calls to the COMPSs APL. In the case of C/C++ appli-
cations, COMPSs also requires an Interface file that is used when compiling the application
to generate stubs for the main code, add the required COMPSs API calls, and generate the

28 Chapter 3. COMPSs overview

code for the tasks execution at the workers. In any case, as shown on the top of the Fig-
ure 3.8, the interaction between the application and the COMPSs Runtime is always made
through the COMPSs APL

CI/C++ App Python App

Java App

Bindings-common

/ COMPSs Runtime \
vV

Loader

COMPSs API
Engine
ConfigLoader g Resources
Access Processor Resource
Manager
Commons _
Task Dispatcher

Resource

Monitor Executor Optimizer

Connectors
Comm

daptor : .. l

- /

FIGURE 3.8: COMPSs Runtime overview

More in-depth, the COMPSs Runtime has five main components:

e Commons Contains the common structures used by all the Runtime components

e ConfiglLoader Loads the project and the resources configuration files, the command
line arguments, and the JVM configuration parameters.

¢ Engine Contains the submodules to handle the task detection, the data dependencies,
and the task scheduling. More specifically, the Access Processor watches for the data
accesses so that the Runtime can build the data dependencies between tasks, the Task
Dispatcher controls the task life-cycle and the Monitor Executor controls the monitor
structures for real-time and post-mortem monitoring.

e Resources Handles all the available resources in the underlying infrastructure. This
component creates, destroys and monitors the state of all the available resources. Since
COMPSs supports elasticity through cloud connectors, this component contains a Re-
source Optimizer subcomponent that takes care of creating and destroying resources.

e Adaptors Contains the different communication adaptors implementations. This layer
is used to communicate the COMPSs Master and the COMPSs Workers and abstracts
the rest of the Runtime from the different network adaptors.

3.3. Task Workflow 29

3.3 Task Workflow

To clarify how COMPSs works when executing an application Figure 3.9 describes the
task life-cycle. From the application’s main code the COMPSs API registers the different
tasks. Considering the registered tasks, COMPSs builds a task graph based on the data
dependencies. This graph is then submitted to the Task Dispatcher that schedules the data-
free tasks when possible. This means that a task is only scheduled when it is data-free, and
there are enough free resources to execute it (each task can have different constraints, and
thus, it is not scheduled if there is not a resource that satisfies the requirements).

Eventually, a task can be scheduled and, then, it is submitted to execution. This step in-
cludes the job creation, the transfer of the input data, the job transfer to the selected resource,
the real task execution on the worker and the output retrieval from the worker back to the
master. If any of these steps fail, COMPSs provides fault-tolerant mechanisms for partial
failures.

Once the task has finished, COMPSs stores the monitoring data of the task, synchronizes
any data required by the application, releases the data-dependant tasks so that they can be
scheduled, and deletes the task.

Parallel Resources
Sequential Code (1) Task selection

for (i=0; i<N; i++){ Resource 1
Tl (datal, data2);
T2 (datad4, datab); f .
T3 (data2, datas, data6); (4) Task completion and synchronization
T4 (data7, dataB)
) T5 (data6, datas8, data9);
e Resource 2

Resource N

l -l

(3) Scheduling,
Data transfer,
Task execution

(2) Task graph creation
based on data dependencies (fs) @’

FIGURE 3.9: COMPSs task execution workflow

31

Chapter 4

Tools and methodology

On the one hand, this chapter lists the tools used to enhance COMPSs to enable analytic
and HPC Workflows. Considering that this project is based on the extension of an already
existing tool, COMPSs, most of the other tools used for its extension are already preset. On
the other hand, Section 4.2, reports the development methodology of the project.

4.1 Tools

As stated, the principal tool used has been COMPSs as it was before this project (see
Chapter 3). Since the COMPSs Runtime is developed in Java[39] language, the biggest part
of the development of this project has been performed in Java language using the Eclipse[36]
IDE and the Apache Maven[45] Software Project Management. The implementation has
been completed with BASH[25] scripts to handle the communication between worker pro-
cesses (see Section 5.3 for extended details).

For the results and the evaluation section, we have used Extrae[8] and Paraver[15] to
validate the parallel executions and GnuPlot[27] to illustrate simulation results.

4.2 Methodology

We have selected a Design Research Method as the scientific method design, combined
with a Test Driven Development strategy, always bearing in mind that the main goal of
this project is to enhance COMPSs to enable analytic and HPC Workflows. Thus, we have
selected conceptual use cases to theorize the COMPSs extensions (Section 4.2.1), carried
them out following the development strategy (Section 4.2.2) and validated with real use
cases (Section 4.2.3).

4.2.1 Scientific method design

In a first step, during the Relevance Cycle, we have analyzed analytic and HPC ap-
plications that can potentially be ported to COMPSs. In this sense, we have concluded
that the COMPSs Programming Model lacks an easy way to execute binaries, MPI[38] and
OmpSs[14] applications; which prevents some users from using COMPSs.

In a second step, during the Design Cycle, we have carefully selected two real use cases
that represent the needs of the scientific community and which allow us to evaluate the
requirements that must be fulfilled. The first application, NVIMB BSC-Dust [12], is a model
to predict the atmospheric life cycle of the desert dust for regional and global domains. The
second application, GUIDANCE [9], is an integrated solution for Genome and Phenome
association analysis.

However, the requirements of these applications turned out to be too complicated to be
faced in a single development phase, which led us to find out simpler use cases and evalu-
ate these during the validation phase. Consequently, we have faced the problem gradually

32 Chapter 4. Tools and methodology

by dividing the requirements into two different categories. In the first category, we have
considered the execution of simple binaries. To drain the standard binary execution re-
quirements, we have analyzed a COMPSs version of the BLAST[6] application. To enhance
COMPSs, we have proceeded gradually by defining incremental tests and finally achieving
all the BLAST requirements. In the second category, we have considered a hybrid COMPSs
and MPI version of the Matrix Multiplication, and we have enhanced COMPSs accordingly.
As in the previous case, to ensure that all the requirements are fulfilled, we have performed
incremental tests to finally execute this application.

Moreover, at the end of this second step, we have evaluated the real applications. We
must highlight that we have gone through a validation process to evolve from the simpler
use cases to the real ones.

Finally, during the Rigor Cycle, we have deployed the project development on a produc-
tion environment, and we have largely documented the new artifacts to share the knowl-
edge with the community.

4.2.2 Development strategy

The development has been based on the aforementioned proof of concept applications
(BLAST and Matmul), and we have followed a Test Driven Development strategy. Although
we have applied this methodology for the first time during this project, it turned out to be
very robust, flexible and appropriate for the case.

More in-depth, we have defined several easy-to-run tests for each simple use case. Once
identified the application requirements, we have implemented the features needed inside
the COMPSs Runtime in a top-down strategy. The development has been performed in such
a way, rather than following a bottom-up strategy, because the chosen use cases strongly
define the requirements from the COMPSs API (method and parameter annotations) and
are more flexible with regard to the COMPSs internals.

In this sense, from the first simple use case (BLAST), we have first enhanced the COMPSs
Annotations to extend the method and the parameter annotation. Next, we have associated
this information to the tasks and propagated it through the COMPSs Runtime up to the
COMPSs Worker. Once all the information has been transferred to the COMPSs Worker,
we have enhanced the task treatment (through new invokers) and, finally, we have imple-
mented the binary executors.

From the second use case (Matmul), we have first extended our new annotation with
an MPI method annotation. Then we have extended the COMPSs Schedulers to support
multi-node tasks and, finally, we have extended the new invokers and executors to run MPI
binaries.

We would like to highlight that the Test Driven Development has helped us significantly
in making this process iterative without turning it into a nightmare. During the develop-
ment, both use cases have been tested several times on the local machine to evaluate the
development.

4.2.3 Validation strategy

Even if we have tested locally simple applications, an extensive validation has been per-
formed to move from the simple use cases to the real applications. This validation process
includes porting all the applications to the MareNostrum III [10] Supercomputer to execute
and to perform an in-depth analysis of both types, the simple and the real of use cases (see
Chapter 6 for more details).

33

Chapter 5

Implementation

5.1 Programming model annotations

As shown in Chapter 3, the COMPSs Programming model defines annotations that must
be added to the sequential code in order to run the applications in parallel. These annota-
tions can be splited into two groups:

e Method Annotations Annotations added to the sequential code methods to detect
them as tasks and potentially execute them in parallel.

e Parameter Annotations Annotations added to the parameters of an annotated method
to handle data dependencies and transfers.

Consequently, we have first extended the Method Annotations to detect Binary, MPI
and OmpSs methods (from now on, non-native methods). Next, we have allowed the users
to define annotations with environment variables. In this step, we have taken advantage
of all these modifications to change also the annotations referring to the versioning and the
scheduler hints. Finally, we have modified the parameter annotations to support specific
binary needs.

5.1.1 New task annotations

As previously stated, we have decided to firstly extend the method annotations to rec-
ognize the different type of tasks. The task annotations are used by the COMPSs Runtime
to detect the methods that the user wants to execute as tasks. The annotations are defined
in a separated file (known as interface) that the COMPSs Loader uses to detect the tasks
while instrumenting the application code. In this sense, the interface defines the signature
of the method that the COMPSs Loader must transform into a task. Since a Java signature
must contain the fully qualified name (that is, the declaring class of the method, the method
name, and the parameter types), the COMPSs annotations provide a declaring class for each
Method annotation.

To extend the annotations to support non-native tasks we have firstly modified the
COMPSs Loader to consider as potential task any method defined inside the binary. BINARY,
mpi.MPI and ompss.OMPSS classes. The methods found in these classes are then cross-
validated with the tasks defined in the interface and selected as tasks if needed. This design
decision is motivated by the fact that we consider that the annotation of non-native tasks
must only refer to the real execution and, thus, we want to avoid a declaringClass field in the
new annotation.

Secondly, we have extended the method annotations themselves to recognize the differ-
ent type of tasks. For each non-native method that we are willing to support (execution of
binaries, MPI binaries, and OmpSs binaries), we have created a new annotation that extends
the information of the current Method annotation with the specificities of each type.

34 Chapter 5. Implementation

In the Binary case, we have created the @Binary annotation that must define the asso-
ciated binary file name through the binary field (see Figure 5.1). Moreover, this annotation
can optionally define the workingDir field (to set up the working directory of the binary ex-
ecution) and, as any Method annotation does, the priority and constraints fields (see Figure
5.2).

FIGURE 5.1: Binary annotation using only mandatory fields

FIGURE 5.2: Binary annotation using all available fields

In the MPI case, we have created the QM PI annotation that must define the MPI com-
mand to be run (also known as MPI Runner) through the mpiRunner field, the associated
binary file name through the binary field, and the number of computing nodes to be re-
served for the MPI execution through the computingNodes field (see Figure 5.3). Moreover,
this annotation can optionally define the workingDir field (to set up the working directory of
the binary execution) and, as any Method annotation does, the priority and constraints fields.
Figure 5.4 shows a complete example of this annotation. Notice that the total number of

requested Computing Units is 2 nodes - 4 €U = 8 total CUs.

node

FIGURE 5.3: MPI annotation using only mandatory fields

FIGURE 5.4: MPI annotation using all available fields

5.1. Programming model annotations 35

In the OmpSs case, we have created the @QOmpS's annotation that must define the asso-
ciated binary through the binary field (see Figure 5.5). Moreover, this annotation can option-
ally define the workingDir field (to set up the working directory of the binary execution) and,
as any Method annotation does, the priority and constraints fields (see Figure 5.6).

FIGURE 5.5: OmpSs annotation using only mandatory fields

FIGURE 5.6: OmpSs annotation using all available fields

Only considering the modifications listed in this section, the current COMPSs annota-
tions (for Method and Service tasks) were left intact. However, for the sake of clarity and to
enhance the COMPSs capabilities, we have decided to modify the existant annotations to
include environment variables as annotations” values, a clearer versioning annotation and
new annotations for the upcoming schedulers.

5.1.2 Environment variables as annotations

A large variety of applications use different constraint values depending on the execu-
tion even if the code of the application remains the same. This is mostly because users want
to adapt the task needs to the different data sizes and computational load. However, the
current COMPSs version only allowed users to define different constraints for tasks by re-
compiling all the application with a different interface. Figure 5.7 shows the Interface of a
clear example of this case: a Wordcount application that always defines two tasks (word-
Count and mergeResults) with the same code. The execution load of the wordCount task is
highly related to the size of the data to be treated. Thus, users want to specify a differ-
ent memory requirement depending on the input data size (because the file must be totally
loaded in memory). However, to change the value of the memorySize constraint, they must
recompile the whole application.

FIGURE 5.7: Wordcount Interface

36 Chapter 5. Implementation

Figure 5.8 shows how a user must run two different executions of this application, one
with a big file (for instance, needing 16 Gb of memory) and one with a small file (needing 1
Gb of memory).

FIGURE 5.8: Wordcount executions with different constraint values

In our new approach, the annotations’ values can be specified through environment vari-
ables that are resolved on the COMPSs Master node in execution time. Following the pre-
vious example, Figure 5.9 shows the same application using an environment variable to
define the memory size annotation. Figure 5.10 illustrates how the user can easily execute
the application several times with different input data files with only redefining the envi-
ronment variable (we must highlight, that the users no longer need to recompile the whole
application between executions).

FIGURE 5.9: Wordcount Interface with environment variables

FIGURE 5.10: Wordcount executions with environment variables as con-
straints

5.1. Programming model annotations 37

This behavior can be used with any already existing annotation. Next, Figure 5.11 pro-
vides a complete example of all the variables that can be resolved at execution time from
environment variables (environment variables are detected by the use of the $ at the begin-
ning of the field value). Notice that the only values that we are preventing the users from
defining with environment variables are the declaringClass field inside the Method annotation
and the parameter annotations.

FIGURE 5.11: Example with an Interface with all the available environment
variables

We must highlight that this modification seems to have low sides effects, but it is rather
the other way around. For the end-users, these modifications imply that all the annotations’
values are of type string rather than a specific type for each of them. For the COMPSs Run-
time, it means that all the annotation values must be resolved and transformed to its real
value (integer, float, string, etc.). Notice that while this transformation is simple when the
final value is an integer or a float (because the constraint value can only be an integer/float
value or an environment variable), it is not that simple when the final value is a string (be-
cause the constraint value can have zero, one or more than one environment variables). For
instance, Figure 5.12 shows many different possibilities that the user can specify when pro-
viding the workingDir constraint.

38 Chapter 5. Implementation

FIGURE 5.12: Example of complex environment variables on the workingDir
field

Finally, when using environment variables as constraints, the Runtime will only raise an
exception if the environment variable is not defined (null), empty or it cannot be parsed to
its real type.

5.1.3 Versioning task annotation

Versioning is a mechanism that COMPSs provides for defining several implementations
of the same task and deciding, at execution time, which is the best implementation to run.

In the previous COMPSs version, the user defines a task in the interface and defines
more than one declaringClass field for the different implementations. Figures 5.13, 5.14 and
5.15 show how a task sayHello is called by the main code and two different implementations
of this task with the same name but in separated files. Notice that the callee in the main code
refers to the Impl1 but in execution time the COMPSs Runtime will choose to execute any of
the implementations (either Impl1 or Impl2). That means that using the callee Impl1.sayHello()
or Impl2.sayHello() will make no difference at execution time.

FIGURE 5.13: Example of previous versionning main code: Hello.java

FIGURE 5.14: Example of previous versionning Impll java

5.1. Programming model annotations 39

FIGURE 5.15: Example of previous versionning Impl2 java

Following with the example, Figure 5.16 defines its interface. The task sayHello is anno-
tated with two different implementations declared in classes Impl1 and Impl2 respectively.

FIGURE 5.16: Example of the Interface of previous versionning: Helloltf.java

The user has also available the MultiConstraints annotation to add the needed require-
ments for each implementation. The programming model supports a global constraint an-
notation for the common constraints of all the implementations and a MultiConstraint anno-
tationfor the specific constraints of each implementation. Notice that the number of entries
within the MultiConstraint annotation must be the same as the number of entries within
the declaringClass field. Figure 5.17 redefines the Interface of the previous example to add a
global constraint of 1 computing unit to both implementations and a specific memory con-

straint for each implementation. Obviously, this example can be extended to any constraint
field.

FIGURE 5.17: Example of the Interface of previous versionning with con-
straints: Helloltf java

Extending this model to support non-native tasks is a problem since the different imple-
mentations are enclosed within the Method annotation (and the new Binary, MPI and OmpSs
annotations are defined outside the Method annotation). Moreover, to check that the number
of entries of the MultiConstraints annotation is the same than the number of declared imple-
mentations becomes expensive. Hence, our new implementation only allows to declare one
implementation per method annotation, moves the Constraints annotation inside each task
annotation to define the specific implementation requirements and allows the user to define
one single Constraint clause to define the common requirements. Figure 5.18 shows how the
previous example will be specified with the new COMPSs Annotations.

40 Chapter 5. Implementation

FIGURE 5.18: Example of the new Annotation Interface: NewHelloltf java

Notice that this new annotation syntax allows us to add the non-native tasks as different
implementations easily. For example, Figure 5.19 adds a new binary implementation to the
previous example (now, the sayHello method has three different implementations).

FIGURE 5.19: Extended example of the new Annotation Interface: NewHel-
loltf java

5.1.4 SchedulerHints task annotation

Since the previous modifications were already making the new COMPSs Annotations
not backward compatible, we have profited to add a specific annotation for the user to define
hints for the COMPSs Scheduler. In the current state, the new SchedulerHints annotation only
supports the two fields shown in Table 5.1

Field Type Description

isDistributed boolean Forces the scheduler to schedule the in-
stances of the task in a round-robin man-
ner between nodes

isReplicated boolean Replicates the task execution in all the
available nodes

TABLE 5.1: Available fields for the SchedulerHints annotation

We are conscient that these annotations may break, somehow, the programming model
because users must be unaware of the underlying infrastructure and because the isReplicated
field makes the parallel behavior different to the sequential behavior. However, these op-
tions are very useful for advanced users (for example, in cases where an initialization task
must be executed in all the computational nodes) and may be, in the near future, very useful
for scheduler enhancements (such as annotating map-reduce tasks).

5.1. Programming model annotations 41

Figure 5.20 illustrates how to use these annotations in the interface.

FIGURE 5.20: Example of an Interface with SchedulerHints: Mainltf,java

5.1.5 New stream parameter annotation

Once the task annotations for non-native tasks was defined, we had to implement a way
to communicate the Java application with the non-native tasks” execution. When executing
standalone binaries, MPI processes or OmpSs processes the exit value of the processes is
used as the return value. Thus, we have decided that the COMPSs non-native tasks must
use the exit value of their internal binary as the return value of the task. In this sense, we
have allowed the users to capture this value by defining the return type of the non-native
task as an int (for implicit synchronization), as an Integer (for post-access synchronization)
or to forget it (declaring the function as void). Figure 5.21 shows an Interface example of the
three return types.

FIGURE 5.21: Example of the different return types of the non-native tasks

However, the users not only need the process exit value to work with this kind of appli-
cations but need to set the Standard Input (stdIn) and capture the Standard Output (stdOut)
and Error (stdErr). For this purpose, we have created a new parameter annotation, stream,
that allows the users to set some parameters as I/O streams for the non-native tasks. Stream
parameters are not passed directly to the binary command but rather they are set as stdln,
stdOut or stdErr of the binary process. Since this kind of redirection is restricted to files in
LINUX Operating Systems, we have decided to keep the same restrictions to the annotation.
Consequently, all stream parameters must be files.

Figure 5.22 shows the Interface of an application with two tasks that have a normal
parameter (the first one, that will be sent directly to the binary execution), a file parameter to
be used as stdIn of the process, a file parameter to be used as stdOut and a last file parameter
to be used as stdErr. The difference between taskl and task2 in this example is that the first

42 Chapter 5. Implementation

task will overwrite the fileOut and fileErr content (since the files are opened in write mode),
and the second task will append the fileOut and fileErr content at the end of the file (since
the files are opened in append mode).

FIGURE 5.22: Example of the different stream annotations for non-native tasks

To summarize the last information retrieved from this example, Table 5.2 show the avail-
able modes for each stream type.

Type Stream Direction Description

FILE = Stream.STDIN Direction.IN Sets the process stdIn. The file is
opened in read mode

FILE = Stream.STDOUT Direction.OUT Sets the process stdOut. The file is
opened in write mode

FILE = Stream.STDOUT Direction.INOUT Sets the process stdOut. The file is
opened in append mode

FILE Stream.STDERR Direction.OUT Sets the process stdErr. The file is
opened in write mode

FILE Stream.STDERR Direction.INOUT Sets the process stdErr. The file is
opened in append mode

TABLE 5.2: Available stream types with their valid directions and execution
behaviour

5.1.6 New prefix parameter annotation

Before going in-depth in this section, we must explain that COMPSs builds the task
data dependencies graph taking into account the parameters annotated in the application
Interface. Analyzing several binaries, we have found out that a non-negligible part of them
use prefixes for each parameter. The prefixes used by binaries can be divided into two types:

5.1. Programming model annotations 43

e Separated Prefix A prefix that is written separately before the parameter value. This
type of prefixes are of the form:

Jbinary — paraml value — —param?2 value — k value

In fact, there is not a strong need that the parameter prefix starts with a dash but its
the common behavior for Linux binaries.

e Joint Prefix A prefix that is written with the parameter value without beeing separated
or with a separation character that it is not an empty space. This types of prefix vary a
lot but are of the form:

Jbinary —pValue —q=Value — —r =Value s=Value

The separated prefixes do not represent a problem for the COMPSs programming model
since they can be defined as a standalone string parameter that is finally passed to the bi-
nary. However, the joint prefixes do represent a problem for COMPSs since the users must
prepend the prefix to the parameter, breaking the data dependencies between the tasks. For
the sake of clarity, consider the two tasks shown in Figure 5.23 and the main code shown in
Figure 5.24. Since the second task requires a joint prefix, when calling it from the main code
the users must modify its value and prepend the prefix to the fileName variable. This string
modification causes a synchronization in the appliaction’s main code instead of creating a
data dependency between the two tasks.

FIGURE 5.23: Binary Tasks example for joint prefixes

FIGURE 5.24: Main code example for joint prefixes

Consequently, for this second type of prefixes, we have created a new parameter anno-
tation prefix that allows the users to define the prefix separately to the parameter value and
its prepended to the parameter value just before the binary execution. This modification
allows COMPSs to handle the data dependencies between parameters (since prefixes are
immutable strings that do not define data dependencies) and allows the binaries to receive
the parameter prefixes and its value together as a single parameter.

44 Chapter 5. Implementation

FIGURE 5.25: Interface example of an application with prefixes

Figure 5.25 shows the Interface of an application with three binary tasks, Figure 5.26
shows the main code calls to these tasks and Figure 5.27 shows the final binary command
that is executed in the task. Notice that the first task, task1, only uses separated prefixes; the
second task, task2, uses only joint prefixes and the third task, task3, is a hybrid example of
both separated and joint prefixes.

FIGURE 5.26: Example of the main code calls to tasks with prefixes

5.2. Scheduling modifications 45

TASK 1
./binaryExample -p filel.in --q file2.inout k 10

TASK 2

5| . /binaryExample -p=filel.in --g=file2.inout k10

TASK 3
./binaryExample -p filel.in --g=file2.inout k10

FIGURE 5.27: Example of the command executed inside each task using pre-
fixes

5.2 Scheduling modifications

Before explaining the scheduler modifications, we must define how COMPSs handles
the task creation, scheduling and execution. The COMPSs Runtime instruments the appli-
cation’s main code looking for invocations to the methods defined as tasks in the application
interface. When these methods are detected, COMPSs creates a task that is submitted to the
Task Analyzer component and substitutes the method call by an executeTask() call. When the
Task Analyzer receives a new task, it computes its data dependencies and submits it to the
Task Scheduler. Next, the Task Scheduler creates an Execution Action associated with the
task and adds it to the execution queue. Eventually, the Execution Action will be scheduled
and launched (this mechanism requires the task to be data-free and to have enough free
resources to fulfill the task constraints). When the Execution Action is launched, a Job is cre-
ated to monitor the task execution. This job includes the transfer of the job definition and all
the input data to the target COMPSs Worker, the real task execution in the worker and the
transfer of the output data back to the COMPSs Master. Once the job is completed, its data
dependent Execution Actions are released (if any), and the job is destroyed (or, depending
on the debug level, stored for post-mortem analysis).

5.2.1 Treatment of non-native tasks

Non-native tasks only represent a new way of executing tasks in the COMPSs Worker.
Although the data structure that contains its information (Binarylmplementation, MPIImple-
mentation, OmpSsImplementation) is quitely different than the one storing Method / Service
tasks (MethodImplementation and ServiceImplementation respectively), all of them inherit a
common super-structure (Implementation) that allows the COMPSs Master to treat any type
of task in the same way.

Consequently, the Scheduler component is also independent of the task execution and,
thus, no modification has been added to enable the execution of non-native tasks. However,
we must emphasize that although the execution of MPI tasks itself has not caused any mod-
ification (because it also extends from the same interface), the fact of using more than one
computational node did.

5.2.2 Multi-node execution actions

That beeing said, the first design choice to enable multi-node task executions has been to
associate several execution actions to the same task. This mapping allows the Scheduler to
treat the data-dependencies and the resource consumption as it was done before. However,
the execution actions associated with the same task must have different behaviors during

46 Chapter 5. Implementation

the execution phase because only one of the actions must really launch the job.

Consequently, we have extended the ExecutionAction in a MultiNodeExecutionAction class
that is only used when a task requires more than one computing node (otherwise the previ-
ous ExecutionAction implementation is used). When the task scheduler receives a new multi-
node task (ExecuteTaskRequest) it creates a new MultiNodeGroup instance and N MultiNodeEx-
ecutionAction instances (beeing N the number of nodes requested by the task). The MultiN-
odeGroup instance is shared among all the actions assigned to the same task execution, and
it handles the actions” id within the group. More in-depth, when the MultiNodeExecution-
Actions are created the MultiNodeGroup assigns a nullable identifier to all of them. Once
the actions are scheduled and launched, the MultiNodeGroup assigns a unique valid identi-
fier between 1 and N. This action identifier is used during the action execution to act as an
execution slave node (when the assigned identifier is different to 1) or to act as an execu-
tion master node (when the assigned identifier is 1). When the MultiNodeExecutionAction is
identified as a slave, it no longer triggers a job execution, but rather reserves the requested
resources and waits for its master action to complete. When the MultiNodeExecutionAction
is identified as a master, it retrieves all the hostnames of its slave actions (for the MPI com-
mand) and behaves as a normal ExecutionAction (launches a job to monitor the input data
transfers, the real task execution on the node and the output data transfers).

On the one hand, Figure 5.28 shows an example of the normal process. A task T1 re-
quiring 1 node (normal task) is submitted to the scheduler through the ExecuteTaskRequest
request. The request is then processed and an ExecutionAction is created as it was done be-
fore. Eventually, the action is scheduled, launched and finally executed, creating a new job
that will monitor the task execution in the target node.

m e Pete e m

|
|
new ExecutionAction !
, I
~
|
|
|
|
|

T1(N=1)
executeTaskRequest(Ti}

schedule(al)

launch(al)

execute(al)

submitNewJob

>y

transferlnputData
Real
Task
Execution

exitValue
transferOutputDats

data

completed
completed

DONE

P

FIGURE 5.28: Example of a single node task flow

5.2. Scheduling modifications 47

On the other hand, Figure 5.29 shows an example of the Multi-Node process. A task T2
requiring 3 nodes (multi-node task) is submited to the scheduler through the same Execu-
tionTaskRequest request. The request is then processed: a new action group (lets say g1) is
created (a new instance of the MultiNodeGroup) and 3 MultiNodeAction instances (lets say al,
a2 and a3) are created. The action group g1 is shared among all the three actions and assigns
a nullable action identifier to all of them.

T —— MultiNodeGroup m m

T2(N=3) |
executeTaskRequest(T1)

new MultiNodeGroup (N}

g1

new MultiNodeExecutionAction(g1)

al

Y
new MultiNodeExecutionAction(g1)

a2

~
new MultiNodeExecutionAction(g1)

a3

<

schedule(al, a2, a3)

tryTolaunch(al,a2,a3)

execute(a?)

registerAction(a2)

ald=3
~

waitForMasterCompletion

o]

execute(al)

registerAction(a2)

ald=2

-

waitForMasterCompletion

execute(ad) T
> registerAction(a2)

ald=1

getSlavesHostnames()

hostnames

submitNewJob(N, hostnames)

transferlnputData
executeTask I

exitValue

Real Task Execution
mpirun -n N

-H h1,h2,h3
transferQutputData

data

completed

completed
completed

|
al ‘waitForMasterCompletion

completed
completed

a2 waitForMasterCompletion

|
completed
completed
|
|

<

DONE

FIGURE 5.29: Example of a multi-node task flow

Eventually, a2 is scheduled, launched and finally executed. On the execution phase, the
action asks for an action identifier and the action group g1 assigns it an actionld = 3 (because
the group size is 3 and no action has previously requested an identifier). Since the action
identifier classifies a2 as a slave action, the execute phase only reserves the task constraints
and waits for the master action completion.

Eventually, a1 is also scheduled, launched and finally executed. Following the same pro-
cess than the previous action, a1 is granted with actionld = 2 (because the group size is 3 and

48 Chapter 5. Implementation

only one action has previously requested an identifier). Since the action a1 is also classified
as a slave, it reserves the task constraints and waits for the master action completion.

Finally, a3 will also be scheduled, launched and finally executed. In this case, the action
group assigns it an actionld = 1. Since it is the last action, it is now identified as master
and during its execution phase it retrieves the hostnames of the resources assigned to all
the actions inside the g1 group (lets say, /1 for al and h2 for a2) and launches the execution
job. The job will be then executed (lets say that the host assigned to this action a3 is h3)
monitoring the input data transfers, performing the real task execution (for example, calling
the MPI command inside the host 13 with 3 nodes h1, h2 and h3) and retrieving back the
output data from h3.

Once the job is completed, the action a3 is marked as completed (freeing all the reserved
resources) and, then, it triggers its completion to all the slave actions registered in the group
g1. Consequently, a1 and a2 are also marked as completed (and its resources are also freed).
When all the actions within the group are marked as completed, the task is registered as
DONE and follows the usual process: frees its data dependent tasks and it is stored for
post-mortem analysis.

5.2.3 Treatment of SchedulerHints

Currently there are only two SchedulerHints available in COMPSs annotation: isDis-
tributed and isReplicated. Both annotations are attached to the task definition and are treated
when the ExecuteTuskRequest request is served.

When the isDistributed annotation is enabled, the request checks how many tasks of the
same type have been already scheduled to each available worker. Then, it chooses the
worker that has executed less tasks of the same type and forces the Execution Action to
be scheduled to the selected worker. Notice that the computational cost of distributing a
task in a Round Robin manner among the available workers is proportional to the num-
ber of available workers. To maintain consistency, when a resource is chosen as the target
worker of an Execution Action during the schedule phase, a task counter in the target worker
is increased. In this sense, notice that the memory cost is increased by Equation 5.1 since
each available worker stores a list of counters of size equal to the number of different tasks
registered in the Application Interface.

numWorkers - numTypesTasks - sizeof(int) (5.1)

When the isReplicated annotation is enabled, the request creates one Execution Action per
available worker and forces the actions to be executed in the selected workers. The task is
then considered as DONE when all its Execution Actions are marked as completed. For this
purpose, the task stores an execution counter initialized to the number of available workers
that only releases the task (and its data dependent actions) when reaching zero.

As a final note, we highlight that the Scheduling Hints are evaluated during the schedul-
ing phase. That means that the workers considered in both cases must be functional when
the task scheduling is beeing treated (not when the task is really executed).

5.3 Worker enhancements

The Communication layer abstracts the Master node from the specific Communication
Adaptors and thus, from the underlying infrastructure. However, the worker processes
spawned by this layer are dependent on each Adaptor implementation. Currently, COMPSs
supports the NIO and the GAT Communication Adaptors.

5.3. Worker enhancements 49

On the one hand, GAT Adaptor is built on top on the Java Grid Application Toolkit
(JavaGAT) [48] which relies on the SSH connection between nodes. During the application
execution, the Runtime spawns a new worker process per task execution. More specifically,
when a task must be executed, the GAT Communication Adaptor creates a GAT Job, sends
the job and the required data through SSH to the worker’s resource, starts the worker pro-
cess, executes the task itself, closes the worker process, and retrieves the job status, the job’s
log files, and the required output data. The worker.sh script orchestrates all the processes
and launches a language dependant script for the real task execution (GATWorker.java for
Java, worker.py for Python and Worker for C/C++). Although the implementation suffers
from some performance overheads (because the overhead of spawning a new process on
each task execution becomes non-negligible for small duration tasks), it provides a high
connectivity interface since it only requires the SSH port to be opened.

On the other hand, NIO Adaptor is a more sophisticated implementation based on Java
New I/0 (NIO) library [41]. This adaptor spawns a persistent Java Worker Process per
resource, rather than one per task execution, and the communication between Master and
Workers is then made through Sockets. Hence, this Adaptor provides better performance
than the GAT Adaptor but requires extra open ports between the available resources. Fur-
thermore, the Worker processes persist during the full execution of the application, what
also lets us have an object cache per worker, data communications between workers (rather
than handling all the data in the Master resource) and thread binding mechanisms to map
threads to specific cores of the machine. Finally, for the task execution, each worker has
several Executor threads that can execute natively Java applications, or Python and C/C++
applications using a ProcessBuilder.

5.3.1 Invokers

To enable the execution of non-native tasks for any Communication Adaptor we have
implemented a Genericlnvoker class that provides an API for executing standard, MPI, and
OmpSs binaries. This API is built on top of a BinaryRunner class that spawns, runs and
monitors the execution of any binary command.

More specifically, the BinaryRunner class has two methods. Firstly, createCMDParame-
tersFromValues serializes the received parameters to construct the binary arguments. This
method is also in charge of processing the Stream annotations and redirecting the StdIn, Std-
Out, and StdErr when required. Secondly, executeCMD executes the received binary com-
mand (with all its parameters), monitors its execution and, finally, returns the exit value of
the process.

On the other hand, the Genericlnvoker class provide three functions: invokeBinaryMethod,
invokeMPIMethod, and invokeOmpSsMethod to invoke respectively standard, MPI and OmpSs
binaries. The three methods receive the binary path and the argument values, construct and
execute the command by calling the BinaryRunner functions and return the exit value of the
binary execution.

In a second step we have adapted each of the Communication Adaptor (GAT and NIO)
to call this GenericInvoker when needed. In both cases, we have substituted the normal task
execution by a switch-case that selects the required invoker considering the task’s implemen-
tation type.

50 Chapter 5. Implementation

5.3.2 External executors enhancement

Currently, the PyCOMPSs binding is gaining relevance because Data Analytic Work-
flows can be easily designed in Python and thus, translated to PyCOMPSs. During the de-
velopment of this project, we have found out that the COMPSs Workers loose performance
because of the creation of the ProcessBuilder used to execute Python, C, and C++ tasks.

To solve this problem, we have completely redesigned the way the COMPSs Worker
launches a Python, C or C++ task. First of all, during the Worker initialization, we use the
ProcessBuilder to launch a single BASH script that creates N input pipes, N output pipes
and N processes (beeing N the number of available Executors at the given Worker). These
BASH processes persist until the Worker is stopped and use the pipes to communicate with
the Java Executors. In fact, each Java Executor stores a pair of pipes so that the Executors are
mapped one to one (see Figure 5.30).

JohsThreadPool

BASH Executors

JavaThreadPool ExternalThreadPool bindings_piper.sh
1
PythonThreadPool CThreadPool Python Process
1

- ————

JavaExecutor ExternalExecutor ---—-—---—-—--‘-."' .
Executor

—— e ——————

L

Java Executors

FIGURE 5.30: New structure of the COMPSs Worker Executors

When a task arrives at the Worker, it is processed by a Java Executor thread. Assuming
that the task is a Python, C or C++ task, the Java Executor sends a command through its
assigned input pipe to the BASH Executor with the task definition and waits for a completion
message on the assigned output pipe. The BASH Executor then receives the task command,
executes the task and sends its result back to the Java Executor through the output pipe.
Notice that both executor threads are never active at the same time since, when one Java is
processing the task the BASH process is listening, and when the BASH process is executing
the task the Java process is listening.

5.3. Worker enhancements 51

At the end of the application execution, when the Worker is stopped, all the Java Execu-
tors send a QUIT command through the input pipe to kill its assigned BASH processes and
then exit. To double check the shutdown process, the initial BASH script (spawned with the
ProcessBuilder at the Worker creation) is killed with a bash TRAP to kill any remaining pipe
or process.

Finally, Figure 5.31 shows the execution time in the y-axis versus the number of Executors
(N) in the x-axis for an implementation with ProcessBuilders (blue) and an implementation
with pipes (red for the total time including the spawn and the destruction of the first BASH
script, and yellow for the task execution time). We must highlight that the implementation
using pipes speeds-up significantly the pre and post actions that must be done in every task
execution, getting us to a lower overhead when using the COMPSs Bindings.

== ProcessBuilder === Pipes Total Pipes Task Executor

140

120
—. 100
w
E
a 80
E
=
5 60
3
@40
L

20

__--—'—"'.'—--_,._ —
0 e L s
0 10 20 30 40 50 60 70 80 a0 100

Humber of Executors (#)

FIGURE 5.31: Execution time versus number of ProcessBuilders or Pipes

53

Chapter 6

Results and evaluation

6.1 Proofs of concept

6.1.1 BLAST
6.1.1.1 Application description

Basic Local Alignment Search Tool (BLAST) [6] is an algorithm to find regions of similar-
ity between primary biological sequences. The program compares a nucleotide or protein
(known as query) to a sequences’ database and identifies sequences that resemble the guery
sequence above a certain threshold.

The COMPSs implementation of BLAST splits the query sequence on smaller fragments,
comparing each fragment against the database and merging up the obtained results. Us-
ing different execution arguments, the users can select the query sequence, the number of
fragments and the target database (Figure 6.1 provides the complete list of execution argu-
ments).

blast .BLAST <debug> <database> <query> <nFrags> <tmpDir> <outputFile> <blastBinaryArgs>

— debug Enables and disables the debug mode

- database The sequences’ database path to compare with

- query The path where the query sequence is stored

- nFrags The number of fragments used to divide the sequence (N)
— tmpDir A temporal directory for intermediate results

- outputFile The final output file with the sequence matches

— blastBinaryArgs The extra arguments to pass to the BLAST binary

FIGURE 6.1: Execution arguments of the COMPSs BLAST application

Regarding the code, it is divided in three main blocks:
e Split: Splits the query sequence in N fragments

e Alignment: Compares each fragment of the query sequence against the database in-
voking the BLAST binary

e Assembly: Merges all the intermediate files into a single file to produce the final result

The BLAST interface provides three types of tasks, one per block. Firstly, the input file
is splited by using N splitPartitions tasks (beeing N the number of fragments). Next, each
fragment is processed using the align task. Finally, the partial results are merged by using
N-1 assemblyPartitions tasks. Figure 6.2 shows an example with N = 8.

N

54 Chapter 6. Results and evaluation

8 7 6 5 1 2 3 4
9 8 7 16 12 3 4 15
d24 (22 d20 /d18 d10 /12 14 /d16

d22

110

sync

sﬂﬂPunhhnml
align
asscmblypunili[msl

FIGURE 6.2: Example of BLAST execution with N = 8

6.1.1.2 Purpose

This proof of concept must demonstrate that our implementation in COMPSs eases the
execution of binary files without degrading its performance. Moreover, the users must have
enough flexibility to execute the binaries with different parameters, to synchronize (or not)
the exit value, and to capture (or not) the StdOut and StdErr.

6.1.1.3 Evaluation

When porting the BLAST implementation with COMPSs to the new Binary annotation,
we have left intact the execution parameters and the application behavior (blocks and num-
ber of tasks spawned per block). The only modifications that we have introduced are:

e align task implementation: A new dummy implementation of the align task is defined
in the binary.BINARY file (see Figure 6.3). This implementation replaces the old one
defined in the BLASTImpl file (see Figure 6.4), which is totally removed.

public static Integer align(String pFlag, String pMode, String dFlag, String database,
String iFlag, String partitionFile, String oFlag,
String partitionOutput, String extraCMDArgs) {

return -1;

FIGURE 6.3: COMPSs BLAST application: new align task implementation

6.1. Proofs of concept 55

FIGURE 6.4: COMPSs BLAST application: old align task implementation

o align task call: Adapt the main code to the new align task call. The new task no longer
wraps the binary execution, but rather spawns the blast binary directly. Thus, we must
add the binary arguments explicitly and recover the exit value of the task. Figure 6.5
shows the new task call loop and Figure 6.6 shows the old one.

FIGURE 6.5: COMPSs BLAST application: new align task call

56 Chapter 6. Results and evaluation

FIGURE 6.6: COMPSs BLAST application: old align task call

e align interface’ annotation: We delete the previous align method and add a new task
with the Binary annotation. Figure 6.7 shows the new annotation and 6.8 shows the
previous one.

FIGURE 6.7: COMPSs BLAST application: new align’s interface annotation

FIGURE 6.8: COMPSs BLAST application: old align’s interface annotation

Although the previous figures highlight the major modifications, Appendix A provides
the full code of the BLAST implementation using the new COMPSs annotations. Notice that
the annotation and the task call are more complex than the previous version (since there are
more parameters), but the task’s implementation is totally suppressed. This means, the users
no longer need to create a new ProcessBuilder from the commands, spawn a process, wait for
its completion, retrieve the exit value, and read the process’ output and error streams. Thus,
we consider that these annotations provide a significant advantage regarding programma-

bility.

Concerning performance, we have measured the execution time of the align task using
both implementations. On the one hand, for the old implementation, we have measured the

6.1. Proofs of concept 57

total task time inside the Runtime and the time spent on the real binary execution in the
task code inside the application. On the other hand, for the new implementation, we have
measured the total task time and the time spent on the real binary execution instrumenting
the Runtime.

The experiments have been run on the MinoTauro [11] machine that is a heterogeneous
cluster hosted at the Barcelona Supercomputing Center (BSC) that has 61 Bull B505 blades
with 2 Intel E5649 (6-Core) processors at 2.53 GHz, 24 GB of Main memory, 250 GB SSD and
2 Infiniband QDR (40 Gbit each), and 39 Bullx R421-E4 servers with 2 Intel Xeon E5-2630
v3 8-core processors at 2.4 GHz, 128 Gb of main memory, 120 Gb SSD and 1 PCle 3.0 x8
8GT/s. For the experimentation, we have only requested two nodes (one COMPSs Master
and one COMPSs Worker) of the first type, and we have only launched one task at a time
(1 maximum task per node) to avoid distortion of the task execution time caused by the
execution of other processes. Moreover, we have launched 10 BLAST executions with the
parameters shown in Table 6.1.

Parameter Value

debug disabled

database swissprot

query sargasso.fasta (43 Kb)
nFrags 8

tmpDir /scratch/tmp/
Output file output.txt

Binary Arguments None

TABLE 6.1: Execution parameters of the BLAST application

Notice that the total number of executed tasks is 80, since the query sequence is divided
in 8 fragments (see Equation 6.1).

align task fragment

- - 10 execution = 80 align task (6.1)
fragment execution

Table 6.2 shows the minimum, the maximum and the mean execution times of the align
task when running 10 times the BLAST application under the aforementioned conditions.
In terms of absolute values, the difference between the two implementations is negligible
for the total task execution time (less than 1%) and for the binary execution time (less than
0.5%). Regarding the overhead, the old implementation adds 16.25 ms on average to the bi-
nary execution and the new implementation adds 15.50 ms on average. Hence, as expected,
the overhead introduced by the new implementation can be considered the same than the
old implementation, and there is no performance degradation when using the new Binary
annotation.

NEW OLD
Total task Binary Total task Binary
Minimum 9141 9119 9196 9164
Mean 15224 15208 15027 15010
Maximum 31204 31178 30463 30435

TABLE 6.2: Task times

58 Chapter 6. Results and evaluation

6.1.2 Matmul
6.1.2.1 Application description

The Matrix Multiplication (Matmul) is a common operation in diverse fields such as nu-
merical methods, earth science, industrial simulations, machine learning or bioinformatics.
In fact, this operation has become so common that most of the underlying libraries (i.e. Intel
Math Kernel Library - MKL [29]) provide an easy-to-use API call to an optimized implemen-
tation.

The common parallel approach to the Matrix Multiplication is to divide the matrix in
smaller matrixes, called blocks (see Figure 6.9). When multiplying two block matrixes (i.e. A
and B), the result matrix (i.e. C) is calculated block by block. Notice that the C blocks can be
calculated independently and thus, in parallel.

A s e

HH
HH
Tt

Acs Buo + Au B -.

IEEEEEEEE NN EEEE S INEEEE}
T T Tt IEEEEE T
T T IEEE NN} T

T
N
T

FIGURE 6.9: Multiplication of a Matrix divided in blocks
Source : Dongrui She, GPU Assignment 5KK70

The COMPSs implementation of Matmul constructs two float matrixes, A and B, with
MSIZE blocks of size BSIZE. Both parameters are used passed through the application ar-
guments. Notice that the matrixes are squared, and its real size is stated in Equation 6.2.

(MSIZE - BSIZE) x (MSIZE - BSIZE) floats (6.2)

Consequently, the result matrix, C, is also squared and has the same size.

Regarding the code, it is divided in two main blocks:

o Initialization: Initialization of each block of matrixes A and B to random float values
using files to store each block.

e Multiplication Loop: Multiplies and accumulates the two matrixes block by block
using the IKJ-algorithm which has been proven to be the best algorithm in terms of
performance [31] without using external libraries.

The initialization of each block is performed inside the initializeBlock method, and the
multiplication and accumulation is done in the multiplyAccumulative method. Both meth-
ods are annotated in the Matmul Interface so that COMPSs spawn them as tasks. Notice

6.1. Proofs of concept 59

that since the multiplication and accumulation of each block of C is independent, the im-
plementation spawns MSIZE - MSIZE chains (number of total blocks of C) of depth
MSIZE (number of accumulations of a block of C, this is, the length of a row of A and
the length of a column of B). Figure 6.10 shows the task execution graph of a Matmul of
MSIZE = 2, BSIZE = 128 where the tasks before the barrier point are the initialization of
the matrixes A, B and C, and the task-chains are the previously explained multiplications.

initializeBlock [
multiply AccumulativeNative

FIGURE 6.10: Task execution graph of a Matmul example with MSIZE = 2

6.1.2.2 Purpose

This proof of concept must demonstrate that our enhancement of the COMPSs Runtime
eases the execution of MPI tasks by obtaining a hybrid COMPSs-MPI version of the Matmul.
This new version must be capable of orchestrating several MPI executions in more than
one computational node without introducing a significant overhead to the MPI execution.
Moreover, the users must have enough flexibility to execute the MPI binaries with different
parameters, to synchronize (or not) the exit value, and to capture (or not) the StdOut and
StdErr.

6.1.2.3 Hybrid COMPSs and MPI Matmul implementation

The idea behind building a Hybrid COMPSs and MPI Matmul implementation is to di-
vide the matrix into bigger blocks and multiply them in parallel using MPI. To do so, we
add an extra MPI layer under COMPSs that multiplies one block of matrixes A and B using
P MPI processes, and accumulates the result on one block of C (see Figure 6.11). Since, for
this MPI layer, each COMPSs block is treated as a single matrix, the MPI implementation is
independent of the COMPSs implementation. In this sense, we have chosen the standard
MPI Matmul implementation that divides the A matrix into line-blocks and broadcasts the
entire B matrix.

60 Chapter 6. Results and evaluation

Layer

Matrix

COMPSs
Blocks

MPI
Rows

Ao Bio

FIGURE 6.11: Hybrid COMPSs and MPI block layers

For this purpose, we have substituted in the previous implementation the multiplyAc-
cumulative task by an MPI task that invokes any of the MPI implementation of the Matmul.
Figure 6.12 shows the main multiplication loop invoking the MPI task and retrieving the
exit value.

FIGURE 6.12: Main multiplication loop of the Hybrid Matmul

Figure 6.13 shows the interface annotation of the MPI multiplyAccumulative task. Notice
that the binary path, the number of computing nodes, and the number of computing units
per node are retrieved from environment variables to easily parametrize the MPI binary
path and the number of MPI processes during the experimentation phase. Moreover, the
total number of processes available for the MPI Matmul is P = C'N - CUS. Regarding the

6.1. Proofs of concept 61

task parameters, we use the MPI matrix size (this is, the block size for the COMPSs layer)
and the file path for the contents of the matrixes A, B and C (which are, for the COMPSs
layer, the matrix blocks).

@MPI (binary = "S${MATMUL_BINARY}",
mpiRunner = "mpirun",
computingNodes = "S${CN}")

@Constraints (computingUnits = "S${CUS}")

S| Integer multiplyAccumulative (

@Parameter () int bsize,

@Parameter (type Type.FILE, direction
@Parameter (type Type.FILE, direction
@Parameter (type Type.FILE, direction

Direction.IN) String aln,
Direction.IN) String bIn,
Direction.INOUT) String cOut

)i

FIGURE 6.13: multiplyAccumulative’s interface annotation for the Hybrid
COMPSs and MPI Matmul

Appendix B contains the complete code of this Hybrid COMPSs and MPI Matmul imple-
mentation.

6.1.2.4 Evaluation

To evaluate the new Matrix Multiplication implementation, we have run all the exper-
iments on the Nord III [13] cluster, hosted at the Barcelona Supercomputing Center (BSC)
composed of one compute rack from the MareNostrum III [10]. This supercomputer has
1344 Intel SandyBridge EP-2670 cores at 2.6 GHz, 10.5 TB of main memory, a peak perfor-
mance of 28 GigaFlops and InfiniBand interconnection.

We have compared the standalone MPI implementation and the Hybrid (COMPSs and
MPI) implementation for a different number of processes and a fixed matrix size to evaluate
the overhead caused by including a new COMPSs layer on top of the MPI. Regarding the
number of processes, we have chosen multiples of 16 to fill the computational nodes com-
pletely. Concerning the matrix size, it has been fixed to 16384 long float elements because
it is the biggest matrix that can fit inside the memory of a single node (uses up to 29 Gb of
main memory).

On the one hand, we have performed a set of experiments with a single MPI execution
but with an increasing number of processes. Figure 6.14 shows the strong scaling analysis of
both, the MPI and the Hybrid implementations. The left y-axis represents the execution time
(in seconds), the right y-axis represents the percent overhead of the Hybrid implementation
with respect to the MPI implementation, and the x-axis represents the number of processes.
Notice that none of the implementations scales because the execution time includes the read-
ing, the computation and the writing times, and, in our implementations, the reading and
the writing phases are performed only by the master process. Although there are more so-
phisticated implementations that initialize and store the data in parallel, this is beyond the
scope of this section since we are only willing to evaluate the overhead of including a new
layer on top of MPL In this sense, notice that the overhead of wrapping the MPI Matmul
implementation with COMPSs is below the 5% for all the cases.

62 Chapter 6. Results and evaluation

. P s CONPSs e Relative Overhead

800 i
700 - 13,5
600 - S A

@ %

- 500 25 B

E 2

= 400 2 o

o =]

S 300 15 g

o 2

X200 - -

[
100 -0,5
0 0

16 32 64

#WPI Processes

FIGURE 6.14: Matmul Strong Scaling analysis

On the other hand, we have performed a set of experiments with multiple MPI execu-
tions with the same amount of MPI threads. We have fixed the MPI threads to 16 to use
one node completely, but as future work, it could be interesting to perform a more in-depth
experimentation with an MPI thread size that does not fit properly to the node slots.

Relative Overhead (%)
12
10

Felative Overhead (%)

[=T L B = L+ -

1 2 4 8
#WP| executions (or #rodes)

FIGURE 6.15: Matmul Weak Scaling analysis

Figure 6.15 shows the weak scaling analysis of the Hybrid implementation. The y-axis
represents the percent overhead with respect to the standalone MPI implementation with 16
processes and matrix size 16384 long float elements, and the x-axis represents the number
of simultaneous MPI executions of 16 threads each (or, what is equivalent, the number of
nodes). Notice that, when using COMPSs to orchestrate several MPI executions, the over-
head remains negligible (less than 8%) for up to 4 MPI executions (each of them using a
complete node). However, when orchestrating 8 or more MPI executions, the overhead of

6.1. Proofs of concept 63

scheduling the tasks and managing the available resources becomes significant and requires
a high-load computation in the MPI layer.

To conclude this section, the first set of experiments have demonstrated that including a
new COMPSs layer on top of the MPI layer does not cause a significant overhead. Moreover,
in the second set of experiments, we have shown that our enhancement of the COMPSs
Runtime is capable of orchestrating up to 4 different MPI executions of 16 threads each
without a significant overhead.

64 Chapter 6. Results and evaluation

6.2 Use cases

6.2.1 NMMB/BSC-Dust
6.2.1.1 Application description

NMMB/BSC-Dust model [12] is pluggable component of the Non-hydrostatic Multiscale
Model (NMMB) designed and developed by the Earth Sciences Department of the Barcelona
Supercomputing Center (BSC) in collaboration with NOAA /National Centers for Environ-
mental Prediction (NCEP), NASA Goddard Institute for Space Studies and the International
Research Institute for Climate and Society (IRI). This model provides short to medium-range
weather and dust forecasts for regional and global domains (Figure 6.16 shows a simulation
example of four-hour average AOD of the North African Domain on 16 May 2006).

FIGURE 6.16: Example of four hour average AOD from NMMB/BSC-Dust
Source: NMMB/BSC-Dust model [12]

NMMB/BSC-Dust model appears in the frame of quantifying the global dust emission
from arid and semi-arid areas and its spatial distribution. Far from being useless, “dust
significantly affects the global and regional energy balance by absorbing and scattering shortwave
and longwave radiation, dust transported by winds modifies atmospheric heating rates, temperature
and stability, influences the hydrological cycle and impacts the human health” [1]. In fact, in the
past decades, several models have been developed to reproduce the dust cycle and estimate
its influence on the climate system.

More in-depth, the NMMB/BSC-Dust model defines a complex analytic workflow in a
BASH script of 778 lines that handles the execution of an initialization step (called FIXED)
and a main loop that is executed for each timestep of the simulation period. The main loop is
defined by three internal steps: the VARIABLE pre-process, the NMIMB/BSC-Dust model sim-
ulation and the post-process step. Figure 6.17 depicts the general NMMB /BSC-Dust work-
flow. Although each of these steps spawns a large number of binary calls (the biggest part
of them written in Fortran 77 and Fortran 90), the only one that actually runs in parallel is the
MPI simulation inside the UMO_MODEL step. Furthermore, the script is already prepared
to support different workflow options by redefining some variables inserted at its beginning
(i.e. enabling and disabling a specific step, defining a global or a regional domain, changing
the domain size, or changing the model data folder or parameters).

6.2.1.2 Purpose

The purpose is to evaluate the contributions of this thesis by porting a real data science
application to COMPSs so that it can benefit of the COMPSs programming model abstrac-
tions. The porting must transform the current NMMB/BSC-Dust implementation (a com-
plex sequential workflow defined in BASH) into an easy, parallel, and portable code without
any loss of performance.

6.2. Use cases 65

Static dataset:
* Topography

* Land-use
* Albedo
* Roughness

> ForeachteT
Meteorological dataset:
VARIABLE e -
Meteorological initial conditions
NMMB/BSC-Dust Chemical dataset:
Model Chemical initial condition
POST o _[

FIGURE 6.17: NMMB/BSC-Dust step workflow

6.2.1.3 NMMB/BSC-Dust implementation with COMPSs

From our point of view, having a complex workflow defined in such a long BASH script
lacks reliability. On the one hand, because users need to modify the code to change the
simulation parameters and, on the other hand, because maintaining this script becomes
hard for unexperienced users.

Consequently, we have ported the NMMB/BSC-Dust workflow to a Java application.
The new workflow has a main class to define the main step workflow (Nmmb.java), the
application interface for COMPSs (Nmmbltf.java, the binary and MPI tasks dummy defini-
tions (BINARY.java and MPI.java), two classes to load and handle the simulation parame-
ters (NMMBConfigManager.java and NMMBParameters.java), a class to handle the environ-
ment variables (NMMBEnvironment.java), a class to store all the constant values (NMMB-
Constants.java) and five util classes to encapsulate the file management, the logger printers
and the BASH and Fortran executors. Figure 6.3 shows the code summary for the implemen-
tation and Appendix C contains the main file and the interface of the application.

Language Files Blank Comment Code
Fortran 90 23 394 2806 7581
Fortran 77 8 182 3568 6518
Java 18 558 887 2688
Bourne Shell 12 155 117 669
Maven 1 10 16 162
Bourne Again Shell 3 19 14 64
XML 1 0 0 13
SUM 66 1318 7408 17695

TABLE 6.3: NMMB/BSC-Dust code summary

This implementation offers three principal advantages. First, the execution parameters

66 Chapter 6. Results and evaluation

are loaded from a configuration file that can be modified without recompiling the appli-
cation (and without risking of involuntary modifications on the workflow behavior). Sec-
ondly, as it is built on top of COMPSs, it can rely on the power of the Runtime to abstract
from the underlying infrastructure. In this sense, it can benefit from the runcompss and en-
queue_compss commands to run over different infrastructures without modifying the appli-
cation code. Finally, the binaries inside each step have been parallelized so that the available
resources are exploited as much as possible.

6.2.1.4 Evaluation

To evaluate the new NMMB/BSC-Dust implementation we have run the experiments
on the Nord III [13] cluster, hosted at the Barcelona Supercomputing Center (BSC) composed
of one compute rack from the MareNostrum III [10]. This supercomputer has 1344 Intel
SandyBridge EP-2670 cores at 2.6 GHz, 10.5 TB of main memory, a peak performance of 28
GigaFlops and InfiniBand interconnection. For the experimentation, we have run several
simulations of 1 day (a single loop iteration) of a global domain with 64 cores available
for the MPI simulation (4 nodes). In the case of the COMPSs implementation, we have
requested 4 nodes for computation (COMPSs Workers) and an extra node for the COMPSs
Master processes.

First, we have checked that the final result produced by both implementations is the
same. The NMMB/BSC-Dust application produces a forecast binary file (CASE.nc) that can
be visualized with the NCVIEW [20] visual browser for netCDF format files. As expected,
in both cases, the file produced weights 210 Mb, and its visualization results are the same.
Figures 6.18, 6.19 and 6.20 show three different views of the forecast result with both imple-
mentations (at right, the original result and, at left, with the new COMPSs implementation)
to demonstrate that the visualizations are the same.

X) NMMB-BSC-CTM_COMPSs_2014090100_glob.nc <... & & X NMMB-BSC-CTM_2014090100_glob.nc <@Ilogin1> & &

FIGURE 6.19: NCVIEW plot of PS 3D variable for both implementations

6.2. Use cases 67

FIGURE 6.20: NCVIEW plot of SLP 3D variable for both implementations

Next, In terms of performance, we have measured the execution time of each step and the
total execution time for both implementations. On the one hand, for the old implementation
we have measured the time inserting time calls on the main BASH script. On the other hand,
for the implementation with COMPSs, we have measured the time adding system calls on
the main Java class. Table 6.4 summarizes the execution times for each implementation and
the relative speed-ups. Notice that the implementation with COMPSs has an overall speed-
up of s = 1.45 because the fixed, the variable and the post-process steps are splitted in tasks
that can run in parallel. Although we will proceed to a more in-depth study, we can advance
that this speed-up is limited by the data dependencies between the tasks inside each step.
Moreover, the execution time of the Model Simulation step remains the same, allowing us to
ensure that the current implementation of the MPI annotations do not introduce a significant
overhead.

Steps Execution Times (s) Speed-up (u)
Previous Impl. COMPSs Impl.

Fixed 290 117 2.48

Variable 26 19 1.37

Model simulation 244 242 1.01

Post process 38 34 1.12

Total 601 413 1.45

TABLE 6.4: Execution times of the different NMMB/BSC-Dust implementa-
tions for the simulation of 1 day of global domain with 64 cores

Finally, we have proceeded to analyze in-depth the COMPSs implementation. Figure
6.21 shows the task graph of the NMMB/BSC-Dust when executed with COMPSs. For the
sake of clarity, we have highlighted each of the different steps.

Notice that the fortranCompile tasks open a significant parallelism at the beginning of the
FIXED and the VARIABLE phases, but the rest of the tasks define a quite complex graph
with lots of dependencies. In fact, the current implementation defines 37 different tasks and
executes 58 tasks for a single iteration of the main loop (31 for the fixed step, 24 for the
variable step, 1 for the model simulation and 2 for the post-process). Furthermore, the tasks
have at least 3 parameters, at most 47 parameters (allprep task) and 7 parameters in average.

68 Chapter 6. Results and evaluation

d)
\ \ @
7 = S8)
an N
seeeescn v »
(1 | ((.\\ X s
| -

(J FIXED (J VARIABLE (CJ UMO SIMULATION [J POST PROCESS

FIGURE 6.21: Tasks graph of NMMB/BSC-Dust with COMPSs

Thanks to the integration of COMPSs with the Extrae tool we have also obtained post-
mortem trace of the application’s execution. Figure 6.22 shows the Paraver view of the task
trace of the NMMB/BSC-Dust implementation with COMPSs. For the sake of clarity, we
have highlighted each of the steps at the bottom of the image.

FIXED VARIABLE UMO SIMULATION POST PROCESS

FIGURE 6.22: Paraver task view of the NMMB /BSC-Dust execution

6.2. Use cases 69

Notice that the first node is reserved for the COMPSs Master and that the first thread of
each node is reserved for the COMPSs Worker. For the rest of the threads, the application
does not fill all the available resources during the fixed, variable and post-process steps because
there are not enough tasks to run in parallel. In fact, the first compilation tasks (in red) are
run in the fourth resource (threads 1.4.2 - 1.4.17) because it is the first available worker in
the execution. However, the rest of the fixed and variable tasks are executed in the fifth
resource (threads 1.5.2 - 1.5.17) because the first task has been arbitrarilly scheduled to this
resource and the rest of them is scheduled to the same resource because of data locality
(notice that, as shown in the task graph, there is a synchronization point rather than a data
dependency between the first compilation tasks and the rest of the tasks). Regarding the
Model Simulation, the scheduler has reserved all the available resources because it requires
64 cores. On the post-process step, the two tasks are also scheduled to the fifth resource
because of data locality.

As a final note, this implementation is a prototype of the NMMB/BSC-Dust running
with COMPSs. For next implementations, since there are free resources during the fixed,
the variable and the post-process steps, it would be worth to avoid synchronizations between
them and try to overlap the execution of tasks of different steps. It will also be interesting to
use dynamic resource management to release resources during these steps and acquire them
again during the execution of the Model Simulation (since the requirements of this MPI step
are the ones that obligate the application to request so many resources).

70 Chapter 6. Results and evaluation

6.2.2 GUIDANCE
6.2.2.1 Application description

GUIDANCE [9] is a framework for large-scale genome and phenome-wide association
studies on parallel computing platforms developed by the Computational Genomics Group
at the Barcelona Supercomputing Center (BSC). This integrated framework provides an easy
solution to perform Genome and Phenome association analysis, allowing the users to per-
form all the steps in a single execution or in a modular way with optional user intervention.
The current GUIDANCE's implementation is already based on COMPSs to make the appli-
cation integrable to multiple parallel and distributed platforms, and to ensure the efficient
usage of the computing resources.

ASNCUIDANCE

e @
*10K

INPUT Go=NL 7

Reference Panels Quality-Controlled Genotyping
Array Data

Haplotype Phasing
SHAPEIT2

Genotype Imputation using Multiple Reference Panels
IMPUTE2

Post-Imputation QC Filtering

Association Testing for Multiple Phenotypes

WORKFLOW SNPTEST

Allerglo G
e oo Oardlovasoular DermatophHosls

Asthma Dysllpidaemia
Hem
Abdominopehie Hypertensin Insomnia Iron Deflolenoy

Hemorrholds Iitable Bowel

ey Ostioarthritis Ostloporosis Peptio Uloers.

Psyohlatrio Stress Type 2 Diabetes Verioose Velns.

Post-Association Testing
Qc Filtering

Top Hits, Graphs and Statistics Reports

Cross-Phenotype Association Matrix

OUTPUT : o
Results - " '

FIGURE 6.23: GUIDANCE’s schematic representation of the typical complete
Genome and Phenome association analysis. Source: [9]

Figure 6.23 provides a schematic representation of the steps performed by the typical
complete Genome and Phenome association analysis. The application’s workflow starts

6.2. Use cases 71

retrieving Quality Controlled genetic data. Next, it goes through phasing and imputation
using multiple panels and performs an association test considering multiple phenotypes
(SNPTEST). Finally, GUIDANCE provides summary statistics and graphical representations
of the results.

6.2.2.2 Purpose

The purpose is to evaluate the advantages of this thesis” developments with respect to
the previous COMPSs model by upgrading a real data science application that already uses
COMPSs. During the past year, the previous GUIDANCE implementation has become a
huge workflow that can be hardly managed, mainly because of the invocation of many
binary files. The upgrade must simplify the previous implementation without any loose
of performance so that future engineers can keep improving the GUIDANCE framework in
an easy way.

6.2.2.3 GUIDANCE implementation with COMPSs

GUIDANCE’s main code is implemented in Java and defines a task workflow of both
binary invocations and native methods. The main file (Guidance.java) contains the workflow
description and a wrapper function for each task defined inside the Guidancelmpl.java file.
All the tasks are duly annotated inside the Guidanceltf.java file.

FIGURE 6.24: Example of previous GUIDANCE binary task implementation

72 Chapter 6. Results and evaluation

The previous implementation defines 24 different tasks; where 9 of them spawn a binary
execution. Considering only these 9 tasks that spawn a binary execution, all of them have a
common structure (see Figure 6.24): they construct the binary command, spawn a Process-
Builder, launch the binary execution, capture the command output and error, and retrieve
the process exit value. In some specific cases, there is also some pre-process to parse or de-
compress the given arguments, and some post-process to rename or compress the output
files. Notice that this structure is repeated several times among the code and gets the code
dirty for the final user.

Regarding the execution, GUIDANCE'’s smallest test lasts 9780 seconds (less than 3
hours) and spawns 1010 tasks. The test size cannot be smaller because the test must cover
all the possibilities within the workflow. As depicted in the cropped task graph shown in
Figure 6.25, the GUIDANCE implementation has an initialization phase with phew paral-
lelism, an intermediate phase with a scatter/gather structure, and a final phase to analyze
the results.

(_JINITIALIZATION [JSCATTER /GATHER FINALIZATION

FIGURE 6.25: GUIDANCE's partial task graph

6.2. Use cases 73

6.2.2.4 Evaluation

Regarding programmability, the new annotations allow the users to remove all the Pro-
cessBuilder management required to launch binaries. In the GUIDANCE case, 9 tasks from
the 24 available have been completely removed and substituted by a task with a binary
annotation. Since some of this tasks require pre or post steps (such as compressing and de-
compressing files), we have added 4 additional pre/post tasks. Appendix D contains the
main file and the interface of the GUIDANCE application.

Taking all into consideration, as shown in Figure 6.5 the tasks’ code (Guidancelmpl) has
been reduced by three and the application’s main code (Guidance) has been reduced by a
20 %. On the other hand, the application’s annotation interface has grown since the binary
tasks have more parameters (the previous implementation had an average of 6.5 parameters
per task, and the new implementation has an average of 9.0 parameters per task). The
overall GUIDANCE’s code has been reduced a 23.28 %, mostly due to the removal of the
ProcessBuilder management.

File Implementation Num. Files Blank Comment Code
Guidance NEW 1 327 749 1296
Guidancelmpl NEW 1 193 445 1074
BINARY NEW 1 20 210 55
Guidanceltf NEW 1 32 0 374
TOTAL NEW 43 1862 4108 7125
Guidance OLD 1 457 531 1637
Guidancelmpl OLD 1 1066 1053 3488
Guidanceltf OLD 1 54 41 352
TOTAL OLD 14 2619 2891 9288

TABLE 6.5: GUIDANCE code summary

From our point of view, this new implementation is way easier to maintain than the pre-
vious one since the programmers do not need to handle with the binary invocations directly
(but rather rely on the COMPSs @Binary annotation). Moreover, we have included an ab-
straction layer on the application’s main code so that the programmers can add new steps
to the workflow in an easy templatized way.

Finally, due to time constraints and the shutdown of the MareNostrum III Supercom-
puter this application has only been evaluated in terms of programmability. As future work,
we plan to validate the implementation with big runs in the new MareNostrum IV super-
computer. However, since previous cases did not show up any lose of performance, we do
not expect any improvement nor deterioration of the execution times.

75

Chapter 7

Conclusions and Future work

This Master Thesis provides a first adaptation of the COMPSs programming model to the
needs of the Big-Data Ecosystems. Concerning the COMPSs programming model, this thesis
provides a new set of task annotations to easily integrate Java workflows with the execution
of binaries, and MPI and OmpSs applications. To provide full support to this integration,
we have also implemented two new parameter annotations to add string prefixes and Linux
stream redirections. Taking advantage of the new annotations, we have profited to redesign
the versioning annotations, to extend the task annotations to support environment variables,
and added new annotations for scheduler hints.

Regarding the COMPSs internals, this project has extended the schedulers to support
multi-node actions in a transparent and non-blocking fashion. Furthermore, we have re-
designed the COMPSs Worker Executors to support the execution of non-native tasks and
to reduce the overhead of executing bindings’ tasks (Python, C, and C++ tasks).

The previous implementations have been validated against two proof of concept appli-
cations and two real uses cases. On the one side, the BLAST and the Matrix Multiplica-
tion applications have demonstrated that the new annotations reduce the code complex-
ity while maintaining the performance. On the other side, the NMMB/BSC-Dust and the
GUIDANCE applications have shown that the new COMPSs features adapt to the Big-Data
Ecosystem requirements; providing a simpler, portable and efficient implementation.

During the development of this project, the COMPSs Bindings (for Python, C, and C++
languages) have increasingly gained importance to provide a comfortable integration with
the data science workflows. Hence, as future work, we plan to integrate the new COMPSs
annotations with the COMPSs bindings. Moreover, since the community has reacted pos-
itively to the overhead’s reduction that the new COMPSs Worker Executors provide when
executing binding tasks, we plan to design persistent Python, C and C++ workers that can
communicate through pipes with the current Java persistent worker and reduce even more
this overhead.

Regarding the COMPSs Runtime itself, as future work, we also plan to implement plug-
gable scheduler politics so that users can select the suitable scheduler for their applications.
In this sense, the new schedulers could profit from the new scheduler hints annotation to
have more information about the tasks and take more complex decisions.

Finally, concerning the real uses cases, on the one hand, we want to perform execu-
tions of the NMMB/BSC-Dust application in other supercomputers to take advantage of the
portability that the new COMPSs implementation provides. On the other hand, we want to
do a performance analysis of the new GUIDANCE implementation to validate and compare
it against the previous implementation.

77

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Haustein et al. Perez et al. “Atmospheric dust modeling from meso to global scales
with the online NMMB/BSC-Dust model — Part 2: Experimental campaigns in North-
ern Africa”. In: Atmospheric Chemistry and Physics Journal (ACP) 12 (Mar. 2012), pp. 2933—
2958. URL: http://www.atmos—chem-phys.net/12/2933/2012/

Jack Dongarra et al. “The international Exascale Software Project roadmap”. In: Inter-
national Journal of High Performance Computing Applications 25.1 (Feb. 2011), pp. 3-60.
URL: http://hpc.sagepub.com/content/25/1/3.

Krste Asanovic et al. “A view of the Parallel Computing Landscape”. In: Communica-
tions of the ACM 52.10 (Oct. 2009), pp. 56—67. URL: http: //dl.acm.org/citation.
cfm?1id=1562783.

R. M. Badia et al. “COMP superscalar, an interoperable programming framework”.
In: SoftwareX 3 (Dec. 2015), pp. 32-36. URL: http://dx.doi.org/10.1016/7.
softx.2015.10.004.

Derik et al. Barseghian. “Workflows and extensions to the Kepler scientific workflow
system to support environmental sensor data access and analysis”. In: Ecological Infor-
matics 5 (2010), pp. 42-50. URL: http://dx.doi.org/10.1016/j.ecoinf.2009.
08.008.

National Center for Biotechnology Information (NCBI). Blast. URL: https://blast.
ncbi.nlm.nih.gov/Blast.cgi.

Barcelona Supercomputing Center (BSC). Barcelona Supercomputing Center (BSC). URL:
http://www.bsc.es.

Barcelona Supercomputing Center (BSC). Extrae Tool. URL: https://tools.bsc.
es/extrae.

Barcelona Supercomputing Center (BSC). Guidance. URL: http: //cg.bsc.es/
guidance/.

Barcelona Supercomputing Center (BSC). MareNostrum 3 User Guide. URL: https :
//www.bsc.es/support/MareNostrum3—-ug.pdf.

Barcelona Supercomputing Center (BSC). Minotauro. URL: https://www.bsc.es/
innovation-and-services/supercomputers—-and-facilities/minotauro.

Barcelona Supercomputing Center (BSC). NMIMB BSC-Dust. URL: http://www.bsc.
es/ESS/nmmb_bsc—-dust.

Barcelona Supercomputing Center (BSC). Nord III. URL: https://www.bsc.es/
user—-support/nord3.php.

Barcelona Supercomputing Center (BSC). OmpSs. URL: https : / /pm . bsc . es/
ompss.

Barcelona Supercomputing Center (BSC). Paraver Tool. URL: https://tools.bsc.
es/paraver.

Universitat Politecnica de Catalunya (UPC). Universitat Politecnica de Catalunya (UPC).
URL: http://www.upc.es.

http://www.atmos-chem-phys.net/12/2933/2012/
http://hpc.sagepub.com/content/25/1/3
http://dl.acm.org/citation.cfm?id=1562783
http://dl.acm.org/citation.cfm?id=1562783
http://dx.doi.org/10.1016/j.softx.2015.10.004
http://dx.doi.org/10.1016/j.softx.2015.10.004
http://dx.doi.org/10.1016/j.ecoinf.2009.08.008
http://dx.doi.org/10.1016/j.ecoinf.2009.08.008
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.bsc.es
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
http://cg.bsc.es/guidance/
http://cg.bsc.es/guidance/
https://www.bsc.es/support/MareNostrum3-ug.pdf
https://www.bsc.es/support/MareNostrum3-ug.pdf
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/minotauro
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/minotauro
http://www.bsc.es/ESS/nmmb_bsc-dust
http://www.bsc.es/ESS/nmmb_bsc-dust
https://www.bsc.es/user-support/nord3.php
https://www.bsc.es/user-support/nord3.php
https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
http://www.upc.es

78 BIBLIOGRAPHY

[17] Scala Center. Scala Programming Language. URL: https://www.scala-lang.org/.

[18] Shigeru Chiba. “Load-time Structural Reflection in Java”. In: ECOOP 2000 - Object-
Oriented Programming 1850 (May 2000), pp. 313-336. URL: http://dx.doi.org/
10.1007/3-540-45102-1_16.

[19] COMP Superscalar (COMPSs). COMP Superscalar (COMPSs). URL: http://compss.

bsc.es.

[20] Scripps Institution of Oceanography David W. Pierce. NCView. URL: http://meteora.
ucsd.edu/~pierce/ncview_home_page.html.

[21] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (Jan. 2008), pp. 107-113. URL: http :
//dl.acm.org/citation.cfm?id=1327492.

[22] Ewa Deelman. “Big Data Analytics and High Performance Computing Convergence
Through Workflows and Virtualization”. In: Big Data and Extreme-Scale Computing
(2016). URL: http://www.exascale.org/bdec/sites/www.exascale.org.
bdec/files/whitepapers/deelman-bdec2016.pdf.

[23] Jests Labarta et al. Enric Tejedor Rosa M. Badia. “PyCOMPSs: Parallel computational
workflows in Python”. In: The International Journal of High Performance Computing Ap-
plications (IIHPCA) 31 (2017), pp. 66-82. URL: http://dx.doi.org/10.1177/
1094342015594678.

[24] R Foundation. R Programming Language. URL: https://www.r-project.org/.
[25] GNU. Bash. URL: https://www.gnu.org/software/bash/.

[26] GNU. C Socket implementation. URL: https://www.gnu.org/software/libc/
manual/html_node/Sockets.html.

[27] GNU. GNU Plot. URL: http://www.gnuplot.info/.
[28] Galaxy Community HUB. Galaxy Project. URL: https://galaxyproject.org/.

[29] Intel. Intel Math Kernel Library (Intel MKL). URL: https://software.intel.com/
en-us/intel-mkl.

[30] Intel. Intel MPI implementation. URL: https://software.intel.com/en-us/
intel-mpi-library.

[31] F G. Gustavson J.]J. Dongarra and A. Karp. “Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine”. In: SIAM Review 26.1 (Jan. 1984),
pp- 91-112. URL: http://dx.doi.org/10.1137/1026003.

[32] Anubhav etal. Jain. “FireWorks: a dynamic workflow system designed for high-throughput
applications”. In: Concurrency and Computation: Practice and Experience 27.17 (2015),
pp- 5037-5059. URL: http://dx.doi.org/10.1002/cpe.3505.

[33] Rosa M. Badia Javier Conejero Sandra Corella and Jesus Labarta. “Task-based pro-
gramming in COMPSs to converge from HPC to big data”. In: The International Jour-
nal of High Performance Computing Applications (Apr. 2017), p. 1094342017701278. URL:
https://doi.org/10.1177/1094342017701278.

[34] R.M. Badia et al. Lordan E. “ServiceSs: an interoperable programming framework for
the Cloud”. In: Journal of Grid Computing 12.1 (Mar. 2014), pp. 67-91. URL: https :
//digital.csic.es/handle/10261/132141.

[35] Andy Konwinski Matei Zaharia Patrick Wendell and Holden Karau. Learning Spark.
2015.

[36] Eclipse Members. Eclipse IDE. URL: https://eclipse.org/.

https://www.scala-lang.org/
http://dx.doi.org/10.1007/3-540-45102-1_16
http://dx.doi.org/10.1007/3-540-45102-1_16
http://compss.bsc.es
http://compss.bsc.es
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://dl.acm.org/citation.cfm?id=1327492
http://dl.acm.org/citation.cfm?id=1327492
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/deelman-bdec2016.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/deelman-bdec2016.pdf
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1177/1094342015594678
https://www.r-project.org/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/libc/manual/html_node/Sockets.html
https://www.gnu.org/software/libc/manual/html_node/Sockets.html
http://www.gnuplot.info/
https://galaxyproject.org/
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library
http://dx.doi.org/10.1137/1026003
http://dx.doi.org/10.1002/cpe.3505
https://doi.org/10.1177/1094342017701278
https://digital.csic.es/handle/10261/132141
https://digital.csic.es/handle/10261/132141
https://eclipse.org/

BIBLIOGRAPHY 79

[37]
[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]
[53]
[54]

MongoDB. MongoDB. URL: https://www.mongodb. com.

MPI: A Message-Passing Interface Standard. June 2015. URL: http : / /mpi - forum.
org/docs/.

Oracle. Java Programming Language. URL: https: //www.oracle.com/es/ java/
index.html.

Oracle. Java Socket implementation. URL: https://docs.oracle.comn/javase/7/
docs/api/java/net/Socket .html.

Oracle. JavaNIO. URL: http : //www . oracle . com/technetwork /articles/
Jjavase/nio-139333.html.

Oracle. Socket Definition. URL: https://docs.oracle.com/javase/tutorial/
networking/sockets/definition.html.

Apache Organization. Apache Hadoop. URL: http://hadoop.apache.org/.
Apache Organization. Taverna. URL: http://www.taverna.org.uk/.
Apache Maven Organization. Maven. URL: https://maven.apache.org/.
JSON Organization. [SON. URL: http://www. json.org/.

Yaml Organization. YAML. URL: http://yaml.org/.

IBIS Project. JavaGAT. URL: http://www.cs.vu.nl/ibis/javagat.html.

Python. Python Socket implementation. URL: https : / / docs . python . org/ 3/
howto/sockets.html.

Daniel A. Reed and Jack Dongarra. “Exascale Computing and Big Data”. In: Commu-
nications of the ACM 58.7 (July 2015), pp. 56-68. URL: http: //cacm. acm. org/
magazines/2015/7/188732-exascale-computing—and-big-data.

Manchester Joint team from the universities of Southampton and Oxford in the UK.
myExperiment. URL: https://www.myexperiment.org/.

Apache Spark. Apache Spark. URL: http://spark.apache.org/.
Swift. Swift Programming Language. URL: http://swift-lang.org/.

Open MPI Development Team. Open MPI implementation. URL: https://www.open-—
mpi.org/.

https://www.mongodb.com
http://mpi-forum.org/docs/
http://mpi-forum.org/docs/
https://www.oracle.com/es/java/index.html
https://www.oracle.com/es/java/index.html
https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
http://www.oracle.com/technetwork/articles/javase/nio-139333.html
http://www.oracle.com/technetwork/articles/javase/nio-139333.html
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
http://hadoop.apache.org/
http://www.taverna.org.uk/
https://maven.apache.org/
http://www.json.org/
http://yaml.org/
http://www.cs.vu.nl/ibis/javagat.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
http://cacm.acm.org/magazines/2015/7/188732-exascale-computing-and-big-data
http://cacm.acm.org/magazines/2015/7/188732-exascale-computing-and-big-data
https://www.myexperiment.org/
http://spark.apache.org/
http://swift-lang.org/
https://www.open-mpi.org/
https://www.open-mpi.org/

Appendices

81

83

Appendix A

Blast: complete code

A.1 Blast.java

Appendix A. Blast: complete code

A.l. Blastjava

Appendix A. Blast: complete code

A.2 Blastltf.java

A.3. Blastlmpl.java

A.3 Blastlmpl.java

Appendix A. Blast: complete code

A.4 BINARY.java

89

Appendix B

Matmul: complete code

B.1 Matmul.java

Appendix B. Matmul: complete code

B.2. Matmulltfjava 91

B.2 Matmulltf.java

92 Appendix B. Matmul: complete code

B.3 Matmullmpl.java

B.4. MPljava

B.4 MPILjava

B.5 Matmul.c

Appendix B. Matmul: complete code

B.6. Block.java

B.6 Block.java

Appendix B. Matmul: complete code

B.6. Block.java 97

99

Appendix C
NMMB/BSC-Dust: code highlights

C.1 Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.1. Nmmb.java

Appendix C. NMMB/BSC-Dust: code highlights

C.2 Nmmbltf.java

C.2. Nmmbltfjava

Appendix C. NMMB/BSC-Dust: code highlights

C.2. Nmmbltfjava

Appendix C. NMMB/BSC-Dust: code highlights

C.2. Nmmbltfjava

Appendix C. NMMB/BSC-Dust: code highlights

C.2. Nmmbltfjava 119

121

Appendix D
GUIDANCE: code highlights

D.1 Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.1. Guidance.java

Appendix D. GUIDANCE: code highlights

D.2. Guidanceltf.java

D.2 Guidanceltf.java

Appendix D. GUIDANCE: code highlights

D.2. Guidanceltf.java

Appendix D. GUIDANCE: code highlights

D.2. Guidanceltf.java

Appendix D. GUIDANCE: code highlights

D.2. Guidanceltf.java 159

	Dedication
	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Context
	Objectives
	Detailed Objectives

	Document Structure

	State of the art
	Distributed libraries
	MPI
	Sockets

	Workflow Frameworks
	Frameworks with explicit workflows' definition
	Taverna
	Fireworks
	Kepler
	Galaxy

	Frameworks with implicit workflows' definition
	MapReduce
	Spark
	Swift
	COMP Superscalar (COMPSs)

	COMPSs overview
	Programming Model
	Runtime System
	Task Workflow

	Tools and methodology
	Tools
	Methodology
	Scientific method design
	Development strategy
	Validation strategy

	Implementation
	Programming model annotations
	New task annotations
	Environment variables as annotations
	Versioning task annotation
	SchedulerHints task annotation
	New stream parameter annotation
	New prefix parameter annotation

	Scheduling modifications
	Treatment of non-native tasks
	Multi-node execution actions
	Treatment of SchedulerHints

	Worker enhancements
	Invokers
	External executors enhancement

	Results and evaluation
	Proofs of concept
	BLAST
	Application description
	Purpose
	Evaluation

	Matmul
	Application description
	Purpose
	Hybrid COMPSs and MPI Matmul implementation
	Evaluation

	Use cases
	NMMB/BSC-Dust
	Application description
	Purpose
	NMMB/BSC-Dust implementation with COMPSs
	Evaluation

	GUIDANCE
	Application description
	Purpose
	GUIDANCE implementation with COMPSs
	Evaluation

	Conclusions and Future work
	Bibliography
	Appendices
	Blast: complete code
	Blast.java
	BlastItf.java
	BlastImpl.java
	BINARY.java

	Matmul: complete code
	Matmul.java
	MatmulItf.java
	MatmulImpl.java
	MPI.java
	Matmul.c
	Block.java

	NMMB/BSC-Dust: code highlights
	Nmmb.java
	NmmbItf.java

	GUIDANCE: code highlights
	Guidance.java
	GuidanceItf.java

