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Abstract 
Branch prediction accuracy is a very important factor 

for superscalar processor performance. The ability to pre- 
dict the outcome of a branch allows the processor to effec- 
tively use a large instruction window, and extract a larger 
amount of Instruction Level Parallelism (ILP). 

In this paper we will examine the effect of code layout op- 
timizations on branch prediction accuracy and final proces- 
sor performance. These code reordering techniques align 
branches so that they tend to be not taken, achieving bet- 
ter instruction cache performance and increasing the fetch 
bandwidth. Here we focus on how these optimizations affect 
both static and dynamic branch prediction. 

Code reordering mainly increases the number of not tak- 
en branches, which benefits simple static predictors, which 
reach over 80% prediction accuracy with optimized codes. 
This branch direction change produces two effects on dy- 
namic branch prediction: on the positive side, trades neg- 
ative interference for neutral or positive interference in the 
prediction tables; on the negative side, it causes a worse 
distribution of the Branch History Register (BHR), causing 
many possible history values to be unused. 

Our results show that code reordering reduces neg- 
ative Pattern History Table (PHT) interference, increas- 
ing branch prediction accuracy on small branch predic- 
tors. For example, a OSKB gshare improves from 91.4% to 
93.6%, and a 0.4KB gskew predictor from 93.5% to 94.4%. 
For larger history lengths, the large amount of not taken 
branches can degrade predictor performance on dealiased 
schemes, like the 16KB agree predictor which goes from 
96.2% to 95.8%. 

But processor Performance not only depends on branch 
prediction accuracy. Layout optimized codes have much 
better instruction cache performance, and wider fetch 
bandwidth. Our results show that when all three factors 
are considered together, code reordering techniques always 
improve processor performance. For example, performance 
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still increases by 8% with an agree predictor, which loses 
prediction accuracy, and it increases by 9% with a gshare 
predictor, which increases prediction accuracy. 

1. Introduction 

Fetch performance broadly depends on three factors: the 
number of instruction cache misses, the width of instruc- 
tions fetched each cycle, and the branch prediction accu- 
racy. The first two factors determine the speed at which 
instructions are provided to the processor, the third deter- 
mines the quality of the instruction provided, that is, how 
many instructions will be provided between instruction win- 
dow squashes, limiting the amount of ILP that the processor 
is able to exploit. 

Code reordering techniques are a known approach to the 
first two factors. The number of instruction cache misses 
depends on the code layout, by mapping the routines in a 
program so that they do not conflict with each other, we can 
reduce the number of cache misses by almost an order of 
magnitude [17,7,6]. By aligning basic blocks so that they 
execute sequentially, we can further increase spatial locality 
increasing both cache performance and fetch bandwidth [S, 
17, 25, 191. The third factor has motivated the search of 
more accurate branch predictors. 

The performance loss due to branch instructions was first 
approached with static branch predictors, which always pre- 
dict the same outcome for a given branch. This prediction 
was obtained either using very simple heuristics [23], static 
analysis [l], or profile information [5,4]. 

The accuracy of static branch predictors can be increased 
using code transformations, which usually imply code repli- 
cation [14, 27, 9, 13, 161, and branch alignment [3]. This 
branch alignment is nothing but a code reordering optimiza- 
tion which targets an increase in the static branch prediction 
accuracy: knowing the branch outcome, it is aligned to fol- 
low the heuristic implemented by the static predictor. 

As the transistor budget in the processor increased, 
branch prediction moved to the more accurate dynamic 
branch predictors. These store the recent branch behavior, 
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and lookup the data each time the branch executes to pro- 
duce a direction prediction [23,26]. 

But the size of these dynamic tables is limited, and some- 
times two different branches end up sharing the same PHT 
entry. This is called prediction table interference, and is the 
main cause for decreased prediction accuracy [28]. 

Dynamic prediction tables can be organized in a clever 
way to reduce prediction table interference, leading to the 
recently proposed dealiased schemes [ 10, 12,241. 

In this work we examine the effect on branch predic- 
tion accuracy of the code reordering optimizations which 
target the instruction cache. We examine the interaction 
of these optimizations with both static and dynamic branch 
predictors using the Software Trace Cache layout optimiza- 
tion [19]. 

The main effect of these code reordering techniques is an 
increase in the fraction of not taken branches. This increase 
favors static predictors which predict that all branches will 
be not taken, or that all forward branches will be not taken, 
going from 60% to over 80% prediction accuracy. 

Such an increase in the number of not taken branches al- 
so favors neutral or positive interference, because branches 
sharing the same PHT entry are likely to exhibit the same 
behavior, and will update the counter in the same direction. 
This interference reduction is specially significant in small 
predictors, and increases accuracy in a 0.5KB gshare from 
91.4% to 93.6%, and a 0.4KB gskew predictor from 93.5% 
to 94.4%. 

As larger tables are used, prediction table interference 
naturally decreases, reducing the benefits of an optimized 
layout. As history length increases, the large number of not 
taken branches produces a worse distribution of the BHR 
values, increasing interference in the dealiased predictors. 
The negative BHR effect decreases performance in mid to 
large sized dealiased predictors, like the 16KB agree pre- 
dictor which goes from 96.2% to 95.8%. 

Finally, we show results on the overall processor perfor- 
mance because not only branch prediction accuracy affect- 
s IPC. Instruction cache performance and fetch bandwidth 
also play an important role, and more than compensate for 
the possible degradation in prediction accuracy. Processor 
performance still increases by 8% with an agree predictor 
w/out filtering (which loses prediction accuracy), and in- 
creases by 9% with a gshare predictor (which increases pre- 
diction accuracy). 

1.1. Simulation setup 

All the results in the paper were obtained using a simu- 
lator derived from the SimpleScalar 3.0 tool set [2]. We run 
most of the SPECint95 benchmarks plus the PostgreSQL 
6.3 database system running a subset of the TPC-D queries. 
All programs were compiled statically and with -04 opti- 
mization level using Compaq’s C compiler. 

Benchmark 
go 

mXXksim 
6CC 

compress 

li 

per1 
vortrex 
postgres 

iJpeg 

Train Test 
UNUSED Profile data unavailable, crashed 
with pixie and ATOM 
train test 
train cccp.i 
UNUSED: Considered too small to be repre- 
sentative, has too few branches 
train test 
vigo.ppm specmun.ppm 
UNUSED Simulation time too long. 
train test 
Q3,4,5,6,9,15 Q2,3,4,6,11,12,13,14,15,17 

Table 1. Simulated benchmarks and their 
training and test inputs. 

Table 1 shows the six benchmarks used and the input sets 
used to obtain the profile information and for testing, and 
the reasons for not including the remaining 3 SPECint95 
codes. All simulations were run to completion. All figures 
in the paper present the arithmetic average of all executed 
benchmarks, where all benchmarks have the same weight. 

In order to simulate the optimized code layout we gen- 
erate an address translation table using the Software Trace 
Cache algorithm [ 191 and feed the simulator with translated 
PC’s and recomputed branch outcomes. 

1.2. Paper structure 

The rest of this paper is structured as follows: In Sec- 
tion 2 we present previous related work regarding both code 
layout optimizations and branch prediction, we also de- 
scribe the dynamic branch prediction schemes used in the 
paper. Section 3 examines the effect of code layout opti- 
mizations on static branch prediction accuracy. Section 4 
does the same for dynamic branch predictors, including 
dealiased prediction schemes. In Section 5 we measure not 
only branch prediction accuracy, but overall processor per- 
formance in order to account for all the effects of code re- 
ordering, both positive and negative. Finally, in Section 6 
we summarize the influence of code layout optimizations 
on branch prediction and present our conclusions. 

2. Related work 

We can classify related work in two main groups: code 
layout optimization techniques, and branch prediction tech- 
niques. 

Code layout optimizations usually target a better utiliza- 
tion of the instruction cache, and use profile data or heuris- 
tics to lay out the routines in a program [ 17, 7, 61, and the 
basic blocks in a routine [8, 17, 25, 191 to minimize the 
number of conflict misses. Reducing the number of conflict 
misses in the instruction cache, code reordering increases 
fetch performance, and overall processor performance. The 
use of both routine placement and basic block reordering 

190 



can also increase the effective fetch bandwidth provided by 
increasing code sequentiality (reducing the number of tak- 
en branches). Both factors prove important at increasing the 
fetch performance, as shown in [19, 181. 

Code layout optimizations have also been used to in- 
crease the static branch prediction accuracy, using profile 
data [5,4] or complex static analysis techniques [I] to pre- 
dict the branch direction, and then align the branch so that it 
follows a more simple heuristic [3], like making all branch- 
es usually taken (or usually not taken), or aligning branches 
so that only a forward branch is usually not taken [23]. In 
this work we examine how code layout optimizations target- 
ing the fetch engine affect both static and dynamic branch 
prediction. 

There have been other code transformations proposed to 
improve static branch prediction accuracy, usually implying 
code replication [14,27,9, 13, 161. These code transforma- 
tions are beyond the scope of this work. 

Basic branch prediction techniques can also be broadly 
classified in three groups: static, semi-static, and dynamic 
predictors. Static prediction techniques are based solely on 
static analysis and simple prediction strategies, and always 
predict the same outcome for a given branch. Semi-static 
branch predictors improve on static techniques by using 
profile data obtained at run-time to replace the static anal- 
ysis and heuristics used, but still predict always the same 
outcome for a given branch. The more accurate dynamic 
branch predictors store this run-time information in dynam- 
ic tables, and lookup this data every time the branch is exe- 
cuted to make a direction prediction. The different dynamic 
branch predictors differ in the way they store the past be- 
havior of a branch. 

The Software 'kace Cache 

The code layout optimization used in this paper is the Soft- 
ware Trace Cache (STC) [?]. The STC maps basic block- 
s so that sequentially executed basic blocks tend to be in 
consecutive memory positions, building basic block chain- 
s than may span multiple routines. The generated chains 
are then mapped in memory trying to minimize conflicts a- 
mong them, by mapping two popular chains next to each 
other, and mapping the most heavily used chains to a spe- 
cially reserved area of the instruction cache that we call the 
Conflict Free Area (CFA). 

The chain mapping algorithm should have little or no in- 
fluence on the branch prediction mechanism, only the basic 
block chaining is relevant for that purpose. The results ob- 
tained in this paper should be valid for any other code layout 
optimization which aligns branches towards their not-taken 
target. 

Two-level adaptive predictors 

The more simple dynamic branch predictor (the bimodal 
branch predictor [23]) simply keeps a saturating two-bit 
counter for each branch, increasing the counter if the branch 
is taken, and decreasing the counter if it is not taken. The 
branch is predicted to behave as the high bit of the counter 
says (taken if it is 1, not taken otherwise). 

But a branch outcome not only depends on the branch 
itself, it also depends on the outcomes of the previously 
executed branches, and on the past outcomes of the same 
branch. 

As shown in Figure 1, two-level adaptive branch predic- 
tors [26] keep two levels of data about the branch behavior. 
The Level 1 table keeps information about the past branch 
outcomes. These table can store the outcomes of all branch- 
es in a single register (global history, named PAp,s,g, 
shown in Figure l.a), or it can have a separate register 
for each branch (private or self history, named GAp, s, g, 
shown in Figure 1.b). The Level 1 table is usually referred 
to as the Branch History Register (BHR). The BHR is used 
to index into the Level 2 table, composed of two-bit satu- 
rating counters managed as in the bimodal predictor. The 
Level 2 table is usually referred to as the Pattern History 
Table (PHT). 

By storing data this way, any given entry in the PHT cor- 
responds to a branch address in a given history situation, 
which allows the predictor to make a more informed deci- 
sion, achieving higher accuracy. 

It is possible to improve the Level 2 indexing function by 
using a hash function of the branch address and the BHR, 
like an XOR [ 111. This function distributed branches in the 
PHT in a better way, increasing the accuracy of global his- 
tory predictors. The resulting scheme (shown in Figure 1.a) 
is the gshare branch predictor. 

Dealiased predictors 

Two-level adaptive branch predictors distribute data so that 
each branch has a separate PHT entry for each different his- 
tory situation. But the prediction tables are finite, and some- 
times two different branches end up sharing the same PHT 
entry. 

We classify PHT interference in three types: when the 
conflict does not change the 2-bit counter value, we talk 
about neutral interference; if the changed counter value pro- 
duces a correct prediction where there would have been a 
misprediction, we talk about positive interference; if the 
conflict causes a misprediction when the old counter was 
correct, we talk about negative interference. Negative inter- 
ference happens more often than positive interference, and 
is the main cause of decreased prediction accuracy [28,20]. 

Dealiased branch predictors reduce negative PHT inter- 
ference by changing the way they store data in the predic- 
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Pattern History Table 

Branch address 

U 

(a) Gshare predictor (global history) (b) PAg predictor (private history) 

Figure 1. Two-level adaptive branch predictors store data in two separate tables, using the first table 
to index into the second level. 

I 
Panml updatc 

.1 (only IhS ~slec~ed prdaor l  ] Branchaddress I Globrl history 
riziGy- 

Grhm B 
Mostly Mostly 

Not Taken Take" 
Branches Branches 

.... 5 Bimodal 

L N s l 2  mhlc w s  if Bhr bil ICIS PrrdiclFd 
predicum a p s  mm h r a o c h d w l m  (TakcnlNollakml 

the bhnbil \ 1 

(a) Agree predictor (b) Bi-mode predictor (c) Gskew predictor 
Figure 2. Dealiased branch prediction schemes. 

tion tables. 
Figure 2.a shows the agree prediction scheme [24]. The 

agree predictor adds an extra bit of information associated 
to each branch into the BTB/instruction cache: the bias bit. 
This bit predicts the branch direction. The meaning of the 
PHT counter changes: the two-bit counter now predicts if 
the branch behavior will agree with the bias bit, or not. This 
allows two branches with opposite behavior (a mostly taken 
and a mostly not taken branch) to use the same PHT entry, 
without creating a negative conflict because both branches 
will push the counter towards the agree position, being the 
bias bit what differentiates them. 

The bi-mode branch predictor [ 101 (shown in Figure 2.b) 
is based on the same principle as the agree predictor: sepa- 
rating branches among usually taken and usually not taken 
sub-streams. The bi-mode predictor uses a separate gshare 
component to keep track of each sub-stream, avoiding inter- 
ference among them, and uses a bimodal branch predictor 
to classify a branch into each sub-stream. Interference a- 
mong the two sub-streams is avoided because each branch 
only updates the gshare which keeps track of its sub-stream. 

The gskew branch predictor [12,22] (Figure 2.c) is based 
on the fact that most aliasing in the prediction tables is due 
to conflict aliasing, not capacity problems. Derived from 
the skew-associative caches [21], the gskew predictor stores 

r; 
branches in three separate tables, which are accessed with 
three different indexes. If a branch data is aliased in one of 
the tables, it is expected that it will not be so in the other 
two, obtaining a correct prediction with a majority vote. 

Code reordering techniques are known to improve the 
instruction cache miss rate and the fetch bandwidth. Next, 
we examine how they interact with the third factor in fetch 
performance: the branch prediction mechanism. 

3. Effect on static prediction 

In this section we will examine the prediction accuracy 
that some simple static branch prediction schemes achieve 
for the examined benchmarks. The static strategies exam- 
ined are: predict that all branches will be taken, predict 
that all branches will be not taken, predict that backward- 
s branches will be taken and forward branches will not, and 
predict that a branch will always take its most usual direc- 
tion based on profile information. 

Figure 3 shows the branch prediction accuracy of some 
simple static branch prediction strategies (always taken, al- 
ways not taken, backwards taken forward not taken) and 
the profile based predictor for both the original code lay- 
out and the compiler optimized layouts. For the optimized 
layout, we show results for the same input set used for 
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training (self-optimized) and for a different input set (cross- 
optimized). The prediction accuracy of an 8KB Gshare pre- 
dictor is shown for comparison purposes. 

80 - 

I Taken .- e e 60- 
NotTakcn - P .  I F”T 

: 40- c Pmfils 

8KB Gsharc d 

20 - 

Base Selfaptimized Cmss-Oplimizd 
Code Layout 

Figure 3. Static branch prediction accuracy 
for the original and optimized code layouts 
(self and cross trained). 

The simple static prediction approaches prove quite use- 
less for the baseline code layout with near 50% predic- 
tion accuracy, only the BTFNT predictor reaches 60%, and 
doesn’t go under 50% for any of the studied benchmark- 
s (individual benchmark results not shown). On the other 
hand, the profile static predictor proves very accurate, pre- 
dicting correctly over 90% of the branches. This shows that 
branches can be predicted statically, but not with this simple 
strategies. 

We optimize the code layout using the Software Trace 
Cache (STC) algorithm [19], which targets an increase in 
the sequentiality of the code, that is, it reorders basic blocks 
so that branches tend to be not taken. 

Once we have optimized the code layout, the static 
branch prediction accuracy changes dramatically. The Not 
Taken and the BTFNT predictors now predict correctly over 
80% of the branches, losing some accuracy in the cross- 
trained test. This 80% prediction accuracy shows that static 
branch prediction can be very accurate for these optimized 
code layouts; but it is still much lower than what can be 
achieved with modem two level adaptive branch predictors 
like the Gshare. 

To gain further insight on this high predictability of op- 
timized binaries, we explore in depth the changes in branch 
behavior introduced by the code layout optimization. Fig- 
ure 4.a shows a classification of all dynamic branches by 
the percentage of times they are taken or not taken for both 
the original and the optimized code layouts. Branches to the 
left of the plot are always not taken, while branches to the 
right are always taken. 

Examining the branch classification for the original code 
layout, we observe that 36% of the branches are always 

h 

Pcmnt times Taken 

Figure 4. The use of optimized code layouts 
reverses branch direction, so that they tend 
to be usually not taken. 

not taken, while 32% are always taken. The rest of the 
branches are evenly spread across all taken percent values, 
with a slightly higher peak for branches that are 50% taken. 
This explains the low prediction accuracy obtained, because 
branches do not seem to follow such simple behavior rules. 

By optimizing the code layout, we can reverse the direc- 
tion of those branches which are taken more than 50% of 
the times. This way, a branch which was taken 80% of the 
times will now only be taken 20% of the times. 

The classification for the optimized code layout shows 
that we were quite successful at reversing the branch di- 
rection for those usually taken branches. The fraction of 
always taken branches is reduced from 32% to lo%, and 
most categories over 50% taken also present reductions in 
the number of branches. This leads to a significant increase 
in the number of always not taken branches, from 36% to 
59%. With most highly biased branches in the not taken 
side, and most other branches moving from over 50% taken 
to mostly not taken, the prediction accuracy of an always 
not taken (or BTFNT) predictor, increases significantly, as 
we have seen in Figure 3. 

The increase in the number of usually not taken branch- 
es explains the different behavior of the two code layout- 
s regarding static branch prediction. Further increases in 
static prediction accuracy can be expected of a code layout 
optimization that explicitly targets a specific branch predic- 
tor, like the BTFNT predictor, or uses code replication tech- 
niques to use path information in its static predictions. 

Next, we will examine how this change in branch direc- 
tion affects dynamic branch prediction. 
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4. Effect on dynamic prediction 
4.1. Two-level adaptive predictors 

Figure 5 shows the effect of code reordering on dynam- 
ic prediction accuracy for the Gshare, PAg, and bimodal 
predictors. Predictor sizes from 512 bytes to 16KB are ex- 
plored for both the baseline (dotted line) and the optimized 
code layout (solid line). 

- . . 'L - 2 _- -". - -.:- . . ... .... -. . ... . .. , .. _--,------- 

Figure 5. Dynamic prediction accuracy for 
both the base and the STC optimized code 
layouts using two-level adaptive prediction 
schemes. 

Clearly, the STC increases the prediction accuracy of the 
examined branch predictors, specially for the smaller pre- 
dictor sizes. Both the Gshare and the bimodal predictors 
seem to converge at infinite predictor size, which points that 
the benefits of using the STC are related to prediction table 
interference. The larger the table, the less interference, the 
closer the prediction accuracy for both layouts. 

Prediction table interference 

Figure 6 shows the percent of dynamic branches which 
introduce conflicts in the prediction tables of the gshare 
branch predictor with both the baseline and the optimized 
code layouts. We classify conflicts in three groups: neu- 
tral interference when the conflict does not change the pre- 
diction, and positive or negative if the conflict changes the 
prediction for good or bad. 

As expected, there is a significant reduction in the num- 
ber of negative conflicts when the STC layout is used with 
the Gshare branch predictor. For example, a 1KB gshare 
goes down from 1.45% of negative conflicts to 0.79% using 
the optimized code layout. 

Intuitively, the increase in the number of not taken 
branches favors positive interference, because it is more 
likely that when two branches interfere, they both behave 
the same way (both not taken) resulting in a positive or neu- 
tral conflict. 

Figure 6. Percent of dynamic branches which 
cause interference in the gshare prediction 
tables for the baseline and optimized code 
layouts . 

The total amount of conflicts shows a different behavior. 
The optimized code layout has fewer neutral conflicts for 
small predictor sizes, but it ends up with a larger amount of 
neutral interference for the largest configurations. 

We will look further into this neutral interference in- 
crease in the next section, where we will examine dealiased 
branch prediction schemes. 

4.2. Dealiased branch predictors 

Given that the use of an optimized code layout is reduc- 
ing the negative interference found in the dynamic predic- 
tion tables, it is interesting to examine what happens with 
modem branch predictors that are already organized to min- 
imize such interference like the agree [24], bimode [lo], 
and gskew [12, 221 predictors. We will refer to these pre- 
dictors as dealiased branch prediction schemes. 

Figure 7 shows the prediction accuracy of the dealiased 
predictors with both the baseline and the optimized code 
layouts. The prediction accuracy of the gshare predictor 
with the optimized layout is shown for reference purposes. 

These results show that for small predictor sizes, the use 
of optimized code layouts obtains equivalent or higher ac- 
curacy even in the dealiased branch predictors. The advan- 
tage of the optimized layouts is specially clear in the 0.4KB 
gskew predictor, which increases prediction accuracy from 
93.5% to 94.4%. 

For medium and large predictor sizes, all dealiased 
branch predictors obtain higher accuracy with the baseline 
code layout, being the difference specially significant with 
the 16KB agree predictor, which obtains a 96.2% accura- 
cy with the baseline layout and a 95.8% with the optimized 
code. 

A more important result shows that the use of a large 
agree or bimode predictor with the optimized code layout 
does not yield sigmficant improvements over a gshare pre- 
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(c) Gskew predictor 
Figure 7. Effect of the optimized code layout on dealiased branch predictors. 

dictor. Only the gskew predictor obtains significantly better 
results than the gshare predictor when using the optimized 
code layout. 

Prediction table interference 

Figure 6 shows the percent of dynamic branches which 
introduce conflicts in the prediction tables of the gshare 
branch predictor with the optimized code layout and the a- 
gree predictor using both code layouts. 

Figure 8. Percent of dynamic branches which 
cause interference in the gshare prediction 
tables optimized code layout and the agree 
predictor using both code layouts. 

These results show that the agree prediction scheme with 
a non optimized layout obtains a slightly better negative in- 
terference reduction than the optimized code layout. It is 
surprising that using the agree predictor, the optimized code 
layout has more negative conflicts than the baseline. 

From these results it seems that the dealiased predictors 
prove more effective at reducing interference than the op- 
timized code layout, but the more important result is that 
it seems more difficult to reduce conflicts in an optimized 
binary. The fact that the optimized code layout has more 

total interference for the larger predictor sizes can explain 
this higher fraction of negative conflicts. 

Branch history register distribution 

The fact that dealiased predictors using an optimized binary 
obtain worse results than a gshare predictor points to some 
other factor hindering the performance of these predictors. 

The high fraction of not taken branches found in the op- 
timized code layout (80% of all branches are not taken) 
may be hindering the branch distribution in the BHR. When 
working with an optimized binary, the BHR will tend to be 
full of zeros, causing many possible BHR values to be never 
or rarely used, leading to a worse branch distribution and a 
loss of useful information to make a correct prediction. 

The dealiased predictors do not benefit from the interfer- 
ence reduction effect, because they are quite good at reduc- 
ing it themselves, thus they only suffer the negative BHR 
effect and loose accuracy with the optimized code layout. 

To analyze this BHR distribution factor, Figure 9 shows 
the number of times each possible history value was found 
in an 1 1-bit global history predictor for both code layouts. 
The BHR values are sorted by the number of zeros their 
binary value contains (from all 1’s to all 0’s). In addition to 
the BHR value usage, the figure shows the average usage, 
and the average + standard deviation. The average usage is 
the same in both code layouts. Note the Y axis is in loglo 
scale. 

The first remarkable aspect of these plots is the position 
of the highest peak. The most popular history value for the 
baseline layout is a BHR full of 1’s (leftmost value), while 
the highest peak of the STC layout corresponds to a BHR 
full of 0’s (rightmost value). Aside from that, the BHR val- 
ue usage in the baseline layout is mostly spread across 1-2 
orders of magnitude. Meanwhile, the STC layout has its 
BHR value usage spread across 4-5 orders of magnitude, 
with very high peaks on a reduced set of values. It is clear 
that values having mostly 1’s are less used than those having 
mostly 0’s. 
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Figure 9. Branch history register value distribution for the baseline code layout (a), and the STC 
optimized layout (b). 

To summarize these observations, we can just look at the 
distance between the average usage and the standard devia- 
tion lines. The more distance between them, the worse the 
BHR value distribution. In this case, the distance between 
both lines in the STC layout is 2 . 5 ~  larger than in the base- 
line code layout. 

5. Processor performance 

The complexity of current processors is already very 
high, and keeps increasing with each generation. Simulat- 
ing such complex designs is not always feasible, specially 
if the design space to explore is large. This leads to many s- 
tudies in which only isolated components are examined, on 
the basis that if that component works better, then overall 
performance will also increase. 

We have shown that the performance impact of the 
branch predictor is heavily dependent of the instruction 
cache performance [15]. New results shown here in this 
paper point that branch prediction accuracy can decline 
when optimized code layouts are used, but we know that 
those same layouts also increase the instruction cache per- 
formance. 

The pedormance benefits of an instruction cache miss 
reduction could compensate for the performance loss due to 
reduced branch prediction accuracy. In order to explore this 
possibility, we simulated a whole out of order processor us- 
ing the sim-outorder simulator of the Simplescalar 3.0 Tool 
set. The detailed simulation setup for our 4-wide processor 
is shown in Table 2. 

Figure 10 shows processor performance measured in IPC 
for both the baseline and the STC code layouts using t- 
wo different branch predictors: the gshare predictor, which 
proves more accurate with the optimized layout; and the 
agree predictor, which proves more accurate with the base- 
line layout. We simulated both a small 16KB instruction 
cache and a larger 64KB cache. 

Item Value Item 
Int ALU 3 L1 Datacache 
Int MULDIV 1 L1 Inst. cache 
FT ALU 1 L1 latency 
Mem ports 2 L2cache 
Window size 64 BTB 
LSQ size 16 RAS 

BPred 

Value 
64KB, 2-way 

16KB or64KB, 2-way 
1 cycle 

2MB, 2-way 
4096 entries, 4 sets 

64 entries 
gshare or agree 

12, 14 and 16 bits 

Table 2. Setup description for the 4-way out 
of order processor examined. 

These results show that the instruction cache miss re- 
duction more than compensates for the loss of branch pre- 
diction accuracy, as the STC layout always performs better 
than the baseline, even with the agree predictor, with a 17% 
improvement on the 16KB cache, and a 9% on the 64KB 
cache. 

Examining the results for each individual code layout 
on the 16KB instruction cache, we observe that the branch 
predictor used does not make a significant difference for 
the baseline layout. Meanwhile, the optimized layout does 
0.5% better with the gshare predictor than with the agree 
predictor. 

When a 64KB instruction cache is used, the baseline lay- 
out obtains a 2% improvement using the agree predictor for 
the smaller predictor size, and a 1% improvement for the 
larger setup. The optimized code layout still does slight- 
ly better with the agree predictor, but the difference is not 
significant. In any case, the optimized layout still obtains 
an 8% improvement over the baseline layout with the agree 
predictor. 

To gain further insight on why the optimized code layout 
obtains better performance, even when it has lower predic- 
tion accuracy, Table 3 shows a comparison of all three fetch 
performance factors for both code layouts and the 16KB a- 
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0. Processor performance measured in IPC for the baseline and STC code layouts us ng 
gshare and agree branch predictors. Results shown for (a) 16KB and (b) 64KB instruction caches. 

gree branch predictor. We show the total number of misses 
(in millions), the average fetch width (in instructions per 
cycle), the branch prediction accuracy (in percent), and the 
processor performance (IPC). 

I$ size Layout I$ misses Fetch width BP accuracy IPC 
I6KB base 13mil. I.8IPC 96.1 % 1.58 
16KB STC 8 mil. 2.1 Ipc 95.6 % 1.85 
64KB base 4.5 mil. 2.3 IPC 96.1 % 2.00 
64KB STC 2.5 mil. 2.5 IPC 95.6% 2.16 

Table 3. Instruction cache (I$) misses, fetch 
width, prediction accuracy, and IPC for both 
layouts using a 16KB agree predictor. 

The lower prediction accuracy of the STC layout trans- 
lates into smaller sequences of valid instructions, because a 
branch misprediction is encountered sooner. But the small- 
er distance between mispredictions is compensated by the 
smaller perceived latency of the instruction cache, and the 
higher rate at which these instructions are provided. 

These results show that reducing the number of branch 
misprediction does not necessarily mean increasing proces- 
sor performance. Code transformations such as basic block 
reordering may decrease branch prediction accuracy, but 
still increase performance due to other effects, like an in- 
struction cache miss reduction and an increase in the fetch 
bandwidth. 

6. Conclusions 

To our knowledge, this is the first paper showing the 
effects of code reordering on branch prediction accuracy. 
These are summarized in Figure 1 1. 

Summarizing, optimizing the code layout for higher 
fetch rate will: 

Taken Not Taken Negative Positive Used/Valid Unusedfinvalid 

(a) Branch behavior m (b) Table intereference (c) BHR value usage 

Figure 11. Effect of code reordering in (a) stat- 
ic branch prediction (branch direction), (b) 
dynamic prediction table interference, and (c) 
branch history register value usage. 

Change branch direction: Most branches tend to be not 
taken, and most highly biased branches are now always 
not taken branches. 

Reduce negative interference: As most branches are now 
not taken, it is more likely that when two branches map 
to the same two-bit counter, they push the counter in 
the same direction (towards not taken). 

Generate a worse BHR value distribution: The high 
proportion of not taken branches causes many BHR 
values to be not used, concentrating branch history on 
a smaller set of values. This reduces the amount of 
useful information the predictor has to take a decision. 

The overall effect of code reordering on a given branch 
predictor will depend on which of these effects dominates. 
Predictors which do not use global history registers (bi- 
modal and PAX), or which hash the global history register 
with the branch address or other values (gshare) will bene- 
fit from the table interference reduction, while they mitigate 
or ignore the BHR value effect. Predictors which heavi- 
ly depend of the global history register, or which already 
have their own interference avoiding mechanism will feel 
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the negative BHR value effect, without obtaining a large 
benefit form the interference reduction offered by optimized 
layouts. 

Second, we have shown that increasing branch predic- 
tion accuracy does not necessarily mean higher processor 
performance. For example, optimizing the code layout for 
better instruction cache performance may decrease predic- 
tion accuracy, but the reduced distance between branch mis- 
predictions is compensated by a lower cache miss rate, and 
a higher fetch width, which increase the speed at which in- 
structions are provided. 
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