
The Effect of Code Reordering on Branch Prediction *

Alex Ramirez, Josep L. Larriba-Pey and Mateo Valero
Universitat Politecnica de Catalunya

Jordi Girona 1-3, D6
08034 Barcelona (Spain)

{ aramirez,larri,mateo)@ac.upc.es

Abstract
Branch prediction accuracy is a very important factor

for superscalar processor performance. The ability to pre-
dict the outcome of a branch allows the processor to effec-
tively use a large instruction window, and extract a larger
amount of Instruction Level Parallelism (ILP).

In this paper we will examine the effect of code layout op-
timizations on branch prediction accuracy and final proces-
sor performance. These code reordering techniques align
branches so that they tend to be not taken, achieving bet-
ter instruction cache performance and increasing the fetch
bandwidth. Here we focus on how these optimizations affect
both static and dynamic branch prediction.

Code reordering mainly increases the number of not tak-
en branches, which benefits simple static predictors, which
reach over 80% prediction accuracy with optimized codes.
This branch direction change produces two effects on dy-
namic branch prediction: on the positive side, trades neg-
ative interference for neutral or positive interference in the
prediction tables; on the negative side, it causes a worse
distribution of the Branch History Register (BHR), causing
many possible history values to be unused.

Our results show that code reordering reduces neg-
ative Pattern History Table (PHT) interference, increas-
ing branch prediction accuracy on small branch predic-
tors. For example, a OSKB gshare improves from 91.4% to
93.6%, and a 0.4KB gskew predictor from 93.5% to 94.4%.
For larger history lengths, the large amount of not taken
branches can degrade predictor performance on dealiased
schemes, like the 16KB agree predictor which goes from
96.2% to 95.8%.

But processor Performance not only depends on branch
prediction accuracy. Layout optimized codes have much
better instruction cache performance, and wider fetch
bandwidth. Our results show that when all three factors
are considered together, code reordering techniques always
improve processor performance. For example, performance

'This work was supported by the Ministry of Education and Science of
Spain under contract TIC-0511/98 and by CEPBA. Alex Ramirez is also
supported by Generalitat de Catalunya grant 1998F1-003060-26.

0-7695-0622-4\00 $10.00 0 2000 IEEE

still increases by 8% with an agree predictor, which loses
prediction accuracy, and it increases by 9% with a gshare
predictor, which increases prediction accuracy.

1. Introduction

Fetch performance broadly depends on three factors: the
number of instruction cache misses, the width of instruc-
tions fetched each cycle, and the branch prediction accu-
racy. The first two factors determine the speed at which
instructions are provided to the processor, the third deter-
mines the quality of the instruction provided, that is, how
many instructions will be provided between instruction win-
dow squashes, limiting the amount of ILP that the processor
is able to exploit.

Code reordering techniques are a known approach to the
first two factors. The number of instruction cache misses
depends on the code layout, by mapping the routines in a
program so that they do not conflict with each other, we can
reduce the number of cache misses by almost an order of
magnitude [17,7,6]. By aligning basic blocks so that they
execute sequentially, we can further increase spatial locality
increasing both cache performance and fetch bandwidth [S,
17, 25, 191. The third factor has motivated the search of
more accurate branch predictors.

The performance loss due to branch instructions was first
approached with static branch predictors, which always pre-
dict the same outcome for a given branch. This prediction
was obtained either using very simple heuristics [23], static
analysis [l], or profile information [5,4].

The accuracy of static branch predictors can be increased
using code transformations, which usually imply code repli-
cation [14, 27, 9, 13, 161, and branch alignment [3]. This
branch alignment is nothing but a code reordering optimiza-
tion which targets an increase in the static branch prediction
accuracy: knowing the branch outcome, it is aligned to fol-
low the heuristic implemented by the static predictor.

As the transistor budget in the processor increased,
branch prediction moved to the more accurate dynamic
branch predictors. These store the recent branch behavior,

189

and lookup the data each time the branch executes to pro-
duce a direction prediction [23,26].

But the size of these dynamic tables is limited, and some-
times two different branches end up sharing the same PHT
entry. This is called prediction table interference, and is the
main cause for decreased prediction accuracy [28].

Dynamic prediction tables can be organized in a clever
way to reduce prediction table interference, leading to the
recently proposed dealiased schemes [10, 12,241.

In this work we examine the effect on branch predic-
tion accuracy of the code reordering optimizations which
target the instruction cache. We examine the interaction
of these optimizations with both static and dynamic branch
predictors using the Software Trace Cache layout optimiza-
tion [19].

The main effect of these code reordering techniques is an
increase in the fraction of not taken branches. This increase
favors static predictors which predict that all branches will
be not taken, or that all forward branches will be not taken,
going from 60% to over 80% prediction accuracy.

Such an increase in the number of not taken branches al-
so favors neutral or positive interference, because branches
sharing the same PHT entry are likely to exhibit the same
behavior, and will update the counter in the same direction.
This interference reduction is specially significant in small
predictors, and increases accuracy in a 0.5KB gshare from
91.4% to 93.6%, and a 0.4KB gskew predictor from 93.5%
to 94.4%.

As larger tables are used, prediction table interference
naturally decreases, reducing the benefits of an optimized
layout. As history length increases, the large number of not
taken branches produces a worse distribution of the BHR
values, increasing interference in the dealiased predictors.
The negative BHR effect decreases performance in mid to
large sized dealiased predictors, like the 16KB agree pre-
dictor which goes from 96.2% to 95.8%.

Finally, we show results on the overall processor perfor-
mance because not only branch prediction accuracy affect-
s IPC. Instruction cache performance and fetch bandwidth
also play an important role, and more than compensate for
the possible degradation in prediction accuracy. Processor
performance still increases by 8% with an agree predictor
w/out filtering (which loses prediction accuracy), and in-
creases by 9% with a gshare predictor (which increases pre-
diction accuracy).

1.1. Simulation setup

All the results in the paper were obtained using a simu-
lator derived from the SimpleScalar 3.0 tool set [2]. We run
most of the SPECint95 benchmarks plus the PostgreSQL
6.3 database system running a subset of the TPC-D queries.
All programs were compiled statically and with -04 opti-
mization level using Compaq’s C compiler.

Benchmark
go

mXXksim
6CC

compress

li

per1
vortrex
postgres

iJpeg

Train Test
UNUSED Profile data unavailable, crashed
with pixie and ATOM
train test
train cccp.i
UNUSED: Considered too small to be repre-
sentative, has too few branches
train test
vigo.ppm specmun.ppm
UNUSED Simulation time too long.
train test
Q3,4,5,6,9,15 Q2,3,4,6,11,12,13,14,15,17

Table 1. Simulated benchmarks and their
training and test inputs.

Table 1 shows the six benchmarks used and the input sets
used to obtain the profile information and for testing, and
the reasons for not including the remaining 3 SPECint95
codes. All simulations were run to completion. All figures
in the paper present the arithmetic average of all executed
benchmarks, where all benchmarks have the same weight.

In order to simulate the optimized code layout we gen-
erate an address translation table using the Software Trace
Cache algorithm [191 and feed the simulator with translated
PC’s and recomputed branch outcomes.

1.2. Paper structure

The rest of this paper is structured as follows: In Sec-
tion 2 we present previous related work regarding both code
layout optimizations and branch prediction, we also de-
scribe the dynamic branch prediction schemes used in the
paper. Section 3 examines the effect of code layout opti-
mizations on static branch prediction accuracy. Section 4
does the same for dynamic branch predictors, including
dealiased prediction schemes. In Section 5 we measure not
only branch prediction accuracy, but overall processor per-
formance in order to account for all the effects of code re-
ordering, both positive and negative. Finally, in Section 6
we summarize the influence of code layout optimizations
on branch prediction and present our conclusions.

2. Related work

We can classify related work in two main groups: code
layout optimization techniques, and branch prediction tech-
niques.

Code layout optimizations usually target a better utiliza-
tion of the instruction cache, and use profile data or heuris-
tics to lay out the routines in a program [17, 7, 61, and the
basic blocks in a routine [8, 17, 25, 191 to minimize the
number of conflict misses. Reducing the number of conflict
misses in the instruction cache, code reordering increases
fetch performance, and overall processor performance. The
use of both routine placement and basic block reordering

190

can also increase the effective fetch bandwidth provided by
increasing code sequentiality (reducing the number of tak-
en branches). Both factors prove important at increasing the
fetch performance, as shown in [19, 181.

Code layout optimizations have also been used to in-
crease the static branch prediction accuracy, using profile
data [5,4] or complex static analysis techniques [I] to pre-
dict the branch direction, and then align the branch so that it
follows a more simple heuristic [3], like making all branch-
es usually taken (or usually not taken), or aligning branches
so that only a forward branch is usually not taken [23]. In
this work we examine how code layout optimizations target-
ing the fetch engine affect both static and dynamic branch
prediction.

There have been other code transformations proposed to
improve static branch prediction accuracy, usually implying
code replication [14,27,9, 13, 161. These code transforma-
tions are beyond the scope of this work.

Basic branch prediction techniques can also be broadly
classified in three groups: static, semi-static, and dynamic
predictors. Static prediction techniques are based solely on
static analysis and simple prediction strategies, and always
predict the same outcome for a given branch. Semi-static
branch predictors improve on static techniques by using
profile data obtained at run-time to replace the static anal-
ysis and heuristics used, but still predict always the same
outcome for a given branch. The more accurate dynamic
branch predictors store this run-time information in dynam-
ic tables, and lookup this data every time the branch is exe-
cuted to make a direction prediction. The different dynamic
branch predictors differ in the way they store the past be-
havior of a branch.

The Software 'kace Cache

The code layout optimization used in this paper is the Soft-
ware Trace Cache (STC) [?]. The STC maps basic block-
s so that sequentially executed basic blocks tend to be in
consecutive memory positions, building basic block chain-
s than may span multiple routines. The generated chains
are then mapped in memory trying to minimize conflicts a-
mong them, by mapping two popular chains next to each
other, and mapping the most heavily used chains to a spe-
cially reserved area of the instruction cache that we call the
Conflict Free Area (CFA).

The chain mapping algorithm should have little or no in-
fluence on the branch prediction mechanism, only the basic
block chaining is relevant for that purpose. The results ob-
tained in this paper should be valid for any other code layout
optimization which aligns branches towards their not-taken
target.

Two-level adaptive predictors

The more simple dynamic branch predictor (the bimodal
branch predictor [23]) simply keeps a saturating two-bit
counter for each branch, increasing the counter if the branch
is taken, and decreasing the counter if it is not taken. The
branch is predicted to behave as the high bit of the counter
says (taken if it is 1, not taken otherwise).

But a branch outcome not only depends on the branch
itself, it also depends on the outcomes of the previously
executed branches, and on the past outcomes of the same
branch.

As shown in Figure 1, two-level adaptive branch predic-
tors [26] keep two levels of data about the branch behavior.
The Level 1 table keeps information about the past branch
outcomes. These table can store the outcomes of all branch-
es in a single register (global history, named PAp,s,g,
shown in Figure l.a), or it can have a separate register
for each branch (private or self history, named GAp, s, g,
shown in Figure 1.b). The Level 1 table is usually referred
to as the Branch History Register (BHR). The BHR is used
to index into the Level 2 table, composed of two-bit satu-
rating counters managed as in the bimodal predictor. The
Level 2 table is usually referred to as the Pattern History
Table (PHT).

By storing data this way, any given entry in the PHT cor-
responds to a branch address in a given history situation,
which allows the predictor to make a more informed deci-
sion, achieving higher accuracy.

It is possible to improve the Level 2 indexing function by
using a hash function of the branch address and the BHR,
like an XOR [111. This function distributed branches in the
PHT in a better way, increasing the accuracy of global his-
tory predictors. The resulting scheme (shown in Figure 1.a)
is the gshare branch predictor.

Dealiased predictors

Two-level adaptive branch predictors distribute data so that
each branch has a separate PHT entry for each different his-
tory situation. But the prediction tables are finite, and some-
times two different branches end up sharing the same PHT
entry.

We classify PHT interference in three types: when the
conflict does not change the 2-bit counter value, we talk
about neutral interference; if the changed counter value pro-
duces a correct prediction where there would have been a
misprediction, we talk about positive interference; if the
conflict causes a misprediction when the old counter was
correct, we talk about negative interference. Negative inter-
ference happens more often than positive interference, and
is the main cause of decreased prediction accuracy [28,20].

Dealiased branch predictors reduce negative PHT inter-
ference by changing the way they store data in the predic-

191

Pattern History Table

Branch address

U

(a) Gshare predictor (global history) (b) PAg predictor (private history)

Figure 1. Two-level adaptive branch predictors store data in two separate tables, using the first table
to index into the second level.

I
Panml updatc

.1 (only IhS ~slec~ed prdaor l] Branchaddress I Globrl history
riziGy-

Grhm B
Mostly Mostly

Not Taken Take"
Branches Branches

.... 5 Bimodal

L N s l 2 mhlc w s if Bhr bil ICIS PrrdiclFd
predicum a p s mm h r a o c h d w l m (TakcnlNollakml

the bhnbil \ 1

(a) Agree predictor (b) Bi-mode predictor (c) Gskew predictor
Figure 2. Dealiased branch prediction schemes.

tion tables.
Figure 2.a shows the agree prediction scheme [24]. The

agree predictor adds an extra bit of information associated
to each branch into the BTB/instruction cache: the bias bit.
This bit predicts the branch direction. The meaning of the
PHT counter changes: the two-bit counter now predicts if
the branch behavior will agree with the bias bit, or not. This
allows two branches with opposite behavior (a mostly taken
and a mostly not taken branch) to use the same PHT entry,
without creating a negative conflict because both branches
will push the counter towards the agree position, being the
bias bit what differentiates them.

The bi-mode branch predictor [101 (shown in Figure 2.b)
is based on the same principle as the agree predictor: sepa-
rating branches among usually taken and usually not taken
sub-streams. The bi-mode predictor uses a separate gshare
component to keep track of each sub-stream, avoiding inter-
ference among them, and uses a bimodal branch predictor
to classify a branch into each sub-stream. Interference a-
mong the two sub-streams is avoided because each branch
only updates the gshare which keeps track of its sub-stream.

The gskew branch predictor [12,22] (Figure 2.c) is based
on the fact that most aliasing in the prediction tables is due
to conflict aliasing, not capacity problems. Derived from
the skew-associative caches [21], the gskew predictor stores

r;
branches in three separate tables, which are accessed with
three different indexes. If a branch data is aliased in one of
the tables, it is expected that it will not be so in the other
two, obtaining a correct prediction with a majority vote.

Code reordering techniques are known to improve the
instruction cache miss rate and the fetch bandwidth. Next,
we examine how they interact with the third factor in fetch
performance: the branch prediction mechanism.

3. Effect on static prediction

In this section we will examine the prediction accuracy
that some simple static branch prediction schemes achieve
for the examined benchmarks. The static strategies exam-
ined are: predict that all branches will be taken, predict
that all branches will be not taken, predict that backward-
s branches will be taken and forward branches will not, and
predict that a branch will always take its most usual direc-
tion based on profile information.

Figure 3 shows the branch prediction accuracy of some
simple static branch prediction strategies (always taken, al-
ways not taken, backwards taken forward not taken) and
the profile based predictor for both the original code lay-
out and the compiler optimized layouts. For the optimized
layout, we show results for the same input set used for

192

training (self-optimized) and for a different input set (cross-
optimized). The prediction accuracy of an 8KB Gshare pre-
dictor is shown for comparison purposes.

80 -

I Taken .- e e 60-
NotTakcn - P . I F”T

: 40- c Pmfils

8KB Gsharc d

20 -

Base Selfaptimized Cmss-Oplimizd
Code Layout

Figure 3. Static branch prediction accuracy
for the original and optimized code layouts
(self and cross trained).

The simple static prediction approaches prove quite use-
less for the baseline code layout with near 50% predic-
tion accuracy, only the BTFNT predictor reaches 60%, and
doesn’t go under 50% for any of the studied benchmark-
s (individual benchmark results not shown). On the other
hand, the profile static predictor proves very accurate, pre-
dicting correctly over 90% of the branches. This shows that
branches can be predicted statically, but not with this simple
strategies.

We optimize the code layout using the Software Trace
Cache (STC) algorithm [19], which targets an increase in
the sequentiality of the code, that is, it reorders basic blocks
so that branches tend to be not taken.

Once we have optimized the code layout, the static
branch prediction accuracy changes dramatically. The Not
Taken and the BTFNT predictors now predict correctly over
80% of the branches, losing some accuracy in the cross-
trained test. This 80% prediction accuracy shows that static
branch prediction can be very accurate for these optimized
code layouts; but it is still much lower than what can be
achieved with modem two level adaptive branch predictors
like the Gshare.

To gain further insight on this high predictability of op-
timized binaries, we explore in depth the changes in branch
behavior introduced by the code layout optimization. Fig-
ure 4.a shows a classification of all dynamic branches by
the percentage of times they are taken or not taken for both
the original and the optimized code layouts. Branches to the
left of the plot are always not taken, while branches to the
right are always taken.

Examining the branch classification for the original code
layout, we observe that 36% of the branches are always

h

Pcmnt times Taken

Figure 4. The use of optimized code layouts
reverses branch direction, so that they tend
to be usually not taken.

not taken, while 32% are always taken. The rest of the
branches are evenly spread across all taken percent values,
with a slightly higher peak for branches that are 50% taken.
This explains the low prediction accuracy obtained, because
branches do not seem to follow such simple behavior rules.

By optimizing the code layout, we can reverse the direc-
tion of those branches which are taken more than 50% of
the times. This way, a branch which was taken 80% of the
times will now only be taken 20% of the times.

The classification for the optimized code layout shows
that we were quite successful at reversing the branch di-
rection for those usually taken branches. The fraction of
always taken branches is reduced from 32% to lo%, and
most categories over 50% taken also present reductions in
the number of branches. This leads to a significant increase
in the number of always not taken branches, from 36% to
59%. With most highly biased branches in the not taken
side, and most other branches moving from over 50% taken
to mostly not taken, the prediction accuracy of an always
not taken (or BTFNT) predictor, increases significantly, as
we have seen in Figure 3.

The increase in the number of usually not taken branch-
es explains the different behavior of the two code layout-
s regarding static branch prediction. Further increases in
static prediction accuracy can be expected of a code layout
optimization that explicitly targets a specific branch predic-
tor, like the BTFNT predictor, or uses code replication tech-
niques to use path information in its static predictions.

Next, we will examine how this change in branch direc-
tion affects dynamic branch prediction.

193

4. Effect on dynamic prediction
4.1. Two-level adaptive predictors

Figure 5 shows the effect of code reordering on dynam-
ic prediction accuracy for the Gshare, PAg, and bimodal
predictors. Predictor sizes from 512 bytes to 16KB are ex-
plored for both the baseline (dotted line) and the optimized
code layout (solid line).

- . . 'L - 2 _- -". - -.:- -. , .. _--,-------

Figure 5. Dynamic prediction accuracy for
both the base and the STC optimized code
layouts using two-level adaptive prediction
schemes.

Clearly, the STC increases the prediction accuracy of the
examined branch predictors, specially for the smaller pre-
dictor sizes. Both the Gshare and the bimodal predictors
seem to converge at infinite predictor size, which points that
the benefits of using the STC are related to prediction table
interference. The larger the table, the less interference, the
closer the prediction accuracy for both layouts.

Prediction table interference

Figure 6 shows the percent of dynamic branches which
introduce conflicts in the prediction tables of the gshare
branch predictor with both the baseline and the optimized
code layouts. We classify conflicts in three groups: neu-
tral interference when the conflict does not change the pre-
diction, and positive or negative if the conflict changes the
prediction for good or bad.

As expected, there is a significant reduction in the num-
ber of negative conflicts when the STC layout is used with
the Gshare branch predictor. For example, a 1KB gshare
goes down from 1.45% of negative conflicts to 0.79% using
the optimized code layout.

Intuitively, the increase in the number of not taken
branches favors positive interference, because it is more
likely that when two branches interfere, they both behave
the same way (both not taken) resulting in a positive or neu-
tral conflict.

Figure 6. Percent of dynamic branches which
cause interference in the gshare prediction
tables for the baseline and optimized code
layouts .

The total amount of conflicts shows a different behavior.
The optimized code layout has fewer neutral conflicts for
small predictor sizes, but it ends up with a larger amount of
neutral interference for the largest configurations.

We will look further into this neutral interference in-
crease in the next section, where we will examine dealiased
branch prediction schemes.

4.2. Dealiased branch predictors

Given that the use of an optimized code layout is reduc-
ing the negative interference found in the dynamic predic-
tion tables, it is interesting to examine what happens with
modem branch predictors that are already organized to min-
imize such interference like the agree [24], bimode [lo],
and gskew [12, 221 predictors. We will refer to these pre-
dictors as dealiased branch prediction schemes.

Figure 7 shows the prediction accuracy of the dealiased
predictors with both the baseline and the optimized code
layouts. The prediction accuracy of the gshare predictor
with the optimized layout is shown for reference purposes.

These results show that for small predictor sizes, the use
of optimized code layouts obtains equivalent or higher ac-
curacy even in the dealiased branch predictors. The advan-
tage of the optimized layouts is specially clear in the 0.4KB
gskew predictor, which increases prediction accuracy from
93.5% to 94.4%.

For medium and large predictor sizes, all dealiased
branch predictors obtain higher accuracy with the baseline
code layout, being the difference specially significant with
the 16KB agree predictor, which obtains a 96.2% accura-
cy with the baseline layout and a 95.8% with the optimized
code.

A more important result shows that the use of a large
agree or bimode predictor with the optimized code layout
does not yield sigmficant improvements over a gshare pre-

194

96- , ,

-+- Bus &as

- - t m b i m o d c --- m &as
-+- Bus gsbm

1024 2048 4096 8192 16384

-mbimodc --- m &as
-+- Bus gsbm

1024 2048 4096 8192 16384

(a) Agree predictor (b) Bi-mode predictor

-+- Buc Bhv.

513 ioia &s 4d96 si92
m o r &e (Bytes)

(c) Gskew predictor
Figure 7. Effect of the optimized code layout on dealiased branch predictors.

dictor. Only the gskew predictor obtains significantly better
results than the gshare predictor when using the optimized
code layout.

Prediction table interference

Figure 6 shows the percent of dynamic branches which
introduce conflicts in the prediction tables of the gshare
branch predictor with the optimized code layout and the a-
gree predictor using both code layouts.

Figure 8. Percent of dynamic branches which
cause interference in the gshare prediction
tables optimized code layout and the agree
predictor using both code layouts.

These results show that the agree prediction scheme with
a non optimized layout obtains a slightly better negative in-
terference reduction than the optimized code layout. It is
surprising that using the agree predictor, the optimized code
layout has more negative conflicts than the baseline.

From these results it seems that the dealiased predictors
prove more effective at reducing interference than the op-
timized code layout, but the more important result is that
it seems more difficult to reduce conflicts in an optimized
binary. The fact that the optimized code layout has more

total interference for the larger predictor sizes can explain
this higher fraction of negative conflicts.

Branch history register distribution

The fact that dealiased predictors using an optimized binary
obtain worse results than a gshare predictor points to some
other factor hindering the performance of these predictors.

The high fraction of not taken branches found in the op-
timized code layout (80% of all branches are not taken)
may be hindering the branch distribution in the BHR. When
working with an optimized binary, the BHR will tend to be
full of zeros, causing many possible BHR values to be never
or rarely used, leading to a worse branch distribution and a
loss of useful information to make a correct prediction.

The dealiased predictors do not benefit from the interfer-
ence reduction effect, because they are quite good at reduc-
ing it themselves, thus they only suffer the negative BHR
effect and loose accuracy with the optimized code layout.

To analyze this BHR distribution factor, Figure 9 shows
the number of times each possible history value was found
in an 1 1-bit global history predictor for both code layouts.
The BHR values are sorted by the number of zeros their
binary value contains (from all 1’s to all 0’s). In addition to
the BHR value usage, the figure shows the average usage,
and the average + standard deviation. The average usage is
the same in both code layouts. Note the Y axis is in loglo
scale.

The first remarkable aspect of these plots is the position
of the highest peak. The most popular history value for the
baseline layout is a BHR full of 1’s (leftmost value), while
the highest peak of the STC layout corresponds to a BHR
full of 0’s (rightmost value). Aside from that, the BHR val-
ue usage in the baseline layout is mostly spread across 1-2
orders of magnitude. Meanwhile, the STC layout has its
BHR value usage spread across 4-5 orders of magnitude,
with very high peaks on a reduced set of values. It is clear
that values having mostly 1’s are less used than those having
mostly 0’s.

195

I , , , I , . . . , 1 , .
0 SW Imo 1sw zm, 0 m lm, Ism ?au

BHR value (from d l 1's 10 all 0's) BHR vslue (fmm dl 1's lo all 0's)

(a) Base layout (b) STC layout

Figure 9. Branch history register value distribution for the baseline code layout (a), and the STC
optimized layout (b).

To summarize these observations, we can just look at the
distance between the average usage and the standard devia-
tion lines. The more distance between them, the worse the
BHR value distribution. In this case, the distance between
both lines in the STC layout is 2 . 5 ~ larger than in the base-
line code layout.

5. Processor performance

The complexity of current processors is already very
high, and keeps increasing with each generation. Simulat-
ing such complex designs is not always feasible, specially
if the design space to explore is large. This leads to many s-
tudies in which only isolated components are examined, on
the basis that if that component works better, then overall
performance will also increase.

We have shown that the performance impact of the
branch predictor is heavily dependent of the instruction
cache performance [15]. New results shown here in this
paper point that branch prediction accuracy can decline
when optimized code layouts are used, but we know that
those same layouts also increase the instruction cache per-
formance.

The pedormance benefits of an instruction cache miss
reduction could compensate for the performance loss due to
reduced branch prediction accuracy. In order to explore this
possibility, we simulated a whole out of order processor us-
ing the sim-outorder simulator of the Simplescalar 3.0 Tool
set. The detailed simulation setup for our 4-wide processor
is shown in Table 2.

Figure 10 shows processor performance measured in IPC
for both the baseline and the STC code layouts using t-
wo different branch predictors: the gshare predictor, which
proves more accurate with the optimized layout; and the
agree predictor, which proves more accurate with the base-
line layout. We simulated both a small 16KB instruction
cache and a larger 64KB cache.

Item Value Item
Int ALU 3 L1 Datacache
Int MULDIV 1 L1 Inst. cache
FT ALU 1 L1 latency
Mem ports 2 L2cache
Window size 64 BTB
LSQ size 16 RAS

BPred

Value
64KB, 2-way

16KB or64KB, 2-way
1 cycle

2MB, 2-way
4096 entries, 4 sets

64 entries
gshare or agree

12, 14 and 16 bits

Table 2. Setup description for the 4-way out
of order processor examined.

These results show that the instruction cache miss re-
duction more than compensates for the loss of branch pre-
diction accuracy, as the STC layout always performs better
than the baseline, even with the agree predictor, with a 17%
improvement on the 16KB cache, and a 9% on the 64KB
cache.

Examining the results for each individual code layout
on the 16KB instruction cache, we observe that the branch
predictor used does not make a significant difference for
the baseline layout. Meanwhile, the optimized layout does
0.5% better with the gshare predictor than with the agree
predictor.

When a 64KB instruction cache is used, the baseline lay-
out obtains a 2% improvement using the agree predictor for
the smaller predictor size, and a 1% improvement for the
larger setup. The optimized code layout still does slight-
ly better with the agree predictor, but the difference is not
significant. In any case, the optimized layout still obtains
an 8% improvement over the baseline layout with the agree
predictor.

To gain further insight on why the optimized code layout
obtains better performance, even when it has lower predic-
tion accuracy, Table 3 shows a comparison of all three fetch
performance factors for both code layouts and the 16KB a-

196

Figure

1.6-

2'21

It---' x

I I I

2'ol
2.2

.__.-.___., --x X

1.6 i
1024 2048 40% 8192 16384

Predictor sizp (Bytes)

(b) 64KB Instruction cache

0. Processor performance measured in IPC for the baseline and STC code layouts us ng
gshare and agree branch predictors. Results shown for (a) 16KB and (b) 64KB instruction caches.

gree branch predictor. We show the total number of misses
(in millions), the average fetch width (in instructions per
cycle), the branch prediction accuracy (in percent), and the
processor performance (IPC).

I$ size Layout I$ misses Fetch width BP accuracy IPC
I6KB base 13mil. I.8IPC 96.1 % 1.58
16KB STC 8 mil. 2.1 Ipc 95.6 % 1.85
64KB base 4.5 mil. 2.3 IPC 96.1 % 2.00
64KB STC 2.5 mil. 2.5 IPC 95.6% 2.16

Table 3. Instruction cache (I$) misses, fetch
width, prediction accuracy, and IPC for both
layouts using a 16KB agree predictor.

The lower prediction accuracy of the STC layout trans-
lates into smaller sequences of valid instructions, because a
branch misprediction is encountered sooner. But the small-
er distance between mispredictions is compensated by the
smaller perceived latency of the instruction cache, and the
higher rate at which these instructions are provided.

These results show that reducing the number of branch
misprediction does not necessarily mean increasing proces-
sor performance. Code transformations such as basic block
reordering may decrease branch prediction accuracy, but
still increase performance due to other effects, like an in-
struction cache miss reduction and an increase in the fetch
bandwidth.

6. Conclusions

To our knowledge, this is the first paper showing the
effects of code reordering on branch prediction accuracy.
These are summarized in Figure 1 1.

Summarizing, optimizing the code layout for higher
fetch rate will:

Taken Not Taken Negative Positive Used/Valid Unusedfinvalid

(a) Branch behavior m (b) Table intereference (c) BHR value usage

Figure 11. Effect of code reordering in (a) stat-
ic branch prediction (branch direction), (b)
dynamic prediction table interference, and (c)
branch history register value usage.

Change branch direction: Most branches tend to be not
taken, and most highly biased branches are now always
not taken branches.

Reduce negative interference: As most branches are now
not taken, it is more likely that when two branches map
to the same two-bit counter, they push the counter in
the same direction (towards not taken).

Generate a worse BHR value distribution: The high
proportion of not taken branches causes many BHR
values to be not used, concentrating branch history on
a smaller set of values. This reduces the amount of
useful information the predictor has to take a decision.

The overall effect of code reordering on a given branch
predictor will depend on which of these effects dominates.
Predictors which do not use global history registers (bi-
modal and PAX), or which hash the global history register
with the branch address or other values (gshare) will bene-
fit from the table interference reduction, while they mitigate
or ignore the BHR value effect. Predictors which heavi-
ly depend of the global history register, or which already
have their own interference avoiding mechanism will feel

197

the negative BHR value effect, without obtaining a large
benefit form the interference reduction offered by optimized
layouts.

Second, we have shown that increasing branch predic-
tion accuracy does not necessarily mean higher processor
performance. For example, optimizing the code layout for
better instruction cache performance may decrease predic-
tion accuracy, but the reduced distance between branch mis-
predictions is compensated by a lower cache miss rate, and
a higher fetch width, which increase the speed at which in-
structions are provided.

References
[11 T. Ball and J. R. Lams. Branch prediction for free. Proc.

ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 300-313, June 1993.

[2] D. Burger, T. Austin, and ,%Bennett. Evaluating future mi-
croprocessors: the simplescalar tool set. Technical Report
TR-1308, University of Winsconsin, July 1996.

[3] B. Calder and D. Grunwald. Reducing branch costs via
branch alignment. Proceedings of the 6th Intl. Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 242-25 1 , Oct. 1994.

141 B. Calder, D. Grunwald, and D. Lindsay. Corpus-based stat-
ic branch prediction. Proc. ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation, pages 79-
92, 1995.

151 J. A. Fisher and S. M. Freudenberger. Predicting conditional
branch directions from previous runs of a program. Proceed-
ings of the 5th Intl. Conference on Architectural Support for
Programming Languages and Operating Systems, pages 85-
95, 1992.

161 N. Cloy, T. Blackwell, M. D. Smith, and B. Calder. Proce-
dure placement using temporal ordering information. Pro-
ceedings of the 30th Annual ACMIIEEE Intl. Symposium on
Microarchitecture, pages 303-313, Dec. 1997.

[7] A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient pro-
cedure mapping using cache line coloring. Proc. ACM SIG-
PLAN Conf. on Programming Language Design and Imple-
mentation, pages 171-182, June 1997.

[S] W.-M. Hwu and P. P. Chang. Achieving high instruction
cache performance with an optimizing compiler. Proceed-
ings of the 16th Annual Intl. Symposium on Computer Archi-
tecture, pages 242-25 l , June 1989.

[9] A. Krall. Improving semi-static branch prediction by code
replication. Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 97-106,1994.

The bi-
mode branch predictor. Proceedings of the 30th Annual
ACMIIEEE Intl. Symposium on Microarchitecture, pages 4-
13, Dec. 1997.

[1 I] S. McFarling. Combining branch predictors. Technical Re-
port TN-36, Compaq Western Research Lab., June 1993.

[121 P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. Proceed-
ings of the 24th Annual Intl. Symposium on Computer Archi-
tecture, pages 292-303, 1997.

[lo] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge.

[131 F. Mueller and D. A. Whalley. Avoiding conditional branch-
es by code replication. Proc. ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation, pages 56-
66, 1995.

Avoiding unconditional
jumps by code replication. Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages

[151 C. Navarro, A. Ramirez, J. L. Larriba-Pey, and M. Valero.
On the performance of fetch engines running dss workloafd-
s. Proceedings of the Intl. Euro-Par Conference, page to
appear, Aug. 2000.

[161 J. R. C. Patterson. Accurate static branch prediction by value
range propagation. Proc. ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, pages 67-78,
1995.

[17] K. Pettis and R. C. Hansen. Profile guided code positioning.
Proc. ACM SIGPLAN Con$ on Programming Language De-
sign and Implementation, pages 16-27, June 1990.

1181 A. Ramirez, J. L. Larriba-Pey, C. Navarro, X. Serrano,
J. Torrellas, and M. Valero. Optimization of instruction fetch
for decision support workloads. Proceedings of the Intl.
Conference on Parallel Processing, pages 238-245, Sept.
1999.

[191 A. Ramirez, J. L. Larriba-Pey, C. Navarm, J. Torrellas, and
M. Valero. Software trace cache. Proceedings of the 13th
Intl. Conference on Supercomputing, June 1999.

[20] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and alias-
ing in dynamic branch predictors. Proceedings of the 23th
Annual Intl. Symposium on Computer Architecture, pages

[21] A. Seznec. A case for two-way skewed-associative caches.
Proceedings of the 20th Annual Intl. Symposium on Com-
puter Architecture, May 1993.

[22] A. Seznec and P. Michaud. D-aliased hybrid branch predic-
tors. Technical Report PI-1229, IRISA, Feb. 1999.

[23] J. E. Smith. A study of branch prediction strategies. Pro-
ceedings of the 8th Annual Intl. Symposium on Computer
Architecture, pages 135-148, 1981.

[24] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt.
The agree predictor: A mechanism for reducing negative
branch history interference. Proceedings of the 24th Annual
Intl. Symposium on Computer Architecture, pages 284-291,
1997.

1251 J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction
cache performance for operating system intensive workload-
s. Proceedings of the 1st Intl. Conference on High Pelfor-
mance Computer Architecture, pages 360-369, Jan. 1995.

[26] T. Y. Yeh and Y. N. Patt. Two-level adaptive branch pre-
diction. Proceedings of the 24th Annual ACMIIEEE Intl.
Symposium on Microarchitecture, pages 51-61, 1991.

1271 C. Young and M. D.Smith. Improving the accuracy of static
branch prediction using branch correlation. Proceedings of
the 6th Intl. Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 232-
241, Oct. 1994.

[28] C. Young, N. Cloy, and M. D. Smith. A comparative analysis
of schemes for correlated branch prediction. Proceedings of
the 22th Annual Intl. Symposium on Computer Architecture,
June 1995.

[14] E Mueller and D. B. Whalley.

322-330,1992.

22-32,1996.

198

