
MOM: a Matrix SIMD Instruction Set Architecture for Multimedia
Applications

Jesus Corbal Roger Espasa Mateo Valero

Departament d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya–Barcelona, Spain

e-mail: {jcorbal,mateo,roger}@ac.upc.es

Abstract

MOM is a novel matrix-oriented ISA paradigm for mul-
timedia applications, based on fusing conventional vector
ISAs with SIMD ISAs such as MMX. This paper justifies
why MOM is a suitable alternative for the multimedia do-
main due to its efficiency handling the small matrix struc-
tures typically found in most multimedia kernels. MOM
leverages a performance boost between 1.3x and 4x over
more conventional multimedia extensions (such as MMX
and MDMX), which already achieve performance benefits
ranging from 1.3x to 15x over conventional Alpha code.
Moreover, MOM exhibit a high relative performance for
low-issue rates and a high tolerance to memory latency.
Both advantages present MOM as an attractive alternative
for the embedded domain.

1 Introduction

It is widely accepted that media applications will be-
come one of the most significant computing workloads in
the next years [1, 2]. Realizing this trend, the major ven-
dors of general-purpose processors have included multi-
media extensions based on the SIMD (Single Instruction
Multiple Data) paradigm. Examples of this are: Intel’s
MMX [3], Motorola’s Altivec [4], SUN’s VIS [5] or Mips
MDMX [6]. Also, more recently, as 3-D graphic applica-
tions have become more important, additional extensions
have been included to deal with FP SIMD parallelism (Al-
tivec, 3DNow! [7] and KNI [8]).

The goal of these architectural extensions was to take
advantage of the high levels of data level parallelism found
in typical multimedia codes yet, at the same time, minimize
the number of changes required to the existing processor
cores. Because most of the multimedia kernels operate on
very small data types (typically 8 or 16 bits), a conven-
tional 64-bit register can hold a number of these smaller
data items. Thus, a conventional register can be thought

of as implementing a very short vector register (between 4
and 8 elements per vector, depending on data size). The
initial approach taken by most vendors is to exploit this
intra-word (or intra-register) parallelism by mapping these
short vectors onto conventional registers (such as the FP
registers as in Intel’s MMX) and including to the functional
units features to understand the concept of sub-word paral-
lel operation. Figure 1 shows a typical example of MMX
operation (parallel add). A parallel add operation can be
easily configurated in a basic adder by simply not propagat-
ing the carry bits between sub-word element boundaries.
More recently, however, the Altivec extension has taken a
more aggressive approach, by providing completely sepa-
rate multimedia registers and making them 128 bits (twice
the size of ordinary registers).

As more demanding multimedia applications reach the
market, how can we keep improving the performance of
the present multimedia units ? Clearly, the fact that current
efforts exploit only sub-word parallelism limit the available
exploitable parallelism to a factor of 8 (and then, only for
the smallest 8-bit data size). Therefore, if we are to break
beyond this limit, we need to take a similar approach to
Altivec and increase the number of bits available in a reg-
ister. However, going to a register file where each single
register has 256, 512 or 1024 bits does not seem a plausi-
ble alternative. MMX-like extensions are restricted by the
stride-one constraint (that is, all the elements of the vector
must be consecutively arranged in memory). Therefore, as
long as we increase the width of the multimedia register,
we find that we are not enable to load so many arranged
sub-word elements as the size of the multimedia register,
thus achieving diminishing returns.

Since the current multimedia extensions are a particular
case of a vector architecture, could traditional vector ISAs
help us in breaking this parallelism limit? Traditional vec-
tor architectures have been used for many years for high
performance numerical applications [9, 10, 11, 12] and,
more recently, have also been used in some neural and DSP
applications [13]. The current multimedia extensions are

1

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/141674564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nothing more than a somewhat limited ISA vector exten-
sion with a fixed vector length (limited by the size of the
data types) and a fixed vector stride (always consecutive
memory locations).

There have been some studies evaluating the perfor-
mance of conventional vector ISAs on typical multime-
dia codes. Lee et. al. [14] evaluated for a set of ker-
nels the performance of an out-of-order superscalar pro-
cessor with very short vector instructions (length 8) against
a highly parallel, simple in-order conventional vector ma-
chine (length 64), achieving better performance with the
vector architecture. Despite these results were encourag-
ing for simple kernels, when looking at full-blown appli-
cations (such as the complete mpeg decoder, not just its
idct kernel) the following problems arise [15]:

• The vector length of real multimedia applications is
typically small (between 8 and 16). In [14], this prob-
lem was not encountered because the authors applied
loop interchange techniques to increase the effective
vector length in each kernel. However, this technique
is not effective when dealing with full applications.

• Conventional vector ISAs are not well suited to han-
dle sub-word level parallelism as MMX-like vector
ISAs. Therefore, a major loss of performance is pro-
duced due to the overhead produced by operations
such as data pack/unpack, saturation, and/or data pro-
motion.

As a conclusion, while performance benefits may arise
from the use of conventional vector ISAs, MMX-like mul-
timedia extensions are much more well suited for achiev-
ing higher performance at lower cost (as reported in [16]
or in [17]). As an example, a MPEG encode application
is evaluated in [17] using the VIS instruction set with a
reported performance gain of 3.5x approximately. On the
other hand, the same application is evaluated in [15] with
an out-of-order vector processor with CONVEX ISA, and
for the most aggressive architectures (up to 16 parallel vec-
tor pipes ) only a 2x performance gain is reported.

Our claim is that significant levels of Data Level Par-
allelism (i.e. that parallelism where the same operation is
performed over several data) still remains to be exploited
in typical multimedia codes. MMX-like and conventional
vector ISAs are only able to exploit DLP along one single
dimension (that is, one single loop). We will show that by
fusing both of best worlds, we will be able to exploit DLP
from two different dimensions (i.e. two nested loops) ex-
tracting a parallelism of an order of magnitude higher. The
most interesting point is that matrix operations occur fre-
quently in multimedia applications. and our claim is that
matrix ISAs are the best alternative to efficiently exploit
this available parallelism.

16 bits 16 bits 16 bits 16 bits

16 bits 16 bits 16 bits 16 bits

16 bits 16 bits 16 bits 16 bits

64 bits

(A)

Figure 1: MMX Packed ADD example.

2 Rationale of a matrix ISA

MOM stands for Matrix Oriented Multimedia exten-
sion, and has been designed trying to exploit the advan-
tages of both conventional vector and MMX-like ISAs. In
order to understand the basis of this novel ISA, we may
look at figure 2 where a comparison between the three
different paradigms under study, traditional-vector, MMX-
like and MOM-like, are applied to a very simple code ex-
ample. Despite being simple, those kind of kernels are
commonly found in most multimedia codes (specially in
image processing).

Let’s define dimension X as a dimension where sub-
word level parallelism is exploited as in MMX-like ISAs,
and let’s define dimension Y as a dimension where paral-
lel operations are expressed in a sequential way (typical
of conventional vector ISAs). From the figure, we can see
than the MMX-like ISA approach vectorizes the inner loop
(j) over dimension X. Note that this vectorization is done
under two restrictions: fixed vector length and fixed vec-
tor stride (consecutive accesses). On the other hand, the
conventional vector ISA approach vectorizes the inner loop
over dimension Y, without any restriction of vector length
and stride. Finally, MOM approach vectorizes the inner
loop (j) over dimension X and vectorizes the outer loop (i)
over dimension Y. Note that, since columns are usually lo-
cated at consecutive locations and since any vector stride
is allowed under dimension Y, we can access in a single
instruction a whole matrix. So. the MOM vectorization
process is decoupled into two main steps: (a) generation of
MMX-like operations over the inner loop, and (b), vector-
ization of those MMX-like operations over the outer loop.

Therefore, dealing with the two kinds of vectorization

2

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



for (i=1 to 4)
for (j=1 to 4)

d[i][j] = c[i][j] + a[i];

C11

C12

C13

C14

+

+

+

+

A1

A1

A1

A1

64b 64b

VLy
=4

D11

D12

D13

D14

C11 C12 C13 C14

+ + + +

A1 A1 A1 A1

VLx = 4

16b16b 16b 16b

D11 D12 D13 D14

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

+

+

+

+

A1 A1 A1 A1

A2 A2 A2 A2

A3 A3 A3 A3

A4 A4 A4 A4

VLx = 4

16b16b 16b 16b

VLy
=4

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

cyc 0

cyc 1

cyc 2

cyc 3

cyc 0

cyc 1

cyc 2

cyc 3

cyc 0

Conventional
Vector ISA

MMX MOM

j

j

i,j

Figure 2: Comparison between conventional vector, MMX-like and matrix oriented ISAs

over each dimension allows MOM to add the advantages
of conventional vector ISAs to the advantages of MMX-
like instructions. The MMX-like operations allow MOM to
take benefit from the sub-word level operation capabilities
plus the multimedia oriented features (such as saturation),
while the streaming nature of the vectorization of those
MMX-like operations provides: a reduction of the pressure
over the fetch unit, a capability of tolerating long latencies
over long streams of MMX-like instructions, and the pos-
sibility of further parallelism by replicating the number of
functional units that are fed from the same vector register.

Our claim is that the capability of MOM of dealing with
matrix rather than with simple vectors allows it to pack
an order of magnitude more elements than common vector
ISAs. This is due to the fact that multimedia codes com-
monly deal with matrix structures of limited size (no longer
than 8/16 element per row).

Of course, matrix ISAs are not a new idea. There is a
large body of research on array multiprocessors, some of
which made it into products for the high-end supercom-

puter market [18] and there is also current research look-
ing in matrix-based ISAs to be used in floating point ap-
plications [19]. The key difference between these previ-
ous proposals and MOM is that, in the context of floating-
point engineering-like applications, a matrix ISAs is not
that much of an advantage over a traditional vector ISA.
Thus, all products based on array processors eventually
disappeared from the market due to the prevalence of vec-
tor supercomputers. However, in the multimedia domain,
traditional vector ISAs are not good to exploit the fine grain
parallelism available, yet MMX-like ISAs are not able to
exploit the inter-word parallelism that traditional vectors
offer. Hence, in the multimedia domain, a matrix-oriented
ISA, resulting from the fusion of inter- and intra-word par-
allelism, offers many advantages over other alternatives.

3

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



3 An Overview of MOM

MOM is a load/store architecture where its memory ac-
cessing operations closely follow those available in tradi-
tional vector computers, while its computation operations
resemble MMX-like instructions. Basically, a matrix ISA
should provide 4 architectural registers: one Vector Length
and one Vector Stride register per each matrix dimension.
The Vector Length determines the number of elements for
that dimension, while the Vector Stride determines the dis-
tance between consecutive elements. This constraints are
simplified in MOM due to the fact that the MMX-like di-
mension has restricted vector length (limited by the data
size, for instance 8 elements of 8 bits) and vector stride
(always consecutive memory locations). Therefore, MOM
needs only to provide one Vector Length architectural reg-
ister and one Vector Stride (which in this case is mapped as
a conventional integer register). The size of the matrix is
specified by this vector length register and by the data size
of the MMX elements inside each vector element.

MOM provides to the programmer 16 matrix registers,
each register holding 16 64-bit words. Since each word in
the vector register can be thought of holding either eight
8-bit items or four 16-bit items or 2 32-bit items, we view
these registers as holding matrices of data. The maximum
size of the matrix is, thus, of 16x8 elements.

Memory instructions

MOM offers a vector load and vector store instruction to
move data in and out of the MOM registers. These instruc-
tions have the following form:

mom_ldq MRi <-- Rj, Rk

Where MRi is one of the 16 MOM registers, Rj is the
base address where the load starts and Rk is the vector
stride register. As in traditional vector ISAs, the execu-
tion of this instruction is controlled by a fourth implicit
register, VL or vector length register. The semantics of the
instruction is as follows: starting at address R j , load a 64-
bit word into the first position of MOM register i. Then,
add the stride register Rk to the base address, decrement
the VL register and repeat the operation until VL reaches
0. MOM stores work in a similar fashion. Therefore, if we
have a memory port of wide N , every cycle, N elements
separated by Rk bytes are loaded onto N consecutive vec-
tor elements. So, the number of cycles required to perform
a whole memory operations is V l/N .

Arithmetic and logic instructions

These instructions are straightforward conversions from
typical MMX-like instructions to matrix versions of them
(that is, vector/stream versions of MMX instructions,
where each single operation of a vector instruction is in-
dependent from the others). A typical example would be:

mom_paddb MRi <-- MRj, MRk

which does a parallel byte add between each element
of the MOM registers j and k leaving the result in MOM
register i. The length of the operation is controlled, again,
by the VL register. Thus, this example could result in any-
where from 1 element to 16 elements of the involved MOM
registers being added. Therefore, if we have a vector func-
tional unit with N vector pipes or lanes, N MMX-like vec-
tor elements would be operated each cycle, so that, a whole
arithmetic/logic vector instruction would be performed in
V l/N cycles.

Matrix special instructions

MOM semantics allow very powerful matrix operations.
Those instructions are characterized by the fact that there
are inter-dependences between elements of the same ma-
trix register in the same way that some MMX-like instruc-
tion have inter-dependences between its sub-word level el-
ements. Usually, those inter-dependences are related to re-
duction operations. MOM deals with this kind of instruc-
tions using packed accumulators, which is feature that we
will address later in the paper. These accumulators allow to
define very powerful operations to be performed in a single
matrix instruction (such as a matrix per vector operation).

Another kind of MOM instructions are related to matrix
management. For instance, MOM has available a Matrix
Transpose instruction that allows to transpose a 8x8 ma-
trix with only 8+C cycles of latency and relatively simple
logic (despite the fact that this operation is non pipelene-
able). Matrix Transpose is a powerful mechanism to switch
vector dimensions (while MMX/MDMX require several
pack/unpack instructions in order to do the same).

3.1 Accumulators in MOM

MMX-like ISAs tend to have difficulties handling re-
duction operations. Reduction operations naturally arise in
dot products, for example, where all the results from sev-
eral products must be added together. The problem is that,
if one tries to do the product in parallel (using intra-word
parallelism) the result does not fit into a normal register. As
an example, figure 3 shows that trying to multiply four 16-
bit quantities yields a result that only fits in a 128-register.

4

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



16 bits

32 bits

48 bits 48 bits 48 bits 48 bits

16 bits 16 bits 16 bits

16 bits 16 bits 16 bits 16 bits

32 bits 32 bits 32 bits

64 bits

192 bits

(B)

Figure 3: MDMX Packed Multiply&Add with accumula-
tor.

Since these results must be added together before the trun-
cation of the result is done (or, otherwise, the loss of pre-
cision is unacceptable) MMX-like ISAs end up using data
promotion techniques (i.e. promotion of data to larger data
sizes by pack/unpack operations) to maintain the required
precision. While this solution handles the precision prob-
lem, it incurs in a clear overhead and reduces the available
sub-word level parallelism.

A very efficient way to deal with reduction operations
is the technique introduced by MDMX (Mips). MDMX
proposes using packed accumulators (similar to what sev-
eral DSP architectures do), which are wide registers that
successively accumulate the results produced by oper-
ations done with multimedia vector registers (see fig-
ure 3). Finally, the results from the accumulator are trun-
cated, clipped and conveniently rounded into a conven-
tional MDMX register. Note that the use of accumulators
rotate the dimension where the reduction operation is done.
In MMX code, a dot product reduction would be done over
the dimension X, while in MDMX code, the dot product re-
duction would be done over the dimension Y in sequential
steps (exploiting thus several independent dot products in
dimension X).

Therefore, the use of the MDMX model of computation
presents two clear advantages: does not reduce the poten-
tial sub-word level parallelism and provides high precision.
Unfortunately, the accumulators present a critical problem:
introduce an artificial recurrence due to the fact that any op-
eration over one accumulator needs the previous value as
an input. So, when we face long latency operations, we find
poor ILP, thus reducing overall performance. Therefore, it
can be argued that by not using packed accumulators (such

as is MMX) we allow higher scalability when we increase
the number of SIMD functional units and registers.

By contrast, MOM can take great advantage of the mul-
timedia accumulators, since it can provide parallelism over
dimension Y (the dimension where MDMX has troubles).
Therefore, in a similar way that Sum operations are per-
formed in conventional vector machines, we can pipeline
the reduction operation to avoid the problem of the re-
currence though adding some additional cycles of latency
(which stream instructions can tolerate anyway).

4 Performance Results

In this section we will present some performance results
in order to evaluate the potential performance gains achiev-
able by MOM when compared with MMX and MDMX
performance. We will study topics as the scalability of each
ISA (by simulating out-of-order processors of different is-
sue rates) and the memory latency tolerance. We will also
try to decouple the overall Speed-up into three different
factors of performance in order to evaluate the advantages
of MOM.

This is the first paper evaluating MOM. So, we are more
interested in the implicit characteristics of the ISA rather
than in micro-architectural issues. Therefore, as a pre-
liminary study, this paper is going to concentrate mostly
on kernels, because it is easier to understand the perfor-
mance gains of MOM on these shorter sequences of code.
Of course, working on kernels raises a number of issues
about the broad applicability of MOM to real applications.
We have strived to not artificially enlarge the vectoriza-
tion dimension of the kernels under study (dimension Y
in the terminology of section 2). This ensures that when-
ever these kernels are plugged back into real applications,
the speedup obtained should be the speedup reported here.

Additionally, we are not going to model the memory
hierarchy, but an idealized memory system with no band-
width restrictions and fixed latency. We understand that
memory issues are a key factor in the final performance of
the system, as well as the fraction of the program that is
vectorizable (due to Amdahl’s Law). We plan to incorpo-
rate both into our framework in the near future.

4.1 Benchmarks and Simulation Tools

We have studied six different programs from the Media-
bench [20] suite: mpeg encode, mpeg decode, jpeg
encode, jpeg decode, gsm encode and gsm de-
code. For each program, we identify the most important
functions using profiling and we implement them using the
three styles of ISAs under study: MMX-like, MDMX-like
and MOM. For this study, we will study the performance

5

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



way 1 way 2 way 4 way 8
0

2

4

6

Sp
ee

d-
up

idct

way 1 way 2 way 4 way 8
0

5

10

15

20

motion2

way 1 way 2 way 4 way 8
0

2

4

6

8

Sp
ee

d-
up

rgb2ycc

way 1 way 2 way 4 way 8
0

5

10

15

motion1

way 1 way 2 way 4 way 8
0

1

2

3

h2v2

way 1 way 2 way 4 way 8
0

10

20

30

addblock

way 1 way 2 way 4 way 8
0

5

10

Sp
ee

d-
up

comp

way 1 way 2 way 4 way 8
0

2

4

6

8

10

ltppar

way 1 way 2 way 4 way 8
0

5

10

ltpsfilt

MMX
MDMX
MOM

Figure 4: Speed-up of evaluated multimedia ISA for different issue-rate machines (with respect to Alpha ISA performance).

of nine of the different kernels so identified: idct, mo-
tion1, motion2, rgb2ycc, h2v2upsample, com-
pensation, addblock, ltpparameters and ltp-
filtering. The idct kernel performs a Inverse Dis-
crete Cosines Transform over 8x8 matrices of data, mo-
tion1 performs a sum of absolute differences between
two 16x16 image matrices to perform a MPEG2 mo-
tion estimation operation while motion2 performs a sum
of quadratic differences. The kernels addblock and
compensation are basically special forms of saturated
blending between image matrices used in the Motion Com-
pensation algorithm, while ltpparameters and ltp-
filtering are special dot products used to calculate the
long term filter parameters and the filtering itself in the gsm
encoding/decoding process. Finally, h2v2upsample
performs a 2x2 zoom over the whole image for the JPEG
decode benchmark while the rgb2ycc kernel transforms
a RGB image into YCC format.

Since there is no available compiler that can generate ei-
ther MMX or MDMX (let alone MOM), each function was
manually optimized by including function calls to routines
that represent MMX, MDMX or MOM instructions. Then,
a library was written to emulate each such instruction (67
MMX instructions emulated, 88 MDMX instructions emu-
lated and 121 MOM instructions emulated). Once the pro-
gram was written using these subroutine calls, the correct-
ness of the output was verified to avoid losses in accuracy
visually perceptible.

We note that we have not considered absolutely ex-
act models of MMX and MDMX, but fair approximations
of each ISA. Additionally, we have enhanced these ISAs
by providing independent register files and an increased
number of logical registers (32 logical vector registers for
MMX, plus 4 logical accumulators for MDMX, and 16
logical matrix registers plus 2 logical accumulators and
one logical Vector Length register for MOM). The maxi-

6

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



0 10 20 30 40 50
0

1

2

3

4

5

C
ic

le
s x

 1
0^

6

idct

0 10 20 30 40 50
0

2

4

6

motion2

0 10 20 30 40 50
0

2

4

6

rgb2ycc

0 10 20 30 40 50
0

1

2

3

4

5

motion1

0 10 20 30 40 50
0

5

10

15

20

h2v2

0 10 20 30 40 50
0

5

10

15

20

addblock

0 10 20 30 40 50
0

5

10

15

20

comp

0 10 20 30 40 50
0

5

10

15

ltppar

0 10 20 30 40 50
0

5

10

15

ltpsfilt

SS
MDMX
MMX
MOM

Figure 5: Impact of the memory latency on performance.

mum vector length on dimension Y has been set to 16. In
order to maximize the performance of MMX and MDMX,
we have used loop-unrolling and software pipelining tech-
niques. These changes were done in order to avoid an un-
fair comparison with MOM, whose streaming nature pro-
vides a natural mechanism of instruction scheduling.

Once the applications are tested using the emulated in-
struction subroutines, the question is how to feed this ap-
plication into a simulator such that the subroutine calls
that emulate an MMX/MDMX/MOM instruction disap-
pear and, instead, we only model the effect of the instruc-
tion itself. What we did was to compile the applications
using the emulation libraries at only -O1 level, instrument
with ATOM [21] and feed the output to Jinks [22]. Jinks is
an out-of-order simulator with capability of executing vec-
tor ISAs. The basic architecture closely resembles that of
the MIPS R10K, with the addition of a MMX/MOM reg-
ister file and dedicated functional units. Instructions are

fetched and sent to the decode stage where they are re-
named. There are three different rename tables: one for
integer registers, one for floating point registers and one
for multimedia (MMX/MDMX/MOM) registers. Once re-
named, the instructions go to the appropriate queue where
they wait until their operands are ready and then arbitrate
for a free functional unit. Instruction in every queue can
execute out-or-order. Jinks is able to detect the subroutine
calls, filter them out and translate them into a single in-
struction. For the baseline case (the pure superscalar code
with no multimedia extensions), we used -O4 optimization.
In all cases, the compiler was the DEC C V5.8-009.

Each kernel has been simulated a certain number of
times in a loop so that we simulate between 5 and 10 mil-
lion graduated instructions for the plain superscalar ver-
sion. This assures minimal impact of the initialization code
for every kernel.

7

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



4.2 Performance and scalability

Figure 4 shows the speed-up attained by the three mul-
timedia ISAs evaluated when compared with Alpha code,
for different wide machines and for the nine kernels stud-
ied. We have considered an idealized memory system with
no bandwidth constraints and a fixed latency of one single
cycle (that is, an equivalent model of a perfect cache).

The results show that MMX and MDMX exhibit perfor-
mance gains ranging from 1.5x to 15x over a pure super-
scalar architecture, and that MDMX slightly outperforms
MMX for most of the kernels (up to a 30% of improve-
ment). MOM clearly outperforms both MMX and MDMX
with additional performance gains ranging from 1.3x to 4x.
The only case where MOM is not much more effective than
MDMX is in rgb2ycc. The reason is that vectorization
happens along the color space (Red, Green and Blue) di-
mension, yielding a vector length of only 3.

As expected, MOM achieves higher relative perfor-
mance for low-issue rates. This is due to the fact that MOM
greatly reduces the fetch pressure by packing an order of
magnitude more operations per instruction than MMX or
MDMX. As the fetch and issue rate increase, the out-of-
order exploitation of ILP partially compensates the advan-
tage of MOM.

4.3 Tolerance to memory latency

Although we have not modeled a cache hierarchy, we
have performed some experiments trying to approximate
the behavior of our kernels under realistic conditions. The
experiments vary memory latency from 1 cycle (as in the
previous section) to 12 and to 50 cycles. These values
are chosen trying to mimic what would be an application
that misses to the L1 cache but hits in the L2 (12 cycles)
and an application that is simply streaming through data
and, therefore, without prefetching, is always missing in
the on-chip caches and going to main memory (50 cycles
latency). In these experiments, we only use the 4-way pro-
cessor core.

Figure 5 shows the results of these experiments for the
nine kernels studied. The results obtained show that MOM
exhibits a high tolerance to increases of the memory la-
tency. When we increase the memory latency from 1 to
50 cycles, we observe slow-downs ranging from 4x to 8x
for MMX/MDMX and ranging from 3x to 9x for common
Alpha code. In sharp contrast with these results, MOM
only suffers a slow-down ranging from 2x to 4x. Clearly,
MOM is better suited for pure streaming applications than
its counterparts. In fact, this is not a surprising feature of
MOM, since vector ISAs are very well known for their la-
tency tolerance capabilities.

4.4 Sources of performance gain

Under architectural
assumptions, MOM doubles MMX/MDMX performance
with hardly any additional hardware: we only need a big-
ger register file (about 6 times more, and without increased
complexity, since, as we have observed in our evaluations,
MOM requires a much more low number of physical reg-
isters). In order to evaluate why MOM achieves such per-
formance improvements, we will try to decouple the ex-
ecution time into three different parameters: (a) the IPC
(Instructions per Cycle), (b) The OPI (Operations per In-
struction), and (c) the NOPS (the overall Number of Oper-
ations).

The execution time in cycles can be easily described as
the number of instructions divided by the IPC rate. Nev-
ertheless, while in conventional ISAs one instruction is
equivalent to one operation, in SIMD ISAs, we can per-
form several operations per instruction. Therefore, the
number of cycles could be described as follows:

Cycles = NI
IPC

Cycles = NOPS
IPCxOPI

Taking the overall number of operations of the Alpha
code as a reference, we could define R as the factor of re-
duction of the number of operations required. The higher
the value of R, the higher the semantic richness of a certain
ISA (that is, the better the ISA is reducing unnecessary op-
erations). MMX-like codes use to have higher values of
R due to small-data manipulation facilities such as satura-
tion or data promotion. MOM adds another level of over-
head reduction due to the elimination of loop control in-
structions and operations on address registers (well-known
characteristic of any vector ISA).

Therefore, the Speed-up of any ISA (compared with Al-
pha ISA) can be calculated as follows:

S = NOPSalpha/IPCalpha

NOPSisa/(IPCisaxOPI) =
RxIPCisaxOPI

IPCalpha

As a consequence, it can be seen that the Speed-up is a
direct function of the IPC, the factor of reduction of opera-
tions (R), and the number of operations per cycle (OPI). If
we define F as the percentage of vector instructions, OPI
could be calculated as follows:

OPI = (1 − F ) + Fx(V lx ∗ V ly)

where V lx and V ly are the average vector length of di-
mension X and dimension Y, respectively.

8

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



Tables 1 to 9 show the previous parameters for a 4-way
machine for all the kernels under study (assuming latency
1). the parameters of the table are: (IPC) instructions com-
mitted per cycle, (OPI) operations performed per instruc-
tion, (R) reduction of the number of overall operations (re-
lated to Alpha code), (S) Speed-up, (F) Percentage of vec-
tor instructions, (V lx) average vector length over dimen-
sion X (that is, number of sub-word level elements packed
by average), and (V ly) average vector length over dimen-
sion Y (that is, the average vector length of MOM opera-
tions).

Some IPC results from the tables may seem somewhat
surprising. For some of the kernels, MMX and MDMX
IPCs are even higher than those of the plain superscalar
version. Initially, this may seem counterintuitive, since
MMX/MDMX are packing instructions exploiting DLP
and thus they are limiting the number of operations ex-
ploitable as ILP. Nevertheless, we should take into account
that we are comparing compiled code against highly tuned
hand-written code. Compilers always generate not opti-
mized code due to their inability to handle features such
as memory disambiguation and register allocation in a op-
timal way. Additionally, MMX/MDMX code take advan-
tage of the loop-unrolling plus software pipelining tech-
niques applied, carefully tuned for a 4-way machine. On
top of everything, the latency of MMX/MDMX instruction
(specially multiply operations) are much shorter than the
full 64-bit superscalar instructions, factor that may limit
the parallelism in the plain superscalar code.

Another interesting point is that the reduction of the
number of required operations is a very significant factor
of performance improvement. There are many factors that
explain this reduction. Firstly, the MMX-like vectorization
reduces many integer instructions related to control over-
head (that is, managing of addresses and loop induction
variables). This phenomena is also exploited by the loop
unrolling techniques applied over the inner loop. Addition-
ally, some special instructions of MMX/MDMX allow to
reduce the overall number of operations (typical examples
are the saturated arithmetic and the multiply&accumulate
features). MOM leverages an additional reduction of the
number of overall operation required due to the elimina-
tion of control overhead (that is, address registers and loop
induction variables managing) over the outer loop.

From the results of the table, if we define OPC (Opera-
tions per Cycle) as the product of the IPC and the OPI, we
can argue that MOM achieves higher performance due to
two main reasons:

• A better overall instruction schedule (since it is able
to execute the highest number of operations per cycle)
even if loop-unrolling and software pipelining tech-
niques are used in MMX/MDMX codes.

• The highest reduction of overhead operations by com-
bining the advantages of MMX-like and conventional
vector ISAs.

Note that these performance results do not take into
account the fact that additional performance could be
achieved under MOM by simply replicating the number of
parallel functional units which execute a matrix instruc-
tion. By contrast, if MMX or MDMX tried to do simi-
larly they would become limited by the fetch unit, as seen
in [15], and, therefore, could not take advantage of these
extra functional units.

5 Summary

In this paper we have proposed a novel ISA paradigm
based on matrix SIMD instructions in order to leverage
a new level of performance improvement when compar-
ing with current multimedia extensions (such as MMX or
MDMX).

By fusing the sub-word level parallelism approach to-
gether with the sequential/streaming-likeconventional vec-
tor approach, we have developed an ISA able to effi-
ciently deal with small matrices structures typically found
in several multimedia kernels. Our proposed ISA handles
very efficiently the accumulators proposed by the MDMX
multimedia extension, providing both precision and par-
allelism. The implementation of this matrix ISA would
not have a huge impact on an out-of-order core with any
kind of conventional multimedia extension, as only a big-
ger multimedia register file would be required.

We have evaluated nine kernels corresponding to some
of the main functions of five programs of the Mediabench
suite and improvements between 1.3x to 4x have been ob-
served for a 4-way machine with working sets fitting in L1
cache. Additionally, we have shown that MOM presents
two clear advantages that present it as a suitable alterna-
tive for multimedia embedded systems: a high relative per-
formance for low-issue architectures and a high tolerance
to memory latency. On top of everything, further perfor-
mance may be achieved by simply replicating the func-
tional units that are fed from the same vector register, in-
creasing the number of operations done per cycle without
any need of increasing the fetch/issue rate.

References

[1] T.M. Conte et. al. Challenges to combine general-purposeand mul-
timedia processors. IEEE Computer, pages 33–37, Dec 1997.

[2] K. Diefendorff and P.K. Dubey. How multimedia workloads will
change processor design. IEEE Micro, pages 43–45, Sep 1997.

9

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



[3] Alex Peleg and Uri Weiser. MMX Technology Extension to the
Intel Architecture. IEEE Micro, pages 42–50, August 1996.

[4] Altivec Technology. Technical Report
http://www.mot.com/SPS/PowerPC/AltiVec/, Motorola, Inc., 1998.

[5] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan, and
Liang He. VIS Speeds New Media Processing. IEEE Micro, pages
10–20, August 1996.

[6] Mips extension for digital media with 3d. Technical Report
http://www.mips.com, MIPS technologies, Inc., 1997.

[7] 3dnow! technology
manual. Technical Report http://www.amd.com, Advanced Micro
Devices, Inc., 1999.

[8] Pentium iii processor: Developer’s manual. Technical Report
http://developer.intel.com/design/PentiumIII, INTEL, 1999.

[9] R.M.Russell. The cray-1 computer system. Communications of the
ACM, 21:63–72, January 1978.

[10] W.Oed. Cray y-mp c90: System features and early benchmark re-
sults. Parallel Computing, 18:947–954, August 1992.

[11] et. al. Katsuyoshi Kitai. Distributed storage control unit for the hi-
tachi s-3800 multivector supercomputer. International Conference
on Supercomputing (ICS), pages 1–10, July 1994.

[12] CONVEX Architecture Reference Manual (C Series). Convex Press,
Richardson, Texas, U.S.A, 1992.

[13] Krste Asanovic et. al. The to vector microprocessor. Hot Chips,
VII:187–196, August 1995.

[14] Corinna G. Lee and Derek J. DeVries. Initial results on the perfor-
mance and cost of vector microprocessors. In Proceedings of the
30th Annual International Symposium on Microarchitecture, pages
171–182, Research Triangle Park, North Carolina, December 1–3,
1997. IEEE Computer Society TC-MICRO and ACM SIGMICRO.

[15] Francisca Quintana, Jesus Corbal, Roger Espasa, and Ma-
teo Valero. Adding a vector unit on a superscalar proces-
sor. International Conference on Supercomputing, Available at
http://www.ac.upc.es/homes/roger/papers/list.html, June 1999.

[16] Huy Nguyeni and Lizy Kurian John. Exploiting simd parallelism in
dsp and multimedia algorithms using the altivec technology. Inter-
national Conference on Supercomputing, 1999.

[17] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi.
Performance of image and video processing with general-purpose
and media isa extensions. International Symposium on Computer
Architecture, May 1999.

[18] D.J.Kuck and R.A.Stokes. The burroughs scientific processor (bsp).
IEEE Transactions on Computers, pages 363–376, May 1982.

[19] A. Beaumont-Smith, M. Liebelt, C.C. Lim, and K. To. A digital
signal multi-processor for matrix applications. 14th Australian Mi-
croelectronics Conference, October 1997.

[20] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing Multimedia
and Communication Systems. In Proceedings of the 30th Annual
International Symposiumon Microarchitecture, pages 330–335,Re-
search Triangle Park, North Carolina, December 1–3, 1997. IEEE
Computer Society TC-MICRO and ACM SIGMICRO.

[21] Amitabh Srivastava and Alan Eustace. ATOM: A system for
building customized program analysis tools. SIGPLAN Notices,
29(6):196–205, June 1994. Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementa-
tion.

[22] Roger Espasa, Mateo Valero, and James E. Smith. Out-of-order
Vector Architectures. In MICRO-30, pages 160–170. IEEE Press,
December 1997.

10

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



IPC OPI R S F V Lx V Ly

Alpha 2.12 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.68 4.63 1.99 11.6 0.56 7.48 1.00

MDMX 3.05 4.30 2.04 12.6 0.53 8.00 1.00
MOM 0.82 22.27 2.21 18.9 0.36 8.00 7.51

Table 1: Breakdown of the Speed-up into IPC, OPI and R parameters for motion2.

IPC OPI R S F V Lx V Ly

Alpha 2.27 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.74 3.80 1.60 7.3 0.45 7.23 1.00

MDMX 2.75 4.15 2.20 11.1 0.33 8.00 1.00
MOM 1.22 12.97 2.60 18.1 0.19 8.00 8.00

Table 2: Breakdown of the Speed-up into IPC, OPI and R parameters for motion1.

IPC OPI R S F V Lx V Ly

Alpha 2.16 1.00 1.0 1.0 0.00 1.00 1.00
MMX 1.76 2.66 0.90 2.0 0.72 3.31 1.00

MDMX 2.23 2.53 0.90 2.4 0.51 4.00 1.00
MOM 0.81 9.94 1.50 5.6 0.53 4.00 4.47

Table 3: Breakdown of the Speed-up into IPC, OPI and R parameters for idct.

IPC OPI R S F V Lx V Ly

Alpha 2.07 1.00 1.0 1.0 0.00 1.00 1.00
MMX 1.85 3.48 1.40 4.4 0.89 3.79 1.00

MDMX 1.84 3.74 2.20 7.3 0.83 4.30 1.00
MOM 1.26 6.03 2.10 7.7 0.71 4.42 1.83

Table 4: Breakdown of the Speed-up into IPC, OPI and R parameters for rgb.

IPC OPI R S F V Lx V Ly

Alpha 2.50 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.30 2.47 1.10 2.5 0.41 4.58 1.00

MDMX 2.30 2.47 1.10 2.5 0.41 4.58 1.00
MOM 1.12 5.42 1.30 3.2 0.11 4.58 9.00

Table 5: Breakdown of the Speed-up into IPC, OPI and R parameters for h2v2.

IPC OPI R S F V Lx V Ly

Alpha 2.03 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.38 3.03 3.20 11.4 0.29 8.00 1.00

MDMX 2.38 3.03 3.20 11.4 0.29 8.00 1.00
MOM 1.37 5.92 3.50 14.0 0.09 8.00 6.96

Table 6: Breakdown of the Speed-up into IPC, OPI and R parameters for comp.

11

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 



IPC OPI R S F V Lx V Ly

Alpha 1.79 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.87 3.12 2.90 14.5 0.58 4.66 1.00

MDMX 2.87 3.12 2.90 14.5 0.58 4.66 1.00
MOM 0.89 9.83 3.10 15.2 0.25 4.54 8.00

Table 7: Breakdown of the Speed-up into IPC, OPI and R parameters for addblock.

IPC OPI R S F V Lx V Ly

Alpha 1.24 1.00 1.0 1.0 0.00 1.00 1.00
MMX 2.40 1.70 2.40 7.9 0.54 2.29 1.00

MDMX 1.82 2.02 2.80 12.6 0.34 4.00 1.00
MOM 1.22 3.71 3.80 13.9 0.11 4.00 6.40

Table 8: Breakdown of the Speed-up into IPC, OPI and R parameters for ltppar.

IPC OPI R S F V Lx V Ly

Alpha 2.09 1.00 1.0 1.0 0.00 1.00 1.00
MMX 1.94 2.23 3.80 7.9 0.52 3.36 1.00

MDMX 1.92 2.31 4.10 8.7 0.44 3.98 1.00
MOM 0.79 6.82 4.70 12.1 0.17 3.17 11.11

Table 9: Breakdown of the Speed-up into IPC, OPI and R parameters for ltpsfilt.

12

Proceedings of the ACM/IEEE SC99 Conference (SC’99) 
1-58113-091-0/99 $ 17.00 © 1999 IEEE 


