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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ESE - Salento University Publishing

https://core.ac.uk/display/141674214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Electronic Journal of Applied Statistical Analysis
Vol. 10, Issue 03, November 2017, 654-665
DOI: 10.1285/i20705948v10n3p654

Modeling football data using a GQL
algorithm based on higher ordered

covariances

Jowaheer V.a, Mamode Khan N.∗b, and Sunecher Y.c

aUniversity of Mauritius, Department of Mathematics, Reduit
bUniversity of Mauritius, Department of Economics and Statistics, Reduit

cUniversity of Technology Mauritius, Department of Accounting and Finance,
Pointe-Aux-Sables

Published: 15 November 2017

This paper deals with the modeling of the first and second half number of
football goals using a bivariate integer-valued first-order autoregressive model
(BINAR(1)) with Negative Binomial (NB) innovations defined under time-
dependent moments. The main novelty of the paper is the estimation of the
regression and over-dispersion parameters via a generalized quasi-likelihood
(GQL) function wherein some components of the auto-covariance structure
are computed through the ’working’ multivariate normality assumption. The
model is assessed on the Arsenal Football Club data from the period 2010
to 2016. The result of the study has revealed some important findings that
illustrate the downfall of the club in the recent years as regards to the Premier
League matches.
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1 Introduction

The modeling of football goals is an interesting topic of research for both sports people
and statisticians. In literature, the research papers in this field mainly focus on the
modeling of goals scored by opponent teams (see Maher, 1982, Baxter and Stevenson,
1998, Karlis and Ntzoufras, 2000, 2003, Baio and Blangiardo, 2010 and the references
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therein). Initially, the models were built on the assumption that the goals by the teams
are independent until Karlis and Ntzoufras (2000, 2003) proposed more sophisticated
models in the form of the bivariate Poisson and inflated bivariate Poisson that assume
that the goals are inter-related. Current studies in this field (Groll and Abedieh, 2013,
Groll et al., 2015, Karlis and Ntzoufras, 2010 and Louzada et al., 2014) focus mainly on
the prediction of the football outcomes but yet there is no paper that analyzes the series
of first and second half number of goals scored by a football team.
Admittedly, in any football league, the number of goals scored or the goal difference is
an important performance indicator that determines the strength of the football team.
Such figures may also determine the winner of the league in case of an ex-aequo, to
determine the ranking of the team in the league table and ultimately its possibility of
participating in other prominent competitions such as the UEFA Champions League. It
is quite rationale to believe that the first half and second half performance of a football
team is highly inter-related and the second half performance depends extensively on the
first half scores.
In this paper, we propose a bivariate time series model based on an integer-valued autore-
gressive (BINAR(1)) process to analyze the series of first half and second half number of
goals scored by a football team. In the proposed BINAR(1) model, the cross-relation be-
tween the series is assumed to be induced by some jointly distributed innovation terms.
As at date, several BINAR(1) processes have been developed to model correlated se-
ries of counts under various probability functions and under different cross-correlation
structures. Originally, Pedeli and Karlis (2009, 2011) proposed a simple and constrained
BINAR(1) model with Poisson innovations where the inter-relation between the series
was due to the correlated innovations only but this model was developed only under
stationary moments. Recently, Mamode Khan et al. (2016) proposed an extension of
this model by considering that the two series are influenced by some common time-
varying explanatory variables and this ultimately results into non-stationary BINAR(1)
with Poisson marginals. In the same trend, Sunecher et al. (2017) developed a non-
stationary BINAR(1) process with Negative Binomial (NB) innovations wherein both
series are over-dispersed under different levels of over-dispersion. Since usually the num-
ber of goals scored express huge variability across time, this paper makes reference to
the latest BINAR(1) model by Sunecher et al. (2017) to analyze the first and second
half performance. However, the above BINAR(1) process is re-formulated as per the
assumptions illustrated in the references pertaining to football studies. Moreover, a sim-
ilar generalized quasi-likelihood (GQL) estimation approach described in Sunecher et al.
(2017) is utilized to estimate the mean or regression effects and the dispersion coeffi-
cients, since the estimation method requires only the marginal properties of the bivariate
series (see Mamode Khan et al., 2016; Sunecher et al., 2017). It is worth mentioning that
in the estimation of the over-dispersion coefficients for both series, the auto-covariance
expressions depend on some high-ordered moments. From Prentice and Zhao (1991) and
Sunecher et al. (2017), these are computed using the ’working’ multivariate normality
assumption but we demonstrate in Section 3 that in the presence of some realistic foot-
ball assumptions, some of the off-diagonal high-ordered entries have simpler expressions.
As for the covariate selection, in this study, the Home and Away status, the number
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of new players recruited in the transfer window, the number of players sold, retired or
loaned to other clubs, the number of inter-matches played between two Premier League
matches and the number of players injured in the inter-matches other than the normal
league are taken into consideration.
The organization of the paper is as follows: In Section 2, the BINAR(1) model for foot-
ball data is introduced and the cross-covariances are derived. In Section 3, we estimate
the unknown parameters by using two sets of GQL equations. This Section is followed
by the derivation of the forecasting equations and a case study on Arsenal football data
is presented in Section 5. The conclusion is provided in Section 6.

2 The Bivariate INAR(1) Time Series Process

McKenzie (1986) developed an integer-valued autoregressive process of order 1 (INAR(1))
that relates count observation at a specified time point with its previous lagged observa-
tion and with an innovation or residual term. Pedeli and Karlis (2009, 2011) proposed
a direct extension of this classical INAR(1) by considering two INAR(1) series that are
interrelated through the jointly distributed innovation terms. However, this extension
was restricted only to series that exhibit stationary moments.
In view of the number of applications that involve time-variant moments or explanatory
variables, Mamode Khan et al. (2016) derived a novel BINAR(1) model wherein the
series were non-stationary Poisson marginals with bivariate Poisson distributed innova-
tion terms. However, this model could not accommodate over-dispersion. In a recent
research, Sunecher et al. (2017) proposed a non-stationary BINAR(1) process with NB
innovations defined under time-dependent moments at different levels of over-dispersion.
This section reviews this BINAR(1) model but under some new assumptions that relate
only to football studies. It is quite reasonable that the number of goals in the first half
of the tth league match is not related with the second half of the (t+ h)th league match

or vice versa. Hence, by denoting Y
[k]
t as the number of goals in the kth half of the tth

league match, for k = 1, 2, then

Cov(Y
[1]
t , Y

[2]
t+h) = 0, h > 0. (1)

From an extension of McKenzie (1986), let:

Y
[1]
t = α1 ∗ Y [1]

t−1 +R
[1]
t . (2)

Y
[2]
t = α2 ∗ Y [2]

t−1 +R
[2]
t . (3)

where αk are randomly Beta-distributed parameters in the interval [0,1] with αk ∼
Beta(ρkck ,

1−ρk
ck

) (see McKenzie, 1986) and ′∗′ is the binomial thinning operator (Aly
and Bouzar, 2005; Bourguignon and Vasconcellos, 2015; McKenzie, 1988; Silva and

Oliveira, 2004; Steutel and Van Harn, 1979; Weiβ, 008b) such that αk ∗ Y
[k]
t−1 | Y

[k]
t−1 ∼

Binomial(Y
[k]
t−1, αk), while R

[k]
t ∼ NB( 1

c∗k
, c∗k(µ

[k]
t −ρkµ

[k]
t−1)) and Y

[k]
t ∼ NB( 1

ck
, ckµ

[k]
t ) (see
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Sunecher et al., 2017), where for any random variable Y, denoting Y ∼ NB(1c , cµ), it
signifies that fY (y) has a NB distribution of the form

fY (y) =
Γ(c−1 + y)

Γ(c−1)y!

(
1

1+cµ

)c−1 (
cµ

1+cµ

)y
, ν ≥ 0, c > 0, (4)

with E(Y ) = µ, V ar(Y ) = µ+ cµ2 and c indicates the over-dispersion parameter.

The sequence {R[k]
t }Tt=1 is mutually independent for a specific k and the pair of (Y

[k]
t−1, R

[k]
t )

are independent across all t = 1, . . . , T and k = 1, 2. We allow the pair (R
[1]
t ,R

[2]
t ) be

inter-related such that

Corr(R
[1]
t , R

[2]
t′ ) =

{
ρ12,t t = t

′
,

0 t 6= t
′
.

(5)

Based on the binomial thinning properties and using the moments of the Beta distribu-
tion such that E(αk) = ρk and Var(αk) = ρk(1−ρk)ck

1+ck
, we obtain

E(Y
[k]
t ) = E

Y
[k]
t−1

Eα[k]E(α[k] ∗ Y [k]
t−1|Y

[k]
t−1, α

[k]) + E(R
[k]
t )

= E(ρkY
[k]
t−1) + E(R

[k]
t )

= µ
[k]
t . (6)

Var(Y
[k]
t ) = Var(α[k] ∗ Y [k]

t−1) + Var(R
[k]
t )

= Varα[k] [E(α[k] ∗ Y [k]
t−1|Y

[k]
t−1, α

[k])] + Eα[k] [Var(α[k] ∗ Y [k]
t−1|Y

[k]
t−1, α

[k])] + Var(R
[k]
t )

= Varα[k](α[k]µ
[k]
t−1) + Eα[k] [α[k](1− α[k])µ

[1]
t−1 + α[k]2(µ

[k]
t−1 + ckµ

[k]
t−1

2
)] + Var(R

[k]
t )

= µ
[k]
t−1

2
[
ρk(1− ρk)ck

1 + ck
] + ρkµ

[k]
t−1 + ckµ

[k]
t−1

2
[
ρk(1− ρk)ck

1 + ck
+ ρ2k]

+ (µ
[k]
t − ρkµ

[k]
t−1) + c∗k(µ

[k]
t − ρkµ

[k]
t−1)

2. (7)

By comparing Var(Y
[k]
t ) = µ

[k]
t (1 + ckµ

[k]
t ) with equation (7), it is deduced that c∗k =

ck(µ
[k]
t

2
−ρkµ

[k]
t−1

2
)

(µ
[k]
t −ρkµ

[k]
t−1)

2
> 0. In the above, it is assumed µ

[k]
t = exp(x

′
tβ

[k]) with xt = [xt1, xt2, . . . , xtp]
′

and β[k] = [β
[k]
1 , β

[k]
2 , . . . , β

[k]
p ].

Note also,

Corr(R
[1]
t , R

[2]
t ) = Corr(Y

[1]
t , R

[2]
t ) = Corr(Y

[2]
t , R

[1]
t ) (8)

Hence, using the above it can easily be shown that

Corr(Y
[k]
t , Y

[k]
t+h) = ρhk

√
(µ

[k]
t + ck(µ

[k]
t )2)√

µ
[k]
t+h + ck(µ

[k]
t+h)2

(9)
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and

Corr(Y
[1]
t , Y

[2]
t+h) =


ρ1ρ2Cov(Y

[1]
t−1,Y

[2]
t+h−1)+ρ12,t

√
λ
[1]
t +c∗1λ

[1]
t

2
√
λ
[2]
t+h+c

∗
2λ

[2]
t+h

2

√
µ
[1]
t +c1µ

[1]
t

2
√
µ
[2]
t+h+c2µ

[2]
t+h

2
h = 0,

0 h 6= 0

(10)

3 Generalized Quasi-Likelihood (GQL)

This section introduces the two GQL equations to estimate the regression and over-
dispersion parameters respectively for the two series. From Mamode Khan et al. (2016)
and Sunecher et al. (2017), the QL equations generally consists of the derivative struc-
ture, auto-covariance components and most importantly the score function. As for the
regression parameter β[k], the estimating function is expressed as

D
′

βΣβ
−1(Y − µ) = 0, (11)

where Y = [Y [1],Y [2]]
′

with Y [k] = [Y
[k]
1 , Y

[k]
2 , . . . , Y

[k]
T ]

′
and µ is the corresponding

mean vector.
The derivative part is a (2T × 2p) block diagonal [D[1],D[2]] with the entries in D[k]

specified as
∂µ

[k]
t

∂β
[k]
j

= exp(x
′
tjβ

[k]
j )x

′
tj .

As for the auto-covariance components,

Σβ =

(
Var(Y [1]) Cov(Y [1], Y [2])

Cov(Y [2], Y [1]) Var(Y [2])

)
(12)

with the entries in Var(Y [k]) specified as

Cov(Y
[k]
t , Y

[k]
t+h) =

{
µ
[k]
t + ck(µ

[k]
t )2 h = 0,

ρhk(µ
[k]
t + ck(µ

[k]
t )2) h 6= 0

(13)

where

ρ̂k =
T
∑T−1

t=1 Ỹ
[k]
t Ỹ

[k]
t+1

[
∑T

t=1(Ỹ
[k]
t )2][

∑T
t=2

√
(µ

[k]
t +ck(µ

[k]
t )2)

µ
[k]
t+1+ck(µ

[k]
t+1)

2
]

(14)

with Ỹt
[k]

=
Y

[k]
t −µ

[k]
t√

µ
[k]
t +ckµ

[k]
t

2
and ρ12,t is obtained using Equation (10) as follows:

ρ̂12,t =
C̃ov(Y

[1]
t , Y

[2]
t )− ρ̂1ρ̂2C̃ov(Y

[1]
t−1, Y

[2]
t−1)√

λ̂
[1]
t + ĉ∗1(λ̂

[1]
t )2

√
λ̂
[2]
t + ĉ∗2(λ̂

[2]
t )2

(15)
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C̃ov(Y
[1]
t , Y

[2]
t )= 1

T

∑T
t=1(y

[1]
t − µ̂

[1]
t )(y

[2]
t − µ̂

[2]
t ).

Re-arranging and solving Equation (11) yields a Newton Raphson iterative scheme of
the form (

β̂
[1]

r+1

β̂
[2]

r+1

)
=

(
β̂
[1]

r

β̂
[2]

r

)
+ [D

′

βΣβ
−1Dβ]−1

r [Dβ

′
Σβ

−1(Y − µ)]r (16)

Note that under mild regularity and asymptotically conditions, these estimates are con-

sistent and it can be shown that ((β̂
[1]
, β̂

[1]
) − (β[1],β[1]))

′
has an asymptotic normal

distribution with mean 0 and covariance matrix [Dβ
′
Σβ
−1Dβ]−1[Dβ

′
Σβ
−1(Y −µ)(Y −

µ)
′
Σβ
−1Dβ][Dβ

′
Σβ
−1Dβ]−1 (refer to Sutradhar, 2003, Sutradhar et al., 2014, Mamode

Khan et al., 2016 and Sunecher et al., 2017). The standard errors of (β[1],β[2]) are ob-
tained from the diagonals of the Hessian part in Equation (16).
As for the over-dispersion parameters, a second GQL is used where the score function is
modified such that

D∗c
′
Σ∗c
−1(Y 2 − µ∗) = 0, (17)

with Y 2 = [Y [1]2,Y [2]2](2T×1), µ
∗ = [E(Y [1]2), E(Y [2]2)](2T×1) and ∂µ∗[k]

∂ck
= µ

[k]
t

2
.

For the diagonal entries in Σ∗c , they are derived using the MGF of the NB model which
yields

Var(Y
[k]
t

2
) = µ

[k]
t + (6 + 7ck)µ

[k]
t

2
+ (4 + 16ck + 12c2k)µ

[k]
t

3
+ (4ck + 10c2k + 6c3k)µ

[k]
t

4
(18)

and as for the off-diagonal entries, they are computed using the ’working’ multivariate
normality assumption (refer to Prentice and Zhao, 1991 and Sunecher et al., 2017), where
using

E[(Yt − µt)(Yw − µw)(Yw′ − µw′)] = 0 (19)

we obtain

E(YtYwYw′) = E(YtYw)µw′ + E(YtYw′)µw + E(YwYw′)µt − 2µtµwµw′ (20)

Hence,

Cov(Y
[k]
t

2
, Y

[k]
t+h

2
) = (µ

[k]
t + ckµ

[k]
t

2
)(µ

[k]
t+h + ckµ

[k]
t+h

2
) + 2[ρhk(µ

[k]
t + ckµ

[k]
t

2
)]2

+ µ
[k]
t+h

2
(µ

[k]
t + ckµ

[k]
t

2
+ µ

[k]
t

2
) + µ

[k]
t

2
(µ

[k]
t+h + ckµ

[k]
t+h

2
+ µ

[k]
t+h

2
)

+ 4µ
[k]
t µ

[k]
t+h[ρhk(µ

[k]
t + ckµ

[k]
t

2
) + µ

[k]
t µ

[k]
t+h]− 5µ

[k]
t

2
µ
[k]
t+h

2

− (µ
[k]
t + ckµ

[k]
t

2
+ µ

[k]
t

2
)(µ

[k]
t+h + ckµ

[k]
t+h

2
+ µ

[k]
t+h

2
) (21)

and

Cov(Y
[1]
t

2
, Y

[2]
t

2
) = (µ

[1]
t + c1µ

[1]
t

2
)(µ

[2]
t + c2µ

[2]
t

2
) + 2[Cov(Y

[1]
t , Y

[2]
t )]2

+ µ
[2]
t

2
(µ

[1]
t + c1µ

[1]
t

2
+ µ

[1]
t

2
) + µ

[1]
t

2
(µ

[2]
t + c2µ

[2]
t

2
+ µ

[2]
t

2
)

+ 4µ
[1]
t µ

[2]
t [Cov(Y

[1]
t , Y

[2]
t ) + µ

[1]
t µ

[2]
t ]− 5µ

[1]
t

2
µ
[2]
t

2

− (µ
[1]
t + c1µ

[1]
t

2
+ µ

[1]
t

2
)(µ

[2]
t + c2µ

[2]
t

2
+ µ

[2]
t

2
) (22)
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The derivation of these formulae are shown in Sunecher et al. (2017). To facilitate the

computation of Equation (22), the following boundary condition is assumed, Cov(Y
[1]
t , Y

[2]
t ) =

Cov(Y
[1]
t+1, Y

[2]
t+1) for t = 0 and, hence, Cov(Y

[1]
t , Y

[2]
t ) =

ρ12,t

√
λ
[1]
t +c∗1λ

[1]
t

2
√
λ
[2]
t +c∗2λ

[2]
t

2

(1−ρ1ρ2) for

t = 1. From there, Cov(Y
[1]
t , Y

[2]
t ) is computed iteratively.

The Newton-Raphson iteration to solve equation (17) is given by(
ĉ1r+1

ĉ2r+1

)
=

(
ĉ1r
ĉ2r

)
+ [D∗

c

′
Σ∗

c
−1
D∗

c ]−1
r [D∗

c

′
Σ∗

c
−1

(Y 2 − µ∗)]r (23)

where ĉ1r and ĉ2r are the values at the rth iteration. Under mild regularity and
asymptotically conditions, these estimates are consistent and it can be shown that
((ĉ1, ĉ2) − (c1, c2))

′
has an asymptotic normal distribution with mean 0 and covariance

matrix [D∗c
′
Σ∗c
−1D∗c ]

−1[D∗c
′
Σ∗c
−1(Y 2−µ∗)(Y 2−µ∗)′Σ∗c

−1D∗c ][D
∗
c

′
Σ∗c
−1D∗c ]

−1 (see Su-
tradhar, 2003, Sutradhar et al., 2014, Mamode Khan et al., 2016 and Sunecher et al.,
2017). The standard errors of (c1, c2) are obtained from the diagonals of the Hessian
part in Equation (23).

4 Forecasting Equations

Using the BINAR(1) model in Equation (1) and (2),

Y
[k]
t = αk ∗ Y

[k]
t−1 +R

[k]
t (24)

The conditional expectation and variance of the one step-ahead prediction of Y
[k]
t+1 given

Y
[k]
t is given by:

E(Y
[k]
t+1|Y

[k]
t ) = µ̂

[k]
t+1 + ρ̂k(Y

[k]
t − µ̂

[k]
t ) (25)

and

Var(Y
[k]
t+1|Y

[k]
t ) = Eαk [Var(αk ∗ Y

[k]
t |Y

[k]
t , αk)] + Varαk [E(αk ∗ Y

[k]
t |Y

[k]
t , αk)] + Var(R

[k]
t+1)

= Eαk [αk(1− αk)Y
[k]
t ] + Varαk [αkY

[k]
t ] + Var(R

[k]
t+1)

= [ρ̂k −
ρ̂k(1− ρ̂k)ĉk

1 + ĉk
− ρ̂2k]Y

[k]
t +

ρ̂k(1− ρ̂k)ĉk
1 + ĉk

Y
[k]
t

2

+ [µ̂
[k]
t+1 − ρ̂kµ̂

[k]
t + ĉk((µ̂

[k]
t+1)

2 − ρ̂k(µ̂
[k]
t )2)]

=
ρ̂k(1− ρ̂k)

1 + ĉk
Y

[k]
t (1 + ĉkY

[k]
t ) + [µ̂

[k]
t+1 − ρ̂kµ̂

[k]
t + ĉk((µ̂

[k]
t+1)

2 − ρ̂k(µ̂
[k]
t )2)]

(26)

5 Case Study

One of the oldest and most popular football leagues in Europe is the English Premier
League comprising of 20 teams. Arsenal Football Club (AFC) is the only football team
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in the English Premier League which has remained among the top four during the last 20
years but in the recent Premier League seasons, the club’s performance has been quite
fluctuating. Several factors may explain this phenomena such as the home (coded as 1)
or away (coded as 0) effect (xt1), the number of inter-matches played (UEFA Champions
League, League Cup and Football Association Cup) between the two Premier League
consecutive matches (xt2), the number of injured players in inter-matches other than
Premier League matches (xt3), the number of new players bought (xt4) and the number
of players retired or sold or loaned to other clubs (xt5). To analyze the effect of these

factors on the first (Y
[1]
t ) and second half number of goals scored (Y

[2]
t ), data from 2010-

2011 to mid 2016-2017 seasons were collected, making a total of 240 paired observations.
The table below provides a summary statistics, time series plots and autocorrelation
functions (ACFs) of the 240 bivariate time series of counts of the number of goals scored
in first and second half by AFC:
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Figure 2: ACF plot
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Figure 3: Time series plot for the num-
ber of goals scored by Arsenal
in second half
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Figure 4: ACF plot

Table 1: Summary statistics for the number of goals scored in the first and second half
for AFC.

Sample Mean Sample Variance Lag-1 Cross

Y
[1]
t 0.8500 0.8644 0.0978 0.0063

Y
[2]
t 1.0125 1.0668 0.0394

From the above summary statistics, it is clear that the variances of the two series
are slightly greater than their respective means, confirming that the data is slightly
over-dispersed. Hence, we use the BINAR(1) model with NB innovations explained
in Section 2 together with the three GQL equations in Section 3 to analyze the over-
dispersed bivariate data with the time-variant explanatory variables. The regression
effects, over-dispersion, serial-correlation of the series and the cross-correlation of the
innovations are displayed in the table below:

Table 2: Number of first and second half goals: GQL Estimates of the regression, over-
dispersion, serial- and cross-correlation coefficients.
Intercept xt1 xt2 xt3 xt4 xt5 c ρ̂1 ρ̂2 ρ̂12,1

Y
[1]
t 0.273 0.213 -0.171 -0.061 0.091 -0.066 0.181 0.2741 0.3105 0.0077

exp(β̂) 1.31 1.23 0.84 0.94 1.09 0.93

s.e (0.178) (0.088) (0.081) (0.097) (0.079) (0.104) (0.323)

p-values 0.214 0.0157 0.0145 0.0056 0.0070 0.0015 0.0235

Y
[2]
t 0.310 0.251 -0.150 -0.078 0.103 -0.075 0.191 0.2741 0.3105 0.0077

exp(β̂) 1.36 1.28 0.86 0.92 1.10 0.92

s.e (0.191) (0.073) (0.059) (0.083) (0.091) (0.090) (0.308)

p-values 0.219 0.0122 0.0136 0.0050 0.0034 0.0075 0.0287

It is noted that all the parameters are significant, as shown in the above table. As
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for the first covariate, in the first half AFC has 23 percent higher chance to score in a
home match in comparison to an away match, and even a 28 percent higher chance in
the second half for home compared to away matches. This is evident as we have seen in
some matches AFC is losing in the first half, but then succeeded in winning the match
in the second half. One such example is the match between Arsenal and Leicester in
2015-2016 season. In addition, the number of inter-matches played cause a decrease of
15 percent in the number of goals scored in first half and 13 percent in second half. AFC
participates in the UEFA Champions League, Football Association Cup and League Cup
every seasons and this has a negative impact on the performance of the team in Premier
League matches. Next, the number of injured players have always been a major concern
for AFC. Thus, when players are injured, this cause a decrease of 5 percent in the number
of goals scored in the first half and 7 percent in the second half. Hence, one solution is to
recruit new players. However, recruitment of players can be conducted only in August
and January of each season. The impact of new players on the number of goals scored
is 9 percent in first half and 10 percent in second half. Another variable which has a
negative impact on the scoring capability of AFC is the number of players leaving the
club. Whenever players retire, the chance of scoring goals decreases by 6 percent in first
half and 7 percent in second half. Hence, AFC should be more active in the transfer
market as this can have a big influence in its scoring capability. The over-dispersion
parameters are all significant.

6 Conclusion

The paper reviews the non-stationary BINAR(1) process to model the first and sec-
ond half number of football goals. The main contribution lies in the estimation of the
regression and over-dispersion coefficients of each series using a two phase GQL ap-
proach. In particular, the auto-covariance structure that relates to the estimation of
the over-dispersion parameters is constructed using the ’working’ multivariate normal-
ity assumption since expressions for the high-ordered moments are not readily available
in multivariate discrete set-ups. The model was applied to the Arsenal Football data
where valid conclusions could be made regarding the current situation of the club in the
Premier League.
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