
Smart Tachograph 

User manual for the sample cryptographic keys and 

digital certificates Generation Tool 

Klaas Mateboer, David Bakker (UL) 
Luigi Sportiello (JRC) 

Version 1.0 
23 May 2017 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/141667118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims 

to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy 
position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible 
for the use that might be made of this publication. 

Contact information 
Email: erca@jrc.ec.europa.eu 

JRC Science Hub 
https://ec.europa.eu/jrc 

JRC106943 

PDF ISBN 978-92-79-69660-2 doi:10.2760/8495 

Luxembourg (Luxembourg): Publications Office of the European Union, 2017. 

© European Union, 2017 

The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not 
distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. 

How to cite this report: Mateboer K., Bakker D., Sportiello L.; Smart Tachograph: User manual for the sample cryptographic keys and 
digital certificates Generation Tool, doi:10.2760/8495.  

All images © European Union 2017. 



i 

Contents 

1 Introduction .......................................................................................................................................2 

1.1 Scope of this document ..............................................................................................................2 

1.2 Intended audience ......................................................................................................................2 

1.3 Disclaimer ...................................................................................................................................3 

1.4 Document structure ...................................................................................................................3 

2 Background: Smart Tachograph security mechanisms ......................................................................4 

2.1 Smart Tachograph cryptographic infrastructure ........................................................................5 

2.1.1 Asymmetric keys and Public Key Infrastructure...............................................................5 

2.1.2 Symmetric keys ................................................................................................................7 

2.2 ERCA keys replacement and link certificates ..............................................................................7 

3 Downloading, building and executing the tool ..................................................................................9 

3.1 Downloading ...............................................................................................................................9 

3.2 Building .......................................................................................................................................9 

3.3 Executing ....................................................................................................................................9 

4 Supported functions ........................................................................................................................ 11 

4.1 Overview .................................................................................................................................. 11 

4.1.1 General syntax description ............................................................................................ 11 

4.1.2 Input parameter validations .......................................................................................... 11 

4.1.3 Numeric and alphanumeric input formats .................................................................... 12 

4.2 Detailed function descriptions ................................................................................................ 13 

4.2.1 Generate ec ................................................................................................................... 13 

4.2.2 Generate aes ................................................................................................................. 13 

4.2.3 Create ca........................................................................................................................ 13 

4.2.4 Create equipment ......................................................................................................... 15 

4.2.5 Create request ............................................................................................................... 16 

4.2.6 Sign ................................................................................................................................ 17 

4.2.7 Link ................................................................................................................................ 18 

4.2.8 Verify ............................................................................................................................. 19 

4.2.9 Derive dsrc ..................................................................................................................... 19 

4.2.10 Derive msmk .................................................................................................................. 21 

4.2.11 Derive msik .................................................................................................................... 21 

4.2.12 Encrypt ms ..................................................................................................................... 21 

4.2.13 Encrypt pk ...................................................................................................................... 22 

5 Using the tool .................................................................................................................................. 24 

5.1 Creating valid asymmetric key pairs and certificates .............................................................. 24 

5.1.1 Creating an ERCA root key pair and certificate ............................................................. 24 



ii 

5.1.2 Creating an ERCA Link certificate .................................................................................. 24 

5.1.3 Creating a MSCA key pair and certificate ...................................................................... 24 

5.1.4 Creating an equipment certificate ................................................................................ 24 

5.2 Creating valid symmetric keys and cryptographic material .................................................... 25 

5.2.1 Creating a DSRC Master Key, a Motion Sensor Master Key part or Pairing Key ........... 25 

5.2.2 Creating a Motion Sensor Master Key .......................................................................... 25 

5.2.3 Creating a Motion Sensor Identification Key ................................................................ 25 

5.2.4 Creating VU-specific DSRC keys ..................................................................................... 25 

5.2.5 Creating an encrypted motion sensor serial number ................................................... 25 

5.2.6 Creating an encrypted pairing key ................................................................................ 25 

5.3 Creating invalid certificates ..................................................................................................... 25 

6 Troubleshooting .............................................................................................................................. 27 

References ............................................................................................................................................ 28 

List of abbreviations and definitions .................................................................................................... 29 

List of figures ........................................................................................................................................ 30 

Appendix 1 Cryptographic elements per component .......................................................................... 31 

Appendix 1.1 Cryptographic elements installed in a Vehicle Unit ....................................................... 31 

Appendix 1.2 Cryptographic elements installed in a Motion Sensor ................................................... 32 

Appendix 1.3 Cryptographic elements installed in a Tachograph Card ............................................... 32 

Appendix 1.4 Cryptographic elements installed in an EGF .................................................................. 33 

Appendix 2 Format of .pkcs8 files ........................................................................................................ 34 



 

1 
 

Abstract 
In order to aid manufacturers, component personalisers, certification authorities and other Digital 
Tachograph stakeholders with the development and testing of equipment and systems complying 
with the Generation-2 Smart Tachograph specifications, a tool has been developed that can be used 
to generate sample cryptographic keys and digital certificates. Stakeholders may use this tool to 
generate keys and certificates with specific properties for their testing purposes. 
 
This document is the user manual for the tool. It explains  

 how to download the tool, build the tool from the provided source files and execute it. Note 
that building the tool is only necessary in case a user decides to make changes to the source 
files. 

 which functions are supported by the tool and what the exact syntax of the respective 
commands is. 

 how to use the tool to generate symmetric and asymmetric keys and certificates that comply 
with the specifications in Appendix 11 of Annex 1C. All types of keys and certificates specified 
in this Appendix can be generated by the tool. 

 how to use the tool to sign certificates that do not comply with Appendix 11. Such 
certificates may be useful for ‘unhappy flow’ testing, i.e. testing that equipment is resilient 
against unexpected or wrong inputs. 

 
 



 

2 
 

1 Introduction 
The digital tachograph system (Generation-1 Digital Tachograph) has been introduced by Council 
Regulation 3821/85 as amended by Council Regulation 2135/98 [1] and Commission Regulation 
1360/2002 [2]. Regulation (EU) No 165/2014 [3] and its Commission Implementing Regulation (EU) 
2016/799 [4] call for the introduction of a Generation-2 Smart Tachograph.  
 
Annex 1C (Requirements for construction, testing, installation, and inspection) to [4] includes the 
technical specifications of the Smart Tachograph system. Detailed technical information is contained 
in a series of sixteen appendices to Annex 1C. Appendix 11 (Common Security Mechanisms) describes 
all details of the cryptographic security mechanism used to protect the data stored and transmitted 
in the Smart Tachograph system.  

1.1 Scope of this document 
Security mechanisms have been defined to secure the exchange and storage of data by the Smart 
Tachograph equipment, namely Vehicle Units, Tachograph Cards, Motion Sensors and External GNSS 
Facilities. Such mechanisms are mainly based on cryptographic solutions. Specifically, a cryptographic 
infrastructure has been defined, with symmetric keys, asymmetric keys and digital certificates stored 
in the Smart Tachograph equipment, allowing the execution of cryptographic algorithms and 
protocols. Section 2.1 below gives an overview of the cryptographic infrastructure of the Smart 
Tachograph. In order to support Member State Certification Authorities (MSCAs), manufacturers, 
component personalisers and other stakeholders with the development and testing of equipment 
and systems complying with these new specifications, a comprehensive set of Generation-2 sample 
keys and certificates has been developed. Ref. [9] describes the contents of this sample set. 
 
However, stakeholders may need or wish to use other sample keys and certificates than those 
provided in the sample set. Reasons for this may be, for example: 

 test proper functioning of asymmetric key pairs generated by the stakeholder 

 use symmetric keys derived from a stakeholder-generated master key 

 use stakeholder-specific data (e.g. serial numbers, nation code, manufacturer code) in 
equipment certificates 

 use specific validity periods for certificates 

 use certificates that do not comply with some requirement(s) in the specifications. This may 
be useful to perform ‘unhappy flow’ testing of equipment’s resilience against erroneous 
input. 

 
In order to allow stakeholders to generate their own keys and certificates, a sample keys and 
certificates Generation Tool has been developed. This document is the user manual of this tool. 
 
Please note that most of the Generation-2 equipment must also contain Generation-1 cryptographic 
keys and digital certificates, in order to be able to communicate to Generation-1 equipment. 
However, for these keys and certificates stakeholders may use cryptographic test material developed 
or made available in the past. The key generation tool described in this document can only be used 
for generating Generation-2 keys and certificates. 

1.2 Intended audience 
This document is intended for stakeholders involved in the development of equipment and systems 
for the Smart Tachograph system. Readers of this document should be familiar with the contents of 
Annex 1C, and especially with Appendix 11 to that Annex.  



 

3 
 

1.3 Disclaimer 
The sample keys and certificates Generation Tool has to be only seen as a support to the 
development and testing processes of digital tachograph stakeholders. In the event of any conflict 
between the output of the tool and the Implementing Regulation 2016/799 [4] and its Annexes and 
Appendices, the latter shall prevail. Each stakeholder remains fully responsible for making sure that 
their equipment complies with all requirements in [4]. 

1.4 Document structure 
This document is structured as follows: 

 Chapter 2 gives an overview of the Smart Tachograph system and its security mechanism. 
This serves as background information. Readers familiar with the Smart Tachograph system 
may skip this chapter.  

 Chapter 3 explains how to download, build and execute the tool. 

 Chapter 4 lists the functions supported by the tool and gives a detailed description of each 
respective command, including its purpose, syntax and input and output. It also lists all 
possible errors and warnings and gives some usage examples for each command. 

 Chapter 5 describes how to use the various functions of the tool in conjunction in order to 
create each of the keys and certificates that play a role in the Smart Tachograph ecosystem. 

 Chapter 6 contains some questions and answers related to problems that may be 
encountered during execution of the tool. 



 

4 
 

2 Background: Smart Tachograph security mechanisms 
Figure 1 shows an overview of the Smart Tachograph system. 

 
Figure 1 Overview of the Smart Tachograph system 

The vehicle unit (VU) is the central component of the system. Every vehicle is equipped with a vehicle 
unit whose main task is to log driving activities.  
 
In order to do so, each vehicle unit is securely paired to a motion sensor (MS), which is connected to 
the gearbox of the vehicle and provides the vehicle unit with a signal that represents the vehicle’s 
speed. During pairing, which is done once by a workshop, the VU and the motion sensor mutually 
authenticate each other. After this, part of the communication between a VU and a motion sensor is 
authenticated and encrypted.  
 
Users of a vehicle unit are equipped with a tachograph card (TC). There are four types of cards, 
corresponding to the four roles of Driver, Control Officer, Workshop or Company. Upon insertion of a 
card in a VU, the card and the VU mutually authenticate each other. Subsequently, communication 
between them is authenticated and in some cases encrypted. Moreover, once the VU is 
authenticated to the card, it is allowed to write data to some of the data structures on the card. In 
addition, the exact working mode of a VU is determined by the card(s) that is/are inserted into its 
card slots. 
 
The vehicle unit is also able to periodically log the vehicle’s position and check the plausibility of the 
motion sensor’s signal by means of position determination based on a Global Navigation Satellite 
System (GNSS). The GNSS receiver that is necessary to do so is either contained in the VU itself, or in 
an External GNSS Facility (EGF). In case an EGF is used, the vehicle is securely coupled once to the VU 
by a workshop. During coupling, the VU and EGF authenticate each other. Afterwards, 
communication between them is authenticated. 
 
The data stored on either a vehicle unit or a card must be downloaded by a control officer during a 
check or by the responsible company. Although the communication interfaces used for downloading 
data from a card or from a VU are rather different, the security requirements on both interfaces are 
equal: the integrity, authenticity and non-repudiation of the downloaded data must be protected by 
means of a digital signature created by the VU or the card. 
 
Finally, the Smart Tachograph system also contains Remote Early Detection Communication Readers 
(REDCRs). These are readers that are operated by a control officer and are positioned along the 
roadside or on officers’ vehicles. They are capable of interrogating a Remote Communication Facility 
(RCF) in a passing vehicle over a DSRC link, without having to stop the vehicle. The VU periodically 
stores relevant data, in particular driving and control data, in the RCF. Such a system allows for a 
frequent verification of the vehicle status through remote interrogations. The data communicated 
over the DSRC link is encrypted and authenticated by the VU before it is sent to the RCF. 



 

5 
 

2.1 Smart Tachograph cryptographic infrastructure 
In order to fulfil the security requirements for each of the interactions outlined above, the vehicle 
unit, tachograph cards, motion sensor and EGF all contain a number of cryptographic elements, 
namely public/private key pairs, digital certificates and/or symmetric keys. They comply with 
Appendix 11 of Annex 1C, which also gives a full specification of the protocols adopted to secure the 
interaction of the different system components.  
Public/private key pairs are based on Elliptic Curve Cryptography (ECC), symmetric keys are based on 
the AES algorithm, whereas as hash algorithm SHA-2 has been adopted. 
A number of pre-defined key lengths and hash sizes have been specified and combined together to 
form cipher suites, which assure a consistent level of security for all interactions of the Smart 
Tachograph components. The cipher suites are summarized in Table 1. All system components 
mentioned above must support all cipher suites. 
 

Cipher suite ECC key size 
(bits) 

AES key length 
(bits) 

Hashing 
algorithm 

CS#1 256 128 SHA-256 

CS#2 384 192 SHA-384 

CS#3 512/521 256 SHA-512 
Table 1 Cipher suites defined for the Smart Tachograph system 

 
For Elliptic Curve Cryptography there is the need to choose domain parameters. Appendix 11 of 
Annex 1C allows two sets of standardized domain parameters, the NIST and Brainpool domain 
parameters. Both for the NIST and the Brainpool standard a set of domain parameters for each of the 
key sizes specified in Table 1 has been selected. The complete set is shown in Table 2. 
 

Name Key size (bits) 

NIST P-256 256 

BrainpoolP256r1 256 

NIST P-384 384 

BrainpoolP384r1 384 

BrainpoolP512r1 512 

NIST P-521 521 
Table 2 Allowed standardized domain parameters for ECC 

 
A cryptographic infrastructure has been designed for the generation and deployment of the 
cryptographic elements in the Smart Tachograph system. It is made of three layers, a European level, 
a member state level and a system component level. Such an infrastructure acts both as Public Key 
Infrastructure (PKI) and as symmetric keys distribution infrastructure. 

2.1.1 Asymmetric keys and Public Key Infrastructure 
The ECC key pairs are part of a Public Key Infrastructure (PKI), as shown in Figure 2. This Public Key 
Infrastructure (PKI) consists of three levels. From top to bottom, these are:  

 the European level, managed by the European Root Certificate Authority (ERCA).  

 the Member State level, managed by the Member State Certificate Authority (MSCA) of 
every member state involved in the digital tachograph system.  

 The equipment level, managed by the manufacturers or personalizers of vehicle units, 
tachograph cards and EGFs. 

 



 

6 
 

 
Figure 2 Smart Tachograph PKI 

 
On the European level, the ERCA creates a single ECC key pair that serves as the root key pair of the 
entire PKI. The ERCA also creates a self-signed root certificate containing the root public key. ERCA 
certificates have a validity period of 34 years and 3 months. The ERCA root key pair and certificate 
are renewed over time (see next section). The ERCA uses the corresponding private key to sign MSCA 
certificates. The public MSCA keys to be signed are sent to the ERCA by the MSCAs. 
 
On the Member State level, each MSCA that needs to issue certificates for VUs or EGFs creates a key 
pair, which is indicated in Appendix 11 as MSCA_VU-EGF. Then it requests the ERCA to sign a 
certificate for the respective public key. Similarly, each MSCA that needs to issue certificates for 
tachograph cards creates an MSCA_Card key pair and asks the ERCA to sign the corresponding 
certificate. MSCA_VU-EGF certificates are valid for 17 years and 3 months. MSCA_Card certificates 
have a validity period of 7 years and 1 month. The MSCA uses the corresponding private keys to sign 
equipment certificates. 
 
On the equipment level, the manufacturer or personaliser of each VU, card or EGF1 creates at least 
an equipment key pair for mutual authentication. The component will use this key pair to 
authenticate itself to other equipment it will interoperate with during its lifetime. In addition, for a 
VU, a workshop card or a driver card, the manufacturer or personaliser also creates a key pair for 
signing. These components will use their signing private key to sign data that is downloaded from 
them. Other component types are not required to support data downloads and hence do not need a 
signing key pair. All generated public keys are sent to the competent MSCA for the generation of the 
respective certificate. The validity period of equipment certificates is as follows: 

 VU_Sign   15 years and 3 months 

 VU_MA   15 years and 3 months 

 Driver Card_Sign:   5 years and 1 month 

 Workshop Card_Sign: 1 year and 1 month 

 Driver Card_MA:   5 years 

 Company Card_MA:  5 years 

 Control Card_MA:  2 years 

 Workshop Card_MA: 1 year 

 EGF_MA   15 years   
 

                                                           
1
 Note that motion sensors do not contain asymmetric keys or certificates. 

ERCA 

Root

Cert.

MSCA_VU

Cert.

VU_Sign

Cert.

VU_MA

Cert.

MSCA_Card

Cert.

Card_Sign

Cert.

Card_MA

Cert. 

MSCA_VU-

EGF

Cert.

MSCA_Card

Cert.
MSCA_Card

Cert.
MSCA_Card

Cert.

EGF_MA

Cert.



 

7 
 

All certificates issued within the Smart Tachograph system are so-called card-verifiable certificates. 
Their format is equal for all types of certificates and is show in the table below: 

Field Tag 
Length 
(bytes) 

ASN.1 data type 
(see Appendix 1 of 
Regulation (EU) 
2016/799 [4]) 

ECC Certificate ‘7F 21’ var  

 ECC Certificate Body ‘7F 4E’ var  

 Certificate Profile Identifier ‘5F 29’ ‘01’ INTEGER(0..255) 

 Certificate Authority Reference ‘42’ ‘08’ KeyIdentifier 

 Certificate Holder Authorisation ‘5F 4C’ ‘07’ CertificateHolder

Authorisation 

 Public Key ‘7F 49’ var  

  Domain Parameters ‘06’ var OBJECT IDENTIFIER 

  Public Point ‘86’ var OCTET STRING 

 Certificate Holder Reference ‘5F 20’ ‘08’ KeyIdentifier 

 Certificate Effective Date ‘5F 25’ ‘04’ TimeReal 

 Certificate Expiration Date ‘5F 24’ ‘04’ TimeReal 

 ECC Certificate Signature ‘5F 37’ var OCTET STRING 

Table 3 Smart Tachograph certificate format 

2.1.2 Symmetric keys 
Concerning symmetric keys in the Smart Tachograph system, there are two kinds of keys managed in 
the cryptographic infrastructure: 

 Keys for protecting the communication between a VU and a Motion Sensor: 
o Motion Sensor Master Keys. These are constituted from a Workshop Card Master 

Key part and a VU Master Key part.  
o Identification Keys, which are derived from the Motion Sensor Master Keys and a 

constant vector. 

 Keys for protecting the communication over a DSRC link between a VU and a Remote 
Early Detection Communication Reader: 
o DSRC Master Keys 
o VU-specific DSRC keys for encryption and authentication, derived from a DSRC 

Master Key 
The motion sensor keys are used to secure the link between VU and Motion Sensor. The DSRC keys 
are used to secure the data uploaded on the Remote Communication Facility.  
The Motion Sensor Master Key, along with its constituting parts, and the DSRC Master Key are 
generated by the ERCA. Every time the ERCA replaces the ERCA root key pair, it also replaces the 
Master Keys (see next section). The Master Keys are provided by the ERCA to the MSCAs. A MSCA can 
use the Motion Sensor Master Keys to generate specific cryptographic material to be installed in a 
Motion Sensor. A MSCA can also provide the Workshop Card Master Key part to be installed in 
Workshop cards, or can provide the VU Master Key part to be installed in VUs according to Appendix 
11 of Annex 1C. A MSCA can use the DSRC Master Keys to generate the VU-specific DSRC keys for a 
VU. A MSCA can also provide the DSRC Master Keys to be installed in Control and Workshop card 
according to Appendix 11 of Annex 1C. Each generation of these Master Keys will be in use by Smart 
Tachograph component for 34 years. 

2.2 ERCA keys replacement and link certificates 
Appendix 11 of Annex 1C describes a mechanism that ERCA can use to replace the root key pair and 
respective certificate, along with the associated master keys. The appendix also specifies that such a 
replacement shall take place every 17 years.  



 

8 
 

An important advantage of this key replacement is that it gives ERCA a chance to review whether the 
security level of the root key pair and associated master keys is still sufficient. If this is not the case, 
ERCA can decide to switch to longer key lengths. 
Whenever ERCA creates a new root key pair, the following actions take place:  

 In order to ensure interaction between equipment issued under different generations of the 
root key, ERCA will issue a so-called link certificate. A link certificate contains the new ERCA 
public key and is signed with the previous ERCA private key. By verifying the link certificate, 
equipment issued under the previous ERCA key pair is able to trust the new ERCA public key 
and so it is allowed to interact with equipment issued under the new ERCA public key. See 
Appendix 11 of Annex 1C for more details. 

 ERCA also generates a new Motion Sensor Master Key, and relative parts, and a new DSRC 
Master Key. For the concerned equipment all master keys, and related materials, that are 
valid at the time of its issuance have to be installed in its memory. This ensures the 
interaction between equipment linked to different master key generation. See Appendix 11 
of Annex 1C for more details. 

 



 

9 
 

3 Downloading, building and executing the tool 
 
The sample keys and certificates Generation Tool is a Java command line application. Please note 
that the following conditions have to be satisfied for its execution: 

 The tool requires Java 8 [10] with Java Cryptography Extension (JCE) Unlimited Strength 
Jurisdiction Policy Files installed [11]Error! Reference source not found.; see below for 
nstructions on how to do this. 

 The tool depends on the Bouncy Castle JCE provider [12]. The required bcprov-jdk15on-
1.56.jar needs to be in the same folder as the executable jar. 

3.1 Downloading 
Downloading and unzipping the tool results in a folder containing a readme.txt file, a ‘src’ folder and 
a ‘installed’ folder:   

 The readme.txt file contains the information in this chapter and the next ones in a condensed 
format. 

 The ‘installed’ folder contains a compiled version of the tool (file ‘tachograph-keytool-
1.0.0.jar’) that can be directly used. 

 The ‘src’ folder contains all source files of the tool. This allows stakeholders to adapt the tool 
to their wishes, should this be necessary.  

3.2 Building 
This section briefly describes the prerequisites for building the tool, if necessary. 
 
The ‘sample keys and certificates generation tool’ project uses Maven to manage the build process. 
In order to build:  

 Maven has to be installed [13]. 

 JDK 8 has to be installed [10]. 

 Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files have to be 
installed [11]. These can be downloaded from 
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html. 
Unzip the downloaded zip and copy the files ‘local_policy.jar’ and ‘US_export_policy.jar’ to 
the $JAVA_HOME/jre/lib/security folder. Note: these jars will be already there so they should 
be overwritten.  

 
Run the following command in the unzipped folder to build the tool: 
 
 mvn clean install 
 
The output of the build is an executable .jar file, similar to the .jar file provided in the ‘installed’ 
folder. After building, the ‘target’ folder contains all results of the build process. This includes the 
executable .jar file. Also the Bouncy Castle bcprov-jdk15on-1.56.jar is present in the ‘target’ folder at 
the end of the building process. 
 
Note that building the tool has been tested on the Windows and Linux platforms. 

3.3 Executing 
The sample keys and certificates Generation Tool is a Java command line application. To use the tool 
on Windows machines, open a command window in the folder in which the executable jar file is 
located, e.g. by pressing SHIFT + right mouse button and selecting ‘open command window here’. 
Use the following command to run the tool (the version number may be different): 
 java -jar tachograph-keytool-1.0.0.jar 

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html


 

10 
 

 
A batch file st.bat (st for ‘smart tachograph’) is added in the ‘installed’ folder to simplify command 
line usage. Use the following commands to show details on the supported tool functions, as 
described in chapter 4: 

 st generate ec 

 st generate aes 

 st create ca 

 st create equipment 

 st create request 

 st sign 

 st link 

 st verify 

 st derive dsrc 

 st derive msmk 

 st derive msik 

 st encrypt ms 

 st encrypt pk 
 
Note that the tool accepts any command or parameter truncation as long as one of the options starts 
with the specified truncation. So, assuming the st.bat file is used, the following command lines are 
equivalent (refer to section 4.2.1): 

 st generate ec erca1 brainpoolp256r1 

 st gen ec erca1 brainpoolp256r1 

 st g e erca1 brainpoolp256r1 



 

11 
 

4 Supported functions  

4.1 Overview 

4.1.1 General syntax description 
The tool supports the functions expressed by the following commands: 

 generate ec to generate a ECC key pair. 

 generate aes to generate an AES key. 

 create ca to create a (self-signed) ERCA or MSCA certificate for a previously 
generated key pair. 

 create equipment to create a (self-signed) equipment certificate for a previously 
generated key pair 

 create request to create a (self-signed) VU certificate for a previously generated 
key pair, where a certificate request number is used instead of a 
VU serial number. 

 sign to sign a previously created certificate, using a previously created 
CA private key and corresponding certificate. 

 link to create and sign the Link certificate between two previously 
generated ERCA root certificates. 

 verify to verify a certificate. 

 derive dsrc to derive a VU-specific DSRC key from a DSRC master key 

 derive msmk to derive a motion sensor master key from a motion sensor master 
key–VU part and a motion sensor master key–WC part. 

 derive msik to derive a motion sensor identification key from a motion sensor 
master key. 

 encrypt ms to encrypt a motion sensor serial number with an identification 
key. 

 encrypt pk to encrypt a pairing key with a motion sensor master key. 

 
Section 4.2 describes these commands in more detail. 
 
Commands can have required and/or optional parameters. In the descriptions in section 4.2, 
required parameters are put between triangular brackets: <parameter>. Optional parameters are 
furthermore enclosed between square brackets: [<parameter>].  The brackets are not to be actually 
used in the commands. 
 
Note that names of input files must be given including their extension. For output files, the tool will 
add the correct extension automatically; this should not be included in the parameter. For both types 
of files, either the full path or a path relative to the location of the executable jar can be specified. 

4.1.2 Input parameter validations 
The tool will perform general checks on all inputs, which may result in one or more errors or 
warnings. In case of a warning, the requested output is generated, but the user is alerted to some 
unusual or non-compliant property of that output. In case of an error, no output could be generated. 
 
General errors: 

 If a list of possible values is specified for a given parameter, but the user inputs a value that is 
not in the list. 

 If illegal characters are used for an output file name. (Note that if an extension is specified, 
no error or warning will be given, but a file having a ‘double extension’ will be created.) 



 

12 
 

 For an input file name: If there is no file with that name in the current folder, or if the 
extension is omitted. 

 If an incorrect format (e.g. numeric / alphanumeric, wrong length, …) is used for one of the 
input parameters. Numeric and alphanumeric input formats are specified in section 4.1.3. 
Parameter lengths (if applicable) are specified for each function in section 4.2. 

 If a required parameter is missing or too many parameters are provided. 
 
Apart from these general checks, the tool may perform specific validations based on the input 
parameter in question. These are described per command in section 4.2.  

4.1.3 Numeric and alphanumeric input formats 
Numerical input values can be provided both in hexadecimal and decimal format. If the input value is 
shorter than the expected length, it will be left-padded with ‘00’ bytes. In case the input is too long, 
only the right-most digits will be kept, and a warning will be given in case significant bits are lost. 

 0xff or 0xFF or 255 are equal for a 1-byte numeric field. 

 0x0001 or 0x01 or 1 are equal for a 2-byte numeric field. 0x020001 will result in the same 
output, but a warning will be given. 

 

Alphanumerical input values must be provided in alphanumerical format. If the input value is shorter 
than the expected length, it will be right-padded with spaces. In case the input is too long, only the 
left-most digits will be kept, and a warning will be given in case digits are lost. Double quotes (“”) 
may optionally be used. 

 “EC” or “EC ” or EC are all equally valid for a 3-byte alphanumeric field. 

 “  EC” (starting with two spaces) will result in “  E”, and a warning will be given. 



 

13 
 

4.2 Detailed function descriptions 

4.2.1 Generate ec 
This command is used to generate an ECC key pair. The private key and the public key are both 
stored in a PKCS#8 file. For the format of this file, refer to Appendix 2. 
 
Syntax: 
generate ec <name> <curve> 

name:  the name of the PKCS#8 file to be created. 
curve: the standard name of the elliptic curve parameters to be used, one of: 

 secp256r1 

 secp384r1 

 secp521r1 

 brainpoolp256r1 

 brainpoolp384r1 

 brainpoolp512r1 
 
Example: generate ec MSCA_VU-EGF(1) brainpoolp256r1  
Output:  A file MSCA_VU-EGF(1).pkcs8 containing the key pair, structured as described in Appendix 2. 
 
Errors:  

 See section 4.1.2. 
 
Warnings: 

 None 
 

4.2.2 Generate aes 
This command is used to generate a AES symmetric key, and store it in a binary file. 
 
Syntax: 
generate aes <name><size> 

name:  the name of the file to be created 
  size: the size in bits of the secret key to be generated (128, 192, or 256) 
 
Example: generate aes keys/DSRCMK-2 192 
Output:  A file DSRCMK-2.bin containing the 192-bits AES key in plain text, stored in a folder called 
‘keys’, which is located in the folder where the executable jar is. 
 
Errors: 

 See section 4.1.2. 
 
Warnings: 

 None 
 

4.2.3 Create ca 
This command is used to create a self-signed ERCA root or MSCA certificate, using an existing ECC key 
pair stored in a PKCS#8 file. The certificate is stored in a file with a .cert extension. The certificate 
format complies to Appendix 11; see also Table 3 above. 
 



 

14 
 

Note: In case this command is used to create an ERCA root certificate, the certificate is ready for use 
immediately. In case it is used to create a MSCA certificate, the resulting certificate must still be 
signed with the proper ERCA certificate using the ‘sign’ command, see section 4.2.6. 
 
Syntax: 
create ca <type> <name> <keyname> <nationnumeric> <nationalpha> <serialnumber> 
<additionalinfo> <caidentifier> [<effectivedate> [<expirationdate>]]  

type:   one of the following options: 
o erca 
o msca_vu_egf 
o msca_card 

name:    the name of the certificate file to be created 
keyname:  the name of the PKCS#8 file containing the key to be certified, 

including the .pkcs8 file extension. 
nationnumeric: a numerical identifier of the nation; see Appendix 1 to Annex 1C [4]. 

If the selected type is erca, any other value than ‘FD’ will result in a 
warning. 

nationalpha: a country code of up to three characters; see Appendix 1 to Annex 
1C [4]. In case less than three characters are input, the tool adds 
spaces to the right. If the selected type is erca, any value other than 
"EC" (or “EC ”) will result in a warning.  

  serialnumber:   1-byte key serial number; see Appendix 1 to Annex 1C [4] 
additionalinfo:  2-byte CA-specific additional coding; see Appendix 1 to Annex 1C [4]. 
caidentifier:  the CA identifier; see Appendix 1 to Annex 1C [4]. Any value other 

than ‘01’ will result in a warning 
effectivedate:  the certificate effective date and time in ISO 8601 format (e.g. 2018-

01-01T12:00:00). If no effective date is specified by the user, the 
current system time will be used. 

expirationdate: the certificate expiration date and time in ISO 8601 format. If no 
expiration date is specified by the user, it will be based on the 
effectivedate and the validity period specified in Appendix 11 of 
Annex 1C [4]. Note that it is not possible to specify the expiration 
date without specifying the effective date as well. 

Notes: 

 For creating ERCA link certificates, use the link command specified in section 4.2.7. 

 For some data elements in the certificate, the tool will automatically determine the value:  
o The value of the certificate profile identifier will be set to ‘00’. 
o The value of the Certificate Authority Reference (CAR) will be chosen equal to those 

for the Certificate Holder Reference; see below. (For MSCA certificates, the CAR will 
subsequently be replaced in a ‘sign’ command, see section 4.2.6.) 

o The value for the Certificate Holder Authorisation (CHA) will be chosen based on 
specified ‘type’ parameter. 

o The value for the domain parameters OID will be taken from the specified .pkcs8 file. 
o The value of the public point will be taken from the specified .pkcs8 file. 

 The signature over the certificate will generated using the private key in the specified .pkcs8 
file. 
 
Please refer to chapter 5.3 to learn how to create certificates using other (non-compliant) 
values for these data elements.  

 
Example 1: create ca erca /src/test/keys/erca(1) erca(1).pkcs8 0xFD EC 23 0 01 



 

15 
 

Output:  A file erca(1).cert containing the requested certificate. Note that the value used for the 
serial number will be ‘0x17’ (23 decimal). The file is stored in a folder /src/test/keys/ relative to the 
root. 
 
Example 2: create ca msca_card mscacard_1 mscacard_1.pkcs8 0x0d “D” 0x0f 0xFFFF 01 2018-01-
01T12:00:00 
Output:  A file mscacard_1.cert containing the requested certificate. The file is stored in the current 
folder. 
 
Errors: 

 See section 4.1.2. 

 If a non-existent date (e.g. February 30th) is specified in the effectivedate or expirationdate 
parameters. 

 If the indicated .pkcs8 file is not a proper PKCS#8 data structure complying with Appendix 2. 
 
Warnings: 

 In case (based on the specified effective date and/or expiration date) the resulting certificate 
is not yet valid or is expired already. 

 In case both the effective date and the expiration date are specified by the user, and the 
resulting certificate validity period is not compliant with Appendix 11. 

 In case for one or more input parameters a value is used that is not compliant to the 
specifications; see above.  

 

4.2.4 Create equipment 
This command is used to create a self-signed equipment certificate, using an existing ECC key pair 
stored in a PKCS#8 file. The certificate is stored in a file with a .cert extension. The certificate format 
complies to Appendix 11; see also Table 3 above. 
 
Note: The resulting certificate must still be signed with the proper MSCA certificate using the ‘sign’ 
command, see section 4.2.6. 
 
Syntax:     
Create equipment <type> <name> <keyname> <serialnumber> <month><year><manufacturercode> 
[<effectivedate> [<expirationdate>]]  

type:    one of the following options: 
o driver_card_ma 
o driver_card_sign 
o workshop_card_ma 
o workshop_card_sign 
o control_card_ma 
o company_card_ma 
o vu_ma 
o vu_sign 
o egf_ma 

name:    the name of the certificate file to be created. 
keyname:  the name of the PKCS#8 file containing the key to be certified. 
serialnumber: the 4-byte equipment serial number; see Appendix 1 to Annex 1C 

[4]. 



 

16 
 

month:  the month of manufacturing of the VU. Format: 1 byte BCD. A 
warning will be given if the number entered is higher than 12 
(decimal). 

year:  the year of manufacturing of the VU. Format: 1 byte BCD. If more 
than 2 digits are entered, the tool will only use the last two; e.g. 
2017 becomes 17. 

manufacturercode: the 1-byte manufacturer code; see Appendix 1 to Annex 1C [4]. 
effectivedate:  the certificate effective date and time in ISO 8601 format (e.g. 2018-

01-01T12:00:00). If no effective date is specified by the user, the 
current system time will be used. 

expirationdate: the certificate expiration date and time in ISO 8601 format. If no 
expiration date is specified by the user, it will be based on the 
effectivedate and the validity period specified in Appendix 11 of 
Annex 1C [4]. Note that it is not possible to specify the expiration 
date without specifying the effective date as well. 

 
Notes: 

 For creating VU certificates based on a request serial number, please see section 4.2.5. 

 For some data elements in the certificate, the tool will automatically determine the value:  
o The value of the certificate profile identifier will be set to ‘00’. 
o The value of the Certificate Authority Reference (CAR) will be chosen equal to the 

Certificate Holder Reference; see below. (The CAR will subsequently be replaced in a 
‘sign’ command, see section 4.2.6.) 

o The value for the Certificate Holder Authorisation (CHA) will be based on the 
specified ‘type’ parameter. 

o The value for the Domain Parameters OID will be taken from the specified .pkcs8 file. 
o The value of the public point will be taken from the specified .pkcs8 file. 
o For the Card Holder Reference (CHR) field: 

 The value of the monthYear data element will be will be based on the 
specified ‘month’ and ‘year’ parameters. 

 The value of the type data element will be based on the specified ‘type’ 
parameter. 

 The signature over the certificate will generated using the private key in the specified .pkcs8 
file. 
 
Please refer to chapter 5.3 to learn how to create certificates using other (non-compliant) 
values for these data elements.  

 
Example: create equipment driver_card_ma drivercard_1 driver_card_1.pkcs8 0x02000131 4 17 0x41 
2008-01-01T12:00:00 2019-01-01T12:00:00 
Output: A file driver_card_1.cert containing the specified certificate, with an effective date in the 
past and an incorrect validity period. 
 
Errors and Warnings: See for ‘create ca’ command in section 4.2.3. 
 

4.2.5 Create request 
This command is identical in syntax to the ‘create equipment’ command described in the previous 
section. However, it will result in a VU certificate that does not contain a VU serial number in the 
CHR, but a request serial number instead. For more information, please see Appendix 11 to Annex 1C 
[4], requirement CSM_154 and Appendix 2 to Annex 1C, data type CertificateRequestID. 
 



 

17 
 

Syntax:     
Create request <type> <name> <keyname> <serialnumber> <month><year><manufacturercode> 
[<effectivedate> [<expirationdate>]]  

type:    one of the following options: 
o vu_ma 
o vu_sign 

name:    the name of the certificate file to be created. 
keyname:  the name of the PKCS#8 file containing the key to be certified. 
serialnumber: the 4-byte request serial number; see Appendix 1 to Annex 1C [4]. 
month:  the month of manufacturing of the VU. Format: 1 byte BCD. A 

warning will be given if the number entered is higher than 12 
(decimal). 

year:  the year of manufacturing of the VU. Format: 1 byte BCD. If more 
than 2 digits are entered, the tool will only use the last two; e.g. 
2017 becomes 17.manufacturercode: the 1-byte manufacturer 
code; see Appendix 1 to Annex 1C [4]. 

effectivedate:  the certificate effective date and time in ISO 8601 format (e.g. 2018-
01-01T12:00:00). If no effective date is specified by the user, the 
current system time will be used. 

expirationdate: the certificate expiration date and time in ISO 8601 format. If no 
expiration date is specified by the user, it will be based on the 
effectivedate and the validity period specified in Appendix 11 of 
Annex 1C [4]. Note that it is not possible to specify the expiration 
date without specifying the effective date as well. 

 
Notes: See for ‘create equipment’ command in section Error! Reference source not found.. 
 
Example: create request vu_sign vu_02 vu.pkcs8 0x00000001 4 2017 0x41 2018-03-31T00:00:00 
Output: A file vu_02.cert containing the specified certificate, which is based on a certificate serial 
number rather than a VU serial number. 
 
Errors and Warnings: See for ‘create ca’ command in section 4.2.3. 
 

4.2.6 Sign 
This command is used to sign an existing (self-signed) certificate with an existing private key of a 
Certificate Authority (CA). The private key must be stored in a .pkcs8 file, and a .cert file containing 
the certificate corresponding to this private key must also be present. 
 
The command does the following: 

 Replace the signature of the self-signed certificate by a signature created with the indicated 
CA private key.  

 Replace the Certificate Authority Reference field of the self-signed certificate such that it 
properly references the CA certificate. 

 
Syntax: 
sign <selfsignedcertificate> <caprivatekey> <cacertificate> <name> 

selfsignedcertificate: the name of the file containing the self-signed certificate to 
be signed. 

caprivatekey: the name of the .pkcs8 file containing the CA private key. 
cacertificate: the name of the .cert file containing the CA certificate. 
name: the name of the certificate file to be created. 



 

18 
 

 
Example: sign drivercard_1.cert mscacard_1.pkcs8 mscacard_1.cert drivercard_1-final 
 
Output: A file drivercard_1-final.cert containing a certificate based on the existing drivercard_1 
certificate, but properly signed with the mscacard_1 private key and referring in the CAR field to the 
mscacard_1 certificate. 
 
Errors: 

 See section 4.1.2. 

 If the indicated .pkcs8 file is not a proper PKCS#8 data structure complying with Appendix 2 
and containing a valid private key. 

 If one of the indicated .cert files does not comply with the certificate format in Appendix 11 
of Annex 1C. 
 

Warnings: 

 If the effective date of a signed certificate is before that of the signing certificate. 

 If the expiration date of a signed certificate is after that of the signing certificate. 

 If the signing certificate authorisation does not match with the signed certificate. For 
example, if an equipment certificate is signed by an ERCA root certificate. 

 If the specified caprivatekey and the public key in the specified cacertificate do not form a 
valid key pair. 

 If the signature over the self-signed certificate is not correct. 

4.2.7 Link 
This command is used to create and sign an ERCA link certificate between two existing ERCA root 
certificates. Note that according to Appendix 11 of Annex 1C the effective date of the second ERCA 
certificate should be exactly 17 years after the effective date of the first ERCA certificate. 
 
Syntax: 
link <privatekey> <currentcertificate> <nextcertificate> <name> 

privatekey:  the name of the .pkcs8 file containing the current ERCA 
private key 

currentcertificate:  the name of the .cert file containing the current ERCA 
certificate 

nextcertificate:  the name of the .cert file containing the next ERCA 
certificate 

name:  the file name of the link certificate to be created. 
 
Notes: 

 The tool will automatically determine the value of all data elements in the certificate, 
possibly based on the specified input certificates:  

o The value of the Certificate Profile Identifier is set to ‘00’. 
o The Certificate Authority Reference field is copied from the CHR field of the .cert file 

indicated in the currentcertificate parameter. 
o The Certificate Holder Authorisation field is identical to the CHA field of both input 

certificates. 
o Domain Parameters and Public Point are copied from the .cert file indicated in the 

nextcertificate parameter. 
o The Certificate Effective Date is chosen equal to the CEfD of the next certificate. 
o The Certificate Expiry Date is chosen equal to the CExD of the current certificate. 

 



 

19 
 

Example: link erca(1).pkcs8 erca(1).cert erca(2).cert erca(1)-erca(2) 
 
Output: A file erca(1)-erca(2).cert containing the link certificate between the indicated ERCA root 
certificates. 
 
Errors: 

 See section 4.1.2. 

 If the indicated .pkcs8 file is not a proper PKCS#8 data structure complying with Appendix 2 
and containing a valid private key. 

 If one of the indicated .cert files does not comply with the certificate format in Appendix 11 
of Annex 1C. 
 

Warning: 

 If the effective date of the next ERCA certificate is less than 17 years after the effective date 
of the current ERCA certificate. 

4.2.8 Verify 
This command is used to verify the signature over a previously generated certificate. Certificate 
verification is possible only if the certificate format conforms to Appendix 11, such that it can be 
parsed.  
 
Syntax: 
verify <certificate> <cacertificate> 

certificate:   the name of the file containing the certificate to be verified 
cacertificate:  the name of the file containing the CA certificate needed to verify 

the certificate. 
 
Example: verify drivercard1.cert mscacard1.cert 
Output:  

 If verification was successful: a command line message “verified: ” plus the name of the 
verified certificate. 

 If verification was not successful: a command line message “Certificate signature is invalid” 
 
Errors: 

 See section 4.1.2. 
 
Warnings: 

 If the CAR field in the certificate to be verified does not equal the CHR field in the CA 
certificate. (This will normally result in an unsuccessful verification.) 

 If the validity period of the certificate to be verified precedes or exceeds the CA certificate 
validity period.  

 If the CA certificate authorisation does not match with the certificate to be verified. For 
example, if an equipment certificate is verified using an ERCA root certificate. (This will 
normally result in an unsuccessful verification.) 

4.2.9 Derive dsrc 
This command is used to derive vehicle unit-specific DSRC encryption and authentication keys from a 
DSRC Master key, as specified in section 9.2.2.1 of Appendix 11 to Annex 1C [4]. 
  
Syntax: There are two possible syntaxes for this command, one using separate values for the serial 
number, month, year and manufacturer code, the other using a single value for the extended serial 



 

20 
 

number. If the first syntax is used, the tool concatenates these inputs together with the value for the 
VU equipment type (‘06’) into the VU extended serial number. If the second syntax is used, the tool 
uses the extended serial number as specified. 
 
Syntax 1: 
derive dsrc <name> <dsrcmk> <serialnumber> <month> <year> <manufacturercode> 

name:   the base name for the output files 
dsrcmk:   the name of the file containing the DSRC master key 
serialnumber: the 4-byte equipment serial number; see Appendix 1 to Annex 1C 

[4]. 
month:  the month of manufacturing of the VU. Format: 1 byte BCD. A 

warning will be given if the number entered is higher than 12 
(decimal). 

year:  the year of manufacturing of the VU. Format: 1 byte BCD. If more 
than 2 digits are entered, the tool will only use the last two; e.g. 
2017 becomes 17. 

manufacturercode: the 1-byte manufacturer code; see Appendix 1 to Annex 1C [4]. 
 
Errors: 

 See section 4.1.2. 
 
Warnings: 

 See note above for ‘month’. 
 
 
Syntax 2: 
derive dsrc <name> <dsrcmk> <extendedserialnumber>  

name:    the base name for the output files 
dsrcmk:    the name of the file containing the DSRC master key 
extendedserialnumber: the 16-byte equipment extended serial number; see 

Appendix 1 to Annex 1C [4]. Format is fixed-size 16 digits 
(hexadecimal). 

 
Errors: 

 See section 4.1.2. 
 
 
Example 1: derive dsrc dsrcVU_01 dsrcmk_1.bin 0x00000001 1 18 0x23 
Output:  

 The resulting encryption key, stored in a file named <name>-enc.bin 

 The resulting authentication key, stored in a file named <name>-mac.bin 
 
Example 2: derive dsrc dsrcVU_01 dsrcmk_1.bin 0000000101120623 
Output:  

 The resulting encryption key, stored in a file named <name>-enc.bin 

 The resulting authentication key, stored in a file named <name>-mac.bin 
 
Note that the resulting keys will have the same value in both examples. 
 



 

21 
 

4.2.10 Derive msmk 
This command is used to derive a motion sensor master key by XOR-ing the Motion Sensor Master 
Key – VU part (KM-VU) and the Motion Sensor Master Key – Workshop part (KM-WC), as described in 
section 9.2.1.1 of Appendix 11 to Annex 1C [4]. 
  
Syntax: 
derive msmk <name> <msmk_vu> <msmk_wc>  

name:   the base name for the output file 
msmk_vu:  the name of the file containing the Motion Sensor Master Key – VU 

part 
msmk_wc: the name of the file containing the Motion Sensor Master Key – 

Workshop part. 
 
Example: derive msmk msmk(1) msmk_vu(1).bin msmk_wc(1).bin 
Output:  A file named msmk(1).bin, containing the resulting motion sensor master key. 
 
Errors: 

 See section 4.1.2. 

 If the lengths of the AES keys in the files indicated by ‘msmk_vu’ and ‘msmk_wc’ are not 
equal. 

 
Warnings: 

 If the files indicated by ‘msmk_vu’ and ‘msmk_wc’ do not contain a key of 128, 192 or 256 
bits. 

 

4.2.11 Derive msik 
This command is used to derive a motion sensor identification key by XOR-ing the Motion Sensor 
Master Key with a constant vector CV, as described in section 9.2.1.1 of Appendix 11 to Annex 1C [4]. 
  
Syntax: 
derive msik <name> <msmk>  

name:   the base name for the output file 
msmk:  the name of the file containing the Motion Sensor Master Key 

 
Example: derive msik msik(1) msmk(1).bin 
Output:  A file named msik(1).bin, containing the resulting motion sensor identification key. 
 
Errors: 

 See section 4.1.2. 

 If the file indicated by ‘msmk’ does not contain a key of 128, 192 or 256 bits. 
 
Warnings: None 
 

4.2.12 Encrypt ms 
This command is used to encrypt a motion sensor extended serial number with an identification key. 
The tool will derive the identification key from the specified motion sensor master key. The 
encrypted motion sensor extended serial number will be stored in a file named <name>-esn-enc.bin. 
 
Syntax: There are two possible syntaxes for this command, one using separate values for the serial 
number, month, year and manufacturer code, the other using a single value for the extended serial 



 

22 
 

number. If the first syntax is used, the tool concatenates these inputs together with the value for the 
motion sensor equipment type (‘07’) into the motion sensor extended serial number. If the second 
syntax is used, the tool uses the extended serial number as specified. 
 
Syntax 1: 
encrypt ms <name> <msmk> <serialnumber> <month> <year> <manufacturercode> 

name:   the base name for the output file 
msmk:    the name of the file containing the motion sensor master key 
serialnumber: the 4-byte equipment serial number; see Appendix 1 to Annex 1C 

[4]. 
month:  the month of manufacturing of the motion sensor. Format: 1 byte 

BCD. A warning will be given if the number entered is higher than 12 
(decimal). 

year:  the year of manufacturing of the motion sensor. Format: 1 byte BCD. 
If more than 2 digits are entered, the tool will only use the last two; 
e.g. 2017 becomes 17. 

manufacturercode: the 1-byte manufacturer code; see Appendix 1 to Annex 1C [4]. 
 
 
Errors: 

 See section 4.1.2. 

 If the file indicated by ‘msmk’ does not contain a key of 128, 192 or 256 bits.  
 
Warnings: 

 See note above for ‘month’. 
 
Syntax 2: 
encrypt ms <name> <msmk> <extendedserialnumber> 

name:    the base name for the output file 
msmk:  the name of the file containing the motion sensor master 

key 
extendedserialnumber: the 16-byte equipment extended serial number; see 

Appendix 1 to Annex 1C [4]. Format is fixed-size 16 digits 
(hexadecimal). 

 
Errors: 

 See section 4.1.2. 

 If the file indicated by ‘msmk’ does not contain a key of 128, 192 or 256 bits.  
 
Example 1: encrypt ms ms_01 msmk_01.bin 0x0000000A 5 2018 0x45 
Output: A file named ms_01-esn-ecn.bin, containing the encrypted motion sensor extended serial 
number. 
 
Example 2: encrypt ms ms_01 msmk_01.bin 0000000A05180745 
Output: A file named ms_01-esn-ecn.bin, containing the encrypted motion sensor extended serial 
number. 
 
Note that the result will be the same in both examples. 

4.2.13 Encrypt pk 
This command is used to encrypt a pairing key with a motion sensor master key. The encrypted 
pairing key will be stored in a file named <name>-pk-enc.bin 



 

23 
 

 
Syntax: 
encrypt pk <name> <msmk> <pk> 

name:   the base name for the output file 
msmk:    the name of the file containing the motion sensor master key 
pk:   the name of the file containing the pairing key 

 
 
Example: encrypt ms01 msmk_01.bin pk_of_ms01.bin 
Output: A file named ‘ms01-pk-enc.bin’, containing the encrypted pairing key.  
 
Errors: 

 See section 4.1.2. 
 
Warnings: 

 If the file indicated by ‘pk’ does not contain a key of 128, 192 or 256 bits. 

 If a pairing key is encrypted with a motion sensor key of lower strength; e.g. if the pairing key 
is 256 bits and the motion sensor master key is 128 bits. 



 

24 
 

5 Using the tool 
This chapter explains how to use the functions described in chapter 4 to create the desired keys and 
certificates: 

 Section 5.1 describes how to use these functions to create valid asymmetric key pairs and 
certificates. 

 Section 5.2 describes how to use these functions to create valid symmetric keys and other 
cryptographic material. 

 Section 5.3 describes how to create invalid certificates, which may be used for unhappy flow 
testing. 

5.1 Creating valid asymmetric key pairs and certificates 

5.1.1 Creating an ERCA root key pair and certificate 
Creating a valid ERCA root key pair and associated certificate involves the following steps: 

1. Generate an ECC key pair using the ‘generate ec’ command, choosing the desired ECC 
domain parameters and key strength. 

2. Create a self-signed certificate for the ECC key pair generated in the previous step, using the 
‘create ca’ command with ‘erca’ as the type parameter and proper values for the other 
parameters. 

5.1.2 Creating an ERCA Link certificate 
Creating a valid ERCA link certificate involves the following steps: 

1. Generate a first ERCA root key pair and certificate as described in the previous section. 
2. Generate a second ERCA root key pair and certificate. 
3. Create a link certificate between these two root certificates by using the ‘link’ command. 

5.1.3 Creating a MSCA key pair and certificate 
Creating a valid MSCA key pair and associated certificate involves the following steps: 

1. Generate an ECC key pair using the ‘generate ec’ command, choosing the desired ECC 
domain parameters and key strength. 

2. Create a self-signed certificate for the ECC key pair generated in the previous step, using the 
‘create ca’ command with ‘msca_card’ or ‘msca_vu-egf’ as the type parameter and proper 
values for the other parameters. 

3. Sign the output of step 2 with an ERCA root private key, using the ‘sign’ command. 

5.1.4 Creating an equipment certificate 
Creating a valid equipment key pair and associated certificate involves the following steps: 

1. Generate an ECC key pair using the ‘generate ec’ command, choosing the desired ECC 
domain parameters and key strength. 

2. Create the corresponding self-signed certificate for the ECC key pair generated in the 
previous step, using the ‘create equipment’ command with the desired type parameter and 
proper values for the other parameters. 

3. Sign the output of step 2 with the proper MSCA private key (either a MSCA_Card or an 
MSCA_VU-EGF key), using the ‘sign’ command. 

 
An exception is the creation of a VU certificate that does not contain a VU serial number, but a 
certificate request serial number. For such a certificate, the ‘create request’ command should be 
used in step 2 instead of the ‘create equipment’ command.  



 

25 
 

5.2 Creating valid symmetric keys and cryptographic material 

5.2.1 Creating a DSRC Master Key, a Motion Sensor Master Key part or Pairing Key 
In the Smart Tachograph system, a couple of symmetric keys are randomly generated. These are: 

 the DSRC Master Key,  

 the Motion Sensor Master Key – VU part (KM-VU) 

 the Motion Sensor Master Key – Workshop part (KM-WC) 

 the Pairing Key 
 
To generate one of these keys, the ‘generate aes’ command should be used. 

5.2.2 Creating a Motion Sensor Master Key 
Creating a Motion Sensor Master Key involves the following steps: 

1. Generate a Motion Sensor Master Key – VU part, as described in the previous section. 
2. Generate a Motion Sensor Master Key – Workshop part, as described in the previous section. 
3. Derive the Motion Sensor Master Key from these two keys by using the ‘derive msmk’ 

command. 

5.2.3 Creating a Motion Sensor Identification Key 
Creating a Motion Sensor Identification Key involves the following steps: 

1. Create a Motion Sensor Master Key as described in the previous section. 
2. Derive the Identification Key from the Motion Sensor Master Key by using the ‘derive msik’ 

command. 

5.2.4 Creating VU-specific DSRC keys 
Creating a set of VU-specific DSRC keys for a VU involves the following steps: 

1. Create a DSRC Master Key as described in section 5.2.1. 
2. Derive the VU-specific DSRC keys from this master key by using the ‘derive dsrc’ command. 

5.2.5 Creating an encrypted motion sensor serial number 
Creating an encrypted motion sensor serial number involves the following steps: 

1. Create a motion sensor master key as described in section 5.2.2. 
2. Encrypt the serial number with the identification key by using the ‘encrypt ms’ command. 

 
Note that although the motion sensor master key is input to this command, the corresponding 
identification key will be used for encryption. 

5.2.6 Creating an encrypted pairing key 
Creating an encrypted pairing key involves the following steps: 

1. Create a pairing key as described in section 5.2.1. 
2. Create a motion sensor master key as described in section 5.2.3. 
3. Encrypt the pairing key with the motion sensor master key by using the ‘encrypt pk’ 

command. 

5.3 Creating invalid certificates 
The tool will mainly produce valid keys and certificates. However, as described, the tool can produce 
output even if this output does not comply with the specifications in some respect. A warning will be 
given in such a case, but it is up to user to use the resulting output for test purposes or not. 
 
Regarding the creation of certificates: as described, the various ‘create’ commands will automatically 
determine the value of some data elements. This reduces the number of input parameters and 
improves data elements’ mutual consistency and compliance with the specifications. However, if a 



 

26 
 

user wants to create certificates that are not consistent and/or do not comply with the specifications, 
this is possible by following these steps: 

1. Generate an ECC key pair using the ‘generate ec’ command. 
2. Create the corresponding self-signed certificate for the ECC key pair generated in the 

previous step, using the appropriate ‘create’ command. 
3. Open the certificate in any hex editor and replace bytes as needed. 
4. Sign the output of step 3 with the appropriate CA private key, using the ‘sign’ command. 

 
Note, however, that the tool will parse all input files according to the expected specifications, in 
particular Appendix 2 for .pkcs8 files and Table 3 for .cert files. If parsing is not possible, an error will 
be generated and no output will be produced. Examples include missing data elements, wrong 
lengths, etc. 



 

27 
 

6 Troubleshooting 

 
Question: Command returns ‘Error: illegal key size’ if I try to use an AES longer than 128 bits or an 
ECC key longer than 256 bits for a cryptographic operations (e.g. sign, encrypt). 
 
Answer: Please install Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files, 
as described in section 3.2.  



 

28 
 

References 
 

Ref. Title, author, version and date 

[1] Council Regulation (EC) No 2135/98 of 24th September 1998; Official Journal of the 
European Communities L274 

[2] Commission Regulation (EC) No 1360/2002 of 13th June 2002; Official Journal of the 
European Communities L207 

[3] Regulation (EU) No 165/2014 of the European Parliament and of the Council of 4 
February 2014; Official Journal of the European Union L60 

[4] Commission Implementing Regulation (EU) 2016/799 of 18 March 2016; Official 
Journal of the European Union L 139 

[5] RFC 5958 Asymmetric Key Packages, S. Turner, August 2010 

[6] RFC 5912 (New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)), 
P. Hoffman et al., June 2010 

[7] RFC 5915 (Elliptic Curve Private Key Structure), S. Turner et al., June 2010 

[8] Technical Guideline TR-03111 (Elliptic Curve Cryptography) v2.0, BSI, 2012-06-28 

[9] Smart Tachograph - Cryptographic keys and digital certificates sample set, version 
1.2, April 2017 

[10]  Java, https://www.oracle.com/java/index.html, April 2017 

[11]  Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files, 
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-
2133166.html, April 2017. 

[12]  Bouncy Castle, https://www.bouncycastle.org/, April 2017 

[13]  Maven, https://maven.apache.org/, April 2017 



 

29 
 

List of abbreviations and definitions 
AES   Advanced Encryption Standard 
CAR   Certificate Authority Reference 
CEfD   Certificate Effective Date 
CExD   Certificate Expiry Date 
CHR   Certificate Holder Reference 
CHA   Certificate Holder Authorisation 
DSRC   Dedicated Short Range Communication 
ECC   Elliptic Curve Cryptography 
EGF   External GNSS Facility 
ERCA   European Root Certificate Authority 
GNSS   Global Navigation Satellite System 
MA   Mutual Authentication 
MS   Motion Sensor 
MSCA   Member State Certificate Authority 
PKI   Public Key Infrastructure 
RCF   Remote Communication Facility 
REDCR   Remote Early Detection Communication Reader 
SHA-2   Secure Hash Algorithm 2 
TC   Tachograph Card 
VU   Vehicle Unit 
 



 

30 
 

List of figures 
Figure 1 Overview of the Smart Tachograph system .............................................................................. 4 
Figure 2 Smart Tachograph PKI ............................................................................................................... 6 
 
 



 

31 
 

Appendix 1 Cryptographic elements per component 
This Appendix describes all of the asymmetric keys, certificates and symmetric keys that are 
contained in each instance of the four main components of the Smart Tachograph system at the 
moment such a component is issued. 
 

Appendix 1.1 Cryptographic elements installed in a Vehicle Unit 
Asymmetric keys and certificates 

Description Purpose Type Source 

VU private key and public 
key certificate for Mutual 
Authentication 

Used by the VU to perform VU 
authentication towards 
tachograph cards and external 
GNSS facilities  

ECC Private key generated by VU or 
VU manufacturer. Certificate 
created and signed by MSCA  

VU private key and public 
key certificate for signing 

Used by the VU to sign 
downloaded data files  

ECC Private key generated by VU or 
VU manufacturer. Certificate 
created and signed by MSCA 

ERCA root public key(s) 
and certificate(s)2 

Used by the VU for the 
verification of MSCA 
certificates issued under the 
corresponding ERCA root 
certificate. 

ECC Generated by ERCA; inserted in 
VU by manufacturer at the end 
of the manufacturing phase or 
obtained from card or EGF 
during lifetime 

Certificate of MSCA 
responsible for signing 
the VU_MA and VU_Sign 
certificates 

Used by a card, EGF or 
dedicated equipment to 
obtain and verify the 
MSCA_VU-EGF public key they 
will subsequently use to verify 
the VU_MA or VU_Sign 
certificate 

 Created and signed by ERCA 
based on MSCA input; inserted 
by manufacturer at the end of 
the manufacturing phase 

Table 4: Overview of VU asymmetric keys and certificates 

 
Symmetric keys 

Description Purpose Type Source 

Motion Sensor Master 
Key – VU part 

Allowing a VU to derive the 
Motion Sensor Master Key if a 
workshop card is inserted into 
the VU. 

AES Generated by ERCA; inserted by 
VU manufacturer at the end of 
the manufacturing phase. 

VU-specific DSRC keys for 
authenticity and 
confidentiality 

Two separate keys used to 
ensure the authenticity 
confidentiality of data sent 
over a DSRC link between a 
RCF and a REDCR 

AES Derived by MSCA based on 
DSRC Master Key and VU serial 
number; inserted by VU 
manufacturer at the end of the 
manufacturing phase 

Table 5: Overview of VU symmetric keys 

                                                           
2
 Note: Because of the regular replacement of the ERCA root key a VU may contain more than one ERCA 

certificates and Link certificates. 



 

32 
 

Appendix 1.2 Cryptographic elements installed in a Motion Sensor 
Asymmetric keys and certificates 
A motion sensor does not contain any asymmetric keys or certificates. 
 
Symmetric keys 

Description Purpose Type Source 

Motion sensor pairing key Used by a VU for encrypting 
the motion sensor session key 
when sending it to the motion 
sensor during pairing. 

AES Generated by the motion 
sensor manufacturer; stored in 
motion sensor at the end of the 
manufacturing phase 

Table 6: Overview of Motion Sensor symmetric keys 

Apart from this key, a motion sensor contains the value of the pairing key encrypted under the 
motion sensor master key. It also contains the value of its serial number encrypted under the 
identification key3. 
 

Appendix 1.3 Cryptographic elements installed in a Tachograph Card 
Asymmetric keys and certificates 

Description Purpose Type Source 

Card private key and 
public key certificate for 
Mutual Authentication 
and session key 
agreement 

Used by the card to perform 
card authentication towards 
VUs and perform session key 
agreement 

ECC Generated by card or card 
manufacturer/personaliser at 
the end of the manufacturing 
phase 

Card private key and 
public key certificate for 
signing  

 

Used by the card to sign 
downloaded data files.  

ECC Generated by card or card 
manufacturer/personaliser at 
the end of the manufacturing 
phase.  

Driver cards and workshop 
cards only 

Certificate of MSCA 
responsible for signing 
the Card_MA and/or 
Card_Sign certificates 

Used by a VU or dedicated 
equipment to obtain and 
verify the MSCA_Card public 
key they will subsequently use 
to verify the Card_MA or 
Card_Sign certificate 

ECC Created and signed by ERCA 
based on MSCA input; inserted 
by manufacturer at the end of 
the manufacturing phase 

ERCA root public key(s) 
and certificate(s) 

Used by the card for the 
verification of MSCA 
certificates issued under the 
corresponding ERCA root 
certificate.  

ECC Generated by ERCA; inserted in 
card by manufacturer at the end 
of the manufacturing phase or 
obtained from VU during 
lifetime 

Table 7: Overview of TC asymmetric keys and certificates 

                                                           
3
 Note: Because the motion sensor master key and all associated keys are regularly replaced, up to three 

different encryptions of the pairing key and the serial number (based on consecutive generations of the 
motion sensor master key) may be present in a motion sensor. 



 

33 
 

Symmetric keys 

Description Purpose Type Source 

Motion sensor master 
key – workshop card 
part4 

Allowing a VU to derive the 
Motion Sensor Master Key if a 
workshop card is inserted into 
the VU 

AES Generated by ERCA; inserted in 
card by card manufacturer 

Workshop cards only 

DSRC Master Key5 Master key to derive keys to 
protect confidentiality and 
authenticity of data sent from 
a VU to a control authority 
over a DSRC channel 

AES Generated by ERCA; inserted in 
card by card manufacturer 

Control and workshop cards 
only 

Table 8: Overview of TC symmetric keys 

 

Appendix 1.4 Cryptographic elements installed in an EGF 
Asymmetric keys and certificates 

Description Purpose Type Source 

EGF private key and 
public key certificate for 
Mutual Authentication 

Used by the EGF to perform 
EGF authentication towards 
VUs 

ECC Private key generated by EGF or 
EGF manufacturer at the end of 
the manufacturing phase 
Certificate created and signed 
by MSCA 

Certificate of MSCA 
responsible for signing 
the EGF_MA certificate 

Used by a VU to obtain and 
verify the MSCA_VU-EGF 
public key it will subsequently 
use to verify the EGF_MA 
certificate 

ECC Created and signed by ERCA 
based on MSCA input; inserted 
by manufacturer at the end of 
the manufacturing phase 

ERCA root public key(s) 
and certificate(s) 

Used by the EGF for the 
verification of MSCA 
certificates issued under the 
corresponding ERCA root 
certificate.  

ECC Generated by ERCA; inserted in 
EGF by manufacturer at the end 
of the manufacturing phase or 
obtained from VU during 
lifetime 

Table 9: Overview of EGF asymmetric keys and certificates 

Symmetric keys 
At issuance, an EGF does not contain any symmetric keys. 

                                                           
4 Note: Because of the regular replacement of the ERCA root key and all associated keys, a workshop card may 

in fact contain up to three of these keys. 
5
 Note: Because of the regular replacement of the ERCA root key and all associated keys, a control or workshop 
card may in fact contain up to three of these keys 



 

34 

 

Appendix 2 Format of .pkcs8 files 
Format of .pkcs8 files created by the Sample Key and Certificate Generation Tool. All values hexadecimal. 

30 L SEQUENCE SIZE (1) OF OneAsymmetricKey; see RFC 5958 [5]. Both of the 

optional elements attributes and publicKey in this data type are omitted 
  02 01 00 Version; the value is set to ‘00’ to indicate that the format of OneAssymmetricKey is 

equal to that of PrivateKeyInfo as specified in RFC 5280 
  30 L PrivateKeyAlgorithmIdentifier 

    06 07 2A 86 48 CE 3D 
02 01 

PUBLIC-KEY: Algorithm identifier for elliptic curve is given in RFC 5912 [6] 

    06 L V PrivateKeyAlgorithms: see data type ECParameters in RFC 5912 [6]. The CHOICE made 

here is to use a namedCurve; the value is the DER-encoded OID of the relevant curve. 
  04 L OCTET STRING containing private key; see RFC 5958 [5]  
    30 L ECPrivateKey; see RFC 5915 [7]. Both of the optional elements parameters and 

publicKey in this data type are present. 
      02 01 01 version; the value represents ecPrivkeyVer1. 
      04 L V OCTET STRING containing the value of the private key 
      A0 L  parameters 

        06 07 2A 86 48 CE 
3D 02 01 

ECParameters; see above 

      A1 L publicKey 

        03 L V BITSTRING containing the value of the public key. Note 
that the first byte ‘00’ indicates zero empty bits, as per the 
definition of the ASN.1 BITSTRING data type. The second 
byte ‘04’ indicates the uncompressed encoding, as per TR 
03111 [8] 



 

 

  

Europe Direct is a service to help you find answers  
to your questions about the European Union. 

 
Freephone number (*): 

00 800 6 7 8 9 10 11 
(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). 
 
More information on the European Union is available on the internet (http://europa.eu). 

HOW TO OBTAIN EU PUBLICATIONS 

Free publications: 
• one copy: 

via EU Bookshop (http://bookshop.europa.eu); 

• more than one copy or posters/maps: 

from the European Union’s representations (http://ec.europa.eu/represent_en.htm);  
from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);  
by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or 
calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*). 
 
(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). 

Priced publications: 
• via EU Bookshop (http://bookshop.europa.eu). 

 
 

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1
http://europa.eu/
http://bookshop.europa.eu/
http://ec.europa.eu/represent_en.htm
http://eeas.europa.eu/delegations/index_en.htm
http://europa.eu/europedirect/index_en.htm
http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1
http://bookshop.europa.eu/


doi:10.2760/8495 

ISBN 978-92-79-69660-2 

K
J-02-1

7-7
17

-EN
-N

 


