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Abstract 

Body temperature increases in ectothermic vertebrates characteristically lead to both 

increases in arterial PCO2 (PaCO2) and declines in resting arterial pH (pHa) of about 

0.017 pH units/°C increase in temperature. This ‘alphastat’ pH pattern has previously 

been interpreted as being evolutionarily-driven by the maintenance of a constant 

protonation state on the imidazole moiety of histidine protein residues, hence stabilizing 

protein structure-function. Analysis of the existing data for interclass responses of 

ectothermic vertebrates show different degrees of PaCO2 increases and pH declines with 

temperature between the classes with reptiles > amphibians > fish. The PaCO2 at the 

temperature where maximal aerobic metabolism (VO2max) is achieved is significantly and 

positively correlated with temperature for all vertebrate classes. For ectotherms, the 

PaCO2 where VO2max is greatest is also correlated with VO2max indicating there is an 

increased driving force for CO2 efflux that is lowest in fish, intermediate in amphibians 

and highest in reptiles.   The pattern of increased PaCO2 and the resultant reduction of 

pHa to increased body temperature would serve to increase CO2 efflux, O2 delivery, 

blood buffering capacity and maintain ventilatory scope. This represents a new 

hypothesis for the selective advantage of arterial pH regulation from a systems 

physiology perspective in addition to the advantages of maintenance of protein structure-

function.  
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Introduction 

Body temperature influences blood acid-base balance in a very predictable pattern 

in ectothermic vertebrates, with a decrease of about 0.017 pH units/°C increase in 

temperature (Howell et al., 1970; Reeves, 1972).  The regulation of ventilation with 

temperature has been proposed as a mechanism to regulate arterial PCO2 (PaCO2) and 

thus arterial pH (pHa) with temperature changes in ectotherms (Glass et al. 1985). In 

most ectotherms studied, increased ventilation does not match the temperature-induced 

increase in metabolism, and this relative hypoventilation leads to an increase in PaCO2 

that decreases pHa from the generation of carbonic acid. Interestingly, this pattern 

parallels the effect of temperature variation on the pH of water. The rate of change in pH 

for both water and pHa is about -0.017 pH units/°C, and because the arterial blood of 

ectotherms is about 0.6 pH units greater than that of water at any temperature, the 

phenomenon was frequently referred to as maintaining ‘relative alkalinity’ (Rahn, 1967), 

and the regulatory process to achieve this as alphastat pH regulation (Reeves, 1972). The 

prevailing hypothesis for the advantage of alphastat pH regulation is maintenance of a 

constant ratio of OH- to H+ despite variation in pH. This alphastat pH pattern maintains a 

constant fractional protonation state on the imidazole moieties of histidines in proteins 

(Reeves, 1972,1977). This has been argued to better maintain protein structure and 

function and preserve cellular function with varying body temperatures.  

Reeves’ hypothesis for alphastat regulation of blood pH suggests that ventilation, 

and thus PaCO2, is regulated to maintain a constant fractional dissociation of histidine 

imidazole residues on proteins. This hypothesis implies that the change in pH with 
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temperature is regulated to equal the change in the pK with temperature of the imidazole 

buffer system, which is about -0.018 to -0.024 U/°C (Edsall and Wyman, 1958). 

Although there is some support for the alphastat hypothesis for regulation of blood pH in 

ectotherms, there are several studies showing that the change in blood pH with 

temperature is significantly lower than the change in pK with temperature required for 

alphastat pH regulation (see Glass et al. 1985).  Thus, although alphastat regulation is an 

attractive hypothesis for explaining the pattern of blood pH regulation in ectotherms, 

Cameron (1989) pointed out that as a realistic predictor of protein behavior, alphastat 

needs to be revised to accommodate both advances in protein chemistry and the evident 

heterogeneity of physiological findings. The pattern of increased PaCO2 and decreased 

pHa with increasing temperature has also been interpreted as a means of depressing 

metabolism via ventilation during bouts of torpor or hibernation in both endotherms and 

ectotherms (Malan, 2014).  

Given the heterogeneity of the physiological data and in an attempt to provide an 

integrative metric of organismal function, we present an argument for the consideration 

of an organ system level advantage related to O2 and CO2 fluxes during periods of 

increased aerobic demands associated with both increased temperature and activity for an 

increase in the regulated PaCO2 and consequential decrease in pHa with increases in 

temperature. Standard and maximal rates of aerobic metabolism of all ectotherms are 

temperature sensitive, with a range of Q10’s of about 1.5-3 (Hedrick et al. 2015). Maximal 

rates of aerobic metabolism during activity at an organ system level reflect the maximal 

rates of oxygen delivery to working muscle and the maximal rates of CO2 removal from 

working muscle to the environment. The cardiovascular system is the principal limitation 
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to maximal oxygen delivery in vertebrates (Hillman et al., 2013), whereas the respiratory 

system appears to be the principal limitation to CO2 efflux in ectotherms (Hillman et al., 

2013; Hedrick et al., 2015). Consequently, co-adaptations that enhance the capacity for 

both enhanced O2 delivery and CO2 efflux will enhance aerobic metabolic capacity.  

There is a shift in PaCO2 and pH regulation in the evolutionary transition from 

fish to amphibians and reptiles associated with the differences in O2 and CO2 

capacitances of water and air (Dejours, 1975). Fish primarily regulate pH across their 

gills via ion exchangers (Na+/H+, Cl-/HCO3
-) but CO2 is exchanged by diffusion (Heisler, 

1986). Amphibians and reptiles primarily achieve pH regulation via ventilatory 

regulation of PaCO2. From an organismal metabolic perspective how might an ‘alphastat 

pH pattern’ of reduced pH and increased PaCO2 increase O2 delivery and CO2 removal 

with increases in temperature? We suggest that the regulated hypoventilation associated 

increased temperature would 1) preserve ventilatory capacity; 2) the resultant increase in 

PaCO2 would increase the driving force for CO2 efflux; 3) the increase in PaCO2 would 

increase HCO3
- and buffering capacity of the blood; and 4) the decrease in pHa would 

increase the delivery of O2 (Bohr Effect) and the efflux of CO2 (Haldane Effect) at both 

rest and during activity with increased body temperature. 

If increasing the regulated PaCO2 with increased body temperature is selectively 

advantageous for enhancing organ system gas exchange, there are a variety of predictions 

that might follow: 1) increased temperature should increase PaCO2 and decrease pHa 

within the different classes of ectothermic vertebrates, and 2) interclass variation of the 

PaCO2 responses to temperature should correlate with interclass variation of the aerobic 

metabolic capacity. If these predictions hold, it suggests that there may be an alternative 
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or additional evolutionary explanation to protein structure-function driving the evolution 

of this alphastat pH pattern of changes in PaCO2 and pH with temperature.   

Materials and Methods 

Venous PCO2 (PvCO2) directly reflects the actual driving force for CO2 

diffusional efflux across the respiratory surface assuming that alveolar PCO2 remains the 

same. The difference between PvCO2 and PaCO2 is small at rest and in many cases 

almost indistinguishable, but resting PaCO2 represents a minimal estimate of the potential 

driving force across the respiratory surface. There are more data available for resting 

PaCO2 than PvCO2, thus we have used resting PaCO2 values throughout in our analysis. 

Although using resting PaCO2 may underestimate the actual driving force for CO2 efflux, 

especially during activity, increases in PaCO2 clearly reflect physiologically regulated 

increases in the net driving force for PCO2 efflux.  

To evaluate the consistency of both blood pH (pHa) and PaCO2 to temperature for 

each group of ectotherms we have used the summary data of Ultsch and Jackson (1996), 

which primarily selected data based on cannulated sampling rather than heart punctures 

for resting animals. Data for PaCO2 of resting mammals and birds were taken from Lahiri 

(1975), Tenney and Boggs (1986), Gleeson and Brackenbury (1984), Cushing and 

McClean (2010), Murrish (1983), Ponganis et al. (2007), Peters et al. (2005) and Scott 

and Milsom (2007).  

Metabolic data (resting and maximal) for each class were taken from the 

summaries within Hedrick et al. (2015). Aerobic generation of CO2 is the result of 

aerobic metabolism and its efflux can be quantified as the product of conductance and the 

driving force for CO2 (i.e. GCO2 x ∆PCO2) Our hypothesis is that the increase in PaCO2 
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with temperature reflects an increase in the physiologically regulated driving force for 

CO2 efflux. Consequently, to test that the Q10 for the rate of resting CO2 efflux should 

parallel the Q10 for the PCO2 driving force, we calculated the ratio of resting PaCO2 at 

different temperatures. We used the resting PaCO2 regressions, summarized in Figures 1 

and 2, to determine the ratio of PaCO2 differences between two temperatures, analogous 

to the calculation of Q10 for reaction rates (i.e. (Rate 2/Rate 1)10/(T2-T1) ) or (PaCO2 @ T2 

/PaCO2 @ T1) 10/(T2-T1) (see Jackson, 1978). 

Least squares regression was used to determine slopes and significance using 

Prism v. 5 (Graphpad software, Inc. La Jolla, CA (USA). 

Results and Discussion 

There were significant increases in resting PaCO2 with increased temperature for 

fish (F1,58 = 7.1; P= 0.0098; PaCO2 (kPa) = 0.0067 (±0.002) °C + 0.246, r2 = 0.11), 

amphibians (F1,38 = 51.1; P< 0.0001; PaCO2 (kPa) = 0.0538 (±0.008) °C + 0.0305, r2 = 

0.57), and reptiles (F1,68 = 29.8; P<0.0001; PaCO2 (kPa) = 0.0691 (±0.013) °C + 1.18, r2 = 

0.30) (Fig. 1A).  The slope of this relationship for fish, although significant, was about 

10-fold lower than the slope for amphibians or reptiles. This would be expected given the 

low PaCO2 in fish due to the high CO2 capacitance in water. 

There was a significant effect of temperature (p<0.0001) on resting blood pH for 

fish (F1,90 = 39.6; pH = 8.04 – 0.010 (±0.002) °C, r2 = 0.31), amphibians (F1,44 = 70.0; pH 

= 8.09 – 0.013 (±0.002) °C, r2 = 0.61), and reptiles (F1,78 = 258; pH = 7.96 – 0.014 

(±0.001) °C, r2 = 0.77) (Fig. 1B).  Taken together, these results are consistent with a 

resting CO2-mediated decrease in blood pH with increasing body temperature.  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



At any particular temperature, PaCO2 for reptiles was approximately double that 

of amphibians, and amphibians were 3-4 times that of fish (Fig. 1A). The elevated PaCO2 

of reptiles would therefore account for the lower pH for this group at any body 

temperature (Fig. 1B).  

The temperature at which VO2max occurs is lowest in fish (20 °C), intermediate in 

amphibians (25 °C) and reptiles (35 °C), and highest in mammals and birds (see Fig. 4 in 

Hedrick et al. 2015). The temperature at which resting PaCO2 corresponds with VO2max 

for five vertebrate classes (Hedrick et al. 2015) is presented in Fig. 2A. There is a 

significant, linear relationship (p<0.0077; r2 = 0.93) between PaCO2 and the temperature 

at which VO2max occurs indicative of an increased driving force for CO2 efflux with 

increased temperature at VO2max for these vertebrate groups.  

The relationship between VO2max and PaCO2 where VO2max occurs for all 

vertebrate groups is presented in Fig. 2B. Resting PaCO2 increases with the greatest 

VO2max for the ectothermic classes, but is independent of VO2max in the endothermic 

classes. A plateau of approximately 5 kPa PaCO2 seems to occur for vertebrates in 

general; reptiles at 35°C are near this apparent plateau. 

Enhancing Ventilatory Scope  

Our analysis of the resting PaCO2 patterns with temperature in fish, amphibians 

and reptiles (Fig. 1) reveals that at a given temperature, resting PaCO2 is greatest in 

reptiles, intermediate in amphibians and lowest in fish. There were significant increases 

in resting PaCO2 with temperature in all three groups. The alveolar ventilation (VA) 

equation predicts alveolar PCO2, and thus PaCO2, to be inversely related to the ‘air 

convection requirement’ (ACR) ratio in air-breathing ectotherms (i.e. VI/VO2 or VE/VO2) 
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and the increased PaCO2 (and decreased pH) with temperature can be explained by an 

unequal response of minute ventilation (VI or VE) relative to metabolism. This approach 

would also apply to fish, substituting water for air. The hypoventilation (decreasing VA) 

will increase the ventilatory scope available during activity. Assuming consistent 

interclass Q10 effects on metabolism the magnitude of the hypoventilation can be 

estimated as VA = 1/PaCO2. The mean decrease in VA for the temperature intervals from 

10 °C to 20 °C and 20 °C to 30 °C for fish is 16%, for amphibians 34%, and 24% for 

reptiles. This estimate reflects the potential increase in ventilatory scope available to 

enhance gas exchange with activity than if these groups maintained a constant ACR and 

pHa. Although the alphastat hypothesis implies that the reduced ACR with increased 

temperature is necessary to maintain a constant fractional dissociation of imidazole 

residues, we suggest that the reduced ACR with temperature may also be important for 

preserving ventilatory capacity with increased metabolism associated with both 

temperature and activity.  

There are additional arguments that support this hypothesis. First, the pattern of 

pH regulation we observed for fish, amphibians and reptiles in this study do not fit the 

traditional alphastat hypothesis proposed by Reeves (1972). The slopes for the change in 

pH with temperature for the air-breathing ectotherms, amphibians (-0.013 U/°C) and 

reptiles (-0.014 U/°C), were about 25-30% lower than the approximate -0.017 U/°C 

required for alphastat regulation, and similar to the values found previously for a number 

of reptile species (Glass et al. 1985).  Second, previous work in reptiles has shown that VI 

or VE increases about 3-4 fold with a temperature increase from 10 °C to 30 °C whereas 

VO2 increases 6-7 fold over the same temperature range (Funk and Milsom, 1987; Glass 
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et al. 1985). This is the basis for the reduced ACR, but if minute ventilation were 

matched to metabolism, thus maintaining a constant PaCO2 and pH (i.e. pH stat 

regulation), the resulting increase in minute ventilation would leave less scope for further 

increases with increased temperature or during bouts of activity as described above. We 

showed previously (Hillman et al. 2013) that at maximal exercise, CO2 extraction at the 

respiratory surface increases significantly in all vertebrates, and the ratio of VI to blood 

flow at the respiratory surface increases about 3 fold to support increase of CO2 

extraction at VO2max. This requires a ventilatory capacity from rest to activity to support 

the increased CO2 extraction to maintain maximal CO2 efflux. Even with this level of 

ventilatory increase, PaCO2 increases at VO2max in fish and amphibians indicating that 

ventilation does not keep pace with the needs for CO2 efflux (Hillman et al. 2013).  

Enhancing Bohr and Haldane Effects 

The relative hypoventilation with increased PaCO2 and reduced pHa pattern also 

takes advantage of Haldane and Bohr effects for increasing CO2 and O2 transport, 

respectively, with increased temperature. The delivery of O2 from hemoglobin (Hb) is 

influenced by the decline in arterial pH since O2 + Hb ↔ HbO2 + H+, hence by mass 

action an increase in the [H+] at the tissue level (from elevated PCO2 and lactic acid) 

favors unloading of the Hb (Bohr Effect) and enhanced O2 delivery at the muscle.  The 

increase in [H+] also enhances the uptake of CO2 at the tissue as a consequence of 

formation of carbamino CO2 on the Hb molecule (Haldane Effect). The increase in [H+] 

also favors the release of CO2 at the respiratory surface by mass action from the 

following reaction: H+ + HCO3
- ↔ H2O + CO2. The advantages of the Haldane and Bohr 

effects for gas transport would not be fully realized without the regulated increase of 
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PaCO2 and reduced pHa in ectotherms. Although the increase in PaCO2 and CO2 efflux is 

due, in part, to adjustments in the ACR, the impact on O2 transport are primarily caused 

by the right shift of the O2 dissociation curve with increased temperature and reduced pH 

(Bohr effect), and its interaction with intracardiac shunts that increase PaO2 and systemic 

O2 transport. Taken together, we suggest that the regulated hypoventilation relative to 

metabolism provides several identifiable benefits to systems gas transport independent of 

any effects on alphastat pH regulation.  

 

Enhancing the CO2 Efflux Driving Force 

As indicated above, CO2 efflux is the product of GCO2 and ∆PCO2. In order to 

increase CO2 efflux with increased metabolic demands, either or both of these variables 

can be increased. For resting animals, the temperature-mediated ratios for the relationship 

of PaCO2 with temperature are 1.2 for fish, 1.5-1.9 for amphibians and 1.2-1.4 for reptiles, 

all generally lower than the Q10’s of 2-3 for standard and maximal metabolism (see 

summary in Hedrick et al. 2015). This indicates that changing the driving force for CO2 

efflux by raising PaCO2 does not explain an intraclass limitation on VCO2 with changes 

in temperature and, instead, suggests the potential for co-adaptations in respiratory 

conductance and/or ventilatory capacity. Based on the resting PaCO2 values in Fig. 1A, 

the driving force for CO2 efflux is increased 42% for fish, 128% for amphibians and 73% 

for reptiles with body temperature increasing from 10°C to 30°C. This indicates that the 

PaCO2 response to temperature in each class would enhance the driving force for CO2 

efflux during maximal activity by increasing the regulated resting PaCO2, but not 

sufficient to account for the Q10 during maximal activity. 
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An interesting intraclass test of the driving force hypothesis can be found in fish, 

a truly bimodal group (water versus air) in terms of gas exchange. The obligate air 

breathing four species of fishes in the summary of Ultsch and Jackson (1996) have a 

PaCO2 of about 3.3 kPa compared to 0.42 kPa for water breathing fish at equivalent 

temperatures. We interpret this as the necessity to increase the driving force for CO2 

efflux when the gas bladder conductance is probably lower than the gill conductance and 

the decrease in CO2 capacitance of air compared to water. 

 From a maximal aerobic metabolic perspective, what might be the effect of 

interclass variation in the magnitude of PaCO2 response to increased temperature on the 

capacity to enhance O2 delivery and CO2 efflux during activity? Based on the data from 

Fig. 2A, the ratio of interclass PaCO2, at their respective temperatures for VO2max, 

between fish (20 °C) and amphibians (25 °C) is 17.1 and between amphibians and 

reptiles the interclass ratio is 2.5. The large phylogenetic ratio for PaCO2 between fish 

and amphibians is consistent with the Q10 of 13.4 for VO2max between fish and 

amphibians at 20 °C and 25 °C, respectively, and a Q10 of 1.2 for VO2max between 

amphibians and reptiles at 25 °C and 35 °C, respectively (Hedrick et al. 2015). The 

correspondence of Q10 values between VCO2max and the ratios for interclass PaCO2 is 

consistent with an increase in PaCO2 playing a significant role in explaining interclass 

variation in VCO2max, unlike the resting condition where increased conductance (GCO2) 

appears to provide the increase in resting VCO2. As noted above, fishes and amphibians, 

increase PaCO2 at VO2max (see Hillman et al. 2013) which would enhance CO2 efflux by 

increasing the driving force for PCO2 to a greater extent than our estimates here using 

resting PaCO2. For reptiles, PaCO2 at VO2max does not appear to increase over resting 
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values (Hillman et al. 2013), thus our estimates of CO2 efflux based on resting PaCO2 

values for this group are probably more accurate. 

These data may also indicate that increasing the PaCO2 driving force to increase 

CO2 efflux in vertebrates has limits. For example, increases of PaCO2 greater than 5 kPa, 

which appears to be near the upper limit for reptiles and endotherms, may cause 

significant changes in pH that potentially compromise protein function, suggesting that 

endotherms use alternative adaptations such as increased respiratory conductance and 

ventilatory capacity to achieve the greater fluxes of O2 and CO2.  

Enhancing the Blood Buffering Capacity 

The increase in PaCO2 also leads to increased concentrations of HCO3
- (Ultsch 

and Jackson, 1996). An increase in [HCO3
-] would increase the buffering capacity of the 

blood. Lactic acid begins to accumulate in the blood when aerobic power outputs during 

activity are 50-70% of maximal (Davis et al., 1996, Seeherman et al., 1983, Gleeson and 

Brackenbury, 1984, Taigen and Beuchat, 1984, Goolish, 1991). Consequently, an added 

selective advantage of the increase in PaCO2 and [HCO3
-] with increased VO2max is less 

disruption of pHa during high metabolic power outputs.  Malan (2014) has also suggested 

increased buffering as a benefit of the hypercapnic acidosis associated with hibernation 

and torpor. 
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Regulatory Mechanisms 

The hypothesis presented here requires a linkage between body temperature and 

the regulation of ventilation. The regulation of increased PaCO2 and reduced ACR with 

increased temperature implies a receptor linked to ventilation operates to maintain 

ventilation within narrow limits as temperature changes. It is well known that PaCO2 is 

tightly regulated by the complex interactions of central and peripheral chemoreceptors in 

vertebrates (Milsom, 2002). A ventilatory-mediated mechanism that controls ventilation 

and, therefore, arterial PaCO2 and pHa with changes in temperature provides a 

convenient negative feedback mechanism. Recent work with bullfrogs (Lithobates 

catesbeianus) and monitor lizards (Varanus exanthematicus) has shown the presence of 

CO2/pH chemosensitive neurons of the locus coeruleus (LC), a putative ventilatory 

control region (Santin et al. 2013; Zena et al. 2016). L. catesbeianus has been 

characterized as a typical alphastat regulator (Reeves, 1972; Santin et al. 2013), whereas 

V. exanthematicus is a pH-stat regulator with little change in pHa over a broad range of 

temperatures (Zena et al. 2016). In L. catesbeianus, cooling increased, and warming 

decreased, the firing rate of LC chemosensitive neurons (Santin et al. 2013). Moreover, 

cooling reduced CO2/pH chemosensitivity in a temperature-dependent fashion, thus the 

magnitude of the chemosensitive response was temperature-dependent (Santin et al. 

2013). By contrast, chemosensitive LC neurons in V. exanthematicus increase firing rates 

with increasing temperature and have a large Q10 effect compared with bullfrog 

chemosensitive LC neurons (Zena et al. 2016). V. exanthematicus also have populations 

of LC neurons that are excited or inhibited by CO2 and the proportion of CO2-inhibited 
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neurons increases with cooling (Zena et al. 2016). The findings that populations of 

CO2/pH chemosensitive neurons in the LC of bullfrogs and lizards that are modulated by 

temperature provides a parsimonious explanation for ventilatory regulation of PaCO2 and 

pHa with changes in body temperature.  

 

Conclusions 

We suggest that the pattern of arterial pH and PaCO2 initially described by 

Howell et al. (1970) and later interpreted from a solely biochemical structure/function 

perspective (Reeves 1972, 1977; White and Somero, 1982) may additionally, or primarily, 

have its evolutionary basis in the enhancement of systems level gas transport. Increased 

temperature increases aerobic demands for O2 influx and CO2 efflux both at rest and 

during activity. The alphastat pattern of hypoventilation relative to aerobic metabolic 

demand, leading to increases in PaCO2 and [HCO3
-] and decline in pHa, preserves 

ventilatory capacity, increases blood buffering capacity and enhances both CO2 and O2 

fluxes that would be associated with increases in body temperature and activity. We 

suggest this hypothesis deserves consideration along with potential (as yet 

undocumented) imidazole-mediated protein structure-function considerations. 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

Acknowledgements 

We thank P. Bickler, L. Hartzler. J. Podrabsky, L. Crawshaw and R. Putnam for useful 

discussions in the development of this manuscript and multiple reviewers for 

strengthening the focus of the manuscript. 

Competing Interests 

The authors declare no competing financial interests. 

Author contributions 

Each author contributed equally to the development and writing of the manuscript. 

Funding 

There was no financial support for this work. 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



References 

 

Brauner, C.J. and Randall, D.J. (1996). The interaction between oxygen and carbon  

dioxide movements in fishes. Comp. Biochem. Physiol. 113A, 83-90. 

 

Cameron, J.A. (1989). Acid-base homeostasis: Past and present perspectives. Physiol.  

Zool. 62, 845-865. 

 

Cushing, A. and McClean, M. (2010). Use of thifentanil-medetomidine for induction of 

anesthesia in Emus (Dromaius novohllandiae) within a wild animal park. J. Zoo 

Wildlife Med. 41, 234-241. 

Davis, L. A., Roalson, E. H., Comell, K. L., McClanahan, K. D. and Webster, M.S. 
(1979). Anaerobic threshold alterations caused by endurance training in middle-

aged men. J. Appl. Physiol. 46, 1039-1046.  

Dejours, P. (1975). Principles of Comparative Respiratory Physiology. North-

Holland/American Elsevier. pp 253. 

Edsell, J.T. and Wyman, J. (1958). Biophysical Chemistry, Vol. 1. New York: 

Academic Press. 

Funk, G.D. and Milsom, W.K. (1987). Changes in ventilation and breathing pattern 

produced by changing body temperature and inspired CO2 concentration in turtles. 

Respir. Physiol. 67, 37-51. 

Glass, M.L., Boutilier, R.G. and Heisler, N. (1985). Effects of body temperature on 

respiration, blood gases and acid-base status in the turtle Chrysemys picta belli. J. 

Exp. Biol. 114, 37-51. 

Gleeson, M. and Brackenbury, J.H. (1984). Effects of body temperature on ventilation, 

blood gases and acid-base balance in exercising fowl. Q. J. Exp. Physiol. 69, 61-

82. 

Goolish, E.M. (1991). Anaerobic swimming metabolism of fish: Sit-and-wait versus 

active forager. Physiol. Zool. 64, 485-501. 

Hedrick, M.S., Hancock, T.V. and Hillman, S.S. (2015). Metabolism at the max: How 

vertebrate organisms respond to physical activity. Compr. Physiol. 5, 1677-1703. 

Heisler, N. (1986). Acid-base regulation in fishes. Pages 309-356 in N. Heisler, ed. Acid-

base regulation in animals. Elsevier, Amsterdam. 

Hillman, S.S., Hancock, T.V. and Hedrick, M.S. (2013). A comparative meta-analysis 

of maximal aerobic metabolism of vertebrates: implications for respiratory and 

cardiovascular limits to gas exchange. J. Comp. Physiol. B 183, 167-179. 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Howell, B.J., Baumgardner, F.W., Bondi, K. and Rahn, H. (1970). Acid-base balance 

in cold-blooded vertebrates as a function of body temperature. Am. J. Physiol. 

218, 600-606. 

Jackson, D.C. (1978). Respiratory control and CO2 conductance: temperature effects in a 

turtle and a frog. Respir. Physiol. 33, 103-114.  

Lahiri, S. (1975). Blood oxygen affinity and alveolar ventilation in relation to body 

weight in mammals. Am. J. Physiol. 229, 529-536. 

Lapennas, G.N. (1983). The magnitude of the Bohr coefficient: optimal for oxygen 

delivery. Resp. Physiol. 54, 161-172. 

Malan, A. (1994). The evolution of mammalian hibernation: Lessons from comparative 

acid-base physiology. Integr. Comp. Biol.  54, 484-496. 

Milsom, W.K. (2002). Phylogeny of CO2/H
+ chemoreception in vertebrates. Respir. 

Physiol. Neurobiol. 131, 29-41. 

Murrish, D.E. (1983). Acid-base balance in penguin chicks exposed to thermal stress. 

Physiol. Zool. 56, 335-339. 

Peters, G.W., Steiner, D.A., Rigoni, J.A., Mascilli, A.D., Schnepp, R.W. and Thomas, 

S.P. (2005). Cardiorespiratory adjustments of homing pigeons to steady wind 

tunnel flight. J. Exp. Biol. 208, 3109-3120. 

Ponganis, P.J., Stockard, T.K., Meier, J.E., Williams, C.L., Ponganis, K.V., van 

Dam, R.P. and Howard, R. (2007). Returning on empty: extreme blood O2 

depletion underlies dive capacity of emperor penguins. J. Exp. Biol. 210, 4279-

4285. 

Rahn, H. (1967). Gas transport from the external environment to the cell. In: 

Development of the Lung. A Ciba Foundation Symposium, ed. by de Reuck and 

Porter. London, J. and A. Churchill pp 3-23.  

Reeves, R.B. (1972). An imidazole alphastat hypothesis for vertebrate acid-base 

regulation: tissue carbon dioxide content and body temperature in bullfrogs. 

Respir. Physiol. 14, 219-236. 

Reeves, R.B. (1977). The interaction of body temperature and acid-base balance in 

ectothermic vertebrates. Ann. Rev. Physiol 39, 559-586. 

Scott, G.R. and Milsom, W.K. (2007). Control of breathing and adaptation to high 

altitude in the bar-headed goose. Am. J. Physiol. 293, R379-R391.  

 

Seeherman, H. J., Dmi’el, R. and Gleeson, T. T. (1983). Oxygen consumption and 

lactate production in varanid and iguanid lizards: a mammalian relationship. Int. 

Ser. Sport Sci. 13, 421-427. 

 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Taigen, T. L. and Beuchat, C. A. (1984). Anaerobic threshold of anuran amphibians. 

Physiol. Zool. 57, 641-647. 

 

Tenney, S.M. and Boggs, D.F. (1986). Comparative mammalian respiratory control. 

Handbook of Physiol. – Resp. System II Chap. 27, 833-855. 

Santin, J.M., Watters, K.C., Putnam, R.W. and Hartzler, L.K. (2013). Temperature 

influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in 

the bullfrog, Lithobates catesbeianus. Am. J. Physiol. 305, R1451-R1464. 

Ultsch, G. R. and Jackson, D. C. (1996). pH and temperature in ectothermic vertebrates. 

Bull. Alabama Mus. Nat. Hist. 18, 1-41. 

White, F.N. and Somero, G.S. (1982). Acid-base regulation and phospholipid 

adaptations to temperature: time courses and physiological significance of 

modifying the milieu for protein function. Physiol. Rev. 62, 40-90. 

Zena, L. A., Fonseca, E. M., Santin, J. M., Porto, L., Gargaglioni, L. H., Bicego, K. 

C. and Hartzler, L. K. (2016). Effect of temperature on chemosensitive locus 

coeruleus neurons of savannah monitor lizards, Varanus exanthematicus. J. Exp. 

Biol. 219, 2856-2864. 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Figures 

 

 

 

 

Figure 1. A summary from Ultsch and Jackson, (1996) for fish, amphibians and reptiles 

for the effects of temperature on A) resting PaCO2, and B) resting arterial blood pH. 

Individual symbols are means for between 1-21 studies at that temperature and lines are 

least square regressions for each class. Symbols are filled circles for fish (n=60 for 

PaCO2, n = 92 for pHa), filled squares for amphibians (n=40 for PaCO2, n=46 for pHa) 

and filled triangles for reptiles (n=70 for PaCO2, n=80 for pHa). 
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Figure 2. A). The effects of temperature on resting PaCO2 (Ultsch and Jackson, 1996) at 

the temperature where VO2max is greatest for each class of vertebrates (from Hedrick et al. 

2015). Values are mean and 95% confidence interval. B). The relationship between 

VO2max at the temperature where it is greatest (from Hedrick et al. 2015) on resting 

PaCO2 (Ultsch and Jackson 1996). Values are mean and 95% confidence interval. Note 

the break in the x-axis to accommodate the range of values for the vertebrate classes. 
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