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by Altering Glutamate Recycling at the
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Abstract. Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disorders characterized by neuritic plaques
containing amyloid-� peptide (A�) and neurofibrillary tangles. Evidence has been reported that A�1-42 plays an essential
pathogenic role in decreased spine density, impairment of synaptic plasticity, and neuronal loss with disruption of memory-
related synapse function, all associated with AD. Experimentally, A�1-42 oligomers perturb hippocampal long-term potentiation
(LTP), an electrophysiological correlate of learning and memory. A� was also reported to perturb synaptic glutamate (Glu)-
recycling by inhibiting excitatory-amino-acid-transporters. Elevated level of extracellular Glu leads to activation of perisynaptic
receptors, including NR2B subunit containing NMDARs. These receptors were shown to induce impaired LTP and enhanced
long-term depression and proapoptotic pathways, all central features of AD. In the present study, we investigated the role of
Glu-recycling on A�1-42-induced LTP deficit in the CA1. We found that A�-induced LTP damage, which was mimicked by the
Glu-reuptake inhibitor TBOA, could be rescued by blocking the NR2B subunit of NMDA receptors. Furthermore, decreasing the
level of extracellular Glu using a Glu scavenger also restores TBOA or A� induces LTP damage. Overall, these results suggest
that reducing ambient Glu in the brain can be protective against A�-induced synaptic disruption.
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INTRODUCTION

Amyloid-� (A�), a misfolded peptide, is widely
regarded as a central player in the pathogenesis of
Alzheimer’s disease (AD). The accumulation of sol-
uble A� [1] in the brain of patients and animal models
of AD is associated with impairments of cognition
and memory [2–4]. In addition, both the synthetic
and brain-derived soluble A� have been shown to
damage certain forms of synaptic plasticity, corre-
lates of learning and memory [5, 6]. Despite intense
research, the mechanisms involved in A�-mediated
neuronal degeneration and dysfunction are not well
understood.
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The hippocampus is especially affected in AD
including hippocampal-dependent cognitive abilities
such as learning and memory. Long-term potentiation
(LTP), a form of synaptic plasticity in the CA1 field
of the hippocampus, is impaired in animal models of
AD. Numerous studies reported that A�1-42 oligomers
block hippocampal LTP ex vivo [7–9] and in vivo
[10, 11].

Although the increased neuronal excitability caused
by A� seems to contribute to and to be a key part
of the pathomechanism of AD, the exact mechanisms
by which neuronal over-activity develops is unknown.
Glutamate (Glu) excitotoxicity has been established
to have a major role in AD pathogenesis; however,
how A� induces its effects is poorly understood.
Numerous findings confirmed that excitotoxic effects
of Glu contribute to progressive neuronal loss in AD
[12–14]. Inhibited excitatory-amino-acid-transporters
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(EAATs) may be a central player in this mechanism,
and indeed, recent findings suggest that A� oligomers
perturb synaptic plasticity by altering Glu-recycling
at the synapse [15, 16], resulting in elevated ambi-
ent extracellular Glu-level in the brain [17, 18], which
might be responsible for the overexcitation seen in
AD. A� blocks Glu-reuptake by inhibiting both neu-
ronal and glial Glu transporters [16, 19], which might
lead to extrasynaptic NMDAR (esyn NMDAR) acti-
vation. Esyn NMDAR activation causes inhibited LTP
[5], enhanced long-term depression (LTD) [20], and
apoptosis [21].

The aim of this study was to confirm that A� causes
synaptic Glu-spillover and esyn NMDAR activation,
which leads to impaired synaptic plasticity in the
CA1. We show that blocking Glu-reuptake with TBOA
also impairs LTP, and both TBOA- and A�-induced
synaptic damage could be rescued by blocking NR2B
subunit. Moreover, reducing the level of extracellu-
lar Glu by applying a glutamate-scavenger enzyme
GPT also provides protection against impaired synap-
tic plasticity by TBOA and A�.

MATERIALS AND METHODS

Compounds

For the preparation of artificial cerebrospinal
fluid (ACSF), all salts, glucose, sodium pyruvate
(Pyr), glutamic-pyruvic transaminase (GPT),
DL-threo-�-benzyloxyaspartate (TBOA), and �-(4-
Hydroxyphenyl)-�-methyl-4- benzyl-1-piperidinee-
thanol (+)-tartrate salt (ifenprodil) were purchased
from Sigma-Aldrich (St. Louis, MO). A�1-42 was
synthetized at the Department of Medical Chemistry
University of Szeged, Hungary. Detailed description
of the synthesis and characterization of A�1-42 is
reported in [7].

Animals

The study conformed to EU Directive 2010/63/EU
and was approved by the regional Station for Ani-
mal Health and Food Control under Project License
XVI/8/2013. BALB/c mice were housed in groups of
2-3 under standard conditions (24◦C, 12-h light-dark
cycle) with food and water available ad libitum.

Ex vivo electrophysiology

Hippocampal slices of 400 �m in thickness were
prepared from the brains of 3-month old mice using

a standard protocol [22]. Briefly, slices were incu-
bated in ACSF gassed with 95% O2, 5% CO2 at 35◦C
for 60 min. ACSF was composed of (in mM) 130
NaCl, 3.5 KCl, 3 CaCl2, 1.5 MgSO4, 0.96 NaH2PO4,

24 NaHCO3, and 10 D-glucose, pH 7.4. Individual
slices were transferred to a 3D-MEA chip with 60 tip-
shaped and 60 �m high electrodes spaced by 200 �m
(Qwane Biosciences, Lausanne, Switzerland). The sur-
rounding solution was quickly removed, and the slice
was immobilized by placing a grid onto it. The slice
was continuously perfused with oxygenated ACSF
(3 ml/min at 36◦C) throughout the entire recording
session. Unfiltered data were recorded using a stan-
dard, commercially available MEA 60 setup (Multi
Channel Systems MCS GmbH, Reutlingen, Germany).
Field excitatory postsynaptic potentials (fEPSPs) were
recorded from the proximal stratum radiatum at 5 kHz.

Stimulation protocol

The Schaffer-collateral was stimulated by injecting
a biphasic voltage waveform (–100/+100 �s) through
one selected electrode at 0.033 Hz. Care was taken to
place the stimulating electrode in the same region at
every slice. The peak-to-peak amplitudes of fEPSPs at
the proximal stratum radiatum of CA1 were analyzed.
After a 30-min incubation period, the threshold and
maximum stimulation intensities for evoked responses
were determined. To evoke responses, 30% of the max-
imal stimulation intensity was used. LTP was evoked
by theta-burst stimulation (TBS). TBS comprised of 15
bursts given at 5 Hz and individual burst contained 4
pulses given at 100 Hz per burst. The level of LTP was
compared to the average of the last 10 peak-to-peak
amplitudes of evoked fEPSPs before TBS.

Drug treatments

After 10-min control level, slices were treated with
1 �M A�1-42 or 5 �M TBOA for 60-min before LTP
was induced. Other cohort of slices was treated with
3 �M ifenprodil or 0.82 mM Pyr for 10-min then 2.06
U/ml GPT for 60-min before LTP induction. Separate
groups of slices were treated with these compounds
together with A�1-42 or TBOA.

Statistics

Statistical significance was determined by using
ANOVA on ranks test with the post hoc Dunn’s method
(SigmaPlot 11 software package). The p value ≤0.05
was considered significant in all cases.
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RESULTS

Aβ1-42-impaired LTP requires NR2B activation

We recorded fEPSPs from the stratum radiatum of
the CA1 using MEA electrodes. The peak-to-peak
amplitudes of fEPSPs were analyzed from the proximal
part of stratum radiatum.

First, we verified the effect of A�1-42 preparation
on LTP in the hippocampal slices. Untreated slices
showed a persistent elevated level of fEPSPs after
LTP induction (168.33 ± 5.58%, n = 12), while A�1-42
reduced the magnitude of LTP (124.35 ± 4.88%, n = 9,
p < 0.05, nonparametric ANOVA, Dunn post-hoc test;
Fig. 1). Several recent studies suggested that differ-
ent NR2 subunits of NMDARs may have divergent
roles in NMDAR-dependent LTP activation and A�
pathology (see discussion). To test whether LTP acti-

vation requires NR2B-containing NMDARs function,
slices were treated with an NR2B antagonist, ifen-
prodil. We observed that ifenprodil did not alter the
level of LTP compared to control (176.81 ± 4.93%,
n = 5), suggesting that NR2B-activation is not required
for LTP in the CA1. Furthermore, ifenprodil prevents
the A�1-42 effect on LTP (166.03 ± 12.38%, n = 5,
p < 0.05, ANOVA on ranks, Dunn post-hoc test; Fig. 1),
suggesting A�1-42 induce LTP damage is via NR2B-
containing NMDARs. None of the applied compounds
altered the amplitude of fEPSPs during the wash-in
period.

Glu-scavenger rescues the Aβ1-42-impaired LTP

To determine whether A�1-42 affects Glu-reuptake,
we used an enzymatic Glu-scavenger system to
reduce extracellular Glu-levels. Slices were treated

Fig. 1. Blocking NR2B subunit prevents A�1-42-induced LTP damage. Insets show representative fEPSPs before (black) and after treatment.
LTP was altered in A�1-42 treated slices compared to untreated group (untreated versus A�1-42: ∗p < 0.05; ANOVA on ranks, Dunn post-hoc
test). Ifenprodil did not change the level of LTP, however, it rescued the A�1-42-impaired LTP. Error bars represent SEM; #p < 0.05 versus
A�1-42.
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Fig. 2. Glu-scavenger restores A�1-42-induced LTP damage. Insets show representative fEPSPs before (black) and after treatment. Pyr+GPT
treatment did not affect the level of LTP compared to untreated slices, however A�1-42 induced LTP impairment was prevented by Glu-
scavenger (A�1-42 versus Pyr+GPT+A�1-42: #p < 0.05; ANOVA on ranks, Dunn post-hoc test). Error bars represent SEM; ∗p < 0.05 versus
untreated; #p < 0.05 versus A�1-42.

with GPT and its substrate, Pyr for 10 min fol-
lowed by A�1-42 for 60 min, then LTP was induced.
We have found that Pyr+GPT treatment does not
affect the level of LTP compared to control slices
(157.32 ± 6.68%, n = 5; Fig. 2). However, A�1-42-
induced LTP damage was prevented by Glu-scavenger
(Pyr+GPT+A�1-42: 159.66 ± 6.37%, n = 5 versus
A�1-42, p < 0.05, ANOVA on ranks, Dunn post-hoc
test; Fig. 2).

The effect of Aβ1-42 is mimicked by TBOA, a
Glu-reuptake inhibitor

TBOA was applied for 60 min before LTP induction.
LTP was impaired by TBOA compared to untreated
slice (123.22 ± 3.48%, n = 6, p < 0.05; ANOVA on
ranks, Dunn post-hoc test, Fig. 3). Next, we tested
whether NR2B subunit activation is required for
the effect of TBOA. We have found that ifenprodil

prevents TBOA-induced LTP damage suggesting
NR2B subunit activation is essential for the effect of
TBOA on LTP (ifenprodil+TBOA: 159.29 ± 10.67%,
n = 4 versus TBOA: p < 0.05; ANOVA on ranks, Dunn
post-hoc test, Fig. 3). We proceeded to apply Glu-
scavenger to test whether the inhibitory effect of TBOA
was due to the elevated extracellular Glu-level. Indeed,
TBOA-failed to impair LTP after Glu-scavenger treat-
ment (Pyr+GPT+TBOA: 169.28 ± 8.18, n = 5 versus
TBOA, p < 0.05; ANOVA on ranks, Dunn post-hoc
test, Fig. 4). Collectively these results suggest that
TBOA and A� share common pathway in synaptotoxi-
city. The effect of A�1-42 is mimicked by Glu-reuptake
inhibition; however both could be prevented by a Glu-
scavenger and NR2B inhibition suggesting that A�1-42
disrupts synaptic plasticity by altering Glu-recycling
at the synapse in the CA1. Again, none of the applied
compounds altered fEPSP amplitude during the wash-
in period.
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Fig. 3. Ifenprodil prevents TBOA-impaired LTP. Insets show representative fEPSPs before (black) and after treatment. LTP was impaired by
TBOA compared to untreated group (untreated versus TBOA: ∗p < 0.05; ANOVA on ranks, Dunn post-hoc test), however TBOA-induced LTP
impairment was restored by ifenprodil (TBOA versus ifenprodil+TBOA: #p < 0.05; ANOVA on ranks, Dunn post-hoc test). Error bars represent
SEM; ∗p < 0.05 versus untreated; #p < 0.05 versus TBOA.

DISCUSSION

There is growing evidence that soluble A�
oligomers mediate synaptic impairment in AD, but
the exact mechanism of synaptotoxicity remains to be
determined. Numerous studies have reported that A�
can affect the function of NMDARs [23–27], which
may lead to excitotoxicity and neuronal hyperactiva-
tion seen in the early stage of AD. Recent findings
suggest that A� binds to prion protein, metabotropic
Glu receptor 5, and integrin receptors, and this com-
plex initiates a molecular cascade mediated by fyn
kinase [28–30], which subsequently phosphorylates
NMDARs.

An additional pathway of A�-mediated hyperex-
citation could be, however, that the concentration
of extracellular Glu is increased by A�. We have
shown previously, that the excitatory effect of A�, as

was determined by the rate of spontaneous spiking
in hippocampal slices, is mediated by extrasynap-
tic NMDARs [22]. In the present study, we show
that A� causes Glu spillover and subsequent esyn
NMDAR activation, which could be prevented by
either NR2B blockade or by “mopping-up” Glu with a
Glu-scavenger enzyme.

TBOA mimics the effects of Aβ

A� has been shown to elevate extracellular Glu
concentration in the brain without altering gamma-
aminobutyric acid (GABA) level [18]. The mechanism
behind this is probably the inhibition of the trans-
porters mediating Glu-clearance. The level of brain
extracellular Glu is regulated by EAATs expressed
mainly on the astrocytes, which efficiently remove
the excess of this neurotransmitter from the synaptic
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Fig. 4. Glu-scavenger prevents TBOA-induced LTP damage. Insets show representative fEPSPs before (black) and after treatment. TBOA-
induced LTP impairment was restored by Glu-scavenger (TBOA versus Pyr+GPT+TBOA: #p < 0.05; ANOVA on ranks, Dunn post-hoc test).
Error bars represent SEM; ∗p < 0.05 versus untreated; #p < 0.05 versus TBOA.

cleft (reviewed by [31]). Indeed, A� was shown to
inhibit both glial and neuronal EAATs [16, 17, 32].
Moreover, Noda and coworkers have reported that
A� may even cause reverse functioning of EAAT,
leading to Glu-release from glial cells [33]. Further-
more, down-regulation or abnormal expression and
protein levels of EAAT1 and EAAT2 are altered in
the hippocampus and frontal cortex of AD patients
[34, 35] and in amyloid-� protein precursor transgenic
mice [32], further supporting that Glu-level regula-
tion fails during AD pathomechanism. These effects
may lead to Glu-spillover from the synapses and sub-
sequent activation of esyn receptors. Of particular
interest here, esyn NMDARs containing mainly NR2B
subunit were shown to activate apoptotic pathways
and promote synaptic depression [21]. In contrast,
NR2A subunit-containing NMDARs localized mainly
at the synaptic domain are antiapoptotic and participate
in the induction of LTP in the CA1. We previ-

ously reported that A�1-42 induces hyperexcitability
via NR2B-containing NMDARs [22]. Indeed, block-
ing selectively NR2B subunits protected against A�
effects (including LTP impairment), suggesting that
NR2B could be a promising target against AD [5,
8, 9, 36, 37]. Tackenberg et al. also suggest that
esyn NR2B-containing NMDARs activation is essen-
tial for tau-dependent neurodegeneration [26]. It was
also shown that the opposite form of synaptic plastic-
ity, LTD requires both syn and esyn receptor activation
[20], while LTP is not mediated by esyn NMDARs [8,
9]. It should be noted, however, that contradictory data
is available on the role of NR2B NMDARs on LTP:
esyn NDMARs are also recruited to the synapse dur-
ing LTP [38] and may play an essential role in LTP
maintenance [39, 40].

Our results extend this line of research by showing
that reducing Glu that has been spilled-over from the
synapse with a Glu-scavenger enzyme also prevents
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A� induced LTP impairment. Moreover, we show that
blocking EAATs by a selective inhibitor, TBOA, mim-
ics the effects of A�: both compounds impair LTP, and
this could be prevented by ifenprodil or GPT (Glu-
scavenger).

Reducing ambient Glu in the brain is protec-
tive against A� induced LTD enhancement [16]. A
recent paper by Chen and Herrup makes the sugges-
tion that although the level of glutamine-synthase is
elevated in AD brains, its activity is severely com-
promised by oxidative damage, leading to impaired
Glu-metabolism [41].

A� and Glu-toxicity mediated dysfunction has been
closely associated; however, decreasing the extracellu-
lar Glu-level can be protective in other conditions such
as brain ischemia [42], stroke [43], traumatic brain
injury [44] or certain psychiatric disorders [45, 46].

CONCLUSIONS

Collectively, our results provide evidence that A�
impair Glu-recycling at the synapse, which leads to
Glu-spillover and NR2B activation. Blocking NR2B or
decreasing extracellular Glu offers protection against
the synaptic plasticity impairment caused by A�.
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