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Abstract. The gravity wave-model equations are considered. The equations govern shallow 

water flows, where the gravity effect is significant. The equations form a system of partial 

differential equations with the hyperbolic type. When the gravity wave-model equations are 

solved using a finite difference method with staggered grids, artificial oscillations may occur in 

the numerical solution. In this paper, we propose a numerical treatment of a staggered grid 

finite difference method for solving the gravity wave-model equations. Using our proposed 

treatment, artificial oscillations can be eliminated, so the resulting numerical solution mimics 
the physics of the problem. 

 

1. Introduction 

The gravity wave-model equations have been used to model water flows, such as dam break 

problems [1] and flood simulations [2]. These equations can also be used to model river flows at their 

steady states [3]. Gravity waves have also been researched by other authors [4-5] relating to internal 

water waves. 

The gravity wave-model equations considered in this paper are simplifications of the Saint-Venant 

shallow water wave equations, where the convective term is assumed to be negligible. This 

assumption makes the model easier to be used for flow simulations, yet the conservation of mass is 

still enforced, and the conservation of momentum based on gravity term still exists in the system. 

Solving the gravity wave-model equations numerically is our goal in this paper. We shall use a 

staggered grid finite difference method. This method is chosen, because fluxes do not need to be 

approximated. Using the staggered grid technique, fluxes are known. This method is applicable for 

solving smooth problems. We note that staggered grid numerical methods have had a great success in 

solving some problems relating to elasticity, water, seismic, and other wave models [6-10]. 

However, a staggered grid method may generate unphysical oscillations when we implement it to 

solve nonsmooth problems. In this paper, a numerical treatment is proposed, so that the unphysical 

oscillations can be eliminated for nonsmooth problems. Numerical tests confirm our claims. 

The rest of this paper is written as follows. We recall the mathematical model and numerical 

methods in Section 2. We provide numerical results in Section 3. Conclusion is drawn in Section 4. 
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2. Model and method 

The gravity wave-model equations are 
𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 , (1) 

  

𝜕𝑞

𝜕𝑡
 + 

𝑔

2
 
𝜕ℎ2

𝜕𝑥
= 0 . (2) 

where ℎ(𝑥, 𝑡) is water depth, 𝑞(𝑥, 𝑡) is unit-discharge, and 𝑔 is the acceleration due to gravity. The 

gravity wave-model equations (1) and (2) are simplifications of shallow water equations (the Saint-

Venant shallow water wave equations). Ancey et al. [11] and Mungkasi et al. [12] provide some forms 

of shallow water equations. 

To solve equation (1), we use discrete forms as follows 

𝜕ℎ

𝜕𝑡
|
𝑥 = 𝑥𝑗

𝑡 = 𝑡𝑛 ≈
ℎ𝑗

𝑛+1 − ℎ𝑗
𝑛

∆𝑡
 , (3) 

  

𝜕𝑞

𝜕𝑥
|
𝑥 = 𝑥𝑗

𝑡 = 𝑡𝑛 ≈
𝑞𝑗+1/2

𝑛 − 𝑞𝑗−1/2
𝑛

∆𝑥
 . (4) 

Here 𝑥𝑗  is the 𝑗-th spatial point, 𝑡𝑛 is the 𝑛-th temporal point, 𝑗 = 1,2,3, …  and 𝑛 = 0,1,2,3, …, ∆𝑥 is 

uniform spatial distance, ∆𝑡 is the time step, and ℎ𝑗
𝑛 is water depth at time 𝑡𝑛 and point 𝑥𝑗 . The 

notations ℎ𝑗
𝑛+1, 𝑞𝑗+1/2

𝑛  , 𝑞𝑗−1/2
𝑛  are understood analogously. Substitution of equations (3) and (4) to 

equation (1) results in 

ℎ𝑗
𝑛+1 = ℎ𝑗

𝑛 −
∆𝑡

∆𝑥
(𝑞

𝑗+
1

2

𝑛 − 𝑞
𝑗−

1

2

𝑛 ) . (5) 

To solve equation (2), we use discrete approximations as follows 
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|
𝑥 = 𝑥𝑗+1/2
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𝑛

∆𝑡
 , (6) 
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2
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Substitution of equations (6) and (7) to equation (2) leads to 

𝑞𝑗+1/2
𝑛+1 = 𝑞𝑗+1/2

𝑛 − 
𝑔

2
 
∆𝑡

∆𝑥
((ℎ𝑗+1

𝑛 )2 − (ℎ𝑗
𝑛)2) . (8) 

The system of equations (5) and (8) is the staggered grid numerical finite difference scheme. It is 

an explicit scheme. It is stable as long as the time step is taken sufficiently small. 

 

3. Numerical results 

In this section, we provide three test cases. The first is a problem having a smooth solution. The 

second is a problem having a discontinuous solution. The first and the second problems are solved 

using the standard staggered finite difference scheme. The third is a problem having a discontinuous 

solution, but is solved using a modified staggered finite difference scheme. The modification is the 

numerical treatment that has been aforementioned and shall be discussed. All quantities are assumed 

to have SI units with the MKS system. The acceleration due to gravity is 9,81. 

 

3.1. Problem having smooth solution 

Assume that at time 𝑡 = 0, water depth is given by 

ℎ(𝑥, 0) = {
11 + cos(𝑥) , if − 𝜋 ≤ 𝑥 ≤ 𝜋,

0, if   𝑥 < −𝜋  or  𝑥 > 𝜋,
 

and its velocity is zero everywhere. Water surface and velocity at the initial time are shown in 

Figure 1. 
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Figure 1. Water surface and velocity at time 𝑡 = 0. 

 

 

 
Figure 2. Water surface and velocity at time 𝑡 = 0.5. 
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Figure 2 shows an illustration of the simulated fluid depth and fluid velocity for the considered 

problem. This simulation uses 201 grid points, 𝛥𝑥 =  0.1, and 𝛥𝑡 =  0.005𝛥𝑥. The results of this 

simulation are correct with respect to its physics. That is, if the velocity is positive, then water wave 

moves to the right. If the velocity is negative, then water moves to the left. 

 

3.2. Problem having nonsmooth solution without numerical treatment 

Suppose that the water depth from the point 𝑥 = −10 until 𝑥 = 0 is 10 and the water depth from the 

point 𝑥 = 0 until 𝑥 = 10 is 5. Initially, water is still. These are illustrated in Figure 3. 

 

 

 
Figure 3. Initial water surface of the dam break problem. 

 

 

 

Figure 4 shows an illustration of simulated water depth and velocity at time 𝑡 = 0.1 using the 

scheme (5) and (8). This simulation uses 2001 spatial points, ∆𝑥 = 0.01, and ∆𝑡 = 0.005∆𝑥. The 

simulation shows that artificial oscillations occur in the numerical results. To avoid oscillation, 

numerical treatment is used, as follows: ℎ𝑗
𝑛 in equation (5) is changed to the average (ℎ𝑗+1

𝑛 + ℎ𝑗
𝑛 +

ℎ𝑗−1
𝑛 )/3, and 𝑞𝑗

𝑛 in equation (8) is replaced by the average (𝑞𝑗+3/2
𝑛 + 𝑞𝑗+1/2

𝑛 + 𝑞𝑗−1/2
𝑛 )/3, so we 

obtain the following alternative scheme 
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Figure 4. Staggered grid solution without scheme modification. 

 

 

 
Figure 5. Staggered grid solution with scheme modification as a numerical treatment. 
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Figure 5 shows an illustration of simulated water depth and velocity at time 𝑡 = 0.1 using the 

scheme (9) and (10). This simulation uses the same numerical setting as before, that is, 2001 spatial 

points, ∆𝑥 = 0.01, and ∆𝑡 = 0.005∆𝑥. We observe that artificial oscillations do not occur in these 

results, as we expect. The solution is slightly diffusive. 

4. Conclusion 

We have solved the gravity wave-model equations using a staggered grid finite difference method. 

Our numerical tests involve smooth and nonsmooth solutions. A numerical treatment has been 

proposed, so that artificial oscillations do not occur in the solution, especially when we deal with 

nonsmooth problems. Future direction could be about minimising the diffusion around the 

discontinuity of the nonsmooth solution. 
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