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With climate change getting increasingly real and present, the risk of adverse impacts on vulnerable 

populations is growing. As governments seek more drastic action, policymakers are likely to seek 

quantification of climate change impacts and also the consequences of mitigation policies on these 

populations. Current models used in climate research have a limited ability to represent the poor 

and vulnerable, and the different dimensions along which they face these risks. Best practices need 

to be adopted more widely and new model features that incorporate social heterogeneity and 

different policy mechanisms also need to be developed. Increased collaboration between modelers, 

economists, and other social scientists could aid these developments.  

We review the history and state of the art of models used in climate research, including Integrated 

Assessment Models (IAMs) and national studies, and those that model mitigation and climate 

change impacts. We assess how and to what extent they represent distributional impacts within 

countries. We argue that there is much scope to improve the representation of income distribution 

and poverty. Given the diversity of models, this endeavor can present fundamental challenges for 

some, but possibly require only incremental changes in others.  

1. Why model poverty and inequality 

Climate-related research has established firmly that different populations within countries are 

affected differently by climate change and climate mitigation policies, very often with the poor 

bearing the most drastic consequences 1–5. Climate change affects poverty through many channels, 

such as through livelihoods, consumption, assets, health, and productivity 6,7. Climate mitigation 

policies can generate income and price shocks, which in some cases can also increase health risks to 

the poor 8. Climate mitigation technologies can also generate differential impacts on different 

income groups, a notable example being the extensive deployment of biomass for energy and its 

implications for food security 9,10. In order to meet the Paris climate agreement goals of keeping 

warming below 2◦C above preindustrial levels, national pledges to reduce greenhouse gas (GHG) 

emissions need to be ramped up significantly 11. Such ambitious climate policies may present greater 

risks to those in poverty 8. Incorporating these impacts on poverty can make climate economic 

models more useful for national policymakers to evaluate climate policies and their impacts on social 

protection goals. These improvements would be timely, considering the recent attention to 

combating both social inequalities and climate change. While almost a billion people have putatively 

risen out of extreme income poverty (earning $1.90/day) 12, progress viewed through a broader lens 

of basic human development, or multidimensional poverty, is far less encouraging 13,14. 

Multidimensional indicators recognize the multifaceted nature of human deprivations, whose 

patterns do not necessarily coincide with income deprivations. In the last few decades, income 
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inequality within countries has also increased across most of the world 15. Models that can assess 

income distributional impacts of climate change and policies, and assess poverty in its multiple 

dimensions, would provide policymakers with tools to more rigorously assess climate change and 

human development goals simultaneously. 

The recognition of distributional concerns in climate research can be traced back to the nineties, the 

timeframe of the IPCC’s first assessment reports 16,17. The research gaps identified then have been 

repeated in subsequent IPCC assessments, showing they persist till today 4,5. Many studies with 

countries or regions as units of analysis have concluded that poor countries are more vulnerable and 

have lower adaptive capacity to climate change1–3. Moreover, aggregate cost estimates mask 

significant differences across populations 18, and adaptive capacity is uneven within societies as well 

19. The IPCC’s most recent Fifth Assessment Report (AR5) reflects much evolution in regional studies 

of climate impacts, but distributional impacts remain underexplored.  

In general, while IAMs and macroeconomic models used in climate research have evolved from 

global outcomes towards increasing geographic detail 20, more models have to move beyond 

representing average regional effects to quantify and project distributional effects and their 

complexities in countries. Even global reduced form models that generate aggregate or regional 

statistics, such as the social cost of carbon, have different outcomes when they incorporate income 

inequality by assigning greater weight to damages at lower income levels 18,21–24. These equity 

weights and the types of damage functions assumed can greatly influence decisions on when, how 

much, and where to mitigate GHG emissions 25,26. Models that grapple more explicitly with these 

normative frameworks and their implications can better inform policymakers and their perceptions 

of what is fair, feasible and consistent with development policies. Some studies using global IAMs 

serve as examples of such enhancements, though they formulate policies for idealized global or 

regional policymakers 27–29.  

With increasing attention given to adaptation, research gaps have broadened towards 

understanding the effects of adaptation decisions on poverty and income inequality 30. The channels 

of climate impact on humans are inherently multi-faceted, such as human health vulnerabilities 

relating to clean water/sanitation, health care and education 4,6,19.  Models dealing with cost-benefit 

analyses of adaptation choices can better inform policymakers’ decisions if they can quantify 

multidimensional poverty. Estimating future vulnerabilities to climate change also requires the 

construction of future socioeconomic scenarios that quantify future poverty and inequality.  In order 

to present policy makers with the full range of options and consequences, we need approaches to 
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estimate adaptation costs, barriers and opportunities in different countries and populations, and to 

develop comparable metrics to measure climate impacts.  

2. State of the art 

We organize this discussion by models that assess climate mitigation and those that assess climate 

change impacts. We also distinguish national level models from global level models. For the latter, 

we make a distinction between IAMs for cost-benefit analysis (CBA-IAMs), which tend to be more 

stylized, and IAMs with a predominantly mitigation framing that are more detailed and process 

oriented (Process-IAM). Models that analyze the effects of climate mitigation policies both at the 

national and global levels can be grouped into general equilibrium (GE) and partial equilibrium (PE, 

often bottom-up energy system models). Climate change impacts models tend to be national or local 

studies that sometimes represent the macroeconomy, or global CBA-IAMs. The model-types and 

references of examples mentioned in this section are summarized in Table 1. 

In the realm of climate mitigation, many national studies assess the distributional impacts of 

mitigation using general equilibrium approaches, mostly for the US and Europe 31–42, though 

increasingly also for developing countries 32,43–48. Methodologically, the literature reveals a variety of 

stages towards including distributional impacts on households. With regard to how households are 

represented, approaches include simply imposing distributions 49,50, using microsimulation models 

(see Table 1)  40,51,52, and representing multiple household types within models 31,53,54. Some of these 

approaches are being applied with global Process-IAMs as well 10,55,56. However, the norm for studies 

in this realm continues to be the use of single representative households 54.  

Increasing household heterogeneity in modeling tools is only the first step. For meaningful results, 

models also need to incorporate other agents and the relevant dynamics that influence the 

distributional impacts of climate policies and climate change impacts on households. For instance, 

the role of the government (which is usually modelled quite stylistically in CGEs) is often decisive for 

the distributional impacts of policies 40. The policy instruments used to represent climate policies are 

typically limited to the simulation of economy-wide carbon taxes 57,58. Many studies assess the 

interaction of climate policies with social protection policies, such as revenue recycling. However, 

social protection policies may also differ in developing countries that lack well developed income tax 

systems. 

Other relevant dynamics that affect the distributional impacts of climate policies include the 

evolution of the structure of labor and capital markets over time. Without distinguishing the 

relevant labor markets in a CGE model, sectoral shifts in employment and wages from mitigation 

policies, for instance, cannot be analyzed. Structural changes in labor and capital market shares also 
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affect the non-economic impacts of climate change and potential response policies. For instance, the 

number of workers exposed to heat stress is likely to much lower in a high-productive, capital 

intensive, robotized world than in a low-productive, labor-intensive, impoverished economy. The 

aggregate impacts on GDP might (or might not) be comparable, but the distributional consequences 

of heat stress and response policies should be very different.  

In bottom-up energy models and global Process-IAMs of this style, the analysis of distributional 

impacts is often limited to consumption of energy by households. Disaggregation of households into 

several groups or many representative households has been implemented for developed 33,42,59,60 

and developing countries 61–65 with varying levels of detail. Process-IAMs distinguish multiple 

household categories within the IAM itself 66,67 or use separate models to disaggregate energy use 

from a representative household within the global IAM 62. These models have been used to analyze 

global access to electricity 68 and tradeoffs between climate policy and energy access 8. However, by 

focusing only on household energy price impacts, these models can only analyze the changes in 

energy consumption, while ignoring any changes in income. They have very limited ability to 

represent the interlinkages and cascading effects between particular sectors and the rest of the 

economy, let alone how these effects are distributed across households. 

With respect to climate change impacts, studies that quantify inequality or (multidimensional) 

poverty are rare (with the exception of a recent World Bank study 6,69). Many impacts and 

vulnerability studies rely on present-day income distributions and poverty levels to assess future 

vulnerability 70,71. Even if they do use future socioeconomic scenarios, studies typically adopt simple 

rules such as constant income distributions, or poverty levels indexed to GDP 10,19. A patchwork of 

national studies that uses a more complete accounting of income and/or consumption impacts 

51,56,72–74 exists, but differences in measures and approaches makes it difficult to draw broader 

conclusions or comparisons. Moreover, climate change can affect households in different ways, 

through shifts in sectoral employment, through price changes of essential goods or through the 

destruction of assets. Some attempts to include such dynamics in global Process-IAMs exist 10,50,52,53, 

but these are early steps of development.  

Integrated Assessment Models for cost-benefit analysis (CBA-IAMs) produce global economic 

assessments of climate change impacts. In these studies, distributional weights have long been used 

to represent equity across generations or regions 4. Such weighting strongly influences the valuation 

of future impacts of climate change 18,25,26 or the valuation of impacts that take place outside a 

particular country 22. Recently, we have seen experiments with the use of distributional weights 

within generations, to represent inequality aversion between countries 21,24 or across sub-national 
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income groups 18. A limitation in these studies is the strong assumption of either static present-day 

subnational income distributions or convergence between countries 21,24,28.  

In summary, although the above discussion cites a wealth of literature on distributional impacts, the 

large majority of climate-related models do not consider any distributional impacts. Moreover, all 

the methods discussed here have important shortcomings that need to be addressed. For instance, 

for a full account of the distributional impacts of climate policies and climate change impacts, both 

the income and consumption aspects of households need to be represented and the relevant 

determinants of changes on either side need to be included. However, whereas partial equilibrium 

models generally include higher levels of heterogeneity (especially at the global level), they only 

focus on changes in consumption, and while general equilibrium models include both consumption 

and income they are often more aggregated and omit relevant economic dynamics that shape future 

income distribution development. More broadly, the existing approaches narrowly focus on 

economic inequality, whereas climate change impacts may manifest through multi-faceted poverty. 

Not all approaches can include such a broad scope, but national-level models in particular can better 

inform policy makers with a broader focus.  

3. Drawing from economics  

In better representing income inequality dynamics in climate economic models, it seems logical to 

draw from existing theories of income distribution in economics. In just the last few years, several 

publications 75–79 seek to explain global trends in income inequality. However, even among 

economists there are multiple views, but no single unified theory, that explain income inequality. 

Previous theories of income distribution offer building blocks of explanatory mechanisms, but 

provide no consensus on their integration 80. These building blocks relate to the productivity, 

distribution, and to the accumulation of, and the returns to, factors of production (e.g., capital and 

labor). The recent body of literature adds, among other things, empirical insights on the importance 

of government structure and policy in explaining regional differences in the evolution of income 

inequality 75,76,79. However, there are no generally accepted theories relating these drivers to 

inequality, let alone ways to forecast their future evolution.  The approach to drawing from this 

literature may therefore have to be experimental. Rather than aiming to incorporate dynamics, 

suitable models can parameterize some of these drivers, so that at least scenarios can be 

constructed to represent different assumptions, such as variable capital shares of income, or 

redistributive mechanisms. 

In the field of poverty measurement, multidimensional indicators, such as the Multidimensional 

Poverty Index (MPI) 14, have gained attention as alternatives to income-based measures. The MPI 
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focuses on education, health (including food) and living conditions, such as access to water, 

electricity and sanitation. Others define a more comprehensive a set of indicators of human well-

being, only some of which may be relevant for any particular application 81. The value of these 

indicators is that they provide a basis for climate impact studies (and to a lesser extent for climate 

policy studies) to quantify impacts in non-monetary but yet standardized terms that can enable 

comparisons across different types of impacts that have similar types of outcomes. The challenge is 

that there are no established indicators or practices. Process-IAMs, which may already include the 

evolution of these other crucial dimensions, are well suited to broaden their objective functions to 

include these non-monetary outcomes, and examine trade-offs between them. 

4. Moving forward 

Different types of models, depending on their objective and geographic scale, may require different 

approaches to enhance the representation of poverty and inequality (see Figure 1). We discuss these 

in the sequence of our suggested future directions shown in Figure 1, by column from left to right. 

This list of suggestions is not meant to be exhaustive, but rather highlights examples of future 

directions that apply to different models.  

Figure 1: State of the art and future research directions in representing poverty/inequality in models 
for climate research. CBA-IAM: Global IAM, cost-benefit analysis. Process-IAM: Process-oriented 
IAMs with mitigation framing. CGE: Computable general equilibrium. 

 

1. In the realm of impact measurement, dimensions beyond income need to be better represented 

where possible, and where not, multiple income thresholds should be used. This is most relevant 

for national models of climate impacts, or global Process-IAMs of mitigation pathways that 

already include income distribution and multiple poverty-related variables. Multidimensional 

poverty metrics can be used to quantify the change in poverty headcount or gap from different 

types of climate impacts that may not all be monetizable, such as access to clean water, or 

adequate nourishment. This broadening of metrics has the added benefit of enabling 

comparisons across the Sustainable Development Goals, which include such targets. In the long 

run, deepening integrated research across scales, by examining local climate impacts alongside 

other national drivers of poverty, would better represent climate as a threat multiplier made 

that compounds other poverty risks 19. 

2. Models that represent climate impacts as damage functions, such as global CBA-IAMs, can 

create formulations that parameterize regions and their income distributions and incorporate 

equity weights, which then deepens the assessment of equity more explicitly in solutions for 

climate policy. As discussed earlier, some examples of this exist, but these need to become 
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standard practice. Furthermore, more research on empirical estimates of regional damages and 

their distribution can help calibrate these damage functions. 

3. Moving from a single representative household to multiple household groups is possible in any 

model type. It can serve as a foundational step towards building the capability to examine policy 

impacts that depend on household characteristics. However, this step entails increases in data 

needs that would expand with the extent of household disaggregation. Besides increasing the 

number of household types, some modelers have developed microsimulation models or worked 

with stylized distributions of income and consumption in future scenarios. These exceptions 

need to become the norm where feasible. 

4. Models that already incorporate income distributions, but in static form, can extend their 

capability to examine climate (or mitigation) impacts under different scenarios of future income 

inequality by constructing scenarios of future income convergence and divergence, both 

between and within countries. Such scenarios can consist of stylized assumptions, or incorporate 

economic dynamics, to the extent feasible 49,69,82. These improvements are relevant to both 

global IAMs and national economic models. 

5. Incorporating multiple channels of impact on poverty and inequality would be more involved, 

and require incremental steps in macroeconomic models that already model multiple household 

groups. The channels we have identified are income, consumption, and assets. There are a few 

examples of climate impact studies, typically agriculture economic models, which incorporate 

both consumption- and income-side effects on households. This needs to become the standard 

for economic impact studies. Capturing income effects requires modeling labor productivity, 

which affects income directly through returns to labor and indirectly through macroeconomic 

effects of changes in overall labor productivity. Another step forward is to represent changes to 

capital assets, which are vulnerable to extreme events and affect future income or consumption 

streams. This may not apply to certain types of macroeconomic growth-models that use fixed 

capital/labor shares in production functions.  

6. The role of government in shaping future inequality and in formulating responses to climate 

change is so dominant that models need to move towards incorporating policy mechanisms. 

Among economic models that do represent government policies, a broader range of policies for 

both climate mitigation and social protection would better reflect real world institutions, 

especially in developing economies that do not have well developed income tax systems. 

7. Partial equilibrium and bottom-up energy models, if they include household heterogeneity, can 

be enhanced by exogenous assessment of income effects, or of specific relevant linkages that 
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affect the poor, such as the air pollution and health impacts from energy transitions on different 

income groups 8. This could be an important addition to several global Process-IAMs as well.  

 

Bringing into climate economic models new features of the real world – that of social heterogeneity 

– introduces additional sources of uncertainty in model output, as well as the need to calibrate new 

model parameters to the real world. Empirical studies of climate impacts and damages on poverty 

and on inequality can help test and refine new model features. Monte Carlo simulations over large 

scenario spaces associated with specific sets of parameters can help characterize the range of 

uncertainty attributable to these model enhancements. 

These changes will be challenging. They require not just analytical advances, but also building 

bridges across research communities, to explore incorporating evolving theories on income 

inequality from economics into climate economic models. While there are a few examples that can 

lead the way, in general, these exceptions need to become the norm, so that the research 

community can keep up with the pace required of policymakers to combat climate change. Data 

limitations in understanding the mechanisms that drive income distribution and in empirical 

estimates of climate impacts exacerbate this challenge. This will require more interaction between 

research groups working on global models and local research communities that conduct empirical 

studies or work with national models.  
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Table 1: Representation of household heterogeneity in state-of-the-art climate economic models. 
Models are classified by their scale (national, global), scope (single sector, partial or full economy) 
and objective (partial equilibrium, general equilibrium (CGE), cost-benefit analysis (CBA)), with 
exemplar citations. Microsimulation: models that disaggregate aggregate outcomes to households 
based on empirical analyses of individual characteristics. 

Model Type  Increasing Complexity of Social Heterogeneity 
 

Single HH Prescribed 
distribution 

Multiple HH-types Microsimulation 

National, Single sector Most common Mitigation: 59,61 
 

Mitigation: 35,63,67,83 
 

Mitigation: 60,62,64 
Impacts: 84 

National, CGE  Most common   
 

Mitigation: 
31,32,34,36,39,43–46,73 
  

Mitigation: 33,40,46–

48,65 
Impacts: 51,72 

Global Process-IAM, partial 
equilibrium 

Most common  
 

Mitigation: 66 
  

Mitigation: 8 
  

Global Process-IAM, CGE Most common   
Impacts: 10,50 

  
Impacts: 53 

Mitigation: 56,85 
Impacts: 52 

Global CBA-IAM Most common Mitigation86 
Impacts:18,21,24,86  
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