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Abstract

In this computational work, we investigate the sampling of molecular dynamics (MD) sim-

ulations of the two highly flexible biomolecules: Methionine-enkephalin (Met-Enkephalin)

and the third variable loop (V3) of the glycoprotein 120 (gp120) from the human immun-

odeficiency virus type-1 (HIV-1).

The conformational dynamics of the three-dimensional (3D) protein structures are of

central importance for the biomolecular function. A common possibility to obtain these

dynamics at atomic resolution are MD simulations. But reaching a converged MD sam-

pling in adequate time is limited by the huge conformational space of flexible systems.

Moreover, an automatic sampling validation is still not established as settled protocol

in today’s MD studies. Furthermore, existing tools aim primarily to investigate single

trajectory convergence which is not always practical for flexible molecules. But in fact,

a universal assessment is necessary to classify, whether the sampling is sufficient or not.

Otherwise the extracted thermodynamic results are completely meaningless.

The aim of this work is to develop a toolkit to quantitatively assess the MD sampling

quality for flexible systems. This toolkit is freely available at https://github.com/

MikeN12/PySamplingQuality. We use diverse sets of trajectories with different initial

conformations along with enhanced sampling techniques such as accelerated MD (aMD)

and scaled MD (sMD). These distort the energy landscape to ease conformational tran-

sitions. The sampling is assessed by two new quantities, the conformational Oconf and

density overlap Odens, including also the cluster number NC and cluster distribution en-

tropy SC . These new overlap quantities measure the self-consistency of sampling as a

necessary condition for complete sampling.

We use Met-Enkephalin as benchmarking system because of its small size but non-

trivial dynamics. Our tool reveals that the MD sampling of already such a small molecule

converges in a microsecond regime. Furthermore, we can show that aMD is the most

efficient algorithm to assess the convergence and also to detect wrong sampling. How-

ever, Odens analysis comparing MD with aMD/sMD reveals that we have not completely

corrected the bias from enhanced sampling. Therefore, Odens can also be used to compare

different methods. On the other hand, V3 demonstrates that much more resources must

be spent to achieve convergence compared to those generally invested today. The results

highlight the necessity of a multi-trajectory approach to detect incomplete sampling.

Altogether, we are able to generate a universally and easily applicable toolkit to assess

the MD sampling quality of any kinds of multi-trajectory experiments using certain error

estimates and decide, whether the extracted thermodynamic properties are correct or not.
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Zusammenfassung

In dieser Arbeit wird das Sampling von Molekulardynamik (MD) Simulationen von zwei

flexiblen Biomolekülen untersucht: Methionin-Enkephalin (Met-Enkephalin) und dem

dritten variablen Loop (V3) des Glykoproteins 120 (gp120) des Humanen

Immundefizienz-Virus Typ-1 (HIV-1).

Die Dynamik von drei-dimensionalen (3D) Protein-Strukturen ist von zentraler Bedeu-

tung für die Beschreibung der biomolekularen Funktion. Die Dynamik wird mittels MD

Simulationen auf atomarem Level untersucht. Das Erreichen eines konvergierten MD

Samplings in adäquater Zeit ist jedoch durch den riesigen Konformationsraum von flexi-

blen Molekülen begrenzt. Des Weiteren ist eine automatische Validierung des Samplings

bisher nicht etabliert in heutigen MD Studien, und existierende Verfahren konzentrieren

sich vorwiegend auf die Konvergenzanalyse einzelner Trajektorien. Dies ist für flexible

Moleküle problematisch. Dabei ist es notwendig ein ausreichendes Sampling zu quan-

tifizieren, ansonsten sind berechnete thermodynamische Größen bedeutungslos.

Das Ziel dieser Arbeit ist die Entwicklung eines Toolkits, welches die Samplingqualität

von MD Simulationen von flexiblen Systemen quantifiziert. Dieses ist frei verfügbar

unter https://github.com/MikeN12/PySamplingQuality. Hierzu werden verschiedene

Sätze von Trajektorien aus verschiedenen Startkonformationen und sogenannte Enhanced

Sampling Algorithmen wie accelerated MD (aMD) und scaled MD (sMD) kombiniert.

Diese modifizieren die Energielandschaften um Übergänge zu vereinfachen. Die Sam-

plingqualität wird durch zwei neue Messungen quantifiziert, dem Konformations- Oconf

und Dichteüberlapp Odens, unter Hinzunahme der Clusteranzahl NC und der Entropie der

Clusterverteilung SC . Diese neuen Überlappgrößen klassifizieren die Selbstkonsistenz.

Met-Enkephalin wird als Testsystem verwendet, aufgrund dessen geringer Peptidlänge

aber dennoch hochflexiblen Verhaltens. Unser Tool zeigt, dass bereits ein so kleines

Molekül Simulationen von Mikrosekunden zur Konvergenz des Samplings benötigt. Weit-

erhin gilt, dass aMD sowohl Konvergenz als auch ungenügendes Sampling am schnellsten

erkennt. Dennoch hat der Vergleich von Odens zwischen MD und aMD/sMD gezeigt,

dass die Modifikation des Enhanced Samplings nicht vollständig wiederhergestellt wer-

den konnte. Dies kann jedoch mittels Odens untersucht werden. V3 hingegen beweist,

dass viel mehr Ressourcen als gewöhnlich notwendig sind, um Konvergenz zu erhalten.

Die Ergebnisse unterstreichen die Notwendigkeit eines Multitrajektorien Ansatzes, um

ungenügendes Sampling eindeutig zu erkennen.

Zusammenfassend ist es mit dem Toolkit möglich, das Sampling von Multitrajektorie-

Experimenten zu validieren, unter der Angabe von Fehlerabschätzungen, und zu entschei-

den, ob die berechneten thermodynamischen Größen korrekt beschrieben werden.

V

https://github.com/MikeN12/PySamplingQuality


Table of Contents

Abstract IV

List of Abbreviations IX

List of Figures XII

List of Tables XV

1. Introduction 1

2. Theory, background and motivation 4

2.1. Computational methods to simulate the dynamics of biomolecules . . . . . 4

2.1.1. Brief introduction to quantum mechanics . . . . . . . . . . . . . . . 5

2.1.2. Theory of molecular dynamics (MD) for simulating biomolecules . . 6

2.1.3. Requirements to run MD simulations . . . . . . . . . . . . . . . . . 12

2.2. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Validation of MD sampling . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2. Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3. Sampling enhancements . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Studied biomolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1. Met-Enkephalin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2. V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Generating different starting structures for MD . . . . . . . . . . . . . . . 33

3. Tool - PySamplingQuality 36

3.1. Idea of detecting a good sampling . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1. Conformational approach . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2. Trajectory overlap approach . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Self-consistency measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1. Conformational overlap Oconf . . . . . . . . . . . . . . . . . . . . . 43

3.2.2. Density overlap Odens . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3. Reference set K and comparison set L . . . . . . . . . . . . . . . . 45

VI



Table of Contents

3.2.4. Re-weighting of biased potential runs . . . . . . . . . . . . . . . . . 47

3.2.5. Overlap error estimates . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.6. Limits of Oconf, Odens . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3. Analysing the size of the conformational space . . . . . . . . . . . . . . . . 54

3.3.1. Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3. Cluster number NC and cluster distribution entropy SC . . . . . . . 59

3.4. Combination of overlap and clustering . . . . . . . . . . . . . . . . . . . . 62

3.5. PySamplingQuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4. Results and discussion 67

4.1. Starting structures and setup . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1. Starting structures of Met-Enkephalin . . . . . . . . . . . . . . . . 68

4.1.2. Starting structures of V3 . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.3. Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.4. Conformational analysis after MD preparation . . . . . . . . . . . . 72

4.2. Threshold parameter r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1. RMSD distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2. Is there an optimal r? . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3. Insert: Weights for the correction of enhanced sampling . . . . . . . . . . . 83

4.4. Overlap measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1. Influence of r on the overlap measure . . . . . . . . . . . . . . . . . 94

4.4.2. Influence of the simulation time t on the overlap behavior . . . . . . 101

4.5. Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.1. Development of the cluster number NC . . . . . . . . . . . . . . . . 107

4.5.2. Constancy of the cluster distribution entropy SC . . . . . . . . . . . 113

4.6. Combined assessment of convergence . . . . . . . . . . . . . . . . . . . . . 115

4.7. Bias analysis of enhanced sampling methods . . . . . . . . . . . . . . . . . 118

4.8. Influence of Oconf and Odens on thermodynamic observables . . . . . . . . . 123

4.8.1. Convergence of thermodynamic averages . . . . . . . . . . . . . . . 123

4.8.2. Effect of the threshold r on thermodynamic averages . . . . . . . . 130

4.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5. Summary and future directions 134

VII



Table of Contents

Appendix 140

A. RMSD: fitting and superposition . . . . . . . . . . . . . . . . . . . . . . . 140

B. Boxplot representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C. PySamplingQuality: modules, parameters and examples . . . . . . . . . . . 143

C.1. Overlap modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2. Clustering modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.3. Visualization modules . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 155

List of Publications 177

Acknowledgements 178

Declarations 181

VIII



List of Abbreviations

Cl− negative chloride ion

NC number of clusters

Na+ positive sodium ion

Oconf conformational overlap measure

Odens density overlap measure

SC cluster distribution entropy

2D two-dimensional

3D three-dimensional

ACE acetyl möıety

aMD accelerated molecular dynamics

CCR5 C-C chemokine receptor 5

CD4 cluster of differentiation 4 receptor

CDE cluster distribution entropy

cMD conventional molecular dynamics

CPU central processing unit

CXCR4 C-X-C chemokine receptor 4

DNA deoxyribonucleic acid

DOPE discrete optimized protein energy modeling score

Env human immunodeficiency virus envelope protein

Exp exponential re-weighting for accelerated molecular dynamics

IX



Table of Contents

FFT fast Fourier transformation

gp120 glycoprotein 120

gp41 glycoprotein 41

GPU graphic processing unit

HIV-1 human immunodeficiency virus type-1

McL Maclaurin expansion re-weighting for accelerated molecular

dynamics

MD molecular dynamics

Met-Enkephalin methionine-enkephalin

Met153 second starting conformation of methionine-enkephalin

Met79 first starting conformation of methionine-enkephalin

MF mean-field re-weighting for accelerated and scaled molecular

dynamics

MM molecular mechanics

NME N-methylamine möıety
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1. Introduction

Studying biomolecular systems Studying the function of biomolecules, analyzing their

diversity and investigating the evolutionary development are key fields to understand the

fundamental principles of life. Describing the chemical and physical properties of vari-

ous interlocking biological processes, like energy transport in cells, enzymatic reactions,

replication, cell diffusion, receptor binding or treatment of diseases, is very difficult. To

be intensively studied, these properties require the application of a combination of di-

verse tools. One relevant part to characterize the biomolecular function is encoded in

the three-dimensional (3D) structures and their conformational dynamics describing the

flexibility of the proteins [1–4]. Conformational flexibility of the systems is fundamentally

required to adopt on different functions like enzymatic catalysis since in practice many

processes do not work with the simple rigid model of a lock-and-key analogy [5, 6]. More-

over, different systems, substrates as well as receptors, are likely to change their shapes to

ensure functionality described in conceptual models as induced fit [7] and conformational

selection [6, 8]. Although experiments like x-ray crystallography are becoming better and

better yielding 3D structures in resolutions of few Ångström [9], the dynamics of flexible

molecules are hardly accessible by experiments at atomic scale. In the past few years,

cryo-electron microscopy has become more popular in structural biology since the resolu-

tion is consistently enhanced to near-atomic scale [10, 11]. But it is still an open question,

how to reliably analyze the dynamics of proteins or biomolecules in accurate resolution

not detecting only background noise if they lack a well-defined structural composition

due to their high flexibility. For example, in the entry process of the human immunod-

eficiency virus type 1 (HIV-1) into the human cell, the corresponding envelope protein

gp120 undergoes several conformational changes, where the variable loops determine the

co-receptor selection and binding [12–14]. Two 3D structures could only be obtained with

intense work and various crystallization techniques [15, 16], but the dynamics are not

exhaustively investigated, so far.

One common possibility to analyze the dynamics on molecular level are molecular dy-

namics (MD) simulations [17]. They have been widely used to simulate the dynamics of

biomolecules since the 1970s [18, 19]. With increasing calculation power and enhance-

ments in model descriptions and parameter calculation accuracy [20–24], it is possible

to simulate hundreds of nanoseconds of systems of also larger size in explicit water in

1



Chapter 1. Introduction

adequate calculation time. MD simulations can provide insights into individual atomic

motions during the course of the run, yielding important thermodynamic properties, which

were not accessible beforehand. The only necessary condition, beside a correct description

of the atoms and their interactions [25], is an exhaustive conformational sampling of the

underlying energy landscape. This is simultaneously the limiting aspect of MD, since one

would like to run simulations about ten times longer than the slowest important timescale

in the system which can exceed 1 ms. This is hardly reachable for complex systems in

reasonable calculation times. For flexible biomolecules with complex and rugged energy

landscapes this is even harder since relevant conformations can be separated by large en-

ergetic barriers and the conformational space might be huge [26]. It is therefore a critical

task to obtain converged MD simulations or at least assess the sampling quality quanti-

tatively to know, how reliable are the results of thermodynamic observables. In the past

few years, several methods have been developed to estimate the convergence of trajecto-

ries, reviewed in Refs. [17, 27]. There are well-documented software implementations [28]

mainly focused on single trajectory [29–32] or two trajectory [33, 34] convergence assess-

ment, or using a subset like the first two eigenvectors of PCA [29, 33, 35]. However, there

is still a sizable portion of actual published MD studies which do not even mention the

use of trajectory validations.

Research motivation Validating the sampling of MD trajectories of highly flexible

biomolecules like the V3-loop is difficult and reveals problems if one relies solely on the es-

tablished assessment tools. Furthermore, there is no settled workflow or tool for validating

the sampling of highly flexible systems in an automated fashion using a multi-trajectory

approach. Our research motivation was therefore to develop a universally applicable

tool to quantitatively assess the sampling obtained by MD simulations of highly flexible

systems. We incorporate the following points to treat this issue. We use multiple tra-

jectories which are used without pre-processing to not suffer from information loss. We

develop two simple self-consistency measures, the conformational and density overlap,

which quantify the sampling quality between two up to numerous multiple trajectories.

Enhanced sampling algorithms which speed up the dynamics are included and tested

to ease conformational transitions. A simple effective clustering is implemented which

handles huge amounts of data from multiple trajectories to analyze the size of the con-

formational space, yielding a comprehensive assessment along with the overlap measures.

All assessment tools together with analysis methods and a possibility for visualization

are implemented in a toolkit written in Python [36] and is freely available on github

https://github.com/MikeN12/PySamplingQuality . These tools are easily usable and

2
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Chapter 1. Introduction

a documented tutorial is attached. Furthermore, we published our tool in the Journal of

Chemical Theory and Computation [37].

The work is organized as follows. In chapter 2, we introduce the computational meth-

ods to simulate the dynamics of biomolecules generating the input for our tool. The aim

is to motivate the use of MD simulations and introduce all necessary parameters for the

practical calculation like force-fields, thermodynamic observables, periodic boundary con-

ditions, and system preparation. We also go more into the details of the sampling problem,

giving a short overview about existing approaches and introduce the two enhanced sam-

pling techniques used in this thesis. Finally, the chapter ends with the introduction of

the two flexible biomolecules, specifying their origins and functions, along with homology

modeling of unknown structures for starting MD runs.

In chapter 3, the tool for the sampling assessment is presented, starting with the general

idea and motivation, defining the self-consistency measures in detail, introducing the

effective clustering algorithm and showing the general workflow through the analysis.

Chapter 4 contains all results of the sampling analysis of both biomolecules methionine-

enkephalin (Met-Enkephalin) and the third variable loop of HIV-1 gp120 (V3). The gen-

eral goal is first to validate our tool by the small pentapeptide and discuss the parameters

like the resolution and re-weighting of biased ensembles. Then, both molecules are ana-

lyzed for their convergence and sampling quality, combining all modules introduced in the

previous chapter. Furthermore, we will conclude about the influence of biased sampling

and the influence on thermodynamic quantities.

Finally, we will summarize the outcomes and give a brief overview about future appli-

cations and open points in chapter 5, which are not addressed in detail in this work.

3



2. Theory, background and motivation

In this chapter, all necessary theoretical concepts are introduced. This should give a brief

and consistent overview to understand the motivation of the present study. We concen-

trate on the relevant parts of the theoretical background to support the research presented

in this thesis. Therefore, we start with a brief introduction to quantum mechanics (QM)

with the relevant approximation to make the transition to molecular mechanics (MM)

which is treated with classical molecular dynamics (MD) simulations.

Since MD simulations play a central role in this thesis, they will be explained in more

detail in the theoretical and also practical part. We want to motivate the necessity of

complete exhaustive sampling of MD simulations to describe the dynamics of flexible

biomolecules correctly and introduce the validation of MD trajectories. We ask ourselves:

How can we quantitatively assess the sampling obtained by MD simulations for flexible

biomolecules?

Additionally, we discuss the possibility of sampling enhancements and the two acceler-

ation algorithms used in this study.

Finally, we introduce the two flexible biomolecules alongside with the structure model-

ing to construct 3D templates for MD runs.

2.1. Computational methods to simulate the dynamics of

biomolecules

Biological functions of molecular systems are mainly driven by their dynamics. Protein

folding, receptor-ligand binding, and many other processes undergo multiple states within

their large conformational space to reach their full functionality [1–4, 8, 38]. For instance,

the human immunodeficiency virus 1 (HIV-1) goes through several complex multi-state

conformational changes during its replication cycle, which will be discussed in subsec-

tion 2.3.2. On the experimental side, it is so far not possible to study the full dynamics

of flexible systems in a reasonable resolution (see subsection 2.3.2) to understand the

underlying physicochemical processes.

This issue can be addressed with molecular modeling to extract the dynamics on the

theoretical side.
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Chapter 2. Theory, background and motivation

2.1.1. Brief introduction to quantum mechanics

The dynamics and therefore any state of a molecular system are exactly described by

a multi-dimensional wave function Ψ(~r, t) which obeys the time-dependent Schrödinger

equation with the Hamiltonian H

i~
∂

∂t
Ψ(~r, t) = HΨ(~r, t) . (2.1)

For a single and non-relativistic particle, the Hamiltonian H can be explicitly written in

coordinate space obtaining

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
∇2 + V (~r, t)

]
Ψ(~r, t) (2.2)

with ~ is the Planck constant divided by 2π, i means the imaginary unit, ∂/∂t defines

the partial derivative with respect to the time t, m is the corresponding mass of a specific

particle, ∇2 is the Laplace operator, ~r is the position vector, and V (~r, t) is the potential

energy function. For n particles, the position vector and Laplace operator will be given

as

~r ∈ {~r1, ~r2, ..., ~rn}

∇2 =
n∑
j

∂2

∂~r 2
j

.

If the potential energy is not time-dependent V (~r, t) = V (~r), the position and time

coordinates can be separated, yielding the stationary solution [39]

Ψ(~r, t) = ψ(~r) · φ(t)

⇒ Hψ(~r) = Eψ(~r)
(2.3)

with E is the total energy and ψ eigenstate of the system. This can be generalized to a

many-electron and many-nuclear system described by the Hamiltonian HN

HN =−
elec∑
j

~
2mj

∇2
j −

nucl∑
A

~
2mA

∇2
A −

elec∑
j

nucl∑
A

ZAe
2

4πε0rjA

+
elec∑
j<k

elec∑
k>j

e2

4πε0rjk
+

nucl∑
A<B

nucl∑
B>A

ZAZBe
2

4πε0rAB

,

(2.4)
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Chapter 2. Theory, background and motivation

with r.. being the distance between two particles, Z. is the atomic number, e defines the

electron charge, and ε0 is the dielectric constant of vacuum. The Hamilton operator HN

describes a multi-dimensional problem with extensive degrees of freedom and could not

been solved exactly, yet. There are three major approximations amongst others to handle

the multi-dimensional problem: the Born-Oppenheimer, the Hartree-Fock and Linear

Combination of Atomic Orbitals (LCAO) approximation (see chapter 2 of Ref. [40] and

chapter 8 of Ref. [41]).

The Born-Oppenheimer approximation assumes fixed nuclei on the timescale of electron

vibrations, and thus the electron Schrödinger equation is simplified by neglecting the

second and fifth term in Eq. (2.4) (see chapter 2 of Ref. [40] and chapter 8 of Ref. [41]).

The solution of this reduced equation yields the electron energy Eelec, whereas the total

energy is obtained by

En = Eelec +
nucl∑
A<B

nucl∑
B>A

ZAZBe
2

4πε0rAB

.

The Hartree-Fock approximation assumes that the electrons move independently of

each other. The motion of one electron can be calculated by self-consistency equations

of an average-field, deduced by all other electrons, surrounding the particle in question.

This approach yields a set of coupled differential equations which is presented in detail in

Refs.[40, 41].

Lastly, we introduce briefly the LCAO approximation, which assumes that each molec-

ular orbital is proportional to the (linear) sum of all atomic orbitals (see chapter 2 of

Ref. [40]).

These and other approaches are discussed in detail in Refs.[40] and build the basis for

the next sections.

The combination of these approximations allows to solve the effective Schrödinger equa-

tion numerically for approximately 50 to 100 atoms in adequate calculation times. This

is far away from an automated calculation of large biomolecules and complexes.

2.1.2. Theory of molecular dynamics (MD) for simulating

biomolecules

Molecular mechanics (MM) As discussed above, QM might give exact results but is

limited to a small amount of atoms due to the complexity of the numerics and extensive

amount of degrees of freedom. It is therefore necessary to use a classical approximation

6



Chapter 2. Theory, background and motivation

to speed up the calculation for large and complex molecules. This is utilized by molecular

mechanics (MM).

In general, MM consists of spherical atoms which are connected by (chemical) bonds.

The motions are calculated from the distortion of their optimal geometric lengths due

to non-bonded interactions. The latter are described by van der Waals and Coulomb

interactions (see chapter 3 of Ref. [40] and chapter 2 of Ref. [42]). The requirements for

good results obtained by MM are correct parameters for this classical model. These are

not extractable by the model itself in contrast to QM, but they have to be evaluated and

optimized by empirical values or come from QM calculations (see chapter 8 of Ref. [41]).

The basis builds again the Born-Oppenheimer approximation that electrons of the system

are assumed to move instantaneously together with the nuclei (see Ref. [43], chapter 1).

Newtonian dynamics The time evolution of the MM system with N particles is calcu-

lated by Newton’s equation of motion for a conservative potential energy function V (~r)

~Fj = mj
d2~rj
dt2

= −~∇~rjV (~rj) , (2.5)

~∇~rj =


∂

∂xj

∂
∂yj
∂
∂zj

 , j = 1, 2, ..., N ,

wheremj and ~rj are the mass and position of particle j, respectively, ~∇~rj defines the partial

derivative vector with respect to the coordinates and ~Fj is the force acting on particle j.

One possibility to solve these equations is the introduction of adequate potential energy

functions discussed in the next paragraph.

In molecular dynamics (MD) simulations, the dynamics are simulated by integrating the

equations Eqs. (2.5) for all particles in an step-wise fashion. In general, there are several

possibilities to numerically integrate differential equations with higher order terms (see

for example chapter 2 of Ref. [44]). In practice, there are several hundreds of thousand

interactions where the forces have to be calculated following the order O(N2), where N is

the number of particles. Therefore in MD simulations, integrators with a low number of

force calculations like the Verlet [45] algorithm are preferred to speed up the calculation

with sufficient accuracy. Here, we use the AMBER14 simulation software [46], which uses
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the simple leapfrog [47] algorithm similar to the so-called Velocity-Verlet

~vj

(
t+

∆t

2

)
= ~vj

(
t− ∆t

2

)
+
~Fj(t)

mj

∆t

~rj (t+∆t) = ~rj(t) + v

(
t+

∆t

2

)
∆t ,

(2.6)

where the velocities and positions are calculated in an alternating way (see Fig. 2.1). The

t
r r r

v vv0

0

1/2 3/2

1 2

Fig. 2.1.: Schematic illustration of the leapfrog integration algorithm. The velocities
~v leap over the positions ~r, which then leap over the velocities, again.

initialization of the velocities is usually done by setting a starting temperature T of the

system by the classical relation

T =
Ekin

NfkB
=

∑
j mj|~vj(t = 0)|2

2NfkB
(2.7)∑

j

~vj = ~0 (2.8)

with Ekin as the kinetic energy, Nf as the number of degrees of freedom and kB being

the Boltzmann constant. Eq. (2.8) ensures that there is no overall momentum in the

system. Up to numerical uncertainties, this integration method is fully deterministic and

reversible in time (see Ref. [44], chapter 3).

+
-

V V V V V V

α
r0

0 α0 α0 r r0

α0α0r0 α0 r0

r

r α α α
r

Fig. 2.2.: Schematic illustration of the contributions to the force-field potential func-
tion. From left to right: bond, angle, proper dihedral, improper dihedral, Coulomb
and Lennard-Jones potentials.
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Empirical force-fields The potential energy function V (~r) (Eq. (2.5)) is derived using

the assumption that the effective molecular energy is expressed as the sum of potentials

coming from physical forces describing the following contributions: The perturbations for

bond stretching Vstretch, angle bending Vbend, and torsion contribution Vtorsion, together

with the non-bonded contributions from the van der Waals and Coulomb interactions

shown in Fig. 2.2 (see chapter 3 of Ref. [40] and chapter 9 of Ref. [41]).

The functional form and parameters are obtained from empirical/experimental values

and are agglomerated in so-called force-fields [20]. There are different groups of force-field

parameterizations like GROMOS [48], AMBER [49], CHARMM [50], etc., which have

different parametrization and either use unified or all-atom representations for certain

groups of atoms.

In this study, we use the AMBER force-field ff99SB-ILDN [21, 51, 52]. It is used

in various standard MD studies giving good results, and therefore fits in our research

motivation to validate commonly obtained samplings. The force-field has the functional

form

V (~r, ~θ, ~ω) =
bonds∑

j

Kr,j (~rj − ~rj0)
2 +

angles∑
j

Kθ,j

(
~θj − ~θj0

)2
+

torsions∑
j

3∑
u=1

Kω,u,j [1 + cos (|u ~ωj − ~γu,j|)]

+
nonb∑
j

nonb∑
k>j

[
Ajk

|~rjk|12
− Bjk

|~rjk|6
+
QjQk

ε|~rjk|

]
,

(2.9)

with K.,.,. are the force constants for the bonds, angles or torsional potential terms, ~r.0, ~θ.0

are the ideal/equilibrium bond lengths or angles, ~γ.,. is a phase of the dihedral angle, u

is the dihedral periodicity, A.., B.. are the parameters for the Lennard-Jones potential, Q.

is the parameter for the charges involved in the Coulomb potential, ε is the parameter

defining the dielectric permittivity and ~r., ~θ., ~ω. are the instantaneous bond length, angle

and dihedral angle, respectively. Finally, |~r..| is the distance between two particles.

The first three terms of Eq. (2.9) define the bonded interactions involving two, three

and four atoms. The covalent bonds (first summation) are treated in MM as simple

harmonic oscillators following Hook’s law. This implies that effects like bond-breaking

events or other quantum chemical reactions cannot be treated. In the same way as bond

lengths, the changes of angles are calculated. The torsional term handles the proper and

improper dihedrals with their inherent periodicity. Proper dihedrals define the angles

9
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involved with four covalently bounded atoms, whereas improper torsions handle planar

groups as illustrated in Fig. 2.2.

The last summation models the pair-wise non-bonded terms which involves van der

Waals and charge interactions. These are expressed by the well-known 6-12 Lennard-Jones

(depending on atomic radii and distances) and the Coulomb potential (depending on

partial atomic charges and distances). The two sums are iterated over all pairs of atoms.

If they are bound by covalent bonds, only contributions from atom pairs which are at

least separated by three covalent bonds are taken into account.

The parametrization is a crucial step to obtain adequate results compared to exper-

iments. A brief review can be found in Ref. [20] about the developments of different

force-fields. For the AMBER force-field ff99SB-ildn, equilibrium bond lengths, angles and

their force constants were taken from crystal structures and fitted to match normal mode

frequencies [20]. Charges were possible to be derived by quantum chemistry calculations

fitting them to the quantum electrostatic potentials due to increasing computation power.

In the preliminary force-field ff94 [49], using a restrained electrostatic potential fit, charges

were parametrized as averages of multiple conformations [49]. Van der Waals parameters

were obtained from fits to amide crystal data and optimized further with liquid-state

simulations [20]. Obtaining reasonable torsional parameters is a difficult task, since they

are closely related to the non-bonded potentials. They are in general obtained by match-

ing torsional barriers extracted from experiments or quantum chemistry calculations [20].

The set of dihedral parameters were subsequently improved including long-range effects

(ff99 [51]), high order ab initio quantum mechanical calculations (ff99SB [21]) and QM

data validated with nuclear magnetic resonance (NMR) results improving side-chain tor-

sion potentials for four amino acids (ff99SB-ILDN [52]).

In general, different force-fields are parametrized to focus on different tasks of protein

function and parameters are not equivalent. For instance, the AMBER ff99SB-ILDN

force-field makes extensive use of ab initio QM data, whereas for instance the OPLS

(Optimized Potentials for Liquid Simulations) is based mainly on liquid-state thermody-

namics [53].

On the basis of one force-field parameter set, transferability of many representative

parameters is an advantage of such a treatment. Parameters like bond lengths or bond

angles can be transferred from small molecule parametrizations to similar/related and

possibly larger molecules, since they adopt similar states under normal conditions (see

Ref. [41], chapter 9). Therefore, parameters for unknown compounds can be approximated

beforehand without fitting the full complex on experimental values. Nevertheless, this

10



Chapter 2. Theory, background and motivation

is not applicable on special cases such as cycloalkanines, where the values may vary

significantly from equilibrium values (see Ref. [41], chapter 9).

Remarkably, the simple classical description works generally well for describing many

selected molecular structures and processes [41]. For instance even fast protein folding

simulations could be directly compared with experimental structures [54, 55]. But still,

force-field evaluation is a hard and complicated process [25].

A final note should be mentioned here: In general, MM energies have no physical

equivalent meaning due to the simple approaches, but the differences between two or

multiple conformations can be compared to experimental values [42]. It is very hard to

extract the correct absolute energy values from MD simulations [42].

For further details, we recommend Refs. [40, 42, 43].

Thermodynamic ensembles: Molecular dynamics (MD) simulations as described above,

produce trajectories containing all atomic positions ~r and momenta ~p for each timestep

(Ref. [56], chapter 1). Thus, one obtains the microscopic behavior of the biomolecular

system. To be able to measure relevant thermodynamic observables, the microscopic

information is transferred to macroscopic properties following statistical mechanics. The

essential foundation builds the ergodic hypothesis : The time average over a (optimal)

trajectory is equal to the ensemble average of the system (Ref. [56], chapter 10). This

allows to extract thermodynamic properties like heat capacity, pressures or energies from

MD trajectories. For example the kinetic energy Ekin is given by

Ekin =

〈∑
j

~p 2
j

2mj

〉
(2.10)

with 〈.〉 is the time average, mj the mass of particle j, and the sum goes over all particles

j.

In detail, we will use the isothermic-isochoric NVT ensemble for preparing the system

into a thermostat. It is used to describe a closed system which is weakly coupled to

a thermal heat bath (see chapter 2 of Ref. [56]). There are different algorithms which

keep the temperature at a constant level and exchange energy with the environment:

Berendsen [57], Nosé-Hoover [58, 59] and Langevin [60]. The latter is used in this study

because it gives a more stable temperature coupling and temperature constancy behavior.

The Langevin thermostat adds a random frictional force from a Gaussian distribution

with a certain collision frequency to control the temperature by adjusting the kinetic

energy of the particles in the system (see Ref. [60] and chapter 7 of Ref. [44]). The
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isothermic-isobaric NPT ensemble is often used to mimic laboratory conditions. The

Berendsen barostat [57] keeps the pressure constant by a isotropic position scaling of the

simulation box. We will use NPT as the production ensemble for the MD runs.

The definition of an optimal trajectory together with the fulfillment of the ergodic

hypothesis will be discussed in the sampling section 2.2 and plays the central role of this

thesis. The sampling quality is critical for the correctness of the observables obtained by

MD simulations (assuming that the force-fields and classical approximations are correct).

The validation is crucial to be able to rely on the results.

2.1.3. Requirements to run MD simulations

As already mentioned, we use the AMBER14 simulation software with the ff99SB-ILDN [52]

force-field. In this subsection, we specify the necessary details to setup the MD simula-

tions used in this study. For the numerical approach, we need to introduce different

conditions, which tackle the infinitely large space, the solvent, the energetic minimization

of the system and the equilibration.

Periodic Boundary Conditions (PBC) The first condition treats the size of the system.

It is clear, the larger the system, the more particles have to be calculated and the longer

the simulation will take to finish. On the other hand, if the system is set to a small finite

size, it will rarely produce correct behavior of a naturally infinite system. Additionally

for a finite system, it is problematic if particles interact with the edges of the box.

These effects can be overcome by introducing periodic boundary conditions (PBC):

The molecule is placed in a 3D periodic unit cell considering to have infinitely many

copies (called mirror images) in space (see for instance chapter 10 of Ref. [41] and chapter

1 of Ref. [44]). This means, if a particle moves outside the unit cell, it is returned

into the box on the opposite side. This is schematically illustrated in 2D in Fig. 2.3.

Several periodic boxes exist, like the cubic, truncated octahedron or a hexagonal prism

(see bottom of Fig. 2.3). The general idea is to minimize the number of (solvent) atoms

for the simulation. Thus longer molecules like Deoxyribonucleic Acid (DNA) chains are

typically placed to hexagonal boxes [41]. We will use the truncated octahedron, because

our molecules are more centered.

The PBC must fulfill two criteria: Particles are not allowed to have interaction con-

tributions between their mirror images, and the long and short term interactions must

be treated adequately. The long-range electrostatic field is proportional to the inverse

distance 1/|~r| and the number of terms is proportional to the quadratic number of parti-
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(a) (b) (c)

Fig. 2.3.: Periodic boundary condition. Top: 2D illustration of a periodic boundary condi-
tion (PBC). Bottom: Examples of periodic domains in 3D: (a) Cubic, (b) truncated
octahedron and (c) hexagonal prism boxes.

104.52

q(O)

q(H)

q(H)

0.9572A

Fig. 2.4.: The Transferable Intermolecular Potential three-point TIP3P water
model. The oxygen and hydrogen charges q(O) and q(H), respectively, are given in
Eq. (2.13).
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cles N2. Thus in general, the sum of the Coulomb potential does not converge. A slow

convergence can be obtained by neutralizing the system with counter ions sodium Na+ or

chloride Cl− (see for instance the Appendix of Ref. [43]). In practice, we will additionally

use the Particle Mesh Ewald (PME) [61] summation decomposing the Coulomb potential

into short- and long-range terms

VCoulomb(~r) = Vshort(~r) + Vlong(~r) . (2.11)

The short-range terms are treated by direct summation of force contributions, and the

long-range part is calculated by a convolution on a discrete grid in reciprocal space using

3D Fast Fourier Transformations (FFT). The latter follows asymptotically O(N log(N))

in computational complexity [61]. The van der Waals terms are proportional to 1/|~r|6 and
converge quickly. For numerical treatment, both non-bonded interactions are truncated

using a cutoff of 0.8-1.2nm using a minimal-image convention where typically each particle

interacts only with the closest periodic image of the other particles (see for instance

chapter 10 of Ref. [41]).

Water treatment Physical relevant properties of biomolecular systems will rarely be

reproduced using vacuum simulations. One therefore needs to model an aqueous solvent

to investigate the hydration influence at biomolecular surfaces on protein-ligand binding or

enzymatic function. A benchmark on these effects using different force-fields and explicit

water models was done in Ref. [62]. In general, the solvent is modeled by individual water

molecules as rigid bodies with partial charges, a certain OH-distance and van der Waals

interactions.

There are different explicit water models parametrized which are optimized to match

different experimental properties like hydration enthalpies or heat capacities [62]. The

most prominent models are the normal and extended single point charge (SPC, SPC/E)

models [63, 64] and the transferable intermolecular potential three-, four- and five site

models (TIP3P, TIP4P, TIP4Pew, TIP5P) [65–67]. Since the force-field ff99SB-ILDN

is parametrized with TIP3P water, it is recommended to use this solvent model. The

TIP3P water model illustrated in Fig. 2.4 was parametrized in 1983 [65] reproducing the

experimental dimerization energies Edim
m,n between two water molecules m and n with

Edim
m,n =

m∑
j

n∑
k

qjqke
2

|~rjk|
+

A

|~rOO|12
− C

|~rOO|6
(2.12)
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with q. is either the hydrogen or oxygen charge, e is the elementary charge, |~rjk| is the

distance between two atoms (hydrogen, oxygen) of two different water molecules, A,C are

the Lennard-Jones parameters which were determined, and |~rOO| is the distance between
two oxygen atoms. The fitted parameters [65] are

d(OH) = 0.9572 Å

α(HOH) = 104.52◦

A = 2.435
kJÅ12

mol

C = 2489.480
kJÅ6

mol

q(O) = −0.834

q(H) = 0.417

(2.13)

(see also Fig. 2.4).

It should be noted that, since the main contributions to MD simulations are the solvent-

solvent and protein-solvent interactions (with explicit water), an accurate and adequate

description of the water molecules is needed and studies in this field might enhance the

overall MD result, which is not the focus of this work.

System preparation A global, energetic minimization of the system is used to reduce bad

bond lengths and torsional angles improving the overall system geometry (see chapter 13

of Ref. [41]). Especially, if the structure is built using a homologue (section 2.4), it can be

significantly enhanced removing unfavorable interactions or states [41]. Additionally, an

energetic minimization can relax the rigid water molecules which are put in a grid-fashion

into the system.

There are many possibilities to perform multi-dimensional energy minimization. Here,

we will focus on two popular first derivative algorithms, which are fast and memory

efficient: steepest descent followed by conjugated gradient. Both algorithms are described

in more detail in Ref. [41]. The idea is to follow the gradient of the energy function

with steepest descent. This is very fast for large slopes and becomes slow reaching the

(local) minimum. Thus, it is usually followed by the conjugated gradient algorithm, which

becomes more efficient closely to the energy minimum. The latter is computationally more

expensive, since it uses two successive gradients to guess the direction toward the (local)

minimum.

Obtaining the global minimum of the system is very difficult without knowing the
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complete underlying energy landscape. Thus one usually will start the MD simulation in

a local minimum [68]. This is not a problem, if the sampling is complete which is discussed

in section 2.2. The main purpose of the energy minimization is the optimization of length

or steric distortions between particles [68].

The usual practice after minimization is called equilibration. In the past, groups often

discarded the first part of their simulation based for instance on structure deviations

compared to the crystal structure [69]. In fact, Genheden et al. [70] could show that in

general all simulated structures are equally important after an appropriate preparation

where unphysical interactions might occur due to the arbitrary starting structures of the

MD simulation.

Here, we will use a multi-state preparation described in section 4.1 to overcome these

unphysical artifacts especially for the structures built by homologues. The steps involve

multiple cycles of energy minimization and short simulations trying to kick the ongoing

optimized structure out of inappropriate local energy minima (see Fig. 2.5) and relax the

system toward their equilibrium behavior.

(a) (b)

Fig. 2.5.: Schematic multi-state system preparation. (a) A single minimization may end
in a local minimum with large energy. (b) Short MD simulations may kick the protein
out of local minima, followed by another energy minimization.

Typical timescales for molecule simulations When setting up a MD simulation, one

needs to keep in mind that the dynamics are calculated in discrete timesteps. There is

a general trade-off between the step size and the length of the simulation. The shorter

the step size, the more force interactions must be calculated and the less total simulation

time can be obtained in the same calculation time. On the other hand, the longer the

timesteps between force calculations, the less accurate certain properties are treated. The

typical timesteps/-scales are illustrated in Fig. 2.6.

The timestep ∆t for the MD integration is determined by the requirement ∆t� tperiod

where tperiod is the period of the highest frequency motion in the system (see for example

chapter 13 of Ref. [41]). If the step is set ∆t ≥ tperiod, these effects are not taken into

account and the system might become unstable. A common treatment is to constrain some
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Fig. 2.6.: Typical timescales for molecule dynamics [41, 75, 76]. The scale goes from
femtoseconds (10−15) to seconds (100).

or several bond lengths to their equilibrium lengths because they do not significantly alter

the dynamical properties of biomolecular functions in the simulations [71]. This constrain

corresponds to the out-averaging of bond vibrational motions with tperiod ≈ 3 − 8 fs [72]

and allows the user to set the integration step around three to four times as large when

bonds are constrained instead of being treated as harmonic oscillators [73]. The timestep

∆t can even be increased by constraining the next fastest motions (e.g. angle vibrations

involving hydrogen atoms tperiod ≈ 13 fs [72]). But then one has to ensure to not over-

or underestimate important properties of the system. Thus, we will only use the bond

constrains involving hydrogen atoms and use an integration timestep of ∆t = 2 ·10−15 s =

2 fs. In AMBER14, this is done with the SHAKE [74] algorithm, which modifies the

leapfrog integration algorithm to constrain the chosen bonds, i.e. the constrained bonds

are kept at their constant equilibrium distance.

For such small timesteps ∆t ∝ fs, one has to simulate a massive amount of states to

obtain characteristic timescales in biomolecule processes like protein folding (∝ ms to s,

see Fig. 2.6). On the other hand, only reaching the necessary timescales does not mean

that the sampling is sufficient. The question about sufficient sampling plays the central

role of this thesis and will be discussed in the next section.

2.2. Sampling

A complete and exhaustive sampling is the main task which has to be fulfilled by MD sim-

ulations, so that the system is ergodic and observables can be extracted by time-averages

(see subsection 2.1.2). An exhaustive sampling means that the complete conformational

space is visited with its correct probability density distribution p(~r). In a (discrete) clas-
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sical system, the density function follows

p(~r) =
e−βV (~r)

Z
=

e−βV (~r)∑states
j e−βV (~rj)

, (2.14)

where Z is the partition function of the system, V (~r) is the potential energy, and β =

1/(kBT ) is the inverse temperature function with the temperature T and the Boltzmann

constant kB. (Note that in general for a classical system, the states are continuous and the

sum is then replaced by an integral over all states. For convenience, this representation

should suffice for the general introduction.) But what happens, if there are many rare

transitions in the system, where conformations are separated by large energetic barriers?

The sampled system may then be partitioned into different energetic minima connected

by low transition probabilities [26, 77]. That means, such systems show broken ergodic

behavior and even long simulations may stay trapped in an irrelevant local minimum [78].

The result is even worse, if a trajectory shows convergence, because the relaxation time

in its energy well is much faster than the transition [26], which is illustrated in Fig. 2.7.

Such a trajectory is then energetically trapped. Genheden et al. [70] showed that in-

Fig. 2.7.: 2D energy landscape showing different relaxation times. Copyright 2014
from Ref. [26], reused by permission from Elsevier.

complete sampling leads to incorrect thermodynamic observables. In some cases it is

possible to classify the sampling quality by direct comparison with experiments: in a fast

folding protein, the well-defined conformational clusters from simulations showed good

agreement with experimental values [54, 55]. But in general, such experimental values are

missing. Furthermore, massively flexible systems of intrinsically disordered proteins [79]

have complex and rugged energy landscapes.
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It is therefore of crucial importance to quantify and validate the sampling quality of

MD trajectories. Only then, one is able to obtain correct thermodynamic results. The

central task of this theses will be to shed light into this field.

2.2.1. Validation of MD sampling

State of the art Still today, if one takes a representative look into published MD stud-

ies, there is a sizable portion which do not even report the use of sampling validation.

There are several validation analyses and implementations which can be separated into

three groups: (1) Single trajectory validation, (2) two trajectories validation and (3)

multi-trajectory subspace validation. We will give a brief review about the current sam-

pling validation techniques and their limits, which is necessary to make the transition to

our own solution of this problem.

Single trajectory validation The first group is based solely on the information of one

trajectory. The purpose is the classification of one MD run whether it has successfully

converged or it should be discarded due to wrong behavior. On the other hand, the other

big advantage is that only a small amount of data must be generated and the convergence

prediction is very fast.

Trajectories are taken either as a whole or split into multiple parts. The first quantities

are for instance the decorrelation time of the system [29, 30], the number of found clus-

ters as a function of the simulation time [80] and the corresponding cluster distribution

entropy as a function of the time [32]. The decorrelation time is error-prone since it can

wrongly lead to a converged picture if there are slow relaxing along fast relaxing transi-

tions [26]. The other two quantities are based on a clustering which must be correctly

validated. This is a non-trivial problem and strongly depends on the data [81].

The second quantities are for instance the block averaging method [29] (reviewed in

Ref. [27]), randomly distributed block population histograms [82], the effective sample

size calculation based on a structural decorrelation time [30] and the block covariance

overlap method based on the covariance matrix between all structures in one trajectory

[83]. They mostly aim to extract standard error estimates of observables for increas-

ing block sizes or compare populations in partitions of different trajectory parts. The

disadvantage is that these estimates are specialized for some observables giving no infor-

mation about the true convergence [27]. On the other hand, a partitioning into disjunct

blocks or clusters should be used with care. If one imagines a very flexible system, where

there are no clear contiguous conformational clusters, but different structures are lumped

19



Chapter 2. Theory, background and motivation

closely together, errors in the population probabilities may occur between different non-

representative clusters.

The largest drawback of single trajectory convergence criteria is the question, what hap-

pens if the trajectory is trapped without knowing that something is missing? It might

always happen that one trajectory shows convergence in its limited space, because there

were no transitions to another rare events. This single trajectory validation is a useful

pre-filtering method to exclude completely wrong results, but it will not help in answering,

whether the sampling is complete. It is therefore favorable to use more trajectories for a

quantitative sampling assessment, since they have to separately reproduce the results.

Two trajectory validation There are two validation techniques using two trajectories:

the root mean square inner product (RMSIP) [34] and the covariance overlap [33, 84, 85]

mentioned previously. Both approaches are based on the construction of the covariance

matrix between all structures of one trajectory and extracting the eigenvectors and -values.

These are representative for the specific trajectory, and so different trajectories can be

compared with the RMSIP and covariance overlap using all modes. The two approaches

give then values between 0 and 1 for poor and perfect agreement. The problem is that

these approximations are based solely on two trajectories and they are not generalized for

a multi-dimensional problem. Additionally, Hess [33] studied that if the single covariance

matrix did not converge, the analysis might give wrong results.

Subspace validation In the so-called subspace validation group, one can investigate the

sampling quality between numerous trajectories, but this is limited to the subspace of the

trajectories. Often, only the first two eigenvector projections from the covariance matrices

are used to identify, whether different trajectories show a shared sampled space. Also if

higher modes have small eigenvalues, it is in general problematic and alters the results to

use only a subset [33]. Furthermore, the projection on the eigenvectors of the covariance

matrix may produce artifacts if not done properly. The group of Gerhard Stock [86, 87]

showed that using cartesian coordinates produces artifacts because internal and overall

motions of the system are not well separated.

Multiple independent simulations It could be shown that combining multiple (shorter)

MD trajectories with different initial conditions improves the conformational sampling

compared to one or few long trajectories [88]. Genheden and Ryde [89] showed the ad-

vantages of three different initialization procedures: Velocity Induced Independent Tra-

jectories (VIIT) using different starting velocities, Solvation Induced Independent Tra-

20



Chapter 2. Theory, background and motivation

jectories (SIIT) using different solvation boxes and Conformation Induced Independent

Trajectories (CIIT) using different starting conformations for instance different crystal

structures. The more different the initial conditions are, the less probable it is to obtain

synchronization effects between different runs, and thus the less probable it is that two

trajectories are trapped in the same energetic minimum. Only if all different trajecto-

ries (which are not wrong due to trapped behavior or similar reasons) do reproduce the

sampling, the sampling can be complete. It is therefore puzzling that the use of multiple

starting conformations or a multi-trajectory sampling validation is not rigorously estab-

lished to quantify the sampling assessment. For rigid and simple systems, this might not

be necessary. But for highly flexible and complex structures it is questionable whether

the results are correct without a proper validation.

2.2.2. Research motivation

The lack of a proper and universal sampling validation scheme for flexible molecules

encouraged us to generate a tool to quantitatively assess the sampling quality of MD

simulations with the focus on flexible systems. We incorporate the previously mentioned

advantageous conditions: universality, a multi-trajectory approach and the use of dif-

ferent starting conformations. We use the full trajectory without information loss, no

pre-partitioning and define multiple supporting criteria to obtain a classifier between 0

(poor sampling) and 1 (perfect sampling) alongside the possibility of detecting the reason

of poor sampling. This software package written in Python is freely available as source

code at https://github.com/MikeN12/PySamplingQuality and will be explained in full

detail in chapter 3.

The validation is critical to obtain correct thermodynamic properties. But how can

one enhance the sampling of conventional MD simulations? There are several possibilities

which are briefly introduced in the next subsection.

2.2.3. Sampling enhancements

In subsection 2.1.3, we discussed the typical timescales for biomolecular systems. With

conventional MD (cMD) simulations and standard computer hardware, for a long time it

was possible to simulate only few nanoseconds (ns) for large proteins. Also, small systems

are computationally costly [90].

MD runs can be used as a super-microscope to investigate proteins at atomic level,

but it is highly problematic if they do not reach relevant timescales for certain physical
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reactions (see Fig. 2.6). There are many studies with focus on the acceleration of MD

simulations, i.e. favoring rare transitions. This can be done on the hardware or software

level.

Hardware acceleration In the last decades, the computational power increased expo-

nentially allowing the user to explore longer MD runs. 2007, the Shaw group [91] released

a specialized super computer for long MD simulations, allowed to access milliseconds

timescales and investigate folding-unfolding events [22, 92, 93]. This is supported by

other super-computing centers.

Additionally, there are also developers incorporating the power of graphic processing

units (GPU) alongside the central processing units (CPU). The largest advantage is the

possibility for massive parallel computing. There are different MD simulation packages

like AMBER [46] or GROMACS [94] supporting the use of GPUs, gaining large speed

ups in calculation [23, 95–99]. Thus, we will use the GPU power of the AMBER14

implementation.

Recently, novel chips are developed called Accelerated Processing Units (APU) which

combine CPU with GPU architectures, showing that this might push the parallel com-

putation power even further [100]. All these developments sound very promising for

advancing macromolecular simulations and modeling.

Enhanced sampling algorithms On the other hand, the sampling can effectively be

accelerated using enhanced sampling techniques without further hardware costs. These

allow to sample not only larger regions of the conformational space but also inaccessible

rare events of cMD in the same simulation time. They can be summarized into two groups:

1. Algorithms which guide the simulation along certain pathways.

2. Techniques modifying the energy landscape introducing a certain energetic bias.

The first group uses prior knowledge of the system, to define collective variables, sampling

along a certain free energy path and/or using history dependent potential modifiers, like

umbrella sampling or metadynamics [101–106]. For flexible and unknown biomolecules, it

might be problematic to extract or estimate these prior conditions, because appropriate

cMD simulations might be necessary.

The second group is instead directly applicable, which incorporates for instance replica

exchange molecular dynamics (REMD) [107] running different exchanging simulations

with different temperatures, simulated tempering [108, 109] varying the temperature
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within a single run or using non-Boltzmann distributions to bias simulations toward rare-

events like integrated tempering [110] or accelerated MD (aMD)/scaled MD (sMD) [111–

113]. The canonical ensembles for the non-Boltzmann distributions are recovered by re-

weighting [114, 115].

Due to the direct applicability, we will use aMD and sMD and integrate them into our

analysis tool introduced in chapter 3 to enhance the simulations of flexible biomolecules.

The two algorithms are defined in the following.

λ = 0.5
λ = 0.2

λ = 1.0
λ = 0.7α1 < α2 < α3

0

V

rr

V

EX

V (r,   )

V(r)

α1
*

V (r,   )α2
*

V (r,   )α3
*

(a) (b)

Fig. 2.8.: aMD and sMD potentials. Biased potentials V ∗(~r) for different parameters for
(a) aMD [116] and (b) sMD [113].

aMD To speed up the dynamics and thus to ease conformational transitions, we use

aMD [111, 112] which applies a boost potential ∆V (~r) lifting potential energies below

certain thresholds EX (see Fig. 2.8 left). Hence, simulations are performed with boosted

potentials V ∗(~r) instead of the standard force field V (~r):

V ∗(~r) = V (~r) + ∆V (~r)

= V (~r) + ∆VP (~r) + ∆VD(~r) .
(2.15)

Here, we apply a dual boost combination [116, 117] of potentials ∆VP (~r) on the total

potential energy and an additional ∆VD(~r) for dihedral energy terms with

∆VX(~r) =

0 forVX(~r) ≥ EX

(EX−VX(~r))2

αX+(EX−VX(~r))
forVX(~r) < EX

(2.16)

with one equation for X = D and one for X = P . It is also possible to boost only the

dihedral potential energy terms or apply the boost only on the total potential energy [116].

The parameters EP , ED are different thresholds and αP , αD are inverse strength factors

for the total potential and the dihedral potential, respectively (see Fig. 2.8 left).
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These parameters directly affect the strength and shape of the acceleration function. For

example, too large thresholds EP , ED with simultaneous too low αP , αD may lead to flat

and isoenergetic landscapes, where the statistics are dominated by a few heavily weighted

points [111]. In general, it is recommended to use various sets of acceleration parameters

for validation and to systematically screen through the conformational space [116, 118].

The latter may allow the user to obtain new conformations to start cMD or another

simulations which require prior knowledge like reaction coordinates. Here, we use as first

approximate the recommended values from Pierce et al. [117]

EP = 〈EP,cMD〉+ αP , αP = 0.16
kCal

mol atom
·Natoms,

ED = 〈ED,cMD〉+ 5 · αD, αD =
4

5

kCal

mol residue
·Nres,

(2.17)

with
〈
EP/D,cMD

〉
averaged energies from corresponding cMD simulations, and Natoms, Nres

the numbers of atoms and residues, respectively. The acceleration introduces a biased

distribution p∗(~r)

p(~r) = e−βV (~r) → p∗(~r) = e−βV (~r) · e−β∆V (~r) (2.18)

where the unbiased distribution p(~r) can be obtained by multiplying the inverse Boltz-

mann factor, with β = (kBT )
−1 is the temperature factor defined by the reciprocal

Boltzmann constant kB and the temperature T . This is a critical step, because if the

re-weighting is not done correctly, all thermodynamic observables will be biased although

the trajectory might explore a large conformational space.

Pierce et al. [117] divided their systems into N bins, assuming that all data within a bin

is in the same microstate. For the concrete example of a discrete 1D biased unnormalized

distribution H∗
a with uniformly distributed bins a, one can then obtain the unbiased

distribution Ha by

H∗
a =

J∑
j=1

1, j ∈ {bina}

0, else
(2.19)

⇒ Ha =
J∑

j=1

e+β∆Vj(~r), j ∈ {bina}

0, else
(2.20)

= H∗
a ×


〈
e+β∆V (~r)

〉
j
, j ∈ {bina}

0, else
. (2.21)
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Here, J means the number of frames defining the distribution and ∆Vj(~r) is the boost

potential energy for the specific conformation j. The unbiased distributionHa Eq. (2.20) is

identical to the biased distribution H∗
a Eq. (2.19) multiplied by the ensemble-averaged

Boltzmann factor
〈
e+β∆V (~r)

〉
j
for simulation frames found in j ∈ {bina} Eq. 2.21. This

can be generalized for higher dimensions.

This canonical re-weighting formulation is thermodynamically exact [111, 119], but in

practice ∆Vj(~r) suffers from large energetic fluctuations especially for large acceleration

parameters EP , ED [111, 114]. It is clear that already small errors in ∆Vj(~r) will be

massively increased by the exponential function of the Boltzmann factor.

One has to deal with two different kinds of errors: the statistical noise error and

the statistical mechanical sampling error [119]. The statistical noise is amplified by the

potential energy distortion and therefore has an increased contribution. It is proportional

to the size of the system and acceleration [114, 119]. The second error describes the

necessity that the biased sampling must also be converged to extract the correct free

energy surface [119]. Its magnitude is also proportional to the size of the system. Both

errors can be minimized by long and converged aMD runs.

The convenient way was trying to reduce the error of the re-weighting by approximat-

ing the exponential function of exp(β∆Vj(~r)) from Eq. (2.20). Pierce et al. [117] used

Maclaurin series expansion up to 10th order

e+β∆Vj(~r) =
∞∑
k=0

βk

k!
∆Vj(~r) =

10∑
k=0

βk

k!
∆Vj(~r) + rest (2.22)

which yielded less noisy re-weighting results. Another possibility to approximate the

ensemble-averaged re-weighting factor in Eq. (2.21) is to use a cumulant expansion [120,

121]

〈
e+β∆V (~r)

〉
j
= exp

(
∞∑
k=1

βk

k!
Ck,j

)
(2.23)

C1,j = 〈∆V (~r)〉j
C2,j =

〈
∆V 2(~r)

〉
j
− 〈∆V (~r)〉2j

· · · ,

with Ck,j are the k-th cumulants. Studies revealed that using the cumulant expansion up

to the second order was able to greatly suppress the energetic noise from the exponential

re-weighting, particularly when the boost potential followed a Gaussian distribution [115,
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118]. But Jing et al. [122] showed that the second order cumulant expansion is not a

universal recipe for correct re-weighting. If aMD may sample a different energy region

compared to the unbiased simulation, the second order cumulant expansion can lead to

significant deviations [122].

In chapter 3, we will formulate the re-weighting for our validation tool and discuss the

re-weighting scheme used in this thesis.

sMD We discussed the advantages of using aMD to speed up the simulation without

necessary prior knowledge, but saw that recovering the canonical ensemble might be

tricky. Therefore, Sinko et al. [113] suggested another similar acceleration by flattening

the energy landscape V (~r) with a scaling factor λ ∈ [0, 1]:

V ∗(~r) = λ · V (~r) , (2.24)

whereas λ = 1 means no re-scaling (see Fig. 2.8 right). The scaling induces also a biased

distribution p∗(~r)

p(~r) = e−βV (~r) → p∗(~r) = e−βλV (~r)

p(~r) = p∗(~r)1/λ
(2.25)

which can be re-weighted solely based on the population p∗(~r) of conformations instead

on energetic terms. Using again the above representation of a 1D biased discrete unnor-

malized distribution H∗
a with uniformly distributed bins a, the unbiased distribution Ha

is obtained by

H∗
a =

J∑
j=1

1, j ∈ {bina}

0, else
(2.26)

⇒ Ha = H∗
a
1/λ . (2.27)

Sinko et al. [113] could show that the Ramachandran plots (2D distribution of back-

bone dihedral angles ψ against φ) of sMD runs of alanine dipeptide can compete with

much longer cMD simulations for λ = 0.7. They additionally recommend for typical

biomolecules scaling factors 0.5 ≤ λ ≤ 0.7 which yield minimal errors. Hence, we use

a constant scaling of λ = 0.7. Again, it might be advantageous to try different scaling

factors to optimize thermodynamic observables, which we do not want to focus in this

study.
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In chapter 3, we discuss the implementation and the re-weighting scheme used to address

the presented scientific question in more detail. We will see that it is necessary to slightly

modify the re-weighting for our purposes.

2.3. Studied biomolecules

The sampling problem emerges especially for flexible biomolecules, where the energy land-

scape is rugged and complex, and the multiple degrees of freedom limit the scope of

MD [17]. Therefore it is crucial to assess the sampling quality of such flexible systems.

The tool we have developed aims to tackle this problem, thus we are interested in studying

widely flexible systems, first to validate the method, and second to apply the tool for a

scientifically unanswered question. We consider for this purpose the following two flexible

biomolecules.

2.3.1. Met-Enkephalin
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Fig. 2.9.: Chemical [123] and 3D structure of Met-Enkephalin (PDB entry
1plw [124]). Carbons are shown in green, oxygens in red, nitrogens in blue, the
sulfur in yellow and hydrogens are not shown.

Enkephalin is an endogenous signaling molecule found in 1975 as a so far unknown

substance in the brain [125]. It was found that Enkephalin acts as a neurotransmitter in

the central nervous system [125] involved in many regulatory and physiological processes.

It binds preferably to specific opioid receptors similar to morphine [126].

Hughes et al. [125] could identify and synthesize two different compositions of five

amino acids, namely Met-Enkephalin and Leu-Enkephalin, which share the same sequence

YGGF-M/L except of the fifth residue, which can either be aMethionine or Leucine. Here,

we will focus on Met-Enkephalin.

In detail, Met-Enkephalin is a pentapeptide composed by 75 atoms with 24 independent

backbone and side-chain dihedral angles, see Fig. 2.9. Multiple studies reveal that it
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adopts massively different conformations depending on the environment [125, 127] with

≥ 1011 estimated local minima [128].

The combination of small size but still complex conformational space allows the eval-

uation of a flexible and complex molecule in reachable calculation times. This has made

Met-Enkephalin a popular system to benchmark different molecular methods like new

sampling algorithms [107, 129], molecular model validation [130, 131] or analysis tech-

niques of molecular sampling [132, 133].

The biomolecule Met-Enkephalin is therefore an ideal candidate to evaluate our tool

for the assessment of the sampling quality of molecular dynamics simulations, which

essentially aims to give insight into the difficulties of sampling flexible systems.

2.3.2. V3

The second molecule, which will be studied, is the third variable loop V3 of the envelope

protein gp120 of the Human Immunodeficiency Virus 1 (HIV-1). The loop is closed by

a disulfide bridge between the two terminal Cysteines and is very flexible [134], whereas

the sequence contains 31-39 amino acids and is highly variable [135]. To understand and

motivate the choice to investigate this molecule, we will first give a brief overview about

HIV and the replication cycle, focusing on the host entry process, where V3 is involved.

Afterwards, V3 is characterized in full detail, highlighting the problems when investigating

such a complex and flexible protein and showing the necessity of assessing the sampling

quality.

HIV - history and structure: HIV was first detected in the 1980s, when the virus could

be isolated [138, 139]. It causes the Acquired Immunodeficiency Syndrome (AIDS). It

occurs in two types, HIV-1 and HIV-2, which are assumed to be evolved from the Simian

Immunodeficiency Virus (SIV) infecting non-human primates [140]. According to the

UNAIDS report from 2016 [141], there are about 36.7 million people globally living with

HIV, where type 1 has spread more significantly than HIV-2. It is of global interest, to

investigate the physicochemical properties of the virus and treat the disease.

The structure of an HI virion, schematically represented in Fig. 2.10 (left), is spherical

with a diameter of around 120nm [142]. It is composed by three different regions:

1. The core region, enclosed by the capsid, contains the viral genome stored in two

single strands of Ribonucleic Acids (RNA), together with important viral enzymes

needed for replication, namely reverse transcriptase, integrase and protease, re-

viewed in Ref. [143]. The capsid is built by around 2000 capsid-proteins p24.
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Fig. 2.10.: HI virion [136] and 3D structure of V3 from PDB entry 2qad [16] (right).
Left: The fonts of the HI virion scheme are modified manually. Right: The V3-loop
is shown in sticks representation, coloring carbons, oxygens, sulfurs and nitrogens
in green, red, yellow and blue, respectively, hydrogens are not shown. The inner
domain, outer domain and bridging sheets of HIV-1 gp120 are shown in cartoon
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Fig. 2.11.: HIV replication cycle [137]. Fonts and numbers are modified manually.
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2. The inner layer between the core and the envelope is formed by units of matrix

proteins which stabilizes the envelope protein complexes.

3. The outer area, which is called viral envelope, is composed by a lipid bilayer mem-

brane formed mainly by proteins extracted from the host membrane during repli-

cation (see Fig. 2.11 step 6). The host entry function is determined by few viral

envelope spikes made of (1) three glycoproteins gp120 forming the exterior part

and is heavily glycosylated (parts of gp120 with V3 are illustrated in Fig. 2.10,

right) and (2) three glycoproteins gp41 anchoring the structure to the interior of

the virion [144–147].

HIV - replication cycle: The replication cycle is schematically represented in Fig. 2.11.

The first step is the binding and cell entry, which is mediated by the envelope protein

Env involving the third variable loop and will be described in more detail in the next

paragraph to outline the function of V3. After the virus-host fusion, the viral capsid

content is released into the interior of the infected cell (Fig. 2.11, step 2). The enzyme

reverse transcriptase translates the single-stranded viral RNA into DNA, which is very

error-prone, generating various mutants of the virus (Fig. 2.11, step 3). Subsequently, the

next enzyme (integrase) integrates the viral DNA into the host genome in the nucleus

(Fig. 2.11, step 4) (briefly reviewed in Ref. [148]). The cellular machinery is used to tran-

script the proviral DNA into RNA, which forms new copies of the virus genome amongst

messenger RNA (mRNA). The latter produces first regulatory proteins to support new

virus production and the diffusion out of the nucleus (Fig. 2.11, step 5). Second, it pro-

duces precursor structure proteins, which are forming together with the viral RNA new

immature virus particles after diffusion to the cell membrane [142, 143, 149, 150]. This

immature virion starts to bud from the host cell (Fig. 2.11, step 6). Finally, the precursor

proteins are cleaved by the viral protease into their mature units resulting in a functional

HI virion (Fig. 2.11, step 7) [142, 143].

HIV - host entry and tropism: The entry of HIV is driven by the envelope pro-

tein Env targeting the Cluster of Differentiation 4 (CD4) receptor of T-cells as well as

macrophages [152]. Env is composed by a trimeric formation of three copies of gly-

coproteins gp120 (N-terminal) and three glycoproteins gp41 (C-terminal), illustrated in

Fig. 2.12. gp41 forms the transmembrane of the HI virion, whereas gp120 is the non-

covalently bound exterior. The latter is composed by a bridging β sheet, one inner and

one outer domain containing five conserved regions (C1-C5) which form the binding sites
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Fig. 2.12.: Schematic illustration of the HIV cell entry. Copyright 2012 from Ref. [151],
reused by permission of Cold Spring Harbor Laboratory Press.

to gp41 and five variable surface exposed loops (V1-V5) [15, 16, 153].

The cell entry is separated into many complicated steps (see Fig. 2.12) starting with the

recognition and binding of gp120 and the leukocyte glycoprotein CD4 [154, 155]. During

this attachment, gp120 undergoes several conformational changes, fusing parts of CD4 and

gp120 and bringing both cell membranes close to each other [156–158]. It is assumed that

this conformational changes lead to an exposure of the chemokine co-receptor binding

site [156, 159–161], which binds to the C-C Chemokine Receptor 5 (CCR5) or C-X-C

Chemokine Receptor 4 (CXCR4) [162–165]. One supposes that V3 interacts with the

Extracellular Loop 2 (ECL2) of one of the co-receptors, whereas the bridging β sheet

interacts with the N-terminal part [15, 16, 159, 166, 167]. Finally, this co-receptor binding

results in further conformational changes of the full Env protein, leading to an exposure

of the previously inaccessible gp41 regulating the virus-host membrane fusion [152, 168].

The co-receptor binding was identified as a crucial step in the entry process leading to

the viral phenotype classification by its tropism [169]: The virus is categorized to be either

R5-, X4- or dual tropic, depending if HIV binds to CCR5, CXCR4 or is even capable to

bind to both co-receptors. It is assumed that the V3-loop is one major determinant for the

co-receptor selection and binding [12–14] acting like a hook to bind to the co-receptor [15].

This makes it highly interesting to study and understand the underlying physicochemical

processes of V3.

V3 - state of the art: The field of studying V3 can be split into two areas: First,

the investigation of the underlying physicochemical processes during the HIV binding,

second, prediction of the tropism. The first field reaches from experiments [15, 16, 134,

166, 170, 171] to theoretical studies involving also molecular dynamics simulations [97,

165, 172–174]. The second field uses mainly sequence information [175–178] to predict
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the co-receptor selection, but there are also predictors incorporating structural informa-

tion [179–181], which makes it crucial to have adequate template structures of V3, ideally

in many conformations.

In the past, it was a long time not possible to obtain a complete crystallized 3D structure

of V3 attached to gp120 and/or to the co-receptor due to its notorious flexibility [134].

There are some studies like Vranken et al. [182], where V3 were solely investigated by NMR

measures in water solution (see Fig. 2.13 (c)) giving first ideas about the conformational

spread and flexibility of V3. Kwong and co-workers were able to crystallize gp120 and V3

together in complex with CD4 and an antibody in 2005 [15] and 2007 [16] with different V3

sequences (see Fig. 2.13 (a)-(b)). Commonly, 3D structures of biomolecules are stored in

the Protein Data Bank (PDB) (www.rcsb.org [183]). Interestingly, both 3D structures of

V3 show completely different conformations. But there are no further clear experimental

results, which can describe and explain the conformational changing process upon binding

of HIV and the host cell.

Here, MD simulations might be a possibility to resolve this problem and shed light into

which unique conformations are sampled since this will determine the specific interactions

with its receptors. It could be found that V3 moves more or less independent and uncorre-

lated to the movement of the gp120 core [97, 184], thus it might be reasonable to simulate

only V3 as part of the conformational analysis. But the results are disillusioning: It was

not possible to detect exhaustively relevant conformations of V3 [173]. Even worse, the

sampling of V3 were not validated and proven to be converged and no group used different

starting conformations to test, whether both simulations produce the same result.

It is therefore highly interesting, to investigate the sampling of V3 with focus on con-

sistency and convergence.

(a) 2b4c (b) 2qad (c) 1b4c

Fig. 2.13.: 3D structures of V3 from HIV-1 gp120. (a) PDB entry 2b4c [15], (b) PDB
entry 2qad [16] and (c) PDB entry 1ce4 [182]. They are shown in sticks represen-
tation, coloring carbons, oxygens, sulfurs and nitrogens in green, red, yellow and
blue, respectively, hydrogens are not shown

32

www.rcsb.org


Chapter 2. Theory, background and motivation

2.4. Generating different starting structures for MD

To validate a conformational sampling ensuring that the resulting thermodynamic observ-

ables are correct, multiple independent simulations must sample the same conformational

space. We learned in section 2.2 that it is recommended not only generating velocity

induced independent trajectories (VIIT), as it is commonly done, but also solvation in-

duced independent trajectories (SIIT) and conformation induced independent trajectories

(CIIT) [89]. SIIT can be obtained using for all simulations a different placing of water

molecules in the same 3D periodic box. In the present study, this is obtained implicitly

in the multistage preparation protocol described in section 4.1.3 by relaxing the water

molecules around the restrained protein with different velocity seeds. Obtaining the CIIT

is a hard task having a massively flexible system, where few or only one crystal struc-

ture exist. Additionally, if frequent mutations occur in the sequence, there might not be

even one experimentally derived 3D structure for this special sequence. Proper starting

structures for a MD simulation can then be obtained by homology modeling. We will use

homology modeling to obtain starting structures for same V3 sequences.

Homology modeling Homology modeling, also known as comparative or knowledge-

based modeling, describes a method to obtain a model at atomic resolution of an unknown

3D structure (target) from its amino acid sequence on the basis of one or multiple exper-

imentally derived structures (templates) of homologous proteins (a workflow is shown in

Fig. 2.14) [185, 188–190]. This is possible, because the structure of homologous proteins

is more conserved than its varying sequence equivalents [190, 191].

The modeling is a multi step process, starting with the identification of relevant tem-

plate structures from protein databases, using for instance BLAST [192]. The necessary

criterion here is the sequence identity, which should be at least > 25% for longer proteins

with more than 100 amino acids, and at least > 30% for smaller lengths [189–191].

The next step is the alignment of the sequence of unknown structure to the template

structures, which is usually obtained using BLASTp [192]. Additionally, it is possible for a

multi-template modeling to use the information of a structure alignment beforehand [186].

If multiple structure templates are very different with large deviations, using the structure

information might result in better models [186]. A correct alignment is crucial, especially

for conserved regions, where only one alignment mismatch can result in a residue being

wrongly oriented to the protein interior and not to the exterior part [190]. Additionally,

further information like active sites, binding pockets or constraint regions should be taken

into account [185, 188, 189].
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Subsequently, the target structure is built, where the coordinates of atoms in conserved

regions are copied matching the alignment, and the backbone atoms are joined fulfilling

the requirements for correct bonds and angles of the side-chains [190]. The procedure is

different for loops. Insertions and deletions will be annealed to the core structure by local

minimizations [190]. The sequence variability and structure flexibility make it difficult to

predict the most correct structure regardless of a good alignment. Loops are therefore

modeled by optimizing the energy function in their environment [187, 193]. The obtained

model is improved further with a global energy minimization [187, 190]

Finally, the generated target models are evaluated checking different parameters, like

correct bond-lengths, -angles, backbone torsion angles or non-bonded contacts [187].

These are important for rigid proteins. Additionally, the models are evaluated using

statistical potentials [187]. Commonly used scores are the Discrete Optimized Protein

Energy (DOPE) [194] based on a probability density function approach, the z-score de-

rived from the DOPE estimate [187] and the GA341 score [195, 196] using information of

the z-score, target-template sequence identity and structural compactness. The first two

scores evaluate the models as follows: the lower their value, the better the model. The

score GA341 ranges from 0.0 (wrong model) to 1.0 (native-like model). The advantage of

the z-score is that it gives the possibility to compare different proteins and/or alignments.

We will apply the homology modeling program MODELLER v9.13 [187] to generate

two different starting structures for V3. The details are shown in subsection 4.1.2.
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target sequence
...GPGRTFYTTG...

...GPGRAFYTTG...
template structures

...GPGRAFYTAG...

...GPGRAVYTTG...

...GPGKVLYTTG...

...GPGRAFYTTK...

...GPGRAFYTAR...

template sequences

Blast search

...GPGRAFYTTG...

...GPGRAFYTAG...

...GPGRAVYTTG...

...GPGKVLYTTG...

...GPGRAFYTTK...

...GPGRAFYTAR...

Blastp alignment structure alignment

consensus alignment

modeling: Modeller

model evaluation: DOPE, ... 

OK?
Finished

...GPGRTFYTTG...

Fig. 2.14.: Workflow of homology modeling. It is not necessary to use multiple templates
or incorporate the structure alignment. After generating (several) models, they have
to be properly evaluated. Otherwise one has to start again using other templates or
enhance the alignment. The scheme is generated manually following Refs. [185–187].
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In this chapter, we will introduce our tool PySamplingQuality.py which is designed to

assess the sampling quality of molecular dynamics simulations of flexible systems using

a multi-trajectory approach. In the first section, we start with the conceptual definition

of a complete sampling on the level of the potential landscape. Next, we make the

transition to our approach, defining a threshold parameter r and corresponding events er.

The next two sections contain the classifiers for the sampling quality, a self-consistency

measure overlap and an effective clustering, yielding information about the size of the

conformational space. Finally, we explicitly show the workflow, introduce the modules

and discuss the usage of the tool PySamplingQuality.py.

We published the ideas, definitions and corresponding equations of this chapter in

Ref. [37].

3.1. Idea of detecting a good sampling

In theory, one can extract correct thermodynamic averages from MD simulations, if the

conformational space is exhaustively sampled including all relevant rare event transitions

(see section 2.1). A simple test of convergence is to run a second or more simulations,

which must then give the same results. Deviations are a strong indicator that some MD

runs miss relevant parts of the conformational space.

3.1.1. Conformational approach

For an exhaustive, complete sampling, different MD trajectories of the same molecule

must occupy all conformations with the same density. Low potential wells correspond to

high density, high potential energy conformations are occupied with a low density. This

leads to the same equilibrium probability distribution p(~r) (see Fig. 3.1 top) for different

MD runs.

Strictly speaking, for complete sampling with simulation time t → ∞, the number

of identical structures at a given energy level and for a specific conformation must be

identical for different trajectories, which is schematically illustrated in the lower panel of

Fig. 3.1. This behavior is true for all combinations of potential energy and conformation,
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Fig. 3.1.: Schematic illustration of complete sampling of two MD simulations with
the same lengths. Both trajectories reproduce the same probability distribution
p(~r). The lower panels (a1) and (b1) show simulated structures at two energetic
levels EX and EY for different conformations CX and CY , with (a2)/(b2) showing the
corresponding alignments. The number of same/similar structures must be identical
for different trajectories in (EX , CX) and (EY , CY ).

thus one simply needs to go through every tuples of energy and conformation and count

the density of identical structures for different trajectories. If the densities are always

identical, we have a perfect sampling, assuming that every conformation was found. If

the densities deviate between different trajectories, the sampling is not complete. One

can derive a classifier of the sampling using these information.

The problem is that usually the partition function or the conformations of the system

are unknown or hardly accessible (see section 2.2). We introduce therefore the trajectory

overlap approach.

3.1.2. Trajectory overlap approach

In the last subsection, we learned that in different windows of potential energy and con-

formation tuples the number of structures must be the same for different trajectories

(with the same lengths) (see Fig. 3.1). Now, we introduce a trajectory overlap approach.

First, we simply use all simulated structures of all different trajectories, which correspond

to the selection of different windows of energy and conformation tuples. These simu-
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Fig. 3.2.: Trajectory overlap approach of detecting a complete sampling. For every
reference frame, the number of identical/similar structures must be the same for all
different trajectories with the same lengths in the case of ideal sampling.

lated structures are called reference frames. Second, we count how often we see the same

conformation in independent trajectories with respect to these reference frames. Again,

assuming complete sampling with t → ∞, for a specific reference frame the number of

identical structures (neighboring frames) to this particular reference must be the same for

different trajectories with the same lengths (see Fig. 3.2).

All structures in all trajectories are superimposed and aligned to the specific reference

frame (see Fig. 3.2 (a1) and (a2)). Then the number of identical structures (neighboring

frames) are extracted for every trajectory separately as shown in Fig. 3.2 (a3). These num-

bers as a function of different reference frames are then compared (see Fig. 3.2 top right):

if the curves are identical, this results to a perfect overlap and reproducible sampling.

The overlap will be introduced in full detail below in section 3.2. For now, the overlap

is schematically represented as the shared area under all curves which are defined by the

number of neighboring frames as a function of all simulated frames (see Fig. 3.2 top right).

As reference frames, we use all simulated structures of all different MD simulations.
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r = 0.0nm r = rsmall r = rlarge r ≥ rmax→∞ 
(a) (b) (c) (d)

Fig. 3.3.: The effect of the threshold r. If the threshold r is equal to zero, conformations
must be identical to be considered the same (a). For a small threshold r = rsmall

(b), small deviations are tolerated to consider different structures to be identical.
For larger r, the criterion for a same conformation is more tolerant (c), whereas for
r → ∞, every trajectory is assumed to come from the same conformation.

Threshold parameter r In practice, for independent trajectories of finite length of the

same molecule, they will rarely produce the numerically identical conformation, even if

both sample the same energy minimum. We therefore define a threshold r, where different

conformations are considered the same if they are closer to each other than r and thus

lying in their “r-neighborhood”. The difference between two conformations a and b with

N atoms and masses mi is measured by their mass weighted root mean square deviation

(RMSD) after optimal superposition [80, 82, 197]:

RMSD(a, b) =

√∑N
i=1mi||~xi,a − ~xi,b||2∑N

i=1mi

, (3.1)

with positions ~xi,a and ~xi,b of atom i referring to the heavy atoms of the peptide backbone

in the corresponding conformations a or b. These differences are stored in RMSD matrices

for each pair of simulated frames for each single trajectory and each trajectory pair, which

were generated with GROMACS, v4.6.7 [94].

The optimal superposition is in general a crucial step to obtain correct differences and

to be able to compare different structures. It can be tricky and time-consuming for large

and complex systems [198]. This is not an issue for the presented systems and is shortly

discussed in Appendix A.

The threshold r determines if two conformations a and b are considered the same, i.e.

if RMSD(a, b) ≤ r. Effectively, the threshold r can be understood as a resolution for

the overlap: The larger r, the more different structures are considered the same, and the

coarser is the resolution for the measurement (see Fig. 3.3). The smaller r, the more

identical must be two structures to be counted as similar. One can define a minimal

value rmin, where at least two structures are considered the same. This also leads to the

trivial relation, if r is set larger than the largest deviation between two structures rmax in
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the trajectory, one assumes that every structure is identical, thus all densities will be the

same. The threshold r will be analyzed in detail in section 4.2 focusing on the question,

if there is an optimal r and how one can determine a relevant range for this parameter.

The necessary condition to decide, whether two trajectories sample the same confor-

mational space, is to count how often we see the same conformation in independent

trajectories. We therefore define each occurrence of RMSD(a, b) ≤ r an event er.

po
te

nt
ia

l

conformation

pr
ob

a
bi

lit
y

1 2 5
5

2
1

44
3

3

1 2 3 4
conformation

1.0

0.5

0.0

5

1

1 2 4 5 521 43 31 2 3 4

(a) same lengths

ev
en

ts
frames

overlap

6
6

6 6

po
te

nt
ia

l

conformation

pr
ob

a
bi

lit
y

1 2 5
1 34

3

2

1 2 3 4
conformation

1.0

0.5

0.0

5

1

1 2 4 5 213 31 2 3 4

(b) different lengths
ev

en
ts

frames

overlap
6

6

po
te

nt
ia

l

conformation

pr
ob

a
bi

lit
y

1 2 5
1 34

3

2

1 2 3 4
conformation

1.0

0.5

0.0
1 2 3 4

(c) normalization

6

1.
0

0.5

no
rm

. e
ve

nt
s

norm. frames

overlap

1.
0 0.5 1.00.

00.
00.

0

0.
5

traj 1
traj 2

Fig. 3.4.: Definition of the event curves and their normalization. Examples for trajec-
tories with (a) same lengths, (b) different lengths, (c) normalization applied on the
events and on the frames. One can see that the overlap would lead to different results
for different trajectory lengths, although the probability distributions are the same,
i.e. the samplings are identical. This is repaired by the simultaneous normalization
of the events and the simulated (reference) frames.

Definition of events er Events er are the number of conformations which are considered

to be the same compared to the specific reference frames. They are defined for each
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trajectory separately, whereas the different event curves are compared to classify the

sampling. Events er are calculated by

er,κl =

nl∑
α=1

H (r − RMSD(κ, αl)) , (3.2)

with

H(x) =

1 (x > 0)

0 (x ≤ 0)
, (3.3)

where er,κl defines the number of events of trajectory l compared to the reference frame κ,

H(x) is the Heaviside step function, r is the threshold parameter, RMSD(κ, αl) means the

RMSD defined in Eq.(3.1) and nl is the number of frames of trajectory l. In the following,

indices with Greek symbols will refer to frames and Roman letters to trajectories, except

r always means the threshold parameter.

The more similar different event curves er are, the better is the sampling. We defined

in subsection 3.1.2 that we go through all reference frames of all involved trajectories

to monitor the density of events for every energetic and conformational level (compare

Fig. 3.2 top). But what happens, if trajectories do not have the same lengths? Then

two influences must be considered which are illustrated in Fig. 3.4: First, the number

of events in a certain r-neighborhood for different trajectory lengths cannot be the same

although this should be the case for perfect sampling (identical p(~r)). Thus, the event

numbers must be normalized with respect to the trajectory lengths

ẽr,κl =
er,κl
nl

∈ [0, 1] . (3.4)

Second, the number of reference frames are different for different trajectory lengths,

which will result in different shared areas under different event curves, although the un-

derlying probability distributions p(~r) are the same. Thus the (reference) frames must

also be normalized, which will be done in the overlap definitions in section 3.2. Then,

the event curves and the resulting overlap area are independent of the trajectory lengths

and will produce the same results for the same probability distributions p(~r), shown in

Fig. 3.4(a) and (c).

41



Chapter 3. Tool - PySamplingQuality

3.2. Self-consistency measure

ev
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frames

overlap
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overlap
conformational

Fig. 3.5.: Schematic representation of the conformational Oconf and the density over-
lap Odens. The overlaps measure the area/region, where all event curves share the
same area/region.

In the previous sections, we introduced events er,κl as a function of all (reference) frames

κ for different trajectories l as density indicator, how often we see the same conformation

in independent trajectories in one r-neighborhood. The sampling is now classified by two

different overlap measures:

1. The conformational overlap Oconf answers the question if independent trajectories

cover the same conformational space, reaching from zero, i.e. different trajecto-

ries sample completely different conformational regions, to one, where all different

trajectories cover the same region.

2. The density overlap Odens ∈ [0, 1] quantifies the sampling criterion, if trajectories

cover the same conformational space with the same probability p(~r).

Oconf is the more general and necessary criterion which allows a simple differentiation

between poor and good sampling. If different MD runs do not meet themselves during the

course of the simulation, one can definitely conclude that the sampling is not sufficient and

longer runs are necessary. If different trajectories cover the same space, Odens quantifies

the quality of the sampling, whether the underlying probability distributions p(~r) do

correspond. The two overlap measures are schematically illustrated in Fig. 3.5.

For both overlap definitions, we will always use two sets of trajectories: First, the

reference trajectory set K from which the reference frames κ are taken. It can contain

one or multiple trajectories, which are concatenated for the latter case. All reference
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frames κ are equally important/weighted. Second, the overlap is calculated between the

comparison set of trajectories L. The comparison set L can either contain two, multiple

or groups of concatenated trajectories. In this study, either K ⊂ L or K ∈ L is true.

This issue will be addressed in subsection 3.2.3 in more detail.

3.2.1. Conformational overlap Oconf

The conformational overlap Oconf gives the information, how many reference frames κ ∈ K

have at least one r-neighbor in each of the comparison trajectories l ∈ L, normalized

by the total number of reference frames nK . The closer Oconf is to one, the more the

conformational space is covered by all involved trajectories L. Here, we aim to obtain

an estimate whether we miss large parts of the conformational space. Thus, we do not

normalize the trajectories to have the same lengths but take them as they are. For an

overlap value of 0.5, we obtain the information that 50% of the frames do not cover the

same conformational space, with no matter of the single trajectory lengths.

This leads to the following expression fulfilling Oconf ∈ [0, 1]:

Oconf(K,L; r) =
1

nK

∑
κ∈K

H

(∏
l∈L

er,κl

)
(3.5)

with H(x) is the Heaviside function defined in Eq. (3.3), er,κl are the unnormalized events

defined in Eq. (3.2) and r is the neighborhood threshold. The product within the sum of

Eq. (3.5) together with the Heaviside function detects, whether all involved trajectories

L have at least one occurrence in the r-neighborhood of the specific reference frame κ,

otherwise it will give a zero contribution. Only if for every reference frame κ ∈ K there is

at least one occurrence of all different trajectories l ∈ L, one obtains Oconf(K,L; r) = 1.

If the conformational overlap is close to one, the sampling may be in the regime where all

conformations are found and the densities in different conformations are sampled toward

a converged equilibrium. Then, it is necessary to take the probability density functions

p(~r) into account, which is done by the density overlap.

3.2.2. Density overlap Odens

The density overlap Odens yields insight whether the same conformational space is covered

with the same probability distributions p(~r) for different trajectories l ∈ L for a given

threshold r. This corresponds effectively to the shared area under multiple event curves

illustrated in Fig. 3.5. Remembering that (1) every reference frame is equally important,
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(2) the reference trajectories k ∈ K have to be normalized and (3) the sampling is only

complete if all involved trajectories have the same density/event numbers, we can quantify

the sampling by

Odens(K,L; r) =
1

NK

∑
k∈K

1

nk

∑
κ∈k

min{ẽr,κl : l ∈ L}
max{ẽr,κl : l ∈ L}︸ ︷︷ ︸
fdens(k,L;r)

. (3.6)

The ratio between the minimal and maximal normalized event number ẽr,κl (see Eq. (3.4))

of all trajectories l ∈ L is the classifier for the sampling quality. This ratio is summed

over all reference frames κ of one reference trajectory k and normalized by its number of

reference frames nk. This is combined in the expression fdens(k, L; r) which is the density

overlap for only one reference trajectory k. This ensures two things: First, every reference

frame κ is equally weighted, and second, every reference trajectory k is normalized to the

same length of one. The latter is implicitly defined in fdens(k, L; r), because the total

overlap for all reference trajectories K is calculated by the average of all single trajectory

k measures fdens(k, L; r). Thus every reference trajectory k also contributes equally to

Odens(K,L; r).

For converged trajectories L, the ratio of minimum and maximum ẽr,κl is close to one

for every individual reference frame κ, i.e. the densities and therefore the probability

distributions are identical for different trajectories, and one obtains Odens(K,L; r) → 1.

The density overlap Odens will drop to zero, if the minimum to maximum ratio varies

between different l for a specific threshold r for multiple reference frames κ.

This ratio defines a strict criterion for the sampling quality classification, because we

use the two extremes (minimum and maximum) of densities at a certain κ. Thus, we do

not overrate the overlap, but all trajectories must reproducibly give the same results. It

is possible with different sets of trajectories K and L to screen through different analysis

groups and for example detect outliers or combine different trajectories. This will be

discussed in subsection 3.2.3.

Averaged overlap The threshold parameter r can be understood as a resolution, as

discussed above. For a high resolution (small r), we are less tolerant in the event counting,

because two structures κ, α must be very similar to fulfill RMSD(κ, α) ≤ r. For a low

resolution (large r), the criterion is very tolerant, thus more different structures will be

assumed to be similar and counted as an event er,κl in Eq. (3.2).

Theoretically, perfect sampling should be independent of the chosen threshold r and
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always lead to Oconf = Odens = 1. Also for r = 0 nm, perfect sampling (t→ ∞) should give

the same number of identical structures for all reference frames κ for different trajectories

l. In practice, this will rarely be the case, but these relations can be used as another

criterion averaged overlap Ωconf and Ωdens detecting the performance of the sampling

Ωconf/dens(K,L) =
1

rmax − rmin

∫ rmax

rmin

Oconf/dens(K,L; r) dr . (3.7)

Integrating the conformational or density overlap (see Eqs. (3.5)-(3.6)) as a function of r

between rmin and rmax (see subsection 3.1.2) and normalize the result by the maximally

reachable area rmax − rmin will lead to Ωconf/dens ∈ [0, 1]. The better and exhaustive the

sampling, the faster the overlap as a function of r will converge toward one and we obtain

Ωconf/dens → 1.

3.2.3. Reference set K and comparison set L

The overlap measure is driven by the trajectory set K and comparison set L. Therefore,

it is important to understand different choices and possibilities for these parameters.

One needs to keep in mind that K is only responsible for the reference frames κ. In

principle, any arbitrary trajectory could be used, which does not need to be contained in

the comparison set L. But in this work, we will always work either with K ⊂ L or K ∈ L.

On the other hand, the overlap is only calculated between trajectories defined in L.

For the references K, the choice of the trajectories will yield different aspects of the

measure. For K = L, the overlap values will consider all frames of all trajectories. For

K 6= L, we are investigating the overlap between L trajectories calculated only for a subset

of reference trajectories. This makes a significant difference if we investigate two different

types of trajectories, e.g. one converged and one unconverged trajectory or trajectories

coming from different methods.

For instance, let us assume that we have two trajectories l1 and l2, where the first

trajectory is complete and converged and the second shows incomplete sampling. This

will in general lead to

Oconf(K = {l1}, L = {l1, l2}; r) < Oconf(K = {l2}, L = {l1, l2}; r)

Odens(K = {l1}, L = {l1, l2}; r) < Odens(K = {l2}, L = {l1, l2}; r) ,

because the unconverged trajectory l2 “sees” in all its reference frames events from the

converged trajectory l1. This is not true for the opposite case, because the converged
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trajectory l1 explores space which is not reached by l2, thus Oconf Eq. (3.5) and also the

ratio in Odens Eq. (3.6) will be small. It may even be possible that

Oconf(K = {l1}, L = {l1, l2}; r) ≈ 0

Oconf(K = {l2}, L = {l1, l2}; r) = 1

is true, if the second trajectory is trapped only in few conformational states, whereas l1

explores thousands of minima. Thus, the choice of K reveals different aspects of the anal-

ysis and allows to investigate for instance, how simulations behave coming from different

algorithms. One would expect that trajectories from accelerated algorithms should also

cover the space of the conventional simulations but not necessarily vice versa.

On the other hand, the comparison set L can either contain at least two, multiple or

groups of concatenated trajectories.

Multiple trajectories mean L = {l1, l2, ..., lN}, whereas every trajectory is treated indi-

vidually in the overlap measure to extract for instance the minimum to maximum ratio.

The only difference between two and multiple trajectories is that for Oconf all trajectories

must have at least one r-neighbor for the corresponding reference frame κ and for Odens

the ratio between minimum to maximum takes the extremes between all submitted tra-

jectories. The more trajectories are taken, the stricter is the overlap criterion, because

every trajectory must independently satisfy a complete sampling. For instance, if all

trajectories except one are trapped in the same energetic minimum and wrongly yield a

large overlap value, then only one trajectory, which samples another unexplored region

of the conformational space can make the difference. This means the overlap will drop

toward zero and signalizes that the sampling is incomplete because a large conformational

space is not covered exhaustively. One has to keep in mind that if only one trajectory

behaves differently that it should not be discarded as an outlier. In contrast, it is a strong

indicator that something went wrong with the sampling, because the latter MD simula-

tion found another new physically meaningful states. Moreover, the less so called outliers

are present, the worse might be the sampling, because only one or few simulations could

reveal new states compared to N − 1 other runs.

Furthermore, it may also be interesting to investigate the overlap between different

groups of concatenated trajectories, which will be called group-overlap. The underlying

idea is either to merge different trajectories with same properties or to combine differ-

ent short simulations to one super-trajectory. The first case might be advantageous to

investigate the behavior of the sampling between all concatenated trajectories of conven-

tional MD simulations and all concatenated trajectories of accelerated MD simulations.
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Then one effectively enhances the simulation time assuming that the trajectories are in-

dependent. The second issue might be interesting for guided simulations which explores

only a certain area of the full conformational space and are then combined to one super-

trajectory. As an example, the group-overlap is given by L = {l1 + l2 + l3, l4 + l5 + l6}
indicating the concatenation of the first three and the last three trajectories, calculating

the overlap between these two super-groups.

Note that, for the reference trajectories K, we simply go through every frame κ of all

reference trajectories defined inK, which effectively always corresponds to a concatenation

of all involved trajectories.

3.2.4. Re-weighting of biased potential runs

In subsection 2.2.3 we discussed the advantage of using accelerated sampling algorithms to

ease the transition between large energetic barriers and thus access the full conformational

space faster. We will make use of the introduced techniques aMD and sMD to generate

trajectories and then investigate their overlap. This requires a proper re-weighting to

recover the unbiased ensemble to be able to compare different trajectories. Otherwise the

equilibrium probability distributions p(~r) are biased.

Analogously to the re-weighting of the distributions introduced in the theory chapter

using Eqs. (2.19)-(2.21) and (2.26)-(2.27), we also have effectively an one-dimensional

problem. Instead of using a disjunct binning as it was done in Refs [113, 117], here

we have individual r-neighborhoods: We divide our system in nK frames of the reference

trajectory setK and monitor the presence (Oconf Eq. (3.5)) or the density (Odens Eq. (3.6))

of events of different trajectories. This corresponds to a shifting window through every

reference frame κ considering the r-neighbors as microstate estimates. So it is possible

that different frames will fall simultaneously into multiple r-neighborhoods. Still for the

re-weighting, we should only have to apply Eqs. (2.21) and (2.26)-(2.27) with j = κ. This

means for aMD that we have to multiply each r-neighbor of the reference frame κ by

the inverse Boltzmann factor exp(+β∆Vγl) to obtain the unbiased density, with β is the

temperature factor and ∆Vγl means the boost potential applied to frame γ of the aMD

trajectory l. For sMD, the number of events just have to be re-scaled by an exponent of

1/λ.

But it is not trivial, whether such a re-weighting will suffice for the overlap calcula-

tion, because multiple trajectories are involved in the measurement: The reference, from

where we look into its r-neighborhood, and at least two trajectories for the minimum to

maximum ratio determination. To resolve this central question of re-weighting, we will

47



Chapter 3. Tool - PySamplingQuality

apply a simple gedankenexperiment with known outcome comparing the overlap between

the identical distributions of cMD and accelerated simulations.
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Fig. 3.6.: Correct re-weighting of the overlap measures. (a) Two trajectories with en-
hanced potentials ∆V0 and ∆V1 with only re-weighting the events. (b) Conventional,
non-weighted trajectories corresponding to the re-weighted distributions of the up-
per panel. (c) Re-weighting the (reference) frames correct the overlap. One can
see that for accelerated trajectories, one needs to re-weight the events and also the
corresponding reference frames.

Gedankenexperiment to re-weight the self-consistency measure Odens The central

point of this gedankenexperiment is the fact that identical probability distributions p(~r)

of different measurements must lead to the same overlap.

The gedankenexperiment is illustrated in Fig. 3.6. Let us assume a potential V (x) with

two conformations x = 1, x = 2 at the potential energies V0, V1 and two accelerated levels
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at V0 +∆V0 and V0 +∆V1 = V1:

V (x) =


V0 x = 1

V1 x = 2

∞ else

(3.8)

V0 =
ln(2)

β
, V1 =

ln(6)

β
, ∆V0 =

ln(2)

β
, ∆V1 =

ln(3)

β
. (3.9)

Now, we sample two trajectories blue and red with 20 frames in total with two accelerated

potentials ∆V0 and ∆V1, respectively. Furthermore, we assume to obtain 15 frames of

both accelerated trajectories in conformation 1, although it does not represent the correct

underlying distributions.

With these simple relations, every sampled frame on the energetic level V0+∆V0 accel-

erated by the boost potential ∆V0 is multiplied by exp (β ln(2)/β) = 2 and every sampled

frame on the energetic level V0 + ∆V1 by exp (β ln(3)/β) = 3 to obtain the unbiased

distribution of a cMD analogue. This is illustrated in Fig. 3.6 (a) and (b) in the first

two columns. But, if now only the events er are re-weighted according to the description

above, the density overlap differs as shown in Fig. 3.6 (a) and (b) in the last column. The

density overlap is only then recovered identically to cMD if also the reference frames are

re-weighted accordingly, as shown in Fig. 3.6 (c).

The simple gedankenexperiment shows the necessity to appropriately re-weight the

events from Eqs. (3.2)-(3.4) and also the reference frames κ of the density overlap measure

Eq. (3.6). Note that the conformational overlap is not re-weighted because we are not

interested in the correct densities but in the presence or absence of at least one r-neighbor

of different trajectories in reference frames κ. If we know the weights for every single frame

α of a trajectory l, the events are then changed to

er,κl =

nl∑
α=1

wr,αl ·H(r − RMSD(κ, αl)), ẽr,κl =
er,κl∑nl

α=1wr,αl

(3.10)

and the density overlap to

Odens(K,L; r) =
1

NK

∑
k∈K

1∑
κ∈k wr,κ

∑
κ∈k

wr,κ ·
min{ẽr,κl : l ∈ L}
max{ẽr,κl : l ∈ L}︸ ︷︷ ︸

fdens(k,L;r)

, (3.11)

where the events and reference frames are both re-weighted according to Eqs. (2.19)-(2.21)
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and Eqs. (2.26)-(2.27). Again, fdens defines the overlap for only one reference trajectory

k, H(x) is the Heaviside step function Eq. (3.3), nl is the number of frames of trajectory

l, RMSD(κ, αl) defines the deviation between two structures Eq. (3.1), NK is the number

of reference trajectories K and the minimum to maximum ratio is calculated between

all comparison trajectories L. The weight wr,αl is applied on the frame α of a specific

trajectory l, whereas wr,κ just re-weights all frames κ ∈ k, thus the trajectory index is

omitted. Note that in general, the weights are defined for specific thresholds r, which will

be shown below.

The introduced weights wr,αl of a frame α of a trajectory lmust correct the perturbations

of the potential in aMD or sMD simulations to not overestimate the frequency of higher

potential energy conformations.

cMD weights For cMD trajectories, Eqs. (3.10)-(3.11) must not distort the results to

be universally applicable. This leads to the trivial weight definition for cMD simulations

w
(cMD)
r,αl = 1 (3.12)

which yields the old definitions of Eqs. (3.2), (3.4) and (3.6).

aMD weights For conformations α of an aMD trajectory l, we have implemented three

re-weighting variants:

1. Exponential re-weighting (Exp) which refers to the simple multiplication of the

reciprocal Boltzmann factor for the specific frame α [111].

2. The approximation of the exponential term of the Boltzmann factor done by Maclau-

rin expansion (McL) up to order m which could reduce the energetic noise from the

exponential term [115, 117].

3. A mean-field approximation (MF) which is inspired by the cumulant expansion

up to first order (see subsection 2.2.3). We will use the averaged boost potential

〈∆V (~r)〉r,α (see Eqs. (2.21) and (2.23)) of all r-neighbors of reference frame α to

approximate the MF weight w
(aMD)
r,αl . Because different reference frames α can include

the same frames in their r-neighborhood, one can extract a self-consistent mean-field

approach which is defined in the following.
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One can now derive the aMD weights as

w
(aMD)
r,αl =


exp (+β∆Vαl) , (Exp)∑m

j=0
βj

j!
∆V j

αl , (McL)

exp
(
+β
〈
∆V (n)

〉
r,αl

)
, (MF)

(3.13)

with thermodynamic temperature factor β and boost potential ∆Vαl applied on frame j

of trajectory l containing nl frames. The n-th iteration mean-field average of the boost

potential discussed above is given by

〈
∆V (n+1)

〉
r,αl

=

∑nl

γ=1

〈
∆V (n)

〉
r,γl

·H(r − RMSD(α, γ))∑nl

γ=1H(r − RMSD(α, γ))
(3.14)

with
〈
∆V (0)

〉
r,γl

= ∆Vγl defines the starting point of the MF iteration. The denominator

is the number of frames of trajectory l in the r-neighborhood of frame α. The MF

weights depend on the threshold r assuming that r-neighbors estimates the corresponding

microstate, similar to the binning approach of Ref. [117].

sMD weights The weights for trajectories l with nl frames coming from sMD runs need

a different treatment. It would be possible, just to apply the relation p(~r) = p∗(~r)1/λ with

the scaling factor λ (compare Eq. (2.27)) to every reference frame κ to obtain the corrected

number of events. The problem is that we have no knowledge about the corrected total

number of events, because in general the sum of events over all reference frames κ of

one trajectory l is not equal to the total number of frames nl. Thus, we are not able to

normalize the events, which is necessary for the r-neighborhood approach. We need to

extract the weights wr,αl for single frames α. For the binned distribution used in Ref. [113],

single weights for all N frames falling in one bin are just the average of the number of

frames re-scaled by N1/λ [113]. Since we do not have a disjunct binning but reference

frames κ, where multiple frames can be in multiple r-neighborhoods, we estimate the

single weights wr,αl by averaging the re-scaled number of events in the r-neighborhood of
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α:

w
(sMD)
r,αl =

[∑nl

γ=1H(r − RMSD(α, γ))
]1/λ∑nl

γ=1H(r − RMSD(α, γ))
(3.15)

=

[
nl∑
γ=1

H(r − RMSD(α, γ))

] 1
λ
−1

. (3.16)

It is clear that some frames, which are in multiple r-neighborhoods, will contribute multi-

ple times, which leads to self-consistency equations. Hence, we can now formulate another

MF approach for sMD re-weighting trying to minimize the error induced that multiple

frames might influence different reference frames κ by

w
(sMD)
r,αl ≡ w

(n+1)
r,αl =

[
nl∑
γ=1

w
(n)
r,γl ·H(r − RMSD(α, γ))

] 1
λ
−1

, (MF) (3.17)

with w
(0)
r,αl = 1 as starting point. This equation (3.17) starts with the averaged re-scaled

number of events. In the next and following steps, the weights for every single frame γ

are taken into account. Note that applying the weights on the specific frames changes

the total number of events in a certain r-neighborhood of α, hence the denominator of

the average must also contain the weighted number. This is already incorporated by the

exponent ( 1
λ
− 1).

The MF approach can be iterated until convergence is reached, smoothing the edges

of the neighboring windows defined by the reference frames κ, because some simulated

frames can be included in r-neighborhoods of different reference frames κ. We discussed

in subsection 2.2.3 that the re-weighting can be very tricky, and we do not want to focus

on the validation of re-weighting procedures. We will therefore use the first iteration

step of MF(1) for aMD and sMD which are equivalent to the first order cumulant ex-

pansion [115] and population re-weighting [113], respectively. The reason is that these

procedures could already be shown to produce good results [113, 115]. The possible de-

viations will be discussed and investigated in section 4.7. As outlook, we will also briefly

analyze the comparison between the first step MF(1) and the converged MF(∞) results

in sections 4.3 and 4.7. But we want to emphasize for a fair evaluation of the MF re-

weighting, multiple acceleration parameters, systems and also an extensive study of the

contribution of different r to the weights should be validated.
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3.2.5. Overlap error estimates

An error estimation is necessary to validate the confidence of the results. The density

overlap Odens (Eq. (3.11) is defined by the average over single reference trajectory values

fdens.

The error of single fdens can be estimated by the variation of the minimum to maximum

ratios of independent reference frames κ. Remember that the ratio obtained for every

reference frame is an individual estimate of the overlap value of fdens: Each reference

frame has to independently give a large event ratio for complete sampling. Thus, the

more reference frames are used, the better is the statistic for the resulting overlap value of

fdens. For instance, if one half of the reference frames have a ratio of zero and the ratio of

the other half is one, you will obtain fdens = 0.5, but with a large variance compared to the

same result, where all ratios are equal to 0.5. Thus, the overlap calculation is implemented

in PySamplingQuality.py [37] to generate for every fdens its standard deviation between

their values.

The error of Odens can be estimated by the distribution of fdens of different reference

trajectories. Only if every reference trajectory yields the same overlap result, there is no

variation in Odens.

The error of the conformational overlap Oconf Eq. (3.5) can be estimated in a similar

way, where it is valuable to calculate Oconf(k, L; r) for each different reference trajectory

k ∈ K and evaluate the distribution of different reference trajectories k.

This allows to plot asymmetric error bars for both overlap measures using the distribu-

tions of single reference trajectory results, where for instance the first (lower error bar),

second (median) and third quartile (upper error bar) are visualized (see Fig. B.3 of Ap-

pendix B). The corresponding averaged overlaps Ωconf,Ωdens are then estimated from the

integrals over all lower error bar and upper error bar values.

In the following, we will use the first, second and third quartiles for error estimates

unless specified otherwise.

3.2.6. Limits of Oconf, Odens

So far, we argued that complete, exhaustive sampling of MD must be reproducible. There-

fore, multiple simulations have to describe the same probability distributions p(~r), which

give Oconf = Odens = 1. This fulfills the criteria that independent trajectories cover the

same conformational space (Oconf = 1) with the same probability p(~r) (Odens = 1). But

what happens, if the covered area is not the complete accessible conformational space?
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The quantity, which we did not address by both overlap measures and which is hardly

accessible, is the size of the sampled conformational space. With this size, one might

be able to identify trajectories, which are trapped in one or few energetic minima. On

the other hand, the size reached during independent runs is another criterion to classify

the sampling. For instance, if the sampled conformational space has the same size for

independent runs with Oconf = Odens = 0, then the complete space is probably very large.

Still, the question of “unknown unknowns” is really hard to address [26]: Did we miss

parts of the conformational space during MD sampling? Imagine that all trajectories are

trapped in the same few conformations, which would yield large overlap values and also

the same sampled size. It is clear that the more independent trajectories with independent

starting conformations are used, the less likely they are all trapped in the same minimum,

but this is no guarantee.

So, we try to tackle the weaker question, if there is evidence that still new areas in con-

formational space are discovered. As indicator, we use the convergence of conformational

cluster count NC [80] and the evaluation of the corresponding cluster distribution entropy

SC [32].

3.3. Analysing the size of the conformational space

We obtain the size of the sampled conformational space by another measure, which is

a simple clustering of the sampled space. Since we store each pair of simulated frames

for each single trajectory and each trajectory pair in an RMSD matrix, we run fast into

memory problems by using standard clustering procedures like hierarchical clustering with

complete linkage hClust [199, 200] or partitioning around medoids pamk [201, 202]. Thus,

we developed an own clustering algorithm to ensure two things: (1) The clustering should

be able to deal with very large RMSDmatrices in appropriate time and (2) should yield the

closest packed partitioning. Note, we are not interested in grouping same conformations

or structures with similar properties, but only obtain a measure for the sampled size.

In the next subsections, we characterize our clustering algorithm, show the specifications

and extract the cluster number NC and cluster distribution entropy SC as additional

quantifiers for the sampling quality.

It has to be mentioned that the simple clustering is used as an additional classifier in-

vestigating whether single trajectories might sample the full conformational space or/and

are trapped in some conformations. In subsection 2.2.1, we underline the necessity to

properly validate clustering results. But here, we do not want to compare single con-
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formations with each other by the clustering. This comparison is done with the overlap

measures. Moreover, we just want to know whether trajectories discover new space or are

trapped in few energetic minima. Hence, we do not necessarily have to validate the clus-

tering with focus on the question, whether we partition similar conformations correctly

together.

3.3.1. Clustering algorithm

In this subsection, the clustering algorithm is described, which allows a complete parti-

tioning of the sampled conformational space at an approximately homogeneous resolution.

To be comparable with the overlap measures, we use again the threshold parameter r as

minimal distance between different cluster centroids. Then, we construct a contiguous,

disjunct partitioning in chunks of RMSD-radius R with r
2
. R ≤ r, where next centroids

are chosen to be the closest to the previous centroids. Additionally, for comparison rea-

sons between different clusterings, we select the starting centroid according to a reference

structure, which can be for example a starting conformation of a MD run.

The clustering algorithm is schematically illustrated in Fig. 3.7. Initially, the first clus-

ter centroid C1 is determined as the sampled conformation that has the lowest RMSD to a

given reference structure (Fig. 3.7 (1)-(3)). Then, the next centroid C2 is the closest frame

outside the RMSD radius r of C1, whereas all frames within the r-neighborhoods of C1

and C2 are discarded (Fig. 3.7 (4)-(7)). All other centroids Cj+2 (with j = 1, 2, ..., NC − 1

and NC the total number of clusters found) are obtained by iterating over three steps:

First, we generate an auxiliary center Aj as the coordinate average between Cj+1 and Aj−1

(in the first iteration A0 = C1, Fig. 3.7 (8)). Second, the next centroid Cj+2 is the closest

structure compared to Aj (Fig. 3.7 (9)). Third, frames within the r-neighborhood of Cj+2

are discarded from the list of potential remaining centroids. The iteration is finished after

no potential centroid is left (Fig. 3.7 (11)). Finally, each sampled frame is assigned to its

closest cluster centroid (Fig. 3.7 (12)).

Code-wise, the centroid generation is done in three steps. The advantage is that one

only needs to store one array with the RMSD values of the potentially remaining cen-

troids, the corresponding sorted indices and keep track of the indices defining the cluster

centroids. In the 1st step (Fig. 3.8), one row of the full RMSD matrix is loaded, which

contains the RMSD values with respect to the first centroid C1, which was previously

generated as the closest structure to a reference. Then, the RMSD is sorted according to

the threshold r, and all values smaller than r are discarded, whereas the remaining RMSD
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Fig. 3.7.: Step-wise representation of the effective clustering. An arbitrary 2D distri-
bution is partitioned (1), starting with a reference frame (2), showing the formation
of new clusters (3)-(7) and the definition of auxiliary centers (8)-(11). The final
partitioning (12) is obtained by assigning all non-centroids to their closest centers.
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Fig. 3.8.: Schematic workflow representation of the clustering algorithm to define
all centroids. One only needs to store one array containing the possible centroids,
keeping track of their indices and load for every new centroid only one array which
corresponds to the Cx-th line of the RMSD matrix.
1st step corresponds to steps (4)-(6) of Fig. 3.7, 2nd step corresponds to steps (7)-(8)
of Fig. 3.7, and 3-N steps correspond to steps (9)-(11) of Fig. 3.7.

values are stored as possible centroids. The index with the lowest RMSD in this array

is the next centroid C2 and is also discarded from this array. In the 2nd step (Fig. 3.8),

the RMSD row with respect to C2 is loaded and sorted in ascending order. Then first

(Fig. 3.8 lower left), all indices, which correspond to RMSD values smaller than r, are

deleted from the possible centroids array. And second (Fig. 3.8 lower right), the RMSD

values of the remaining possible centroids array together with the RMSD values of the

same corresponding indices of the loaded RMSD row with respect to C2 are averaged.

This refers implicitly to a calculation of an auxiliary center, which would be the coordi-
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nate average between the formerly defined centroids. Finally, in steps 3 to N, the second

step is repeated until the possible centroids array is empty. Then, each sampled frame is

assigned to its closest centroid as mentioned above.

The clustering yields the full clustering profile, which frame belongs to which cluster,

the sizes of each cluster and the total number of found clusters NC . Fig. 3.9 shows the

necessary calculation time for hierarchical clustering with complete linkage [199, 200],

partitioning around medoids pamk [201, 202] and our effective clustering algorithm. Our

implementation outperforms both standard possibilities of data partitioning, whereas we

were able to cluster structures within a half an hour with 16GB RAM which would need

80GB of memory using the standard clustering algorithms.
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Fig. 3.9.: Benchmark comparing the effective clustering, hierarchical clustering
hClust [199, 200] and partitioning around medoids pamk [201, 202]. For
1000, 2000 and 5000 structures, there are two calculations, otherwise one point gives
the necessary calculation time in seconds for the amount of clustered structures, along
with the size of the full RMSD matrix.

Next, we discuss different applications of the clustering, then investigating the time

development over the course of the simulation and introduce the cluster distribution

entropy (CDE) [32].

3.3.2. Application

The clustering can be applied to answer different questions. If one trajectory is partitioned

individually, one obtains the best packed clustering for this specific trajectory and it

is possible to investigate the time evolution and changes in the entropy without other

perturbations getting the estimate of the sampled size by the total number of clusters.

This will be referred to local clustering.
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On the other hand, the clustering can be done once for all concatenated trajectories

involved, obtaining one complete partitioning. Afterwards, one extracts which and how

many clusters are reached by one specific single trajectory. The significant difference

is that due to the complete partitioning one can compare the results from individual

trajectories one-by-one, without deviations coming from slightly different clusterings. The

total number of clusters NC is then a good criterion to detect differences in the size of the

sampled space. This will be referred to global clustering. The disadvantage is that the

partitioning might have gaps between structures because the centroids are not constructed

to have the closest distance to each other of the individual single trajectory.

It might be advantageous to compare the results from the local and global clustering

to benefit from both approaches: the first to investigate single trajectories, the second to

compare different trajectories.

3.3.3. Cluster number NC and cluster distribution entropy SC
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Fig. 3.10.: Schematic illustration detecting convergence by the development of the
cluster number NC (left) and cluster distribution entropy SC (right).

To support the analysis of the sampling quality by Oconf and Odens, we add another

measures to tackle aspects of trajectory sampling convergence which are not treated by

the overlap. Both can be extracted from the clustering and are discussed in the following.

These two following measures were developed to treat single trajectory convergence esti-

mates. We will introduce them in the same fashion considering the development of single

trajectories but we will also enhance this picture to multiple trajectories. The relation to

the overlap measures will be done afterwards.

Cluster number NC The development of the number of clusters/centroids as a function

of time NC(t) is a further indicator of the sampling convergence (see Fig. 3.10 left).

We define two measures N local
C and Nglobal

C to indicate, if the number of clusters for an
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individual trajectory originates from the local or global clustering. For a completely

converged set of trajectories, the curves N local
C (t) must show convergence and the final

value Nglobal
C has to be the same for each trajectory. Consequently, Nglobal

C is the value

specifying the size of the accessed conformational space.

The convergence of N local
C (t) is evaluated by the numerical derivatives dNC/dt for the

relevant last parts of the simulation time. The longer dNC/dt = 0 is true, the more prob-

able it is that no further clusters are found (see Fig. 3.10 left). These slopes are calculated

by least squares regression over the last time interval of appropriately chosen sizes ∆t.

On the other hand, if almost every new timestep finds a new cluster and dNC/dt � 0,

one can be sure that the trajectory still explores new regions of the conformational space.

Additionally in the region of the simulation time, where the slopes are zero, one can

investigate the sampling by the distribution over the found clusters. The reason is that

probably all clusters are found, thus we are in the regime where the trajectory only

equilibrates density between the clusters. This is treated by the cluster distribution

entropy.

Cluster distribution entropy SC If one considers the convergence estimate of a single

trajectory, one should not rely solely on the size of the conformational space estimated by

the number of found clusters NC to define, whether a single trajectory could be trapped in

few clusters or tends to discover new conformational space. As indicated previously, this

analysis completely lacks the information of the underlying distribution. Imagine that

during the simulation the trajectory quickly finds a large number NC of different clusters,

but samples 90% of the time only one conformation. This is not detected by the number

of clusters.

Recently, this issue was addressed by the cluster distribution entropy SC [32]:

SC(t) = −
NC(t)∑
i=1

pi(t) · log (pi(t)) , (3.18)

where pi is the probability that the i-th cluster is sampled. The simulation time-dependence

t defines the current state of the simulation, i.e. the frames up to time t are assigned to

NC(t) clusters and the current distribution pi(t) is calculated by the number of frames

assigned to cluster i divided by the total number of frames collected up to the specific

simulation time t. Sawle and Ghosh [32] argue that the curve of SC(t) should remain

constant to ensure that the correct underlying probability distribution p(~r) is sampled.

This means, the trajectory equilibrates density between the clusters, while a continuous
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decreasing of the entropy signalizes a biased sampling of one energetic minimum and could

therefore indicate conformational trapping.

We again define two different quantities Slocal
C and Sglobal

C for the different underlying

local or global clustering of the specific trajectory. We investigate the constancy by the

numerical derivatives dSC/dt for the last time interval of appropriately chosen sizes ∆t.

If the sampling of the trajectories converged, Slocal
C (t) should have horizontal slopes for

constant N local
C (t) regions and simultaneously all converged Sglobal

C values should be the

same for different trajectories (see Fig. 3.10 right).

With the defined values, we are able to detect by dSC/dt� 0 that the sampled cluster

distribution is biased toward few energetic minima. On the other hand, dSC/dt � 0

can either mean that the distribution starts to converge toward the true conformational

probability distribution, or new clusters are probable to be detected.

All in all, a necessary condition to fulfill the completeness of sampling is that the number

of conformational clusters and the underlying cluster distribution entropy are converged.

But, these criteria are not a guarantee because apparent convergence can also result from

conformational trapping.

Robustness of the effective clustering The main purpose of the effective clustering

implementation is the efficiency, handling huge RMSD matrices and get a simple parti-

tioning to estimate the sampled conformational space, as mentioned above. The question

which arises is whether the results are compatible with standard clustering approaches or

whether we introduce significant differences or even artifacts. We investigate the devel-

opment of NC and SC as a function of the simulation time t and the corresponding slopes

of their linear regressions for different clustering methods to evaluate the robustness of

the effective clustering. The results for an arbitrary chosen Met-Enkephalin trajectory

are illustrated in Fig. 3.11. There are only minor differences between pamk and our ef-

fective clustering algorithm if the same amount of clusters are found. The slopes also

correspond to each other. To obtain a corresponding partitioning with hClust, we identify

clusters with a partitioning height of 0.19 nm, getting one more cluster than the effective

clustering. Then, the developments of NC and SC give similar results, especially for the

last 50 ns but have slight differences in the first 50 ns. The outcome is very similar using

another trajectory also from V3, which is not shown. The results let us conclude that the

results of the effective clustering are robust within the comparability to other clustering

methods, since all have different criteria to partition the data.
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Fig. 3.11.: Comparing results of the effective clustering, hClust [199, 200] and
pamk [201, 202] for NC (top) and SC (bottom). An arbitrary trajectory
of Met-Enkephalin starting from Met153 is chosen. The developments of NC and
SC are shown as a function of the simulation time along with the slopes from linear
regressions of the last 10, 25 and 50 ns. ”last cluster“ refers to the time interval after
the last cluster was found. Slopes mean that the corresponding value is approxi-
mately changed by the slope value within the next 100 ns. The effective clustering
was done at r = 0.13 nm, corresponding hClust at height = 0.19 nm and pamk with
18 or 19 clusters, respectively.

3.4. Combination of overlap and clustering

The overlap measures and the clustering results tackle both different aspects of the sam-

pling quality. The first classifies the self-consistency and reproducibility of the sampling,
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giving the answer whether trajectories cover the same conformational space with the

same probability density distribution. The second investigates the sampled size and the

underlying distributions. All four quantities Oconf, Odens, NC and SC must give a con-

verged result that the sampling may be complete. Nevertheless, they are not completely

independent.

One can only obtain a large Odens ≈ 1 if the conformational overlap Oconf is close to one.

The latter will result consequently in very similar values ofNglobal
C for different trajectories.

In the same way, an increasing number of clusters NC will also increase the entropy SC ,

but improved sampling at converged NC is only detectable by SC or the density overlap

Odens.

On the other hand, a converged Odens ≈ 1 will automatically yield dSC/dt ≈ 0 with

similar SC values. But this is not necessarily true for the opposite case, where different

trajectories have the same cluster distribution entropy but may be converged in separated

energy wells, i.e. low Odens. This reveals also the disadvantage of using single trajectory

convergence criteria, which do not give the information, whether for instance different

starting conformations stay separately trapped but seem to be converged individually.

One always needs to complementary use both conditions, the overlap and the clustering,

to comprehensively quantify the sampling for consistency. High values of Odens together

with convergence of NC are necessary criteria for good sampling. On the other hand,

for poor to moderate Odens, Oconf and SC yield insight if trajectories sample different

conformational regions, show trapped behavior or the simulation time is just too short

to equilibrate the density. Remember that the overlap measures quantify the sampling

between different trajectories, thus SC might give insight into one single trajectory, how

the corresponding sampling behaves during the course of the simulation.

3.5. PySamplingQuality

All previously defined quantities (Oconf, Odens, NC and SC) are implemented in a pack-

age written in Python called PySamplingQuality.py [37] (version v05.04.17-1). It also

includes the re-weighting variants defined in Eqs (3.13)-(3.17). The package allows to

quantify the sampling quality for multi-trajectory experiments using molecular dynamics

simulations cMD, aMD or sMD. It is freely available as source code at https://github.

com/MikeN12/PySamplingQuality. There is also uploaded a simple tutorial to run the

analysis.

It contains different modules which are grouped in three different categories: Overlap,
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Clustering and Visualization (see Fig. 3.12). The necessary (and tested) versions of

different programs are given in Table 3.1. There are two different possibilities to run one

Overlap Clustering

Visualization

Generate_RMSD_Matrices()

determineR_using_RMSD_distributions()

Generate_EventCurves()

Calc_Overlap()

Generate_Clustering()
Merge_Clustering_different_Thresholds()
Generate_Centers_GLOBAL_singles()
Generate_CDE_to_File()
Generate_Slope_Error()

Plot_ClusterProfile()

Plot_HeatMap_1vs1()
Plot_HeatMap_as_Dendro()
Plot_Overlap_VS_Time()
Plot_Overlap_VS_Cluster()

Plot_Overlap_VS_Threshold()
Plot_Slope_Error_Plateau_NrCust()

Plot_ClusterSize_vs_Time_GLOBAL()

Fig. 3.12.: Modules of PySamplingQuality.py.

Table 3.1.: Required programs and versions to run PySamplingQuality.py .

program version

Python 2.7.12 [36]
Anaconda 2.4.1 (64-bit) [203]
Matplotlib 1.5.1 [204]

scipy 0.17.0 [205]
numpy 1.10.4 [206]
Gromacs v4.6; v5.1 [94]
Amber AmberTools14 [46]

of the modules: Either one generates configuration files, which are then submitted to the

module with all parameters

python PySamplingQuality.py -module GenerateIn -in MODULE -out CONFIG.in

python PySamplingQuality.py -module MODULE -in CONFIG.in

or directly in IPython [207] or a corresponding jupyter notebook [208] by first importing

the specific module and submit the necessary options :
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from PySamplingQuality import MODULE

MODULE(options)

The functionality and the specific modules will briefly be discussed in Appendix C and

can be accessed in more detail in the tutorial which can be found in https://github.com/

MikeN12/PySamplingQuality/blob/master/PySamplingQuality_Tutorial.ipynb. Ev-

ery module has its own description page called doc-string in Python, containing examples,

descriptions and default values. A schematic workflow is illustrated in Fig. 3.13. Starting

from 3D structures of a system, one has to generate two to multiple trajectories. These

are then submitted into PySamplingQuality.py, where first the RMSD matrices can be

generated. These are the standard input for the overlap and clustering measures, where

the results can either be visualized independently or one can use both outcomes for com-

prehensive studies. All results in chapter 4 are done with our tool, showing the application

and impact for quantitative assessment of MD sampling quality for flexible molecules.
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4. Results and discussion

The central topic of this thesis is the quantification of the sampling quality of MD sim-

ulations for flexible biomolecules. What results can be obtained using a multi-trajectory

approach and enhanced sampling techniques (aMD and sMD)? This will be answered

in a comprehensive study using extensive molecular dynamics simulations with different

conditions and analyses.

We start with reporting the starting structures for the two studied systems: the small

pentapeptide Met-Enkephalin and the large flexible V3-loop. Then, we discuss the pa-

rameters and the setup for the different simulations and finally investigate the influence

of the different starting conformations.

Furthermore, since our analysis depends on the threshold r, we ask ourselves, whether

there is an optimal value for this resolution parameter.

Then, the sampling quality is assessed by the overlap analysis Oconf and Odens, the size

of the (sampled) conformational space NC and the cluster distribution entropy SC , also

combining all criteria for different conditions. Additionally, we investigate the effects of

re-weighting and enhanced sampling algorithms, discussing also the effects of the overlap

on thermodynamically relevant observables.

Several results will be shown as boxplots which are defined in Appendix B.

4.1. Starting structures and setup

As discussed in section 2.2, the sampling quality from MD runs benefits from multiple

independent simulations with different starting conditions. Only if the simulations are

independent from the starting conditions, one can obtain a complete sampling. One way

to test this issue is to use totally different starting conformations. Then, it is less probable

that the corresponding trajectories coincidentally sample the same conformational space

just because they are trapped in the same local minimum. Moreover, both trajectories

must at least cross the energy barrier between the two starting conformations and suf-

ficiently sample both potential wells to give a reproduced picture (see Fig. 2.7). Thus,

we aim first to generate two independent starting structures for each of the two studied

systems.
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4.1.1. Starting structures of Met-Enkephalin

Met79 Met153

YGGFM
Fig. 4.1.: The two starting structures of Met-Enkephalin Met79 (PDB entry

1plw [124]) and Met153 (PDB entry 1plx [124]) with their amino acid
sequence. The structures are shown in sticks representation, coloring carbons, oxy-
gens, hydrogens and nitrogens in green, red, white and blue, respectively

The first studied system is Met-Enkephalin (see subsection 2.3.1). There are two NMR

model ensembles with the PDB entries 1plw and 1plx [124]. Both contain 80 different

models each. As starting structures, we select the two with the largest RMSD = 0.23 nm

using Eq. (3.1) after optimal superposition. We call these two starting structures Met79

andMet153 respectively (see Fig. 4.1) [37]. TheN - and C-terminal are capped with acetyl

(ACE) and N-methylamine (NME) möıeties added by PyMol [209]. Uncharged ACE and

NME termini are often used to cap the truncated peptide bonds at the terminal ends of a

protein or peptide to help to stabilize the structure during MD simulations [210, 211]. The

starting structures are not further optimized since this step will be done in the preparation

stage of the MD simulation.

4.1.2. Starting structures of V3

The second studied system is the third variable loop V3 of the glycoprotein gp120 coming

from HIV-1 introduced in subsection 2.3.2. We discussed the conformational flexibility

and sequence variability, which made it difficult to obtain a various set of crystal struc-

tures for the same sequence. In fact, there are two crystal structures of gp120 with the full

V3-loop with the PDB entries 2b4c [15] and 2qad [16] with completely different conforma-

tions but different sequences. To be able to investigate the MD sampling from different

conformations of the same molecule, we generated starting structures from homologous

modeling using MODELLER v9.13 [187]. The general workflow is described in section 2.4.

We want to emphasize that the main goal is to generate different starting conformations.

In general, loop modeling is very difficult (for further reading, see for example chapter 13

of Ref. [41]) and needs a step-by-step optimization to give a good physical model. Such

an optimization is done in the preparation stage of the MD simulation discussed in the
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next subsection. Moreover, if the starting models are not wrong regarding the modeling

scores, the more different the two starting structures are, the clearer is the message if both

reproduce the same results. This is true, because the trajectories must probably overcome

multiple energetic barriers, which is commonly the case for a large rugged flexible system,

to sample the conformational space with the same probability density p(~r).

We selected a V3-loop sequence (R5-tropic) from the Los Alamos HIV database with

the GenBank entry AF112548 (http://www.hiv.lanl.gov/) and amino acid sequence

CTRPNNNTRKGIHIGPGRTFYTTGEIIGDIRQAHC .

As templates, we considered three different 3D structures using a Blastp [192] alignment

search in the protein database [183] reported in Table. 4.1: 2qad [16], 2b4c [15] and

1ce4 [182]. The details for these templates are given in subsection 2.3.2 and Fig. 2.13.

All these templates have an adequately large sequence similarity compared to our chosen

molecule, which is necessary to obtain a good homologous model.

Table 4.1.: Template specifications for V3 showing the sequence similarity, length
and the E-value after Blast [192] searching. The latter describes the random
background noise to find a similar score simply by chance in the protein database.

PDB entry chain length similarity [%] E-value

2qad A 35 89 4 · 10−16

1ce4 A 35 94 2 · 10−18

2b4c G 35 91 5 · 10−17

We decided to do two different modelings to obtain two different starting structures:

First, we applied a single template modeling using the latest crystal structure 2qad [16].

The first resulting starting structure from the modeling process is called V3a. The struc-

ture of 2qad has a special narrow form compared to the other templates and we aimed to

retain this shape. Second, we did a multi-template modeling considering all three different

template structures. The second resulting starting structure from the modeling process is

called V3b. The reason was to obtain a completely different starting conformation based

on the structural flexibility of different templates. For both modelings we generated five

different candidates and selected the two starting structures V3a and V3b with the best

modeling scores.

The single template model V3a was obtained by a Blastp [192] alignment and the

automodel function of MODELLER [187]. For the multi-template model V3b, we com-

pared the scores of two different modeling stages: Again, we first obtained a Blastp [192]
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alignment generating models with the automodel function. Second, we made models us-

ing additionally structure alignments before the automodel function (see the workflow

in Fig. 2.14). These structure alignments superimpose the templates based on RMSD

differences using the default input of the salign function [186] introduced in section 2.4.

The latter procedure leads to better scores of the models, which were classified by the

DOPE, GA341 and z-score (see section 2.4), shown in Table 4.2.

The two final starting structures V3a and V3b are shown in Fig. 4.2 [37]. The loop

is closed by a disulfide bridge between the two terminal Cysteines, the termini are again

capped with ACE and NME groups to stabilize the truncated protein and the Histidines

were protonated on the second epsilon nitrogen Nε2.

V3a V3b

CTRPNNNTRKGIHIGPGRTFYTTGEIIGDIRQAHC

Fig. 4.2.: The two starting structures of V3 V3a and V3b with their amino acid
sequence. The left structure was generated by single template modeling, the right
with multiple template modeling using MODELLER v9.13 [187]. The V3-loops are
shown in sticks representation, coloring carbons, oxygens, sulfurs and nitrogens in
green, red, yellow and blue, respectively, hydrogens are not shown.

Table 4.2.: Modeling scores for the single-template model V3a and multi-template
model V3b. Bold numbers correspond to the final models taken as starting struc-
tures. GA341 ranges from [0, 1], whereas models should only be considered for
values > 0.6. The DOPE and z-score marks better models the lower their score is.

single-template V3a multi-template V3b

Model DOPE GA341 z-score DOPE GA341 z-score
1 -1336.309 0.659 0.550 -1021.500 0.979 1.187
2 -1313.284 0.728 0.596 -1080.004 0.989 1.068
3 -1202.314 0.455 0.821 -1061.942 0.977 1.105
4 -1343.775 0.836 0.535 -1192.885 0.993 0.840
5 -1260.741 0.868 0.703 -1223.715 0.954 0.778
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4.1.3. Simulation setup

All preparations and simulations of Met-Enkephalin and V3 were done with the AMBER14

[46] software and the ff99SB-ILDN force field [52], whereas the production phase was ac-

celerated using GPUs with the CUDA implementation [212]. All theoretical details are

introduced in chapter 2. For the simulation steps, lengths of bonds involving hydrogen

atoms were constrained with the SHAKE algorithm [74], allowing to use an integration

step of 2 fs. A 1 nm cut-off was applied to the non-bonded interactions, whereas long-range

electrostatics were computed with PME [61]. Using the AMBER14 program TLEAP, hy-

drogens were added to the experimental structures according to the ff99SB-ILDN force

field. We used a multistage preparation protocol comparable to Ref. [213] to refine the

homologous starting structures on the one hand and also optimize possible unfavored

contacts introduced in the crystallization process of the experimental structures. The

following results refer to investigating every 100 ps of each trajectory as frames to keep

the size of RMSD matrices and event curves on a moderate level. We tested the choice

of different frequencies between 10 to 300 ps for arbitrarily chosen trajectories of V3 and

Met-Enkephalin, which produced comparable overlap values. For convenience, we will

use every 100 ps as intermediate frequency because the generated trajectory lengths are

a multiple of this value.

System Preparation The system preparation is done in the following seven stages [37].

All energy minimizations are achieved by 15000 steps of steepest descent followed by 15000

steps conjugate gradient setting the convergence criterion to≈ 0.02 kCal

molÅ
. All heating steps

are done in the NVT ensemble from an initial temperature of 0 K to 300 K over a period

of 1 ns using the Langevin thermostat [60] option with a collision frequency of 2 ps−1.

A constant pressure of 1 atm is obtained using the NPT ensemble over 1 ns with the

Berendsen barostat [57] and the same Langevin thermostat.

1. The molecule is firstly energetically minimized in vacuum after the ACE,NME at-

tachment. In the case of the homologous models, this is the first step to optimize

possible unfavored configurations.

2. Afterwards, periodic boundary conditions are applied with a truncated octahedron

box, where the minimal distance between the box boundary and the molecule is set

to 1.1 nm. Then, TIP3P water molecules [65] are inserted using TLEAP. In the

case of V3, the system is neutralized with three chlorine ions Cl− replacing water

molecules.
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3. For the full system, only the water molecules are energetically minimized with po-

sition restrained molecule atoms, at first. This shall resolve large forces between

the molecule and the rigid water bodies which are placed into the box around the

molecule.

4. Then, the full system is energetically minimized with released molecule atoms to

allow the system to come to its favored (local) energy minimum.

5. Now, the water and side-chain atoms of the molecule are relaxed in 1 ns NVT heating

and 1 ns NPT constant pressure simulations with harmonically position constrained

peptide heavy atoms using a restraining weight of 10 kCal

molÅ2
.

6. This is followed by another 1 ns NVT heating and 1 ns NPT constant pressure runs

without position constraints. The system should now be able to proceed from the

local state introduced by the starting point. This stage is now used as the starting

point of the simulation.

7. Hence, the system is now finally energetically minimized, followed by a heating and

equilibration to the desired values of 300 K at 1 atm over a 1 ns NVT and 1 ns NPT

simulation.

The MD productions of cMD, aMD or sMD runs are simply continuations in the NPT

ensemble, whereas every 10 ps are stored. We generated several trajectories for the combi-

nation of the three sampling algorithms and two starting structures. For Met-Enkephalin,

we simulated 1 × 100 ns, 4 × 200 ns and 3 × 1000 ns for each of the six combinations,

obtaining in total 48 trajectories. For V3, we generated in total 60 different trajectories,

i.e. for each combination 3× 100 ns and 7× 200 ns.

For aMD simulations, we applied the dual boost potential following Eq. (2.16). The

parameters for EP , ED, αP and αD are given in Tables. 4.3-4.4.

The sMD simulations are all done with a scaling factor of λ = 0.7 following Eq. (2.24).

For all simulations, we use different velocity seeds, also in the preparation steps, to

avoid synchronization effects between trajectories and generate independent results.

4.1.4. Conformational analysis after MD preparation

We use a multistage preparation of the starting structures for refinement as described

before. It is therefore interesting to investigate the impact of this preparation. This is

done by monitoring the RMSD values involving all atoms of the corresponding protein
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Table 4.3.: Parameters for the aMD simulations of Met-Enkephalin. They follow
Eqs. (2.17) for the eight different velocity seeds and two different starting structures
Met79 and Met153. All parameters are given in kCal/mol.

Met79 [kCal/mol] Met153 [kCal/mol]

Seed EP ED αP αD EP ED αP αD

1 -14012.610 71.991 753.6 5.6 -14365.963 72.310 772.32 5.6
2 -14012.674 72.126 753.6 5.6 -14366.651 72.098 772.32 5.6
3 -14013.114 72.382 753.6 5.6 -14366.175 72.120 772.32 5.6
4 -14012.920 72.256 753.6 5.6 -14366.655 72.055 772.32 5.6
5 -14012.852 72.308 753.6 5.6 -14365.911 72.074 772.32 5.6
6 -14013.239 72.211 753.6 5.6 -14366.255 72.310 772.32 5.6
7 -14012.854 72.322 753.6 5.6 -14366.620 72.203 772.32 5.6
8 -14012.777 72.246 753.6 5.6 -14366.206 71.853 772.32 5.6

Table 4.4.: Parameters for the aMD simulations of V3. They follow Eqs. (2.17) for the
ten different velocity seeds and two different starting structures V3a and V3b. All
parameters are given in kCal/mol.

V3a [kCal/mol] V3b [kCal/mol]

Seed EP ED αP αD EP ED αP αD

1 -63915.873 531.359 3395.52 29.6 -64985.331 535.238 3452.16 29.6
2 -63910.738 532.779 3395.52 29.6 -64982.185 533.748 3452.16 29.6
3 -63912.494 535.902 3395.52 29.6 -64978.640 532.316 3452.16 29.6
4 -63915.873 531.359 3395.52 29.6 -64985.331 535.238 3452.16 29.6
5 -63915.873 531.359 3395.52 29.6 -64985.331 535.238 3452.16 29.6
6 -63915.873 531.359 3395.52 29.6 -64985.331 535.238 3452.16 29.6
7 -63912.823 534.132 3395.52 29.6 -64978.720 535.256 3452.16 29.6
8 -63910.143 531.269 3395.52 29.6 -64982.629 534.914 3452.16 29.6
9 -63916.140 533.627 3395.52 29.6 -64980.097 534.822 3452.16 29.6
10 -63916.858 533.254 3395.52 29.6 -64986.086 529.319 3452.16 29.6

after optimal superposition to the backbone atoms between the structures of the different

trajectories in the different preparation steps. For Met-Enkephalin, we obtain 16 different

structures, which are used to generate 16 cMD, 16 aMD and 16 sMD trajectories. For

V3, we have 20 different structures for the 20 cMD, 20 aMD and 20 sMD trajectories.

It is clear that in the beginning, there are only two different starting structures by

definition for both molecules separated by a certain RMSD value. Hence, we monitor

the following steps for Met-Enkephalin and V3, respectively, in Figs. 4.3-4.4: (1) After

the vacuum, water with restrained protein and complete minimization, (2) after the first
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Fig. 4.3.: RMSD values between structures after MD preparation of Met-
Enkephalin. All different 16 (two starting structures and 8 velocity seeds) trajec-
tories of Met-Enkephalin are prepared for MD production using the following steps:
(Top left) After the fourth step, where the system is multiple times energetically
minimized. (Top right) after the first 1 ns heating and 1 ns constant pressure simula-
tions with position constrained protein. (Bottom left) After the 1 ns heating and 1 ns
constant pressure simulations without position constraints. (Bottom right) After the
final preparation just before the production phase. The minimal to maximal RMSD
values ranges from [0, 0.63] nm.

heating and constant pressure equilibration with position constrained backbone heavy

atoms, (3) after the unconstrained NVT and NPT simulation and (4) after the final

minimization and preparation to 300 K and 1 atm.

It is expectable that after the first two steps, there are only minor changes in the

structures compared to each other for both molecules. Afterwards, there should be a
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Fig. 4.4.: RMSD values between structures after MD preparation of V3. All different
20 (two starting structures and 10 velocity seeds) trajectories of V3 are prepared for
MD production using the following steps: (Top left) After the fourth step, where
the system is multiple times energetically minimized. (Top right) after the first 1 ns
heating and 1 ns constant pressure simulations with position constrained protein.
(Bottom left) After the 1 ns heating and 1 ns constant pressure simulations with-
out position constraints. (Bottom right) After the final preparation just before the
production phase. The minimal to maximal RMSD values ranges from [0, 1.22] nm.

significant change between the different structures.

For Met-Enkephalin, the first unconstrained NVT and NPT simulations generate devi-

ations between the configurations of the same initial structures. But the RMSD ≈ 0.5 nm

is maintained between the configurations of the different initial structures (see Fig. 4.3

bottom left). After the final minimization and the two equilibration processes (see Fig. 4.3
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bottom right), the structures also lose the similarity if they came from the same initial

structure. Thus, we obtain almost 16 totally different configurations for the subsequent

MD productions where they might have lost the bias from the two starting structures.

For V3, the behavior is different after the unconstrained equilibration step, illustrated

in Fig. 4.4. First of all, the two starting structures V3a and V3b have an initial deviation

of RMSD ≈ 0.5 nm. This deviation is increased to a value of RMSD > 0.6 nm during

the preparation steps between the structures coming from the one and structures coming

from the other initial structure. The same deviation can be detected between structures

11 to 20, which originate from V3b. In contrast, the deviations between structures 1 to

10 (coming from V3a) are lower, but are also significantly increased compared to the

initial state (Fig. 4.4 bottom left). The overall behavior is not changed after the final

minimization and equilibration (see Fig. 4.4 bottom right): The final structures coming

from V3a are more related to each other with an average RMSD ≈ 0.5 nm. Thus, the

structure V3a seems to be more conserved and the corresponding configurations stay

closer to this initial model after the full preparation. The other structures coming from

V3b have large deviations of up to RMSD ≈ 1 nm between all other structures, losing the

information about their origin. It will be interesting, if this behavior will be detectable

in the production step.

4.2. Threshold parameter r

In subsection 3.1.2, we introduced the threshold r which is used across all analyses,

Oconf, Odens, NC and SC . It can be understood as a resolution: the smaller r, the more sim-

ilar must be two different structures to be considered the same. Therefore, the following

two questions arise: How can we detect reasonable values for r? And is there an optimal

choice for r? Since r is based on RMSD values between two (superimposed) structures, it

is a good strategy to investigate the distributions of the RMSD values of different single

and trajectory combinations. Second, we will analyze the number of found clusters NC

as a function of the threshold r trying to identify an optimal value for the threshold.

4.2.1. RMSD distributions

The RMSD distributions of every single trajectory and all pairs of trajectories give in-

sight about the range of relevant threshold parameters r. Furthermore, one can extract

the critical points rmin, rmax (see subsection 3.1.2) between which the overlap measures

Oconf, Odens range from zero to one. On the other hand, the RMSD distributions of single
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Fig. 4.5.: RMSD distributions of Met-Enkephalin trajectories. Curves refer to all
42 × 200 ns trajectories from cMD, aMD and sMD sampling, showing the mini-
mal and maximal RMSD values obtained from all histograms of 200 bins. aMD and
sMD results are not re-weighted. Left: RMSD values between all pairs of frames
in each single trajectory. Middle: RMSD values between all pairs of frames from
each two-trajectory combinations. Right: The RMSD distributions of all combined
single trajectories (blue), all combined pairs of trajectories (red) and all combined
trajectories (black); red vertical lines enclose 99% of the area below the distribution
of all combined trajectories.
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Fig. 4.6.: Re-weighted RMSD distributions of Met-Enkephalin trajectories. Curves
refer to all 42 × 200 ns trajectories from cMD, aMD and sMD sampling, showing
the minimal and maximal RMSD values obtained from all histograms of 200 bins.
aMD and sMD results are re-weighted using MF(1) at r = 0.11 nm. Left: RMSD
values between all pairs of frames in each single trajectory. Middle: RMSD values
between all pairs of frames from all single two-trajectory combinations. Right: The
RMSD distributions of all combined single trajectories (blue), all combined pairs of
trajectories (red) and all combined trajectories (black).

and concatenated trajectories can already reveal first tendencies of the underlying sam-

pling. For instance, if two independent trajectories sample the same free energy minimum,

they will have a monomodal RMSD probability distribution, which will lead to a peak

at low RMSD values according to the small structure deviations in the potential well. If

two independent MD runs result in sampling of two distinct free energy minima, one can

expect a bimodal RMSD probability distribution, where the two peaks refer on the one

hand to the small structure deviations in the corresponding different energy minima at

small RMSD values and on the other hand to the deviations coming from the structure
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Fig. 4.7.: RMSD distributions of V3 trajectories. Curves refer to all 42 × 200 ns tra-
jectories from cMD, aMD and sMD sampling, showing the minimal and maximal
RMSD values obtained from all histograms of 200 bins. aMD and sMD results are
not re-weighted. Left column: RMSD values between all pairs of frames in each single
trajectory of all cMD (top), aMD (middle) and sMD (bottom) runs. Middle column:
RMSD values between all pairs of frames from each two-trajectory combinations of
all cMD (top), aMD (middle) and sMD (bottom) runs. Right: The RMSD distri-
butions of all combined single trajectories (blue), all combined pairs of trajectories
(red) and all combined trajectories (black); red vertical lines enclose 99% of the area
below the distribution of all combined trajectories.

deviations between both energy wells at large RMSD values.

Hence, the RMSD distributions give a first information about the quality of the sam-

pling and are used as a first classification in the tool PySamplingQuality.py [37]. Here,

we will use 200 bins to generate the discrete RMSD distributions.

Since we use two enhanced sampling algorithms aMD and sMD, which distort the en-

ergy landscapes and lead to biased probability distributions p(~r), the RMSD distributions

of these trajectories will lead to wrong frequencies and must be re-weighted to yield the

correct ensembles. In detail, since the RMSD values are defined by two simulated frames,
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Fig. 4.8.: Re-weighted RMSD distributions of V3 trajectories. Curves refer to all 42×
200 ns trajectories from cMD, aMD and sMD sampling, showing the minimal and
maximal RMSD values obtained from all histograms of 200 bins. aMD and sMD
results are re-weighted using MF(1) at r = 0.35 nm. Left column: RMSD values
between all pairs of frames in each single trajectory of all cMD (top), aMD (middle)
and sMD (bottom) runs. Middle column: RMSD values between all pairs of frames
from each two-trajectory combinations of all cMD (top), aMD (middle) and sMD
(bottom) runs. Right top: RMSD values between all pairs of frames from each
two-trajectory combinations. Right bottom: The RMSD distributions of all combined
single trajectories (blue), all combined pairs of trajectories (red) and all combined
trajectories (black).

they must be multiplied by the weights from both corresponding frames. But these weights

are generated in later stages of the calculation, based on the event curves as a function

of the simulation time, see subsection 3.2.4. This is unproblematic for the extraction of

relevant r-values together with rmin and rmax, but the comparison of biased and unbiased

distributions must be done with care. More relevant is the comparison between trajecto-

ries with the same/similar acceleration. Thus, we will discuss the non-weighted case first.

As brief outlook, we show the re-weighted distributions for the first mean-field step MF(1)
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for relevant thresholds r discussed in later sections.

For Met-Enkephalin, the (non-weighted) RMSD distributions are shown in Fig. 4.5.

All single trajectories, all pairs of trajectories and the combined case of all concatenated

trajectories show (almost) the same monomodal RMSD distributions in the range of about

0.01 nm to 0.45 nm with the maximum at 0.17 nm. One possible explanation for this is

a good sampling already within single 200 ns cMD trajectories, which seems not to be

improved by accelerated sampling methods. It is very interesting that the biased aMD

and sMD trajectories show the same bell shaped distributions. As arbitrary choice, we use

the range of 99% of the area below the RMSD distribution of all combined trajectories to

extract values for r
(Met)
min = 0.0597 nm and r

(Met)
max = 0.3420 nm as minimum and maximum

for the threshold values. The reason to limit the range to 99% is to obtain an adequate

region for the integral of the averaged overlap from Eq. (3.7), because too large r values

trivially lead to an overlap of one and therefore will overestimate the average overlap

Ωconf and Ωdens. Interestingly, the re-weighted distributions of aMD and sMD trajectories

(MF(1) at r = 0.11 nm following Eq. (3.13) and (3.16)), illustrated in Fig. 4.6, show almost

no difference to the non-weighted case. This underlines the indication of good sampling of

cMD trajectories, whereas the detailed analysis of the sampling will be done in the next

sections.

For the non-weighted V3 experiments shown in Fig. 4.7, the results are completely

different. In contrast to Met-Enkephalin, V3 shows a set of highly diverse RMSD distri-

butions with multimodal shape already within single cMD trajectories (see Fig. 4.7 top

left). Remarkably, the combination of two trajectories leads in all cases to a significant

shift of RMSD values by about 0.2 nm to larger values (see Fig. 4.7 middle column). This

is also visible in the combined case of all single, all pairs and all trajectories in the right

panel of Fig. 4.7. One explanation of this behavior might be that many single trajecto-

ries sample different regions of the conformational space in contrast to Met-Enkephalin.

This shift between the single trajectory and pair RMSD distributions already tells a lot

about a possible threshold value r: For instance, for a reference frame κ coming from

trajectory l and a value of r = 0.35 nm, the normalized number of events ẽr,κl Eq. (3.10)

might contain a large amount of structures of trajectory l, but a small amount of struc-

tures of trajectory j 6= l with ẽr,κl & ẽr,κj, comparing the left and middle columns of

Fig. 4.7. Again, we use the arbitrary 99% of the area below the RMSD distribution of

all combined trajectories to set r
(V3)
min = 0.2708 nm and r

(V3)
max = 1.2840 nm as minimal

and maximal values. Comparing the RMSD distributions of cMD with aMD or sMD, the

two latter have smaller densities at low RMSD and larger at higher values, which can
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be expected from sampling methods that drive the system out of local minima. This is

modified for the re-weighted case illustrated in Fig. 4.8 (MF(1) at r = 0.35 nm following

Eq. (3.13) and (3.16)): For aMD, some trajectories from the second starting structure

have steep peaks at small RMSDs showing the sampling of multiple structures in few

minima and also large steep peaks at large RMSD values, which might originate from

different energy minima. Remarkably, the steep peak at large RMSD comes from only

one trajectory starting from V3a, thus both starting conformations behave differently.

Such peaks may indicate unconverged aMD sampling which then leads to errors in the

re-weighting discussed in subsection 2.2.3. On the other hand, the applied re-weighting

for these distributions assumes that one discrete RMSD value is sampled with a higher

probability. This assumes that (two) structures are multiple times identically reproduced

which will rarely be the case and is an approximation. Such a discrete assumption will

automatically lead to very large peaks in the RMSD distribution instead of a smooth bell

shaped curve. For sMD sampling, there is a minor effect coming from the re-weighting

which shifts the RMSD distributions toward lower RMSDs similar to cMD. Because sMD

is based on population re-weighting, which re-scales the distributions by an exponent of

1/λ discussed in subsection 2.2.3, these large irregular peaks do not appear.

The effect of re-weighting and the quantitative assessment of the sampling quality will

be investigated in the next sections.
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4.2.2. Is there an optimal r?

It is reasonable trying to extract an optimal neighboring threshold r. In theory, ideal

ergodic sampling (t → ∞) will give the same overlap values for all r, because the proba-

bility density functions p(~r) are the same for different trajectories. On the other hand, r

sets the resolution of the analysis. This means if r is set to too small values, the number

of found clusters tends toward the number of single frames because every structure defines

its own cluster. The other extreme of a too large r means, almost everything will end up

in one single cluster because every structure is considered the same.

For this reason, we analyze the number of found clusters Nglobal
C as a function of dif-

ferent relevant threshold parameters r [37]. Since we want to compare different results of

different trajectories, we use here the global clustering defined previously using all 200 ns

trajectories of the corresponding molecule. The results of both molecules are illustrated

in Fig. 4.9 in log-log plots. One can see that the functions follow a power-law distribution

Nglobal
C (r) ∝ r−β, which is a characteristic property of a scale-free system. This is a strong

indication that there is no optimal choice for r but the clustering follows a same random

walk at different resolutions [214].

There are the following relevant outcomes which should be mentioned. For Met-

Enkephalin, all fits are in agreement with an exponent of β ≈ −4.7 where all values

lie in their confidence intervals of 95%. This is true for the concatenated case as well as

for the single sampling algorithms. Additionally, there is almost no deviation in the clus-

ter numbers between different trajectories and both starting structures behave the same

(see Fig. 4.9 left). For V3, there is a clear difference between the concatenated and the

other cases. Whereas for the combined case of 42 trajectories, the exponent β ≈ −4.26

is compatible with Met-Enkephalin, the numbers of clusters Nglobal
C of single trajectories

are much smaller and behave differently. This leads to a possible conclusion that different

groups of trajectories explore different parts of the conformational space. For cMD and

sMD (Fig. 4.9 (a),(c) right), the deviations are similar, leading to two different fits for

the two starting conformations. The behavior between both initial structures of aMD

(Fig. 4.9 (b) right) almost leads to the same exponent. Nevertheless, all exponents lie in

their 95% confidence intervals for the single trajectory numbers, although the numbers of

found clusters are different.

It is very interesting that regarding the clustering, the choice of the neighborhood

threshold r seems to have no preference, which is also true for the optimal case of ergodic

sampling for the overlap measures. Therefore, one needs to select a broader range of

r-values to screen through different resolutions or set the threshold r to a value reflecting
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the system of interest. With smaller r, one investigates different aspects of a system

compared to larger r values.
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Fig. 4.9.: The number of found clusters Nglobal
C as a function of the threshold r

for Met-Enkephalin (left four panels) and V3 (right four panels) in log-

log plots. (a) Nglobal
C of all 42 × 200 ns concatenated trajectories of the respective

molecule for the combination of both starting structures and three sampling methods.
The other panels show boxplots for single trajectory Nglobal

C of both starting struc-
tures (red and black) and sampling method cMD (b), aMD (c), and sMD (d). The

lines are fits of Nglobal
C (r) = αr−β with fit parameters α, β, whereas the exponents β

are given with their 95% confidence intervals. The figure is taken from Ref. [37].

4.3. Insert: Weights for the correction of enhanced

sampling

In subsection 2.2.3, we introduced the necessary re-weighting for the biased ensembles

sampled by aMD and sMD. We also discussed the possible sources of error and the up-

coming difficulties. Still today, it is subject of active research [115, 118, 122, 215] and

not solved for general cases. Nevertheless, it is critically needed to obtain the unbiased

results. For our purpose, the re-weighting is slightly different from the standard procedure

of a discrete projection onto a N -dimensional space by binning the results into disjunct

partitions. For this reason, we defined the mean-field treatment in subsection 3.2.4.

In this insert, we want to discuss and show the influences of different re-weighting

schemes to correct the events and overlap obtained from aMD/sMD runs. First of all, the

weights are explicitly r-dependent, i.e. each microstate is linked to the chosen resolution,

similar to the binning approach of the McCammon group [112, 116, 117]. For a threshold

of r ≈ 0.0 nm, the mean-field solution will converge in one step to the result of the
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standard exponential re-weighting Exp, because the average
〈
∆V (n)

〉
r,αl

of Eq. (3.14) will

contain only the frame α itself. This assumes that every frame α is a separate microstate

and possible errors due to energy fluctuations cannot be decreased by averaging frames

within a microstate. A threshold of r ≥ rmax will lead to a uniform
〈
∆V (n)

〉
r,αl

for all α.

Hence, the resolution will be very bad.

The first point of interest is the convergence behavior, whether our mean-field approach

converges for the given trajectories coming from the two different flexible molecules. For

both molecules, we chose arbitrarily four 200 ns-trajectories of different starting struc-

tures and both combinations of enhanced sampling methods, together with four different

thresholds r. In Table 4.5, there are the necessary steps to reach the convergence cri-

terion that the difference of each weight is < 10−6 for the next iteration step. In our

algorithm, weights are considered unitless for aMD (β ·∆V., Eq. (3.13)) and sMD (N1/λ
. ,

Eq. (3.17)), whereas the exponential function for aMD weights is applied after the mean-

field iteration. One can see that convergence is consistently reached much faster for sMD

trajectories, independent of the starting conformation or even the molecule. There are

two reasons for this behavior: First, sMD might sample the conformational space less

aggressive compared to aMD, because the potential is simply scaled down. Second, there

are no errors coming from energetic fluctuations, thus one does not rely on the precision

of the measured boost potentials. This is different for the aMD weights. aMD weights

suffer from the two sources of errors discussed in subsection 2.2.3. Thus, it is expectable

that, for the smaller molecule, the aMD trajectories are much closer to the convergence

regime than in the case of aMD runs of V3 for the same simulation time. This was al-

ready indicated in the RMSD distributions in subsection 4.2.1. Nevertheless, all weights

converge fast, which is shown in Table 4.5.

The weights for the 2000 frames of the 200 ns-trajectories for both molecules and

aMD/sMD sampling are illustrated in Figs. 4.10-4.13. For the aMD weights, we show

w
(aMD)
r,αl following Eq. (3.13) for different re-weighting schemes Exp, McL up to 10th order

and MF for different steps, introduced in subsection 3.2.4.

For Met-Enkephalin at r = 0.11 nm (Fig. 4.10), there is a clear difference between

Exp, McL and MF. With Exp re-weighting, there are only very few frames which hold

almost the full weight of the system, which is only slightly changed using the Maclau-

rin approximation. The weights of the mean-field approach are much smaller and dis-

tributed between many frames, due to the averaged boost potential across one microstate

or the r-neighborhood, respectively . Interestingly, further steps seem to represent quickly

the same behavior but the amplitudes are changed, which is especially true for Met79
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Table 4.5.: The number of steps needed to reach the convergence criterion that
the difference of each weight is < 10−6 for the next step. The steps are
shown for different thresholds r for (arbitrary chosen) two aMD and two sMD
200 ns-trajectories of Met-Enkephalin and V3 from different starting structures
Met79,Met153 and V3a,V3b, respectively. The last two lines show the calculation
time on a single state of the art CPU for the weight generation of all weights on
their corresponding columns. The times for the first step MF(1) and the converged
MF(∞) are reported.

aMD sMD aMD sMD

r [nm] Met79 Met153 Met79 Met153 r [nm] V3a V3b V3a V3b
0.08 680 652 21 20 0.15 4617 2545 22 21
0.10 254 201 22 21 0.25 26634 7067 23 22
0.11 171 89 22 21 0.35 13393 1696 23 22
0.13 90 83 22 22 0.45 1402 340 23 22

MF(1) [s] 0.13 0.13 0.05 0.05 0.05 0.14 0.07 0.05
MF(∞) [s] 13.9 12.0 1.11 1.04 570.3 141.9 1.54 1.15

(Fig. 4.10 left). It is remarkable that the average over all weights stay almost constant,

which is not shown. The weights for the other thresholds r = 0.1 nm and r = 0.13 nm

show approximately the same result, whereas r = 0.08 nm seem to be so small that the

weights go toward the regime of Exp.

The aMD weights of V3 for r = 0.35 nm, illustrated in Fig. 4.11, show a completely dif-

ferent behavior. The results of Exp and McL are almost the same as for Met-Enkephalin.

But the first mean-field steps MF(1) of V3a and V3b have also very large peaks with

similar order of magnitudes as the Maclaurin expansion. For more mean-field steps, the

weights show irregular shapes with different monotonous behavior for different starting

conformations for increasing frames. The frames correspond to increasing simulation

times (Fig. 4.11). Both weight curves seem to converge to a straight line after a certain

amount of simulation time. But this is not the case, only the magnitudes of weights

of later frames are much smaller than in the beginning (see Fig. 4.12 bottom panels).

Thus, the mean-field approximation does not only smooth the weights, but if there are

r-neighborhoods with few frames and large boost potential energies, this shape is still

represented by the weights. In contrast, the McL weights show the hierarchical behavior,

where few frames have much larger weights than the rest, if subparts of the trajectory are

inspected (Fig. 4.12 top panels). This is different for the mean-field approach (Fig. 4.12

bottom panels), where different frames have relatively different weights representing the

underlying conformational landscape. It has to be mentioned that the large peaks in
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MF(1) are unproblematic in the overall overlap analysis, because they will be present only

in a small amount of r-neighborhoods, and hence the relative difference between smaller

weights will have larger impact. This is not the case for McL and Exp since also a cor-

responding ”zoom“ into smaller parts of the trajectory frames reveal the peak behavior

that few weights are dominating the rest.
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Fig. 4.10.: Weights of two arbitrary chosen aMD trajectories of Met-Enkephalin.
Weights following Eq. (3.13) of different re-weighting schemes for all 2000 frames of
two 200 ns aMD trajectories at r = 0.11 nm, starting from Met79 (left) and Met153
(right). Weights are normalized to a sum of one whereas two different re-weighting
schemes are compared. From top to bottom: Exp, McL (10th order), MF(1), MF(10),
MF(50), MF(100) and the converged MF(171) and MF(89), respectively.

For sMD sampling, the mean-field approach following Eq. (3.17) converges fast to simi-

lar values and the same order of magnitude compared to the first step MF(1). Remarkably,

the range between minimal and maximal weight of the converged result MF(∞) is con-

sistently larger than the first step for all different thresholds r. For Met-Enkephalin at

r = 0.11 nm (Fig. 4.13 top panels), both starting conformations show different behavior.
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Fig. 4.11.: Weights of two arbitrary chosen aMD trajectories of V3. Weights following
Eq. (3.13) of different re-weighting schemes for all 2000 frames of two 200 ns aMD
trajectories at r = 0.35 nm, starting from V3a (left) and V3b (right). Weights
are normalized to a sum of one whereas two different re-weighting schemes are
compared. From top to bottom: Exp, McL (10th order), MF(1), MF(10), MF(50),
MF(100) and the converged MF(13393) and MF(1696), respectively.

For Met79, there seem to be fewer transitions between low and large weights forming

several plateaus. For Met153, neighboring frames have fast changing transitions between

the minimum and maximum weight. Since the weights are based on the population of

different r-neighborhoods, it will be interesting to investigate the underlying overlap re-

sult. For the two V3 trajectories at r = 0.35 nm, the behavior between both starting

structures is also different (Fig. 4.13 bottom panels). There seem to be two regimes: low

weights and large weights, where there are only few transitions between both states for

both trajectories. All other investigated thresholds r yield similar behavior, only for V3

at r = 0.15 nm there are large fluctuations because only very few frames fall into the

same r-neighborhoods.
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Fig. 4.12.: Comparison between McL (top) and MF(1) at r = 0.35 nm (bottom)
weights for V3. V3a (left) and V3b (right) of two arbitrary chosen 200 ns aMD
trajectories. Weights are normalized to a sum of one. Focus on different windows
of frames to investigate the relative frequencies.

Now, we are interested in the resulting (density) overlap measure using different re-

weighting schemes. For this purpose, we use for both molecules six different trajectories

with the combination of cMD, aMD and sMD sampling and both starting conformations.

We always evaluate the overlap between pairs of trajectories with at least one accelerated

trajectory using K = L for the reference and comparison set of trajectories of Eq. (3.11).

In Fig. 4.14, the results are illustrated for Met-Enkephalin. Considering the overlap

results of the aMD sampling (Fig. 4.14 top), all MF steps outperform the exponential

or Maclaurin re-weighting. Additionally, more steps for the mean-field iteration of aMD

weights enhance consistently the overlap, whereas the overlap between both aMD trajec-

tories benefits the most. For sMD (Fig. 4.14 center), more iteration steps lead to a slight

decrease of the pair-overlaps.

The overlap values for different MF iterations of V3 are shown in Fig. 4.15. The
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Fig. 4.13.: Weights of arbitrary chosen sMD trajectories. The weights follow Eq. (3.17)
for all 2000 frames of two 200 ns sMD trajectories of Met-Enkephalin at r = 0.11 nm
(upper panels) and V3 (lower panels). They are normalized to a sum of one. The
first MF(1) and converged MF(22), MF(21), MF(23), MF(22) mean-field steps are
compared, respectively.

results are in agreement with the RMSD distributions (Figures. 4.5-4.6) and the formerly

investigated weights. There is a minor impact on the pair-overlap between a cMD and

aMD trajectory from the same starting structure using more mean-field iterations, but
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the first and the converged steps lie within the error of the Maclaurin result. All overlap

values are very low or even zero and thus not representative for the weight convergence

analysis.

In Table 4.6, there are the density overlap values for different mean-field steps between

the pairs of trajectories cMD, aMD and sMD. The values are the average between overlaps

of single reference trajectories fdens(k, L; r), the errors correspond to the range between

both values. It is remarkable that for the aMD results the converged mean-field MF(∞)

re-weighting yield almost identical values as for the non-weighted case. This does not need

to be an error or indication that MF(∞) yields generally wrong results, because it is theo-

retically possible that they re-weight the densities correctly, but for the r-neighborhoods

of the reference frames κ, this leads still to similar densities for Met-Enkephalin. These

densities are a comprehension of different frames with their different weights. Never-

theless, we cannot ensure that MF(∞) with the selected r values does not only equalize

the weights by smoothing. Thus, they should be used with care for aMD runs without

proper validation. The results are significantly different for sMD re-weighting as already

indicated by the weights in Fig. 4.13. The weights converge to realistic magnitudes just

taking the influence of shared frames between different r-neighborhoods into account

(see subsection 3.2.4). There are two interesting outcomes: First, Odens is consistently

lower for MF(∞) than for MF(1) if sMD runs are involved. Second, the non-weighted

sMD trajectories produce always larger density overlaps Odens for the evaluated trajec-

tory combinations. The reason can have different origins and cannot be clearly detected.

The density overlap between both cMD trajectories is also below 60% (Table 4.6), which

shows that both do not sample the converged equilibrium density. It might be that sMD

samples better the underlying energy landscape due to decreased energy barriers but are

not converged, yet. This results in a more uniform density because different energy min-

ima are easier reachable, which would then lead to an increase of non-weighted overlap

between sMD trajectories. On the other hand, maybe the sampled density of one cMD

is more concentrated on one part of the conformational space, the other cMD on another

part. This behavior leads then to an increase of the overlap between the non-weighted

sMD and the corresponding cMD which favors one part that is intensively sampled by

the distorted sMD run. But the corrected/re-weighted density does not overlap due to

unconverged cMD.

As we already discussed, the re-weighting is a difficult task. On the one hand, one

tries to be the most accurate, i.e. taking the weights as unchanged as possible but then

also the errors have their full impact in the results. On the other hand, one wants to
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Fig. 4.14.: Density overlap Odens for different re-weighting schemes of Met-
Enkephalin. Values refer to all pairs of six 200 ns-trajectories combining cMD,
aMD and sMD with different starting structures Met79 and Met153 for different
MF iteration steps, Exp and McL up to order 10. cMD1/aMD1/sMD1 refers to the
first and cMD2/aMD2/sMD2 to the second starting conformation. The MF weights
correspond to r = 0.11 nm.

keep the errors as small as possible, i.e. approximating microstates or expanding the

exponential function with possible smoothing the weights which might lead to biased

potentials. Both extremes yield wrong results, thus one has to keep the balance between

both ways. We want to be as critical and conservative as possible, to not overestimate

the quality of sampling. If one wrongly concludes that the sampling is good, one will

totally disqualify the assessment tool, because all following results will be based on wrong

assumptions. We saw that the first mean-field step already has an impact in the relative

weights between frames but also are compatible with the large peaks of Exp or McL.

The converged MF(∞) weights for aMD successively decrease the amplitudes of single

weights. Hence, there is the risk of underestimating the weights of several frames and

overestimating the overlap. In fact, for the investigated trajectory combinations, there

was (almost) no difference between the non-weighted and converged MF(∞). For this

reason, we use MF(1) at the same threshold r for the re-weighting of aMD and sMD
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Fig. 4.15.: Density overlap Odens for different re-weighting schemes of V3. Values
refer to all pairs of six 200 ns-trajectories combining cMD, aMD and sMD with
different starting structures V3a and V3b for different MF iteration steps, Exp and
McL up to order 10. cMD1/aMD1/sMD1 refers to the first and cMD2/aMD2/sMD2
to the second starting conformation. The MF weights correspond to r = 0.35 nm.

trajectories as for the overlap calculation, if not specified otherwise. This shall serve as

first approximate for the overlap measures and highlight that the converged mean-field

weights are an interesting point to be rigorously and completely validated in the course of

studying the re-weighting of biased MD runs. But this shall not be the main focus of this

thesis. Moreover, we want to apply accelerated sampling to reveal, whether the sampling

obtained by conventional MD simulations is sufficient, because enhanced techniques will

show the uncertainties very quickly if they find more undetected conformations.

The influence of converged MF(∞) on the overlap analysis will be briefly discussed later

in section 4.7.
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Table 4.6.: Odens values for different re-weighting schemes of Met-Enkephalin. Values
refer to the following configurations: after first step MF(1), after ten steps MF(10),
after mean-field convergence MF(∞) and without re-weighting for trajectory pair
combinations aMD with aMD, aMD with cMD, sMD with cMD and cMD with
cMD. The values are the average between overlaps of single reference trajectories
fdens(k, L; r), the errors correspond to the range between both values.

MF(1) MF(10) MF(∞) non-weighted

aMD1 vs. aMD2 0.6951± 0.0177 0.7986± 0.0079 0.8764± 0.0011 0.8765± 0.0011

aMD1 vs. cMD1 0.7152± 0.0018 0.7675± 0.0016 0.7587± 0.0035 0.7587± 0.0035
aMD1 vs. cMD2 0.5892± 0.0077 0.6143± 0.0012 0.6608± 0.0033 0.6608± 0.0032
aMD2 vs. cMD1 0.6703± 0.0160 0.7126± 0.0092 0.7214± 0.0080 0.7215± 0.0081
aMD2 vs. cMD2 0.6731± 0.0087 0.6977± 0.0010 0.7029± 0.0011 0.7029± 0.0011

sMD1 vs. sMD2 0.5200± 0.0453 0.4317± 0.0541 0.4316± 0.0541 0.6554± 0.0267

sMD1 vs. cMD1 0.5133± 0.0108 0.4414± 0.0150 0.4414± 0.0150 0.6069± 0.0043
sMD1 vs. cMD2 0.6816± 0.0083 0.5908± 0.0152 0.5908± 0.0152 0.7831± 0.0016
sMD2 vs. cMD1 0.7206± 0.0062 0.7038± 0.0058 0.7038± 0.0058 0.7284± 0.0032
sMD2 vs. cMD2 0.7206± 0.0062 0.7038± 0.0058 0.7038± 0.0058 0.7284± 0.0032

cMD1 vs. cMD2 0.5977± 0.0090

4.4. Overlap measures

We will focus on the overlap measures in this section. The large advantage of our ap-

proach is the possibility to analyze the overlap between two up to theoretically infinite

trajectories at once. Additionally, it is possible to group different trajectories together,

i.e. multiple independent trajectories are concatenated to a super-trajectory which can

then be compared with others to enlarge the sampled conformational space. This will

be reflected in the comparison set of trajectories L as discussed in subsection 3.2.3. For

re-weighting, we will consistently use the first mean-field iteration MF(1), as discussed

previously.

Different groups of trajectories are interesting to be investigated: The overlap between

all single trajectories at once, denoted as ”ALL“, will represent the hardest criterion which

has to be fulfilled for complete sampling (L = {l1, l2, ..., ln}). Remember that only if one

single trajectory samples a different space than the other runs, the overlap will be zero. On

the other hand, the influence of the sampling algorithm and also the starting conformation

can reveal important information about the sampling. Hence, we investigate the overlap

between all trajectories coming from one sampling method (denoted as ”cMD“, ”aMD“

and ”sMD“) and dividing these groups further to contain only trajectories from one
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starting structure. Finally, we look into the different pair-overlaps between combinations

of two trajectories.

4.4.1. Influence of r on the overlap measure

The first interesting point is the overlap as a function of the threshold r [37]. As already

introduced in subsection 3.1.2, the overlap should quickly converge between rmin and rmax

describing a convex curve. As minimal and maximal values, we use the values defined

by the 99% of the RMSD distributions in subsection 4.2.1. To have a representative

set of trajectories for both molecules, we will analyze all 42 × 200 ns trajectories, 7

for each combination of starting conformation and conventional or enhanced sampling.

Furthermore, we use the same set of trajectories for the comparison and the references

K = L.

The overlaps (conformational and density) as a function of the threshold r are illustrated

in Fig. 4.16 for both molecules investigating the overlap between all trajectories and

sampling algorithm subgroups. The conformational overlap Oconf shows a clear deviation

between both molecules. In section 3.4, we discussed that Oconf is the necessary criterion

for complete sampling. For Met-Enkephalin, the curves show almost perfect convergence

for this parameter, where Oconf is constantly 1 for r ≥ 0.1 nm (blue traces in left of

Fig. 4.16). Remarkably, this is also true using all trajectories. Thus, one can assume that

the trajectories are in the regime where the density equilibrates between conformations,

because already all conformational clusters are found. For V3, the behavior is completely

different, showing concave curves starting to give non-zero overlap values at around r =

0.6 nm (red traces in left of Fig. 4.16). Considering the RMSD distributions, r = 0.6 nm

is already a quite large value where one cannot distinguish whether the overlap is not

trivially increased due to a too tolerant threshold. The same behavior is true for V3

considering Odens, where the overlap is increased firstly for r & 0.8 nm. Met-Enkephalin

has still convex curves for Odens for the given groups, but for instance at r = 0.11 nm the

overlap is only between 20 to 40%. Only at very coarse resolutions around r ≈ 0.2 nm

the overlap reaches 0.7 < Odens < 0.9. Hence, the density is far away from reaching

convergence at an acceptable resolution. Nevertheless, one can see that aMD and sMD

consistently perform better except for r < 0.1 nm where the mean-field re-weighting is

in the regime of Exp for aMD and single frames in r-neighborhoods for sMD (compare

subsection 4.3). The averaged overlaps Ωconf,Ωdens evaluate the area under the curves, and

can immediately show tendencies between different groups, like the aMD performance.

But still, a value of Ωdens ≈ 0.7 does not correspond to a satisfactory sampling.
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Fig. 4.16.: Overlap measures Oconf (left), Odens (middle) as a function of the thresh-
old r, and averages Ωconf,Ωdens (right). Met-Enkephalin (blue and triangle
markers) and V3 (red and square markers). Different analysis groups are applied:
”ALL“ refers to single overlaps between all 42 × 200 ns trajectories, whereas for
each method (cMD, aMD, sMD) 14×trajectories were evaluated, 7 of each of the
two starting structures. The figure is taken from Ref. [37].

Why is this the case for a relatively small molecule? Do single trajectories alter the

results of the chosen analysis groups, because some runs failed? To answer these ques-

tions, it is reasonable to look into the pair-overlap between all trajectory combinations,

to detect which sampling methods or trajectories are responsible for this result. This is

done by using an asymmetric heatmap of all pair-overlap combinations with L = {lX , lY },
with X,Y are one of the 42 × 200 ns trajectories. We do not use the same reference set

but K = {lX} for the lower and K = {lY } for the upper triangular of the heatmaps

(Figs. 4.17-4.18). This choice allows us to investigate the deviation of the sampled con-

formational space between sampling methods or single trajectories. It is expectable that

using cMD trajectories as reference K, the calculated overlap is larger than if K corre-

sponds to trajectories of enhanced sampling methods, because the latter should sample a

larger space in the same simulation time.

Let us first consider the pair-overlaps of Met-Enkephalin at a reasonable resolution

r = 0.11 nm (Fig. 4.17 left). The conformational overlap Oconf ranges between 0.99 to 1.00,

which was expectable from the overlap curves in Fig. 4.16. But one can also see that the

overall density pair-overlap Odens is much larger than using all trajectories from the groups

defined above. The main reason seems to be the pair-overlap between trajectories 29−35

(sMD starting from 79 ) and runs originating from other sampling methods. Remarkably,

the pair-overlap between trajectories of cMD starting from Met153 and sMD starting
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from Met79 contain the lowest values 0.48 and 0.50, respectively (Table 4.7). These

sMD trajectories seem to sample similar probability densities but consistently different

compared to others. Neither the number of found clusters nor the other overlap values

can explain this behavior. On the other hand, there might be one outlier in the group

of cMD starting from Met153, because others behave well. The pair-overlap of aMD

trajectories ranges from 0.61 to 0.87 which is good for such a resolution, but there, one

can see the impact of the harder criterion calculating the overlap of multiple trajectories,

where the full group of aMD does not cross a value of Odens = 0.4. It will be interesting

to investigate the overlap as a function of r for other groups, whether the results from the

pair-overlap can be reproduced.

The pair-overlaps for V3 at high (r = 0.35 nm) and lower resolutions (r = 0.5 nm,

r = 0.7 nm) are illustrated in Figs. 4.17-4.18. The first threshold r = 0.35 nm might be

the critical point where, for given reference frames κ ∈ k of trajectory k, the normalized

events of trajectories l 6= k are non-zero and the normalized events of the trajectory k are

not trivially 1, considering the RMSD distributions in Figs. 4.7-4.8. At this resolution,

the analysis groups yield zero overlap for Oconf and Odens. The reason is illustrated in the

pair-overlap heatmaps. Only cMD trajectories starting from V3a cover the same areas of

conformational space, which is even better visible for different reference K:

Oconf (K ∈ {lX}, L ∈ {lX , lY }; r = 0.35nm) ≈ 1 , X ∈ cMD

Oconf (K ∈ {lY }, L ∈ {lX , lY }; r = 0.35nm) ≈ 0 , Y ∈ aMD

It is highly probable that these trajectories are trapped in few conformational clusters,

because other trajectories seem to sample completely different areas. This is supported by

the numbers of found clusters for each 200 ns trajectory of a global clustering Nglobal
C which

are illustrated below the heatmaps in Figs. 4.7-4.8. Nglobal
C refers to a global clustering

involving all shown trajectories at once. Nglobal
C,cMD is two to three times smaller than Nglobal

C,aMD.

Interestingly, the number of reached clusters by single sMD trajectories are compatible

with cMD, but still, the sampling is not comparable. Increasing the threshold to r =

0.5 nm and r = 0.7 nm (Fig. 4.18) increases Oconf, but the result is not comparable to

Oconf of Met-Enkephalin at high resolution. The number of clusters Nglobal
C and Oconf show

the underlying behavior which still lead to very low overlap values except for cMD starting

from the first conformation. This might be an indicator for a huge conformational space

of V3 which is far from being sampled exhaustively using 200 ns trajectories, although a

simulation time of about 100 ns is a typical timescale in current MD simulations.

As mentioned, we investigate further analysis groups shown in Fig. 4.19 starting again
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with Met-Enkephalin. Here, the overlap between trajectories of one sampling method and

one starting conformation is monitored, together with the combination of cMD and the

trajectories of each enhanced sampling method. From the pair-overlap, it was expected for

Met-Enkephalin that Odens of aMD trajectories of each starting structure will outperform

the other sampling methods. This is true for all thresholds except the discussed regime r ≤
0.1 nm (Fig. 4.19 top center). The influence of the bad pair-overlaps of cMD from Met153

and sMD from Met79 are shown in bottom center of Fig. 4.19, where the combination

of cMD and aMD (or sMD) give comparably worse results than for the combination of

cMD and aMD trajectories starting only from Met79. It is remarkable that, still for such

a small molecule, the sampling of the 200 ns trajectories reveals some sort of dependence

from their starting conformation.

For V3 trajectories, we see the drastic difference between cMD trajectories starting

from V3a and the rest (see Fig. 4.19). Oconf and Odens are significantly increased for cMD

from V3a but still the curves indicate incomplete sampling by their shape. Only the

overlap results of sMD trajectories starting from the same conformation V3a might also

be increased. The most remarkable thing is that trajectories from V3a give consistently

significantly better results than V3b which is also visible in the corresponding average

overlap. This is an indication for trapped behavior. Interestingly, this can be linked to

the picture of RMSD values obtained after the MD preparation (Fig. 4.4, see also subsec-

tion 4.1.4), which are much more conserved than for the second starting conformation.

The main reasons for the large errorbars for V3, especially for Oconf, are the different

results of reference sets K of different sampling methods.
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Fig. 4.17.: Pair-overlap heatmaps for Met-Enkephalin at r = 0.11 nm (left) and V3 at
r = 0.35 nm (right). Oconf, Odens between all pairs of 42× 200 ns trajectories and

Nglobal
C for each trajectory. They are split into blocks of 7 for each sampling method

and starting conformation indicated as blue labels. The heatmaps are asymmetric,
whereas the lower triangular matrices correspond to K = {lX}, L = {lX , lY }, and
the upper triangular to K = {lY }, L = {lX , lY }. The figure is reproduced from
Ref. [37].
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Fig. 4.18.: Conformational and density overlap Oconf, Odens between all pairs of 42×
200 ns trajectories for V3 at r = 0.5 nm (left) and r = 0.7 nm (right) and

the corresponding number of clusters Nglobal
C for each trajectory. The

trajectories are split into blocks of 7 for each sampling method (cMD, aMD, sMD)
and starting conformation indicated as blue labels. The heatmaps are asymmetric,
whereas the lower triangular matrices correspond to the overlap between trajectories
lX and lY with K = {lX}, L = {lX , lY }, and the upper triangular vice versa with
K = {lY }, L = {lX , lY }. The figure is reproduced from Ref. [37].
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Fig. 4.19.: Overlap measures Oconf (left), Odens (middle) as a function of the thresh-
old r, and averages Ωconf,Ωdens (right) for different groups. Met-Enkephalin
(blue and triangle markers) and V3 (red and square markers). Different analysis
groups are applied: (top row) seven 200 ns trajectories originating from each sam-
pling method and starting conformation (X = Met79 or V3a, Y = Met153 or V3b).
The figure is reproduced from Ref. [37]; (bottom row) 28 trajectories combining
cMD and aMD or sMD, and the same groups with trajectories coming only from
the first starting conformation.
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Table 4.7.: Minimal and maximal pair-overlap values O
(min)
dens , O

(max)
dens . The certain groups

correspond to Fig. 4.17 (left). Pair-overlap between same trajectories is not taken
into account.

cMD79 cMD153 aMD79 aMD153 sMD79 sMD153
cMD cMD
+ +

aMD sMD

min 0.66 0.48 0.68 0.61 0.50 0.63 0.54 0.37
max 0.85 0.83 0.82 0.82 0.87 0.87 0.80 0.82

4.4.2. Influence of the simulation time t on the overlap behavior
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Fig. 4.20.: Overlap measures Oconf (left), Odens (middle) as a function of the thresh-
old r, and averages Ωconf,Ωdens (right) for Met-Enkephalin for different
simulation times t. ”ALL“ is used as analysis group, referring to single overlaps
between all 42×trajectories.

One central parameter of MD runs is the simulation time t and the estimation of the

necessary time to reach convergence of trajectories. On the other hand, it is interesting

to extract the behavior of different time-windows of the simulation. For instance, do first

parts of the trajectory behave differently compared to last parts? This might also be useful

in preparation processes of very complex or large systems, where one might detect the

simulation time necessary to overcome physically meaningless interactions introduced by

artificial starting conditions [70]. In such cases, one might be able to detect significantly

low overlap for first parts of the trajectories compared to later simulation parts, where

the system changes to equilibrium states. Disregarding these first part of the simulation
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Fig. 4.21.: Conformational and density overlap Oconf, Odens between all pairs of
42×trajectories for V3 at r = 0.35 nm for simulation times 0 − 100 ns
(left) and 100 − 200 ns (right) and the corresponding number of clusters

Nglobal
C for each trajectory. The trajectories are split into blocks of 7 for each

sampling method (cMD, aMD, sMD) and starting conformation indicated as blue
labels. The heatmaps are asymmetric, whereas the lower triangular matrices corre-
spond to the overlap between trajectories lX and lY with K = {lX}, L = {lX , lY },
and the upper triangular vice versa with K = {lY }, L = {lX , lY }.

time should give significantly better results, because the unphysical configurations will

rarely be reproduced by independent MD runs.

We will first investigate the overlap as a function of threshold r for different simulation

times t of the overlap between all 42 trajectories of Met-Enkephalin. In Fig. 4.20, one

can see that the overlap is consistently better for first parts of the trajectories but are
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Fig. 4.22.: Conformational and density overlap as a function of different simulation
times t for Met-Enkephalin at r = 0.11 nm. Up to 200 ns, there are seven tra-
jectories for each combination of sampling method (cMD, aMD, sMD) and starting
conformation (Met79, Met153 ). For simulation times larger than 200 ns, only three
trajectories for each combination are evaluated. Top row: Analysis group ”ALL“
with five another groups with the same number of trajectories for each sampling
method alongside with the combination of trajectories from two sampling methods
starting from Met153. Bottom row: Overlap between all single trajectories for each
combination of starting structure and sampling method.

outperformed by the full 200 ns. The combination of different windows is necessary to

obtain the overlap values for the full 200 ns. Hence, also first parts are important and

produce relevant overlap values although the starting structures after MD preparation

(Fig. 4.3) are (almost all) totally different. Still, one would say that different parts behave

very similar, which is shown by the two time-windows 0−100 ns and 100−200 ns. This is

totally different for V3. We saw in the previous section that the evaluation of the overlap

between all single 42 trajectories is zero, thus we show the pair-overlaps between different

time-windows for V3 at the high resolution r = 0.35 nm in Fig. 4.21. For the 200 ns

trajectories (Fig. 4.17), Oconf, Odens were negligibly small except for cMD starting from

V3a, but the number of clusters found of the aMD trajectories of the global clustering

were on average 2 to 3 times larger than for the other sampling. Interestingly, considering

simulation times between 0− 100 ns, all non-zero overlap values are increased compared

to 0 − 200 ns. For the second halves of the trajectories 100 − 200 ns, the number of
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Fig. 4.23.: Conformational and density overlap as a function of different simulation
times t for V3 at r = 0.35 nm (top row) and r = 0.7 nm (bottom row). For
each combination of starting conformation (V3a, V3b) and sampling method (cMD,
aMD, sMD) seven trajectories are evaluated. Analysis groups ”cMD“, ”aMD“,
”sMD“ hold 14 trajectories and ”ALL“ is the combination of all 42×trajectories.
The figure corresponds to Ref. [37].

clusters are comparable for all sampling methods, and the overlap is much smaller for the

non-zero values compared to 0− 200 ns. The reason might be that in the first part of the

simulation, the conformations are similar due to the more conserved starting structure

after preparation for V3a (Fig. 4.4). After a certain critical point tcrit, these runs lose the

information about their origin and sample into different more distinct regions due to the

huge conformational space. The second halves of trajectories from V3a behave similar

to the other simulations according to their overlap, only in Oconf of cMD the starting

influence is still present. This reveals that one needs multiple hundreds of nanoseconds

simulation time just to be sure to lose the influence from the starting structure. Thus, it

is very dangerous to rely on simulations of about 100 ns that only start from one initial

conformation describing a certain very flexible molecule.

In Fig. 4.22, the overlaps Oconf, Odens are shown as a function of the simulation time t

for Met-Enkephalin [37]. Oconf immediately reaches a value of one within the first 100 ns.

Thus, the conformational space can be reached well at the high resolution of r = 0.11 nm in

104



Chapter 4. Results and discussion

0.08 0.1 0.12 0.15 0.2 0.25 0.3 0.4
threshold r [nm]

10

25

50

75
100

150
200

300

500

1000

si
m

u
la

ti
o
n
 t

im
e
 [

n
s]

ALL

cMD

aMD

sMD

Fig. 4.24.: Simulation time t in [ns] as a function of the threshold r in [nm] which
was necessary to obtain Oconf ≥ 0.99 for Met-Enkephalin. For simulation
times up to 200 ns, 42 trajectories are evaluated (”ALL“) which are further split
into 14 trajectories of each sampling method cMD, aMD, sMD. For simulation times
above 200 ns, we use 6× 1µs trajectories for each method. Scaling is log-log.

timescales which are typical of current MD simulations. However, the sampled equilibrium

density still needs simulation lengths of the order of several µs to converge toward one. The

curve denoted as ”ALL“ incorporates all trajectories of all sampling methods and starting

conformations. It reaches only a value of Odens ≈ 0.5 for 1µs. We discussed that this is the

hardest quality criterion. To compare the different sampling methods, we use five different

analysis groups (”cMD“, ”aMD“, ”sMD“, ”cMD+aMD(153)“, ”cMD+sMD(153)“) which

all incorporate the same number of trajectories, in order to be comparable. The latter

two combine trajectories of two sampling methods, both starting from Met153, because

they have the largest overlap of different combinations of algorithms.

Remarkably, the overlaps between trajectories of the same sampling method, cMD and

aMD, are comparable. Both sampling methods give larger overlap values compared to

sMD. But the combinations of cMD with the other sampling methods lead to significantly

lower density overlap values. It will be interesting to investigate the reached clusters in

the next section to determine the reason for this uncertainties. Furthermore, we will

investigate the results between different sampling methods in section 4.7 regarding the

question, whether the enhanced algorithms are properly re-weighted or yield biased en-

sembles. Two important things have to be mentioned. First, up to 200 ns, there are 42

independent trajectories, and above 200 ns, the overlaps correspond to the evaluation of
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18 independent 1µs-trajectories for the combination of three runs per sampling method

and starting conformation. This explains the jump in the overlap between 200 and 300 ns,

because the criterion for the overlap is less strict with less trajectories. Second, the larger

Odens, the slower is the convergence behavior, because it is harder to obtain the correct

probability density function p(~r) in the course of the MD simulation. Remember that for

instance 18 different independent trajectories have to sample in the same simulation time

window the same energy wells with the same probability to further increase the strict

density overlap criterion if already large overlap values are reached. This is the reason,

why some overlap values go down for some times t and rise again later on (Fig. 4.22).

For V3, the simulation time of 200 ns is far away from even reaching converged values of

Oconf [37]. In Fig. 4.23, the overlaps as a function of the simulation time t are illustrated

for high resolution r = 0.35 nm and low resolution r = 0.7 nm for different combinations

of 42 × 200 ns trajectories. It is remarkable that Odens is monotonously decreasing for

the non-zero overlaps even for r = 0.7 nm. Hence in these simulation time regimes, the

simulations are still finding more conformations than revisiting clusters which were already

sampled before. For the lower threshold, again only trajectories from V3a have non-zero

overlaps, which might be explained by trapped behavior. The longer the simulation, the

more these trajectories find new conformational clusters and leave the conserved starting

point. Another information which can be extracted from the blue curve of Odens for

r = 0.7 nm in Fig. 4.23 is the following: the sampled conformational space of cMD

trajectories originating from V3a must be much smaller because a radius around the

reference frames κ of r = 0.7 nm yields a huge density overlap in comparison to the other

MD runs. The cluster analysis (next section) will shed light on this issue.

Finally, it is reasonable to extract the behavior between the simulation time t and the

necessary threshold r, while the overlap is kept constant. We already know that higher res-

olutions (small r) require a strongly increasing sampling effort to visit all conformational

clusters with the same relative frequency in a set of independent trajectories. We find that

for Met-Enkephalin the simulation time required to achieve convergence of Oconf ≥ 0.99

as a function of r follows approximately a power-law function (Fig. 4.24), similar to the

number of clusters Nglobal
C as a function of r (Fig. 4.9). This means, for an exponentially

decreasing threshold r, an exponentially longer simulation is needed to obtain convergence

in the conformational overlap. It is therefore highly advisable to determine, which spatial

resolution is necessary for the underlying system of interest, to approximate the necessary

simulation time for convergence.
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4.5. Clustering analysis

We use the clustering as complementary tool together with the overlap measures to quan-

tify the sampling quality. The overlap measures give the information about whether

different trajectories sample the same conformational space with similar densities. Only

then, independent trajectories will reproduce the experiments. The problem is that if

multiple trajectories are trapped within the same potential minima and only rarely cross

the energetic barriers, the overlap will yield large values without detecting this issue.

Thus, we use the clustering to detect the size of the conformational space and monitor,

if trajectories sample only few conformations and are therefore trapped for certain simu-

lation times. For this, we first investigate the development of the cluster number NC as

further indicator for convergence.

All clusterings are done using the second starting conformation as reference. Addition-

ally, in the analysis of the cluster number as a function of the threshold r (Fig. 4.9), we

found out that there is no unique clustering radius. Hence, we use the high resolutions,

for Met-Enkephalin r = 0.11 nm and V3 r = 0.35 nm, if not specified otherwise.

4.5.1. Development of the cluster number NC

The development of the cluster number NC can give insights about the convergence of

single trajectories, introduced in subsection 3.3.3. But first, we are interested in the size

of the conformational space sampled by each trajectory, to compare the sampling and

classify whether different trajectories might sample different regions.

The total number of reached clusters of each trajectory can be best analyzed with

the global clustering (subsection 3.3.2). Therefore, we generate one global partitioning

for Met-Enkephalin including all 18 × 1 µs, 24 × 200 ns and 6 × 100 ns trajectories

from different starting conformations and sampling methods. All total numbers of found

clusters of each trajectory Nglobal,Met
C at given simulation time t are extracted from this

global partitioning by detecting, how many clusters are reached in the given time of the

specific MD run. Trajectories, which are shorter than the certain simulation time, are

omitted. This workflow allows us to explicitly compare the reached size of each trajectory

over the course of increasing simulation time t. The same approach is used for V3 including

all 42×200 ns and 6×100 ns trajectories extracting Nglobal,V3
C for each trajectory for given

time t.

The results of Nglobal,Met
C for trajectory sets from different sampling methods (cMD,

aMD, sMD) for discrete timesteps t are shown in Fig. 4.25 as boxplots for single trajecto-
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Fig. 4.25.: Number of clusters Nglobal,Met
C for different simulation times. Trajectories

of Met-Enkephalin are shown as boxplots for the three groups of sampling methods
together with the number of clusters of the combined groups shown as bars. The
second x-axis gives the total number of unique clusters combining all trajectories.
Top: Clustering at r = 0.1 nm. Bottom: Clustering at r = 0.11 nm.

ries and bars for the combination of multiple trajectories at high resolutions r = 0.1 nm

(top) and r = 0.11 nm (bottom). One can see the clear impact of the enhanced sam-

pling techniques, where single trajectories consistently find more clusters compared to

cMD. Remarkably, the unique number of clusters found by the combination of all cMD

trajectories (black bars) is compatible with the other sampling methods, showing that

each single cMD run did not converge yet for the high resolution of r = 0.1 nm. For

r = 0.11 nm, the outcomes are similar, but the cluster numbers of cMD are more com-

patible to the others. For a threshold of r = 0.11 nm there is no clear evidence that, at

a simulation time t = 1 µs, cMD trajectories should sample much worse than aMD or

sMD because there is a deviation in the cluster number of ±3 for single trajectories and

the corresponding conformational overlap Oconf is one (Fig. 4.22). Nevertheless, there is a
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Fig. 4.26.: Number of clusters Nglobal,V3
C for different simulation times. Trajectories

of V3 are shown as boxplots for the three groups of sampling methods (top) further
split into starting structure V3a (center) and V3b (bottom). The number of clusters
of the combined groups are shown as bars. The second x-axis gives the total number
of unique clusters combining all trajectories of the given groups. The clustering was
performed at r = 0.35 nm.
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Fig. 4.27.: Development of the number of clusters N local
C for single trajectories as a

function of the simulation time t. Met-Enkephalin (left) and V3 (right). For
each of the combination of sampling method and starting structure, seven 200 ns
trajectories (distinguished by colors) were clustered separately at r = 0.11 nm for
Met-Enkephalin and r = 0.35 nm for V3. The figure is taken from Ref. [37].

clear difference between the overlap of one sampling method and the combination of dif-

ferent sampling methods using the same amount of trajectories, where the first is clearly

larger than the second case. This issue has to be resolved in further analysis below.

In Fig. 4.26, Nglobal,V3
C is shown for discrete timesteps t at r = 0.35 nm for the trajec-

tories of cMD, aMD and sMD, which are then split into subgroups involving only one of

the two starting conformations. The outcome shows the huge conformational space and

explains why the overlap measures are negligibly small. Although single trajectories of

the same sampling method find a similar amount of clusters, these are almost completely

different because the combinations of trajectories yield much more unique clusters. Here,

we can see the biggest impact of aMD on the sampling, since it finds two to four times

more clusters and clearly illustrates the failure of sampling convergence. Still, the total

number of unique clusters is larger than the amount found only by all aMD trajectories,

thus the other sampling methods also sample conformational space completely undetected

by aMD. The reason might be that due to the lifted potentials and huge conformational

space, some states may be skipped. However, sMD produces only more clusters for the

first starting conformation V3a compared to cMD, which is a remarkable result because

we expected these cMD trajectories to be trapped. For the second starting conformation

V3b, cMD and sMD produce similar numbers with small benefit toward cMD, as well as

for the single trajectories as for the combination. Finally, we want to mention that the
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Fig. 4.28.: Slopes dN local
C /dt of the last 10 ns, 25 ns and 50 ns for all different 200 ns

trajectories of Met-Enkephalin at r = 0.11 nm (top) and V3 at r = 0.35 nm
(bottom). The slopes refer to an increase by the certain value for the next 100 ns.
Error bars correspond to 95% confidence intervals. Rows and columns refer to
starting structure and sampling method. The second x-axis gives the number of
clusters found in total by the local clustering. The figure is taken from Ref. [37].

slight decrease in total numbers of clusters above 100 ns is the result of the decreasing

number of trajectories, since the six 100 ns trajectories for each of the combination of
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starting conformation and sampling method are omitted.

Another measure of convergence is the development of the cluster number N local
C of

each single trajectory to detect, whether the number of found clusters converge to a

stable plateau. Here, we use the local clustering to obtain the best unique clustering

for every single trajectory, since we want to analyze the slopes of the single curves and

not necessarily the comparability of absolute numbers. The developments of all 200 ns

trajectories for Met-Enkephalin for a local clustering at r = 0.11 nm and V3 at r =

0.35 nm are shown in Fig. 4.27 [37]. The slopes dN local
C /dt of the last 10 ns, 25 ns and 50 ns

are evaluated and illustrated in Fig. 4.28. For Met-Enkephalin, almost all trajectories

converge to a long plateau which result in slopes of zero. Again, aMD trajectories show

the most robust results, because they have on average the largest plateaus. Hence, the

number of found clusters stabilize the earliest. V3 shows much more deviations in the

development of N local, V3
C , consistent with Oconf, Odens, analyzed previously. cMD, aMD

and sMD behave differently, which is consistent to Nglobal,V3
C : cMD runs produce the most

stable N local, V3
C curves except for four or five trajectories, which could be misinterpreted

as converged trajectories with slopes dN local
C /dt ≈ 0, although we already knew from

the multi-trajectory approach that this is not correct. The situation is similar for sMD

trajectories, where much less trajectories could be interpreted as stable (Figs. 4.27 left and

4.28). Only the trajectories generated by aMD correctly indicate the unconverged state

with increasing N local, V3
C and large slopes, except for two trajectories coming from V3a.

These results emphasize that one cannot rely solely on single trajectory convergence of

the cluster number, also because the underlying distributions are not taken into account.

These distributions will be treated with the cluster distribution entropy Slocal
C .
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4.5.2. Constancy of the cluster distribution entropy SC
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Fig. 4.29.: Development of the cluster distribution entropy Slocal
C for single trajec-

tories as a function of the simulation time t. Met-Enkephalin (left) and
V3 (right). For each of the combination of sampling method and starting struc-
ture, seven 200 ns trajectories (distinguished by colors) were clustered separately at
r = 0.11 nm for Met-Enkephalin and r = 0.35 nm for V3. The figure is taken from
Ref. [37].

As discussed above, the last measure for the convergence is the cluster distribution

entropy Slocal
C following Eq. (3.18). This quantity allows a complementary measure to a

converged number of clusters N local
C from the previous subsection to investigate, whether

also the underlying distribution converged. The initial idea of Sawle and Ghosh [32] was

to detect constant regions in the curves of Slocal
C . We will again evaluate the slopes of

the curves for the last 10 ns, 20 ns, 50 ns and for the time interval after the last cluster

was found. A value of dSlocal
C /dt ≈ 0 indicates correct sampling of the underlying energy

landscape if the cluster numbers are stable.

Since Slocal
C is calculated by the number of frames in certain clusters, we will re-weight

the number of frames if they originate from aMD or sMD runs according to the weights

calculated for Met-Enkephalin at r = 0.11 nm and V3 at r = 0.35 nm [37]. It has to

be mentioned that a global partitioning and also the non-weighted Slocal
C curves are very

similar (not shown).

We will again start with the analysis of Met-Enkephalin (left panels of Fig. 4.29 and top

rows of Fig. 4.30). All trajectories show indications of convergence by stable Slocal,Met
C for

t & 100 ns. Remarkable, again aMD gives the best results obtaining slopes dSlocal,Met
C /dt

closest to zero. The entropy development is closely related to the curves of N local,Met
C ,
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Fig. 4.30.: Slopes of the cluster distribution entropy dSlocal
C /dt of the last 10 ns, 25 ns

and 50 ns for all different 200 ns trajectories of Met-Enkephalin at r = 0.11
(top) and V3 at r = 0.35 nm (bottom). ”last cluster“ means the time interval
between addition of last cluster and end. The slopes refer to an increase or decrease
by the certain value for the next 100 ns. Error bars correspond to 95% confidence
intervals. Rows and columns refer to starting structure and sampling method. The
second x-axis gives the number of clusters found in total by the local clustering.
The figure is taken from Ref. [37].
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i.e. Slocal,Met
C stabilizes in the same region where the last cluster was found. The overall

conclusion for the Met-Enkephalin runs is that no run seems to show trapped behavior.

This is different for V3 (right panels of Fig. 4.29 and bottom rows of Fig. 4.30). As ex-

pected from previous analyses, the distributions Slocal,V3
C are consistently very unstable for

all sampling methods and starting conformations. In contrast to the slopes dN local,V3
C /dt,

one is now able to detect the incomplete sampling for cMD and sMD. aMD gives (almost)

always dSlocal,V3
C /dt > 0 which is related to the increase of cluster number, i.e. related to

sampling new conformational space. On the other hand, dSlocal,V3
C /dt < 0 refers to states,

where sampling is distributed only between few clusters. Comparing to the number of

clusters, these regions can be linked to simulation times where the cluster number stays

constant.

The overall summary is that the number of clusters NC and cluster distribution entropy

SC may be pre-criteria to investigate single trajectories for instable behavior and thus

unconverged simulations if used in combination. But only a multi-trajectory approach is

an effective way to prevent a wrong classification of convergence.

4.6. Combined assessment of convergence

In the last two sections about the overlap and clustering analyses, we learned that it is

necessary to combine both approaches, the overlap and clustering, to comprehensively as-

sess the convergence quantitatively. Only if both show consistent results of convergence,

the sampling can be complete, assuming that the full conformational space is sampled.

On the one hand, the probability density functions p(~r) of independent experiments must

correspond to each other, which is fulfilled by Oconf = 1 and a large Odens value. On

the other hand, the sampling is only then complete, if the size of the sampled confor-

mational space converges, and different trajectories explore the same number of clusters

Nglobal
C . Therefore, we will investigate the combination of Odens and Nglobal

C to evaluate

the convergence of different sets of MD trajectories and/or compare different sampling

methods [37]. Here, Nglobal
C is the number of unique clusters found by all trajectories

involved in the corresponding overlap value Odens. The clustering was again done globally

using all different trajectories to obtain one partitioning due to comparison reasons.

We evaluate different simulation times t for Met-Enkephalin (Fig. 4.31), whereas we in-

vestigate the 1 µs and 200 ns trajectories separately. For the 1 µs trajectories, analyzing

the combined assessment of convergence at different time points t reveals that the combi-

nation of sMD runs seems to explore the conformational space as fast as aMD, finding at
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Fig. 4.31.: Density overlap Odens vs. number of clusters Nglobal
C for different groups

at different simulation times t for Met-Enkephalin. Top: 18 × 1 µs trajec-
tories. Bottom: 42 × 200 ns trajectories. The clustering and overlap measures are
done at r = 0.11 nm. The total number of trajectories (”ALL“) are divided into
subgroups by a factor of three for different sampling methods and by another factor
of two for different starting structures. Cluster numbers for aMD and sMD are
slightly shifted with � 1 for visibility reason.

some points even one more cluster compared to aMD. This is surprising if one considers

the outcome of V3: There, combinations of aMD trajectories reach much more clusters

much faster, detecting the huge conformational space of V3 (Fig. 4.26). On the other

hand, the density overlap for Met-Enkepphalin of aMD and sMD are comparable up to

500 ns (compare also Fig. 4.22), but are then outperformed by aMD. One reason might be

that aMD finds the last clusters more quickly, and then the equilibrium sampling is faster.

Remarkably, this is also the case for cMD, after it finally detects (almost) all clusters, the
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at different threshold parameters r for V3. Forty-two 200 ns trajectories are
shown. The total number of trajectories (”ALL“) are divided into subgroups by
a factor of three for different sampling methods and by another factor of two for
different starting structures. The figure corresponds to Ref. [37].

overlaps seem to pass the values of sMD. For the 42× 200 ns trajectories (bottom row of

Fig. 4.31), there are much more trajectories. Thus, a certain cluster number is easier to be

reached and a certain overlap is harder to be achieved compared to the cases above. The

development of the point corresponding to cMD trajectories from Met79 is outstanding

and unexpected, because the overlap value grows very fast and the maximal number of

clusters is reached at t = 200 ns (see Fig. 4.31 bottom). This value is not comparable to

the trajectories from the other starting structures but there is also no indication that the

behavior could be explained by an artifact like trapped trajectories. But one has to keep

in mind that the overlap value of Odens ≈ 0.5 is still far from being converged.

The results for V3 at different resolutions are displayed in Fig. 4.32. We already know

that Odens ≈ 0 up to r ≤ 0.7 nm for most combinations but trajectories from V3a.

For a high resolution at r = 0.35 nm and an intermediate resolution r = 0.5 nm, only

trajectories from cMD and V3a have non-zero density overlaps. Because trajectories

are trapped in few states with N
global, cMD(a)
C much smaller than the maximally reachable

cluster numbers, they are able to sample these states more intensely. If trajectories from

both starting structures are combined, the cluster number is about four times larger and

the overlap drops to zero.

One can see the importance of validating the sampling with different sets of starting

conformations for these two flexible biomolecules, Met-Enkephalin and V3, for a compre-

hensive study.
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4.7. Bias analysis of enhanced sampling methods
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Fig. 4.33.: Schematic illustration of a deviation between cMD and biased aMD prob-
ability distributions. Odens = 1 between cMD and between aMD trajectories, but
Odens < 1 between cMD and aMD trajectories.

So far, we focused on the assessment of the sampling quality of different MD simulations

characterized by the overlap measures Oconf, Odens incorporating the development of the

number of clusters NC and cluster distribution entropy SC . This allows to quantitatively

investigate the underlying sampling for two or multiple trajectories. But, it is also pos-

sible to classify different sets or groups of trajectories. We also presented and used two

enhanced sampling algorithms which distort the energy landscape to ease conformational

transitions. To re-obtain the correct ensemble, we implemented different re-weighting

schemes and developed a mean-field treatment specialized for our r-neighborhood ap-

proximation. Nevertheless, it is well-known that the re-weighting can lead to deviations

from Boltzmann distributions [114, 115, 119, 122]. We have not investigated this issue,

yet, but detected that aMD itself behaves the best by obtaining the fastest large overlap

values Odens along with converged cluster numbers NC (Figs. 4.27 and 4.31). Additionally,

only aMD was able to clearly identify the sampling failure for V3 finding 2 to 4 times

more clusters than the other two sampling methods. But indeed, it is necessary to iden-

tify, whether the sampling of the two enhanced sampling methods is really correct and

describes the unbiased ensemble after re-weighting.

It is possible to test wrong or biased distributions with Odens in the following way [37]:

Imagine two sets of trajectories LA = {lA1, lA2, ..., lAn} and LB = {lB1, lB2, ..., lBn}, where
both sample their underlying energy landscapes A and B completely and correctly. This

will lead to density overlaps of 1 for the corresponding sets

Odens(LA, LA; r) = 1 = Odens(LB, LB; r) .
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Fig. 4.34.: Group-overlap Odens between different sets of concatenated trajectories
of cMD and aMD runs as a function of different simulation times. For
example, ”cMD vs. aMD“ refers to the density overlap between all concatenated
cMD vs. all concatenated aMD trajectories. Top row: Three 1 µs trajectories
per start structure (Met79, Met153 ) and sampling method (cMD,aMD) were used.
Bottom row: Seven 200 ns trajectories per start structure and sampling method
were used. Columns refer to mean-field re-weighting after first step MF(1) (left) and
after converged weights MF(∞) (right).

Automatically, it has to follow that the density overlap of the combined set {LA, LB} must

also be 1 if both energy landscapes A and B are identical, but < 1 if one potential B is

biased. The resulting probability densities are schematically shown in Fig. 4.33. Thus,

we have a criterion to test, whether (re-weighted) distributions are still biased compared

to conventional MD, assuming that cMD sampling is correct. It must follow{
Odens (LcMD, LcMD; r) = Odens (LxMD, LxMD; r) → 1

Odens ({LcMD, LxMD}, {LcMD, LxMD}; r) → 1

}
⇒ correct (4.1)

{
Odens (LcMD, LcMD; r) = Odens (LxMD, LxMD; r) → 1

Odens ({LcMD, LxMD}, {LcMD, LxMD}; r) < 1

}
⇒ biased , (4.2)

where ”xMD“ can stand for aMD, sMD or a completely different method. With this crite-
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Fig. 4.35.: Group-overlap Odens between different sets of concatenated trajectories
of cMD and sMD (top) and aMD and sMD (bottom) runs as a func-
tion of different simulation times. For example, ”cMD vs. sMD“ refers to the
density overlap between all concatenated cMD vs. all concatenated sMD trajec-
tories. Three 1 µs trajectories per start structure (Met79, Met153 ) and sampling
method (cMD,aMD,sMD) were used. Panels top left and bottom refer to mean-field
re-weighting after first step MF(1), top right refers to converged weights MF(∞).

rion, we test the sampling of aMD and sMD for Met-Enkephalin to detect a possible bias

after re-weighting, because we assume that the sampling of Met-Enkephalin trajectories

of µs-lengths are approximately exhaustive.

We use six 1 µs trajectories per sampling algorithm (three per starting structure)

and concatenate different independent trajectories to investigate Odens between combined

groups of trajectories, the group-overlap. This approximately enlarges the trajectories of

interest to 3−6 µs, assuming that the combination of independent 1 µs trajectories incor-

porates also conformational regions which are weaker sampled in single runs and therefore

the overall sampling is enhanced. For these combinations, we already saw that the num-

ber of found clusters between cMD, aMD and sMD are closely related to each other for

t ≥ 200 ns (Fig. 4.31), thus the same conformational space was visited. The group-overlap

comparing cMD sampling with aMD is illustrated in top of Fig. 4.34. All corresponding

conformational overlap Oconf is practically equal to 1. The hypothesis that aMD runs are

still biased after re-weighting can be impressively evaluated. Group-overlap involving only
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Fig. 4.36.: Density overlap Odens between all pairs of 18× 1 µs trajectories for Met-
Enkephalin at r = 0.11 nm. Different re-weighting schemes were used for aMD
(Exp, 10th order McL, MF(1), MF(∞)). For sMD, MF(1) was always used except
bottom right where MF(∞) was used for both accelerated methods. The re-weighting
refers to Eqs. (3.13) and (3.17).

cMD trajectories (yellow curves) and only aMD trajectories (cyan curves) tend toward

a value of 1 (> 0.9 for full trajectories), whereas all overlap cross-combinations of cMD

and aMD simulations end very quickly at a constant value of ≈ 0.8 without indication of

a further increase. For MF(∞) (top right of Fig. 4.34), which is almost identical to the

non-weighted case, the results are the same, but the cross-combinations have even lower

overlap < 0.8, which must be expected since these trajectories sampled a biased poten-

tial by definition. We asked ourselves, whether this is also true, if more trajectories are

involved. For the seven 200 ns per sampling method and starting conformation (bottom

row of Fig. 4.34), the outcome is the same for the group-overlap, although more than
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twice the number of trajectories are combined and for t < 200 ns the number of found

clusters for cMD starting from Met79 is smaller compared to the other cases (Fig. 4.31).

Thus, the result seems to be robust.

We investigated the same for combinations of cMD and sMD shown in top of Fig. 4.35

for the same number of 1 µs trajectory combinations as before. Remarkably, the same

bias behavior can be identified for the sMD trajectories, but the overlap values are not as

constant as for the aMD cases. The overlap values increase and decrease between chunks

of 100 ns. The converged MF(∞) weights yield the same (Fig. 4.35 bottom), although the

mean-field iteration has significant influence on the sMD weights shown in Fig. 4.13. The

most interesting detail is that the comparison between aMD and sMD does also result

in a deviation of the group-overlap values between same and different sampling methods,

but all curves show a monotonously increase toward a possible final Odens of 1. Hence,

both energy distortions, the lifting for aMD and down-scaling for sMD, produce more

compatible results compared to cMD.

Finally, we want to analyze the influence of all four different re-weighting schemes (Exp,

10th order McL, MF(1) and MF(∞) following Eqs. (3.13) and (3.17)). The influence can be

inspected comprehensively in the density pair-overlap shown as heatmaps (Fig. 4.36). One

can see that for the straight forward exponential or Maclaurin re-weighting, the overlap

is much smaller compared to the mean-field steps, because the distributions of the first

re-weighting schemes are dominated by very few and very large weights. This issue can

be resolved with the mean-field approximation, but it could not resolve the bias toward

a correct Boltzmann distribution.

The bottom line of this subsection is the difficulty of a proper re-weighting for dis-

torted energy sampling. This issue is a well-known problem [114, 119], is actively inves-

tigated [115, 118, 122, 215] and the problems are still unresolved. For aMD trajectories,

the straight forward re-weighting applying the inverse Boltzmann factors either directly

or by approximating the exponential function with a series expansion is dominated by

few frames with 99% of all weights, yielding low overlap and poor results. Cumulant

expansion and our mean-field approach MF can resolve this issue but still lead to biased

distributions. One has to invest a lot of effort to calculate correct weights for the converged

microstates. It might be possible to obtain much better re-weighting with an exhaustive

validation of different neighborhood thresholds r. Maybe, re-weighting with a varying r

for different reference frames κ could also lead to an enhancement for the weights. So

far, the mean-field iteration yield for aMD a too large suppression until convergence is

reached that the re-weighting in the converged case is almost negligible. Interestingly,
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although sMD does not suffer from energetic fluctuations [113], we could detect a bias

using the re-scaled population in each r-neighborhood, which could not be resolved by the

mean-field convergence. At least, the density overlap Odens is able to compare different

sampling methods and re-weighting schemes to find a possible bias.

In the next section, we will investigate the influence of the overlap measures on ther-

modynamic averages and will also briefly discuss the influence of different re-weighting

schemes.

4.8. Influence of Oconf and Odens on thermodynamic

observables

In the last sections, the focus was to detect the convergence of trajectories, whether

the conformational space was appropriately sampled. This is the necessary condition

that all further results are reliable and that extracted thermodynamic observables are

correct (assuming that no conformational space is missed). In the end, one is interested

in thermodynamic averages to draw conclusions about systems. Thus, in the following

we will investigate the influence of changing overlap values on different thermodynamic

quantities.

4.8.1. Convergence of thermodynamic averages

Table 4.8.: Density overlap Odens for different pairs of arbitrary chosen Met-
Enkephalin trajectories of different time lengths.

100 ns 500 ns 1000 ns

Met79 (cMD) vs. Met153 (cMD) 0.642 0.741 0.883
Met79 (aMD) vs. Met153 (aMD) 0.541 0.870 0.889
Met79 (cMD) vs. Met79 (aMD) 0.615 0.747 0.765
Met79 (cMD) vs. Met153 (aMD) 0.613 0.745 0.751
Met153 (cMD) vs. Met79 (aMD) 0.622 0.790 0.784
Met153 (cMD) vs. Met153 (aMD) 0.504 0.766 0.756

The backbone angle distributions (φ,ψ) are often used to compare different results of

MD simulations. Therefore, we compare the distributions of different trajectories (two

cMD, two aMD) for increasing density overlap Odens between 0.5 and 0.9 (Table 4.8) of

Met-Enkephalin. Interestingly, single trajectories show increasingly smooth probability
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Fig. 4.37.: Normalized distributions of backbone dihedral angles φ and ψ of two arbi-
trarily chosen cMD trajectories of Met-Enkephalin starting from Met79
(top block) and Met153 (bottom block). Rows represent different time states
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Fig. 4.38.: Re-weighted and normalized distributions of backbone dihedral angles
φ and ψ of two arbitrarily chosen aMD trajectories of Met-Enkephalin
starting from Met79 (top block) and Met153 (bottom block). The re-
weighting was done using MF(1) at r = 0.11 nm. Rows represent different time
states (100 ns, 500 ns, 1000 ns), and columns refer to different residues (Tyrosine,
Glycine, Phenylalanine, Methionine). The distributions correspond to a binning
with a resolution of 10◦, whereas the probability is shown as colorcode from blue to
red. Dark blue means 0 probability, red changes between columns (0.03, 0.02, 0.02,
0.026, 0.02), respectively.
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Fig. 4.39.: Averaged end-end distances 〈D〉 of Met-Enkephalin. Trajectories are sam-
pled with cMD, aMD and sMD for different simulation times t and different re-
weighting schemes: Maclaurin expansion up to 10th order for aMD and first step
mean-field MF(1) for sMD at r = 0.11 nm (top), MF(1) for aMD and sMD at
r = 0.11 nm (center) and converged MF(∞) for aMD and sMD trajectories at
r = 0.11 nm (bottom) following Eqs. (3.13)-(3.17). Each boxplot corresponds to six
trajectories, three for Met79 and Met153.

densities for different angles, but no major structural differences between time states with

different Odens [37]. Hence, they seem to converge more quickly than quantities which
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require global convergence. On the other hand, both cMD trajectories and both aMD

trajectories show separately very similar results, whereas the two glycines behave differ-

ently for cMD and aMD. There are regions at φ . 80◦ and φ & 80◦ with zero probability

for cMD, which have non-zero values for aMD. This is remarkable, although we could

show that the re-weighted aMD trajectories are still biased. One possible explanation

could be that these regions have a very low probability to occur, which is overestimated

by the re-weighted aMD trajectories but still missed within cMD. Remember that also

Odens of the cMD trajectories is below 1 and some runs did not found all clusters (see

Fig. 4.31).

As a global measure of Met-Enkephalin, we investigate the end-end distance distribu-

tions and the averaged distance 〈D〉 between the terminal nitrogen of Tyrosine and the

terminal carbon of Methionine [37]. The latter 〈D〉 is shown in Fig. 4.39 as a function of

different simulation time lengths for different sampling methods and re-weighting schemes.

Each sampling method incorporates six different 1 µs trajectories, which showed consis-

tently increasing density overlap Odens up to around 0.7 with convergence of the number

of found clusters (see Figs. 4.27 left and 4.31). This implies that a clear convergence

behavior should be visible in 〈D〉 as a function of the simulated time, which is indeed

the case between ≈ 100 to 600 ns for all sampling methods (cMD, aMD, sMD). The

distribution of values of different trajectories show continuously decreasing spread and

stay nearly constant for t ≥ 600 ns with an error of the order of 0.01 nm. Nevertheless,

the outcome of cMD is significantly different compared to the other two sampling meth-

ods, where the values do not lie within the error intervals. The end-end distances 〈D〉
show also the large error introduced by the Maclaurin expansion for aMD re-weighting,

which is even more visible for the distance distributions in Fig. 4.40. On the other hand,

the first mean-field step MF(1) gives consistent results for 〈D〉 and converges the fastest

(Fig. 4.40 third panel). Remarkably, the converged MF(∞) trajectories for aMD show

almost no error, although they result in almost no re-weighting due to smoothing the

weights (see section 4.3 and Fig. 4.10). Hence, the effect of accelerating conformational

transitions by aMD is clearly visible, because low potential energies are lifted and the

biased sampling can much quicker sample reproducibly the underlying potential. In con-

trast, the re-weighted sMD results have the largest error values for t > 500 ns, although

these trajectories should also benefit from the acceleration of conformational transitions.

The non-weighted sMD distance averages have comparable errorbars as the cMD result

and converge even to slightly larger values than aMD (not shown). Again, the converged

MF(∞) weights have a certain impact on sMD runs, but 〈DsMD〉 is shifted to even smaller
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values compared to cMD. Remarkably, the results of sMD and aMD are compatible which

is in agreement with the previous bias analysis (Fig. 4.35).

In summary, we could show that the convergence of Odens and NC are linked to the error

of the thermodynamic average of the end-end distance 〈D〉 of Met-Enkephalin. Thus the

quantities have a clear impact to the results. It is also interesting to see that 〈D〉 does

not strictly require Odens = 1 to show convergence and a realistic value with a small error

estimate. Thus, depending on the system and quantity of interest, one has to decide,

whether it is necessary to invest much more calculation time to drive Odens � 0.8 for the

overlap between a group of single trajectories.
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Fig. 4.40.: Probability distribution approximates of end-end distances D of Met-
Enkephalin after 1 µs for different sampling methods and re-weightings.
For each panel, six trajectories were evaluated, three from Met79 and Met153. Ver-
tical dashed lines mark the means of 〈D〉 for each trajectory. Different re-weighting
schemes are shown: MF(1) and MF(∞) at r = 0.11 nm, and McL(10).
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4.8.2. Effect of the threshold r on thermodynamic averages

Table 4.9.: The density overlap Odens of the six 1 µs long cMD trajectories of Met-
Enkephalin (K = L) for different combinations of threshold r and simu-
lation time t. The asymmetric error estimate ∆Odens corresponds to the first and
third quartile of the six overlap values calculated for the six individual reference
trajectories defined in subsection 3.2.5.

Odens 0.810 0.796 0.805 0.797 0.790 0.794 0.814 0.790

∆Odens
+0.001 +0.004 +0.003 +0.004 +0.004 +0.004 +0.004 +0.006
−0.002 −0.004 −0.002 −0.000 −0.000 −0.004 −0.006 −0.007

r [nm] 0.13 0.14 0.15 0.16 0.17 0.19 0.20 0.21
t [ns] 1000 700 600 500 400 300 200 100

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
threshold r [nm]
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Fig. 4.41.: Accuracy of the end-end distance estimate 〈D〉 of Met-Enkephalin as a
function of the threshold r maintaining the same density overlap Odens ≈
0.8. Results are shown as boxplots with medians. For low resolutions (large r),
less simulation time is needed to achieve a given Odens value, but the estimated
value of 〈D〉 becomes inaccurate. For small r, the estimate gains accuracy. The
corresponding overlap, threshold and simulation time values are given in Table 4.9.
The figure is taken from Ref. [37].

So far, we argued that the threshold r can be understood as a resolution: For small r,

one obtains a very detailed view of the conformational space, i.e. even small deviations
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between two structures will be counted as different conformations. For a large r, the

view is very coarse, where even large deviations between two structures are tolerated

and these are assumed to represent the same conformation. The effect of different r

values could be detected in different analyses (see for example Figures. 4.16-4.19), where

in general, a larger r results in higher overlap. For instance, the simulation time which

is required to obtain a conformational overlap Oconf ≥ 0.99 as a function of r decreases

following approximately a power-law (Fig. 4.24). This could naively be understood that

the threshold r can be adjusted freely to larger values to achieve large overlap values and

thus convergence.

Of course, this is not the case. To demonstrate this issue, we analyze again the

end-end distance estimate 〈D〉 of six cMD trajectories of Met-Enkephalin with 1 µs

lengths, this time for different setups maintaining a constant Odens ≈ 0.8 [37]. All six

cMD trajectories are individually taken for the reference and comparison trajectories

K = L = {l1, l2, l3, l4, l5, l6}. This density overlap Odens is obtained for different tuples of

the threshold r and the simulation time t, which are given in Table 4.9. Now, it is possible

to plot the end-end distance 〈D〉 as a function of r illustrated in Fig. 4.41. Larger errors

of 〈D〉 correspond to coarser r. This result can be explained by the trivial relation, where

small thresholds r also correspond to long simulation times t and vice versa. It is clear

that a low resolution (large r) will lead to inaccurate estimates of observables because

short simulation times will usually lead to incomplete sampling.

For every system of interest, it is necessary to think about and choose a resolution

which covers the scientific question and is acceptable for the relevant observables. If small

deviations are irrelevant, for instance in systems where end states are separated by a large

distance and only the density in these different regions should be measured, it might be

appropriate to choose a low resolution (large r). This will be briefly discussed in the

outlook in chapter 5.

4.9. Conclusion

In this work, the sampling of MD simulations of flexible biomolecules was studied and

evaluated. We have developed and implemented two new overlap measures, the conforma-

tional Oconf and density overlap Odens. For a comprehensive assessment of the sampling,

we also used the development of the number of clusters NC [80] and cluster distribution

entropy SC [32].

In general, we could show the impact and necessity of a multi-trajectory approach for
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highly flexible systems. We could evaluate that the MD sampling of the small pentapep-

tide Met-Enkephalin converges in the order of microsecond trajectories. Furthermore,

the MD sampling of V3 considering trajectories of about 200 ns length is far from being

converged. This could be shown without misinterpretations.

It could also be shown that enhanced sampling algorithms (like aMD and sMD) can

significantly accelerate the sampling and yield good indications whether conformational

space was missed (Fig. 4.26). This can especially make a difference, where conformational

transitions are suppressed by large energetic barriers and conventional MD runs stay

trapped in few energetic minima. Nevertheless, the re-weighting of such biased ensembles

produced by aMD or sMD is still unresolved and requires a lot of effort to minimize the

errors (Figs. 4.34-4.35). On the other hand, these accelerated trajectories can be used

to generate (multiple) independent starting structures to initialize new cMD runs, which

significantly increase the sampling quality and show whether parts of the conformational

space are still undetected.

The two overlap measures (Oconf, Odens) can be applied to different data as well as

discontinuous samples. The only condition is that the data must be comparable, similar

to the RMSD (or distance) for different structures. Then, it is possible to first detect,

whether the data cover the same (conformational) space with Oconf, and if this is true,

analyze the probability density functions with Odens for self-consistency. If we reach also

Odens = 1 (for high resolution, small r), then all trajectories are equivalent and it does not

matter which one is used for the extraction of thermodynamic properties. The impact of

increasing Odens could clearly be shown in the decreasing error of the end-end distance

averages (Fig. 4.39). In practice, it might not be necessary to reach Odens = 1 for all

thermodynamic observables, but multiple trajectories reaching 0.8 ≤ Odens . 1 can be

used as replicates in the evaluation and error treatment of thermodynamic averages.

The (density) overlap is a very strict quantity to assess the convergence of the sampling,

especially if multiple trajectories are submitted individually. The ratio in Eq. (3.11)

between the minimum and maximum will drastically drop if only one trajectory samples

completely different parts of the conformational space. But this is exactly what we want

to obtain to not overestimating the sampling quality: if only one MD run (which provides

physically meaningful results) shows a totally different behavior than other trajectories,

a large conformational space is missed, and indeed the sampling should be questioned.

On the other hand, due to simple stochastic reasons, Odens will usually decrease with

increasing number of trajectories, if convergence is not reached, yet. This is true, because

different trajectories will slightly produce different probability density functions and the
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minima to maxima will deviate in Eq. (3.11). There are a lot of aspects which can have an

effect on Odens. We did not address the dependence of overlaps as a function of the amount

of trajectories in detail. But, in the regime where all conformational space was detected

and the probability density functions of different experiments relate to each other, Odens

will be increased with longer simulation lengths.

Furthermore, we could show that a comprehensive assessment of trajectories is necessary

to include different aspects of convergence. The overlaps alone lack information about

the size of the (sampled) conformational space, the development of the number of clusters

NC misses information about the underlying distribution and the constancy of the cluster

distribution entropy SC are almost not able to compare different trajectories. Only the

combination can yield a complete picture and enables the conclusion about the sampling

quality. For instance, low Odens may be caused by detecting new conformational space

or by insufficient long equilibrium sampling. This can be clarified by either a constant

or increasing NC discovery. But one has to keep in mind that sampling convergence

indeed will result in Odens → 1 and converged NC , but the opposite does not need to

be equivalent. Large density overlaps and converged NC might also result from trapped

trajectories in low energy minima, whereas parts of the conformational space separated by

large activation barriers could be still missed. Nevertheless, the use of more trajectories

lowers the probability to miss parts of the conformational space and makes results much

more reliable. The additional combination of enhanced sampling to decrease energetic

barriers makes the outcomes even clearer.

Finally, our tool worked unproblematic for both studied molecules. Met-Enkephalin

yielded the expected good results and convergence, although it has a non-trivial flexi-

ble behavior [125, 127]. On the other hand, V3 is about 7-fold larger in sequence than

Met-Enkephalin and did not show any sign of convergence. In fact, V3 lacks a classical

description of a rigid structure due to its flexibility, but in comparison to the huge com-

plexes routinely simulated today, it is still a small molecule. However, we can conclude

from our results that MD simulations of such flexible systems are still severely limited

by the available calculation resources and the conformational space grows exponentially

with their complexity.
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Studying flexible biomolecules and describing their functions and physical properties are

fundamental not only to understand the functional principles of life [1–4, 8] but also be

able to treat and generate inhibitors for viral diseases such as the HIV infection medi-

ated by the host entry [142, 143, 152]. The dynamics of such systems undergo complex

conformational changes and molecular dynamics (MD) simulations are a good candidate

to shed light into this field at atomic resolution. But still, there are a lot of studies ex-

tracting thermodynamic properties of systems from single trajectories and/or MD runs of

about 100 ns without proper validation of the underlying sampling. On the other hand,

sampling assessment is also often based only on single trajectories, dimensional subsets or

pre-clustering without validation [27, 29, 30, 32–34, 80]. There is the question, whether

this is valid for highly flexible biomolecules with rugged energy landscapes. Therefore, we

have studied the validation and quality assessment of molecular dynamics (MD) sampling

for flexible biomolecules. In this work, we could show that for highly flexible systems,

it is crucial to assess the convergence of the sampling as precondition. Additionally, we

could see that single trajectory conclusions can easily be misinterpreted.

We aimed to develop a universal tool using a multi-trajectory approach to assess the

sampling quality. We implemented two different overlap measures, namely, the confor-

mational overlap Oconf and density overlap Odens along two established quantities [32, 80]

to investigate the convergence of a diverse set of multiple trajectories, simultaneously.

The two overlap measures quantify the self-consistency of sampling of two or multiple

trajectories ranging from 0 (no overlap) to 1 (perfect overlap and reproducibility), and do

not require any pre-processing which could be part of information loss. Our tool is freely

available as source code at https://github.com/MikeN12/PySamplingQuality [37] and

is applicable to different systems and datasets as long as one can extract distance based

measures between experiments. Here, we use the root mean square deviation (RMSD)

as the distance measure for different structures obtained in the course of the simulation.

Depending on the similarity between structures, which is defined by a neighboring thresh-

old r, the conformational overlap Oconf counts, whether there is at least one r-neighbor

of all trajectories for all corresponding simulated (reference) frames. If this is the case,

all trajectories cover the same conformational space. Then, the density overlap Odens

counts the density of structures coming from different trajectories in each neighborhood
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of all simulated (reference) frames. Only if these densities are the same, the probability

density function p(~r) of all trajectories are the same and the sampling is sufficient, as-

suming that no conformational space is missed. The neighboring threshold r is used as

a resolution measure: the smaller r, the similar must be two structures to be considered

the same. Thus, the resolution is very high. The larger r, the more tolerant is the mea-

sure and also large deviations between structures are considered to originate from one

conformation; low resolution. Amongst the overlap quantities, we monitor the size of the

(sampled) conformational space, with the development of the number of found clusters

NC [80] and constancy of the cluster distribution entropy SC [32]. For these measures, we

also implemented a simple clustering algorithm to partition the conformational space into

disjunct chunks with a radius r/2 . R ≤ r with focus on efficient applicability to huge

RMSD matrices. The development of NC and SC allow us to conclude, if we are still in

the time regime of detecting new conformational clusters or already sampling equilibrium

probability.

Furthermore, we included two different enhanced sampling methods as additional possi-

bilities to investigate the sampling quality, namely accelerated MD (aMD) [111, 112] and

scaled MD (sMD) [113]. For this purpose, we also implemented three different re-weighting

schemes: exponential, Maclaurin expansion and a mean-field based re-weighting.

Two different biomolecules were investigated, the small pentapeptide Met-Enkephalin

and the highly flexible V3-loop of gp120 coming from HIV-1. The first molecule yielded

very good results in the sampling quality assessment, as we used it as benchmarking

system to validate our tool. We found that convergence can be obtained within a timescale

of microseconds with conventional MD simulations, which is larger than simulations of

about 100 ns applied in typical MD studies, today. The enhanced method aMD can

accelerate the sampling but a proper and correct re-weighting to diminish the bias is

still an unresolved issue [114, 115, 118, 119, 122, 215]. But with Odens, we were able to

develop a criterion to compare different sampling methods and successfully detect bias

in distributions. On the other hand, an accurate calculation of thermodynamic averages

like the end-end distance average 〈D〉 do not necessarily need Odens = 1, but it converges

already after ≈ 600 ns with a small error estimate.

The results of V3 did not show any reasonable sign of convergence for 200 ns trajecto-

ries. Although it is 7-fold larger than Met-Enkephalin, it represents still a small system

compared to the complexes simulated today in standard MD studies. The conclusion

would be that for such flexible molecules, which in fact lack of a well-defined rigid struc-

ture, MD is still limited by the available resources, since hundreds of microseconds or
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milliseconds are necessary in multiple experiments to achieve convergence. Here, aMD

impressively showed the poor sampling of the V3 trajectories, which all independently

found new conformational clusters without visiting conformations from different trajec-

tories. Hence, although the re-weighting is difficult and then yield wrong thermodynamic

observables, we encourage to use aMD to quickly explore a huge conformational space.

This gives the possibility to delimit the size and generate meaningful independent starting

conformations, to be able not to miss relevant and important parts in the conventional

MD sampling.

Finally, we want to underline the importance to use multiple independent trajectories

starting from different initial conditions to be able to make substantial conclusions about

the sampling. Only a comprehensive study of the sampling which involves a combination

of the overlap measures and the clustering, can give a complete picture of the sampling

result. Flexible systems have a huge conformational space with a lot of degrees of freedom,

which were underestimated in the past. A development of guided strategies to overcome

these issues and be able to representatively simulate such flexible complexes is needed.

At least, it is necessary to detect insufficient sampling and perform the validation as

established pre-condition, otherwise extracted thermodynamic properties are or may be

completely meaningless. This can now be done with our tool.

Protein-ligand systems: In this thesis, we focused on single peptide MD simulations

to classify their sampling and analyze the convergence of multiple trajectories. The un-

derlying idea is to detect identical/similar structures within a certain r-neighborhood

(resolution) and compare the densities of different trajectories in these r-neighborhoods.

If the densities of structures of each individual trajectory do correspond to each other, the

density overlap Odens will be equal to one, and the sampling is complete, assuming that

no conformational space is missing. This principle must also be true for more complicated

systems or coherent complexes, because only if multiple experiments are able to reproduce

same conformations or bound states, the sampling can be exhaustive.

For protein-ligand systems, which are another field of MD studies, a different spectrum

of application might be interesting, because the RMSD values might be dominated by the

large, probably rigid receptor.

First, optimally superimposed ligand structures without receptor can be used to obtain

an overlap measure of ligand conformations. On the one hand, perfect sampling must

reproduce the probability of different binders. On the other hand, this can be used to

investigate different binding conformations if different binding sites yield different ligand

structures. This approach is straight-forward using our tool PySamplingQuality.py, one
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only has to strip the protein atoms (along with water and ions) from the system, and

submit the ligand trajectory for RMSD matrix generation, event curve and finally overlap

calculation without special options or treatment. But this approach will not contain the

information about the position of binding pockets, thus it is possible that Odens is large

but different trajectories sample different binding pockets.

Second, only the ligand dynamics can be investigated to quantify the sampling quality,

assuming that the protein receptor forms a rigid core which remains almost stable without

contributions to the overall dynamics. To do so, one needs to maintain the relative posi-

tions of the ligand in the system around the protein and simultaneously strip the protein

atoms. The overlap measures Oconf and Odens contain then also the relative positions of

the ligand to the receptor, thus every binding position must be sampled equally well by

different experiments to give large overlaps.

Third, imagine that the dynamics of the ligand is the following: Starting from an

arbitrary position, being then energetically attracted by the binding pocket and guided

into the bound state remaining there forever. It is conceivable that the first part of this

ligand dynamics will never be reproduced by another experiments, because they both

started from different but arbitrary positions, which are physically irrelevant. Only the

last parts of the MD runs, where the ligand samples closely to the binding pocket, are

important and should be reproducible. Thus, only last parts of the trajectories should

be taken into account by setting StartFrame and EndingFrame (see Appendix C.1) as

options in the tool. Additionally, different ligands or different starting positions may

address different binding pockets if more than one are present for the receptor. It is

unlikely that in the course of one typical MD simulation, one ligand will sample multiple

or all pockets equally well. This is another application for the group-overlap concatenating

multiple trajectories to consider all binding states.

A representative workflow for the second and third application possibility is illustrated

in Fig. 5.1. There are two major differences compared to the general workflow of PySam-

plingQuality.py (Fig. 3.13): The optimal superposition is only done for the protein core

without the ligand as intermediate step before the actual RMSD matrix generation, and

one has to set Fit=’’None‘‘ (see Appendix C.1) for the RMSD matrix generation. The

latter ensures that no further fitting/superposition is done and the absolute distances of

the ligand are kept.

Finally, we want to mention the role of the threshold r and therefore the resolution of

these analyses. Effects like induced fit [7], which might change the distances or absolute

positions of the binding pockets, might alter the overlaps, because they can contribute
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to the relative positions between bound ligands. These effects can be reduced with an

appropriately set threshold r, which resolves these deviations. Furthermore, more toler-

ant r values are conceivable, because ligand pockets might be separated by their relative

distances in space. The latter idea can be exploited for another application, if the end

bound states of the protein-ligand systems are extracted due to a guided MD simulation.

Then, one will obtain multiple bound states, which can be first investigated with a large

threshold rin < r ≤ rout yielding the information, whether the binding pockets are ex-

haustively sampled, followed by a low threshold r ≤ rin giving insights about the sampling

of different binding conformations (Fig. 5.2). Surely, a small r includes also the relative

distances in space, but if the overlaps are small for small r, the other regime rin < r ≤ rout

might explain the reason.

Note that symmetry is not explicitly treated by our tool. This means that if ligands are

symmetric and bind in different but symmetric ways yielding identical binding affinities,

this is not considered in the RMSD metric and therefore not detected by our tool. Our

tool would expect the same amount of same and symmetric counterparts in the sampling,

although this might not be needed in the binding experiments. For simple (complete)

sampling analysis, it is still true that both configurations should give the same probability.

Hence, for such a specialized case, one has to keep that in mind and/or modify such

occurrences by hand. It might be resolved by flipping the atom numbers for symmetric

cases to one representative orientation. But such special cases are not implemented.

Other scientific studies: As already mentioned, our tool is universally applicable to

various datasets. For an extensive experiment producing a huge amount of comparison

data, it is conceivable that the overlap measures can give insight into the behavior of the

data. This could be a large sequencing dataset, or large samples of patients or results from

even other scientific fields. The only necessary condition is a definition of a comparability

matrix, which is then transformed into different event curves per experiment, where the

conformational and density overlap are calculated from, using the tool. This allows the

comparison of large sets from different experiments to investigate the similarity.
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A. RMSD: fitting and superposition

We use the root mean square deviation (RMSD) Eq. (3.1) as the difference measure be-

tween different structures/conformations to classify the overlap and therefore the sampling

quality of different trajectories. It is essential that these values are correct and precise. On

the other hand, we want to use established tools for simplicity and to quickly transform

one or multiple trajectories into RMSD matrices. Hence, we provide the usage of g rms

from GROMACS (v4.6 and v5.1 are tested) [94] and rms2d from AmberTools14 [46],

two well-established simulation softwares, for the matrix generation. This matrix gener-

ation is split into two parts, first an optimal super-positioning of structures, second the

RMSD calculation. The (least-squares) superposition can be difficult and time-consuming

depending on the system [198]. Furthermore, in general the RMSD does not follow the

triangle inequality, which means that RMSD(A,B) between two structures A and B can

be significantly different if another structure C is used as reference for the super-position

instead of superimposing A and B directly [216].

We test these influences by constructing RMSD matrices for our two molecules V3 and

Met-Enkephalin between structures of one arbitrarily chosen trajectory (Fig. A.1) and

between structures of two trajectories (Fig. A.2). First, the matrices are constructed

with g rms from GROMACS choosing one arbitrary reference structure, and second

by superimposing pair-wise two structures and construct the full matrix by hand. The

difference between the pair-wise fit and the g rms from GROMACS construction is <

10−4 which is equal to the precision of the chosen trajectory files. Thus we conclude

that for our molecules it is sufficient to use the standard techniques from GROMACS

or AmberTools14, which both give deviations of < 10−4 (results for AmberTools14 not

shown).

140



APPENDIX

0 1000 2000
0

1000

2000

tr
a
je

ct
o
ry

V3 one reference

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

R
M

S
D

0 1000 2000
0

1000

2000

tr
a
je

ct
o
ry

V3 pair-by-pair

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

R
M

S
D

0 1000 2000
trajectory

0

1000

2000

tr
a
je

ct
o
ry

V3 difference

0.00000
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009
0.00010

0 1000 2000
0

1000

2000 Met one reference

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

R
M

S
D

0 1000 2000
0

1000

2000 Met pair-by-pair

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

R
M

S
D

0 1000 2000
trajectory

0

1000

2000 Met difference

0.00000
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008
0.00009
0.00010

R
M

S
D

Fig. A.1.: RMSD [nm] values for explicit pair fit vs. GROMACS RMSD matrix
generation of single trajectories. Left: V3. Right: Met-Enkephalin. The RMSD
values refer to all pair structures within one arbitrary chosen 200 ns trajectory. The
upper panel shows the RMSD matrix generated by GROMACS using an arbitrary
chosen reference frame. The middle panel shows the RMSD matrix obtained by
explicit pair-by-pair fit and value calculation. The lower panel shows the difference
between the upper two panels. The figure is taken from Ref. [37].
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Fig. A.2.: RMSD [nm] values for explicit pair fit vs. GROMACS RMSD matrix gen-
eration between two different trajectories. Left: V3. Right: Met-Enkephalin.
The RMSD values refer to all pair structures between two arbitrary chosen 200 ns
trajectories. The upper panel shows the RMSD matrix generated by GROMACS us-
ing an arbitrary chosen reference frame. The middle panel shows the RMSD matrix
obtained by explicit pair-by-pair fit and value calculation. The lower panel shows
the difference between the upper two panels. The figure is taken from Ref. [37].
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B. Boxplot representation

Boxplots are used to agglomerate data of multiple trajectories. If not specified otherwise,

the boxplots show the median as line, the first and third quartile as box, the whiskers

as maximal/minimal values in the data (but not extending 1.5 times the box size) and

outliers outside the whiskers as single points (see Fig. B.3).

whisker medianQ1 Q3 whisker
interquartile range

Q1-max(1.5 IQR) Q3+max(1.5 IQR)

IQR outliersoutliers

Fig. B.3.: Boxplot representation. Data distribution is shown as median (red), first and
third quartiles (Q1, Q3, blue box), whiskers and possible outliers, if values extend
1.5 times the box size.

C. PySamplingQuality: modules, parameters and

examples

All analyses presented in chapter 4 can be done using our tool PySamplingQuality.py [37].

The modules are separated into three groups: Overlap, Clustering and Visualization.

As already mentioned, one is able to run the modules in two different ways, either using

configuration files or directly in Python. Both possibilities provide the same descriptions

in a header (Fig. C.4) and input parameters (Fig. C.5). The descriptions are either

accessible by calling

from PySamplingQuality import Calc_Overlap

??Calc_Overlap()

directly in Python or are located in the configuration file generated by

python PySamplingQuality.py -module GenerateIn -in Calc_Overlap

-out Calc_Overlap.in

The header (Fig. C.4) contains the current version, a short guideline and all necessary

information about the specific module. The parameter description (Fig. C.5) contains all

parameters which have to be submitted in double quotes. Additionally, there are descrip-

tions of every parameter alongside with an example. Default parameters are automatically
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set. In the following, we will show the modules and briefly discuss the corresponding argu-

ments and their functions. All further details can be found in the specific module and the

Fig. C.4.: Header of the configuration file. It contains the version, general information
and the specific descriptions about the module.

Fig. C.5.: Parameter input of the configuration file. Here, the parameters are listed,
default values are set and short descriptions are given along with a format example.
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certain documentation of PySamplingQuality.py. We will focus on relevant parameters

and will skip trivial arguments like names to store results (SaveName) or directories (Dir

suffix), which have to be properly set. Additionally, same arguments, if not explicitly

mentioned, are the same for following modules.

C.1. Overlap modules

RMSD matrix generation

Generate_RMSD_Matrices(TrajDir, TopologyDir, TrajNameList, TopologyName,

DistSaveDir, MatrixSaveDir ,TimeStep, Select1,

Select2=None, AmberHome=’’, GromacsHome=’’,

Fit=’rot+trans’, Program_Suffix=’’, PartList=None)

This module generates the necessary huge RMSD matrix between all pairs of simulated

structures of all involved trajectories. To be memory and time efficient, we split the calcu-

lation into block matrices, whereas we calculate only the non-redundant upper triangular

of the huge RMSD matrix together with the diagonal (shown in Fig. 3.13). The calcula-

tion is done in parallel, i.e. different blocks are calculated simultaneously on different cpu

cores, using g rms from GROMACS [94] or rms2d from AmberTools14 [46]. The neces-

sary input parameters are first a list of trajectory names (TrajNameList) with the ending

for the corresponding format (.trr or .xtc for GROMACS, .nc or .netcdf for AMBER).

Second, TimeStep selects the frequency which frames of the trajectories are used. This is

differently defined for the two programs: In GROMACS, TimeStep is given in nanosec-

onds to specify, that every TimeStep-th time is taken into account starting from the

first frame. In AMBER, TimeStep really is a frequency, i.e. a value of 1 uses all frames,

a value of 2 uses every second frame, and so on. Third, the two selections Select1

and Select2 define which atoms are used first for the super-position and then for the

RMSD calculation. The arguments AmberHome, GromacsHome and Program_Suffix can

be set to generate a link to the necessary programs cpptraj or g rms, respectively, where

the last argument treats possible installation suffices which were used in the GROMACS

installation (see www.gromacs.org for further reading).

There are two other important arguments, namely Fit and PartList. The first is rele-

vant if the user does not want to superimpose the structures before the RMSD calculation

which can be useful for ligand systems discussed in the outlook in chapter 5. The second

describes the feature that every RMSD block matrix can be split into any arbitrary size
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to fit into the memory of the working machine. Every trajectory can be split by hand in

multiple smaller pieces following the name convention

MD1.xtc -> MD1_part1.xtc, MD1_part2.xtc, ...

where PartList is a list of integers defining in how many parts the trajectories are split.

Note that the trajectory names defined in TrajNameList must be submitted without

partitions (_partX) to keep the strings small.

Finally, it is also possible to skip this step and supply block RMSD matrices of an own

calculation (see also the outlook in chapter 5). The only requirement is that they have to

match the naming convention: For trajectories called

ExampleName1.ending

ExampleName2.ending

...

the file names of the block matrices must be

ExampleName1_bin.dat

ExampleName2_bin.dat

ExampleName1_ExampleName2_bin.dat

...

to be correctly detected by the other modules. ExampleName1_ExampleName2_bin.dat

means the RMSD values between all pairs of structures from the first trajectory

ExampleName1.ending vs. the second ExampleName2.ending, whereas rows are defined

by the first and columns by the second trajectory.

RMSD distribution analysis

determineR_using_RMSD_distributions(TrajNameList, SaveName, SaveNamePdf,

SaveDir, MatrixDir, RMSD_dist_Dir = ’’,

BinFile_precision=numpy.float32,

Bins=200, Percent=1)

The RMSD distributions are generated using all pairs of RMSD values between all struc-

tures of all trajectories for a binned distribution of 200 bins by default. This module uses

the generated RMSD matrices to extract the RMSD values, which are loaded based on

the names submitted in TrajNameList. This list is identical to the list defined in the

previous module, but the entries do not contain the ending (for example .xtc). Since
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GROMACS (v4.6; v5.1) store RMSD matrices in a binary and AMBER in ascii format,

BinFile_precision is either a float32 or float64 for single or double precision installa-

tion of GROMACS, or can be set to None for AMBER. Finally, Percent ([0, 1]) produces

horizontal lines in the resulting figure which enclose the certain amount of probability in

percent.

Event curve generation

Generate_EventCurves(TrajNameList, TrajLengthList, MatrixDir, SaveDir,

SaveName, ThresholdList, MaxNumberLines,

ROW_TrajNrList=None, COL_TrajNrList=None,

StartFrame=0, EndingFrame=numpy.infty, PartList=None,

BinFile_precision=numpy.float32,

aMD_Nrs=[], aMD_reweight=’MF’, aMDlogDir=None,

aMDlogName=None, AmberVersion=’Amber14’, WeightStep=1,

Temp=300, sMD_Nrs=[], Lambda=1, Order=10,

Iterations=1)

This function is one core module and refers to the calculation of Eq. (3.10). It generates

two files, one containing the number of events per trajectory for different thresholds stored

in a Python binary format for each reference frame. The other file contains descriptions

in the header and the number of frames for each trajectory in one row stored in a text

file, which is used to normalize the events. Here, it is necessary to submit the lengths

of the trajectories (in number of frames) in a list (TrajLengthList) in the same order

as TrajNameList. With ThresholdList it is possible to calculate events for different

thresholds r and store them in one file, and StartFrame, EndingFrame select only certain

parts of the trajectories. An important argument is MaxNumberLines which defines the

number of rows loaded at once from an RMSD matrix block and therefore directly effects

the memory usage of the working machine. The more rows are loaded, the faster is the

calculation, but the more memory is necessary.

Another feature is the possibility to select only certain trajectories for the reference

frames κ (ROW_TrajNrList) and for the trajectories l (COL_TrajNrList) of Eq. (3.10) to

count the number of r-neighbors. This is done selecting certain trajectories by the position

stored in TrajNameList starting from 1. For example, the entries ROW_TrajNrList=[1,2]

and COL_TrajNrList=[5,10] lead to the calculation of the number of r-neighbors of

trajectory l = 5 and l = 10 for all (reference) frames κ which come from trajectories 1

and 2.
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The last eleven arguments are only necessary for re-weighting aMD and/or sMD trajec-

tories. With aMD_Nrs and sMD_Nrs certain trajectories are marked as aMD or sMD by the

position stored in TrajNameList starting from 1, aMD_reweight selects the re-weighting

scheme MF, Exp or McL up to the certain order specified by Order. Temp defines the

temperature of the simulation. WeightStep is responsible for the correct selection of

weights from the generated AMBER files, i.e. for instance WeightStep=2 selects every

second weight, which must correspond to the frame selection determined by TimeStep

of the previous RMSD matrix generation. If MF re-weighting is used, Iterations de-

termine the number of MF iterations, whereas a value of −1 iterates the weights until

convergence is reached or 100000 steps are passed. For aMD re-weighting, AMBER pro-

duces a special weight-file for each trajectory which stores the boost potential ∆V (see

subsection 2.2.3). These have to be submitted in the same trajectory order as aMD_Nrs

by two lists, aMDlogDir and aMDlogName.

Overlap calculation

Calc_Overlap(EventDir, EventNames, SaveDir, SaveName, CompareList,

WeightDir=None, aMD_Nrs=[], sMD_Nrs=[], SameTraj=None)

This function is another core module and refers to the calculation of Eqs. (3.5) and (3.11).

It generates only one file, containing the overlap values for different reference trajectories

and different thresholds defined in the event curve file. The main input is the list of

files produced in the event curve generation EventNames. Here, different event files are

automatically merged together from different reference sets K and comparison sets L. If

event files with different start and ending frames are submitted, the argument SameTraj

allows to calculate the overlap between different simulation times of one trajectory which

is defined by the position (=SameTraj) stored in the previous TrajNameList starting

from 1. CompareList is the most tricky argument, it is a list of tuples of lists defining

the comparison set L of trajectories for the overlap calculations. The inner list concate-

nates all trajectories similar to the group-overlap defined in subsection 3.2.3, the tuples

define the different (groups of) trajectories for which the overlap is calculated and the

outer list gives the possibility to store multiple overlap values in one file. For example,

CompareList = [([1],[2,3])] leads to an overlap calculation between the trajectory 1

and the concatenated trajectories 2 and 3. Again, trajectories are defined by their po-

sitions. The other arguments are only necessary for aMD or sMD trajectories, whereas

WeightDir has to point to the directory where the weights are stored from the event curve

generation.
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C.2. Clustering modules

Clustering

Generate_Clustering(MatrixDir, SaveDir, TrajNameList, TrajLengthList,

Threshold, SaveName, MaxNumberLines, TimeStep=None,

StartFrame=0, EndingFrame=numpy.infty, PartList=None,

GLOBAL=True, BinFile_precision=numpy.float32,

RMSDdir=None, TrajDir=None, TopologyDir=None,

TopologyName=None, Ending=’.xtc’, Select1=None,

Select2=None, AmberHome=’’, GromacsHome=’’,

Program_Suffix=’’, ReferencePDB=None,

RefFrame=None)

Merge_Clustering_different_Thresholds(SingleClustDir, SaveDir, SaveName,

ThresholdList, StartFrame,

EndingFrame, GLOBAL)

Generate_Centers_GLOBAL_singles(ClusterDir, GlobalName, ThresholdList,

SaveDir=None)

These three modules generate the clustering files using the calculated RMSD matrices.

In the first (main) module for the clustering, two files are generated, first the clustering

profile containing all frames and the corresponding clusters, second the centroid file con-

taining the number of found clusters per trajectory with the corresponding cluster centers.

Furthermore, the last twelve arguments are necessary, if an explicit reference structure is

used (see subsection 3.3.1), otherwise they can be left untouched and automatically the

first frame of a trajectory is used as reference point. For an explicit reference, one has

to either submit the topology, the reference frame in PDB format and the ending of the

trajectory (e.g. .xtc), or submit a specific frame as integer (=RefFrame). The latter

specifies the corresponding frame of the submitted trajectory list as reference. Since it

is difficult to parallelize cluster calculations with different thresholds efficiently, it is pos-

sible to generate multiple files per hand submitting only one threshold and merge then

clusterings with different thresholds into one collected file. This can be done with the

second module presented here.

Another important argument is GLOBAL, which will be necessary for other modules, too.

It defines whether all trajectories are concatenated and one single (global) partitioning is

149



APPENDIX

done at once. The great advantage is that one can extract the number of clusters which are

reached by single trajectories with the third module by maintaining the comparability of

a global partition. One only needs to submit the file which stores the globally partitioned

profiles as GlobalName, then a corresponding centroid file is generated containing the

number of found clusters per trajectory from the global clustering with the corresponding

cluster centers.

To run the partitioning, it is necessary that at least one row of the full RMSD matrix

of the involved trajectories fits into the memory of the system (see subsection 3.3.1). In

the case of the global clustering, this really means the combination of all block matrices,

thus it might consume a lot of memory, whereas for local clustering only one row of one

trajectory must be loaded.

Cluster number NC and entropy SC

Generate_CDE_to_File(ClusterDir, ClusterFile, ThresholdList, Case,

SaveDir=None, SaveName=None, WeightDir=None,

aMD_Nrs=[], sMD_Nrs=[], aMD_reweight=’MF’,

Iterations=1, Lambda=1, Order=10)

The cluster distribution entropy SC(t) and the number of clusters NC(t) as a function of

the simulation time t (see subsection 3.3.3) for each trajectory are stored in a one file using

the clustering profile (single or global partitioning) as input ClusterFile. The important

argument is defined by Case, which distinguishes between single trajectory clustering

(Case=’LOCAL’), global clustering (Case=’GLOBAL’) and global clustering but extracting

the results for single trajectories (Case=’GLOBAL_singles’). This has to correspond to

the submitted clustering file. Additionally, the normalized versions ÑC(t), S̃C(t)

ÑC(t) =
NC(t)

NC(tend)
∈ [0, 1]

S̃C(t) =
−
∑NC(t)

i=1 pi(t) · log (pi(t))
log (NC(tend))

∈ [0, 1]

are calculated, with tend means the end of the simulation.

Slopes defined by dNC/dt and dSC/dt

Generate_Slope_Error(EntropyDir, EntropyName, SaveDir=None, SaveName=None,

SlopeTimeArray=[100,250,500], X_NormFactor=1000)
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The slopes and the corresponding error estimates of the linear models are calculated by

submitting the EntropyName file generated from the previous module. It generates one

file containing the slopes per trajectory for different thresholds which corresponds to the

file generated by the previous function. One has to specify three different frame values

(SlopeTimeArray), where the slopes are then calculated for the corresponding last frames

of the trajectory. The X_NormFactor is used to normalize the x-axis, i.e. the number of

clusters or entropy is approximately changed in the next steps defined by this value by

the corresponding slope.

C.3. Visualization modules

Plot clustering results

Plot_ClusterProfile(ClusterDir, ClusterFile, TimeStep, Threshold,

TrjLenList, GLOBAL, SaveDir=None, SavePDF=None,

Names=[], FigSize=[16,8])

The profile of the clustering can be visualized using the clustering profile submitted as

ClusterFile (single trajectory or global partitioning). It monitors which cluster is occu-

pied during the course of the simulation. The more transitions between different clusters,

the lower are the energetic barriers in between. Furthermore, one can detect the devel-

opment of finding new clusters. The argument GLOBAL (True or False) switches between

cases, whether trajectories are treated as concatenation or separately. It is possible to

generate profiles for more than only one trajectory, which is another quantity to assess

the sampling quality: Only if the same clusters are present in multiple trajectories with

similar densities and transition frequencies, the sampling can be complete. Depending

on the total number of found clusters and trajectory lengths, this can produce huge files,

where the figure size can be modified by integers referring to inches in x- and y-directions.

Plot_Slope_Error_Plateau_NrClust(SlopeDir, SlopeName, Threshold, Case,

TimeStep, SaveDir=None, Confidence=0.95,

YMAX=50, Splitter=None, SupGrid=None,

TrajExcept=[], FigText=None)

This module plots the slopes (SlopeName) of dNC/dt and dSC/dt with the 95% confi-

dence intervals on default calculated by Generate_Slope_Error() and defined in subsec-

tion 3.3.3 (see for example Fig. 4.30). One frame of the trajectory refers to the floating

point value of TimeStep in nanosecond. In this module, Case switches between ’Entropy‘,
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’Cluster‘ and ’Plateau‘, where the last choice gives the time ∆t, between finding the last

cluster and the end of the simulation. This is another indicator, whether NC(t) might be

converged. The smaller ∆t, the more probable it is that more clusters will be found.

The last four arguments are tricky. SupGrid and Splitter manipulates the layout,

how many rows and columns are shown with how many trajectories in each subplot. If

these options are used, one can name each panel from left to right and top to bottom

by the list FigText. Finally, with TrajExcept one can select the trajectories which are

discarded from the list of TrajNameList used to generate SlopeName, starting from 1.

Plot_ClusterSize_vs_Time_GLOBAL(ClusterDir, ClusterFile, Threshold,

StartEndList, TrajGrpList, SaveDir=None,

SaveName=None, SndAxis=2, LegendList=None,

YLIM=None, FigSize=(12,5))

The number of clusters as a function of the simulation time is a good indicator, how

different trajectories behave and whether simulations explore different parts of the con-

formational space. This requires the comparability of the clustering, thus the module

uses the global partitioning of all full length concatenated trajectories and then extracts

the number of unique clusters reached by single runs. The plot shows the groups of tra-

jectories as boxplots, where the groups are defined by lists of lists called TrajGrpList.

Furthermore, the unique clusters found by all combined trajectories of one list are shown

as bars, and SndAxis > 1 generates a second x-axis giving the number of clusters found by

all runs. For example, TrajGrpList =[[1,2], [3,4]] plots the results for trajectories

1 and 2 and for trajectories 3 and 4 as separate boxplots, and additionally the barplots

show the number of unique clusters of the combination of 1 and 2 and the number unique

clusters of the combination of 3 and 4. The argument StartEndList defines in tuples the

starting and ending frame for which the number of clusters are evaluated. Finally, the list

called LegendList can be used to submit names starting first for all boxplots followed by

all barplots.

Plot overlap results

Plot_Overlap_VS_Threshold(OverlapDir, OverlapList1, Percentile1=25,

Percentile2=75, Median=False,

Interpolation=’linear’, OverlapList2=None,

XLIM1=[None,None], XLIM2=[None,None],

MolName1=’’, MolName2=’’, LegendList=[None],

SaveDir=None, SaveName=None)

152



APPENDIX

Plot_Overlap_VS_Threshold() generates plots of the kind like Fig. 4.16. The red curves

and first x-axis correspond to overlap files in list OverlapList1 and can be manipulated

by XLIM1 setting the limites for the x-axis and by MolName1 setting the name of the

first molecule/system. The legend referring to the same order as OverlapList1 and

OverlapList2 can be set by LegendList. One special feature is that if one overlap file

contains multiple overlap values for instance for different analysis groups, they are plotted

automatically in ascending order before using the next file in the list OverlapList1 or

OverlapList2. The arguments Percentile1, Percentile2, Median and Interpolation

modify the shown error bars.

Plot_HeatMap_1vs1(OverlapDir, OverlapFile, Threshold, StartFrame,

EndingFrame, YLIM=None, ClusterDir=None,

ClusterFile=None, AllPrject=True, TrajExcept=[],

Title=’’, Grid=[], CaseTitles=[], SaveDir=None,

SaveName=None)

The heatmap is a good possibility to illustrate the pair-overlap (conformational or density)

between a massive amount of trajectories lX and lY as shown in Fig. 4.17. The file

specified by OverlapFile must contain all pair overlap values in one row, thus the overlap

calculation must be done properly specifying all pairs in the following order: Starting

calculating all pairs with respect to the first trajectory, then with respect to the second,

then with respect to the third, and so on without redundant or multiple same entries.

With AllPrject, one is able to specify whether the heatmap is symmetric (K = L) or

asymmetric (K 6= L) as done in subsection 4.4.1. Additionally, it is possible to show the

number of clusters found by single trajectories below the heatmap, either submitting the

centroid file from local clustering, or the clustering profile from global clustering to choose

between both approaches. For visual reason, you might sort different trajectory groups

together and separate them by a grid, where solid lines are shown after the i-th trajectory

specified in the list Grid. These groups can be named by CaseTitles, where this list has

to obviously have one more entry than the grid list.

Plot_HeatMap_as_Dendro(OverlapDir, OverlapFile, Threshold, Case=’density’,

TrajExcept=[], Labels=None, Colors=None,

SaveDir=None, SaveName=None)

Additionally to the heatmap representation, one can generate a dendrogram using hi-

erarchical clustering with average linkage with the same input as previously defined.

The argument Case switches between the density and conformational overlap. With
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Labels and Colors, the labeling of the leaves can be modified, whereas the latter is

represented as a dictionary, where the keys must match the first part of the labels sepa-

rated by spaces defined by Labels. For example Labels = [’traj 1’, ’traj 2’] and

Colors = {’traj’:’g’} will lead to green colored leaves called traj 1 and traj 2.

Plot_Overlap_VS_Time(OverlapDir, OverlapList, Threshold, StartEndList,

TimeStep, Percentile1=25, Percentile2=75, Median=False,

Interpolation=’linear’, LegendList=[], Title=’’,

LegendNcols=1, SaveDir=None, SaveName=None,

logX=False, LegendDens=True)

This module generates figures like Fig. 4.22, plotting the overlap as a function of the simu-

lation time defined in StartEndList. Moreover, it is possible to plot the time logarithmic

by logX, setting the number of columns for the legend by LegendNcols and choose at

which panel (conformational or density) the legend will appear by LegendDens. As an

example, StartEndList=[(0,100), (0,200)] will result in a plot showing the overlap

for the first 100 and the first 200 frames.

Plot_Overlap_VS_Cluster(OverlapDir, OverlapList, Threshold, ClusterDir,

ClusterFile, Case=’density’, XLIM=None, YLIM=None,

LegendList=None, LegendNcols=1, Percentile1=25,

Percentile2=75, Median=False,

Interpolation=’linear’, SaveDir=None,

SaveName=None, Title=’’, FigSize=(7,6), Combi=True,

Symbols=[’bs’, ’ks’, ’rs’, ’gs’, ’ko’, ’ro’, ’go’,

’k<’, ’r<’, ’g<’, ’g<’, ’m<’, ’c<’, ’y<’])

Finally, the last plotting function generates a figure combining the overlap and cluster-

ing result (Fig. 4.31). The input files are the same as before, where OverlapList and

ClusterFile must correspond to each other, i.e. the trajectories and other properties

must be the same for both files. The special feature is that one can either illustrate NC

as the number of unique clusters found by all combinations of trajectories in the analysis

group (Combi = True), or show the distribution of number of clusters for each trajec-

tory separately by the average or median with the specified percentiles (Combi = False).

Therefore, the outcomes of both settings are different. Furthermore, the user can specify

the color and marker of single points following the matplotlib [204] logic, which contains

two characters: The first character modifies the color and the second the marker, which

can be seen in the default option.
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[14] Dittmar, M. T., McKnight, Á., Simmons, G., Clapham, P. R., Weiss,

R. A., and Simmonds, P. HIV-1 tropism and co-receptor use. Nature (1997)

385(6616):495–496. doi:10.1038/385495a0. 1, 31

[15] Huang, C.-c., Tang, M., Zhang, M.-Y., Majeed, S., et al. Structure of a

V3-containing HIV-1 gp120 core. Science (2005) 310(5750):1025–8. doi:10.1126/

science.1118398. 1, 31, 32, 68, 69

[16] Huang, C.-C., Lam, S. N., Acharya, P., Tang, M., et al. Structures of the

CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4.

Science (2007) 317(5846):1930–4. doi:10.1126/science.1145373. 1, 29, 31, 32, 68, 69

[17] Zuckerman, D. M. Equilibrium Sampling in Biomolecular Simulations. Annu.

Rev. Biophys. (2011) 40(1):41–62. doi:10.1146/annurev-biophys-042910-155255. 1,

2, 27

[18] McCammon, J. A., Gelin, B. R., and Karplus, M. Dynamics of folded pro-

teins. Nature (1977) 267(5612):585–590. doi:10.1038/267585a0. 1

[19] Karplus, M. and Kuriyan, J. Molecular dynamics and protein function. Proc.

Natl. Acad. Sci. (2005) 102(19):6679–6685. doi:10.1073/pnas.0408930102. 1

[20] Ponder, J. W. and Case, D. A. Force fields for protein simulations. Adv.

Protein Chem. (2003) 66:27–85. 1, 9, 10

[21] Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and

Simmerling, C. Comparison of multiple Amber force fields and development

of improved protein backbone parameters. Proteins (2006) 65(3):712–25. doi:

10.1002/prot.21123. 1, 9, 10

156



Bibliography

[22] Shaw, D. E., Bowers, K. J., Chow, E., Eastwood, M. P., et al.

Millisecond-scale molecular dynamics simulations on Anton. Proc. Conf. High Per-

form. Comput. Networking, Storage Anal. - SC ’09. ACM Press, New York, New

York, USA. ISBN 9781605587448 (2009) 1. doi:10.1145/1654059.1654099. 1, 22

[23] Stone, J. E., Hardy, D. J., Ufimtsev, I. S., and Schulten, K. GPU-

accelerated molecular modeling coming of age. J. Mol. Graph. Model. (2010)

29(2):116–25. doi:10.1016/j.jmgm.2010.06.010. 1, 22

[24] Beauchamp, K. A., Lin, Y.-S., Das, R., and Pande, V. S. Are Protein Force

Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measure-

ments. J. Chem. Theory Comput. (2012) 8(4):1409–1414. doi:10.1021/ct2007814.

1

[25] Lindorff-Larsen, K., Maragakis, P., Piana, S., Eastwood, M. P., Dror,

R. O., and Shaw, D. E. Systematic Validation of Protein Force Fields against Ex-

perimental Data. PLoS One (2012) 7(2):e32131. doi:10.1371/journal.pone.0032131.

2, 11

[26] Romo, T. D. and Grossfield, A. Unknown Unknowns: the Challenge of System-

atic and Statistical Error in Molecular Dynamics Simulations. Biophys. J. (2014)

106(8):1553–1554. doi:10.1016/j.bpj.2014.03.007. 2, 18, 19, 54

[27] Grossfield, A. and Zuckerman, D. M. Quantifying Uncertainty and Sampling

Quality in Biomolecular Simulations. Annu. Rep. Comput. Chem., chapter 2, 23–48.

Elsevier (2009) doi:10.1016/S1574-1400(09)00502-7. 2, 19, 134

[28] Romo, T. D., Leioatts, N., and Grossfield, A. Lightweight object oriented

structure analysis: Tools for building tools to analyze molecular dynamics simula-

tions. J. Comput. Chem. (2014) 35(32):2305–2318. doi:10.1002/jcc.23753. 2

[29] Flyvbjerg, H. and Petersen, H. G. Error estimates on averages of correlated

data. J. Chem. Phys. (1989) 91(1):461–466. doi:10.1063/1.457480. 2, 19, 134

[30] Lyman, E. and Zuckerman, D. M. On the Structural Convergence of Biomolec-

ular Simulations by Determination of the Effective Sample Size. J. Phys. Chem. B

(2007) 111(44):12876–12882. doi:10.1021/jp073061t. 2, 19, 134

157



Bibliography

[31] Zhang, X., Bhatt, D., and Zuckerman, D. M. Automated Sampling Assess-

ment for Molecular Simulations Using the Effective Sample Size. J. Chem. Theory

Comput. (2010) 6(10):3048–3057. doi:10.1021/ct1002384. 2

[32] Sawle, L. and Ghosh, K. Convergence of Molecular Dynamics Simulation of

Protein Native States: Feasibility vs Self-Consistency Dilemma. J. Chem. Theory

Comput. (2016) 12(2):861–869. doi:10.1021/acs.jctc.5b00999. 2, 19, 54, 58, 60, 113,

131, 134, 135

[33] Hess, B. Convergence of sampling in protein simulations. Phys. Rev. E (2002)

65(3):031910. doi:10.1103/PhysRevE.65.031910. 2, 20, 134

[34] Fuglebakk, E., Echave, J., and Reuter, N. Measuring and comparing

structural fluctuation patterns in large protein datasets. Bioinformatics (2012)

28(19):2431–40. doi:10.1093/bioinformatics/bts445. 2, 20, 134

[35] Hess, B. Similarities between principal components of protein dynamics and ran-

dom diffusion. Phys. Rev. E (2000) 62(6):8438–8448. doi:10.1103/PhysRevE.62.

8438. 2

[36] Python Software Foundation. Python Language Reference. Version 2.7,

http://www.python.org. 2, 64

[37] Nemec, M. and Hoffmann, D. Quantitative Assessment of Molecular Dynamics

Sampling for Flexible Systems. J. Chem. Theory Comput. (2017) 13(2):400–414. doi:

10.1021/acs.jctc.6b00823. http://pubs.acs.org/doi/abs/10.1021/acs.jctc.

6b00823. 3, 36, 53, 63, 68, 70, 71, 78, 82, 83, 94, 95, 98, 99, 100, 104, 106, 110, 111,

112, 113, 114, 115, 117, 118, 126, 127, 130, 131, 134, 141, 142, 143

[38] Wang, W., Donini, O., Reyes, C. M., and Kollman, P. A. Biomolecu-

lar simulations: recent developments in force fields, simulations of enzyme catal-

ysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interac-

tions. Annu. Rev. Biophys. Biomol. Struct. (2001) 30:211–43. doi:10.1146/annurev.

biophys.30.1.211. 4

[39] Ivanov, S. Theoretical and Quantum Mechanics. Springer Netherlands (2006).

ISBN 978-1-4020-3365-0. doi:10.1007/1-4020-3688-4. Chapter 11. 5

[40] Hehre, W. J. A guide to molecular mechanics and quantum chemical calculations.

Irvine, CA : Wavefunction, c©2003. 6, 7, 9, 11

158

http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00823
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00823


Bibliography

[41] Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide,

Interdisciplinary Applied Mathematics, volume 21. Springer New York (2010). ISBN

978-1-4419-6350-5. doi:10.1007/978-1-4419-6351-2. 6, 7, 9, 10, 11, 12, 14, 15, 16,

17, 68

[42] Burkert, U. and Allinger, N. L. Molecular mechanics. ACS monograph.

American Chemical Society (1982). ISBN 9780841205840. 7, 11

[43] Leimkuhler, B. and Matthews, C. Molecular Dynamics, Interdisciplinary Ap-

plied Mathematics, volume 39. Springer International Publishing, Cham (2015).

ISBN 978-3-319-16374-1. doi:10.1007/978-3-319-16375-8. 7, 11, 14

[44] Allen, M. P. and Tildesley, D. J. Computer Simulation of Liquids. Oxford

Science Publ. Clarendon Press (1989). ISBN 9780198556459. 7, 8, 11, 12

[45] Verlet, L. Computer ”Experiments” on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules. Phys. Rev. (1967) 159(1):98–103. doi:10.

1103/PhysRev.159.98. 7

[46] Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., et al. Amber 14

(2014). University of California, San Francisco, ambermd.org. 7, 22, 64, 71, 140,

145

[47] Hockney, R.,Goel, S., and Eastwood, J. Quiet high-resolution computer mod-

els of a plasma. J. Comput. Phys. (1974) 14(2):148–158. doi:10.1016/0021-9991(74)

90010-2. 8

[48] Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., et al.

The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A (1999)

103(19):3596–3607. doi:10.1021/jp984217f. 9

[49] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., et al. A Second

Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic

Molecules. J. Am. Chem. Soc. (1995) 117(19):5179–5197. doi:10.1021/ja00124a002.

9, 10

[50] MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., et al.

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Pro-

teins . J. Phys. Chem. B (1998) 102(18):3586–3616. doi:10.1021/jp973084f. 9

159



Bibliography

[51] Wang, J., Cieplak, P., and Kollman, P. A. How well does a restrained elec-

trostatic potential (RESP) model perform in calculating conformational energies of

organic and biological molecules? J. Comput. Chem. (2000) 21(12):1049–1074.

doi:10.1002/1096-987X(200009)21:12〈1049::AID-JCC3〉3.0.CO;2-F. 9, 10

[52] Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., et al. Im-

proved side-chain torsion potentials for the Amber ff99SB protein force field. Pro-

teins Struct. Funct. Bioinforma. (2010) NA–NA. doi:10.1002/prot.22711. 9, 10, 12,

71

[53] Jorgensen, W. L. and Tirado-Rives, J. The OPLS [optimized potentials for

liquid simulations] potential functions for proteins, energy minimizations for crystals

of cyclic peptides and crambin. J. Am. Chem. Soc. (1988) 110(6):1657–1666. doi:10.

1021/ja00214a001. 10

[54] Duan, Y. and Kollman, P. A. Pathways to a protein folding intermedi-

ate observed in a 1-microsecond simulation in aqueous solution. Science (1998)

282(5389):740–4. doi:9784131. 11, 18

[55] Lindorff-Larsen, K., Piana, S., Dror, R. O., and Shaw, D. E. How

Fast-Folding Proteins Fold. Science (80-. ). (2011) 334(6055):517–520. doi:

10.1126/science.1208351. 11, 18

[56] Schwabl, F. Statistische Mechanik. Springer-Lehrbuch. Springer-Verlag,

Berlin/Heidelberg (2006). ISBN 3-540-31095-9. doi:10.1007/3-540-31097-5. 11

[57] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola,

A., and Haak, J. R. Molecular dynamics with coupling to an external bath. J.

Chem. Phys. (1984) 81(8):3684–3690. doi:10.1063/1.448118. 11, 12, 71
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