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In the dissertation, the following conversions are applied

– Vectors are described by underlined letters, e.g. a

– Matrices are described by upper–case letters, e.g. A, B, C

– A vector from origin of frame KX to origin of KY is denoted as Xr Y

– A decomposition of a vector r in a reference frame KX is denoted as Xr

– A rotation matrix from the reference frame KX to the reference frame KY is

denoted as XRY

– Decomposition of a relative acceleration of frame KY with respect to frame KX

in frame KA is denoted as A
XaY

– A vector from point M to point N is denoted as MrN

– Unless stated otherwise, the coordinate system at driver’s head is defined such

that the X axis is to the right, the Y axis is backward, and the Z axis is upward

– Unless stated otherwise, vectors are decomposed in the inertial, earth–fixed ref-

erence frame K0.

– The reference frame KX has the origin X
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VECTORS AND MATRICES (unless otherwise noted in the dissertation)

a Acceleration of a point
A, B, C, D Matrices representing the state-space model of a control system
ξ = [R,α, z] Position vector of a point in cylindrical coordinates

ξ̇ =
[
Ṙ, α̇, ż

]
Velocity vector of a point in cylindrical coordinates

ξ̈ =
[
R̈, α̈, z̈

]
Acceleration vector of a point in cylindrical coordinates

C(ξ) Transformation matrix that transforms the vector components
from Cartesian to cylindrical coordinates

S = [x, y, z] T Position of the cabin of the driving simulator (m)
v = [ẋ, ẏ, ż] T Longitudinal, lateral and vertical velocity m/s
a = [ẍ, ÿ, z̈] T Longitudinal, lateral and vertical acceleration (m/s2)
j = [

...
x ,

...
y ,

...
z ] T Longitudinal, lateral and vertical jerk (m/s3)

β = [ϕ, θ, ψ] T Bryant angles (rad)

β̇ =
[
ϕ̇, θ̇, ψ̇

]
T Rates of Bryant angles (rad/s)

ω = [ωx, ωy, ωz]
T Angular velocity (rad/s)

f = [fx, fy, fz]
T Specific forces (m/s2)

TS Transformation matrix from angular velocity to Euler angle
rates

ς =
[
f, ω

]
T Specific forces and angular velocities

W(s) Transfer function matrix of the open-loop optimal control
Q, R,Rc Weighting matrices in cost functions
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SUBSCRIPTS – (main symbol)
SUBSCRIPT

In most cases, subscripts indicate to what the main symbol is related

( )tar Relates to target signals
( )err Relates to the error
( )max Relates to the maximal value
( )min Relates to the minimal value
( )norm Relates to normalized value
( )Oto Relates to the otolith system
( )Scc Relates to the semicircular system
( )V e Relates to the vestibular system
( )ref Relates to reference signals
( )sc Relates to scale values of signals
( )sh Relates to form-shapes of signals
( )f Relates to specific forces
( )ω Relates to angular velocities
( )x,y,z x, y, z components
( )HP Relates to the high-pass filters
( )LP Relates to the low-pass filters

( )cam
Relates to the tracking camera’s reference frame Kcam defined in the
KUKA Robocoaster controller

( )T Relates to the tilt coordination
( )MC Relates to the motion cueing algorithm
( )lm Relates to limit values
( )Cly Relates to cylindrical coordinates
( )c Relates to the state of simulator platform
( )d Relates to the desired values in the driving simulator
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SUPERSCRIPTS –
SUPERSCRIPT

(main symbol) or (main symbol)SUPERSCRIPT

In most cases, superscripts indicate to which frame the main symbol is in
Ps( ) In the pilot head frame KPs of the drive simulator
0( ) In the inertial frame K0

Pv( ) In the pilot head frame KPv in the vehicle
S( ) In the simulation frame KS of the drive simulator
V ( ) In the vehicle frame KV
E( ) In the moving frame in KE at the end effector of the robot

W ( )
In the moving, washout frame KW created by rotating K0 an angle
α around axis Z0

( )S Element of a vector decomposed in the frame KS

( )Ps Element of a vector decomposed in the frame KPs

( )R
Relates to the reference frame KR defined in the KUKA
Robocoaster controller.
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SYMBOLS
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a Acceleration of a point

g Acceleration vector due to gravity

J System cost function

e Error

f Specific force (m/s2)

ϕ Roll angle

θ Pitch angle

ψ Yaw angle

eMC Average error of simulated acceleration

esc Average scale error of simulated signals

esh Average shape error of simulated signals

λ1 First performance indicator

λ2 Second performance indicator

λ∗1 First good criterion index

λ∗2 Second good criterion index

λ&1 First normalized good criterion index

λ&2 Second normalized good criterion index

λ∗1f Average error of the specific force

λ∗1ω Average error of the angular velocity

amax Maximum acceleration of the drive simulator

ωmax Maximum angular velocity of the drive simulator

λ∗1f,sc Average scale error of the specific force

λ∗1f,sh Average shape error of the specific force

λ∗1ω,sc Average scale error of the angular velocity

λ∗1ω,sh Average shape error of the angular velocity

λ∗2f Average error of the first derivative of the specific force

λ∗2ω Average error of the first derivative of angular velocity
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λ∗2f,sh Average shape error of the first derivative of specific force
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W(s) Matrix of optimal washout filters

δ Threshold values
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τ1, τ2, τa, τL Time coefficients of the model of the semicircular system

A0, B0, B1 Time coefficients of the model of the otolith system

KScc Gain factor of the model of the semicircular organ

KOto Gain factor of the model of the semicircular organ

GS Gain factor (threshold units) of the model of the semicircular organ

GO Gain factor (threshold units) of the model of the otolith organ

ϕS Tilt angle of the cabin

ϕT Tilt angle used to simulate the correspondent specific force

xi State variables of a dynamic system i = 1, 2 . . .

yi Output variables of a dynamic system i = 1, 2 . . .

ui Input variables of a dynamic system i = 1, 2 . . .

kj Gain values of washout filters j ∈ {LP,HP} in the Y -channel of the

CLRN algorithm

ζj Damping factor/ratio of washout filters j ∈ {LP,HP} in the Y -channel

of the CLRN algorithm

ωn,j Natural frequency of washout filters j ∈ {LP,HP} in the Y -channel of

the CLRN algorithm

ωb Break frequency of high-pass filters in the Y-channel of the CLRN al-

gorithm

ki Gain values of high-pass filters in the i ∈ {R ,α , z} channel of the CLG

algorithm

ζi Damping factor/ratio of high-pass filters in the i ∈ {R ,α , z} channel of

the CLG algorithm

ωn,i Natural frequency of high-pass filters in the i ∈ {R ,α , z} channel of the

CLG algorithm

ωb,i Break frequency of high-pass filters in the i ∈ {R ,α , z} channel of the

CLG algorithm

k0 Initial gain values of a high-pass filter in the α-channel of the ADSK

algorithm

ζ0 Initial damping ratio of high-pass filters in the α-channel of the ADSK

algorithm

ωn0 Initial natural frequency of high-pass filters in the α-channel of the ADSK

algorithm

wa Weighting parameter of acceleration

wv Weighting parameter of velocity
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uV Input signal for the dynamic system of the simulated vehicle

Wij Components of washout transfer function W (s) (i, j = 1, 2)
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Jtr Penalty function for using translational motion
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ka Ratio of translational movement to scaled specific forces

ka,min Minimum ratio of translational movement to scaled specific forces

kO Tracking factor in the shape error condition

kS1 Internal scale factor

kS Global scale factor

kS,min Minimum global scale factor

kS,max Maximum global scale factor

e∗f,sh Maximum shape error of the simulated specific force
Ce∗f,sh Maximum shape error of the surge simulated specific force due to the

centripetal acceleration

A1 · · ·A6 Joints of the KUKA Robocoaster

qR1 · · · qR6 Joint angles of the KUKA Robocoaster
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1 Introduction

1.1 Motivation

Driving and flight simulators have been very useful for different purposes, such as

entertainment industry, research on human motion perception, automotive technology,

pilot training, and others. The first simulator existed before the Second World War

with the aim of training armies. Then, the motion-base flight simulators have been

developed for a long period of time, while recently, the driving simulators have also been

widely developed due to the decreased cost of the related technology, such as powerful

computers, 3D head mount screen. Therefore, nowadays, the driving simulators more

and more play a significant role in the training and research of human perception. The

goal of the driving simulators is to resemble not only the driving environment, but

also the appropriate perception of visual, auditory, proprioceptive and vestibular cues

which improve the accuracy of the estimation of motion quantities such as position,

velocity and acceleration.

At the beginning, the visual information was used as the primary means of sensing

motion and the response of simulated vehicles. Later studies proved the important role

of the non-visual sensation for feedback motion perception despite the driver conscious

attention. Hence, the motion system of the flight simulator, based on 6 DoFs Stewart

Hexapod, is conventional in the 1970s and still the most popularly used in the current

time. Afterward, the driving simulators used various kinds of motion systems: 3, 5, 8

DoFs, and the KUKA Robocoaster, as well as the typical mechanical structure named

DESDEMONA, etc. Currently, the overall strategy for a driving simulator, as shown

in Fig. 1.1, illustrates that visual, auditory and motion system are primary systems

equipped for a driving simulator.

The motion platform has been used to provide useful motion cues to the drivers dur-

ing the simulation session. However, the restricted workspace causes the difficulty of

reproducing the exact motion cues required. Thus, a MCA - motion cueing algorithm

- block, shown in Fig. 1.1, modifies the target motion from the simulated dynamic

vehicle to produce motions that can be implemented in a motion platform and provide

drivers with similar motion perceptions as those in the realistic vehicle.

MCAs or named washout filters have been commonly applied to generate useful motions

which support the drivers in giving accurate behavior. There are various types of the

MCAs introduced in the literature for various driving simulators. The classical washout
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PSfrag replacements

Simulated
Dynamic Vehicle Motion PlatformMCA

Motion

Driving Simulator

Inputs

(+)

Figure 1.1: The overall strategy for driving simulator (+ Gieszl (2007))

filters are the first ones developed and still used widely. Moreover, several MCAs utilize

the optimizing methods for improving the quality of the simulator’s motion, most of all

with the aim of finding optimized physical quantities such as accelerations and angular

velocities by solving the tracking problem with or without constraint conditions.

The tracking goal is derived with the purpose that physical quantities perceived by the

human sensory system, such as specific forces and angular velocities, are reproduced

as precise as possible resembling those in the realistic vehicle. However, the effects of

motion cues on driver behavior are not explicitly described. Furthermore, the drivers

could not distinguish between various motions generated by the driving simulators. For

example, regarding the simulation task with lateral and yaw rotational motions, the

yaw motion was assumed to be simulated by the lateral motion and visual perception

(Schroeder (1999)). Moreover, Savona et al. (2017) mentioned that the lateral acceler-

ation was assumed to provide the main sensory information for a driver and that the

yaw component seems to be without influence on the motion perception. Besides, most

related studies were focused up to now on flight simulations. Therefore, the current

requirements for driving simulations are still an open topic research.

The quality of motion cues (motion perception fidelity) depends on many factors, which

are impacted by the simulation tasks and the parameters of a MCA. Until now, the

explicit criteria for selecting parameters (tuning criteria) for MCAs with a simulation

task are still not well-defined. Instead, several particular tuning criteria were proposed

for particular simulation tasks solved with a classical algorithm. For example, the

Sinacori’s criteria (Sinacori (1977)), that have been commonly used in several flight

simulation tasks, were derived from the experimental data of running a helicopter

flight in the simulator, and have not been validated for other vehicles simulation tasks.

Another method was based on the analysis of the simulated motion through a math-

ematical model of the motion perceptive system (Reid and Nahon (1985)); however, also

this method is not reliable enough since the model motion perception lacks reliability.

Furthermore, the opaque relationship between the numerical measures derived from

simulated quantities and the subjective assessment of the motion perception fidelity is
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also a serious problem of determining the tuning criteria. To overcome this problem,

subjective tests have been commonly used for assessing motion perception fidelity with

both experienced or inexperienced subjects, but the method takes much time to prepare

and is hard to be widely applied.

Recently, research on finding the range of several common factors which have important

effects on the level of motion perception fidelity, has been pursued. The most important

factor in this respect is the scale factor, which scales-down the target signals in order to

be reproducible in the simulators with a high level of fidelity (Jamson (2010), Berthoz

et al. (2013)). The other factors are angular velocity and acceleration threshold, that

limit the change of the quantities to avoid the rotational false cues in the simulation

session. Moreover, the amplitude of jerk (Grant and Haycock (2008), Soyka et al.

(2009)) and the ratio of translational to rotational motion were taken also into account

(Stratulat et al. (2011)). The results of the research are not completely consistent with

each other due to different drive tasks and different participants, but they are quite

similar and useful for tuning process.

Many studies in the literature mentioned that the tuning parameters for a MCA is ne-

cessary to find the appropriate parameters for a specific drive task, which were fulfilled

mostly by trial and error. Thus, this approach is very time-consuming and requires

that designers have experience in the simulation field (Grant and Reid (1997a)). On the

other hand, some auto-tuning methods have been introduced which use fuzzy control

theory to tune the algorithms, but these methods focus on only the parameter of the

classical algorithm (Song et al. (2003), Hwang et al. (2009), and Chen and Fu (2011)).

Besides, in the tuning process, only angular velocity false cues and the position of the

simulator are constrained in the defined ranges of these quantities.

The four main objectives of this thesis have been selected according to these findings

as: 1) Adapt current MCAs to the Robocoaster robot architecture as available at LMR;

2) Investigate the possibilities of designing automatic tuning procedures that can be

applied to any target motion task and robot architecture; 3) Perform a comparison of

current MCAs well-tuned to the Robocoaster and a target task to see which one is better

for the application; 4) Perform systematic subjective tests and correlate subjective

scores with objective performance measurements in order to have a validated objective

metric for later studies.

In order to systematically compare the different MCAs and their effects on the Robo-

coaster, this thesis regards only a simple maneuver with only lateral (left/right) ac-

celerations, such as occur while travelling along a horizontal planar S-curve without
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banking with constant velocity, such as they arise along a planar track of a Wilde

House roller coaster. This means that both longitudinal (e.g. breaking or accelerating)

or vertical (bump) accelerations are neglected. Moreover, it is assumed that the target

yaw motions are simulated by the lateral motion and visual environment and thus do

not need to be generated physically. Future research can generalize these findings to

more general settings in which all acceleration directions can occur.

1.2 Literature survey on motion cueing algorithm

1.2.1 Motion cueing algorithm and types of motion cues

A motion cueing algorithm (MCA) maintains not only a driving simulator within its

physical limits, but also generates such movements that the necessary motion cues of

drivers on the realistic vehicle are equivalently reproduced. Thanks to the evidence

from the research of the human motion perception, the sensed motion cues are repres-

ented by physical quantities, e.g. specific forces and angular velocities sensed by the

human vestibular system, etc. The conventional MCA termed as “classical washout

filters” splits translational acceleration inputs into high-frequency and low-frequency

components. While the high-frequency components are reproduced by the transla-

tional motion of the platform, the sustained (or low-frequency) translational motions

are reproduced by tilting the platform (called tilt coordination), which is the currently

most-used “perceptual trick” for MCAs. The trick utilizes the ambiguity of human

perception for the gravity and translational acceleration sensed by the otolith organ (a

component of the vestibular system) that cannot distinguish the effect due to gravity

with those due to translational acceleration when the tilt angle is smaller than 30 ◦.

For example, the sensation of forward (lateral) acceleration can be achieved by tilting

upwards (sidewards) the driving simulator with suitable angles reorienting the pilot

with respect to gravity such that her/his sensory organs are similarly stimulated as un-

der the translational acceleration. Moreover, the washout effect of the washout filters

returns the simulator to its initial position over time, called the “washed-out motion”.

Nevertheless, using MCA may cause false cues, weak or strong motion, and simulator

sickness, etc. For instance, the tilt rate may be limited, or the driver may perceive false

cues of too fast motion instead of the desired translational acceleration. Besides, the

tilt acceleration and the location of rotation center may cause undesired translational

acceleration cues. In addition, too weak and too strong motion cues reduce also the

realism of simulation tasks, and the washout behavior can degrade realism, as stronger

returning motions may be detected. Such false cues can lead to motion sickness which
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degrades realism even more significantly than that in a fixed simulator. Therefore, for

a high realistic simulation task, MCAs have a decisive role in reproducing the necessary

motion cues and removing the uncomfortable ones.

Grant and Reid (1997a) mentioned that a necessary motion cue is a signal generated by

a motion relative to inertial space which is sensed by the pilot and/or guides the pilot’s

behavior. Therefore, such motion cues of the real vehicle should be available in the

driving simulation generated by motion platform. Earlier, Baarspul (1986) subdivided

the environment motion cues into four distinct types, which were further classified

by Grant and Reid (1997a) through the underlying frequency: 1) Initial cues : There

are very high-frequency alerting and onset cues perceived as initial effects of generated

motions immediately after a driver starts a maneuver. For example, such a cue appears

when a forward or lateral acceleration is quickly changed. 2) High-frequency transients

cues : There are high-frequency intermediate cues either from external disturbances

or driver inputs covering the interval between the initial cues and the low-frequency

transient cues. 3) Low-frequency transient cues : There are low-frequency intermediate

cues either from external disturbances or driver inputs covering the interval between the

high-frequency transient and sustained cues. 4) Sustained cues : There are perceived as

prolonged or quasi-static effects of low-frequency motion generated by disturbances or

driver’s maneuvers, for example, the lateral acceleration of a car curving at a corner.

The motion cue errors (MCEs) may have severe effects on the participants during driv-

ing simulation tasks such as suffering symptoms of motion/simulator sickness. Grant

and Reid (1997a) categorized the MCEs into 3 groups: 1) False cues, representing

a wrong direction of cues or seriously distorted cues; 2) scale or missing cue errors,

which cover wrong amplitude between the target and the simulated cues or missing

cues; and 3) phase errors, representing time-delayed stimuli. Of all three MCEs, the

false cues are the most destructive for a realistic driving behavior and the main source

of simulator sickness (Grant and Reid (1997a)). Baarspul (1986) mentioned that in

almost all cases, the fidelity of the simulation with false cues is even worse than with

no motion cues at all (e.g. a fixed simulator). On another approach of simulating with

large amplitude tasks, Zaichik et al. (2009) categorized the false cues into 4 groups

and estimated the effect of each type of the false cues on the realism of the simulation

session. Currently, removing all MCEs is in general not possible, so that an explicit

correlation between MCEs and the level fidelity of the simulation would be an import-

ant research objective. In the meantime, a designer will still meet difficulties to deal

with MCEs in a practical application.
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Ideally, a precise reproduction of all motion cues in the driving simulator would pre-

serve realism in a simulation session. However, this is in general impossible due to the

restricted workspace of the motion platform. Fortunately, due to the nonlinear charac-

teristic of the human motion receptors, the target motion cues can be suitably scaled

down for a specific driving simulator. Hence, if the reproduced motion cues perfectly

track the scaled target ones, they still provide the realistic motion perception.

1.2.2 State of the art of MCAs

Motion cueing algorithms are aimed at mapping vehicle motions into the limited work-

space of driving simulators while preserving the perceptual realism of the simulation.

In the literature, there is a variety of MCAs developed for corresponding driving sim-

ulators, such as 6 DoF Stewart platforms (Stewart (1965)); the 3 DoF VTI simulator

(Nordmark et al. (2004)); the 8 DoF driving simulator of the University of Leeds (Jam-

son (2007)); the 6 DoF Desdemona simulator in TNO (Feenstra et al. (2007)); the 6

DoF KUKA Robocoaster (Giordano et al. (2010)), etc. The survey of driving simulat-

ors reported by Slob (2008) describes more a hundred different driving systems in the

world. Most of these simulators use a 6 DoF hexapod as the motion platform, others

have modifications in the mechanical structure to improve the workspace.

At the origin of MCAs, one can find the classical washout filters proposed by Conrad

and Schmidt (1970). Due to the simplicity of the algorithm, it is the most widely

used approach in commercial simulators and has also been further developed to match

general architectures of drive simulators. For example, to exploit the workspace of

KUKA Robocoaster, Giordano et al. (2010) developed a new motion cueing algorithm

named cylindrical classical algorithm in which the washout filter is implemented in

cylindrical instead of Cartesian coordinates as usually done in hexapod platforms.

Similarly, a MCA with spherical coordinates was introduced by Wentink et al. (2005)

for the Desdemona driving simulator in TNO. Furthermore, the lane MCA or the

MCA for 3 DoF and 8 DoF simulators introduced in the report of Fischer et al. (2010)

were derived from the original classical algorithm. Also, an alternative version of the

classical algorithm called fast tilt-coordination proposed by Fischer (2009), as well

as a compensated washout filters introduced by Sammet (2007) and re-described by

Fischer (2009) are also based on the classical algorithm. However, the MCA exploits

ineffectively the available workspace of driving simulators and potentially produces false

cues due to its linear characteristics as mentioned by (Shao et al. (2009)). Therefore,

Wang and Fu (2004), as well as Chen and Fu (2007) propose the integration of a

workspace management in the classical algorithm to improve the exploitation of the

restricted area and to reduce MCEs.
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Adaptive washout filters were developed in various versions, starting with Parrish et al.

(1975) and followed by Reid and Nahon (1985), Nehaoua et al. (2008), and Schweig

and Kammers (2011). In general, these MCAs are also washout filters whose adaptive

parameters are systematically modified in real time to minimize a cost function using

steepest descent techniques. The cost function is designed to make the simulated

quantities track the corresponding target ones. As mentioned in Nahon and Reid

(1990), although the adaptive MCAs can reduce the false cues, their stability is strongly

depending on the adaptation parameter. Altogether, however, the adaptive MCA are

more flexible than those of the classical MCAs.

The optimal washout filters were firstly proposed by Sivan et al. (1982) and later

continuously implemented and developed by Reid and Nahon (1985), Telban et al.

(2005), Cho et al. (2007), Shao et al. (2009), and others. Compared to the classical

algorithms, the optimal MCAs use higher-order washout filters that are determined by

optimal control theory with or without constraints. In the control models of the optimal

MCAs, the human vestibular system is integrated to minimize the motion sensation

error of a driver between the aircraft and on the simulator. The cost function of the

optimal control is defined to minimize the sensation errors and to have an influence

on the simulator’s physical quantities. The differences between the perception models

make the variety of the optimal washout filters. At the beginning, Sivan et al. (1982)

used the vestibular model with a lower order, then Reid and Nahon (1985) used more

involved vestibular models of higher order. Later, Telban et al. (2005) introduced a

new model of the vestibular system with a finer set of parameters. In the same report,

the authors especially introduce a visual-vestibular model that is then integrated into a

nonlinear optimal MCA. In the algorithm, neuron networks are used to solve the Ricatti

equation in real time, leading to real-time optimal washout filters. Recently, Shao

et al. (2009) developed a new MCA that integrates the model of the human pressure

receptor together with the vestibular system model. Furthermore, in another approach,

Cho et al. (2007), instead of using Linear quadratic regulator (LQR) algorithm, used

quadratic programming (QP) algorithm to develop the QP-based fast algorithm to solve

the optimal problem with constraint conditions for position, acceleration and angular

velocity of the motion simulator Eclipse-II. As mentioned in the report of Telban et al.

(2005), the optimal washout filters can clearly improve motion cues. However, the

tuning process for optimal washout filters is more involved as the weighting parameters

of the cost function have opaque relation with the simulated quantities. Besides, the

assumption that the minimizing quadratic errors of the perceived motion cues improve

the motion perception fidelity has not yet been firmly proved. Additionally, the lack of



8 1 Introduction

the full understanding and the inaccuracy of the modeling of human motion perception

degrade the desired effect of the optimal MCAs.

Zywiol and Romano (2003) proposed an upgraded version of an offline optimal tracking

algorithm, which was developed from the optimal MCA using a nonlinear optimal

tilt coordination introduced by Romano (2003). The algorithm is different from that

developed by Sivan et al. (1982), because it focuses on solving the offline problem of

global tracking the desired signals. Here, the models of the human motion receptor,

such as the vestibular system, are not considered. Thus, the algorithm is able to find

better combinations of linear acceleration and tilt angle to replicate the target specific

force as the online version. However, an advantage of this approach is that the tuning

process can be done with fewer parameters. This was realized in the altered parameter

set of the report of Kecskeméthy and Tändl (2009).

A novel approach to MCAs, which has been developed recently, is based on a model

predictive control (MPC). Dagdelen et al. (2004) first introduced this algorithm and

applied it to the ULTIMATE simulator at Renault, Technical Center for simulation.

The MPC integrates both the motion system dynamics and the vestibular model,

hereby controlling better the trajectory of the simulator inside the workspace and

reducing the sensory conflict. Later, Augusto and Loureiro (2009) described in detail

another version of the MPC-MCA for the Charmers driving simulator that considers

the vestibular model and very similar MPC-MCA was also described by Baseggio et al.

(2011). By the MPC strategy, MCAs can handle not only limits of the workspace, but

also the thresholds of motion perceptions. Thus, potential false cues can be reduced,

and the exploitation of the workspace can be improved. However, these MCAs, by

using implicit MPC strategies, are computationally very time-consuming, especially

with a large horizon of prediction and control, which restrict their online suitability. To

overcome this problem, the explicit MPC strategy was introduced by Fang and Kemeny

(2012), with which the controller is first computed offline and then implemented online.

In conclusion, several MCAs have been developed in the past to improve the realism of

driving simulator, which all have some strengths and weaknesses. Mainly, the tuning of

the parameters is an open issue in particular for washout filters where the parameters

are not intuitive for inexperienced simulator users. This is somehow better for MCAs

using optimal tracking or the MPC strategy were the parameters correspond explicitly

to the motion system physical limits and motion detection thresholds. However, in all

cases an automated tuning would be desirable in order to alleviate the user from this

cumbersome task, as explained in the next section.
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1.2.3 Requirements of the tuning parameters for MCAs

To achieve realistic simulations, the MCAs or washout filters need typically extensive

tuning with objective and subjective assessments. The tuning process is mostly done

by experts with trial and errors, and the optimal parameters obtained depend on many

different aspects such as the simulator specifications and the maneuvering commands.

For example, if objective assessments are used, a MCA is tuned to both generate

necessary motion cues and eliminate the false cues (see section 1.2.1). In another

approach, if subjective assessments are used, the participant evaluates the level of

realism based on given scores or statements, and the parameters will be modified to

remove the disturbing subjective notions. In the investigation of the MCAs for the

flight simulator, Reid and Nahon (1985) as well as Telban et al. (2005) firstly used the

objective assessment for roughly tuning, then implemented the subjective assessment

for fine tuning. This two-stage produce is necessary as due to the lack of information

of the human receptors and the exact effect of the physical quantities on the level

of realism in a specific simulation session, a subjective tuning process from scratch

could require too many trials. Thus by the objective pre-assessment of the simulated

quantities, substantial time can be saved in the trial and error, subjective scoring, as

has been investigated by Hess and Marchesi (2009), White and Rodchenko (1999), and

Zaichik et al. (2010).

1.3 Structure of the thesis

After Chapter 1, which introduces in a brief review to the development of MCAs,

Chapter 2 presents the background of human motion perception and psychophysics

problems of motion sickness. Then, Chapter 3 given a short overview and the control

procedures of the KUKA Robocoaster driving simulator built up at LMR. Chapter 4

reviews and describes the principles of the MCAs expressed by their mathematical for-

mulas and implementing diagrams, while, Chapter 5 reviews the methods for assessing

motion perception fidelity in the literature and the tuning methods. Besides, common

criteria for tuning all MCAs which is not mentioned in the literature is proposed. The

chapter closes by computing the parameters of the investigated MCAs by trial and

error, and the automatic tuning process. Chapter 6 finally compares the response of

the different MCAs with given parameters and correlates these with subjective assess-

ments, such as to obtain a relationship between the subjective index and the numerical

index. Finally, Chapter 7 addresses the conclusions of this dissertation and recom-

mendations for further research. The appendix provides extra information such as the

mathematical models of motion sensory systems and responses of MCAs with target

signals scaled down by a different factor, etc.
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2 Fundamentals of Human Motion Perception

Motion sensory systems transduce information about our movement as patterns of

activity across populations of neurons. Hereby, the self-motion sensory system includ-

ing the visual, auditory, vestibular, kinesthetic, and somatosensory (proprioception)

systems contribute to the perception of the stimuli in different reference frames. There-

fore, the precise motion perception comprises a complex interaction several components

of a multi-sensory system. This section provides a brief overview of the basic physiolo-

gical principles involved in human self-motion perception and the corresponding per-

ceived physical quantities together with the corresponding mathematical models.

2.1 Historic overview of perception modeling and evaluation

2.1.1 The auditory system

The auditory system transduces sound energy into neural signals. The sensory in-

formation (hair cells) in the cochlea in the inner ears transform mechanical forces into

electrical impulses. From the cochlea, the acoustic nerve transmits the neural sig-

nals to the primary auditory cortical area. The auditory system can detect changes

in overall sound intensity, changes in inter-aural time differences, inter-aural intens-

ity differences, and changes in the frequency spectrum of the auditory scene (Blauert

(1997)). In the literature of vection, which is an illusion of self-motion in stationary

observers, there are only very few reports on auditory induced vection. Schulte-Pelkum

(2007) restated from the works of Dodge (1923) that vection was successfully induced

by a moving sound field in some attempts, even though clear data were not obtained.

Then, Lackner (1977) also succeeded in inducing a circular vection in blindfolded par-

ticipants. Lackner reported that depending on stimulus (different combinations of

six hidden loudspeakers around seated participants were used), about 25% − 75% of

the participants had the sensation of self-rotation. However, nobody reported vection

when visual information about the stationary environment was accessible. Therefore,

it seems that auditory information is weighted less than visual information during self-

motion perception. Similar results were obtained recently in a study by Larsson et al.

(2004), who used the headphone-based auralization using generic head-related transfer

functions, named Head-Related Transfer Functions (HRTF).
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2.1.2 The visual system

The visual system detects and interprets information from visible light falling onto the

retina at the back of each eye. Two subsystems, the scotopic (dark-adapted system)

and photopic (light-adapted system), operate at low and high levels of illumination,

respectively. On the retina, there are two types of photoreceptor cells called rods opsins

and cones opsins that absorb photons (a particle of light) and convert light into neural

signals that are sent to the brain. To inform a relative motion between the eyeball

and the visual scene, the change of structured light of the image on the retina, is

transformed systematically. Such transformations are called as “optic flow” and are

continually processed in the visual system Schulte-Pelkum (2007).

Several studies have shown that that optic flow is involved in estimating the direction

and speed of self-motion (Gibson (1979), Bremmer and Lappe (1999), Schulte-Pelkum

(2007)). Furthermore, Telban et al. (2005) referred to the report of Young (1978) to

mention that visually induced self-motion has been used to mimic for rotations about

both the earth-horizontal and earth-vertical axes, and along all three linear axes. For

example, circularvection refers to visually induced rotational motion, in particular

yaw, but also visually induced pitch and roll. Moreover, linearvection refers to visually

induced translational motion. One common experience of linearvection is the illusion

of moving backwards when seated in a stationary train as the adjacent train in the

station begins to slowly move forward.

Additionally, the relative distance to the viewer can be provided by the visual cues.

When judging self-motion, particular features like landmarks and can be used to estim-

ate motion in response to “sightings” of these landmarks. However, the determination

of such features is not precise as it requires regular checks and feedback (Harris et al.

(2002)).

Cardullo et al. (2011) noted that the self-motion perception due to the visual system

is a slow process compared to the vestibular response to head movements. Therefore,

when a human without a functioning vestibular system bases on visual perception of

attitude and motion alone, her/his eye stabilization and posture control have a limited

range compared to healthy humans.

Young (1978) mentioned that the onset delay (or latency) of visually induced motion

is highly variable among individuals, and repeated exposures will reduce this latency.

The latency of onset to either circularvection or linearvection has an impact on the

perception of motion in flight simulation.
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Hess (2008) proposed the visual perception model that provides a simple model for

visual observation (see Fig. D.1a on page 216 in appendix D). Lone and Cooke (2010)

noted that the saturation limits are set to twice the variance of a zero-mean Gaussian

random number generator, where the variance of this random number generator impli-

citly determines the visual cue quality. The values of the parameter in the model were

determined by the experiment implemented e.g. by Hess (2008)

2.1.3 The vestibular system

The vestibular organs are located close to the cochlea in each ear, and in a mirror-

symmetric fashion to each other in the horizontal plane and consist of the semicircu-

lar canals and the otolith organs for sensing angular and linear motion, respectively

(Fig. 2.1). Each of the two organs contains five vestibular sub-organs: three semicir-

cular canals (sensing rotational movements) and two otolithic organs – named saccule

and utricle – (sensing linear acceleration originated from inertial or gravitational ac-

celeration). The three semicircular canals are approximately orthogonal to each other

and referred to as the anterior, posterior, and horizontal canals. Vestibular organs are

filled with a fluid (called endolymph) that is inside the canals and can move relative

to each of the surrounding tubes (Tortora and Derrickson (2008)).

PSfrag replacements
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Figure 2.1: Vestibular system (adapted from Kandel et al. (2000))

Semicircular organs

The semicircular organ has a canal containing an ampulla. A gelatinous structure called

cupula is situated inside the ampulla. The structure contains the sensory hair cells

and bridges the width of the ampulla cavity, forming a seal through which endolymph

cannot flow. Each hair cell is composed of about 70 stereocilia and one kinocilium (Boff

et al. (1986)), with the stereocilia graded in length towards the kinocilium (Telban et al.

(2005)). The angular acceleration along an axis of canal orientation deflects the cupula

in the opposite direction and causes a displacement of the hair bundled in each hair
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Figure 2.2: Semicircular organ in a) rest b) clockwise rotational movement (adapted
from Tortora and Derrickson (2008))

cell due to the inertia of endolymph. This mechanical force is transduced into neural

signals and transmitted to the brain.

Fig. 2.2a shows the semicircular organ in resting state and Fig. 2.2b shows the stimu-

lated state when the human is under a clockwise rotational movement. In the stimu-

lated state, the endolymph flow causes a deflection of the cupula generating rotating

motion cues. For two semicircular organs, the hair cells are excited in one direction

and inhibited in the opposite direction.

Fernandez and Goldberg (1971) noted that the semicircular canals, in the frequency

range of normal human (and animal) head and body movements, has the neural re-

sponse dynamics that are actually proportional to the angular velocity, rather than

angular acceleration. The detection of the cupula and hence the firing rate of the

sensory cells is proportional to the angular velocity of the head and not to the angular

acceleration. Note that even though the angular acceleration (related to an inertial

force) is the physical stimulus acting on the sensory organ, an angular velocity is what

is sensed during head movements due to the high-pass characteristics of the semicir-

cular organ. Therefore, the angular velocity is the filtered result, and it would be

incorrect to state that the vestibular canals register angular velocity directly. Schulte-

Pelkum (2007) gave an example to illustrate the statement: “After about five seconds

of constant velocity rotation (e.g., on a rotating chair), the endolymph flows back to the

resting position, and the sensory cells decrease the firing rate back to resting level, even

though the observer is still rotating. The vestibular nuclei circuitry in the brainstem

extends this time constant to about 15 seconds. If other sensory information, such
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Figure 2.3: Otolith organ a) In resting state; b) Under forward acceleration; c) Under
backward head tilt (adapted Tortora and Derrickson (2008))

as visual information, is missing in this case, the sensation of motion will gradually

diminish.”

Therefore, these high-pass characteristics of the semicircular canals are crucial, since

they can cause aftereffects due to self-motion, such as the rotation aftereffect. Various

dynamic models of the semicircular are introduced in the literature (see Tab. D.2 on

page 217). In many existing models, the cupula deflection is modeled as a torsion

pendulum. Telban et al. (2005) introduced the representation of the semicircular chan-

nels as a dynamical model. Reid and Nahon (1985) introduced the dynamic model in

which ω and ω̂ are the angular velocity and perceived one, respectively (see Fig. D.1c

on page 216). The model includes there elements in which the first block models the

cupula displacement, i.e., the over damped torsional pendulum; the second block rep-

resents the threshold of angular velocity, and the last block represents the washout

of human response to steady-state rotational acceleration inputs (Reid and Nahon

(1985)). Later, Fischer (2009) summarized the transfer function, HScc,i , i ∈ {1 · · · 4},

of the existing models shown in Tab. D.2.

Otolithic organs

The otolithic organs, shown in Fig. 2.3a, contain an otolithic membrane composed of

the otoconial layer and the gelatinous layer. This gelatinous layer is located under the

otoconical layer and is attached to the sensory cell base, known as the macula, that is

incorporated into the membranous tissue walls of the inner ear. The macula can move

with the head because it is rigidly attached to the skull (Telban et al. (2005)). An

otolithic organ, the utricle, is oriented in a horizontal plane in the normal upright head

position, while another organ, the saccule, is oriented in a vertical plane. The macula
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is sensitive to linear accelerations since the inertia of the otoconical layer shifts the

gelatinous layer during changes in linear velocity or head movement. For example, the

resulting displacements of the otolithic membrane due to forward linear acceleration

and the tilt motion are illustrated in Fig 2.3b,c, respectively. The reason of the de-

flection is that with a forward acceleration or backward tilting of the head the relative

motion results in a deformation of the gelatinous and otoconial layers in shear. The de-

formation is caused by either inertial force (accompanying with a forward acceleration

a) pulling the gelatinous layer backward (in Fig. 2.3b) or gravity force (accompanying

with gravity acceleration g pulling the layer downward (Fig. 2.3c). Depending on the

direction of the deflection, the hair cells are either excited or inhibited.

Similar to the vestibular organ, the dynamic models of the otolithic organ has been for

long an important topic of research in the literature (Zacharias (1978), Young and Meiry

(1968) , Fernandez and Goldberg (1971), Hosman and Stassen (1999), Reid and Nahon

(1985), etc). Fig. D.1b on page 216 shows the dynamic model introduced by Reid and

Nahon (1985). The first block of the model stands for the otolith actual mechanical

behavior, the second is the mechanical threshold, while the last one represents a neural

processing activity. The input of the model is defined as specific force f = a− g, and

the output is named as perceived (or sensed) specific force f̂ . Later, Fischer (2009)

summarized various transfer functions of the otolith system (HOto,i , i ∈ {1 , 2 , 3}),

listed in the Tab. D.1 on page 217.

2.1.4 The somatosensory (or proprioception) systems

The somatosensory system consists of various sensory receptors, namely the sensations

of touch or pressure, vibrations, temperature, pain, the sensations of muscle movement

and joint position. Therefore, the somatosensory systems provide information of our

movement through touch (i.e., the pressure sensor with skin) and the position and

movement of our body parts (proprioception) through the stimulation of muscle and

joints. Moreover, the somatosensory systems also monitor the temperature of the body

and collect information about pain.

The mechanical sensors of the cutaneous system perceive temperature and pressure

changes on the skin, whereas spindle receptors signal changes of tension and length of

the muscles and tendons as well as joint position (Schulte-Pelkum (2007)). For example,

when we are accelerated forward in a vehicle, the somatosensory system registers change

of pressure in the back as we are pressed into the seat due to inertia, and vibrations from

the vehicle. Oftentimes, it is difficult or even impossible to disambiguate vestibular and

somatosensory contributions of self-motion (Guedry (1974)).
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The relative importance of the somatosensory information compared to vestibular in-

formation has been highlighted by Bringoux et al. (2003), and Schulte-Pelkum (2007)

mentioned that thresholds for the detection of slow orientation changes w.r.t to gravity

are significantly increased if all body pressure cues are eliminated by a pressure suit.

The modeling of the somatosensory is often ignored in the literature. Gum (1973)

summarized two mathematical models for body-pressure and controlling lateral head

motion. Fig. D.1d on page 216 shows the body-pressure models with the natural

frequency of 34 (rad/s). This bandwidth would make the body’s pressure response

dynamics the highest of all of human motion sensing capabilities. In the model, the

high-pass filter has 1 (s) time-constant due to the adaptation effect with that the re-

ceptors in the skin lose their sensitivity to sustained acceleration. Fig. D.1e shows the

models of the control of lateral head motion. Here, the head is essentially an inverted

pendulum w.r.t the driver’s body that is trapped into a moving cockpit. The stim-

ulated aspect to the head model includes the gravity forces, the muscle forces, and

disturbance factors, such as inertial force. The muscle model is used to generate the

muscle force, while the muscle spindle feedback is used to get the feedback of the tilt

angle of the head.

To summarize, substantial work in human sensory modeling has provided useful, but

incomplete information for predicting motion platform effects on driver-vehicle per-

formance and behavior. Hence, the more empirical data is needed for building better

models.

2.1.5 Vestibular thresholds

The threshold of the whole-body self-motion has been investigated in early studies of

Mach (1875), Hosman and Van der Vaart (1978), Young et al. (2001), Soyka et al.

(2011). Together with the development of mathematical models of the vestibular sys-

tem, thresholds of angular velocities and linear acceleration are estimated for the semi-

circular and otolith organs, respectively. In the literature, two types of experimental

studies estimating the thresholds have been presented: the estimation of absolute and

differential thresholds. Most of the related works in the literature are on the abso-

lute thresholds studies. There are few studies on linear motion perception at supra-

threshold levels (Zaichik et al. (1999), Naseri and Grant (2011)).

From the psychophysical point of view, the absolute threshold is defined as the smallest

detectable level of a stimulus. Thus the aim of such studies is to find the minimum
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amplitudes of motion that subjects are capable to detect. Numerous absolute threshold

values for the three translational motions and rotational motion were presented by

Meiry (1965), Zacharias (1978), Hosman and Van der Vaart (1978), Reid and Nahon

(1985), Benson et al. (1986), etc. Later, Fischer (2009) reviewed the threshold values

with and without the visual stimulus, as shown in Tab. D.3 on page 217. Several

previous studies mentioned that the absolute threshold studies have shown a decrease

of threshold estimates with increasing frequency which indicates sensitivity to both

acceleration and jerk (Benson et al. (1986), Gundry (1978)).

A different threshold study investigates human ability to discriminate between two dif-

ferent motions that are both easily detectable. In psychophysics, the smallest detect-

able difference between a starting and a secondary level of a particular sensory stimulus

is called the difference threshold or just-noticeable-difference (JND). The Weber’s law

(Teghtsoonian (1971)) of psychophysics used in the studies states that the change in a

stimulus that will be just noticeable is a constant ratio of the original stimulus. That

means the ratio between the difference threshold magnitude ∆I and the stimulus in-

tensity I for any given stimulus is a constantKWeb =
∆I
I
. Zaichik et al. (1999) prove the

applicability of the Weber’s law to the perception of the acceleration supra-threshold

values. Recently, Naseri and Grant (2011) showed that the Weber’s factors for the

linear motion at supra-threshold change with respect to the frequency of the sinusoidal

stimulus, such as 0.06 for a frequency of 0.4Hz and 0.02 for a frequency of 0.6Hz.

2.2 The nature of simulator sickness

As mentioned before, driving simulators with interactive 3D simulation environments

have been effectively used for drivers training and human behavior research. However,

a considerable number of simulator operators suffer from symptoms being like motion

sickness (MS), or more specifically simulator sickness (SS). For example, Crowley (1987)

indicated that 40% of the participants in his study reported at least one symptom of

SS, while McGuiness et al. (1981) mentioned the number of 27%. The majority of the

participants state that these symptoms persisted between 15 minutes and 6 hours after

experiments (McGuiness et al. (1981)), and the published guidelines for pilots exposed

to a simulator should avoid high-risk activities for at least 12 hours after the simulator

training as recommended by Johnson (2005). Thus, SS is a serious problem and can

reduce the fidelity of the simulation session. In this section, an overview of the SS as

well as its causes and effects are introduced.
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2.2.1 Simulator sickness

Before the appearance of driving simulators, the manifestations and symptoms of the

MS were a noticeable problem for passengers traveling by train or other vehicles mani-

festing signs of pallor, sweating, and vomiting. In that time, medicamentations were

used to prevent the participants from effects of the sickness (Reason and Brand (1975)).

SS is a particular form of MS that has become problematic with the increase of sim-

ulation for aviator training in the 1980s and the current entertainment industry. For

example, flight simulators, the IMAX theater, or virtual reality environments can gen-

erate SS. The discomfort experience during such simulation sessions is now universally

referred to as SS. Kennedy et al. (1988) stated that while MS is caused by motion,

SS is caused by the inability to simulate the motion environment accurately enough

(Johnson (2005)). In fixed simulators, the observers commented that their discomfort

stemmed from the lack of vestibular cues coming with simulated motion. (Miller and

Goodson (1958)).

SS is polysymptomatic (Kennedy and Fowlkes (1992)) and includes symptoms such as

nausea, dizziness, spinning sensations, visual flashbacks, motor dyskinesia, confusion,

and drowsiness. Observable signs of SS consist of pallor, cold sweating, and emesis

(vomiting) (McCauley (1984)). For example, Gower Jr and Fowlkes (1989) reported

that the SS symptoms produced by the 6DoF motion simulator 2B31 were fatigue

(34 % of participants), eyestrain (29%), headache (17%), difficulty focusing (13 %),

sweating (11 %), nausea (9 %), and stomach awareness (9 %) (Johnson (2005)).

2.2.2 Measurement of simulator sickness

Measuring SS is a difficult task as mentioned in an extensive number of publications

(Hettinger et al. (1987), Casali and Frank (1988), Kennedy and Fowlkes (1992), Kolas-

inski (1995)). Because SS is polysymptomatic one cannot measure a single dependent

variable (Kennedy and Fowlkes (1992)). Furthermore, the individual susceptibility of

the participant influences the results of the measurement of SS. Four possible ways of

measuring SS are (Hettinger et al. (1987), Casali and Frank (1988)):

1. Direct observation of participants during a simulator session and identification of

signs of facial pallor and sweating.

2. Self-report measures, such as the Simulator Sickness Questionnaire (SSQ), that asks

the participant to note after the simulation the type and severity of symptoms cur-
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rently being experienced. For example the standard measurement instrument for

SS, the Simulator Sickness Questionnaire, lists 16 symptoms: general discomfort, fa-

tigue, headache, eyestrain, difficulty focusing, increased salivation, sweating, nausea,

difficulty concentrating, fullness of head, blurred vision, dizzy (eyes open), dizzy

(eyes closed), vertigo, stomach awareness, and burping (Kennedy et al. (1988)).

3. Furnishing participants with wear equipment for measuring physiological conditions

such as respiration rate and stomach activity. For example, heart rate, or pulse

rate, have been reported to change from baseline levels as a function of simulation

exposure; Sweating, a common symptom of SS, can be measured as an increase in

skin conductance or a decrease in skin resistance (Casali and Frank (1988))

4. Employing tests of postural equilibrium to measure simulator-induced disorientation

or ataxia after the trial. These tests have been widely used, but with mixed results.

Such tests are, for example, Sharpened Romberg (SR), Stand on One Leg Eyes

Closed (SOLEC), Stand On Preferred Leg Eyes Closed (SOPLEC, SOPL), Stand

On Non-preferred Leg Eyes Closed (SONLEC, SONL), walk toe to heel, Walk On

Floor Eyes Closed (WOFEC), Walk On Line Eyes Closed (WOLEC), and Walk On

Rail Eyes Open (WOREO).

2.2.3 Potential variables associated with simulator sickness in virtual en-

vironments

Many variables related to simulator sickness can be found in the literature. Johnson

(2005) reviewed and categorized those variables as individual related variables, simu-

lator related variables, and task related variables. The information below summarizes

the details not only from the report of Johnson (2005), but also from Kolasinski (1995),

Johnson (2005), Kuipers (2014).

First, the individual related variables include: 1) Gender : Females are more sus-

ceptible than males (Kolasinski (1995), Pausch et al. (1992)); 2) Age: Several reviewers

have reported that susceptibility to SS varies with ages in the same way that MS var-

ies with age. Reason and Brand (1975) claim that below age 2 infants are generally

immune. Susceptibility is at its highest level between ages 2 and about 12. There is a

pronounced decline between ages 12 and 21. This decline continues, though slowlier,

through adulthood until about age 50, after which SS is very rare (Johnson (2005)).

3) Experience: Symptoms of simulator sickness can increase with experience. That

is, pilots with a greater number of flight hours reported a greater susceptibility to SS
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(Braithwaite and Braithwaite (1990), Gower Jr and Fowlkes (1989), and Silverman

and Slaughter (1995)); 4)Prior history of motion sickness : People who have a history

of prior episodes of SS will be more likely to experience SS in future simulator-based

training (Kennedy et al. (1987), Wright (1995), Gower Jr and Fowlkes (1989), Lampton

et al. (1995)); 5) Miscellaneous : illness, drugs, sleep and fatigue have also effects on

SS (e.g individuals, who are in ill health, are more susceptible to SS) (Kennedy et al.

(1987), Kolasinski (1995)). Similarly, medication, drugs, and alcohol can increase a

pilot’s susceptibility to SS (Young (2003), Kennedy et al. (1987)).

Secondly, the simulator related variables are: 1) Wide field of view (FOV) displays

have been associated with an increased susceptibility to SS (Kennedy and Fowlkes

(1992), Kennedy and Fowlkes (1992), Kolasinski (1995), McCauley (1984), Pausch et al.

(1992)); 2) Visual factors such as off-axis viewing, design eye point, or viewing region

also influence SS; 3) The general issue of cue asynchrony (i.e visual delay, transport

delay, and/or asynchronous visual and motion systems) has been investigated as a

source of SS, but with equivocal results (Kolasinski (1995), McCauley (1984), Pausch

et al. (1992)); 4) Motion systems with strong motion cues can increase the symptoms

of SS (Kuipers (2014), Kennedy and Fowlkes (1992), Kolasinski (1995), McCauley

(1984)).

Thirdly, the task related variables include: 1) Session duration: The longer the

period of time spent operating the simulator, the greater the likelihood of significant

discomfort (Gower Jr and Fowlkes (1989), Kennedy and Fowlkes (1992), Kolasinski

(1995), McCauley (1984), Wright (1995)); 2) Velocity and acceleration: navigation

with high speed stimulates the symptoms of simulator sickness (Reason and Brand

(1975), Kuipers (2014)); 3) Unusual or unnatural maneuvers, such as moving for-

ward/backwards in time or flying backwards, are also associated with an increased risk

of discomfort (Kolasinski (1995)); 4) Scene complexity : details needed for a realistic

reproduction of a 3D environment stimulate the symptoms of SS (i.e the more detailed

the scenery, the higher the chances of experiencing SS)(Kuipers (2014))

2.2.4 Manifestation and theory of simulator sickness

In the literature, the investigation of SS involves the study of incidence, residual af-

tereffect, adaptation, and susceptibility. The general conclusions of the aspects based

on the reviews of Johnson (2005) are:

• The incidence of SS varies within a large range. Depending upon the simulator, the
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conditions of operation, and the definition of criteria applied, the rate of SS can vary

from low to extremely high.

• The most commonly reported aftereffects are fatigue, stomach awareness, and ver-

tigo, in that order. Most of these aftereffects appear and disappear within 2 hours

after exiting the simulator, although some participants reported symptoms lasting

up to “several hours after the simulator training session” (Silverman and Slaughter

(1995)).

• The more prior exposure to the simulator, the less SS is experienced. For example,

Crowley (1987) stated that there was a statistically significant inverse relationship

between the prior number of hours spent training in the Cobra simulator and the

amount of SS reported. This statement was also given by Gower Jr and Fowlkes

(1989)

• SS susceptibility depends on many variables as listed in section 2.2.3.

In the literature, there are two explanations for the SS, the sensory conflict (SC) and

postural instability (PI) theory. Each theory assigns a different cause to explain

the aspects that influence SS.

First, the sensory conflict theory, that is commonly accepted to explain SS, states

that sensory inputs from the eyes, semicircular canals, otoliths, proprioceptors, and

somatosensors are provided in parallel both to a neural store of past sensory patterns

of spatial movement and to a comparator unit (Reason (1970), Reason and Brand

(1975)). This comparator unit compares the present pattern of motion information

with an expected pattern based on prior motion history stored in the neural store. A

mismatch between the current pattern and the stored pattern generates a mismatch

signal. This mismatch signal is a conflict between the current novel motion environment

and past experience and causes both SS and the process of adaptation. However, the

mismatch signals can be decreased with continued simulation sessions. Therefore, the

drivers gradually adapt to the simulation system. Moreover, the SC theory assumes

that the conflict between motion information provided by various kinds of sensory

system is an important source of SS. For example, the SC theory can explain that a

driving simulator providing only visual perception is even better than one providing

unrelated visual and motion information.

Secondly, the postural instability theory notes that the situations producing sickness

are caused by their unfamiliarity to the participants. Enduring this unfamiliarity,

a participant may lose postural control. This postural instability causes discomfort
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until the participant adapt. in other words, a prolonged exposure to a novel motion

environment causes postural instability that precedes and causes the sickness. This

theory is supported by the experimental data in the reports of Stoffregen and Smart

(1998) and Stoffregen et al. (2000).

The SC and PI theory make different predictions in certain instances. The SC theory

states that SS must decline after the age of 12, as the participants’ life experiences have

an increasing number of prior sensorimotor patterns of motion memories gathered in

their neural store. Another reason is that with age, the participants’ receptivity or

the strength of the mismatches also declines. In contrast, the PI theory explains that

postural stability among adults is known to decline with increasing age (Lane et al.

(1989)), and suggests that SS increases with age.

2.2.5 Preventing and treating simulator sickness

Several authors have published guidelines in an effort to reduce the rate of SS (Kennedy

et al. (1987), Kolasinski (1995), McCauley (1984), Wright (1995), and Johnson (2005)).

Some suggestions based on the work of Johnson (2005) to prevent potential discomfort

in simulation sessions are: 1) Simulator flights should not be scheduled on the same day

as aircraft flights; 2) Arrive for simulator training in a usual state of health and fitness;

3) Persons who are new to the simulator, or who have not operated it for months, are

at risk; 4) Do not schedule simulator sessions for longer periods than two hours, for

any reason; 5) To aid adaptation to a new simulator, aviators should begin with brief

simulator hops, flying gentle maneuvers, with subsequent hops separated by one-day

intervals (NTSC (1988)). In this context, “brief” means less than one hour, with breaks

as needed; 6) Minimize head movement, particularly when new or dynamic maneuvers

are being trained; 7) Inform the instructor if you are experiencing discomfort; 8) The

instructor should turn off visual display and turn on cabin lights before asking the pilot

to exit the simulator; 9) The instructor should decrease the FOV (turn off side displays)

during early sessions, nauseogenic maneuvers, or if the pilot shows any symptoms of

discomfort; 10) Avoid high-risk activities for at least 12 hours after simulator training.
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3 LMR Ride Simulator and Kinematical Definition

Stewart platforms are widely used in driving simulators since they have a high payload

and can run with high accelerations. The drawbacks of Stewart platforms are their

limited range and no dexterity. The KUKA Robocoaster, manufactured by KUKA

Roboter GmbH, has a large motion workspace compared to a Stewart platform. Fur-

thermore, it is ideal to simulate the complex tasks of a flight operation, such as the side

step maneuver in a helicopter. Thus, the LMR Driving Simulator was based on the

KUKA Robocoaster. This section introduces the equipment of the driving simulator,

the reference frames, and the tilt-coordination technique.

3.1 Structure, control equipments and virtual robot

All robot components, including hardware, path-planning, control and visualization,

software and TÜV clearance, which are used in this thesis, have been kindly put at

disposition by M.Sc. Sebastian Röttgermann and Dr.-Ing Francisco Geu Flores from

the LMR group, which is gratefully acknowledged. Fig. 3.1 shows the physical ride

simulator used in the Chair of Mechanics and Robotics (Lehrstuhl für Mechanik und

Robotik – LMR – in german) at the University of Duisburg-Essen. It consists of

a KUKA KR500/1 TÜV Robocoaster robot with a Maurer Söhne rollercoaster seat

(Maurer Rides GmbH (2016)) mounted at the robot flange, a Visette45 head mounted

display unit, an A.R.T motion tracking system with two cameras, a visualization PC,

a trajectory-generation PC and a control PC. All of these systems are interconnected

via ethernet. The robot system is adapted in order to fulfill the safety rules for human

passengers prescribed by the German Technical Control Board TÜV Süd. On the robot

controller, the optional KUKA Robot Sensor Interface technology package is installed,

which enables the interaction with the external PCs via ethernet.

The trajectory PC computes the corresponding robot target motion in configuration

coordinates as a function of time from the datasets delivered (offline) by the motion

cueing algorithms. The robot controller receives the prescribed axis value sets from

the trajectory PC at a sampling rate of 12ms. A matching virtual reality environment

is computed simultaneously on the visualization PC and displayed in stereo 3D on

the head-mounted display with help of a more3D plugin (more3d GmbH & Co. KG

(2016)). In this virtual reality environment, the viewing angle changes depending

on the passenger’s head movement which is tracked with the A.R.T. camera system.

The whole simulation system is coordinated by a control PC which starts all needed
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Figure 3.1: Architecture of the LMR driving simulator (Röttgermann, (2014))

devices simultaneously and allows the operator to monitor the simulation online. The

program running on the trajectory PC and the visualization environment as well as the

control environment program is based on the multibody library MOBILE developed

by Kecskeméthy (2002) and his group. The KUKA Robocoaster simulation software

(KRSS) is linked to the MOBILE library and both simulates the motion of the robot

with the specific input trajectory files as well as verifies the boundary conditions of

the robot’s joints when the robot follows the given trajectory. The trajectory data

entered in the robot’s controller contains the time history of the relative position and

orientation of the end effector (EE).

3.2 Definition of the reference frames

This section presents the reference frames used to develop a MCA in the driving simu-

lator based on the KUKA Robocoaster. A series of five reference frames that are both

in a vehicle and in the LMR driving simulator is shown in Fig. 3.2.

3.2.1 Inertial reference frame K0

The inertial reference frame K0 is defined at the robot’s base with Z0-axis pointing

upwards along the first robot axis and X0-axis pointing forwards (Fig. 3.1). The
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forward direction X0 is chosen such that the simulation task has symmetric lateral

motions with respect to the first axis q1. The initial position of the robot is given by

the joint angles qRi , i ∈ {1 · · · 6}

[
qR1 , q

R
2 , q

R
3 , q

R
4 , q

R
5 , q

R
6

]
= [ 0, −21.37, −24.26, 0, 45.63, 0] (3.1)

which align the EE parallel to the frame K0 (angles in degrees).

3.2.2 Reference frame KE of the end effector

The reference frame KE has its origin at the EE of the KUKA Robocoaster. The

XE axis is vertical downwards, the ZE axis points forwards and the YE points to the

left hand side. The trajectory data generated by the KUKA Robocoaster simulation

software represents the relative location and orientation of the frame KE with respect

to its initial pose. For the KRSS, the initial position of frame KE is given by:

0
0rE0

= (xE0
, yE0

, zE0
) = (2.678, 0, 2.292) (m). (3.2)

Hereby, CArB represents the relative position vector of point B w.r.t point A decomposed

in the frame KC .

3.2.3 Simulator reference frame KS

The simulator reference frame KS has its origin at the point selected to match the

corresponding MCA being investigated. The origin can be either at the EE of the

KUKA Robocoaster or the origin of the frame KPs (see below). The XS-axis points

forwards and the ZS-axis points upwards w.r.t the simulator cockpit, and the YS-axis

points towards the driver’s right hand side. The XY -plane is parallel to the floor of

the cockpit.

3.2.4 Vehicle reference frame KV

The vehicle reference frame KV has its origin at the same relative cockpit position as

the simulator reference frame KS. The frame KV has the same orientation for the XV ,

YV , and ZV axis w.r.t to the cockpit as the simulator frame KS.
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3.2.5 Reference frames KPs and KPv

The frames KPs and KPv are attached to driver’s head in the simulator and vehicle,

respectively (see Fig. 3.2). Their origins are located at the midway point between the

left and right vestibular systems; their X-axes point forwards and their Z-axes point

upwards. In this study, the frames KPs and KPv are parallel to the frames KS and

KV , respectively. The hypothesized position of the frame KPs is decomposed in frame

KE as E
ErPs = (−aE, 0, bE) , where aE and bE are depended on the position of the

drivers’ head w.r.t seat. In this thesis, the position are assumed to be aE ≈ 0.55 (m)

and bE ≈ 0.35 (m), corresponding to a driver with medium height of 1.7(m). The

assumptions can be adapted to other drivers according to their biometric data.



3.3 Orientation Equations 27

3.3 Orientation Equations

The orientation between two reference frames K0 and KS can be specified by Bry-

ant angles β
S
= [ϕS, θS, ψS]

T, representing roll-pitch-yaw convention that defines a

sequence of rotations such as

0RS = Rot(Z, ψS) · Rot(Y, θS) · Rot(X,ϕS) , (3.3)

where Rot(a, b) is the rotation around the a axis of an angle b (Jazar (2010)). Let ωS

and β̇
S
be angular velocity and tilt rate of Tait-Bryan angle, respectively. Thus, the

kinematical Euler equation

β̇
S
= TS

SωS (3.4)

can be obtained, where

TS =
1

cos θS



cos θS sin θS sinϕS sin θS cosϕS

0 cos θS cosϕS − cos θS sinϕS

0 sinϕS cosϕS


 , (3.5)

and β̇
S
=

[
ϕ̇, θ̇, ψ̇

]T
. For small angles, the linearization β̇

S
≈ SωS can be assumed.

3.4 Tilt-coordination

We assume that only horizontal lateral (left/right) accelerations occur on the target

vehicle. According to the literature, the specific force (or g-force) f
Pv

is defined as the

total acceleration (including gravity acceleration) the driver perceives while negotiating

a given motion. If aPv is the kinematical acceleration of the vehicle, then the total

specific force in the target vehicle is (Fig. 3.3a)

f
Pv

= aPv − g . (3.6)

where aPv is the true lateral kinematical acceleration oriented horizontally to the right

of the passenger’s head; 0g = [0, 0,−g]T is the gravity acceleration.

In order to simulate the perceived vehicle lateral specific force, the cabin is tilted with

respect to the horizontal plane, such that the perceived lateral specific force in the local

simulator passenger head frame KPs is a combination of the kinematical acceleration

and the component of the gravity acceleration in lateral direction, neglecting effects in
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normal (cranial/caudal) direction. Writing this in vectorial form gives

Psf
Ps

= PsaPs −
Psg , (3.7)

where PsaPs is the kinematical acceleration of the passenger’s head and Psg is the

decomposition of the gravity acceleration in the passenger’s head frame KPs yielding

Psg = PsR0 = −g ·
[
− sin θS , cos θS sinϕS , cos θS cosϕS

]T
, (3.8)

with g = 9.81m/s2. For small Tait-Bryan angles, the coordinates of the simulated

specific force Psf
Ps

in the frame KPs are thus given by




PsfPsx
PsfPsy
PsfPsz


 =




PsaPsx − g sin θS
PsaPsy + g cos θS sinϕS
PsaPsz + g cos θS cosϕS


 ≈




PsaPsx − gθS
PsaPsy + gϕS
PsaPsz + g


 , (3.9)

where for motion cueing only the Y -component is retained in the context of the present

study.
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For the present study, it will be assumed that the vehicle undergoes only lateral kin-

ematical accelerations, which are thus oriented along the left/right axis passing through

the vestibular systems at the passenger’s head. Uneven target tracks with up/down

motion as well as non-steady varying speed (braking, accelerating) are thus neglected

(Fig. 3.3a). In the simulator seat, the passenger tilt produces in addition to the compon-

ent of the kinematical acceleration aPs in passenger’s head Y -direction a corresponding

component of the gravity acceleration added unconsciously to the kinematical accel-

eration at the head as an ”extended“ component fPsy (Fig. 3.3a) in lateral direction,

then perceived in total as motion acceleration. In this thesis, it will be assumed that

the kinematical seat acceleration aPs is as in the target vehicle case only in horizontal

direction. This means that the kinematical seat acceleration will reduce the normal

(cranial/caudal) acceleration by a small magnitude aPs sinϕS, which can be neglected

in the same way as the gravity acceleration change (1− cosϕS) g due to the tilting of

the cabin. Also, rotational effects of the passenger’s head acceleration due to angu-

lar velocity and angular acceleration are assumed to be negligible due to the narrow

thresholds on rotational time derivatives for avoiding false cues, as explained later in

this thesis.

In the literature (e.g. Reid and Nahon (1985)), another possibility has been investigated

in which the acceleration aPs is applied along the passenger’s head lateral direction YPs

(with +/− sign to simulate left/right lateral acceleration). However, this motion results

as a non-holonomic motion prescription similar to a sledge on ice in which the motion

in the configuration space becomes unpredictable and may thus yield to violations of

the workspace in particular in the vertical direction. For this reason, this approach

was not further investigated in this thesis. In appendix A.1 on page 138, a graphical

description of the simulated motion that are generated by the classical algorithm for

the two options (horizontal vs. tilted aPs) is included.



30

4 Overview and Discussion of Motion Cueing

Algorithms in the Literature

A motion cueing algorithm (MCA) uses tilt coordination to reproduce the effect of the

sustained translational acceleration motion via the gravity vector such as to copy the

human perception sensed by the vestibular system. In this section, a review of MCAs

and their implementing diagrams is presented. Then, based on the criteria introduced

by Nahon and Reid (1990), a comparison of MCAs’ features is discussed.

4.1 Classical washout filters – (CL)

The classical washout filters were initially developed for flight simulators by Conrad

and Schmidt (1970) and later applied for general driving simulators. They are mostly

used in the commercial simulators (Reid and Nahon (1985, 1988)). Several derived

versions of the algorithm were introduced according to the mechanical platforms: 3-

DoFs reported by Grant et al. (2003), 8-DoFs reported by Fischer et al. (2010), Jamson

(2007, 2010), Dagdelen et al. (2004), Grant et al. (2002), Chapron and Colinot (2007),

Grant and Clark (2006). In addition, an algorithm with spherical coordinates was

introduced by Wentink et al. (2005), Valente Pais et al. (2009), and one with cylindrical

coordinates was later developed by Giordano et al. (2010). This section introduces the

traditional CL algorithm for Stewart hexapod platforms that was described in detail by

Reid and Nahon (1985). Furthermore, the CL algorithm with cylindrical coordinates

for the KUKA Robocoaster introduced by Giordano et al. (2010) is reviewed.

4.1.1 Classical washout filters for simulators based on Stewart hexapods

In the implementing scheme of the CL algorithm (see in Fig. 4.1), the target specific

force V f
V

and angular velocity V ωV are scaled and filtered by high-pass filters HPa

and HPω. The high-pass filter HPa fulfills a washout-effect that returns the motion

platform to its neutral position (Reid and Nahon (1988)). In the cross channel, the

lateral and longitudinal accelerations are firstly scaled and filtered by low-pass filters

LP. Then, the sustained (low-frequency) parts of these accelerations are replaced by the

tilt angle β
T
composed of appropriate roll and pitch angles. These angles are computed

by the tilt coordination technique in the “Tilt Coord” block. The “Rate Limit” block

is used to restrict the angular velocity of the tilt motion under the threshold values of

the semicircular organ.
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The transfer functions of the washout filters are:

HPa =
s2

s2 + 2ζHP ωnHP s+ ω2
nHP

·
s

s+ ωb
, (4.1)

HPω =
s2

s2 + 2ζHP ωnHP s+ ω2
nHP

, (4.2)

LP =
ω2
n

s2 + 2ζLP ωnLP s+ ω2
nLP

. (4.3)

Hereby, ωnHP/nLP is the natural frequency, ζHP/LP is the damping ratio, and ωb is the

break frequency.

The first second-order component of HPa is used to generate the acceleration onset

cues, and the first-order component is to pull a simulator motion platform back to

the null position. In the translational channel, the simulated acceleration aS is the

high-frequency part, that is, then, integrated to produce the translational movement

S of the simulator. In the rotation channel, the scaled rotation rate β̇
sc
is first filtered

to get only the high-frequency part β̇
HP

= HPω · β̇
sc
. Then, the total rotation angle

of the simulator motion platform is β
S
= β

HP
+ β

T
.

Nahon and Reid (1990) mentioned that the advantages of the classical algorithm are

that the method is mathematically and computationally simple, and hence computa-

tionally cheap. In addition, from the designer’s point of view, the method is quite

transparent. On the other hand, the principal disadvantage of this method is that it

includes linear washout filters, therefore it does not effectively exploit the simulator

capabilities.
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4.1.2 Classical algorithm with cylindrical coordinates – CLG

For the driving simulator based on KUKA Robocoaster, Giordano et al. (2010) intro-

duced the algorithm to exploit a circular motion of the frame KS around the Z0 axis

(see Fig. 3.2) to simulate the target lateral acceleration instead of using a linear mo-

tion. For the development of the algorithm, the cylindrical coordinates are defined with

the unit vectors {er, eα, ez} representing for radial, transversal and vertical directions,

respectively. The cylindrical coordinates of a vector ξ = [R, α, z]T are hereby defined

as

R =
√
x2 + y2 ;α = atan2(y, x) ; z = z . (4.4)

The reference frames (shown in Fig. 3.2) are defined with the frame KS ≡ KPs.

Moreover, a reference frame KW is defined as the washout frame. The origin of the

frame KW is coincident with that of the frame K0, for the z direction it holds ZW ≡ Z0,

and the XW -axis is rotated by the angle α with respect to X0-axis, such that it al-

ways points forwards. The rotation matrix from frame K0 to frame KW is given by
0RW = Rot [Z0, α].

Considering the high-pass filter for the linear acceleration (see Fig. 4.2), the input to

this filter is V aV , the linear acceleration of the vehicle expressed in the frame KV .

The acceleration V aV is first scaled and transformed into the washout frame KW to

obtain the acceleration WaV,sc. Then, the acceleration is transformed from Cartesian

coordinates to cylindrical ones by the conversion matrix C(ξ) as

ξ̈ =



R̈

α̈

z̈


 =




1 0 0

0 1
R

0

0 0 1


WaV,sc = C(ξ)WaV,sc . (4.5)

The acceleration ξ̈ (in cylindrical coordinates ) is filtered by the following high-pass

filter HPa defined as

HPa(s) =
s2

s2 + 2ζiωn,is+ ω2
n,i

·
s

s+ ωb,i
, with i ∈ {R ,α , z} , (4.6)

where ωn,i is the natural frequency, ζi is the damping ratio, and ωb,i is the break

frequency.

Because the washout process is described in the moving frame KW , the simulated accel-

eration decomposed in the frame KW includes a centripetal and a Coriolis acceleration.

Therefore, expressed in cylindrical coordinates, the simulated acceleration w.r.t KW is

WaS =
(
R̈−Rα̇2

)
er +

(
Rα̈ + 2Ṙα̇

)
eα + z̈ez . (4.7)
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Let WaIN define the inertial acceleration components representing centripetal and Cori-

olis acceleration. Then this vector is expressed in the cylindrical coordinates as

WaIN = −Rα̇2er + 2Ṙα̇eα + 0ez . (4.8)

In Fig. 4.2, the inertial acceleration WaIN =
[
−Rα̇2 , 2Ṙα̇ , 0

]T
is calculated in the

Inertial Compensator block. Note that the centripetal and Coriolis acceleration are

considered as the low frequency part of disturbances. Hence, the acceleration is sent

to tilt coordinator (TC) block to compute the compensation tilt angle. The input of

the TC block SaT , that is computed from the low-pass frequency part of target and

spurious acceleration, is then

SaT = SaLP − SaIN , (4.9)

where SaLP is the low frequency part of input acceleration in the frame KS. Giordano

et al. (2010) used the complementary low-pass filter, described as the expression

LPa(s) = 1− HPa(s) . (4.10)

With the selection of the filters, the rest low-frequency part of the target acceleration

can be completely reproduced. Therefore, the simulated specific force can track the

target one. Then, to compensate the undesired accelerations and reproduce the sus-

tained (low-frequency) acceleration, the gravity acceleration Sg is used. The idea for

the compensation is the same as that of the tilt coordinator (TC block in Fig. 4.2).

Thus, the tilt angles β
T
can be calculated such as

ϕT = arcsin
SaTy

g cos θT
; θT = − arcsin

SaTx
g

;ψT = 0 . (4.11)
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The tilt angle β
T
enters the “Rate Limit” block to generate β

lm
whose tilt rate is

limited. Concerning the angular high-pass channel, the input angular velocity V ωV is

first scaled and transformed into an Bryant-angle rotational rate β̇
V,sc

which is then

filtered by a high-pass filter HPω to obtain the high-frequency part β̇
HP

. Afterwards,

the Bryant-angle rate is integrated to produce the high-frequency angle β
HP

. Here,

HPω are selected as a second order high-pass filter

HPω(s) =
s2

s2 + 2ζωns+ ω2
n

. (4.12)

For Bryant angles of KS with respect to KW , it holds under the assumption of small

angles: β
W

= β
lm

+ β
HP

. Finally, the simulated Bryant angles β
S
of the frame KS

w.r.t the frame K0 is determined such as β
S
= β

W
+ [0, 0, α]T.

Note that for the LMR driving simulator, the parameters of washout filters should be

selected to keep radius R and z nearly constant in order to reduce the effect of the

spurious components and to avoid potential physical violations.

4.2 Adaptive washout filters

The goal of the adaptive washout filters is to adapt parameters according to the current

states of the simulator at each step of simulation time. The algorithm uses gradient-

based optimization to find the adaptive parameters that minimize a cost function

containing the motion errors and constraints on the motion platform states. As a

further development of the coordinated adaptive washout filters introduced by Parrish

et al. (1975), Reid and Nahon (1985) suggested an adaptive washout algorithm denoted

in this thesis as ADRN. Later, Naseri and Grant (2005) developed a new actuator-state

based adaptive algorithm (ASBA) to take advantage of ADRN by using motion system

actuator states in the cost function. In an earlier research on the adaptation of MCAs

to the LMR driving simulator, Schweig and Kammers (2011) developed the adaptive

algorithm named in this thesis as hybrid classical-adaptive washout filters ADSK. The

algorithm optimizes parameters of the high-pass filters in the cylindrical coordinate.

This section introduces in detail the ADRN and ADSK algorithms.

4.2.1 Coordinated adaptive washout filters – ADRN

The adaptive washout filters are developed for four parallel problems such as: roll/sway,

pitch/surge, yaw and heave. In terms of the roll/sway problem, Fig. 4.3 shows the

corresponding implementation diagram of the ADRN algorithm. The input signals are
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the specific force V f
V
and angular velocity V ωV of the frame KV in the vehicle. The

input signals are first scaled and then used to compute the desired acceleration ad and

the tilt rate β̇
d
such as

ad =
0RS

V f
V,sc

+ 0g ; β̇
d
= TS

V ωV,sc . (4.13)

For the roll/sway problem, the desired signals enter the Demux block to decouple the

lateral acceleration ady and roll tilt rate ϕ̇d.

The two blocks “Adaptive #1” and “Adaptive #2” (see Fig. 4.3), are the adaptive

washout filters for the sway and roll channel, respectively. The washout filters use the

optimized (adaptive) parameters p to compute aSy and ϕS according to filter equations

(control law):

aSy = p1 ady − ky1 Ṡy − ky2 Sy , (4.14)

ϕ̇S = LIM(p2 ady) + p3 ˙ϕdx , (4.15)

where ky1 and ky2 are constants, and LIM() is a function (in the Limit block) that

restricts the tilt rates to yield valid tilt angles to simulate specific force. Additionally,

p = {p1, p2, p3} are the adaptive parameters that minimize the cost function

JADRN =0.5 ·

{
(ady − aSy)

2 + w1 (ϕ̇d − ϕ̇S)
2 + ρ

[
w2 Ṡy

2
+ w3 Sy + w4 ϕ̇S

2

+w5 ϕS
2 + w6 (p1 − p10)

2 + w7 (p2 − p20)
2 + w8 (p3 − p30)

2

]} (4.16)

by using the steepest descent method. Thus,

pi = −Gi ·
∂Jy
∂pi

with (i = 1 · · · 3) . (4.17)

Here, w1···8 are weighting parameters, Sy is the offset displacement of the simulator;

aSy is the simulated acceleration; and pi0, i = {1 · · · 3} are the initial values of the

adaptive parameters pi.
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The cost function is selected so that the simulated acceleration aSy tracks the desired

acceleration ady and ϕ̇S tracks ϕ̇d, while the actual motion is restricted by the weighting

parameters for the variables Ṡy, Sy, ϕ̇S, and ϕS. The form wm (pi − pi0) with m =

{6 · · · 8} , i = {1 · · · 3} is introduced to restrict large deviation of the parameters pi

from the corresponding initial values pi0.

Note that, for the tuning process, the selection of the initial values for parameters

pi0, constant Gi, and the weighting values can lead to the unstable state. Thus, the

algorithm needs the experience of designers for tuning its parameters. Although the

ADRN features a flexible cost function for minimizing the motion cues errors and the

diversion of the parameters, the solution of the large number of differential equations

is very time-consuming. Moreover, the tuning process of this algorithm is not straight-

forward since its behavior is difficult to adjust (Nahon and Reid (1990)).

4.2.2 Hybrid classical-adaptive washout filters – ADSK

Based on the CLG algorithm, the adaptive algorithm ADSK (see Fig. 4.4) is de-

veloped by inserting an grey “ADAPT” block that optimizes the parameters of the

sub-component “high-pass filter” HPa to reduce the motion cues errors. For the al-

gorithm, the high-pass filter is represented as HPa(s) = HP1(s) · HP2(s) where

HP1(s) =
s

s+ ωb
, HP2(s) =

Ks2

s2 + 2ζωns+ ω2
n

. (4.18)

The ADSK algorithm uses a steepest descent method in the “ADAPT” block to modify

the parameters K, ωn, and ζ of the high-pass filter HP2 in real time for minimizing the

cost function (Nehaoua et al. (2008))

JADSK =
1

2

[
wa(ξ̈F − ξ̈

HP
)2 + wv ξ̇

2

HP
+ wSξ

2

HP

+wk(K −K0)
2 + wζ(ζ − ζ0)

2 + wω(ωn − ωn0)
2
]
.

(4.19)

Here, ξ̈
F

is the filtered acceleration through the 1st-order filter HP1; {K0, ζ0, ωn0}

are the initial values of the filter parameters; {wa , wv , wS} are weighting parameters

penalizing the difference between the target and the actual motion, restraining the

translational velocity and displacement of the simulator, respectively. Furthermore,

{wk , wζ , wω} restrict the deviation of the adaptive parameters from their initial val-

ues. The minimization process is implemented by using the function fminunc in

MATLAB R© with a quasi-Newton optimization method.

Like the ADRN, the hybrid algorithm can separate the optimal problems into the
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Figure 4.4: ADSK algorithm implementation for KUKA Robocoaster motion platform
(based on Schweig and Kammers (2011))

sub-problems of 2-DoF (e.g. roll/sway or pitch/surge). By doing so, the optimization

is implemented for channels of the cylindrical coordinates to find the adaptive para-

meters. However, the algorithm is more time-consuming than the ADRN due to the

optimization methods. In terms of tuning parameters, the response of the algorithm is

quite opaque regarding the adjusting of the weighting parameters.

4.3 Linear optimal washout filters

Linear optimal washout filters were first developed by Sivan et al. (1982) with four

assumptions: 1) The vestibular system dominates the perception of motion cues in a

driving simulator; 2) The discrepancy between the motion cues in the actual vehicle

and in the moving simulator can be measured by the mean-square value of the vesti-

bular error; 3) The actual vehicle motion can be modeled as a random process with

rational spectrum; 4) The dynamical systems, including the vestibular systems, can be

represented by linearized equations. Similar to the ADRN, the algorithm solves four

problems separately: roll/sway, pitch/surge, heave, and yaw.

The problem structure of the linear optimal algorithm (see Fig. 4.5) includes two

separate channels generating motion perception in an actual vehicle {ω̂V , f̂V } and

in a simulator {ω̂S, f̂S}. In both channels, the vestibular system presents the driver’s

perception. Concerning the ideal case, the output of the simulator is identical to the

input uS.

The goal of the optimal algorithm is to determine a transfer function W(s) consisting

of high-order filters. The W(s) filters the vehicle input uV to obtain the simulator
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input uS such that a cost function containing the driver sensation error e (between

vehicle and simulator) is minimized. The transfer functions W(s) are generated by an

offline program, and then implemented online (Telban et al. (2005)).

Assume that the input uV consists of filtered white noise, and can be expressed as
{
ẋn = Anxn + Bnn

uV = Cnxn
, (4.20)

where xn are the filtered white noise states, n represents white noise; for the regarded

roll/sway problem uV =
[
V aV y, ϕV

]T
(Sivan et al. (1982)), An = diag{−γ1,−γ2} and

Bn = diag{γ1, γ2} are state and input matrices of the model of white noise. Here, γ1

and γ2 are first-order filter break frequencies for each DoF.

The dynamic model of the optimal problem is represented by the linear state equation
{
ẋ = Ax + BuS + Hn

y = Cx + DuS
, (4.21)

where the A, B, C, D, H are the state space matrices which will be described for each

optimal algorithms in below parts. The washout filtersW(s) are determined by solving

the linear quadratic optimal control problem with the cost function

JOp = E

{∫ tf

t0

(
eTQe+ uS

TRuS + xc
TRcxc

)
dt

}
!
= min . (4.22)

Here, E{} is the statistical mean estimate, and [t0, tf ] is the simulation time; the

diagonal weighting matricesQ, Rc are the semi-positive definite, whileR is the positive

definite diagonal; the output y =
[
eT, xTc

]T
includes the sensation error e and the

simulator state variables xc =
[∫
aSydt,

∫
vSydt

]T
; vSy =

∫
aSydt (Sivan et al. (1982));

the sensation errors e = [∆f̂y,∆ω̂x]
T (roll/sway problem) are represented in terms of

the specific force and angular velocity, respectively, between the expected output of

the passenger’s vestibular system and the target values (with KS ≡ KPs&KV ≡ KPv):

∆f̂y =
V f̂V y −

S f̂Sy; ∆ω̂x =
V ω̂V x −

Sω̂Sx . (4.23)



4.3 Linear optimal washout filters 39

This thesis reviews 4 sets of optimal washout filters for the roll/sway problem. The

sets were developed by Sivan et al. (1982), Reid and Nahon (1985), and Telban et al.

(2005) (two sets). Note that each state space model has different state variables x,

system inputs u, and simulator variables xc, that are included in Tab. B.3 on page

141. Furthermore, the parameters of the vestibular system models are summarized in

Tab. B.1 and B.2 on page 141.

4.3.1 Linear optimal washout filters – OpS

Sivan et al. (1982) used the following models of semicircular and otolith organs:

HScc(s) =
ω̂Sx
ωSx

= GS
s

(τ1s+ 1) (τ2s+ 1)
, (4.24)

HOto(s) =
S f̂Sy
SfSy

= GO
(s+ A0)

(s+ B0)
, (4.25)

where GS and GO are the gain factors in threshold units for the semicircular and otolith

organs, respectively; τ1 and τ2 are the time parameters of the semicircular organ; and

A0 and B0 are the time parameters of the otolith organ.

Referring to Eq. 4.21, the authors define the state variables x =
[
xTV , x

T
S , x

T
n

]T
, where

xn = [V aV y, ϕV ] is the white noise state variable; and xV is the state variable that

includes the variables of the vestibular modes, velocity, and position of the vehicle

xV =

[
(xOtoV )T, (xSccV )T,

∫
vV ydt,

∫
aV ydt

]T
; vV y =

∫
aV ydt . (4.26)

Hereby, the otolith state variable is xOtoV =
[
V f̂V y −

V fV yGOB0

]
, and the semi-circular

state variable is xSccV =
[
V ω̂V x −GSbSϕV ,

∫
V ω̂V x

]T
.

From the model displayed in Fig. 4.5, if the simulator dynamics are ignored, the state

variable in the simulator xS is similar to xV (with subscript “V ” is replaced by “S”):

xS =

[
(xOtoS )T, (xSccS )T,

∫
vSydt,

∫
aSydt

]T
; vSy =

∫
aSydt . (4.27)

The matrices Ā, B̄, C̄, D̄ of the state space model of the vehicle/simulator model

use the vestibular model described by state matrices Ã, B̃, C̃, D̃. For example, the

approach of Sivan et al. (1982) defined

Ā =

[
Ã 0

0 Ac

]
, B̄ =

[
B̃

Bc

]
, C̄ =

[
C̃

0

]
, D̄ = D̃ . (4.28)
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where

Ã =



−B0 0 0

0 −AS 1

0 −BS 0


 , B̃ =



GO(A0 − B0) −GOg(A0 − B0)

0 −ASBSGS

0 −B2
SGS


 ,

C̃ =

[
1 0 0

0 1 0

]
, D̃ =

[
GO −GOg

0 GSBS

]
, Ac =

[
0∗ 1

0 0∗

]
, Bc =

[
0 0

1 0

]
,

(4.29)

and, AS = (τ1 + τ2)/τ1τ2, and BS = 1/τ1τ2.

The vestibular model was computed by making the assumption: the angles ϕV and ϕS

are so small that sinϕS ≈ ϕS and sinϕV ≈ ϕV along with cosϕS ≈ 1 and cosϕV ≈ 1.

Moreover, for numerical convenience Sivan et al. (1982) defined 0∗ = 10−5.

The augmented matrices of the linear optimal system (Eq. 4.21) are obtained as

A =



Ā 0 B̄Cn

0 Ā 0

0 0 An


 ,B =



0

B̄

0


 ,H =




0

0

Bn


 ,

C =

[
−C̄ C̄ −D̄C̄n

0 Cc 0

]
, D = D̄ ,

(4.30)

where Cc = [0, I] for two output states of the simulator, velocity and displacement.

The problem of minimizing the cost function JOp (Eq. 4.22) subject to the state space

equation Eq. 4.21 is a standard stochastic state feedback optimization problem. The

solution to this problem is (Kwakernaak and Sivan (1972))

uS = −Fx = [F1 ,F2 ,F3] [xV , xS, xn]
T , (4.31)

Here, the feedback matrix F = [F1, F2, F3] includes the three sub-matrices correspond-

ing to the sub-vectors xV , xS, and xn. The feedback matrix F is computed as

F = R−1
2

(
BTP+RT

12

)
,

R1 = CTQC ,R12 = CTQD ,R2 = R+DTQD ,
(4.32)

with P being the unique non-negative definite solution of the algebraic Riccati equation

P
(
A−BR−1

2 RT
12

)
+
(
A−BR−1

2 RT
12

)T
P+R1

−R12R
−1
2 RT

12 −PBR−1
2 BTP= 0 .

(4.33)
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Figure 4.6: OpS algorithm implementation for roll/sway problems (based on Sivan
et al. (1982))

The washout filter W(s) is obtained by using the expression

WS (s) = −
(
I+ F2(sI− Ā)−1B̄

)−1
·
(
F1(sI− Ā)−1B̄+ F3

)
, (4.34)

and its elements denote as high-order washout filters

Wij(s) =
(s+ aij1 )(s+ aij2 ) · · · (s+ aijn )

(s+ bij1 )(s+ bij2 ) · · · (s+ bijn )
with i, j = {1, 2}. (4.35)

Here, aij(·), b
ij
(·) are the zeros and poles of the washout filter Wij(s), respectively, and n

is the dimension of the matrix Ā.

Fig. 4.6 shows that target acceleration V aV y is transformed through the block 0RV

to inertial coordinates and then scaled by a suitable gain factor. Next, the scaled

acceleration is filtered through W S
11 to produce the simulator acceleration aSy. This

acceleration is integrated twice to generate the simulator offset Sy. The roll tilt angle

ϕS is obtained as the sum of the tilt angle formed from the inertial acceleration being

passed through the tilt coordination filterW S
21, and the filtered roll target angle through

W S
22. The filter W

S
12 always has extremely small gain and can, therefore, be neglected.

4.3.2 Linear optimal washout filters – OpRN

Reid and Nahon (1985) used the same models of semicircular and otolith organs as

Sivan et al. (1982) (transfer functions Eq. 4.24 and 4.25). However, the authors used

different parameters values for the gain factors GO, and GS than Sivan et al. (1982)

(see Tab. B.1 and B.2). The input is uV =
[
ϕV ,

V aV y
]T
, and the simulator variables

are xc =
[∫
Sydt,

∫
vSydt,

∫
aSydt

]T
; vSy =

∫
aSydt; Sy =

∫
vSydt. Therefore, the

state space matrices of the vestibular system model and those of the simulator (as the

Eq. 4.29) are
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Figure 4.7: OpRN algorithm implementation for roll/sway problem (based on Reid
and Nahon (1985))

Ã =



−aS 1 0

−bS 0 0

0 0 −b0


 , B̃ =




−aSbSGS 0

−b2SGS 0

−GOg(A0 − B0) GO(A0 −B0)


 ,

C̃ =

[
1 0 0

0 0 1

]
, D̃ =

[
GSbS 0

−GOg GO

]
,Ac =



0∗ 1 0

0 0∗ 1

0 0 0∗


 ,Bc =



0 0

0 0

1 0


 .

(4.36)

The augmented matrices of the linear optimal system are identical to Eq. 4.30. In ad-

dition, the optimal washout filters are computed by Eq. 4.34 with reference to Eq. 4.33.

The washout filters WR
ij , with {i, j = 1, 2} are computed as Sivan’s method (see sec-

tion 4.3.1), afterward the filters are implemented to generate the simulated signals, as

illustrated in Fig. 4.7. Like in the case of the OpS algorithm, the small gain of WR
21

cause an insignificant effect of this filter on the simulated signals, and it is therefore

removable. Note that the indices ofWR
ij , with {i, j = 1, 2} in Fig. 4.7 are different from

those of W S
ij in Fig. 4.6. The reason is that Reid and Nahon (1985) used the inputs

uV =
[
ϕV ,

V aV y
]T
, while Sivan et al. (1982) used the inputs uV =

[
V aV y, ϕV

]T
.

4.3.3 Linear optimal washout filters – OpT and OpTYM

Telban et al. (2005) developed two MCAs, one – OpT – which uses their own proposed

model for the otolith organ and the other – OpTYM – which uses the otolith model of

Young and Meiry (1968).

HScc(s) =
ω̂Sx
ωSx

= GS
τaτ1s

2(1 + τLs)

(τ1s+ 1) (τ2s+ 1) (τas+ 1)
, (4.37)

HOto(s) =
S f̂Psy
SfPsy

= GO
s+ A0

(s+ B0) (s+ B1)
. (4.38)

Here, Telban’s model has different parameters from Young-Meiry’s model, as shown in
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Tab. B.1, and B.2. Moreover, for the two algorithms, the origin of the frame KS (the

center of rotation) is not at the driver’s head. In terms of the LMR driving simulator,

the origin of the frame KS is selected at the EE.

For the selection of the frameKS, the y-component of the simulated acceleration decom-

posed in the frame KS is computed for small tilt angle ϕS as SaSy = aSy cosϕS ≈ aSy

(see Fig. 3.3). The simulated specific force for roll/sway problem is then

SfPsy =
SaSy + gϕS − rSzϕ̈S ≈ aSy + gϕS − rSzϕ̈S , (4.39)

with rSz is the distance between the center of rotation and the driver’s head in the

Z-axis direction. The simulator input is given by uS = [u1, u2]
T = [ϕ̇S, aSy]

T. By

replacing Eq. 4.39 in 4.38, and taking derivatives and rearranging, it results in

S ¨̂fPsy + (B0 + B1)
S ˙̂
fPsy + B1B0

S f̂Psy =

GO

[
− rSz(B0 + B0 − A0)u1 + (g− rSzB0B1)u1 + gA0

∫
u1dt+ u̇2 + A0u2

]
,

(4.40)

which can be rewritten as

S ¨̂fPsy + a S
˙̂
fPsy + b S f̂Psy =

[
cu1 + du1 + e

∫
u1dt+ u̇2 + A0u2

]
, (4.41)

or, in the state space notation, as

{
ẋOtoS = AOtox

Oto
S + BOtouS

f̂Psy = COtox
Oto
S + DOtouS

, (4.42)

where xOto are the otolith states, and

AOto =




0 1 0 0 0

−b −a 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −b −a



; BOto =




c 0

d− ac 0

e 0

0 f

0 h− af



; (4.43)

COto =
[
1 0 0 1 0

]
; DOto =

[
GOrSz 0

]
. (4.44)
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Here,

KOto =0.4
B0B1

A0

; GOto =
1

δOto
; GO = GOtoKOto ;

a =B0 + B1 ; b =B0B1 ;

c = −GOrSz(B0 + B0 − A0) ; d =GO(g− rSzB0B1) ;

e =gGOA0 ; f =GO ;h = GOA0 .

(4.45)

For the OpTYM algorithm, the Eq. 4.37 can be rewritten as

ˆ̇ϕS
ϕ̇S

=
T4s

3 + T3s
2

s3 + T2s2 + T1s+ T0
, (4.46)

where

T0=
1

τaτ1τ2
; T1 =

τa + τ1 + τ2
τaτ1τ2

; T2 =
τ1τ2 + τa(τ1 + τ2)

τaτ1τ2
;

T3=
GS

τ2
; T4 =GS

τL
τ2

.

The transfer function is rewritten in terms of state-space matrices as

AY
Scc =



−T2 1 0

−T1 0 1

−T0 0 0


 ; BY

Scc =



T3 − T2T4 0

−T1T4 0

−T0T4 0


 ; (4.47)

CY
Scc =

[
1 0 0

]
; DY

Scc =
[
T4 0

]
. (4.48)

On the other hand, the OpT algorithm uses a reduced-order transfer function of the

semicircular organ, in which both time constant τL and τ2 are removed. As a result,

the state-space matrices for the OpT algorithm are:

ATe
Scc =

[
−T ∗

1 1

−T ∗
0 0

]
; BTe

Scc =

[
−GSτ1 0

−GSτ0 0

]
;CTe

Scc =
[
1 0

]
; DTe

Scc =
[
GS 0

]
, (4.49)

where T ∗
0 = 1

τaτ1
and T ∗

1 = τa+τ1
τaτ1

. The human vestibular model is a combination of the

otolith and the semicircular models, which is represented as

Ã =

[
Ak
Scc 0

0 AOto

]
; B̃ =

[
Bk
Scc

BOto

]
; C̃ =

[
Ck
Scc 0

0 COto

]
; D̃ =

[
Dk
Scc

DOto

]
, (4.50)

with k ∈ {Y, Te}.Telban et al. (2005) defined different state variables for the control

system (Eq. 4.21) compared to Sivan et al. (1982). Concretely, the combined states are

x =
[
xTe , x

T
c , x

T
n

]T
. The state of errors xe = xS−xV , with xS =

[
(xOtoS )T, (xSccS )T

]T
and

similarly for xV , corresponds to the respective vestibular states whose system matrices
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are shown in Eq. 4.50 for the simulator and the vehicle, respectively; the simulator

states are xc =
[∫
Sydt,

∫
vSydt,

∫
aSydt, ϕS

]T
; vSy =

∫
aSydt; Sy =

∫
vSydt; and xn

are the filtered white noise states (see Eq. 4.20).

The combined system matrices A, B, C, D, H are then given by

A =



Ã 0 −B̃

0 Ac 0

0 0 An


 ; B =



B̃

Bc

0


 ; H =




0

0

Bn


 ;

C =

[
C̃ 0 −D̃

0 1 0

]
; D =

[
D̃

0

]
.

(4.51)

Like the OpS algorithm, the cost function JOp (Eq. 4.22) is minimized by uS = −Fx,

where, the feedback matrix F = [F1, F2, F3] includes the three sub-matrices corres-

ponding to the sub-vectors {xe, xc, xn}, respectively. The feedback matrix F is com-

puted as

F = [F1 ,F2 ,F3] = R−1
2

(
BTP+RT

12

)
,

R1 = CTQC ,R12 = CTGD ,R2 = R+DTQD ,G = diag [Q,Rc] .
(4.52)

Here, P is the unique non-negative definite solution of the Riccati equation (see

Eq. 4.33).

The washout filter matrix Wk(s) with k ∈ {Y, Te} is determined by

Wk(s) = [F1, F2]

[
sI− Ã+ B̃F1 B̃F2

BcF1 sI−Ac +BcF2

]−1 [
B̃(I+ F3)

BcF3

]
− F3 , (4.53)

The washout filter matrix Wk(s) is implemented for online simulation as shown in

Fig. 4.8. The vehicle acceleration is first transformed to the inertial frame K0. The

nonlinear scaling block is then applied to scale down the inputs. Then, the scaled

inertial acceleration is filtered by W k
22 to generate the simulated acceleration aSy. If

the input signal is only lateral acceleration, the simulated angular velocity combines

the tilt-rate that is produced by filtering aV y through W k
12. The tilt rate limit is used

to maintain the angular velocity under the threshold values.

Because of their fixed parameters, the optimal washout filters must be tuned for the

worst-case maneuvers and often generate minimal motion under more gentle maneu-

vering. Note that not only the weighting parameters but also the suitable factor for

the nonlinear scaling block must be tuned to archive high fidelity simulation.
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Figure 4.8: OpT algorithm implementation for roll/sway problem (based on Telban
et al. (2005))

4.4 Nonlinear optimal washout filters – OpTNon

The linear optimal washout filters are usually determined for the worst-case maneuvers.

They are therefore not adapted to the actual maneuvers and potential false cues have a

high change of occurring. Cardullo and Kosut (1983) and Ish-Shalom (1982) suggested

a nonlinear approach to overcome these difficulties. The approach combines the ideas

of the adaptive and optimal washout filters to maximize motion cue fidelity in a driving

simulator. Based on the approach, Telban et al. (2005) proposed a nonlinear optimal

washout filter whose block diagram of control problem is illustrated in Fig. 4.9. The

algorithm is to minimize the perceptual errors e by finding the optimal washout filters

to generate a suitable simulator input uS. The washout filters were found at each

time step with the feedback information of the simulator states. To do so, the Riccati

Equation Solver needs to be implemented in real-time to find the optimal input uS

at each time step. Furthermore, both a vestibular and an optokinetic model were

included in the Perceptual System block. Therefore, not only the specific forces and

the angular velocity (by the vestibular system) but also the velocity of rotational ˆ̇ϕ

and translational perception v̂y (by the visual system) were taken into account.

Perceptual
System

Perceptual
System

Simulator
Dynamics

Vehicle State

Simulator State Simulator Driver

Vehicle Driver Perceptual
Error

Nonlinear
Washout Filters

Control
Law

Riccati Equation
Solver

Su

Vu

+

-
e

Figure 4.9: Control problem for developing the OpTNon algorithm based on Telban
et al. (2005)
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The reduced-order transfer functions of semicircular and otolith organs are:

HScc(s) = GS
τaτ1s

2

(τ1s+ 1) (τas+ 1)
; HOto(s) = GO

s+ A0

s+ B0

. (4.54)

and the transfer function of the optokinetic influence for rotational channels is

HOK =
ϕ̇V − ˆ̇ϕS
ˆ̇ϕS,OK

=
1

τOKs+ 1
, (4.55)

where τOK is the optokinetic time constant (Van der Steen (1998)). Note that the

transfer function is also used for translational channels. Therefore, for the simulator

driver, the perception response of the perceptual system including the vestibular and

visual system is ŷ
S,PE

= [ ˆ̇ϕS,OK + ˆ̇ϕS, v̂S,OK + ˆ̇vSy]
T.

The new matrices of the otolith model integrating the visual states are

AOto =




0 1 0 0 0 0

0 −a 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 −a 0

−T ∗
2 0 0 −T ∗

2 0 −T ∗
2




;BOto =




c 0

d− ac 0

e 0

0 f

0 h− af

−T ∗
2GOrSz 0




;

COto =
[
1 0 0 1 0 1

]
; DOto =

[
GOrSz 0

]
,

(4.56)

and the matrices of the semicircular system integrating the visual states are

AScc =



−T2 1 0

−T1 0 1

−T ∗
2 0 −T ∗

2


 ; Bscc =



−GST1 0

−GST0 0

−GST2
∗ 0


 ;

CScc =
[
1 0 1

]
; DScc =

[
GS 0

]
,

(4.57)

where T ∗
2 = 1/τOK . The desired system equation is given in Eq. 4.21. Telban et al.

(2005) defined the state variables as x =
[
xTe , x

T
c , x

T
n

]T
. Note that the state of errors

xe = xS − xV , with xS =
[
(xSccS )T, (xOtoS )T

]T
and similarly for xV , corresponds to the

respective states of the model composing of the vestibular and the visual system whose

system matrices are shown in Eq. 4.56 and 4.57 for the simulator and the vehicle,

respectively; the simulator states are xc =
[∫
Sydt,

∫
vSydt,

∫
aSydt, ϕS

]T
; vSy =∫

aSydt; Sy =
∫
vSydt; and xn are the filtered white noise states (see Eq. 4.20).
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The cost function JOp in Eq. 4.22 is augmented with the additional term e2ηt proposed

by Anderson and Moore (1971):

JNon = E

{∫ tf

t0

e2ηt
(
eTQe+ uS

TRuS + xc
TRcxc

)
dt

}
!
= min . (4.58)

where, the perception error vector is

e = ŷ
V,PE

− ŷ
S,PE

= [∆yPE,1, ∆yPE,2]
T (4.59)

with

∆yPE,1 = ( ˆ̇ϕV,OK − ˆ̇ϕS,OK) + ( ˆ̇ϕV − ˆ̇ϕS) = ∆ ˆ̇ϕOK +∆ ˆ̇ϕS (4.60)

∆yPE,1 = (v̂V,OK − v̂S,OK) + (ˆ̇vV y − ˆ̇vSy) = ∆v̂OK +∆ˆ̇vSy ; (4.61)

and the input simulator vector uS and the simulator state vector xc are defined as in

the OpT and OpTYM algorithms, respectively.

The state matrices in Eq. 4.50 with the additional motion platform and filtered white

noise states are used once more. The cost function JNon is minimized when

uS = F(η)x , (4.62)

where

F(η) = R−1
2

(
BTP(η) +R12

)
(4.63)

and its block sub-matrices are

F1(η) = R−1
2

[
B̃P11 +BT

cP21 + D̃QC̃
]
;

F2(η) = R−1
2

[
B̃P12 +BT

cP22

]
;

F3(η) = R−1
2

[
B̃P23 +BT

cP23 − D̃QC̃
]
.

(4.64)

Here, Pij with i, j = {1..3} are the block components of P(η) which results as the

solution of the algebraic Riccati equation

(A′ + ηI)
T
P(η) +P(η) (A′ + ηI)−P(η)BR−1

2 BTP(η) +R′
1 = 0 , (4.65)

with A′ = A−BR−1
2 RT

12 and R′
1 = R1−R12R

−1
2 RT

12 . The partitions Pij correspond

to the partitions of the system matrix A (see Eq. 4.50). By symmetry P12 = PT
12. A
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Figure 4.10: OpTNon algorithm implementation for roll/sway problem (Telban et al.
(2005))

nonlinear control law is chosen to make η dependent upon the simulator states:

η = xTc Q2xc , (4.66)

where Q2 is a weighting matrix that is at least positive semi-definite. As the system

states increase in magnitude, i.e. with large commanded platform displacements and

velocities, then η increases, resulting in faster control action to quickly wash out the

platform to its neutral state. For small commands there will be limited control action,

resulting in motion cues being sustained for longer durations. The feedback matrix

F(η) is then determined by solving the Riccati Eq. 4.33 in real time as a function of η.

Finally, the state variables are obtained as:

[
ẋe

ẋc

]
=

[
Ã− B̃F1(η) B̃F2(η)

−BcF1(η) Ac −BcF2(η)

][
xe

xc

]
+

[
−B̃(I+ F3(η))

−BcF3(η)

]
uV . (4.67)

The block diagram for the nonlinear optimal algorithm (see Fig. 4.10) shows the real

time computation of simulated signal uS in the “State Equation” block which is integ-

rated to generate the simulated motions aSy and ϕS. At each time step, the feedback

matrix F(η) is determined by the ”Riccati Solver“ block.

4.5 MCA using optimal tracking – ZyRo

This approach, first developed by Zywiol and Romano (2003), solves the MCA problem

by using optimal control theory for reference tracking. The linear model of the tilt

coordination circuit was developed instead of using the typical high-pass filters. In



50 4 Overview and Discussion of Motion Cueing Algorithms in the Literature

terms of roll/sway problem, from Eq. 3.9, the simulated acceleration in the inertial

frame K0 is linearized as

aSy ≈
SaSy =

SfSy − gϕS . (4.68)

The control diagram for the method (Fig. 4.11) computes the simulated displacement

and specific force as the output signals.

Let u = [u1, u2]
T denote a deterministic control input vector where u1, u2 are filtered

through a low-pass filter (PT1) to generate the specific force at the drivers’s head

and the tilt rate ϕ̇S, respectively. The control system is described in the state space

equation as {
ẋ = Ax+Bu

y = Cx
, (4.69)

where

A =




0 1 0 0 0

0 0 1 0 −9.81

0 0 −γ 0 0

0 0 0 0 1

0 0 0 0 −c



;B =




0

0

γ

0

0

0

0

0

0

c



;C =

[
1 0 0 0 0

0 0 1 0 0

]
(4.70)

and the state variables x =
[
SfSy, ϕ̇S, ϕS, Ṡy, Sy

]T
.

The desired tracking behavior is accomplished with the following cost function

JZyRo =

∫ tf

t0

[(
y − y

ref

)
TQ

(
y − y

ref

)
+ uTRu

]
dt , (4.71)

that aims to find the appropriate time history for the control input vector u = [u1, u2]
T

to make the output signal y = [SfSy, Sy]
T track the reference output vector, which is
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y
ref

= [V fV y, 0]
T, as close as possible. The second component of the reference vector

is to implement the washout effect that “pulls” the simulator to the initial position.

The optimal control input signal is then estimated as

u = −R−1
[
BTUx+BTS̄

]
, (4.72)

where the positive semi-definite matrix U is the solution of the differential Riccati

equation

U̇ = −UA−ATU−CTQC+UBR−1BTU , (4.73)

while S̄ in Eq. 4.72 is the solution of the co-state equation, solved in backward time

given by
˙̄S = −[AT −UBR−1BT]S̄+CTQy

ref
. (4.74)

The numerical values of the weight matrices Q = diag{q1, q2}, R = diag{r1, r2}, as

well as of the first break frequencies c and γ of the low-pass filter (PT1) from Fig. 4.11

are tuned according to the simulation task. While q2 regulates how the platform is

“washed out” back to its home configuration, q1 has the effect on how the simulated

specific forces track the reference ones ; r2 is used to passively restrict the angular

velocity under the threshold value; and the two break-frequencies c and γ smooth the

simulated specific force and angular velocity.

4.6 MCA using model predictive control theory

Model predictive control (MPC) is an advanced control technique. It can deal with

the control problems that have both large multivariable and complicated constraints.

The general design objective of MPC is to optimize the future behavior of the plant

output over a future fixed interval (prediction horizon and control horizon) while always

respecting the previously defined constraints. Therefore, MPCs have been applied

to create MCAs which can consider simulator limitations as well as human motion

perception thresholds, improving the motion cueing quality. Dagdelen et al. (2004) first

introduced the algorithm applied to the ULTIMATE simulator at the Renault Technical

Center for Simulation. Later, Augusto and Loureiro (2009) described the details of the

implicit MPC, that was also designed by Baseggio et al. (2011). The implicit MPC is

based on an online optimization technique with Quadratic Programming (QP) (Wang

(2009)). Recently, another approach (Fang and Kemeny (2012)) has been introduced

that is based on an offline optimization technique used to compute an explicit MPC

controller that can be applied to the online implementation.
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4.6.1 Implicit MPC motion cueing algorithms

Augusto and Loureiro (2009) and Baseggio et al. (2011) designed an implicit MPC

algorithm that includes a linear MPC controller to solve the MCA problems, such as

removing false cues, operating within the limited workspace, and reproducing beneficial

motion cues. Augusto and Loureiro (2009) regarded four operation modes pitch/surge,

roll/sway, heave and yaw. In this thesis, only the roll/sway mode is regarded as illus-

trated in Fig. 4.12. It is clear that the MPC controller is composed of a plant, a cost

function, and an optimization method.

The plant includes tilt coordination and the integration of the vestibular system (in-

troduced by Reid and Nahon (1985)) to generate the sensed quantities and sim-

ulated motion. The control vector (input of the Plant), consists of three inputs

u = [u1, u2, u3]
T = [ϕ̇a, ϕ̇r, aSy]

T denoting the tilt roll angular rate, the actual vehicle

roll angular rate, and the simulated acceleration, respectively. The optimization is

designed so the output vector y = [ω̂Sx, ϕS,
S f̂Sy, Sy, vy]

T tracks the reference signals

y
ref

= [ω̂V x, 0,
V f̂V y, 0, 0]

T as close as possible. The transformation matrix H = [g, 1]

(Fig. 4.12) is for computing the simulated specific force

SfSy = H · [ϕS , aSy]
T = [g, 1] [ϕS , aSy]

T = aSy + gϕS . (4.75)

The MPC controller uses quadratic programming (QP) to find a suitable control signal
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u that minimizes the cost function

JMPC(∆u) =
[
y − y

ref

]T
Q

[
y − y

ref

]
+ uTSu+∆uTR∆u (4.76)

in order to force the output signals to track the reference signals given (Wang (2009)),

where y
ref

, ∆u are the reference output values, and input increment, respectively; while

Q = diag{q1, . . . , qn}, R = diag{r1, . . . , rn} and S = diag{s1, . . . , sn} are weighting

matrices.

The constraint conditions for output signals and incremental inputs are

|Sy| ≤ Sy,max ; |vy| ≤ vy,max ; |ϕS| ≤ ϕmax ; |ωS| ≤ δS ; ∆u ≤ ∆umax . (4.77)

The response of the algorithm is controlled by the weighting parameters. However,

selecting larger values in the weighting matrix for specific force fidelity could lead to

a jerky motion. To avoid these problems, this dissertation introduces an alternative

algorithm, termed MPC*, for roll/sway model and inserting, as in ZyRo algorithm,

two first-order low-pass filters in both the translational and rotational input channel

(see Fig. 4.13) to smooth the input signals. That means that the deterministic control

input vector u = {u1, u2} is filtered through a first-order lag block with time constants

{c1, γ1} to generate the simulated angular velocity and specific force {ωSx,
SfSy}, re-

spectively. Furthermore, a reduced model of the vestibular system (Reid and Nahon
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(1985)) is without time parameters B1 = 1.5(1/s) for the otolith model and τa = 30(s)

for the semicircular model according to Eq. 4.24 and 4.25 was used to reduce compu-

tational effort. As a result, the state-space model of the plant (Fig. 4.13) is

{
ẋ = Ax+Bu

y = Cx
. (4.78)

Here, the matrices of the model are

A =




−b0 GO(A0 − B0) 0 0 0 0 0 0

0 −1/γ 0 0 0 0 0 0

0 0 −1/c 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 g 0 0 0 0

0 0 0 −GSF 0 0 E F

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




;B =




0 0

1/γ 0

0 1/c

0 0

0 0

0 0

0 0

0 0




; (4.79)

C =




1 GO 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0



, (4.80)

where E = −(1/τ1 + 1/τ2) and F = −1/ (τ1τ2). In addition, the state and output

variables are defined as:

State variables x = [x1 · · · x8]
T:

x1 is a state variable of otolith model; x2 = SfPsy is the simulated specific force ; x3 is

the angular rate ϕ̇, x4 = ϕS is the tilt angle; x5 = vy is the velocity of the cabin; x6 =

Sy is the position of the simulator; x7 = ω̂Sx is the sensed angular velocity; and x8 is

a state variable of semicircular model.

Output variables y = [y1 , y2 , y3 , y4]
T :

y1 = S f̂Psy is the sensed specific force at the driver’s head; y2 = Sy is the position of

the simulator; y3 = ω̂Sx is the sensed angular tilt rate; and y4 = ϕS is the simulated

tilt angle.

The objective of the MPC* algorithm is to make the output signal y track the reference

signal y
ref

=
[
V f̂V y , 0 , 0 , 0

]
T as close as possible. In addition, the cost function and

constraints conditions are similar to those in Eq. 4.76 and 4.77, respectively.
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4.6.2 Explicit MPC motion cueing algorithm – exFKMPC

Based on the multi-parameter programming toolbox (MPT), developed by the Auto-

matic Control Laboratory of ETH, Zürich, and the solution for the tracking problem

introduced by Pekar and Havlena (2004), Fang and Kemeny (2012) proposed an MCA

using explicit MPC for real-time driving simulators hereon referred to as exFKMPC.

Note that the plant or dynamic system block (see in Fig. 4.14) does not include

the model of the vestibular system. Only the linear model of tilt coordination is

considered. The plant has the input variables u = [aSy, ϕ̈S]
T, the output variables

y =
[
Sy, ϕS,

SfSy
]T
, and the state variables x =

[
Sy, Ṡy, ϕS, ϕ̇S

]T
. The state space

model of the plant in continuous time representation is
{
ẋ = Ax+Bu

y = Cx+Du
, (4.81)

where

A =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0



;B =




0 0

1 0

0 0

0 1



;C =



1 0 0 0

0 0 1 0

0 0 g 0


 ;D =



0 0

0 0

1 0


 . (4.82)

To solve the tracking problem for the output signals, Fang and Kemeny (2012) used an

approach based on work of Pekar and Havlena (2004) that transforms the optimization

tracking problem into a standard regulation optimization in which a reference signal

is inserted in state variables. Furthermore, the MPT controller is expressed in the

discrete form given by the discrete state-space model
{
xk+1 = Ad xk +Bd uk

y
k+1

= Cd xk +Dd uk
, (4.83)
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with

xk =




Sy,k

vSy,k

ϕS,k

ωSx,k

yref,k




; Ad =




1 Ts 0 0 0

0 1 0 0 0

0 0 1 Ts 0

0 0 0 1 0

0 0 0 0 1




Bd =




0.5Ts
2 0

Ts 0

0 0.5Ts
2

0 Ts

0 0



; (4.84)

Cd =



1 0 0 0 0

0 0 1 0 0

0 0 g 0 −1


 ; Dd =



0 0

0 0

1 0


 ; uk =

[
aSy,k

ω̇Sx,k

]
. (4.85)

where physical quantities Sy,k, vSy,k, aSy,k, ϕS,k, ωSx,k, and ω̇Sx,k are the discrete state

variables of simulator position Sy, velocity vSy, tilted angle ϕS, angular velocity ωSx ≈

ϕ̇S, respectively; aSy,k and ω̇Sx,k are the discrete input variables of acceleration aSy and

angular acceleration ω̇Sx, respectively; the reference signal yref,k is selected to track the

target specific force V fV y; and Ts is the sample time of the discrete dynamic model.

In order to compute feasible motions subject to the simulator’s given physical limits,

Fang and Kemeny (2012) proposed a braking control law which allows the simulator

to remain in its translational and rotational workspace. The braking law is

Sy,min <
∣∣∣Sy,k + cv t1 Ṡy,k + 0.5 cu S̈y,k t

2
1

∣∣∣ <Sy,max

ϕmin <
∣∣ϕS,k + cv t2 ϕ̇S,k + 0.5 cu ϕ̈S,k t

2
2

∣∣< ϕmax

. (4.86)

Furthermore, the constraint conditions for the plant are

|x1,k| ≤Sy,max; |x2,k| ≤vSy,max; |u1,k| ≤ aSy,max

|x3,k| ≤ ϕmax; |x4,k| ≤ ωmax; |u2,k| ≤ ω̇max
, (4.87)

The limit values Sy,max, vy,max, amax, ϕmax, ωmax, and ω̇max, are the absolute max-

imum values of position, velocity, lateral acceleration, tilted angle, angular velocity

and angular acceleration of the simulator, respectively; cv, cu, t1 and t2 describe the

braking control law and determine the behaviour of the simulator when approaching

its workspace limits.

The MPT controller optimizes the input vector to minimize the cost function

JN(xk) = min
u0,u1,...,uN−1

xN
TQNxN +

N−1∑

i=0

uTiRui +
N−1∑

i=0

xTiQxx i +
N−1∑

i=0

y
i

TQyyi , (4.88)

while respecting the brake law and the constraint conditions in Eq. 4.86 and 4.87, res-

pectively. Here, N is the prediction horizon, xN is the vector of final values for the state

variables, ui is the ith predicted input vector, xi is the corresponding predicted state
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vector, y
i
is the corresponding predicted output vector, and QN = diag{qN1, . . . , qNn},

R = diag{r1, . . . , rn},Qx = diag{qx1, . . . , qxn} andQy = diag{qy1, . . . , qyn} are positive

semi-definite the weighting matrices. Additionally, Fang and Kemeny (2012) stated the

necessary and sufficient condition for selecting possible parameters in order to avoid

overshoots (see Eq. 4.86) as (c2v / 2 cu) > 1.

4.7 Adaptation of MCAs to the LMR driving simulator

......
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In order to adapt the MCAs to the LMR driving simulator, the motion data were

created using the procedure shown in Fig. 4.15. For the roll/sway problem, the target

values V aV y and V ωV x enter a selected MCA to generate the simulated signals aSy

and ωSx. These are then converted into the position and orientation of the frame KE

through a “Circular Trajectory Converter” block. The trajectory of the frame KE is

verified in the software KRSS for consistency with the robot limits. If violations exist

the parameters of the MCAs must be modified for a new run. The verified data are

then stored for later use in the LMR driving simulator.

4.8 Comparison of the features of the reviewed MCAs

Nahon and Reid (1990) implemented an unbiased comparison of three MCAs: clas-

sical, coordinate adaptive, and optimal washout filters. The authors developed three

practical criteria (Cr1, Cr2, Cr3) to evaluate the efficacy of the algorithms under a de-

signer’s perspective (see Tab. 4.1). In the current work, the features of the investigated

MCAs were assessed according to the above criteria. Moreover, an additional criterion

was introduced to emphasize the advantage of “exploiting workspace” and generating

simulated motion within the robots physical limits.

Based on the processes of constructing MCAs and tuning parameters, the comparison

of the features of the MCAs is summarized in Tab. 4.2. It can be seen that all MCAs
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Criterion

Cr1: Capability to achieve good pilot rating and the potential to achieve excellent
ones
1a : Exploiting the nonlinearities of human motion sensation.
1b : Limiting severely motion cueing only when the motion base nears its limits.
1c : The ability to be adjustable for different pilots.
1d : The ability to be adjustable for different flight segments.

Cr2: Adjustable features (how easily the MCA can be adjusted).
2a : Number of parameters.
2b : The change of parameters should be easy to determine a priori.
2c : Parameters should be applied to physically meaningful quantities.
2d : Adjustment should be possible without requirements on expertise of the

adjuster’s part about how the algorithm works.

Cr3: Time of computation (execution speed).

Table 4.1: Comparison criteria proposed by Nahon and Reid (1990) for flight simulation

can satisfy the criteria 1c and 1d, that means that any MCA could be applied for

different drivers and simulation tasks. However, not all MCAs can take the non-

linear characteristics of the motion perception into account (1a). Furthermore, for the

criterion 1b, most MCAs cannot manipulate the simulated motion in the place near

the hard limits of the simulator, except two novel model predictive control methods

(MPC* and exMPCFK). While MPC* algorithm uses the constraint conditions to force

stopping the simulator before its limit, the exMPCFK algorithm smooths the motion

of the simulator near its hard limits.

Regarding the criterion Cr2, transparency of parameters indicates how easily the de-

signer can predict changes in the simulator motion (states or variables) that would

result from a change in one of the free parameters Nahon and Reid (1990). The ZyRo

algorithm has the smallest numbers of the parameters. Additionally, its parameters

have transparency (physical meaning) with respect to the simulated quantities, so that

adjustments of parameters feature a more direct causality with respect to the corres-

ponding simulator state/variables. As a result, the ZyRo algorithm is tuned more easily

than the other algorithms. The OpS algorithm has the same number of parameters

as the ZyRo; however, the tuning process for OpS algorithm is more complicated than

for the ZyRo algorithm because of the more indirect parameters on the change of the

simulated signals. The adaptive algorithms are the most difficult to tune because they

can be unstable if inappropriate parameters are selected.

Almost all MCAs’ responses have relatively poor deduction from previous results, es-

pecially, the linear optimal washout filter family. Regarding the 2b and 2c criteria,

the five optimal washout filters seem to have transparent parameters that control the

specific quantities (i.e. such as simulator’s position and acceleration). However, the
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Criteria for comparing MCAs’ features EW ImplementationAlgorithms
Cr1 Cr2 Cr3

Online Offline1a 1b 1c 1d 2a 2b 2c 2d t(s)

1 CLRN – – x x 15 x – – 4 x x
2 CLG – – x x 15 x – – 4 x x
3 ADSK – – x x 21 – – – 1297 x x
4 ADRN – – x x 17 – – – 618 x x
5 OpTYM – – x x 8 – x – tOp x x
6 OpT – – x x 8 – x – tOp x x
7 OpTNon – – x x 9 – x – 129 x x
8 OpS – – x x 6 – x – tOp x x
9 OpRN – – x x 7 – x – tOp x x
10 MPC* – x x x 13 x x – 1933 + x x
11 exMPCFK – x x x 15 x x – tex x x
12 ZyRo – – x x 6 x x – 79 + x

Note:
– EW: Exploiting driving simulator workspace
– ‘–’: No ; ‘x’: Yes
– ‘+’: Better exploiting workspace in operation
– tOp is time for calculating optimal washout filters (15s) and then implementing (3s)
– tex is time for calculating explicit MPC controller (0.5h - 12h) and then implementing (5s)
– Online: The input signals are based on the maneuver of the drivers interacting with a

driving simulator
– Offline: The input signals are fixed for specific simulation tasks

Table 4.2: Asssessment of the MCAs features

effect of the parameters on these quantities is not easy to deduct from their previous

responses. On the other hand, although the parameters of the two classical algorithms

(CLRN and CLG) have no physical interpretation, their responses are predictable. In

contrast to these, three novel algorithms (ZyRo, MPC*, and exMPCFK) can satisfy

both criteria 2b and 2c. However, all MCAs require a designer experienced in selecting

suitable parameters for the specific simulation task, all MCAs cannot, therefore, fulfill

criterion 2d.

In terms of “exploiting workspace”, Fig. 4.16 shows the rotational angle α used to

simulate the lateral acceleration and the tilt angles ϕS. It can be seen that the two

algorithms MPC*, ZyRo use smaller rotational angles of both α and ϕS than the

remaining algorithms. The reason is that these two algorithms utilize optimization

methods in a specific time period to find the suitable combination of both lateral

accelerations and tilt angles. On the other hand, the remaining algorithms consider the

high- and low-frequency parts of the target inputs individually to give the corresponding

response, and hence do not “prepare” the workspace for the motion in the future time

steps.

The time-consumption (Cr3 in Tab. 4.2) is from the simulation case with only lateral

acceleration input. The simulation was implemented in Matlab R© Simulink in a PC
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desktop with Quadcore 2.66GHz. It is easy to see that the classical algorithms and the

optimal washout filters have better features than the other algorithms. Note that the

optimal washout filters require two steps for generating the simulated signals. Firstly,

the optimal washout filters are designed offline with optimal theory, then they are used

in the implementing scheme to filter the input signals. Similarly, the exMPCFK al-

gorithm has also two implementing steps. The first step for computing explicit MPC

controller takes an exceptionally long time, from 0.5h to 12h. It is the main disadvant-

age point of the exMPCFK algorithm, that requires more time for testing a new set of

parameters.

In summary, the ZyRo and the MPC family algorithms are the most transparent.

However, regarding time-consumption, these methods are more suitable for offline im-

plementation than on an online driving simulator. On the other hand, the classical

algorithm family can operate both in offline and online mode. The optimal washout

filter family has a complex design with integrated perception systems, thus the tuning

process for these MCAs consumes more time than for the other ones. Out of the five

optimal washout filter family, the OpTNon algorithm is the only one that can compute

a set of new washout filters in real-time. This characteristic is similar to the adaptive

algorithm ADRN that computes only the parameters of the high-pass washout filters.
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5 Assessing Motion Perception Fidelity and

Parameter-Tuning for MCAs

The term fidelity has been defined as the degree to which a device accurately reproduces

a specific effect (Gerathewohl (1969)). The simulator fidelity depends on the nature

of the provided cues including equipment cues and environment cues. Motion cues

correspond to environment cues together with the visual out-of-the-window cues (Key

(1980)). The motion perception fidelity enhances not only the perceptive fidelity but

also the drivers’ behavior during a simulation session.

MCAs produce the simulated motion together with other environment cues in order

to provide a high fidelity simulation. However, such effects are beyond the scope of

this thesis and will not be regarded here. The tuning parameters of MCAs aim to

archive the desired simulated motion for simulation tasks. This section first introduces

common methods assessing motion perception fidelity and reviews tuning methods in

the literature. Then, the objective criteria for tuning parameters of MCAs are proposed

and used to tune parameters for the MCAs adapted to the LMR driving simulator,

and a comparison of responses of the MCAs in regard to several objective criteria is

introduced. Finally, an auto-tuning method using proposed criteria is developed.

5.1 Motion perception fidelity assessment

Motion perception fidelity has been commonly measured by either subjective or objec-

tive assessments. On the one hand, by using numerical criteria, objective assessments

are applied to an offline evaluation. The numerical criteria are obtained from analysis

of the recorded simulation data including responses of vehicles, driver’s behavior, sub-

jective scores, and statements given by the experienced drivers. For example, Sinacori

criteria (Sinacori (1977)) were established from data of four test points of helicopter

simulation tasks (Schroeder (1999)). The criteria divide the levels of motion percep-

tion fidelity according to the range of scale factor and phase-lag of high-pass filters.

On the other hand, by using technical questionnaires, subjective assessments are ap-

plied to get a straightforward evaluation of participants attending to simulation tasks.

The technical questionnaires are set up for an investigated purpose, such as realism

of motion perception, a symptom of motion sickness, etc. For example, Cooper and

Harper Jr (1969) defined the level of motion perception fidelity (Handling Quality Rat-

ings (HQR), see Tab. 5.1) which has been used for the subjective assessments of flight
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Rating Fidelity Description

3 HIGH Motion sensations are close to those of visual flight

2 MEDIUM
Motion sensation differences are noticeable but not objection-
able

1 LOW
Motion sensation differences are noticeable and objectionable
including loss of performance and disorientation

Table 5.1: Handling Quality Ratings for flight simulation (Cooper and Harper Jr
(1969))

simulation tasks. In the HQR, the high motion perception fidelity means the motion

sensations are close to the perception of the real flight as presented by the visuals,

while the low motion perception fidelity means that the differences are very noticeable

and objectionable because of performance loss or disorientation.

In summary, objective assessments are faster than subjective ones and can be applied

for different specific tasks. However, they cannot be used widely for any simulation

tasks because the objective criteria are solely defined for a particular purpose. In con-

trast, the subjective assessment is straightforward and consistent to assess the fidelity

of a driving simulator. Furthermore, questionnaires can be used to investigate different

aspects and situations including the perception feelings during braking, accelerating,

simulator sickness, etc.

5.2 Parameter-Tuning for MCAs

The goal of tuning parameters for MCAs is to reproduce the feeling of driving a real

vehicle and to remove simulator sickness. That means that the appropriate simulated

quantities (benefit cues) are generated and the undesired motion cues (false cues) are

reduced. However, the tuning of a MCA is especially difficult due to various factors,

such as nontransparent parameters of a MCA, limited workspace, and nonlinear char-

acteristics of human motion perception. Valente Pais et al. (2009) mentioned that for

the classical algorithm, higher gain (scale factor), and hence more required motion,

often causes lagging of the tilt angle due to limited tilt rate. Lower gain causes smaller

motion cues so that it is hard to distinguish the motions with classical filters from the

motion with the rumble filters. Chapron and Colinot (2007) formulated the 4 diffi-

culties of tuning processes for MCAs: 1) tilt derivatives (angular velocity) limit cause

the deformation of the specific force profile; 2) the values of tilt-derivative limit is hard

to select, as the larger they are, the lower is the specific force deformation, but the worse

is the somatogravic illusion; 3) the limited workspace and the problem for its exploita-
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tion; 4) the selection of appropriate translational and rotation motion combination to

well-reproduce the specific force with minimal deformation. Additionally, White and

Rodchenko (1999) mentioned that it is opaque how well the simulated motion cues

need to match the real cues. Normally, a MCA is first roughly tuned with objective

criteria (ObC) to generate the desirably simulated quantities. Then, the quantities are

fine-tuned with subjective assessments with driver-in-the-loop (DIL) settings involving

interactive exercises in which the driver rides the simulator and comments on the ex-

perienced motions, and a designer modifies the motion parameters accordingly (Nahon

et al. (1992), Valente Pais et al. (2009)).

However, the DIL method is time-consuming, and the current ObC cannot be applied

for general simulation tasks. Hence, several new tuning methods, termed here “subject-

objective criteria” (SOC) were introduced in the literature which include numerical

conditions established from the result of subjective experiments, and which are aimed

at reducing the time consumed in the tuning process. For example, a maneuver-specific

tuning was introduced by Brünger-Koch et al. (2006) and an objective tuning with the

criteria for the response of washout filters was introduced by Sinacori (1977), Schroeder

(1999), Zeyada and Hess (2000) and Zaichik et al. (2010).

In this thesis, four main categories of tuning methods are considered. The first method

(section 5.2.1) involves the DIL method using statements of participants to adjust

the parameters of a MCA, the results of which can be later used within a supervis-

ory software introduced by Nahon et al. (1992) to automatically adapt according to

a simulation task. The second method (section 5.2.2) analyzes numerically simulated

quantities that can be perceived by the vestibular system; the parameters are tuned

here to remove as much as possible the potential false cues that are able to degrade

seriously the motion perception fidelity (Grant and Reid (1997a)). The third method

(section 5.2.3) concerns the effect of several parameters of a MCA on its response; for

example, from the subjective experiment with experienced pilots (Sinacori (1977) and

Schroeder (1999)), the relationship between frequency response of high-pass washout

filters and motion perception fidelity as well as the range of parameters of high-pass fil-

ters were even determined for corresponding levels of motion perception fidelity (White

and Rodchenko (1999), Zaichik et al. (2009), (2010)). The fourth method (section

5.2.4) is based on operating-pilot and motion-perception models to assess the motion

perception fidelity, so that the simulated quantities can be compared with reference

quantities; hereby, the better the correlation between the two response is, the better

the parameters are tuned as shown by Reid and Nahon (1985) and Pouliot et al. (1998)

to verify the simulated quantities in flight simulators. Note that the last three methods

can be implemented in silico to find suitable parameters.
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5.2.1 Subjective method using driver in-the-loop (DIL) setups

The subjective tuning method is based on the drivers’ ability to rate the operating

vehicles performance going through specific simulation tasks. In the literature, the

tuned parameters were obtained from the assessments of participants after they exper-

ienced the simulation tasks repeatedly (Reid and Nahon (1986), Telban et al. (2005),

Fischer (2009)). The rating was implemented by using questionnaires or statements

about realistic levels of motion perception or comfortable levels in operating a driving

simulator. Note that subjective evaluation is considered as a straightforward and con-

sistent method for assessing the fidelity of a driving simulator. Therefore, the DIL is

the most reliable tuning method for finding suitable parameters with which a MCA can

generate a high level of motion perception fidelity. However, due to the non-linearity

of the relationship between motion and perception and due to history effects on the

subjective assessment it is by no means guaranteed that this tuning process will con-

verge, and thus there is an imminent risk of deadlock trapping in the cycle of motion

parameter variation and subjective assessment.

Nonetheless, this is an important tuning method and thus it is regarded in this context.

Hereby, the subjective tuning method can be classified into two groups: individual

driver assessment and average assessment in maneuvers for drive tracks.

a) Individual driver assessment

Grant and Reid (1997a) developed an expert system to adjust parameters of classical

washout filters to satisfy the pilot. The tuning was implemented for specific maneuvers

and focused on the “limit problem” of the simulator equipment and “pilot selected

problems”. The paradigm of the expert system (Fig. 5.1) assumes a crucial role of the

pilot in the identification of disturbing problems after flying with the flight simulator,
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and designers must be experienced in adjusting parameters for removing the problems.

Hereby, the adjustment could either increase the motion or eliminate motion cues errors

from the simulated quantities, and the tuning process ends when a pilot states his

satisfaction after test-maneuvers. Altogether, the method requires experienced pilots

attending the tuning process and a large amount of time for trial and error.

b) Average assessment of the maneuvers for drive-track

The method is based on selecting maneuvers with isolated individual DoFs to find the

optimized parameters for a MCA. Hereby, several subjects perform various settings

(different sets of parameters) for different drive-tracks or maneuvers, and the final

parameters are determined from the overall individual average values which describe

the test subjects’ evaluation for each drive-track taken into account in the tuning

process (Bruenger-Koch (2005), Fischer (2009)). The method is much simpler than

that for individual drivers, and it saves considerable time within the tuning process.

5.2.2 Objective method for analysis of washout filters responses

Objective methods were introduced with the assumption that simulated specific forces

and angular velocities dominate the motion perception. In the literature, four object-

ive methods have been used to tune parameters of washout filters, which are briefly

summarized in the sequel.

a) Degrading effect of motion cue errors

Based on pilot statements involved to the effect of distortion of simulated quantities

on the motion fidelity, Grant and Reid (1997a) introduced a set of tuning rules and

Motion cue errors Motion cues Source of errors Motion fidelity Solution

False cues

Opposite direction Sc1, Sc2, Sc5 Large decrease ↓ k or ↑ δS
Unexprected Sc3, Sc6 Large decrease ↓ k
High-frequency distortion Sc1, Sc4, Sc5, Sc6 Large decrease ↓ k or ↑ δS

Scaled/Missing cues

High-frequency transient Sc7 Decrease, jerkiness ↓ ωn
Low-frequency transient Sc8 Decrease ↓ k or ↑ δS
Initial, transient, sustained Sc9 Decrease ↑ k

Phase errors
Phase lead Sc10 Insignificant
Phase lag Sc11 Significant ↓ k or ↑ δS

Sc1: Workspace limited; Sc2: Washout effect; Sc3: G-Tilt; Sc4: Tilt-rate limit; Sc5: Tilt-coordination
remnant; Sc6: Location of rotational point; Sc7: Reproducing only very high frequency part; Sc8:
Reproducing only very low frequency part; Sc9: Two small scale factor; Sc10: High-pass filter effect;
Sc11: Low-pass filter effect or missing low-frequency transient.

Table 5.2: Motion cues errors and tuning rule introduced by Grant and Reid (1997a)
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requirements for tuning parameters of classical washout filters. For the tuning rules,

the authors consider eight types of motion cues grouped in three motion cue errors and

eleven sources of false cues (Sci, i ∈ {1 · · · 11}) listed in Tab. 5.2. It can be seen that

one type of motion cue error can be due to various sources. For example, “‘opposite

direction” cues are caused by one of three sources of errors which are limited workspace,

washout effects, and remnant of the tilt angle. Moreover, the limited workspace and

the redundant tilt angle also cause relative high-frequency distortion.

The effect of parameters on the motion cue errors are marked by an up/down arrow

indicating how a change of their value contributes to a reduction of cue errors, i.e.

an up arrow (“↑”) indicating that a reduction of motion cue error is achieved by an

increase in the value and a down arrow (“↓”) by a reduction of the values. For example,

the opposite direction cues can be eliminated by reducing the gain k or increasing the

rotational threshold value δS (see Tab. 5.2).

In Fig. 5.2, comparing with the target specific force fV y, the simulated specific force

fSy has various false cues including opposite, unexpected and distorted cues. Moreover,

the simulated specific force has a large phase-lag (δt = t1 − t0) and small benefit cues.

As a result, motion fidelity is significantly degraded. The illustration of other errors

and their sources of errors were described in detail in the report of Pham (2015).
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Figure 5.2: Demonstration of various types of motion cues errors

b) Parameter auto-tuning using fuzzy theory

Song et al. (2003) mentioned that fuzzy logic is effectively applicable to a system in

which the inputs-outputs are not sharply defined. Thus, they designed a fuzzy control

which takes displacement limit, angle limit and the low-frequency specific force as
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inputs and then defines proper filter parameters as outputs. The tuning method was

applied in a classical algorithm in which the adjustment of the natural frequency of

washout filters ωn was based on the state of the position and angle, while the tilt-

rate limit δS, the scale factor k are adjusted according to the low-frequency specific

force. Later, Chen and Fu (2011) used the feedback position of the simulator via a

camera to design a fuzzy controller, which adjusts the break frequency of the high-pass

filter approximately. In the design of a fuzzy controller, three conditions of simulator

displacement and brake frequency of filters were defined: small, medium, large.

In another approach, Hwang et al. (2009) designed a fuzzy controller for optimal

washout filters to produce a compensating signal uF to eliminate the errors ê (Fig. 5.4).

The uF considered the sensation errors ê and the time derivative of the input uV . The

design of the fuzzy controller was derived from the discrimination of large, medium or
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small human motion perceptions, although the precise level was not defined precisely.

The fuzzy logic classified the sensation errors and the time derivative of the inputs into

5 conditions: negative large, negative small, zero, positive small, and positive large,

from combinations of which suitable conditions for uF were determined.

c) Tuning method by flattening Bode plot

The method focuses on reproducing accurately the target specific force by combining

the responses of a high-pass filter (HP) and a low-pass filter (LP) (Romano (2003),

Fischer (2009), and Jamson (2010)). For example, with scale factor k = 1 and KPs ≡

KS, according to Fig. 3.3 on page 28 the target lateral specific force is PvfPvy, and the

simulated lateral specific force is PsfPsy = PsaPsy + g sinϕS. Due to small tilt angles

ϕS, the simulated acceleration can be expressed as PsaPsy =
SaSy = aSy cosϕS ≈ aSy.

From the scheme of the classical algorithm (Fig. 4.1), the output of the high-pass filter

HP is the simulator acceleration aSy = a′SyHP ≈ V fV yHP, and the output of the low-

pass filter at tilt-coordination level is g sinϕS = V fV yLP. Thus, the combined transfer

function is

TF =
SfSy
V fV y

=
aSy + g sinϕS

V fV y
≈

V fV yHP + V fV yLP
V fV y

= HP + LP . (5.1)

If TF = 1, the simulated specific force SfSy tracks perfectly the target specific force
V fV y. Therefore, with a high-pass filter HP, the transfer function of the ideal low-pass

filter is LP∗ = 1 − HP which was used by Wentink et al. (2008), Fischer (2009), and

Giordano et al. (2010). On the other hand, Reid and Nahon (1985) defined HP+LP 6=

1, thus, SfSy has a deviation from V fV y.

The Bode plot of Fig. 5.5 illustrates the magnitude (as gain in dB) and phase shift (in

deg or rad) against the logarithmic angular frequency of the transfer function of linear

system. Hereby, the Bode plot of the combined transfer function TF can be used to

predict a difference between the simulated specific force and the target specific force.

Concretely, if SfSy perfectly tracks V fV y, the TF has a magnitude of 0 dB and a phase

shift of 0◦ in time history response.

Fig. 5.5 shows two possible responses of washout filters with a LP& 6= 1 − HP (solid

red line) and the LP∗ (dashed black line). If the HP+LP& is used, there is a jump in

the phase plot and a large peak in a magnitude plot. Moreover, in the phase plot, a

large reduction of magnitude at 2 rad/s and a large phase shift exist. As a result, the
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Figure 5.5: Bode plot of washout transfer functions

simulated specific force will be distorted at this frequency. In contrast, if HP + LP∗

is used, there is no phase shift and the magnitude value remains at 0 dB. Thus, the

simulated specific force tracks perfectly the reference one.

In summary, flattening Bode plots aims to reduce a gap (or a sharp peak) that appears

in the response of washout filters at a range of frequency. By doing that, the simulated

specific force can track better the target specific force.

d) Tuning method using “performance indicator” and “good criterion”

Another way to evaluate motion perception error, more directly than the flattening

Bode plots of washout filters is through a “performance indicator” and a “good cri-

terion” which score errors of specific force and angular velocity as well as their first

derivatives. In this case, the tuning method consists in minimizing the scores of the

simulated signals compared with the target ones.

The “performance indicator” (Pouliot et al. (1998)) consists of two indicators λ1 and λ2,

both split into a translational part (index “f”) for the specific force, and a rotational

part (index “ω”) for the angular velocity, and normalized by the maximal motion

acceleration amax and the maximal angular velocity ωmax of the investigated simulator,

respectively. Hereby, λ1 describes the normalized average of the square error between

the target and simulator motion signals, and λ2 describes the normalized average square

error of the corresponding rates of change, respectively:

λ1 =100 ·

(
λ1f
amax

+
λ1ω
ωmax

)
;λ2=100 ·

(
λ2f
amax

+
λ2ω
ωmax

)
. (5.2)
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Similarly, the “good criterion” (Fischer (2009)), splits the translational and rotational

parts into a “scale” component (index “sc”) describing the difference of magnitudes

between the target and simulated motions, and a “shape” component (index “sh”)

describing the difference of shapes when both curves are scaled similarly (Eq. 5.3).

The scale and shape error components for the specific force are described as follows.

λqp =(λqp,sc + λqp,sh) , q ∈ {1, 2} ; p ∈ {f, ω} . (5.3)

Let f jV m, f
j
Sm,m ∈ {x, y, z} be the target (“vehicle”) and simulated specific forces,

respectively, at time tj, and let N+1 sampling points t0, . . . , tN be measured. With the

global internal scale factor

kSm =

N∑

j=0

|f jSm|

N∑

j=0

|f jvm|

,m ∈ {x, y, z} , (5.4)

the differences at the sampling points are computed as

∆f jm,sc = f jV m(1− kSm) ;∆f jm,sh = kSmf
j
V m − f jSm , m ∈ {x, y, z} , (5.5)

which yield the partial “good” components

λ∗1f,sc =
1

N

N∑

j=0

√ ∑

m∈{x,y,z}

(∆f jm,sc)2 ;λ∗1f,sh =
1

N

N∑

j=0

√ ∑

m∈{x,y,z}

(∆f jm,sh)
2 . (5.6)

From this, the “good criteria” and their time derivatives are obtained as

λ∗1 =(1/fnorm) · λ
∗
1f + (1/ωnorm) · λ

∗
1ω , (5.7)

λ∗2 =(1/ḟnorm) · λ
∗
2f +(1/ω̇norm) · λ

∗
2ω , (5.8)

with

fnorm =max (|fV m|) (m ∈ {x, y, z}) , (5.9)

ḟnorm =max(|ḟV m|) (m ∈ {x, y, z}) , (5.10)

ωnorm =max(|ωvx + ωsx|, |ωvy + ωsy|), |ωsz|) , (5.11)

ω̇norm =max(|ω̇vx + ω̇sx|, |ω̇vy + ω̇sy), |ω̇sz|) . (5.12)
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In this thesis, based on Grant et al. (2003), normalized good criteria were defined as

λ&1 =(1/δO) · λ
∗
1f +(1/δS) · λ

∗
1ω ; λ&2 =(1/δO) · λ

∗
2f +(1/δS) · λ

∗
2ω , (5.13)

with δO and δS are the threshold values of the otolith and semicircular organs, respect-

ively. The smaller numerical indices, the better the quality of the simulated signals.

5.2.3 Subject-objective tuning method

The subject-objective tuning methods are based on a set of numerical criteria that are

derived from motion perception fidelity assessments of test subjects in the specific

simulation tasks. The numerical criteria are constructed by correlating subjective

assessments and parameters of classical washout filters. In the literature, two types of

subject-objective numerical criteria have been proposed which are further regarded in

this thesis:

a) Tuning washout filters using the Sinacori motion fidelity criteria

The method was first introduced by Sinacori (1977) and then refined with boundaries

of levels of motion perception fidelity by Schroeder (1999). Based on the empirical data

of subjective experiments related to motion perception fidelity, the relation between the

response of the high-pass filter and a level of motion perception fidelity was established.

Concretely, there are three Motion Fidelity Scales, (MFS), including high, medium and

low levels which correlated pilot opinion and platform motion magnitude attenuation

and phase distortion. The boundaries of the levels of motion perception fidelity were

built from the natural break frequency ωn and the gain factor k (scale factor) of the

high-pass filter. According to the Sinacori/Schroeder motion fidelity criterion, high

fidelity is obtained when the gain at 1 rad/s is in the range of [0.6 , 1], and the phase

shift smaller than 30◦. The tuning method is simple and used solely to tune parameters

for the classical algorithms or optimal washout filters.

b) Tuning classical washout filters using the Zaichik criteria

Zaichik et al. (2010) introduced different motion perception fidelity criteria that inde-

pendently include characteristics of washout filters and the simulation tasks (precision

tasks or maneuvers) as well as the role of simulated acceleration, namely beneficial

or negative effect. The beneficial effect denotes the perceived cues supporting the
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operation of a simulated vehicle. On the other hand, the negative effect denotes an

unpleasant feeling of pilots under the motion cues. Unlike the Sinacori criteria, these

criteria feature separated effects for the scale factor and the break frequency of the

high-pass filter. For example, motion perception fidelity criteria for precision control

tasks – such as required for simulation of roll accelerations – are defined through the

break frequency ωnϕ of the corresponding high-pass filter: 1) ωnϕ ≤ 0.7(s−1)  fidel-

ity is high; 2) ωnϕ ≥ 4(s−1)  fidelity is medium; 3) 0.7 < ωnϕ < 4(s−1)  fidelity

corresponds to fixed-base simulation.

A number of common parameters for all MCAs were investigated to find their possible

boundary with respect to the motion perception fidelity of simulation tasks. The most

significant concerned parameter is the scale factor that scales down the amplitude of

the input signals. There are various suggestions for the selection of a scale factor,

for example, due to either “visual-vestibular discrepancy” (Groen et al. (2001)) or the

effect of a jerk (Grant and Haycock (2008) and Soyka et al. (2009)), often a unit scale

factor provides too powerful motions, so it becomes necessary to scale down specific

force inputs. However, Grant et al. (2003) and Berthoz et al. (2013) mentioned that

driving performance is significantly degraded if the motion cues are so much reduced or

absent. Several authors thus proposed the non-linear scale factors (Telban et al. (2005),

Chapron and Colinot (2007)) in which the scale factor decreases with the increase of

the stimuli amplitude of input signals (Feenstra et al. (2009)).

Additionally, determining threshold values of angular velocity and angular acceleration

play an important role in a simulation task. Although Fischer (2009) stated that the

simulation with an unrestricted angular velocity can be better with a restricted one, the

restriction of rotational motion is much preferred in almost all simulation tasks in the

literature. However, the accurate thresholds apparently depend on various aspects of

simulation tasks, such as mental load (Hosman and Van der Vaart (1978)), simulation

with or without visual cues (Valente Pais et al. (2006); Groen et al. (2006)), and

amplitudes of stimulating signals (Chapron and Colinot (2007); Zaichik et al. (1999)).

Moreover, an interaction of drivers with the environment during driving actions has also

an effect on the threshold values. As a result, various threshold values were determined

and applied in different simulation tasks.

Last but not least, a ratio of linear acceleration to target specific force has also effect

on the motion fidelity. Few preliminary results were introduced in publications, such

as Jamson (2010) and Stratulat et al. (2011), however, more validations are required

for using the suggestion in a tuning process. In this thesis, several suggestions of these

parameters mentioned in this part are shown in Tab. 5.5.
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5.2.4 Tuning methods using models of pilot behavior and self-motion per-

ception

a) Model of pilot behaviors

Fig. 5.6 shows pilot-simulated vehicle control loop in which ς
vis

and ς
ves

are estimated

the visual and vestibular quantities generated by the vehicle dynamic model, respect-

ively. The vestibular quantities are processed by the MCAs to give the filtered quant-

ities ς
MC

that enter into the simulator dynamics to generate the simulated vestibular

feedback ς
S
. Then, from the visual tracking error etr and motion perception ς

S
, a pilot

model behavior generates the corresponding operation.

Hosman et al. (2002) tuned the parameters of classical washout filters by minimizing

the cost function

J =
∑(

e2tr +Q · δc
2 +R · δ̇c

2
)
, (5.14)

where etr is visual tracking errors; Q and R are weighting factors of the aircraft char-

acteristics and the tasks; δc is the control output as an inceptor displacement; and δ̇c

is the first derivative control output as an inceptor velocity.

Currently, four pilot’s models existing in the literature: are the quasi-linear model

(McRuer and Krendel (1974)), the structure model (Hess (1997)), the descriptive model

(Hosman and Stassen (1999)) and the optimal model (Kleinman et al. (1970)). How-

ever, the structure and the parameters of pilot models were only developed according

to flight task maneuvers. Thus, the utility the pilot model to tune a MCA for a general

specific drive task is still an open issue of research.
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b) Self-motion perception models

Another approach for tuning MCA parameters is to use mathematical models of the

motion perception, i.e. the visual and vestibular systems. The usage is based on

the hypothesis that minimizing the predicted errors of motion perception in a driving

simulator could improve motion fidelity. This hypothesis was also mentioned in the

development of the optimal washout filters introduced by Sivan et al. (1982), Telban

and Cardullo (2001), and Mayrhofer et al. (2007).

Fig. 5.7 shows the reference input signals of a vehicle ς
ref

entering both the “MCA” and

the “perception” block to generate perceived motions ς̂
ref

and filtered signals ς
MC

. The

filtered signals are fed into the “simulator” block to produce the simulator motion ς
sim

that then enters another “perception” block to generate perceived motions ς̂
sim

. The

predicted errors ê are the difference between ς̂
ref

and ς̂
sim

. The smaller the predicted

errors are, the better parameters were obtained. Note that the perception block in

Fig. 5.7 could be the vestibular model as used in Sivan et al. (1982), Reid and Nahon

(1985), or the visual-vestibular interaction models such as Van der Steen (1998), Telban

et al. (2005), Groen et al. (2007).
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5.2.5 Remarks on the parameter tuning methods

Fig. 5.8 summarizes the current problem of a tuning process. Normally, the tuning

process depends on the used drive–track, test drivers, MCAs as well as tuning cri-

teria (oranges ellipse). Current tuning approaches can be categorized into two major

approaches (dashed box): improving motion fidelity or minimizing errors of motion

cues. However, the relation between two approaches is not yet investigated (the black

box in Fig. 5.8) and the approaches have been applied only independently for a given

application, but not in combination of both.
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Considering motion fidelity, Tab. 5.3 on page 76 summarizes advantages and disad-

vantages of the different existing tuning methods. The tuning criteria can be either

fidelity questions to obtain the driver’s assessment of a simulation session or subjective-

objective criteria, such as the Sinacori criteria or model pilot behavior.

Concerning motion cues errors, simulated motion cues are compared with the target

ones after each trial with a set of parameters. Errors of the simulated quantities can

be tuned primarily by numerical assessments and by graphical illustrations of motion

cue errors as well as by fuzzy theory. In addition, flattening the Bode plots of washout

filters of classical algorithms can reduce distortion of the specific force.

^
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TM Advantages Disadvantages

MDB
(5.2.4a)

– Allows for a large number of
parameters

– Implementable for all MCAs

– Objective and replicable

– Depends on the goodness of the models

– Unclear if the Least-Square approach is suit-
able

– The effects of scale and signal shape are not
separated

– Needs tuned parameters for the models

SPM
(5.2.4b)

– Allows for a large number of
parameters

– Implementable for all MCAs

– Objective and replicable

– Depends on the goodness of the models

– Unclear if the Least-Square approach is suit-
able

– Different environments for investigating self-
motion models and validating drive simula-
tion are necessary

AWF
(5.2.2a
,c,d)

– Implementable for all MCAs

– Objective and replicable

– Predictability of several effects
of false cues and motion fidelity

– Unclear correlation between the numerical
measures and motion fidelity

– The tuning objective needs further investi-
gation

– No clear definition of the effect of motion cue
errors

– Bode plots only for classical optimal al-
gorithms

SiCoZ
(5.2.3)

– Objective and replicable, consid-
ering the limits of the simulator

– Overview of possible combina-
tion of parameters

– Questionable if the filters characteristics at
1 (rad/s) has an important influence

– Used only for classical and optimal washout
filters

IDr
(5.2.1a)

– Exact result the test subjects

– No effect of uncertain models

– Only for parameters with physical meaning

– The goodness depends on the individual
driver

– Low consistency between drivers

– Not replicable, time consuming

– Unclear comparative questions

MDT
(5.2.1b)

– Implementing each MCA and
maneuver only one time

– No effect of uncertain models

– replicable

– Time consuming

– Simulator study required

FTh
(5.2.2b)

– Objective and replicable

– Takes the limit of workspace and
angular velocity into account

– No motion fidelity considered

– Only for CL algorithm

– Simulator study required

TM: Tuning method; MDB: Model of driver behavior (5.2.4a); SPM: Self-motion
(5.2.4b); AWF: Analysis of washout filter response (5.2.2a,c,d); SiCoZ: Sinacori or
Zaichik criteria (5.2.3) ; IDr: Individual driver (5.2.1a); MDT: Maneuver or drive
track (5.2.1b); FTh: Fuzzy theory (5.2.2b)

Table 5.3: Advantage and disadvantages of motion perception fidelity tuning methods
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As a result, the variety of tuning methods as well as the unclear relation between motion

perception fidelity and motion cues errors can confuse designers in finding suitable

parameters. In this setting, how serious false cues degrade motion perception fidelity

and how the distortion of simulated motion effects on levels of motion fidelity are still

open problems. To overcome these problems, a tuning process of MCA’s parameters

for high motion perception fidelity in a simulation task is addressed here in two steps:

Step 1: Rough tuning of parameters for either minimizing motion cue errors or op-

timizing subjective-objective criteria; Step 2: Validating and fine-tuning the achieved

parameters by subjective tests. Suitable parameters of a MCA that generate simu-

lated motions having good quality are commonly determined by trial and error (TnE)

or automatically (AT) within the restricted requirements.

Concerning the rough tuning step, in the literature, the effects of common parameters

on motion fidelity such as scale factor, jerk, and the ratio of a linear acceleration to a

target acceleration along with threshold of angular velocity and angular acceleration

were investigated. For example, Grant and Reid (1997a) first analyzed the effects of the

washout filters’ parameters on the existence of false cues. Then, the authors proposed

rules to reduce the undesired cues by adjusting the scale factor k and break frequency

of the washout filters. Furthermore, for the ZyRo and MPC algorithms, simulated

quantities are directly influenced by a specific parameter in the weighting parameter

matrices.

However, the relationship between MCA’s parameters and the amount of motion cue

errors generated is unclear and there is no conventional process to suitably adjust the

parameters (see the black box in Fig. 5.9). Therefore, a unified approach according to

designer’s experience is necessary.
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5.3 Proposed objective criteria

In this thesis, a novel set of objective criteria, called the “well-tuned index” (MF ),

that can be used for every MCAs is proposed. The well-tuned index is based on

published results of the effects of the common parameters appearing in the MCAs

on motion perception fidelity, such as scale factors, threshold values, and the ratio of

translational to rotational motion (Fig. 5.9).

Fig. 5.10 describes the steps through which the well-tuned index (MF ) is built. In

the first step, the general rules or requirements that are currently used for MCAs

according to Tab. 5.4 are processed. In the second step, the statements and rules in

the literature together with the descriptive expressions of the relative parameters listed

in Tab. 5.5 are applied. In the third step, the relative quantities (Tab. 5.6) and the

four priority or significancy levels (Tab. 5.7) are evaluated. In the fourth step, the

combined criteria C∗
i with i ∈ {1 · · · 5} (Tab. 5.8) are constructed to categorize the

listed criteria Ck with k ∈ {1 · · · 14} (Tab. 5.5) with respect to the relative quantities

in Tab. 5.9. Additionally, the boundary values of the quantities (Tab. 5.9) are chosen

to make practical criteria for the driving simulator. In the fifth step, the group criteria

Gj with j ∈ {1 · · · 4} are divided into the significant levels of the combined criteria C∗
i

in regard to their significant levels. In the last step, the well-tuned index MF is built

from the group criteria Gj (5.3.4 on page 87). The tuning process is first explained in

general and then applied to the specific task of transversal acceleration tracking with

the LMR drive simulator.

5.3.1 Tuning rules and statements in the literature

Tab. 5.4 shows the rules found in the literature for either tuning of parameters. These

found rules are summarized in Tab. 5.5 by 14 characteristic conditions that have been
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General rules for tuning a MCA

1. Implementability in the simulator

a. Motion inside the workspace of a driving simulator.

b. Simulated acceleration and velocity do not exceed the limit values of
the specific drive simulator.

2. Improvement of the motion fidelity

a. Removal potential false cues

i. Rotational false cues

ii. Cue distortion by unexpected cues or opposite cues

iii. Missing cues

iv. Phase lag

b. Identification of suitable quantities via subjective assessment

i. Scale factor

ii. Threshold values for angular velocity and acceleration

iii. Break frequency

iv. Use the tilt-coordination when there is no better choice

v. Find the best ratio of translational acceleration and tilt acceleration

Table 5.4: General rules for tuning parameters of MCAs in the literature

used in published experimental setups. Although almost all experiments were imple-

mented with the classical algorithm, the formulations can be applied to other MCAs

since they describe conditions for common parameters appearing in almost all MCAs.

Formulation Description and reference

Condition: C1

– Sy ≤ Sylm

– ϕS ≤ ϕlm

– Ṡy ≤ Ṡylm

Rules:

– 1a

– 1b

Simulated motion is restricted in the simulator workspace

• Grant and Reid (1997a)

• Grant and Reid (1997b)

• Gouverneur et al. (2003)

• Fischer (2009), etc.

Condition: C2

– ϕS ≤ ϕS,max

Rules: 2aii

Avoid the distortions of the subjective vertical cues when the

tilt angle exceeds 20◦−30◦ (Aubert effect) (Reymond and Ke-

meny (2000))
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Condition: C3

– ωSx ≤ ωth

Rules:

– 2ai

– 2bii

Avoid rotational false cues by threshold ωth on angular velocity

(different values in the literature).

• Nesti et al. (2012): (++)

• Chapron and Colinot (2007): (++)

• Zywiol and Romano (2003): (++)

• Jamson (2010): (+*) and (+)

• Reid and Nahon (1985): (*+)

• Groen and Bles (2003): (*+)

• Telban et al. (2005): (**) and (*+)

• Fischer (2009): (*+) and (*)

• White and Rodchenko (1999): (–)

• Zaichik et al. (2010): (–)

• Pouliot et al. (1998): (x)

Symbols ++ +* *+ ** + – x

ωth(deg/s) 6 5.8 3 2 8.59 30 2.6 – 3.6

Condition: C4

– ω̇Sx ≤ ω̇th

Rule:

– 2ai

– 2aii

– 2bii

Limit simulated tilt angular acceleration to prevent false ro-

tational perception and unexpected specific force due to the

distance of the driver head to the rotation center.

• Chapron and Colinot (2007):

– ω̇th = 8 deg/s2 with a = 0m/s2

– ω̇th = 11 deg/s2 with a = 1m/s2

• Fang and Kemeny (2012): ω̇Sx < 12 deg/s2

• Reymond and Kemeny (2000): limit ω̇Sx,y

• Groen et al. (2001): ω̇th = 3 deg/s2

Condition: C5

– fT ≤ kfT

Rule: 2aii

Restrict the undesired specific force caused by tilt angular ac-

celeration when the position of the rotation center is at the

driver’s head by a factor kfT = 0.1m/s2.

• White and Rodchenko (1999)

• Zaichik et al. (2009), (2010)
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Condition: C6

–
e∗
f,sh

δO
≤ ke

–
e∗
ω,sh

δS
≤ ke

Rule:

– 2aii

– 2aiii

– 2aiv

Limit error cues for tilt and translation

• Sivan et al. (1982) presented motion perception in threshold

unit and minimized motion error below pilot’s threshold.

• Pouliot et al. (1998) presumed that two sensations that differ

by less than the threshold will not be detected

• Grant et al. (2003) normalized the shape error of the specific

force and angular velocity by their threshold values

Condition: C7

– ↓ ef,sh or ↓ λ1f,sh

Rule:

– 2ai

– 2aii

– 2aiii

Flatten the Bode plot of response of the washout filters to

reduce the form error of specific force.

• Romano (2003)

• Bruenger-Koch (2005)

• Fischer (2009)

• Jamson (2010)

Condition: C8

– ↓ ef or ↓ λ1f,sh

Rule:

– 2aii

– 2aiii

– 2bi

– 2biii

Minimize shape errors of specific force.

• Grant and Reid (1997a) minimized the distortion and miss-

ing cues of the simulated specific forces

• Zaichik et al. (2012) suggested a tuning procedure that re-

produces “useful cues” and minimizes the “false cues”.

Condition: C9

–
∫
aSydt∫
aV ydt

≥ ka,min

Rule: 2biv

Use more transversal movement in simulation of lateral accel-

eration to improve the realism

• Jamson (2010)

• Damveld et al. (2012)

• Chapron and Colinot (2007)

• Valente Pais et al. (2009)

Condition: C10

–
∫
aSydt∫
aV ydt

≥ ka,min

Rule: 2aiii

Avoidance of the use of the translational movement to simulate

only very high-frequency part of target acceleration, Grant and

Reid (1997a)

Condition: C11

–
∫
aSydt∫
aT dt

≈ 65
35

Rules: 2bv

Introduce best ratio of translational acceleration and tilt accel-

eration due to tilt angle for half-sinusoid acceleration of simu-

lation in brake-case, Stratulat et al. (2011)
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Condition: C12

– A(HP) ≥ 0.6

– αp ≤ 200

Rules:

– 2bi

– 2biii

Increase the amplitude of high-pass filter HP (A(HP)) and re-

duce the phase lag αp at critical frequency 1 rad/s.

• Sinacori (1977)

• Schroeder (1999)

• Gouverneur et al. (2003)

Condition: C13

– k ∈ [kmin, kmax]

Rule:

– 2aiii

– 2bi

Proper definition of scalar factor because drivers have tolerance

with the scale factor, and too small motion cue degrades the

motion perception fidelity

• Berthoz et al. (2013): k ∈ [0.4 , 1], kop = 0.7

• Grant et al. (2003): k = 0.5, but k = 0.3 ↓ motion fidelity

• Jamson (2010): kmax = 0.9, but k = 0.5 is better

• Feenstra et al. (2009): k ∈ [0.4 , 1]

• Telban and Cardullo (2001); Telban et al. (2005): 3rd order

nonlinear scale factor

• Chapron and Colinot (2007); Feenstra et al. (2009): dynamic

scale factor

Condition: C14

– k ≤ 0.012
δO

Rule: 2bi

Avoid perception as in fixed simulators with small scale factor

• Zaichik et al. (2009), (2010)

• White and Rodchenko (1999)

Abbreviations:

• ef = f
V
− f

S
represents the specific force errors

• eω = ωV − ωS represents the specific force errors

• k denotes the scale factor

• fT = h · ωSx represents false specific force errors due to the angular acceleration

• h represents distance between the center of rotation with the driver’s head

• e∗f,sh = max(|ef,sh|] represents the maximum form error of the specific force

• e∗ω,sh = max(|eω,sh|) represents the maximum form error of the angular velocity

• δO = 0.17 (m/s2) represents the threshold value of the otolith system

• δS represents the threshold value of the semicircular system

• ke represents the maximum ratio of normalized form error to the threshold of vestibular system

• kfT represents the maximum specific force due to the tilt angular acceleration

• ka,min represents the minimum value of ka, that is the ratio of the simulated translational

acceleration to the target translational acceleration

• ϕS,max represents the maximum value of the tilt angle for coordination technique

Table 5.5: Description of the fourteen principal tuning conditions found in the literature
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5.3.2 Categorizing tuning criteria and priority levels of tuning rules

The criteria in Tab. 5.5 can be categorized with respect to physical quantities (Tab. 5.6)

and tuning rules. Concretely, the criteria C1 and C2 are related to restricting angles

and displacements of a driving simulator; C3 · · ·C5 are related to false cues due to the

tilt motion that has an effect on the angular velocity, angular acceleration, the extra

specific force; C6 · · ·C8 are related to false cues of simulated specific forces, where

false cues are represented by numerical shape errors such as ef,sh, λ1f,sh; C9 · · ·C11 are

related to the ratio of linear acceleration to simulated specific forces; and C12 · · ·C14

are related to scale factors that are used to scale down the input signals.

Priority levels of tuning rules

In more simulation cases, it is impossible to satisfy all the tuning criteria for a MCA.

Therefore, a priority order of tuning criteria (5.10) is proposed with respect to the

effect of the criteria on motion perception fidelity. The most significant rule is to make

simulated motion implementable. The 2nd priority rule, based on the statement of

Grant and Reid (1997a), and Zaichik et al. (2009), emphasizes the significant effect

of the false cues and missing cues on the motion fidelity. The 3rd priority rule is

the selection of suitable scale factors for a simulation (Grant et al. (2003), Berthoz

Requirements

Related quantities
1 2

1a 1b
2a 2b

i ii iii iv i ii iii iv v

C1 x x Sy, ϕS
C2 x ϕS
C3 x x ωSx, ωth
C4 x x x ω̇Sx, ω̇th
C5 x fT , kfT , ω̇Sx
C6 x x x ef,sh, ke
C7 x x x ef,sh, λ1f,sh
C8 x x x x ef , λ1f,sh, ωn
C9 x aSy, ka
C10 x aSy, ka
C11 x aSy, aT
C12 x x k, ωn
C13 x x kS, kmin, kmax
C14 x k

Table 5.6: Categorization of tuning criteria with respect to physical quantities
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(1st) - (Rule 1a,b) Avoiding limit violation of a simulator
(2nd) - (Rule 2ai · · · 2aiv) Reducing the false cues, missing cues, phase lag
(3rd) - (Rule 2bi) Selecting suitable scale errors
(4th) - (Rule 2biv, 2bv) Using more translational movement

Table 5.7: Priority levels for tuning process

et al. (2013)) to have high motion fidelity. The reason for this is that weak or strong

motion has a less serious effect than false cues. The 4th priority rule is for using

more translational motion for reproducing linear acceleration (Grant et al. (2003),

Jamson (2010), Stratulat et al. (2011)). Since the usage is recommended only in a few

publications, the rule has been ranked here after the three previous more relevant ones.

5.3.3 Combined criteria and range of parameters

Based on the priority levels, the criteria of Tab. 5.6 can be combined in five significant

criteria C∗
i , i ∈ {1 · · · 5} The combined criteria are defined as:

• C∗
1 = C1 ∨C2 – (blue): Limiting the simulator’s movement and avoiding the vertical

false cues due to large tilt angle

• C∗
2 = C3 ∨ C4 ∨ C5 – (red): Avoiding false rotational cues

• C∗
3 = C6 ∨ C7 ∨ C8 – (light blue): Avoiding false cues of the specific force

• C∗
4 = C9 ∨ C10 ∨ C11 – (green): Selecting the suitable scale factors

• C∗
5 = C12 ∨ C13 ∨ C14 – (white): Using as much translational motions as possible to

simulate linear accelerations.

Here, ∨ represents the “or” logic operator meaning the union of the corresponding sets

of conditions. Since a high-pass filter only exists in the classical algorithm, the condi-

tion C12 is not general for other algorithms, thus it is possible to avoid the criterion,

and C∗
5 = C13∨C14. In Tab. 5.8, mathematical formulations for the conditions are sum-

marized. The criterion C∗
2 includes the three inequalities: restricted angular velocity,

angular acceleration, and extra specific force. The criterion C∗
3 is represented by an

inequality that restricts the maximum of shape errors of simulated specific force. The

criterion C∗
4 is represented by two inequalities to maintain suitably scaled signals. The

criterion C∗
5 limits the minimum amount of linear acceleration by using an inequality

of the ratio of linear acceleration to the target acceleration. Note that the criteria C∗
2

and C∗
3 have an interactive relation that focuses on finding the trade-off between the

rotational errors and specific force errors as mentioned e.g. by Jamson (2010). The

trade-off is the equivalent to finding the balance between C∗
2 and C∗

3 for removing the
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Combined criteria Formulations

C∗
1 SSy ≤ Smax; ϕS ≤ 30o

C∗
2 ωSx ≤ ωth; ω̇Sx ≤ ω̇th; h · ω̇th ≤ kfT

C∗
3

e∗
f,sh

δO
≤ ke

C∗
4 kS ∈ [kS,min, kS,max]

C∗
5

∫
aSydt∫
aV ydt

≥ ka,min

Table 5.8: Combined criteria and theirs formulas

potential false cues due to the distortion of specific force or being over threshold values

of angular velocities.

The range of parameter values is defined by boundary values depending on the driving

simulator, the simulation tasks, and the drivers. Various values were introduced to this

respect in the literature (Tab. 5.5). Thus, the boundary values were adapted in this

thesis according to the priority levels defined above.

• The objective of the first criterion C∗
1 is to avoid the violation of the physical limits

of a driving simulator. A tuned parameter set must satisfy the criterion, otherwise it

cannot be used. Additionally, the tilt boundary prevents recognizing the rotational

tilt state by the driver. In this study, the limit values of the LMR driving simulator

can be found in the report of Pham (2014).

• For the second criterion C∗
2 the angular velocity threshold was set to ωth = 6 (deg/s)

according to the research of Nesti et al. (2012), who studied the roll-rate threshold

by using subjective experiments in the MPI CyberMotion simulator based on the

KUKA Robotcoaster. Chapron and Colinot (2007) in the new SHERPA simulator

and Zywiol and Romano (2003) used the same value for the tilt-rate limit, which

seems to justify this choice. In addition, Chapron and Colinot (2007) introduced the

angular acceleration threshold ω̇th = 0.2 (rad/s) by (C4 in Tab. 5.6).

Furthermore, as the location of the frame KPs at the driver’ vestibular system is in

general unknown, a limit on the false specific force cue at the driver’s head due to

the eccentricity is defined by a factor kfT . Let h be the distance between the real

position of the driver’s vestibular system and the assumed one in the MCAs. The

the roll angular acceleration ω̇x = ω̇th = 0.2 (rad/s) generates the extra specific force

δO ωth ω̇th kS,min kS,max ka kfT ke
0.17 (m/s2) 6 (deg/s) 11 (deg/s) 0.36 1 0.50 0.1 (m/s2) 1

Table 5.9: Selected quantites
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which should be fT = h.ωx ≤ δO Pouliot et al. (1998), or as Zaichik et al. (2009) fT ≤

0.1m/s2 mentioned that. Assuming h ∈ [0, 0.5] (m), fT = h · ωx = [0, 0.1] (m/s2),

in this thesis the factor kfT = 0.1m/s2 was chosen which guarantees that the effect

of the extra specific force can be negligible.

• For the third criterion C∗
3 , factor ke = 1 and the threshold value of the otolith organs

δO = 0.17m/s2 were chosen. This selection is a little stricter than that mentioned

in the study of Grant et al. (2003), which showed the classical washout filters with

the best parameter set generate the maximum shape error of approximately ef,sh ≈

0.2m/s2.

• For the criterion C∗
4 , the task is to define an acceptable range of scale signals by

limiting the values kS,min and kS,max of the global scale factor kS. In this thesis, the

global scale factor is decomposed in two factors: a input signal scale factor k and an

internal MCA scale factor kS1 (Fig. 5.11). The internal scale factor kS1
is determined

by the tuning procedure involving the possible simulation specific force during the

complete simulation task as

kS1
=

{ ∫
|fSy |dt∫

|fV y,sc|dt
=

∫
|fSy |dt∫
|kfV y |dt

with fV y 6= 0

0 with fV y = 0
(5.15)

An advantage of this procedure is that kS1 can describe better the final ratio of

simulated signal to target signal for all MCAs, especially ZyRo, MPC* algorithms,

and optimal washout filters.

For the simulation task in this thesis (section 5.4.1), if k = 0.4, max(k fV y) ≈

1.03 (m/s2). For an acceptable shape error of e∗f,sh ≤ δO = 0.17 (m/s2), the factor

kS1
≥ 1− δO

kfV y
⇔ kS1

≥ 0.83 is obtained, which in order to improve the tracking of

simulated specific force was narrowed to 0.9 ≤ kS1
≤ 1. Therefore, corresponding to

the range of scale factor k ∈ [0.4, 1] suggested by Berthoz et al. (2013), the range of

kS in this thesis was set to kS ∈ [kS,min, kS,max] = [0.36, 1].

• For the fifth criterion C∗
5 , Stratulat et al. (2011) found the best ratio to be 35/65%.

In this thesis, the proposed minimum ratio ka,min = 50% is selected so that the

translational motions are used more than rotational motions.
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5.3.4 The well-tuned index MF holds for a single parameter

In oder to identify the fulfillment of the combined criteria (Tab. 5.8), four binary digits

Gj, j ∈ {1 · · · 4} are defined as

G1 = C∗
1 ; G2 = C∗

2 ∧ C
∗
3 ; G3 = C∗

4 ; G4 = C∗
5 , (5.16)

where

• C∗
i = 1, if the criterion C∗

i is satisfied, otherwise C∗
i = 0

• G1: means no violation of the limits and protecting the tilt-coordination

• G2: means avoiding the false cues

• G3: means avoiding too weak cues

• G4: means using as much translational movement as possible to simulate lateral

acceleration; ∧ is the “and” logic operator

Note that the combination of the criteria C∗
2 and C∗

3 can be described as a trade-off

between false cues of specific force and rotational motions. However, according to

Grant and Reid (1997a), all types of false cues seriously degrades the motion fidelity.

Therefore, G2 includes both criteria C∗
2 and C∗

3 .

For numerically assessing how well the parameter is tuned, the well–tuned index is

proposed such as the binary number

MF = 23 ·G1 + 22 ·G2 + 21 ·G3 + 20 ·G4 . (5.17)

By using a binary number, the MF index can describe the priority order of tuning

rules (Tab. 5.10), and the level of motion fidelity (Tab. 5.1). Concretely, the well-

tuned indexMF is categorized into 4 levels as shown in Tab. 5.10. A highMF implies

that a MCA (with tuned parameters) can produce implementable motions that have

no predicted false cues and uses as much as the translational motion as possible. A

medium MF has a larger scale error than the high MF , which could produce weak

motion perception. The last level, a low MF , is attributed to any case that produces

any types of false cues.

High Medium Low Not Satisfied

MF1 = 14, 15 MF2 = 12, 13 MF3 = 8 · · · 11 MF4 < 8

Table 5.10: Level of well–tuned index MF
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5.4 Tuning MCAs by trial and error

5.4.1 Description of the simulation task

In the present thesis, the simulation consists of a roller coaster following a planar

S-curve trajectory at a constant velocity v = 3.6m/s as shown in Fig. 5.12a. The

trajectory is composed of an entering straight rail l1 = 43.2 (m), a S-curve rail, and an

exiting straight rail l2 = 45 (m). The roller coaster completes the S-curve in 20.125 (s).

Due to the constant velocity, there is only relative lateral acceleration aV y(t) = aR(t) =
v2

CS(t)
, with CS(t) representing the curvature of the S-curve at a given time t (see

Fig. 5.12b). The decomposition of constant velocity v in the X- and Y -axes is shown

in Fig. 5.12c and 5.12d, respectively. The mathematical formulation of the S-curve rail

is included in appendix A.4. For the simulation, the target yaw motion was assumed

to be simulated by the lateral motion and visual perception (Schroeder (1999)) and

was not considered here as an explicit robot signal.

The tuning process (Fig. 5.13a) aims to find a possible parameter set for a given MCA.

Initially, the scale factor k = kin ∈ {kmin, kmax} and parameters from literature are

used for the MCA to generate the simulated data. Then, the simulated data are

examined by the criteria (orange block in Fig. 5.13b). The block checks the simulated

signal with the proposed criteria C∗
i with i ∈ {1 · · · 5} and generates the well-tuned

index MF . For MF ∈ {14, 15} (being equivalent to the highest level) the current
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vy component of the simulated roller coaster
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scale factor kTn and other parameters are saved as the set of parameters used for the

MCA. In contrast, if MF ≤ 7 (not satisfied), the scale factor is first reduced by δk. If

the k = kmin, the parameters are changed to improve MF as high as possible.

For MF ∈ {8, · · · , 11} (low level), the scale factor is also first reduced until k = kmin,

then the other parameters are changed to achieve a high level ofMF . In this situation,

if MF cannot reach the high level, the scale factor is continuously reduced to obtain

the medium level of MF . Since the false cues take higher priority over the scale error,

the scale factor k can be reduced to get a higher value of MF with k < kmin.

For MF ∈ {12, 13} and scale factor k ≤ kmin, the parameters can finely be adjusted

to increase a internal scale factor kS1. By doing that, the values of MF could be

increased.

The parameters of the MCAs were manually tuned by trial and error. In the case of the

CLRN and CLG algorithms, the break frequency and damping factor were adjusted,

while for the other MCAs the weighting parameters in their cost functions were suitably

changed. Since there are no general rules that apply to all MCAs, the tuning process

is time-consuming and different for each MCA. Furthermore, it depends significantly

on the designer’s experience. The dashed line in Fig. 5.13a represents the designer’s

decision to continue or halt the tuning process when theMF reaches a satisfying level.

Given the fact that the scale factor can vary in the range [kmin, kmax], in this thesis,

the smallest scale factor kmin was selected. All MCAs were tuned in order to obtain

a value of MF as high as possible. The parameters for all MCAs presented in the

following section show that almost all MCAs can be tuned to reach the best MF in

the simulation test.

5.4.2 Tuning of MCAs parameters by trial and error

In a first approach, the MCA parameters were manually tuned by trial and error

according to the procedure in the literature. Hereby, the washout effect of a MCA

was considered only for the simulated tilt angle, so that the seat of the LMR driving

simulator had no remnant tilt angle at the end of the simulation. The process of manual

tuning is shown in Fig. 5.14. Here, the user evaluates the criteria and changes by trial

and error the MCA parameters until an acceptable well-tuned index MF .
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For the CLRN algorithm, the natural break frequency of high-pass filters is firstly

chosen to exploit the available workspace and to make the simulated acceleration aSy

approximately zero at the end. Then, the natural break frequency of the low-pass filter

is selected to generate a suitable angular velocity. The fine-tuning process involved

changing the damping factor and/or the scale factor to obtain the highest MF .

The CLG algorithm requires the tuning of 3 high-pass filters. In order to eliminate the

effect of the spurious components, the break frequency and damping factor of the R-

and Z-channel were chosen to keep radius the R and the Z-coordinate almost constant.

The natural break frequency of the α-channel was then tuned to eliminate the false cues

of the angular velocity and angular acceleration. Finally, the washout break frequency

ωbα and the damping factor ζα were modified in the fine–tuning step to obtain the

highest MF and to pull the tilt angle to zero. A reduction of the scale factor was

selected if altering the break frequencies and the damping factor could not remove all

false cues.

For the ADRN algorithm, the tuning consisted in first selecting constant values k1

and k2 according to the damping factor and natural break-frequency of a second high-

pass washout filter of a translational channel (as in the classical algorithm). Then, the

initially adaptive factors {p10, p20, p30} and weighting parameters w1···8 were tuned.

Note that, for the simulation task, the restriction of the angular velocity and the roll

angle could be ignored by setting the weighting factors to zero, since the false cues of

the angular velocity are controlled by a nonlinear module in the adaptive process.

In the case of the ADSK algorithm, all the parameters of a second high-pass filter

including the scale factor, the damping factor, and the natural break frequency are
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Figure 5.14: Concept of the manual trial and error tuning method for a MCA
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adapted in real-time. For the studied simulation, only the parameters of the washout

filter of the α-channel were adapted. The other channels were fixed as for the CLG

algorithm. The natural break-frequency was restricted because the simulated signals

were more influenced by the natural break-frequency than by the other parameters.

Additionally, the initial values of the adaptive parameters were selected to reduce the

oscillation appearing in simulated signals due to a large change of the parameters at a

time. The restriction of the change of a parameter was implemented by selecting the

corresponding weighting parameter wm ,m ∈ {k , ζ , ω} according to its significant level

of effect. Similarly, wa restricts the difference between the simulated and the desired

acceleration. In order to pull the simulated position to zero at the end of a simulation

(implementing washout effect), the weighting value of wS was increased.

For the optimal washout filters, the tuning consisted in choosing appropriate values

for the weighting parameters. For example, increasing the value of r1 or q1 (OpTYM,

OpT, OPRN, OpTNon) reduces the simulated angular velocity, while increasing r2 or

rc3 (OpTYM, OpT, OpTNon) reduced the simulated acceleration, and the weighting

factor q2 (OpT, OpRN, OpTYM, OpTNon) had an effect on both the simulated spe-

cific force and the simulated acceleration. From the tuning experience, we found that

increasing rc1 pulls the simulated acceleration to zero at the end of the simulation, and

rc2 affects the shape of the simulated acceleration.

The ZyRo approach was relatively easy to tune because it has only 4 weighting para-

meters that directly influence simulated quantities. For example, to increase the sim-

ulated acceleration or displacement, the parameter q2 can be reduced. In addition,

increasing q1 makes the simulated specific force track better the target one, and in-

creasing r2 restricts indirectly the values of the angular velocity. By a proper selection

of the break frequencies λ and c, the oscillation of the first derivative of the simulated

specific force and angular velocity could be reduced. For instance, c = 1.25 (Tab. B.8)

leads to similar changes for angular acceleration and angular velocity.

Also, the MPC* algorithm was simple to tune because the weighting parameters are

directly correlated with the simulated quantities. As in the ZyRo algorithm tuning,

increasing q1 makes the simulated specific force track better the target one, and in-

creasing q4 pulls the simulated angle back to zero. In addition, increasing s2 or q3

reduces the angular velocity, and increasing the prediction horizon p and the control

horizon m increases the tracking quality of simulated specific forces, but comes at the

cost of increasing the computation time.

For the tunning of the exMPCFK algorithm, a similar procedure as for the MPC*
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algorithm could be used. The selection of the parameters for the brake law followed

the guidelines mentioned by Fang and Kemeny (2012). Unlike, the ZyRo and MPC*

algorithms, the constrained conditions used in the exMPCFK algorithm remove the

false cues of the rotational motion. Therefore, the tuning process focuses on making

the simulated specific force track the target one, and qy3 is much larger than the other

parameters. Additionally, the simulated acceleration could be pulled to zero at the end

of the simulation with a suitable value of r1.

5.4.3 MCAs response comparison for different input signal scale factors

This section compares the performance of the different MCA for the target ride under

study in this thesis. As is known, the response of the different MCA approaches depends

strongly on the dynamics of the target motion. For this reason, a systematic study was

carried out by choosing seven signal scale factors k ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

and manually tuning the parameters of each MCA for the smallest value of k so that

the MCA follows as good as possible the target motion in terms of the well-tuned

index MF . We discuss here in detail three scale factors k ∈ {0.4, 0.5, 0.7} and give

an overview of the well-tuned index for all scale factors. The detail of all scale factor

is given in the Appendix.

Scale factor k = 0.4

When the input signal scale factor is chosen at its lower limit, all MCAs behave simil-

arly. This is shown in Fig. 5.15 for the time histories and in Fig. 5.16 for the Pouliot’

“performance indicator” along with the Fischer’s “good criterion” and “normalized

good criterion”. The time histories include also simulated pitch angular velocities

(Fig. 5.15c) needed to control the pitch tilt angles for compensating the spurious centri-

petal accelerations arising in the rotational trajectory of the LMR KUKA Robocoaster

simulating the transversal accelerations. Furthermore, the time histories of simulated

yaw angular velocities of the rotational trajectory are presented in Fig. 5.15e. Besides,

Fig. 5.17 shows the partial components of Fischer’ “good criterion”.

Fig. 5.15a shows that the simulated specific forces generated by all MCAs are similar

and track well the scaled input specific forces. Furthermore, the angular velocities

of both roll (Fig. 5.15b) and pitch (Fig. 5.15c) remain within the threshold limits

described by the dashed black line. Note that the simulated yaw angular velocities

have a large deviation from the target yaw angular velocity (Fig. 5.15e), however, the

errors were assumed to be negligible according to the literature (Schroeder (1999)).

Future research should verify if this is true in the present setting.
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k = 0.4
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Figure 5.15: Comparison responses of all MCAs for k = 0.4
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Figure 5.16: Comparison of numerical performance measures for k = 0.4
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With respect to the proposed well-tuned index, all MCAs present a high index MF

(Tab. 5.11 on page 104). Most MCAs generate similar simulated lateral accelerations

and angular velocities (5.15b and Fig. 5.15d) except the ZyRo, MPC* algorithms which

generate simulated lateral accelerations before the time instant at which the target

signal changes. These pre-movements are aimed at preparing the workspace for the

quick change of the specific forces. For the ZyRo and MPC* algorithms, the simulated

roll angular velocity reaches only half of the threshold.

The average errors expressed in the “good criterion” show that the ZyRo algorithm

presents the largest λ∗2 and the smallest λ∗1, while the OpTNon and ADSK algorithms

have the second and the third lowest of the first derivative. However, after the normaliz-

ing the average sub-errors by the threshold values of the vestibular system (Grant et al.

(2003)), the ZyRo algorithm generates the minimum values of the goodness criterion,

as shown by the “normalized good criteria” λ&1 and λ&2 , while the worst λ&2 belongs to

the ADSK and OpTNon algorithms. The reason is that the algorithms (ADSK and

OpTNon) present the largest value of error in shape errors of the first derivative of

the simulated specific forces (5.17b). Note that the average errors expressed in the
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“performance indicator” have relatively similar distribution to those expressed in the

“normalized good criterion”.

The components of “good criterion” (Fischer (2009)) are shown in Fig. 5.17a and 5.17b

on page 96. The ZyRo and MPC* algorithms have the smallest error in most sub-

indices, while the exMPCFK algorithm has similar sub-indices with optimal washout

filters but it has the largest angular acceleration error λ∗2ω,sh.

In conclusion, although all MCAs were tuned to have a high index MF , the ZyRo and

MPC* algorithms produce the smallest average errors. The online adaptive ADSK

and OpTNon algorithms can produce oscillations that result in high errors of the first

derivative. The exMPCFK algorithm has the potential to reduce the error by increasing

the prediction horizon but computing the explicit controller is very time-consuming.

Overall, for this input signal with a scale factor of k = 0.4, the type of MCA does not

have a significant effect on the level of the well-tuned index MF (Tab. 5.11), which is

in conformity with the research of Nahon and Reid (1990).

Scale factor k = 0.5

When the input signal scale factor is 0.5, the responses of MCAs are apparently differ-

ent. This is shown in Fig. 5.18 for the time histories and in Fig. 5.19 for the Pouliot’

“performance indicator” along with the Fischer’s “good criterion” and “normalized

good criterion”. The time histories include also simulated pitch (Fig. 5.18c) and yaw

angular velocities (Fig. 5.18e). Furthermore, Fig. 5.20 shows the components of Fischer’

“good criterion”.

Fig. 5.18a shows that the simulated specific forces generated by all MCAs are similar

and track well the scaled input specific forces. Only the ADSK algorithm generates

a small overshoot. However, there are only the ADRN, MPC* and ZyRo algorithms

generating both roll (Fig. 5.18b) and pitch (Fig. 5.18c) angular velocities within the

threshold limits (dashed black line). Therefore, regarding the proposed well-tuned

index, the three MCAs present a high index MF (Tab. 5.11 on page 104). Moreover,

the CLG, ADSK and OpTNon algorithms present a low index MF , while the rest of

MCAs generate a “not satisfied” index MF since these MCAs generates the simulated

lateral accelerations (Fig. 5.18d) leading incompatible rotational motions of the LMR

KUKA Robocoaster.

With respect to yaw angular velocity, the CLG, OpRN and exMPCFK algorithms

present large amplitudes which are even over the peak amplitudes of target yaw angular

velocity. However, the effects of the errors were assumed to be negligible.
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k = 0.5
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Figure 5.18: Comparison responses of all MCAs for k = 0.5
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Figure 5.19: Comparison of numerical performance measures for k = 0.5
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Figure 5.20: Comparison components of Fischer’s good criteria for k = 0.5

The average errors expressed in the “good criterion” show that the ZyRo and MPC*

algorithms present the smallest λ∗1 and the largest λ∗2, while the OpTNon and ADSK

algorithms have the first and the fourth lowest λ∗2. However, concerning the “normalized

good criteria” λ&1 and λ&2 , the ZyRo algorithm generates the minimum values of the

goodness criterion, while the worst λ&2 belongs to the ADSK and OpTNon algorithms.

Moreover, the exMPCFK algorithm presents the largest λ&1 . Fig. 5.20a and 5.20b show

in detail the sub-indices of the average errors. The ZyRo and MPC* algorithms have

the smallest error in most sub-indices, while the algorithms (ADSK and OpTNon)

present the largest shape errors of the first derivative of the simulated specific forces.

The exMPCFK algorithm has the worst shape error for the specific force λ∗1f,sh and the

angular acceleration λ∗2ω,sh. In conclusion, for this input signal with a scale factor of

k = 0.5, the type of MCA has a strong effect on the level of the well-tuned index MF

(Tab. 5.11). Concerning simulated specific force, the average scale errors decreases,

but the shape errors increase.

Scale factor k = 0.7

When the input signal scale factor is 0.7, the responses of MCAs are strongly different.

This is shown in Fig. 5.21 for the time histories and in Fig. 5.22 for the Pouliot’
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performance indicator along with the Fischer’s “good criterion” and “normalized good

criterion”. The time histories include also simulated pitch (Fig. 5.21c) and yaw angular

velocities (Fig. 5.21e). Furthermore, Fig. 5.23 shows the components of Fischer’ “good

criterion”.

Fig. 5.21a shows that the simulated specific forces generated by eleven MCAs are similar

and track well the scaled input specific forces. Only the exMPCFK algorithm generates

large distortions of simulated specific force due to the limited roll angular velocity.

Further, only the ZyRo algorithm generates both roll (Fig. 5.21b) and pitch (Fig. 5.21c)

angular velocities within the threshold limits (dashed black line). Therefore, regarding

the proposed well-tuned index, only the ZyRo algorithm presents a high index MF

(Tab. 5.11 on page 104). Moreover, the MPC* algorithm presents a low index MF ,

while the rest of MCAs generate a “not satisfied” index MF . Note that all simulated

yaw angular velocity have larger amplitude than the target yaw angular velocities

(Fig. 5.21e), however, these errors were assumed to be negligible (see above).

The average errors expressed in the “normalized good criterion” show that the ZyRo

and MPC* algorithms present the smallest λ&1 and λ&2 , while the worst λ&2 belongs to

the ADSK and OpTNon algorithms. Moreover, the exMPCFK algorithm presents the

largest λ&1 . Fig. 5.23a and 5.23b show in detail the sub-indices of the average errors.

The ZyRo and MPC* algorithms have the smallest error in most sub-indices, while the

algorithms ADSK and OpTNon algorithms present the largest shape errors of the first

derivative of the simulated specific forces. The exMPCFK algorithm has worst form

error of the specific force λ∗1f,sh and angular acceleration error λ∗2ω,sh.

In conclusion, for this input signal with a scale factor of k = 0.7, the type of MCA has a

significant effect on the level of the well-tuned index MF (Tab. 5.11). Due to the large

lateral simulated accelerations, the simulated motions were not within the workspace

and the pitch angular velocities of eleventh MCAs exceed the threshold level.

In summary, when the scale factor is increased, false cues of the angular velocity exist

in all MCAs, such as the ZyRo with k ≥ 0.9, the MPC* with k ≥ 0.7, and the ADSK

with k ≥ 0.5. However, only the ADSK and OpTNon algorithms generate false cues

of the angular acceleration. Regarding the well-tuned index MF , six MCAs present

“not satisfied” indices for k ≥ 0.5. The ZyRo algorithm presents a high index MF for

only k ∈ {0.4, · · · , 0.8}, while MPC* and ADRN algorithms present high indices for

k ∈ {0.4, 0.5, 0.6}. The CLG, ADSK and OpTNon algorithms present low indices for

k ≥ 0.5. In addition, for k = 1.0, only the ZyRo algorithm generates implementable

motions in LMR KUKA Robocoaster.
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Figure 5.21: Comparison responses of all MCAs with scale factor k = 0.7
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Figure 5.22: Comparison of numerical performance measures for k = 0.7
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Figure 5.23: Comparison components of Fischer’s good criteria for k = 0.7

Scale factor k
0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
C
A
s

CLRN 15 3 3 3 3 3 3
OpS 15 3 3 3 3 3 3
OpRN 15 3 3 3 3 3 3
OpTYM 15 3 3 3 3 3 3
OpT 15 3 3 3 3 3 3

exMPCFK 15 3 3 3 3 3 3
CLG 14 10 2 2 2 2 2
ADSK 14 10 2 2 2 2 0
OpTNon 14 10 10 3 2 2 2
ADRN 14 14 14 3 3 3 3
MPC* 15 15 15 11 11 11 7
ZyRo 14 14 14 14 14 10 10

Table 5.11: Resulting “best” MF for manually-tuned MCAs depending on the outer
scale factor k ∈ {0.4 · · · 1.0}
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5.5 Auto-tuning with the MVMO method for the example of

the ZyRo algorithm

As can be seen from the previous section, tuning by trial and error requires much

effort and experience from the designers. To overcome the problem of the manual

trial and error, an auto-tuning method can be sought for which automatically finds

the suitable parameter set. In this section, we analyze the application of the mean-

variance mapping optimization (MVMO) for the case of the offline tuning of the ZyRo

algorithm. A similar approach can be applied to the other MCA approaches, which is

left for further work. The main concept is shown in Fig. 5.24. Here, the block “MVMO”

replaces the trial and error feedback used in manual tuning. We describe first the basic

concept of the MVMO approach, followed by definition of the cost function components

used for the auto-tuning method. Based on these, three tuning criteria are evaluated

for the ZyRo algorithm, showing the practicability of the approach.

5.5.1 Summary of the MVMO method

Mean-variance mapping optimization (MVMO) is a novel optimization algorithm map-

ping method developed by Erlich et al. (2010) The method is a member of the family of

so-called population-based stochastic optimization techniques, which incorporates the

information of the performance of a specific number of best individuals to minimize

a particular cost function. The approach employs the concepts of selection, mutation

and crossover from evolutionary computation algorithms, and develops its own trans-

formation strategy for mutated genes of the offsprings based on the mean-variance of

the n-best population (Erlich et al. (2010)).

MVMO

Cost FunctionGenerate New
Parameters

MCA Calculation of
Well-tune
Index

Maximal Iteration Number

Simulated
Quantities

Weighting
Parameters

Constraints

Parameter Set

...

...

Stop
Condition

Well-tuned
Parameter Set

PSfrag replacements

V fPv JP , Jsc · · ·

JP Jω

Jω̇ Jsc

FMVMO

Figure 5.24: Concept of the auto tuning method for a MCA
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5.5.2 Selected cost function for the MVMO approach

The optimization method MVMO requires a suitable cost function that is to be min-

imized by automatically variating the MCA parameter set at each optimizing cycle. In

this study, the cost function is defined as a weighted sum of penalty function, which is

described in the sequel.

Fig. 5.24 shows the MVMO block, which consists of a “Stop Condition” block controlled

by the “Maximal iteration count”, and a “Cost Function” block that is manipulated

by the “Weighting parameters” assigning a level of priority for the penalty functions

Jk of the global cost function.

FMVMO =
∑

k∈{P, fsh, ω, ω̇, sc, tr,Wo}

wkJk . (5.18)

The penalty functions Jk (see Tab. 5.12) are built from the proposed criteria C∗
i de-

scribed in the Section 5.3.3 together with the weighting factors wi with i ∈ {P, fsh, ω,

ω̇, sc, tr, Wo}. Hereby, the following penalty functions are used:

• JP : Position penalty function that limits movement inside workspace

• Jfsh: Shape error penalty function that restricts the maximum shape errors

• Jω: Angular velocity penalty function that restricts the maximum angular velocity

• Jω̇: Angular acceleration penalty function that restricts the maximum angular ac-

celeration

• Jsc: Scale error penalty function that maintains the scale factor in a specific range

• Jtr: Translational motion penalty function that controls the amount of translational

motion

• JWo: Washout penalty function that determines the usage of washout effect on a tilt

angle

The weighting parameters can be changed according to the aim of the tuning process.

For example, to obtain a high well-tuned index MF , the weighting parameters can be

adjusted to match the values in Eq. 5.17.
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Penalty function Definition

JP
∑

j∈{1···6}

{
e〈z

L
j −zmin

i 〉
2

+ e〈z
max
j −zUi 〉

2

− 2
}

Jfsh e〈|ef,sh|
max−kOδO〉

2

− 1

Jω e〈|ω|
max−ωth〉

2

− 1

Jω̇ e〈|ω̇|
max−ω̇th〉

2

− 1

Jsc kJsc

[
e〈kmin−kS〉

2

+ e〈kS−kmax〉
2

− 1
]
− 1

+ 〈kmax − kS〉
0 〈kS − kmin〉

0
[
e〈kmax−kS〉

2

+ kJsc

]

JWo eg
2|ϕS(tf )|

2

− 1

Jtr e〈ka,min−ka〉
2

− 1

Remarks:
1) 〈f(x)〉n denotes the Heaviside function

〈f(x)〉n =

{
0 for f(x) < 0

f(x)n for f(x) ≥ 0

2) For JP , z = [xE, yE, zE, ϕE, θE, ψE] denotes the global coordinates of the end
effector, zL and zU denote the lower and upper limits of the feasible motion
box within the workspace, and zmin and zmax denote the minimal and maximal
values attained through the task trajectory, respectively. Note that, if there is
no violation of the lower or upper physical limits , JP = 0

3) | · · · |max denotes the maximum of the absolute value of the argument
4) kO ∈ [0, 1] is a shaping parameter for the shape error penalty function. A small

value means that the shape error is “punished” more strongly
5) [kS,min, kS,max] is the range of desired scale factor, and kJsc is a shaping para-

meter that controls the amplitude of the penalty function when kS is within the
desired range.

6) ka,min denotes the minimum desired ratio between simulated and target trans-
lational accelerations.

Table 5.12: Definition of penalty functions
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Selected limit-values

kO (−) δO (m/s2) δS (rad/s) ω̇th (rad/s
2) kS,min (−) kS,max (−) ka,min (−)

AT1 1 0.17 0.1 0.2 0.4 1 0.4
AT2 1 0.17 0.1 0.2 0.4 0.4 0.4
AT3 1 0.17 0.1 0.2 0.4 0.4 0.5

Searching ranges of the tuned parameters

q1 (−) q2 (−) r1 (−) r2 (−) c (1/s) γ (1/s) kS
AT1 [0.001 , 0.1] [1 , 100] [1 , 300] [0.001 , 10] [0.001 , 1] [0.01 , 1] [0.4 , 1]
AT2 [0.001 , 0.1] [1 , 400] [1 , 300] [0 , 20] [0.001 , 1] [0.01 , 1] 0.4
AT3 [0.001 , 0.1] [1 , 400] [1 , 300] [0 , 20] [0.001 , 1] [0.01 , 1] 0.4

Weighting parameters

wJP wJω wJω̇ wJsc wJtr wJfsh wJWo

AT1 210 29 26 24 0 26 26

AT2 28 26 26 22 1 26 26

AT3 28 26 26 22 22 26 26

Optimized parameters found by the auto-tuning with MVMO & well-tuned index

q∗1 (−) q∗2 (−) r∗1 (−) r∗2 (−) 1/c∗ (s) 1/γ∗ (s) k∗S MF

AT1 0.0553 93.1597 57.0096 7.4812 0.8169 0.0229 0.92 14
AT2 0.0550 388.19 56.8747 0.3644 0.8 0.3458 0.4 14
AT3 0.1432 183.8770 241.5727 0.0230 0.9922 0.5295 0.4 14

Table 5.13: Limited values, searching ranges, weighting parameters, optimized para-
meters, and well-tuned index of the ZyRo algorithm

5.5.3 Application to the ZyRo algorithm

In order to test the MVMO approach, three optimization trials were carried out

1. [AT1] Optimizing all parameters including kS.

2. [AT2] Optimizing all parameters except kS which is held fixed at kS = 0.4.

3. [AT3] Optimizing all parameters except kS = 0.4 and increasing the translational

acceleration ratio ka,min from 0.4 to 0.5.

The corresponding results are displayed in Tab. 5.13. More explicit plots on the

achieved trajectories are shown in Appendix C.

For the run AT1, the optimizer could find a quite high scale factor k∗S = 0.92, while

obeying well to the constraints, as can be seen by a high well-tuned index of 14.

Moreover, all angular velocities and accelerations are under their threshold values and,

thanks to the washout penalty function JWo, the simulated angle ϕS is pulled to zero

at the end of the simulation.

For the run AT2 the target specific force was first scaled down by a scale factor of k =

0.4 before applying the ZyRo algorithm and a minimal ratio of simulated translational
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acceleration to target translational acceleration of ka = 0.4. The simulated specific

force tracks the scaled target signal very well with maximum shape error e∗f,sh ≈ 0.

Also, one can see that the automated tuning renders quite similar values to those of

the manual trial and error tuning but of course at a tiny fraction of the required time.

Finally, a run AT3 was performed with the same scale factor kS = 0.4 as AT2, but

with a higher minimal ration of ka,min = 0.5. Tab. 5.13 displays that the MCA produces

only a slightly higher ratio of ka = 0.43, which shows that the optimization of run AT2

already is close to the best tuning that can be achieved with the ZyRo algorithm for a

scale factor of kS = 0.4. The time plots in the appendix Fig. C.10 show that the more

translational motions are used, the later the simulated angle returns to zero at the end

of the simulation.

In summary, the test runs show that the auto tuning with the MVMO method has a

number of advantages compared to manual tuning methods proposed in the literature.

Firstly, the method is time-efficient, easily implementable and flexible. A designer only

determines the purpose of the optimization and adjusts the weighting parameters of

the corresponding penalty functions. Secondly, the MVMO tuning method allows one

to consider various physical quantities instead of regarding solely the position, and

angular velocity. Finally, while this has not been investigated in this context, the auto-

tuning method can be applied both to various types of MCAs and to different types of

drive-tracks in offline mode which can be tackled in future research.
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6 Example Study of Correlation Between

Numerical and Subjective Perception Quality

As mentioned above, various objective assessments were introduced to evaluate the

level of motion perception fidelity or realism of a simulation session. However, the

relationship between the level of motion perception fidelity evaluated by an objective

assessment and that by a subjective assessment remains an open question. In this

Chapter, a study investigating the correlation between objective and subjective assess-

ment of motion perception fidelity is carried out. The procedure consists of 3 steps as

described in Fig. 6.1. First, the simulated quantities (signals) were generated by the

selected MCAs. Then, the simulated quantities were used to generate the trajectory

for the KUKA Robocoaster and to compute the numerical indices of the objective as-

sessment. Lastly, the trajectories were implemented in the driving simulator to obtain

a assessment by a set of participants, and the subjective results were used to construct

the numerical functions of motion perception fidelity. For the study, we used not well-

tuned algorithms to purposedly generate false cues that could be related to subjective

assessment. The individual steps of the study are described in detail in sections 6.1,

6.2 and 6.3 along with a fitting procedure in section 6.4 to correlate the numerical

measures (MF , “performance indicator”, “good criterion”, and “penalty functions”)

with subjective rating.

6.1 Generating the simulated signals based on the reference

motion

In the first step, ten simulated signals (Fig. 6.2) were deliberately generated by nine

MCAs considering the following aspects:

a) simulated signals must satisfy the criteria C∗
1

b) motion cues errors exist in simulated signals

c) global scale factor kS vary from 0.33 to 1

d) the centripetal accelerations are not compensated

Note that the condition a) guarantees the implementability of the simulated data in a

driving simulator; the conditions b), c), and d) generate various types of motion cue

errors (i.e. rotational false cues, scale errors and shape errors), that have effects on the

level of motion perception fidelity.
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Figure 6.1: Procedure finding correlation between objective and subjective assessment
of simulated signals generated by various MCAs

The time history responses of simulated signals, denoted by the corresponding MCAs,

are illustrated in Fig. 6.2a. Most algorithms display strong scale errors and small

shape errors of simulated specific forces. The exMPCFK has a peak in angular velo-

city false cues, while the algorithms – OpS, OpT, and OpRN – have small rotational

false cues and the ZyRo and ZyRo* algorithms have no false cues at all (ZyRo* repres-

ents the ZyRo algorithm with hand-tuned parameters). Although the CLG and ADSK

algorithms have quite the large false cues, the exMPCFK algorithm has the largest.

Furthermore, 5 algorithms generate distortions of simulated surge specific force (cent-

ripetal acceleration) that are larger than the otolith threshold level δO (Fig. 6.2c). The

reason is that the algorithms use wide circular motions to simulate the lateral accel-

eration. However, the largest distortion, which appears in the OpS algorithm, reaches

only about 0.25m/s2.

6.2 Objective assessments and trajectory generation

The objective assessments of the tested trajectories from Fig. 6.2 are shown Fig. 6.3.

Hereby, the ZyRo algorithm displays the smallest shape errors λ1f,sh and λ2f,sh, but the

largest scale errors λ1f,sc and λ2f,sc. Besides, the optimal washout filters OpS, OpRN,

OpT, OpTYM have large shape errors λ1f,sh and λ2f,sh due to the distortion of the

simulated surge specific forces.
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Figure 6.3: Comparison of numerical performance measures for ten simulated MCAs

CLG ADSK OpTYM OpT OpS OpRN MPC* exMPCFK ZyRo ZyRo*

kS 0.5 0.51 0.38 0.35 0.39 0.39 0.98 0.53 0.33 0.58

e∗f,sh 0.1927 0.1597 0.2200 0.1270 0.2539 0.2390 0.2024 0.1618 0.0358 0.2196
Ce∗f,sh 0.0218 0.4463 0.0805 0.0836 0.0301 0.0795 0.0990 0.4210 0.0065 0.0124

C∗
1 1 1 1 1 1 1 1 1 1 1

C∗
2 0 0 0 0 0 0 0 0 1 0

C∗
2,1 0 0 0 0 0 0 0 0 1 1

C∗
2,2 0 1 1 1 1 1 0 0 1 0

C∗
3 0 0 0 1 0 0 0 0 1 0

C∗
3,1 1 0 1 1 1 1 1 0 1 1

C∗
3,2 0 1 0 1 0 0 0 1 1 0

C∗
4 1 1 1 0 1 1 1 1 0 1

C∗
5 0 0 1 0 0 1 0 0 0 0

MF 10 10 9 10 10 11 10 10 12 10

SR 2.24 2.35 2.24 2.12 2.06 2.06 2.24 2.82 2.47 2.18

– Ce∗f,sh represents the maximum shape error of the specific force due to cent-
ripetal acceleration

– C∗
2,1, C

∗
2,1 relates to angular velocity and angular acceleration, respectively

– C∗
3,1, C

∗
3,1 relates to lateral and surge specific forces,, respectively

– C∗
2 = C∗

2,1 ∧ C∗
2,2 and C∗

3 = C∗
3,1 ∧ C∗

3,2

Table 6.1: Average subjective scores and criteria of the simulated MCAs
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The numerical indices of two objective measures, λi and λ
&
i (Fig. 6.4a and Fig. 6.4c)

yield a similar distribution, the ZyRo* algorithm displays the second-best numerical

scores after the MPC* algorithm. The exMPCFK algorithm has larger indices than the

ZyRo* algorithm for λi and λ
&
i , but has smaller index λ∗2 than the ZyRo* algorithm.

Furthermore, the OpTYM algorithm has the worst scores for λ1 and λ∗1. The MPC*

algorithm seems to produce signals with better motion perception fidelity than the

OpTYM and ZyRo* algorithms.

The maximum shape errors e∗f,sh,
Ce∗f,sh (for lateral and surge specific force), numerical

criteria C∗
i , and well-tuned index MF are computed as shown in Tab. 6.1. It can be

seen that the exMPCFK algorithm has the second largest shape error of simulated

lateral specific force, while the shape errors of almost all algorithms are under the

threshold level δO of the otolith organ. The exMPCFK algorithm has no shape errors

of the surge specific force, whereas the ZyRo* and MPC* algorithms have the large

shape errors. Additionally, the ZyRo* and MPC* algorithms produce no false cue of

angular velocity (C∗
2,1 = 1), but have false cues of angular acceleration C∗

2,2 = 0, hence

C̄∗
2 = 0. On the opposite side, the signals of the algorithms (ADSK and Op-family)

have false cues of angular velocity and no false cues of angular acceleration. The CLG

and exMPCFK algorithms have both types of false cues. Furthermore, most simulated

signals satisfy the C∗
4 criterion except for the OpT and ZyRo algorithms. The ZyRo

algorithm has the smallest global scale factor kS = 0.33 which potentially causes weak

motion cues (C∗
4 criterion).

Concerning the form error criterion C∗
3 , only the OpT and ZyRo algorithms have small

distortion of specific forces in both lateral and surge channels, which is reflected in

both sub-criteria C∗
3,1 and C∗

3,2. Other algorithms have either large lateral shape error

(e.g. ADSK and exMPCFK) or surge shape error (e.g CLG, OpS, MPC*, and ZyRo*).

In summary, the ZyRo algorithm has medium level well-tuned index (MF = 12), while

the OpTYM algorithms has the smallest index (MF = 9), and the rest have low level

ones (MF ∈ {10, 11}). With the various errors in the simulated signals, it is possible

to investigate the significance of each type of errors and false cues on motion fidelity

by subjective assessment.

6.3 Subjective test assessments

Preliminary subjective tests were carried out with real passenger rides to validate the

effect of the types of false cues on motion fidelity or realism of the simulation. A total of
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17 raters in the age range 20–30 years (5 female and 12 male) were recruited and asked

to rate 10 different rides using the German school mark scale of 1=very good, 2=good,

3=satisfactory, 4=sufficient, 5= failed with +0.3 for a ”minus” (all apart 5) and −0.3

for a “plus” (all apart 1). This scaling was used as it is intuitively well-perceived

by all students and thus no additional instructions were needed. Each participant

tried randomly once each of the 10 rides. An interclass correlation was computed

as a two-way Anova in which each target ride was rated by each the 17 participants

(“judges”). These were classified as the only judges of interest, i.e. ICC(3,k) with

k=17 according to Shrout and Fleiss (1979). We obtained an ICC of 0.4937 with a

false-rejection probability of p=0.0462, which is a fair reliability. The same problem

with the subjective assessments were mentioned in studies of Reid and Nahon (1988),

and Grant et al. (2003).

The average subjective ratings (SR) are shown in Tab. 6.1 and Fig. 6.5, while the

individual subjective ratings are shown in Fig. 6.6 by a “bubble plot” displaying with

the radius of the circles to the number of hits for an individual score. One can see that

there is a great variability of the scores, were raters rate one and the same ride apart

from the best two in the full scale (1-5). Even for the worst ride (exMPCFK), that

has average subjective score 2.82 (Fig. 6.5), one rater rated this as “very good”. We

do not know if this positive rating was done to be “nice” or if this is due to a different

false angular velocity cue threshold for this person.

6.4 Correlating numerical and subjective scores

The objective of the numerical scores is to have a means to predict the subjective

perception of a ride prior to its actual implementation. However, the analysis of the

numerical scores (numerical rating = NR) and the average subjective scores (SR) shows

that there is no evident relationship between the two when single numerical scores are

used. For example, ZyRo is second worst in SR, but it has the best MF . Vice

versa, OpS algorithm has the best SR but an MF index similar to others. Likewise,

the “performance indicators” and the “good criterion” (Fig. 6.4) display a different

ranking for the MCAs than that of the SR. For example, the MPC* algorithm features

the best “performance indicators” and the “good criterion”, but has the same level of

SR as OpTYM, which has the worst score both for the “performance indicators” and

the “good criterion”. This shows that the single numerical score measures only the

causes of discomfort, but how much discomfort affects the motion perception fidelity

is not clear.
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An alternative approach to better predict the subjective perception of rides by numer-

ical scores is to use multiple linear regression to find the best fit of numerical scores to

subjective ratings. In order to analyse the effect of the different numerical scores on

the prediction of the subjective perception, six best-fit multiple regressions using the

regress function of MATLAB R©, were carried out:

BF1a Best fit with the “good criterion”

BF1b Best fit with the “normalized good criterion”

BF1c Best fit with the partial components of the “good criterion”

BF2 Best fit with the “performance indicator”

BF3 Best fit with the “well-tuned index” MF

BF4 Best fit with the individual penalty functions Jω, Jω̇, Jsc, Jfsh.

We describe in the following the best fit by functions FGC
i , i = {1 · · · 3} for the case

BF1a; by function FNGC
i , i = {1 · · · 3} for the case BF1b; by functions F PGC

i , i =

{1, 2} for the case BF1c; by functions F PI
i , i = {1 · · · 3} for the case BF2; by function

FMF for the case BF3; and by functions F PF
i , i = {1 · · · 15} for the case of BF4 for

different choices of regarded individual numerical scores.

BF1a: “good criterion”

In this case the normalized indices λ̄∗1 = λ∗1/max(λ
∗(j)
1 ) and λ̄2 = λ∗2/max(λ

∗(j)
2 ) are

fitted in three functions

FGC
{1,2,3} = w0 + wλ̄∗

1
λ̄∗1 + wλ̄∗

2
λ̄∗2 , (6.1)

in which the individual scores are regarded separately and in their combination. The

fitted coefficients w0, wλ̄∗
1
, wλ̄∗

2
together with the corresponding root mean square error

BF1a: coefficients for “good criterion” BF1b: coefficients for “normalized good criterion”

w0 wλ̄∗
1

wλ̄∗
2

RMSE CORR w0 wλ̄&
1

wλ̄&
2

RMSE CORR

FGC
1 2.2716 0.0075 0 0.2167 0.0056 FNGC

1 2.4339 -0.2384 0 0.2054 0.3196

FGC
2 2.4314 0 -0.2199 0.2091 0.2624 FNGC

2 2.3933 0 -0.1708 0.2116 0.2169

FGC
3 1.8270 1.2780 -0.9127 0.1825 0.5396 FNGC

3 2.1421 -4.7505 4.8034 0.1162 0.8441

BF1c: coefficients for partial components of the “good criterion”

w1f,sc w2f,sc w1f,sh w2f,sh w1ω,sh w2ω,sh w0 RMSE CORR

F PGC
1 41.1217 -38.8255 -3.6247 3.3605 0.9879 -0.0673 - 0.2336 0.7421

F PGC
2 14.6261 -14.0553 -0.7363 0.4109 -0.6579 0.6760 1.9641 0.0250 0.9933

BF2: coefficients for “performance indicator” BF3: coefficients for MF

w0 wλ̄1 wλ̄2 RMSE CORR w0 wMF - RMSE CORR

F PI
1 2.4339 -0.4957 0 0.2948 0.4488 FMF 1.9064 0.0364 - 0.2150 0.1258

F PI
2 2.8734 0 -0.4650 0.3033 0.3938 - - - - - -

F PI
3 2.2848 -9.7426 9.9156 0.1948 0.8071 - - - - - -

Table 6.2: Coefficient of fitted numerical functions for {BF1, BF2, BF3}
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(RMSE) and Pearson correlation (CORR) are shown in Tab. 6.2. One can see that

neither λ̄∗1 nor λ̄∗2 alone correlate well with the average subjective measure, and that

even the best fit of λ̄∗1, λ̄
∗
2 together yields only a fair correlation.

BF1b: “normalized good criterion”

A similar proceduce is implemented for the normalized indices of “normalized good

criterion”, λ̄&1 , λ̄
&
2 . The indices have a better correlation than the indices of the original

“good criterion”, especially, the best fit of the combined λ̄&1 and λ̄&2 yields a good

correlation of 84.41%.

BF1c: “good criterion” with partial components

Two further functions

F PGC
1 =

∑

p∈{1,2}

∑

q∈{f,ω}

∑

n∈{sc,sh}

wqp,n · λ̄qp,n , (6.2)

F PGC
2 =

∑

p∈{1,2}

∑

q∈{f,ω}

∑

n∈{sc,sh}

wqp,n · λ̄qp,n + w0 . (6.3)

were best fitted. The coefficients wqp,n are listed in the Tab. 6.2. One can see that

by best fitting of the partial components of the “good criterion”, a good correlation

with the average subjective score can be achieved. The function F PGC
1 yields Pearson

correlation of 74.21% and a root mean square error of 0.2336. It is surprising that the

function F PGC
2 yields nearly perfect correlation of 99.33% (see also Fig. 6.6). One can

see that the numerical scores represent much better the average subjective score than

the individual ones (crosses in Fig. 6.6). This indicates that the partial components of

the “good criterion” may be a good measure of motion perception.

BF2: “performance indicator”

A similar procedure of BF1a is implemented for the numerlized indices of “performance

indicator”, λ̄1, λ̄2. The best fitted function F PI
3 which combines λ̄1 and λ̄2 yields a

good correlation of 80.71%.

BF3: “well-tuned index” MF

By defining a fitted function

FMF = wMF MF + w0 , (6.4)

a low correlation of 12.58% is obtained (Tab. 6.2). Thus, the well-tuned index has a

poor correlation with the average subjective measure.
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wJ̄ω wJ̄ω̇ wJ̄sc wJ̄esh w0 RMSE CORR

F PF
1 0.6145 0 0 0 2.2076 0.1184 0.8378

F PF
2 0 0.3795 0 0 2.1956 0.1717 0.6103

F PF
3 0 0 0.2113 0 2.2545 0.2074 0.2906

F PF
4 0 0 0 0.6433 2.1910 0.1050 0.8749

F PF
5 0.6301 -0.0178 0 0 2.2097 0.1183 0.8380

F PF
6 0.6584 0 0.3046 0 2.1688 0.3054 0.2906

F PF
7 -0.3756 0 0 1.0124 2.1840 0.1027 0.8807

F PF
8 0 0.4454 0.3321 0 2.1444 0.1421 0.7550

F PF
9 0 0.0030 0 0.6408 2.1906 0.1050 0.8749

F PF
10 0 0 0.2731 0.6691 2.1571 0.0667 0.9515

F PF
11 -0.4738 0.0517 0 1.0664 2.1767 0.1020 0.8823

F PF
12 0.6091 0.0576 0.3132 0 2.1610 0.0759 0.9367

F PF
13 0 0.0830 0.2894 0.6024 2.1463 0.0636 0.9560

F PF
14 -0.4738 0.0517 0 1.0664 2.1767 0.3743 0.8794

F PF
15 -0.1894 0.1007 0.2832 0.7734 2.1417 0.0628 0.9571

Table 6.3: Coefficients of fitted numerical functions {F PF
1 , · · · , F PF

15 }

BF4: Best fit with the individual penalty functions Jω, Jω̇, Jsc, Jfsh

In this best-fit run, fifteen functions

F PF
i = w0 + wJ̄ω J̄ω ++wJ̄ω̇ J̄ω̇ ++wJ̄sc J̄sc ++wJ̄fsh J̄fsh i = {1 · · · 15} (6.5)

were analysed in which the penalty functions are regarded individually, in combinations

of two, in combinations of three, and in a combination of all four. The coefficients for

fifteen combinations are listed together with the respective root mean square error and

the Pearson’s correlation in Tab. 6.3. Clearly, the functions F PF
10 , F PF

13 and F PF
15 have

best correlation, as shown in the Fig. 6.5.

Individually, from Tab. 6.3, the values of penalty functions J̄ω and of J̄fsh have signi-

ficant impact on motion perception fidelity, while the values of J̄ω̇ and J̄sc have only

poor effect on motion perception fidelity. This result is in agreement with publications

related to the effect of false cues on motion perception fidelity.

However, in combination, the penalty functions provide the best correlation cases.

Therefore, the impact of combined scale error and shape error of the simulated specific

forces on motion perception fidelity is most significant. This means that the angular

velocity and acceleration is not critical as long as the motion follows the target shape,

and the angular velocity and acceleration are close to their limits. The reason may

be that the thresholds of angular velocity and acceleration in the simulation task are
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too strict. If the assumption is right, the Op-family set of simulated signals probably

best cues. Another implication is that the false cues of angular velocity dominate the

motion perception fidelity only if there is no shape error and scale error of the simulated

specific force. Otherwise, the rotational false cues are masked by the shape errors.

In summary, the partial components of the “good criterion” yield as such a good

measure as the best fit of the combined penalty functions. This may be of use for

future development of numerical score for assessment of perception quality in ride

simulators.
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7 Conclusion and Further Research

This thesis compares existing motion-cueing algorithms (MCAs) and adapts them to

the LMR driving simulator for a planar S-curve maneuver. Furthermore, an auto-

tuning method is proposed for offline tuning. In order to find a correlation between

numerical indices and subjective assessment of motion perception fidelity, a preliminary

subjective test was performed with ten arbitrary simulated signals, and then fitted

functions according to numerical indices are computed. From this work, the main

conclusions are:

(1) For a simulation task with only lateral acceleration, all MCAs studied can be

adapted with high well-tuned indices

(2) For a serial robot, circular motion of the cabin can be well-compensated by pitch

angles

(3) Among all MCAs, optimal tracking (Zywiol-Romano algorithm = ZyRo) and

model-predictive control (MPC*) algorithms can simulate a large amplitude input

signal while keeping a high well-tuned index. Furthermore, these algorithms

exploit better simulator’s workspace than other MCAs and are easily tuned

(4) The ZyRo algorithm produces comparable results as the MPC* algorithm, while

the MPC* algorithm requires more computational time

(5) By analyzing simulated signals, the usage of the motion perception model in

the optimal washout filters and MPC* algorithm do not have any advantages

compared to other MCAs. Additionally, the responses of all MCAs studied are

similar to the scale k = 0.4. However, if a larger scale factor is used, the responses

of the MCAs have apparent differences

(6) An auto-tuning process is proposed using a mean-variance mapping optimization

(MVMO) that automatically tunes parameters to obtain a high well-tuned index

MF . A case study is performed for determining the maximum global scale factor

kS,max. Remarkably, the pitch rotational motion that is used to compensate for

the centripetal acceleration is also kept under the threshold value by the penalty

functions

(7) A subjective for test checking motion perception fidelity of 10 simulated signals

was implemented. From these measurements, a good correlation between average

subjective and objective measures can be achieved.
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However, due to the large variability of the individual scores, further research

is still necessary to better understand the subjective ratings of simulator rides.

This involves:

– The optimal selection of the initial position of the simulator to improve the

usage of simulator’s workspace for a particular simulation task.

– Further subjective experiments focusing on the effect of false cues and scale

errors on the motion perception fidelity.

– The effects of the target yaw rate fell outside the context of this thesis, but

the errors that it generates in the simulation task could be a topic of future

studies.
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calorischen Reizung. Pflüger’s Archiv für die gesamte Physiologie des Menschen und

der Tiere, 228(1):322–328.

Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the insti-

tution of mechanical engineers, 180(1):371–386.

Stoffregen, T. A., Hettinger, L. J., Haas, M. W., Roe, M. M., and Smart, L. J. (2000).

Postural instability and motion sickness in a fixed-base flight simulator. Human

Factors: The Journal of the Human Factors and Ergonomics Society, 42(3):458–

469.



134 Bibliography

Stoffregen, T. A. and Smart, L. J. (1998). Postural instability precedes motion sickness.

Brain research bulletin, 47(5):437–448.

Stratulat, A. M., Roussarie, V., Vercher, J., and Bourdin, C. (2011). Does

tilt/translation ratio affect perception of deceleration in driving simulators? Journal

of Vestibular Research, 21(3):127.

Teghtsoonian, R. (1971). On the exponents in Stevens’ law and the constant in Ekman’s

law.

Telban, R. J. and Cardullo, F. M. (2001). An integrated model of human motion

perception with visual-vestibular interaction. In AIAA Modeling and Simulation

Technologies Conference and Exhibit, page 4249.

Telban, R. J., Cardullo, F. M., and Houck, J. A. (2005). Motion cueing algorithm

development: Human-centered linear and nonlinear approaches. Technical report,

NASA/CR-2005-213747.

Tortora, G. J. and Derrickson, B. H. (2008). Principles of Anatomy and Physiology.

John Wiley & Sons, New Jersey, USA.

Valente Pais, A., Wentink, M., van Paassen, M., and Mulder, M. (2009). Comparison of

three motion cueing algorithms for curve driving in an urban environment. Presence,

18(3):200–221.

Valente Pais, A. R., Mulder, M., Van Paassen, M. M., Wentink, M., and Groen, E.

(2006). Modeling human perceptual thresholds in self-motion perception. In AIAA

Modeling and Simulation Technologies Conference and Exhibit.

Van der Steen, H. (1998). Self-Motion Perception. PhD thesis, Delft University of

Technology: Delft, The Netherlands.

Wang, L. (2009). Model Predictive Control System Design and Implementation using

MATLAB R©. Springer.

Wang, S. and Fu, L. (2004). Predictive washout filter design for VR-based motion

simulator. In Systems, Man and Cybernetics, 2004 IEEE International Conference

on, Volume 7, pages 6291–6295. IEEE.

Wentink, M., Bles, W., Hosman, R., and Mayrhofer, M. (2005). Design & evaluation

of spherical washout algorithm for Desdemona simulator. Proc. of AIAA Modeling

and Simulation Technologies.



Bibliography 135

Wentink, M., Valente Pais, R., Mayrhofer, M., Feenstra, P., and Bles, W. (2008). First

curve driving experiments in the Desdemona simulator.

White, A. D. and Rodchenko, V. V. (1999). Motion fidelity criteria based on human

perception and performance. In Proceedings of the AIAA Modelling and Simulation

Technologies Conference, Portland (OR), August 9, Volume 11, pages 485–493.

Wright, R. H. (1995). Helicopter simulator sickness: A state-of-the-art review of its

incidence, causes, and treatment. Alexandria, VA: US Army Research Institute for

the Behavioral and Social Sciences.

Young, L. R. (1978). Visually induced motion in flight simulation. In AGARD Sym-

posium on Flight Simulation. Brussels, Belgium.

Young, L. R. (2003). Spatial orientation. Principles and practice of aviation psychology,

pages 69–113.

Young, L. R., Henn, V., and Scherberger, H. (2001). Fundamentals of the theory of

movement perception by Dr. Ernst Mach.

Young, L. R. and Meiry, J. L. (1968). A revised dynamic otolith model. Aerospace

medicine, 39(6):606–608.

Zacharias, G. L. (1978). Motion Cue Models for Pilot-Vehicle Analysis. Technical

report, AMRL-TR-78-2, Department of Defense, Alexandria, VA.

Zaichik, L. E., Rodchenko, V., Rufov, I. V., Yashin, Y. P., and White, A. D. (1999).

Acceleration perception. In AIAA Modeling and Simulation Technologies Conference

and Exhibit, Portland, OR, pages 512–520.

Zaichik, L. E., Yashin, Y. P., Desyatnik, P., and Smaili, H. (2012). Some aspects of up-

set recovering simulation on hexapod simulators. In AIAA Modeling and Simulation

Technologies Conference, page 4949.

Zaichik, L. E., Yashin, Y. P., and Desyatnik, P. A. (2009). Motion fidelity criteria for

large-amplitude tasks. AIAA Paper, (2009-5916).

Zaichik, L. E., Yashin, Y. P., and Desyatnik, P. A. (2010). Peculiarities of motion

cueing for precision control tasks and maneuvers. ICAS. Nice, France. ICAS Paper,

(602).

Zeyada, Y. and Hess, R. A. (2000). Modeling human pilot cue utilization with applic-

ations to simulator fidelity assessment. Journal of aircraft, 37(4):588–597.



136 Bibliography

Zywiol, H. J. and Romano, R. (2003). Motion drive algorithms and simulator design to

study motion effects on infantry soldiers. In Driving Simulation Conference, North

America 2003 (DSC-NA 2003).



Bibliography 137

Appendices



138

A Miscellaneous Fundamental Information

A.1 Effect of a filter frame in CL algorithm

Reid and Nahon (1985) introduced two options of selecting reference frames, KS or K0,

for implementing washout process. Fig. A.1, and A.2 show in detail the effect of the

washout process in each reference frame to the simulated quantities.

For example, if there is only lateral acceleration input, the center of rotation is at

the driver’s head (KS ≡ KPs), and the washout filters are implemented in the frame

KS (Fig. A.1) that is oriented an non-zero roll angle with respect to K0 at this time.

The target specific force V f
V
is reproduced completely by the desired acceleration a′S

and −0g. The Y-axis low-pass component of the desired acceleration Sa′Sy is through

the Tilt coordinator to generate additional rotation angle, ∆ϕS regarding the current

orientation of KS. On the other hand, after the simulated acceleration a′S is filtered

by the high-pass filters and translated to the inertial frame K0, the residual part of

the simulated acceleration in Z0 axis,
0aszHP , can produce the vertical movement, that

cause the simulator violation with the vertical physical limits.

In contrast, when the washout filters are implemented in the frame K0 (Fig. A.2), three

components of the desire acceleration 0a′S are filtered separately, thus, with the suitable

parameters the vertical high-frequency component 0a′SzHP can be completely remove,

and only the 0a′SyHP produce the lateral motion. However, the vertical component of

the simulated specific force is reduced a small amount, because it is reproduced only

by a part of the gravity acceleration g.

A.2 Real Time Solution of the Riccati Equation

Solving the nonlinear Riccati Eq. 4.65 is required at each time step. Telban et al.

(2005) use the structured neural network developed by Ham and Collins (1996) that

finds the P(k + 1) from previous solution of P(k) as equation

P(k + 1) = P(k) + µ∆P(k), (A.1)

with µ > 0 is the learning rate parameter and the term ∆P given as

∆P(k) =
[
A′
η(k)e

∗(k)z(k) + e∗(k)zT(k)A′
η(k)− e∗(k)pT(k)S̃

]
, (A.2)
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where A′
η = A′ + ηI, and S̃ = BTR−1

2 B. Moreover, z(k) is the excitatory signal at the

k time step, and p(k) = P(k)z(k). The error signal e∗(k) is given as

e∗(k) =
[
P(k)S̃P(k)−A′T

ηP(k)−PA′
η −R′

1

]
(A.3)

Ham and Collins (1996) noted that the external excitatory vector input signals z(k)

are a set of linearly independent bi-polar vectors given as

zi = [z11z12 · · · z1n] , i = 1 · n , (A.4)

here z1j = −1 if {j = 1 · · ·n , j 6= i} and z1i = 1.

A.3 Nonlinear scale

The nonlinear scale block used in the OpT, OpTNon algorithms is the three-order

polynomial curve (cubic Hermite spline), defining the relate between input magnitude
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a and output magnitude b, that is expressed as

b = c3a
3 + c2a

2 + c1a+ c0, (A.5)

where,

c0 = 0 ; c1 = s0 ; c2 = a−2
max(3 bmax − 2 s0amax − s1amax) ; (A.6)

c3 = a−3
max(s0 amax − 2 bmax + s1amax). (A.7)

Here, s0 and s1 are the slopes at a = 0, and a = amax. And amax and bmax are expected

maximum input and output magnitude, respectively.

A.4 Planar S-curve trajectory construction

The experiment was implemented with the simulation task in which a virtual roller

coaster run with a constant amplitude v = 3.6(m/s2) along a planar S-curve and has

only a lateral acceleration ay depending on time. If it is assumed that there are only

two center C1 , C2 of rotation being both sides of the curve, and the S-curve trajectory

is approximated by multiple small straight segments ∆l A.3. Due to the constant

amplitude of the velocity, ∆l = vTs, here, Ts = 0.0125 (s) is the sample time of the

simulation. Due to small ∆αk, it can be calculated approximately as Eq. A.8

∆αk = ∆l/Rk+1 ;αk+1 = αk +∆αk (A.8)

The position of the point in the S-curve, (xk+1, yk+1), was computed by recursively

xk+1 = xk +∆l · cosαk ; yk+1 = yk +∆l · sinαk ; (A.9)
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B Parameters and Response of MCAs

In the section 5.4.3 the input acceleration is scaled from the target acceleration by the

factor k = 0.4. All MCAs with the tuned parameters have the response satisfying the

highest level of fidelity index MF . In this part, to describe more clearly the capability

of the reviewed MCAs the response of the MCAs with higher amplitude (higher scale

factor k ∈ FSset = {0.5, 0.6, 0.7, 0.8, 0.9} used) are illustrated from Fig. B.49 to B.240

and all the fidelity index MF are shown from Tab. B.11 to B.22. In the tables, the

violating the restricted conditions is presented by 0, and the satisfying these conditions

is represented by 1. Referred to the response data, it can be seen that if the parameters

are kept, various types false cues and physical violation appear accompanying with the

higher scale factor applied.

A0(s
−1) B0(s

−1) B1(s
−1) GO(s

2/m) δOto(m/s
2)

OpS 0.076 0.19 - 2.16 0.47

OpRN 0.076 0.19 - 5.86 0.17

OpTYM 0.076 0.19 1.5 8.82 0.17

OpT 0.1 0.2 62.5 294.12 0.17

OpTNon 0.1 0.2 - 294.12 0.17

Note: ’-’: the parameter is not used.

Table B.1: The otolith parameters (sway direction)

τ 1(s) τ 2(s) τa(s) τl(s) GS(s/rad) δScc(deg/s)

OpS 5.9 0.003 - - 233$ 1.45∗

OpRN 6.1 0.1 - - 118.55 3

OpTYM 5.73 0.005 80 0.06 28.6479 2

OpT 5.73 0.005 80 0.06 28.6479 2

OpTNon 5.73 - 80 - 28.6479 2

Note: ’*’: the unit is
(
deg/s2

)
and ’$’: the unit is

(
s2/rad

)
.

Table B.2: Semicircular parameters (roll angle)

xc uS∫∫∫
aSydt

3
∫∫

aSydt
2

∫
aSydt ϕS u1 u2

OpS - + + - aSy ϕS

OpRN + + + - ϕS aSy

OpTYM + + + + ϕ̇S aSy

OpT + + + + ϕ̇S aSy

OpTNon + + + + ϕ̇S aSy

Note: ’-’: the parameter is not used; ’+’: the parameter is used.

Table B.3: Dynamic states used in the optimal washout algorithms
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CLRN CLG
HP LP HPα LPα HPr LPr HPz LPz

Order(-) 3 2 3 3 3 3 3 3
ωn(rad/s) 0.001 0.005 0.03 0.03 0.6 0.6 0.6 0.6
ζ(kg/s) 1.4 1.4 1.4 1.4 1 1 1 1
ωb(rad/s) 0.01 - 0.9 0.9 20 20 20 20

Table B.4: Parameters of washout filters CLRN and CLG

G1 G2 G3 p10 p20 p30 ρ ky1 ky2
0.47 0.00579 0.0108 1 -0.121 0.7 1 0.0001 0.04

w1 w2 w3 w4 w5 w6 w7 w8 -
0.06 0.002 0.0001 0 0 0.194 17.26 46.45 -

Table B.5: Parameters of ADRN

K0 ζ0 ωn0 (s
−1) ωb (s

−1) wa wk wζ wω wv ws

0.9 1.4 0.03 0.9 5 10 65 75 30 1.5

Table B.6: Parameters of in ADSK

q1 q2 r1 r2 rc1 rc2 rc3 rc4 γ1 γ2

OpS 60 1 0.377 0.999 - 0.00177 0.0477 - 0.2 20

OpRN 0.25 0.8 0.33 0.2 0.0009 0.00001 0.00001 - 0.1 0.2

OpTYM 5 42 1 20 0.0008 0.001 0.0001 5 0.1 0.2

OpT 1 20 1 20 0.005 0.005 1 10 1 1.2

Table B.7: Weighting parameters Optimal washout filters

γ (s−1) c (s−1) q1 q2 r1 r2

ZyRo 20 1.25 199 0.05 0.01 69

Table B.8: Parameters of ZyRo

si ri qi p m

MPC 0.5 | 60 1 | 5 199 | 4.5 | 55 | 175 400 200

Table B.9: Weighting values of MPC*

Model Limit Values Law brake variances

Ts (s) 0.125 [Symin, Symax] (m) [−10.86, 10.86] cu (−) 0.45

{qyi} (−) {7, 1, 79} [vymin, vymax] m/s [−100, 100] cv (−) 1

{ri} (-) {1, 3} [aymin, aymax] (m/s
2) [−14, 14] T1 (s) 2

{qxi} (-) {7, 1, 1, 1} [ϕmax, ϕmax] (rad) [−0.5, 0.5] T2 (s) 2

N (-) 4 [ωmin, ωmax] (rad/s) [−0.1, 0.1] - -

Nc (-) 4 [ω̇max, ω̇max] (rad/s
2) [−0.2, 0.2] - -

Table B.10: MPC parameters tuned for the LMR driving simulator
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Response of MCA CLRN k = 0.4
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Figure B.1: CLRN - Simulated rotational quantities
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Response of MCA CLG k = 0.4
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Figure B.5: CLG - Simulated rotational quantities
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Figure B.6: CLG - Simulated specific forces and acceleration
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Figure B.7: CLG - Position
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Figure B.8: CLG - Euler angle
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Response of MCA ADRN k = 0.4
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Figure B.9: ADRN - Simulated rotational quantities
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Figure B.10: ADRN - Simulated specific forces and acceleration
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Figure B.11: ADRN - Position
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Figure B.12: ADRN - Euler angle



146 B Parameters and Response of MCAs

Response of MCA ADSK k = 0.4
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Figure B.13: ADSK - Simulated rotational quantities
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Figure B.14: ADSK - Simulated specific forces and acceleration
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Figure B.15: ADSK - Position
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Figure B.16: ADSK - Euler angle
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Response of MCA OpTYM k = 0.4

 

 

PSfrag replacements

ω̇Sy (rad/s2)

ωSy (rad/s)

ω̇Sx (rad/s2)

ωSx (rad/s)

time (s)

ω̇th

ωth

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure B.17: OpS - Simulated rotational quantities
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Figure B.18: OpS - Simulated specific forces and acceleration
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Figure B.19: OpS - Position
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Figure B.20: OpS - Euler angle
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Response of MCA OpT k = 0.4
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Figure B.21: OpRN - Simulated rotational quantities
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Figure B.22: OpRN - Simulated specific forces and acceleration
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Figure B.23: OpRN - Position
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Figure B.24: OpRN - Euler angle
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Response of MCA OpS k = 0.4
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Figure B.25: OpTYM - Simulated rotational quantities
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Figure B.26: OpTYM - Simulated specific forces and acceleration
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Figure B.27: OpTYM - Position
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Figure B.28: OpTYM - Euler angle
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Response of MCA OpRN k = 0.4
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Figure B.29: OpT - Simulated rotational quantities
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Figure B.30: OpT - Simulated specific forces and acceleration
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Figure B.31: OpT - Position
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Figure B.32: OpT - Euler angle
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Response of MCA OpTNon k = 0.4
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Figure B.33: OpTN - Simulated rotational quantities
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Figure B.34: OpTN - Simulated specific forces and acceleration
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Figure B.35: OpTN - Position
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Figure B.36: OpTN - Euler angle
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Response of MCA ZyRo k = 0.4
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Figure B.37: ZyRo - Simulated rotational quantities
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Figure B.38: ZyRo - Simulated specific forces and acceleration
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Figure B.39: ZyRo - Position
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Figure B.40: ZyRo - Euler angle
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Response of MCA MPC* k = 0.4
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Figure B.41: MPC - Simulated rotational quantities
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Figure B.42: MPC - Simulated specific forces and acceleration
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Figure B.43: MPC - Position
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Figure B.44: MPC - Euler angle
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Response of MCA exMPCFK k = 0.4
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Figure B.45: exMPCFK - Simulated rotational quantities
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Figure B.46: exMPCFK - Simulated specific forces and acceleration
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Figure B.47: exMPCFK - Position
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Figure B.48: exMPCFK - Euler angle
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Response of MCA CLRN k = 0.5
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Figure B.49: CLRN - Simulated rotational quantities
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Figure B.50: CLRN - Simulated specific forces and acceleration
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Figure B.51: CLRN - Position
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Figure B.52: CLRN - Euler angle
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Response of MCA CLG k = 0.5
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Figure B.53: CLG - Simulated rotational quantities
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Figure B.54: CLG - Simulated specific forces and acceleration
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Figure B.55: CLG - Position
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Figure B.56: CLG - Euler angle
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Response of MCA ADRN k = 0.5
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Figure B.57: ADRN - Simulated rotational quantities
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Figure B.58: ADRN - Simulated specific forces and acceleration
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Figure B.59: ADRN - Position
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Figure B.60: ADRN - Euler angle
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Response of MCA ADSK k = 0.5
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Figure B.61: ADSK - Simulated rotational quantities
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Figure B.62: ADSK - Simulated specific forces and acceleration
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Figure B.63: ADSK - Position
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Figure B.64: ADSK - Euler angle
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Response of MCA OpTYM k = 0.5
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Figure B.65: OpS - Simulated rotational quantities
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Figure B.66: OpS - Simulated specific forces and acceleration
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Figure B.67: OpS - Position
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Figure B.68: OpS - Euler angle
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Response of MCA OpT k = 0.5
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Figure B.69: OpRN - Simulated rotational quantities
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Figure B.70: OpRN - Simulated specific forces and acceleration
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Figure B.71: OpRN - Position
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Figure B.72: OpRN - Euler angle
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Response of MCA OpS k = 0.5
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Figure B.73: OpTYM - Simulated rotational quantities
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Figure B.74: OpTYM - Simulated specific forces and acceleration
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Figure B.75: OpTYM - Position
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Figure B.76: OpTYM - Euler angle
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Response of MCA OpRN k = 0.5
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Figure B.77: OpT - Simulated rotational quantities
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Figure B.78: OpT - Simulated specific forces and acceleration
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Figure B.79: OpT - Position
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Figure B.80: OpT - Euler angle
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Response of MCA OpTNon k = 0.5

 

 

PSfrag replacements

ω̇Sy (rad/s2)

ωSy (rad/s)

ω̇Sx (rad/s2)

ωSx (rad/s)

time (s)

ω̇th

ωth

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure B.81: OpTN - Simulated rotational quantities
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Figure B.82: OpTN - Simulated specific forces and acceleration
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Figure B.83: OpTN - Position
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Figure B.84: OpTN - Euler angle
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Response of MCA ZyRo k = 0.5
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Figure B.85: ZyRo - Simulated rotational quantities
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Figure B.86: ZyRo - Simulated specific forces and acceleration
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Figure B.87: ZyRo - Position
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Figure B.88: ZyRo - Euler angle
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Response of MCA MPC* k = 0.5
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Figure B.89: MPC - Simulated rotational quantities
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Figure B.90: MPC - Simulated specific forces and acceleration
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Figure B.91: MPC - Position
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Figure B.92: MPC - Euler angle
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Response of MCA exMPCFK k = 0.5
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Figure B.93: exMPCFK - Simulated rotational quantities
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Figure B.94: exMPCFK - Simulated specific forces and acceleration
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Figure B.95: exMPCFK - Position
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Figure B.96: exMPCFK - Euler angle
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Response of MCA CLRN k = 0.6
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Figure B.97: CLRN - Simulated rotational quantities
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Figure B.98: CLRN - Simulated specific forces and acceleration
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Figure B.99: CLRN - Position
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Figure B.100: CLRN - Euler angle
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Response of MCA CLG k = 0.6
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Figure B.101: CLG - Simulated rotational quantities
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Figure B.102: CLG - Simulated specific forces and acceleration
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Figure B.103: CLG - Position

 

 

PSfrag replacements

α
ψE

θE

ϕE(r
a
d
)

time (s)

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

Figure B.104: CLG - Euler angle
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Response of MCA ADRN k = 0.6
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Figure B.105: ADRN - Simulated rotational quantities
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Figure B.106: ADRN - Simulated specific forces and acceleration

 

 

PSfrag replacements

zE

yE
xE

d
is
ta
n
ce

(m
)

time (s)

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

Figure B.107: ADRN - Position
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Figure B.108: ADRN - Euler angle
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Response of MCA ADSK k = 0.6
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Figure B.109: ADSK - Simulated rotational quantities
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Figure B.110: ADSK - Simulated specific forces and acceleration
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Figure B.111: ADSK - Position
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Figure B.112: ADSK - Euler angle
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Response of MCA OpTYM k = 0.6
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Figure B.113: OpS - Simulated rotational quantities
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Figure B.114: OpS - Simulated specific forces and acceleration
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Figure B.115: OpS - Position
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Figure B.116: OpS - Euler angle
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Response of MCA OpT k = 0.6
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Figure B.117: OpRN - Simulated rotational quantities
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Figure B.118: OpRN - Simulated specific forces and acceleration
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Figure B.119: OpRN - Position
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Figure B.120: OpRN - Euler angle
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Response of MCA OpS k = 0.6
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Figure B.121: OpTYM - Simulated rotational quantities
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Figure B.122: OpTYM - Simulated specific forces and acceleration
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Figure B.123: OpTYM - Simulator Pos
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Figure B.124: OpTYM - Euler angle
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Response of MCA OpRN k = 0.6
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Figure B.125: OpT - Simulated rotational quantities
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Figure B.126: OpT - Simulated specific forces and acceleration
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Figure B.127: OpT - Position
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Figure B.128: OpT - Euler angle
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Response of MCA OpTNon k = 0.6
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Figure B.129: OpTN - Simulated rotational quantities
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Figure B.130: OpTN - Simulated specific forces and acceleration
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Figure B.131: OpTN - Position
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Figure B.132: OpTN - Euler angle
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Response of MCA ZyRo k = 0.6
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Figure B.133: ZyRo - Simulated rotational quantities
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Figure B.134: ZyRo - Simulated specific forces and acceleration
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Figure B.135: ZyRo - Position
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Figure B.136: ZyRo - Euler angle
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Response of MCA MPC* k = 0.6
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Figure B.137: MPC - Simulated rotational quantities
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Figure B.138: MPC - Simulated specific forces and acceleration
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Figure B.139: MPC - Position
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Figure B.140: MPC - Euler angle
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Response of MCA exMPCFK k = 0.6
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Figure B.141: exMPCFK - Simulated rotational quantities
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Figure B.142: exMPCFK - Simulated specific forces and acceleration
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Figure B.143: exMPCFK - Position
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Figure B.144: exMPCFK - Euler angle
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Response of MCA CLRN k = 0.7
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Figure B.145: CLRN - Simulated rotational quantities
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Figure B.146: CLRN - Simulated specific forces and acceleration
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Figure B.147: CLRN - Position
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Figure B.148: CLRN - Euler angle
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Response of MCA CLG k = 0.7
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Figure B.149: CLG - Simulated rotational quantities
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Figure B.150: CLG - Simulated specific forces and acceleration
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Figure B.151: CLG - Position
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Figure B.152: CLG - Euler angle
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Response of MCA ADRN k = 0.7
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Figure B.153: ADRN - Simulated rotational quantities
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Figure B.154: ADRN - Simulated specific forces and acceleration
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Figure B.155: ADRN - Position
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Figure B.156: ADRN - Euler angle
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Response of MCA ADSK k = 0.7

 

 

PSfrag replacements

ω̇Sy (rad/s2)

ωSy (rad/s)

ω̇Sx (rad/s2)

ωSx (rad/s)

time (s)

ω̇th

ωth

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure B.157: ADSK - Simulated rotational quantities
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Figure B.158: ADSK - Simulated specific forces and acceleration
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Figure B.159: ADSK - Position
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Figure B.160: ADSK - Euler angle
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Response of MCA OpTYM k = 0.7
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Figure B.161: OpS - Simulated rotational quantities
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Figure B.162: OpS - Simulated specific forces and acceleration
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Figure B.163: OpS - Position
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Figure B.164: OpS - Euler angle
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Response of MCA OpT k = 0.7
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Figure B.165: OpRN - Simulated rotational quantities
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Figure B.166: OpRN - Simulated specific forces and acceleration
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Figure B.167: OpRN - Position
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Figure B.168: OpRN - Euler angle
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Response of MCA OpS k = 0.7
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Figure B.169: OpTYM - Simulated rotational quantities
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Figure B.170: OpTYM - Simulated specific forces and acceleration
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Figure B.171: OpTYM - Position
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Figure B.172: OpTYM - Euler angle
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Response of MCA OpRN k = 0.7
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Figure B.173: OpT - Simulated rotational quantities
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Figure B.174: OpT - Simulated specific forces and acceleration
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Figure B.175: OpT - Position
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Figure B.176: OpT - Euler angle



B Parameters and Response of MCAs 187

Response of MCA OpTNon k = 0.7
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Figure B.177: OpTN - Simulated rotational quantities
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Figure B.178: OpTN - Simulated specific forces and acceleration
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Figure B.179: OpTN - Position
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Figure B.180: OpTN - Euler angle
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Response of MCA ZyRo k = 0.7
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Figure B.181: ZyRo - Simulated rotational quantities
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Figure B.182: ZyRo - Simulated specific forces and acceleration
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Figure B.183: ZyRo - Position
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Figure B.184: ZyRo - Euler angle
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Response of MCA MPC* k = 0.7
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Figure B.185: MPC - Simulated rotational quantities
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Figure B.186: MPC - Simulated specific forces and acceleration
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Figure B.187: MPC - Position
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Figure B.188: MPC - Euler angle



190 B Parameters and Response of MCAs

Response of MCA exMPCFK k = 0.7
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Figure B.189: exMPCFK - Simulated rotational quantities
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Figure B.190: exMPCFK - Simulated specific forces and acceleration
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Figure B.191: exMPCFK - Position

 

 

PSfrag replacements

α
ψE

θE

ϕE(r
a
d
)

time (s)

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Figure B.192: exMPCFK - Euler angle
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Response of MCA CLRN k = 0.9
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Figure B.193: CLRN - Simulated rotational quantities

 

 

PSfrag replacements

fSy = aSy + aTy

aTy = g sinϕS

aSy

fV y

(m
/s

2
)

time (s)

e∗f,sh = 0.0868ka = 0.73kS = k · kS1 = 0.78kS1 = 0.98k =0.90

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

Figure B.194: CLRN - Simulated specific forces and acceleration
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Figure B.195: CLRN - Position
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Figure B.196: CLRN - Euler angle
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Response of MCA CLG k = 0.9
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Figure B.197: CLG - Simulated rotational quantities
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Figure B.198: CLG - Simulated specific forces and acceleration
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Figure B.199: CLG - Position

 

 

PSfrag replacements

α
ψE

θE

ϕE(r
a
d
)

time (s)

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Figure B.200: CLG - Euler angle
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Response of MCA ADRN k = 0.9

 

 

PSfrag replacements

ω̇Sy (rad/s2)

ωSy (rad/s)

ω̇Sx (rad/s2)

ωSx (rad/s)

time (s)

ω̇th

ωth

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure B.201: ADRN - Simulated rotational quantities
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Figure B.202: ADRN - Simulated specific forces and acceleration
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Figure B.203: ADRN - Position
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Figure B.204: ADRN - Euler angle
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Response of MCA ADSK k = 0.9
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Figure B.205: ADSK - Simulated rotational quantities
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Figure B.206: ADSK - Simulated specific forces and acceleration
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Figure B.207: ADSK - Position
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Figure B.208: ADSK - Euler angle
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Response of MCA OpTYM k = 0.9
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Figure B.209: OpS - Simulated rotational quantities
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Figure B.210: OpS - Simulated specific forces and acceleration
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Figure B.211: OpS - Position
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Figure B.212: OpS - Euler angle
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Response of MCA OpT k = 0.9
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Figure B.213: OpRN - Simulated rotational quantities
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Figure B.214: OpRN - Simulated specific forces and acceleration
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Figure B.215: OpRN - Position
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Figure B.216: OpRN - Euler angle
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Response of MCA OpS k = 0.9
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Figure B.217: OpTYM - Simulated rotational quantities

time (s)

 

 

PSfrag replacements

extra acceleration

fSy = aSy + aTy

aTy = g sinϕS

aSy

fV y(m
/s

2
)

time (s)

e∗f,sh = 0.0472ka = 0.58kS = k · kS1 = 0.78kS1 = 0.98k =0.90

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Figure B.218: OpTYM - Simulated specific forces and acceleration
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Figure B.219: OpTYM - Position
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Figure B.220: OpTYM - Euler angle



198 B Parameters and Response of MCAs

Response of MCA OpRN k = 0.9
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Figure B.221: OpT - Simulated rotational quantities
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Figure B.222: OpT - Simulated specific forces and acceleration
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Figure B.223: OpT - Position
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Figure B.224: OpT - Euler angle
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Response of MCA OpTNon k = 0.9
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Figure B.225: OpTN - Simulated rotational quantities
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Figure B.226: OpTN - Simulated specific forces and acceleration
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Figure B.227: OpTN - Position
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Figure B.228: OpTN - Euler angle
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Response of MCA ZyRo k = 0.9
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Figure B.229: ZyRo - Simulated rotational quantities
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Figure B.230: ZyRo - Simulated specific forces and acceleration
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Figure B.231: ZyRo - Position
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Figure B.232: ZyRo - Euler angle
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Response of MCA MPC* k = 0.9
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Figure B.233: MPC - Simulated rotational quantities
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Figure B.234: MPC - Simulated specific forces and acceleration
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Figure B.235: MPC - Position
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Figure B.236: MPC - Euler angle
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Response of MCA exMPCFK k = 0.9
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Figure B.237: exMPCFK - Simulated rotational quantities
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Figure B.238: exMPCFK - Simulated specific forces and acceleration
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Figure B.239: exMPCFK - Position
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Figure B.240: exMPCFK - Euler angle
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Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 0 0 1 1 1 1 3
0.60 1 1 1 0 0 1 0 0 1 1 1 1 3
0.70 1 1 1 0 0 1 0 0 1 1 1 1 3
0.80 1 1 1 0 0 1 0 0 1 1 1 1 3
0.90 1 1 1 0 0 1 0 0 1 1 1 1 3
1.00 1 1 1 0 0 1 0 0 1 1 1 1 3

Table B.11: CLRN - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 0 14
0.50 1 1 1 1 1 1 1 0 1 1 1 0 10
0.60 1 1 1 1 0 1 1 0 1 1 1 0 2
0.70 1 1 1 1 0 1 1 0 1 1 1 0 2
0.80 1 1 1 1 0 1 1 0 1 1 1 0 2
0.90 1 1 1 1 0 1 1 0 1 1 1 0 2
1.00 1 1 1 1 0 1 0 0 1 1 0 0 0

Table B.12: CLG - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 0 14
0.50 1 1 1 1 1 1 1 1 1 1 1 0 14
0.60 1 1 1 1 1 1 1 1 1 1 1 0 14
0.70 1 1 1 0 0 1 0 0 1 1 1 0 2
0.80 1 1 1 0 0 1 0 1 1 1 1 1 7
0.90 1 1 1 0 0 1 0 1 1 0 1 1 3
1.00 1 1 1 0 0 1 0 1 0 0 1 1 3

Table B.13: ADRN - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 0 14
0.50 1 1 1 1 1 1 1 0 1 0 1 0 10
0.60 1 1 1 1 0 1 1 0 0 0 1 0 2
0.70 1 1 1 1 0 1 1 0 0 0 1 0 2
0.80 1 1 1 1 0 1 1 0 0 0 1 0 2
0.90 1 1 1 1 0 1 1 0 0 0 1 0 2
1.00 1 1 1 1 0 1 0 0 0 0 0 0 0

Table B.14: ADSK - Result of verifying criteria
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Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 1 0 1 1 1 1 3
0.60 1 1 1 1 0 1 1 0 1 1 1 1 3
0.70 1 1 1 1 0 1 1 0 1 1 1 1 3
0.80 1 1 1 1 0 1 0 0 1 1 1 1 3
0.90 1 1 1 0 0 1 0 0 1 1 1 1 3
1.00 1 1 1 0 0 1 0 0 1 1 1 1 3

Table B.15: OpS - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 1 0 1 1 1 1 3
0.60 1 1 1 1 0 1 1 0 1 1 1 1 3
0.70 1 1 1 1 0 1 1 0 1 1 1 1 3
0.80 1 1 1 1 0 1 0 0 1 1 1 1 3
0.90 1 1 1 0 0 1 0 0 1 1 1 1 3
1.00 1 1 1 0 0 1 0 0 1 1 1 1 3

Table B.16: OpRN - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 1 0 1 1 1 1 3
0.60 1 1 1 1 0 1 1 0 1 1 1 1 3
0.70 1 1 1 1 0 1 1 0 1 1 1 1 3
0.80 1 1 1 1 0 1 1 0 1 1 1 1 3
0.90 1 1 1 1 0 1 0 0 1 1 1 1 3
1.00 1 1 1 1 1 1 0 0 1 1 1 1 3

Table B.17: OpTYM - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 1 0 1 1 1 1 3
0.60 1 1 1 1 0 1 1 0 1 1 1 1 3
0.70 1 1 1 1 0 1 1 0 1 1 1 1 3
0.80 1 1 1 1 0 1 0 0 1 1 1 1 3
0.90 1 1 1 1 1 1 0 0 1 1 1 1 3
1.00 1 1 1 0 1 1 0 0 1 1 1 1 3

Table B.18: OpT - Result of verifying criteria
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Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 0 14
0.50 1 1 1 1 1 1 1 0 1 1 1 0 10
0.60 1 1 1 1 1 1 1 0 1 1 1 0 10
0.70 1 1 1 1 0 1 0 0 0 0 1 0 2
0.80 1 1 1 0 0 1 0 0 0 0 1 0 2
0.90 1 1 1 0 0 1 0 0 0 0 1 0 2
1.00 1 1 1 0 1 0 0 0 0 0 1 1 3

Table B.19: OpTN - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 0 14
0.50 1 1 1 1 1 1 1 1 1 1 1 0 14
0.60 1 1 1 1 1 1 1 1 1 1 1 0 14
0.70 1 1 1 1 1 1 1 1 1 1 1 0 14
0.80 1 1 1 1 1 1 1 1 1 1 1 0 14
0.90 1 1 1 1 1 1 1 0 1 1 1 0 10
1.00 1 1 1 1 1 1 1 0 1 1 1 0 10

Table B.20: ZyRo - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 1 1 1 1 1 1 1 1 15
0.60 1 1 1 1 1 1 1 1 1 1 1 1 15
0.70 1 1 1 1 1 1 1 0 1 1 1 1 11
0.80 1 1 1 1 1 1 1 0 1 1 1 1 11
0.90 1 1 1 1 1 1 1 0 1 1 1 1 11
1.00 1 1 1 1 0 1 1 1 1 1 1 1 7

Table B.21: MPC - Result of verifying criteria

Scale C∗
1 C∗

2 C∗
3 C∗

4 C∗
5 MF

xE yE zE ϕE θE ψE α ωSx ω̇Sx e∗sh kS ka
0.40 1 1 1 1 1 1 1 1 1 1 1 1 15
0.50 1 1 1 1 0 1 1 0 1 1 1 1 3
0.60 1 1 1 1 0 1 1 0 1 0 1 1 3
0.70 1 1 1 1 0 1 1 0 1 0 1 1 3
0.80 1 1 1 1 0 1 1 0 1 0 1 1 3
0.90 1 1 1 1 0 1 1 1 1 0 1 1 3
1.00 1 1 1 1 0 1 1 0 1 0 1 1 3

Table B.22: exMPCFK - Result of verifying criteria
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C Auto-tuning method examples

In the section, responses of the ZyRo algorithm with the auto-tuned parameters in

section 5.5.3 are illustrated. Furthermore, the optimized parameters obtained from

auto-tuning process for CLRN and CLG are described with their responses.
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Selected limit-values

kO (−) δO (m/s2) δS (rad/s) ω̇th (rad/s
2) kmin (−) kmax (−) ka,min (−)

1 0.17 0.1 0.2 0.4 1 0.6

Searching ranges of the tuned parameters

kS (−) ωny (rad/s) ζy (−) ωby (rad/s) ωLPy
AT1 [0.4 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 3]
AT2 [0.4 , 0.4] [0 , 2] [0 , 1] [0 , 1] [0 , 3]

Weighting parameters

wJP wJω wJω̇ wJsc wJtr wJfsh wJWo

AT1 28 23 23 22 1 23 0
AT2 28 23 23 22 1 21 0

Optimized parameters found by the auto-tuning with MVMO

k∗ (−) ω∗
ny (rad/s) ζ∗y (−) ω∗

by (rad/s) ω∗
LPy

AT1 0.54 0.1563 0.0166 0.3437 1.6583
AT2 0.4 1.6583 0.6183 0.6183 2.7865

Table C.1: Limited values, searching ranges, and weighting parameters as well as
optimized parameters of CLRN algorithm

Selected limit-values

kO (−) δO (m/s2) δS (rad/s) ω̇th (rad/s
2) kmin (−) kmax (−) ka,min (−)

1 0.17 0.1 0.2 0.4 1 0.6

Searching ranges of the tuned parameters

kS (−) ωny (rad/s) ζy (−) ωby (rad/s)

AT1 [0.4 , 1] [0.001 , 1] [0.01 , 10] [0.01 , 1]
AT2 [0.4 , 0.4] [0 , 1] [0.01 , 2] [0.3 , 1]

Weighting parameters

wJP wJω wJω̇ wJsc wJtr wJfsh wJWo

AT1 28 23 23 22 1 23 0
AT2 28 23 23 22 1 21 0

Optimized parameters found by the auto-tuning with MVMO

k∗ (−) ω∗
ny (rad/s) ζ∗y (−) ω∗

by (rad/s)

AT1 0.4796 0.1248 1.2183 0.2978
AT2 0.4 0.1128 1.3385 0.3968

Table C.2: Limited values, searching ranges, and weighting parameters as well as
optimized parameters of CLG algorithm

Tuning method CLG CLRN
kS (−) ka e∗sh kS (−) ka e∗sh

Trial-and-error parameters 0.4 0.43 0.0167 0.39 0.73 0.0255
Auto-tuned parameters 0.4 0.62 0.0214 0.39 0.43 0.0525

Table C.3: Comparison of key elements of the results of two set parameters
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Response of ZyRo Auto-tuning AT1
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Figure C.1: ZyRo - AT1 - Simulated rotatinal quantities
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Figure C.2: ZyRo - AT1 - Simulated specific forces and acceleration
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Figure C.3: ZyRo - AT1
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Figure C.4: ZyRo - AT1
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Response of ZyRo Auto-tuning AT2
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Figure C.5: ZyRo - AT2 - Simulated angular velocity and acceleration
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Figure C.6: ZyRo - Simulated specific forces and acceleration
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Figure C.7: ZyRo - AT2
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210 C Auto-tuning method examples

Response of ZyRo Auto-tuning AT3
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Figure C.9: ZyRo - AT3 - Simulated rotational quantities
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Figure C.10: ZyRo - AT3 - Simulated specific forces and acceleration
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Figure C.11: ZyRo - AT3

 

 

PSfrag replacements

α
ψE

θE

ϕE

E
u
le
r
an

gl
es

(r
a
d
)

time (s)
0 2 4 6 8 10 12 14 16 18 20

−0.4

−0.3

−0.2

−0.1
0

0.1

0.2

0.3

0.4

Figure C.12: ZyRo - AT3
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Response of CLRN Auto-tuning AT1
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Figure C.13: CLRN - AT1 Simulated rotational quantities
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Figure C.14: CLRN - AT1 - Simulated specific forces and acceleration
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Figure C.15: CLRN - AT1
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Figure C.16: CLRN - AT1
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Response of CLRN Auto-tuning AT2
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Figure C.17: CLRN - AT2 - Simulated rotational quantities
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Figure C.18: CLRN - AT2 - Simulated specific forces and acceleration
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Figure C.19: CLRN - AT2
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Figure C.20: CLRN - AT2
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Response of CLG Auto-tuning AT1
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Figure C.21: CLG - AT1 - Simulated rotational quantities
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Figure C.22: CLG - AT1 - Simulated specific forces and acceleration
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Figure C.23: CLG - AT1

 

 

PSfrag replacements

α
ψE

θE

ϕE

E
u
le
r
an

gl
e
(r
a
d
)

time (s)
0 2 4 6 8 10 12 14 16 18 20

−2

−1.5

−1

−0.5
0

0.5

1

1.5

2

Figure C.24: CLG - AT1



214 C Auto-tuning method examples

Response of CLG Auto-tuning AT2
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Figure C.25: CLG - AT2 - Simulated rotational quantities
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Figure C.26: CLG - AT2 - Simulated specific forces and acceleration
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Figure C.27: CLG - AT2
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D Model of self-motion perception

This part introduces the mathematical models of the self-motion perceptive systems

that were mentioned in the section 2. The models were constructed from the empirical

results in the literature. They are visual, vestibular, proprioceptive system models

which were commonly applied in particular studies related to the MCAs. The part

provides the most commonly used models mentioned in driving simulation field. The

explanation of these model were in the section 2. Linear transfer functions of these

otolith and semicircular organs are shown in Tab. D.1 and D.2, such as:

HOto,1 =
f̂

f
=

KOto

(TO1 s+ 1) · (TO2 s+ 1)
, (D.1)

HOto,2 =
f̂

f
=

KOto · (T
O
L s+ 1)

(TO1 s+ 1) · (TO2 s+ 1)
, (D.2)

HOto,3 =
f̂

f
=
KOto · (T

O
L s+ 1)

(TO1 s+ 1)
, (D.3)

HScc,1 =
ω̂

ω
=

KScc · τ1
(τ1s+ 1) · (τ2s+ 1)

, (D.4)

HScc,2 =
ω̂

ω
=

KScc · τ1τas

(τ1s+ 1) · (τ2s+ 1) · (τas+ 1)
, (D.5)

HScc,3 =
ω̂

ω
=

KScc · τ1τas · (τLs+ 1)

(τ1s+ 1) · (τ2s+ 1) · (τas+ 1)
(D.6)

HScc,4 =
ω̂

ω
=

KScc · τ1
(τLs+ 1) · (τ1s+ 1)

. (D.7)

where, KOto is gain factor of the model of the otolith organ; TO1 , T
O
2 , T

O
L are time

coefficients of the model of otolith models; KScc is gain factor of the model of the

semicircular organ; kϕ, kθ, kψ are gain factor for different rotational DoFs; τ1, τ2, τa, τL

are time coefficients of the model of semicircular system.

The threshold values of the vestibular system is the important factor for implementing

tilt coordination technique in a MCA. These values were differently obtained from

empirical experiments with different situation. Tab. D.3 lists several threshold values

in the literature.
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Source
Stein-
hausen
(1931)

Mayne
(1974)

Borah
et al.
(1988)

Hosman
and

Van der
Vaart
(1978)

Reid and
Nahon
(1985)

Wentink
et al.
(2005)

Model HOto,1 HOto,1 HOto,2 HOto,3 HOto,1 HOto,3

KOto (−) kF 0.4 45 1 0.4 1

TO1 (s) 10 5.26 5 0.5 5.33 0.12

TO2 (s) 0.66 0.66 - 0.016 0.66 -

TOL (s) - 13.16 10.0 1.0 13.2 0.3

Table D.1: Parameters of models of otolith organ (based on Fischer (2009))

Source
Stein-
hausen
(1931)

Mayne
(1974)

Borah et al.
(1988)

Hosman
and

Van der
Vaart
(1978)

Reid and
Nahon
(1985)

Wentink
et al.
(2005)

Model HScc,1 HScc,1 HScc,2 HScc,4 HScc,2 HScc,4

KScc (−) 1 1 1 1 1 1

τ1 (s) 5 8 · · · 15 10 5.9
τ1,ϕ = 6.1
τ1,θ = 5.3
τ1,ψ = 10.2

5.9

τ2 (s) 0.004 0.01 · · · 0.08 0.005 - 0.1 -

τa (s) - - 30 (80) 30 -

τL (s) - - - 0.1 - 0.11

Table D.2: Parameters of models of the semicircular organ (based on Fischer (2009))

In darkness With vision

Quant-
ities

Hosman and
Van der

Vaart (1978)

Benson
et al.
(1986)

Mes-
land
et al.
(1998)

Reid
and

Nahon
(1985)

Nahon
and
Reid
(1990)

Rey-
mond
et al.
(1999)

Rey-
mond
and
Ke-
meny
(2000)

ẍ (m/s2)
0.04 · · · 0.085

0.063 – 0.17
– – 0.05ÿ (m/s2) 0.057 – 0.17

z̈ (m/s2) 0.154 – 0.28
ϕ̇ (rad/s) 2.04 – 3.0

3.0 2.04θ̇ (rad/s) – 2.07 0.5 3.6 –

ψ̇ (rad/s) 1.2 – 2.6

ϕ̈, θ̈, ψ̈
(rad/s2)

0.03 · · · 0.065 – – – – 0.3 –

Table D.3: Threshold values with and without vision (based on Fischer (2009))
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