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FRM: a Financial Risk Meter based on penalizing tail
events occurrence ∗

Lining Yu† Wolfgang Karl Härdle‡ Lukas Borke §
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Abstract

In this paper we propose a new measure for systemic risk: the Financial Risk Meter
(FRM). This measure is based on the penalization parameter (λ) of a linear quan-
tile lasso regression. The FRM is calculated by taking the average of the penaliza-
tion parameters over the 100 largest US publicly traded financial institutions. We
demonstrate the suitability of this risk measure by comparing the proposed FRM to
other measures for systemic risk, such as VIX, SRISK and Google Trends. We find
that mutual Granger causality exists between the FRM and these measures, which
indicates the validity of the FRM as a systemic risk measure. The implementation
of this project is carried out using parallel computing, the codes are published on
www.quantlet.de with keyword FRM. The R package RiskAnalytics is another
tool with the purpose of integrating and facilitating the research, calculation and
analysis methods around the FRM project. The visualization and the up-to-date
FRM can be found on http://frm.wiwi.hu-berlin.de.
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1 Introduction

Systemic risk is dangerous for the stability of financial markets, since the bankruptcy of
one firm may have an impact on the stability of other firms too. There are various def-
initions of systemic risk. One of the most popular definitions is introduced in Schwarcz
(2008). He defined systemic risk as a trigger event, such as an economic shock or in-
stitutional failure, causing a chain of bad economic consequences, sometimes referred to
as domino effect. This definition indicates that interlinkages and interdependencies in
a system or market are very crucial for controlling systemic risk. The financial crisis in
2008 is an example. After the bankruptcy of Lehman Brothers, several more financial
cooperations bankrupted as a result of their interlinkages with Lehman Brothers. Con-
sequently, there has been a surge in the interest in measuring and controlling systemic
risk since the 2008 crisis, which has led to an increase in the research on this topic.

Several methodologies for measuring systemic risk have been proposed. Adrian and Brun-
nermeier (2016) proposed CoVaR, the value at risk of financial institutions conditional
on the other institutions being under distress, which uses two linear quantile regressions.
Hautsch et al. (2015) refined this algorithm by introducing linear quantile lasso regression
with a fixed penalization parameter λ for each company to select the relevant risk drivers.
Fan et al. (2016) and Härdle et al. (2016) use a nonlinear Single Index Model (SIM) com-
bined with a variable selection technique to select the risk factors. We are inspired by the
early version of the work of Fan et al. (2016)1. In their application, they use data on 200
financial companies and 7 macro variables to estimate the CoVaR. During the estimation
procedure, they generate the time-varying penalization parameter λ. This series has a
striking pattern: the higher values correspond to the financial crises and the lower values
correspond to financial stable periods. This observation has led to the idea to use the
penalization parameter λ itself as a measure for systemic risk. The time-varying feature
of λ is specific to Fan et al. (2016) and different from Hautsch et al. (2015), who applied
a fixed λ for each firm, but not time varying.

Fan et al. (2016) provide the λ series for single companies. In contrast, we would like
to see the behavior of λ for all firms. Härdle et al. (2016) compare the linear quantile
lasso model and SIM, and conclude that SIM is better than the linear model, but that
the linear quantile lasso model is also valid in terms of backtesting. The problem is that
the SIM algorithm is computationally intensive and time-consuming. Härdle et al. (2016)
generated λ series for 100 firms with less than 300 observations each. The application of
SIM is not realistic for large datasets with more than thousand observations. Since linear
quantile lasso is easier to apply and time saving, we decided to apply linear quantile lasso
regression to compute our risk measure. In the application, we estimate the λ’s for all
firms individually and take the average over all firms.

We use log return data from the 100 largest US publicly traded financial institutions
as well as 6 macro variables. Our model is based on daily log returns of these financial
institutions. The time period under consideration runs from April 5, 2007 until September
23, 2016 and covers several documented financial crises (2008, 2011). We observe that

1Their slides are available from https://www.wiwi.hu-berlin.de/de/professuren/quantitativ/
statistik/members/personalpages/wh/talks/20130314FanHaeWanZhuYuQRandSIM.pdf
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the pattern of this risk measure is more precise and robust to measure financial risk than
the λ series of a single firm. The shape and volatility of the series correspond to the
market volatility and financial events with a large impact on systemic risk are clearly
visible. Therefore, we propose this series as a new measure for systemic risk and call it
Financial Risk Meter (FRM). The webpage of the FRM was released in the end of 2014
and updated weekly since. Currently, Zbonakova et al. (2016) apply linear quantile lasso
regression to analyze the behavior of the λ series. They find that λ is sensitive to the
changes of volatility, which provide the theoretical evidence for the FRM to be a systemic
risk measure, as high volatility indicates high risk.

In this paper we introduce the methodology of the FRM, describe the risk levels, the
computational implementation as well as the visualization of the webpage. To show the
suitability of the FRM we compare it with other systemic risk measures, such as VIX
(see Hallett, 2009), SRISK (see Brownlees and Engle, 2016) as well as the Google trends
of key words related to financial crises (see Preis et al., 2013). We find that the FRM and
these risk measures mutually Granger cause, which indicates the validity of the FRM as
a systemic risk measure.

The remainder of this paper is organized as follows. In Section 2 the methodology used to
construct our FRM, which is quantile lasso modeling, is presented. Section 3 presents the
data, computational challenge and the visualization of the results. Section 4 shows the
validity of our FRM as a measure for financial risk by comparing with other financial risk
measures. Section 5 describes the R package RiskAnalytics (Borke, 2017) facilitating
real-time processing of Nasdaq and Yahoo finance data and parallelized quantile lasso
regression methods. Section 6 concludes, the financial institutions applied in this paper
is listed in Section 6 Appendix. All the R programs for this paper can be found on
www.quantlet.de (Borke and Härdle, 2017a).

2 FRM methodology and estimation

In this section we describe the methodology and algorithm used to compute the proposed
FRM, which is the average over the series of the selected penalization term λ for the
companies under consideration. Since the penalization parameters are computed based on
an L1-norm (LASSO) quantile linear regression, this regression framework is introduced
first. Within this framework, the penalization parameter λ is exogenous. Since the
FRM consists of the selected penalization parameter, we subsequently discuss the method
used to select λ. We use the generalized approximate cross-validation criterion (GACV)
proposed by Yuan and Lin (2006) to determine the optimal λ. The determination of the
penalization parameter is pivotal to the methodology of the FRM.

2.1 Linear Quantile Lasso Regression Model

Following Härdle et al. (2016), we introduce the quantile lasso regression model. Let m
be the number of macro variables describing the state of the economy, k the number of
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firms under consideration, j ∈ {1, . . . , k}. Then p = k + m − 1 represents the number
of covariates. t ∈ {1, . . . , T} is the time point with T the total number of observations
(days). s is the index of moving window, s ∈ {1, . . . , (T − (n−1))}, where n is the length
of window size. Then the quantile lasso regression is defined as:

Xs
j,t = αsj + As,>j,t β

s
j + εsj,t, (1)

where Asj,t
def=

[
M s

t−1
Xs
−j,t

]
, M s

t−1 the m dimensional vector of macro variables, Xs
−j,t is the

p − m dimensional vector of log returns of all other firms except firm j at time t and
in moving window s, αsj is a constant term and βsj is a p × 1 vector defined for moving
window s.

The regression is performed using L1-norm quantile regression proposed by Li and Zhu
(2008), which is defined as:

min
αs

j ,β
s
j

n−1
s+(n−1)∑
t=s

ρτ
(
Xs
j,t − αsj − A

s,>
j,t β

s
j

)
+ λsj ‖ βsj ‖1

 , (2)

where λsj is the penalization parameter, and the check function ρτ (u) is defined as:

ρτ (u) = |u|c|I(u ≤ 0)− τ |,

where c = 1 corresponds to quantile regression. The L1-norm quantile linear regression
can be used to select relevant covariates (other firms and macro state variables) for each
firm.

2.2 Penalization Parameter λ

Since Equation (2) has a L1 loss function and an L1-norm penalty term, the optimiza-
tion problem is an L1-norm quantile regression estimation problem. The choice of the
penalization parameter λsj is crucial. There are several options to select λsj , e.g. with
the Bayesian Information Criterion (BIC) or using the Generalized Approximate Cross-
Validation criterion (GACV). Yuan (2006) conducted simulations and concluded that
GACV outperforms BIC in terms of statistical efficiency. Therefore, we determine λsj
with the GACV criterion in the FRM model and set λsj as the solution of the following
minimization problem:

minGACV (λsj) = min
∑s+n
t=s ρτ

(
Xs
j,t − αsj − As>j,t βsj

)
n− df

,

where df is a measure of the effective dimensionality of the fitted model. df is the trace
of the hat matrix with the t, o entry ∂(αsj − As>j,t β

s
j )/∂Xs

j,o, and o ∈ {1, . . . , T}. The
advantage of GACV is that it also works for p > n, which can be important for the FRM
if the moving window size is small.
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T o c o m p ut e t h e F R M, w e p erf or m t h e r e gr essi o n a n al ysis as d es cri b e d a b o v e a n d s el e ct t h e
o pti m al p e n ali z ati o n p ar a m et er λ s, ∗

j f or e a c h fir m j usi n g G A C V. T his yi el ds a l a m b d a
s eri es f or e a c h fir m. T h e a v er a g e of t h es e λ ∗

j ’s c o nstit ut es o ur pr o p os e d ris k m e as ur e.
T h e Fi n a n ci al Ris k M et er is d e fi n e d as t h e a v er a g e l a m b d as o v er t h e s et of k fir ms f or all
wi n d o ws:

F R M
d e f
=

1

k

k

j = 1

λ ∗
j

3 C o m p u t a ti o n al c h all e n g e s a n d vi s u ali z a ti o n
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this set change regularly over the time period under consideration (2007-2016) due to,
for instance, bankruptcies. This leads to issues with automatic downloading of the data
and therefore we use only 100 firms. Figure 1 shows the cumulative market capitalization
of US financial firms. The x-axis represents the firms ordered by market capitalization
and the y-axis the cumulative market capitalization. We observe that the largest 100
firms cover more than 85% of the total market capitalization of all companies in the US
financial market and are therefore can restrict our analysis to 100 firms. Furthermore, the
results of estimating the FRM based on 100 or 200 firms are very similar if the moving
window size is the same. Figure 2 plots both FRM series with the window size n = 126,
the shape and the trends of them are similar.

2008 2010 2012 2014 2016
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0.
4

0.
6

0.
8

1.
0

Figure 2: FRM with 100 firms (black) and FRM with 200 firms (grey), moving window size n = 126.
FRM_compare_nf

We select six macro state variables to represent the general state of the economy: 1) the
implied volatility index, VIX from Yahoo Finance; (2) the changes in the three-month
Treasury bill rate from the Federal Reserve Bank of St. Louis; (3) the changes in the slope
of the yield curve corresponding to the yield spread between the ten-year Treasury rate
and the three-month bill rate from the Federal Reserve Bank of St. Louis; (4) the changes
in the credit spread between BAA-rated bonds and the Treasury rate from the Federal
Reserve Bank of St. Louis; (5) the daily S&P500 index returns from Yahoo Finance, and
(6) the daily Dow Jones US Real Estate index returns from Yahoo Finance.

To compute the FRM we use the algorithm as described in Section 2 and with parameter
τ = 0.05, i.e. at the tail level. To find the optimal window size, n, we have to make a
trade-off. We find that the lasso selection technique performs worse if the window size
is too small. Since we use daily data, the moving window size should be larger than 50,
so that the estimation for each window is more precise. The results of using different
window sizes (we have considered window sizes n = 63 (one quarter) and n = 126 (half
a year)) are shown in Figure 3. The larger the window size, the more lagged, but also
the smoother the plot is. Cross correlation can be used to determine the time delay of a
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Figure 3: FRM with different moving window size, n = 63 (black) and n = 126 (grey), both series are
scaled into the interval [0,1], from July 6, 2007 until September 23, 2016.

FRM_compare_ws

time series, which we apply here for the estimate of the FRM with n = 63 and the FRM
with n = 126. In Figure 4 and Table 1, the largest autocorrelation between FRM with
n = 63 and the lagged FRM with n = 126 is 0.967 from lag −29 to lag −22. We conclude
that the FRM with n = 63 leads the FRM n = 126 by at least 22 periods. From all the
preceding we set the moving window size to n = 63.
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FRM100_63 & FRM100_126

Figure 4: Cross correlation between FRM with n = 63 and FRM with n = 126, where the number of
firms is 100.

FRM_compare_ws

For each firm we have 2, 386 daily observations and 105 covariates (99 firms and 6 macro-
state variables). The FRM is the average of the λ’s computed for the 100 individual firms.
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The λ’s for the individual firms are more volatile and less smooth than the average over
100 firms and therefore robuster to reflect the impact from financial events on systemic
risk. Figure 5 illustrates this by plotting the λ of firm Wells Fargo (the largest firm by
market capitalization) and the FRM.

Lag -30 -29 -28 -27 -26 -25 -24 -23 -22 -21

Cross correlation 0.963 0.964 0.964 0.964 0.964 0.964 0.964 0.964 0.964 0.963

Table 1: Cross correlation between the estimates of the FRM with n = 63 and FRM with n = 126.
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Figure 5: FRM (black) and λ of Wells Fargo (grey), both series are scaled into interval [0,1], from April
5, 2007 until September 23, 2016.

FRM_compare_of

3.2 Computational challenges

We wrote a script to automatically download the data from Yahoo Finance and Federal
Reserve Bank of St. Louis. The R package quantmod is used. More details and the script
are available from Quantnet ( FRM_download_data).

The L1-norm quantile regression used to generate the λ series is computationally intensive
and therefore time-consuming, if applied sequentially for a large number of firms, see
for instance the code from Quantnet ( FRM_lambda_series). Therefore, we consider
parallel computing in R to reduce the computation time. R offers several algorithms for
performance computing, such as lapply, mclapply, parLapply, for and foreach 3. For our
purposes the foreach loops is the fastest solution, which we use for implementation.

We use the doParallel and foreach packages in R as developed and proposed by Calaway,
Weston, Tenenbaum and Analytics (2015) and Calaway, Weston and Analytics (2015),

3The webpage http://www.parallelr.com/r-with-parallel-computing/ provides an overview.
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see also Kane et al. (2013). Since we have 100 financial firms and for each firm we have to
do the moving window estimation, we use the foreach loops twice: the first loop is for the
100 financial firms with the second loop nested in the first loop to perform the moving
window estimation. The speed of computation is increased considerably, the script is
available from Quantnet: FRM_parallel_compute.

Without the use of parallel computing, i.e. using a processor with four cores for each
moving window, it requires around two minutes to generate the FRM estimate for one
day. The Research Data Center (RDC) of Humboldt-Universität zu Berlin has provided
access to there multi-core servers. Their servers have respectively 24, 32, and 40 cores.
By using these servers combined with parallel computing, the average computation time
is reduced approximately 12 seconds to obtain a daily value for the FRM. The FRM
webpage is updated weekly, which takes only 1 minute to generate the FRM series for
five working days.

3.3 Visualization

To implement the visualization of the FRM, we use the JavaScript framework D3.js
(or just D3 for Data-Driven Documents), which is a JavaScript library for producing
dynamic, interactive data visualizations in web browsers. The QuantNetXploRer is a
good example of D3 in power. More information about the D3 architecture, its various
designs and the D3-based QuantNetXploRer can be found in Bostock et al. (2011) and
Borke and Härdle (2017b). The repository https://github.com/Quantlet/D3Genesis
contains the development of the main D3 components for the QuantNet visualization
together with live examples on GitHub pages.

Figure 6: The graph of Financial Risk Meter (FRM).
FRM_parallel_compute
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Figure 6 illustrates the D3-based FRM visualization, and more examples are available on
the FRM webpage: http://frm.wiwi.hu-berlin.de/. There are two time varying graphs
on the FRM webpage. The upper one is the overview of the full FRM series. While
the y-axis represents the value of the FRM, the x-axis represents time. The lower graph
serves as an interface tool for the upper one. By selecting a time horizon in the lower
graph, the upper graph zooms in on the FRM series in this time frame.

3.3.1 Descriptive statistics

Figure 6 shows the FRM series from April 5, 2007 through September 23, 2016. The FRM
has no theoretical upper bound. In the time frame under consideration, the maximum
value is 0.075, which occurred on December 15, 2008 and the mean value is 0.021. We
observe several peaks in the FRM series, which correspond to crises and other events in
these periods. Two peaks correspond to the financial crises in 2008 and 2010. The peak
in the first quarter of 2009 is at the height of the Great Recession: 800 thousand jobs
were lost and the unemployment rate rose to 7.8% in the US, which was the highest since
June 1992. Another peak around the fourth quarter of 2011 coincides with the decline
in stock markets in August 2011, which was due to fears of contagion of the European
sovereign debt crisis to Spain and Italy.

Therefore, the peaks of FRM series identify financial events and their impact on financial
and systemic risk. The minimum of the FRM series in the time period under consideration
is observed in August 26, 2014, with a value of 0.009. This was a relatively stable period.
In this sense, we conclude that the higher value of FRM indicates of higher systemic risk
for the US financial market.

3.3.2 Risk levels

We divide risk into five levels with different classifications and colors. The levels of risk
are defined as different intervals of quantiles of the FRM. These quantiles are computed
based on the past values of the FRM. The color codes are similar to those used by the US
Homeland Security Advisory System for the terrorism threat advisory scale. As shown
in Figure 7, we have five levels of risk with five color codes. The current risk level is
determined by the quantile based on all past FRM observations into which the current λ
falls. Table 2 presents the risk levels as well as the colors, descriptions and quantiles of
the risk levels.

As an example, on September 23, 2016 the value of FRM was 0.013. Since the maxi-
mum of FRM series up to that date was 0.075, the quantile level of the risk measure on
September 23, 2016 was 17.3%. Since this is less than the 20%-quantile, we classify the
risk on that day as low risk of crisis in the financial market with color green. On the
website the current risk level is marked with a cross as shown in Figure 7 for this example.
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Figure 7: Risk levels of FRM

Color Risk level description FRM quantile

Green Low risk of crisis in the financial market. <20

The incidence of a crisis is less likely than usual.

Blue General risk of crisis in the financial market. 20-40

There is no specific risk of a crisis.

Yellow Elevated risk of crisis in the financial market. 40-60

The incidence of a crisis is somewhat higher than usual.

Orange High risk of crisis in the financial market. 60-80

A crisis might occur very soon.

Red Severe risk of a crisis in the financial market. >80

A financial crisis is imminent or happening right now.

Table 2: Risk levels, color codes and quantiles for FRM
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4 Causality of FRM and other systemic risk mea-
sures

Zbonakova et al. (2016) analyze the factors affecting the value of lambda and summarize
that lambda depends on three major factors: the variance of the error term, the corre-
lation structure of the covariates and the number of non-zero coefficients of the model.
Since high volatility indicates high risk in finance and the number of non-zero coefficients
is related to the connectedness of the financial firms, they provide more theoretical evi-
dence for the FRM as a risk measure. In their application, they find the co-integration
relationship between λ̂ and other systemic risk measures. We extend their idea and use
Granger causality analysis to validate our FRM as a systemic risk measure. We select
three measures: VIX (see Hallett, 2009), SRISK (see Brownlees and Engle, 2016) as well
as the Google trends of the key word "financial crisis" (see Preis et al., 2013).

For the causality analysis we first need to introduce the Vector Autoregression (VAR)
model briefly. Lütkepohl (2005) proposes the VAR(P) model as follows:

yt = α + A1yt−1 + A2yt−2 + · · ·+ APyt−P + ut, (3)

where yt
def= (y1t, . . . , yKt)>, Ai are fixed (K ×K) coefficient matrices, ut is a K dimen-

sional process. The coefficients could be estimated by applying multivariate least squares
estimation. In order to perform the Granger causality test, the vector of endogenous
variables yt is split into two subvectors y1t and y2t with dimensions (K1×1) and (K2×1)
and K = K1 +K2. Then the VAR(P) model can be rewritten as follows:

yt =

 y1t

y2t

 =

 α1

α2

+

 A11,1 A12,1

A21,1 A22,1


 y1,t−1

y2,t−1

+ · · ·

+

 A11,P A12,P

A21,P A22,P


 y1,t−P

y2,t−P

+

 u1t

u2t

 (4)

The null hypothesis of the Granger causality test is that the subvector y1t does not
Granger-cause y2t, which is defined as A21,i = 0 for i = 1, 2, . . . , P . The alternative
hypothesis states that the subvector y1t Granger-causes y2t and is defined as: ∃A21,i 6=
0 for i = 1, 2, . . . , P . The test statistic follows an F distributions with PK1K2 and
KJ − n∗ degrees of freedom, where J is the sample size and n∗ equals the total number
of parameters in the above VAR(P) model.

4.1 FRM versus VIX

The VIX series represents the market volatility which can be interpreted as a measure
for systemic risk (Hallett, 2009). For reasons of comparability, we standardize these two
series by setting the lowest value in the sample to zero and the highest to one. Figure 8
plots the standardized FRM series (thick black line) and the VIX series (thin red line).

12



The plot clearly shows that both indicators move in the same direction, where the VIX
series is more volatile. We also get some evidence of some financial events by observing
the corresponding volatility levels of the FRM and VIX. For example, in the end of 2008
there is a sharp upward trend of FRM, whereas the upward trends dominates VIX as
well, which corresponds to the bankruptcy of Lehman Brothers on September 15, 2008.
Both FRM and VIX have higher values between 2008 and 2010, which corresponds to the
time period of the financial crises. After 2013 the values of FRM are relative stable at a
low level, while there is similar pattern of VIX, which shows signs of the slow recovery of
the global economy from the recession.
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Figure 8: Scaled FRM (thick black line) and VIX (thin red line)

FRM_VIX

Before we perform the Granger causality test, we should test for stationarity of both time
series with the Augmented Dickey-Fuller (ADF) test. The null hypothesis of the ADF
test is the presence of a unit root in the time series. The results of the test are shown in
Table 3. For the FRM series, the p value is larger than 0.05, so we cannot reject the null
hypothesis, i.e. the FRM series has a unit root and is non-stationary. We reject the null
hypothesis for the VIX series with a p value smaller than 0.05 and conclude that the VIX
series is stationary. We do not need to consider the co-integration problem, since only if
both series are non-stationary, we should take into account the co-integration. There is a
trade-off between using the original data and the transformed (differenced) data to find
the causality relationship. Sims (1980) prefers to use the original data. He argues that
VAR with non-stationary variables may provide important insights, if one is interested in
the nature of relationships between variables. Brooks (2014) also states that differencing
will destroy information on any long-run relationships between the series. However, other
people argue that the original non-stationary data might lead to untrusted estimation,
see Yule (1926) and Granger and Newbold (1974). In our case, we consider both the
original data and transformed data.

Firstly, we consider the original data. We choose the VAR order according to four criteria:
the Akaike information criterion (AIC), the Hannan-Quinn information criterion (HQ),
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Series p values

FRM 0.28

VIX 0.01

DFRM 0.01

Table 3: p values of ADF test for stationarity

FRM_VIX

Model AIC HQ SC FPE

FRM and VIX 20 3 3 20

DFRM and VIX 19 8 5 19

Table 4: Suggested order for VAR process by different criteria

Model Order VAR PT (asymptotic) PT (adjusted) BG ES

FRM and VIX
3 < 2.2× 10−16 < 2.2× 10−16 1.1× 10−07 1.0× 10−07

11 2.5× 10−07 2.0× 10−07 1.6× 10−01 1.7× 10−01

20 < 2.2× 10−16 < 2.2× 10−16 3.1× 10−08 4.1× 10−08

DFRM and VIX

5 2.2× 10−16 2.2× 10−16 3.2× 10−08 3.1× 10−08

8 6.7× 10−12 4.9× 10−12 1.4× 10−06 1.5× 10−06

11 2.3× 10−09 1.8× 10−09 1.5× 10−03 1.7× 10−03

19 1.7× 10−03 1.6× 10−03 5.5× 10−08 7.2× 10−08

Table 5: p values of model selection tests

Cause Effect p values

FRM VIX 4.0× 10−08

VIX FRM 6.1× 10−11

DFRM VIX 6.6× 10−11

VIX DFRM 8.7× 10−13

Table 6: p values of Granger causality test

FRM_VIX

the Schwarz criterion (SC) and the Prediction Error Criterion (FPE), see Table 4. While
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Figure 9: Autoregression functions of FRM and VIX
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Figure 10: Autoregression functions of DFRM and VIX
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HQ and SC suggest an order 3 VAR process, AIC and FPE suggest an order 20 process.
We fit both VAR models with order 3 and order 20. Next, we check the autocorrelation
of the residuals to decide the optimal order. Four tests are carried out: the asymptotic
Portmanteau Test, the adjusted Portmanteau Test, the Breusch-Godfrey LM test and
the Edgerton-Shukur F test. The null hypothesis of these tests is that there is no first
order autocorrelation among residuals. Choosing order 3 and 20 leads to the rejection
of all these tests (cf. Table 5). Subsequently we try the other orders and find that with
order 11 both the Breusch-Godfrey LM test and the Edgerton-Shukur F tests are passed.
Therefore, we select order 11. The autocorrelation function of the residuals is plotted in
Figure 9. Table 6 shows the results of the Granger causality test. All p values are smaller
than 0.05 which indicates that the null hypothesis is rejected. Therefore, FRM Granger
causes VIX, and also VIX Granger causes FRM.

Next, we consider the transformed series. Since FRM is non-stationary, we take the first
difference. The transformed series is called as DFRM. In Table 3 we see that DFRM is
stationary. Then the same procedure as before is performed. While HQ suggests an order
8 process, SC suggest an order 5, and AIC and FPE both suggest an order 19 (cf. Table
4). After checking the four tests for autocorrelation of the residuals, we conclude that
the optimal order is 19. Although it does not pass the autocorrelation test, the p value is
close to the critical value 0.05, and the autocorrelation function confirms this result (cf.
Table 5 and Figure 10). The result of the Granger causality test is summarized in Table
6. We find that all p values are significantly smaller than 0.05, which indicates that the
null hypothesis is rejected. Therefore we conclude that DFRM Granger causes VIX, and
also VIX Granger causes DFRM.

4.2 FRM versus SRISK

SRISK is a macro-finance measure of systemic risk (Acharya et al., 2012; Brownlees and
Engle, 2016). Our data on SRISK for the US are obtained from V-Lab 4. We also
standardize SRISK, so that both series are comparable on the same scale. Figure 11
plots the standardized FRM series (thick black line) and the SRISK series (thin blue
line). We see that there is a peak in the first quarter of 2008 for SRISK, but afterwards
FRM and SRISK have similar patterns. Especially during the beginning of 2010 and the
beginning of 2012, the two series have a similar shape.

Variables p-values

FRM 0.48

SRISK 0.10

Table 7: p values of ADF test for stationarity for FRM and SRISK

We perform the same procedure as in section 4.1. The results of the ADF test for the
SRISK series in Table 7 show that the series is non-stationary. Since the FRM series

4See the Systemic Risk Analysis Welcome Page: https://vlab.stern.nyu.edu/welcome/risk/
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Figure 11: Scaled FRM (thick black line) and SRISK (thin blue line)

FRM_SRISK

Explanatory (Cause) Response (Effect) Value of test-statistic Critical value at 5%

FRM SRISK -3.1 -1.95

SRISK FRM -2.7 -1.95

Table 8: Results of Engle Granger 2-step co-integration test
FRM_SRISK

is neither stationary, we consider the co-integration of them. From Granger (1988) we
know that if both series are co-integrated, then there must be Granger causality between
them in at least one way. We perform the Engle Granger 2-step test for co-integration,
which is suitable for bivariate time series. In the first step, the linear regression of FRM
on SRISK is carried out, i.e. FRM is the explanatory variable and SRISK the response
variable. In the second step, we test the residuals of the aforementioned linear regression.
If these residuals are stationary, then there is co-integration of FRM and SRISK. The
null hypothesis of this test is that the residuals are non-stationary. The result of this
test are summarized in Table 8. We conclude that FRM and SRISK are co-integrated, in
other words, FRM Granger causes SRISK. If we regress SRISK on FRM, i.e. SRISK is
the explanatory variable and FRM the response variable, we also conclude that SRISK
and FRM are co-integrated, which indicates that SRISK Granger causes FRM. We thus
conclude that there is mutual causality between FRM and SRISK.
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4.3 FRM versus Google Trends

Finally, we analyze the relationship between FRM and Google Trends (GT) for the key-
word "financial crisis". Google Trends provides data on the search volume of particular
words and phrases relative to the total search volume. This can be disaggregated by
countries. If a keyword is more frequently searched for, this might indicate a particular
interest. Preis et al. (2013) analyzed the data related to finance from Google Trends, and
find that Google Trends data did not only reflect the current state of the stock markets,
but may have also been able to forecast certain future trends. We use Google Trends
for the keyword "financial crisis", assuming that more people will search for this term if
they feel the risk for a financial crisis is high. The Google Trends data are weekly data.
To allow for comparison with the FRM we apply cubic interpolation to estimate daily
data from the weekly Google Trends series. This series is compared with the daily FRM
series. Figure 12 plots both the daily FRM series as well as the cubic interpolated Google
Trends daily series. Both series are standardized to the interval zero-one for comparison.
We observe some co-movement between both series.
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Figure 12: Scaled FRM (thick black line) and Google Trends (thin green line)
FRM_GT

The ADF test shows that the GT series is stationary (cf. Table 9). We perform two tests
for the relationship between the two series. Firstly, we consider the original data of FRM,
then we consider the transformed data. We perform four criteria to find the optimal order
of VAR model. As the results in Table 10 show, all the criteria suggest an order 20 VAR
process. Therefore, we apply an order 20 VAR model. Next, the autocorrelation of the
residuals is tested. Although none of the tests can be passed (cf. Table 11), we have no
better choice for the order than 20. The autocorrelation function of residuals are plotted
in Figure 13. Table 12 shows the results of the Granger causality test. All p values
are significantly smaller than 0.05, which indicates that the null hypothesis is rejected.
Therefore, FRM Granger causes GT, and GT Granger causes FRM.

For the first differenced FRM, i.e. DFRM, the same procedure is used. In Table 10 all
the criteria suggest an order 20 VAR process. The result of the autocorrelation tests
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are presented in Table 10. Although none of the tests is passed, we still use order 20.
The autocorrelation function of the residuals is shown in Figure 14. Table 12 shows the
results of the Granger causality test. All p values are significantly smaller than 0.05,
which indicates that the null hypothesis is rejected. Therefore, DFRM Granger causes
GT, and GT Granger causes DFRM.

Variables p-values

FRM 0.48

GT 0.01

DFRM 0.01

Table 9: p values of ADF test for stationarity for FRM and GT

Model AIC HQ SC FPE

FRM and GT 20 20 20 20

DFRM and GT 20 20 20 20

Table 10: Suggested order for VAR process by different criteria

Model Order PT (asymptotic) PT (adjusted) BG ES

FRM and GT 20 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

DFRM and GT 20 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Table 11: p values of model selection tests

Cause Effect p-values

FRM GT 1.1× 10−10

GT FRM 2.1× 10−12

DFRM GT 6.8× 10−11

GT DFRM 4.1× 10−10

Table 12: p values of Granger causality test

FRM_GT
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Figure 13: Autoregression functions of FRM and GT
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5 Software implementation in R

Koenker and Mizera (2014) survey some recent developments of convex optimization and
describe some implementations of these methods in R. Quadratic programming (QP),
as part of convex optimization, involves the minimization of a positive semi-definite
quadratic objective function subject to polyhedral constraints. There are many appli-
cations of QP in statistics, typically involving Gaussian likelihoods constrained by some
form of linear inequalities. Shape constrained regression examples have gained recent
attention, and the introduction of sparse regularization methods like lasso, has greatly
stimulated interest in computational methods for such problems. One of the most famil-
iar statistical QP applications in recent times has been the lasso estimator of Tibshirani
(1996).

Standard quantile regression (QR) models can be estimated with the rq() function of the
quantreg package (Koenker, 2016). However, software implementations for computing
solution paths of lasso penalized QR are rare. hqreg (Yi, 2016) is such an example. This
R package is relatively new (it was published for the first time on 21 June 2015), its ver-
sion history is trackable via https://github.com/cran/hqreg/commits/master. The
main advantage is its C optimization: https://github.com/cran/hqreg/blob/master/
src/hqreg.c. Yi and Huang (2015) demonstrate both the convergence properties of the
proposed algorithm and the numerical experiments, showing that their package imple-
mentation is very efficient and scalable to ultra-high dimensions.

Another available R implementation is the supplementary code of Li and Zhu (2008). At
the time of the early stage development of the FRM project, only the latter code was
known and available. Therefore, the current lasso penalized QR implementation of FRM
relies on the idea of Li and Zhu (2008). In the following, numerical experiments and
benchmarks will be provided in order to evaluate the speed and efficiency of the current
FRM version.

5.1 RiskAnalytics package

In order to integrate and facilitate the research, calculation and analysis methods around
the FRM project, the R package RiskAnalytics (Borke, 2017) has been developed. Its
main goal is to provide data processing and parallelized quantile lasso regression methods
for risk analysis based on NASDAQ data, Yahoo Finance data and the macro variables as
described in Section 3.1. The derived “Risk Analytics” can help to forecast and evaluate
the systemic risk for the corresponding markets.

As member of the Research Data Center (https://rdc.hu-berlin.de) Lukas Borke was
involved into the development of the FRM project from the very beginning, having the
main tasks: automation of data collection, optimization and parallelization of code, and
data visualization. Based on this experience, the functionality of the RiskAnalytics
package is subdivided into 4 major software components:
1) data processing (get_data.R);
2) parallel computing (parallel_calculation.R);
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3) QR methods (qrL1.R);
4) “Risk Analytics” (analytics.R);

Every software component contains several related functions. Their interaction is pre-
sented in Listings 1, 2, 3, 4 and 5.

5.1.1 RiskAnalytics package: data extraction and analysis part

Listing 1 demonstrates the data extraction and analysis part of the RiskAnalytics.
The functions get.nasdaq.companies, get.yahoo.data and get.macro.data are re-
sponsible for real time processing of NASDAQ, Yahoo Finance and Federal Reserve
Bank of St. Louis data. get.nasdaq.companies extracts the top NASDAQ companies
(sorted by their market capitalization) from the web resource http://www.nasdaq.com/
screening/companies-by-industry.aspx?industry=Finance by means of the package
RCurl (Lang and the CRAN team, 2016). get.yahoo.data provides daily log returns
of the selected NASDAQ companies by use of the package quantmod (Ryan, 2016).
get.macro.data, in its turn, employs both approaches: Yahoo Finance via quantmod
for the download of the VIX, GSPC (S&P500) and IYR (iShares Dow Jones US Real
Estate) macro variables, and direct downloads of the other 3 macro variables from the
corresponding web resources on https://fred.stlouisfed.org/.

Figure 15: NASDAQ companies sorted by the market capitalization: all (left), top 200 (middle) and
top 100 (right), produced via get.nasdaq.companies

Figure 16: Box plots of macro variables produced via get.macro.data
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The helping function combine.data combines all previously obtained time series in an
appropriate time and date format. Additionally, the dimension and the preview of a sub
sample of the resulting data frame object is displayed. The latter can be controlled by the
parameter summary_dim, see also Listing 1. All aforementioned functions provide addi-
tional information and, where appropriate, graphical plots for better audit and validation
checks of the extracted data, see e.g., Figure 15, 16.
#------------------------------------------------
# Initialization
#------------------------------------------------
library(snow)
library(RiskAnalytics)
work_dir = "c:/r/frm/2017"
max_companies = 100

#------------------------------------------------
# Load data
#------------------------------------------------
companylist = get.nasdaq.companies()

system.time( yahoo_data <- get.yahoo.data(companylist, max_comp_num = max_companies,
from_date = "2006-12-29") )

# truncated output for illustration
[1] "97 : SBNY"
[1] "98 : ZION"
[1] "diff length : CIT"
[1] "diff length : APO"
[1] "99 : WRB"
[1] "100 : SEIC"

User System Elapsed
7.85 1.44 58.20

system.time( macro_data <- get.macro.data(from_date = "2006-12-28") )
User System Elapsed
1.05 0.06 5.13

final_data = combine.data(yahoo_data, macro_data, summary_dim = c(1:3, 102:107))
[1] "Dimension of the final data: 2534 * 107"

Date JPM WFC ^VIX ^GSPC IYR 3MTCM
1 03/01/2007 0.002290948 0.005049110 0.02353107 0.4414408 0.5978950 0.4904459
2 04/01/2007 0.002493227 0.001677339 0.03029449 0.4577132 0.6204483 0.5159236
3 05/01/2007 -0.008335091 -0.005602276 0.02282655 0.4695943 0.6035441 0.5222930
4 08/01/2007 0.003342404 -0.002812915 0.03170354 0.4337065 0.5632682 0.5286624
5 09/01/2007 -0.004179761 0.002532009 0.02973087 0.4744425 0.6035341 0.4840764

data.analytics(yahoo_data, macro_data)
# truncated output for illustration, correlation matrix of the macro var’s

^VIX ^GSPC IYR 3MTCM Yield Credit
^VIX 1.00 -0.14 -0.11 -0.06 0.26 0.55
^GSPC -0.14 1.00 0.81 -0.02 0.00 0.01
IYR -0.11 0.81 1.00 -0.04 0.01 0.02
3MTCM -0.06 -0.02 -0.04 1.00 0.00 0.00
Yield 0.26 0.00 0.01 0.00 1.00 0.36
Credit 0.55 0.01 0.02 0.00 0.36 1.00

Listing 1: RiskAnalytics application example: data extraction and analysis part
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The function data.analytics from Listing 1, which is actually a part of the “Risk
Analytics” software component, provides descriptive statistics for both the NASDAQ
companies and the macro variables. All statistical information vital for the subsequent
QR methods is summarized in a brief overview. For instance, it becomes immediately
obvious that the macro variables will be dominant regressors due to their larger Euclidean
norms, compared to those of the NASDAQ companies (see the box plots in Figure 17).
Together with the output in Figure 16 and 18, one can easily conclude that the macro
variables VIX (1), “Yield spread” (3) and “Credit spread” (4) (see Section 3.1 for the
enumeration assignment) will be “driving factors” in the QR process because of their
high variances. Furthermore, data.analytics returns also the correlation matrix of all
six macro variables, revealing that the aforementioned variables VIX, “Yield spread” and
“Credit spread” have positive correlations among each other, see Listing 1. In the light
of this technical analysis, it is hardly surprising that both the FRM and VIX time series
reveal a similar behavior, see Section 4.1 and Figure 8.

Figure 17: Box plots of the euclidean norms of the Yahoo Finance data/companies (left) and the macro
variables (right), produced via data.analytics

Figure 18: Plot of the macro variables, produced via data.analytics

According to Listing 1, the data processing component extracts all needed data in around
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one minute. Additionally, the data.analytics function provides statistical information
for the further QR process. All obtained data are stored in the RAM, hence no further
write or storage operations are required, and the real time data can be passed over to the
next component: parallel computing.

5.1.2 RiskAnalytics package: parallel computing part

Listing 2 shows the execution and benchmark results of the parallel computing component
of RiskAnalytics. Based on the packages snow (Tierney et al., 2016) and snowfall
(Knaus, 2015) and the lasso penalized QR implementation of Li and Zhu (2008), the cal-
culation of the QR method is performed for all moving windows and all NASDAQ compa-
nies. The most important parameters of the function parallel.lasso.computation are
max_companies, new_days, parallel_cpu, p, winsize meaning: 1) number of desired
NASDAQ companies, the parallelization is performed along this dimension; 2) number
of desired moving windows within the total data observation time frame; 3) number of
available CPU’s for the parallel computing via snowfall; 4) desired quantile value for the
QR method; and 5) the length of the moving window. Most of these parameters have
default values as displayed in Listing 2.
#------------------------------------------------
# Calculate data
#------------------------------------------------

# by default: new_days = 5, parallel_cpu = 4, p = 0.05, winsize = 60

# main calculation for the FRM visualization
parResult = parallel.lasso.computation(final_data, max_companies, work_dir = work_dir,

new_days = 2469, parallel_cpu = 32, winsize = 63)
# R Version: R version 3.3.2 (2016-10-31)
# snowfall 1.84-6.1 initialized (using snow 0.4-2): parallel execution on 32 CPUs.
# Stopping cluster
# user system elapsed
# 1.45 3.43 54895.78

# test benchmark for 200 working days, ca. 10 months
parResult = parallel.lasso.computation(final_data, max_companies, work_dir = work_dir,

new_days = 200, parallel_cpu = 32)
# Stopping cluster
# user system elapsed
# 0.14 0.14 4287.58

# test benchmark for 5 working days, 1 working week
parResult = parallel.lasso.computation(final_data, max_companies, work_dir = work_dir,

parallel_cpu = 32)
# Stopping cluster
# user system elapsed
# 0.17 0.14 115.89

Listing 2: RiskAnalytics application example: parallel computing part

For each company and each moving window the QR results are stored in the data structure
parResult. The latter is basically a list with elements corresponding to the companies.
Every list element j contains the lambda values (λj) and beta coefficients (βj) from the
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QR procedure. For a given company j, the lambda values are a vector enumerated by
the calculated days new_days, and the beta coefficients are a matrix, whose rows are the
calculated days new_days and whose columns are the regressors/covariates.

According to Li and Zhu (2008), the computational complexity of the L1-norm QR algo-
rithm is O(pmin(n, p)3), with n being the length of the moving window and p the number
of covariates. The main calculation for the FRM visualization is performed with n = 63
and p = 105 (99 companies except the regressed one and 6 macro variables), see also
Listing 2. In addition to the basic complexity, we have to deal with two further dimen-
sions, i.e. nc (max_companies or number of companies) and nw (new_days or number of
moving windows).

In summary, the parallel.lasso.computation function for the main calculation of the
FRM lambda time series has a computational complexity of

O(ncnw)O(pmin(n, p)3), (5)

which results in approximately 6.5 × 1012 basic calculations, if we compute the FRM
lambda for nw = 2469 (around 10 years).

The time complexity benchmarks for four cases: nw = 2469, nw = 200, nw = 10 and
nw = 5 are provided in Table 13, see Listing 2 for some examples. The tests were
performed on a RDC (Research Data Center, https://rdc.hu-berlin.de) Windows
server with 16 physical and 32 logical cores and Intel Xeon CPU E5-2690 0 @ 2.90 GHz.
In each case max_companies was equal to 100, parallel_cpu = 32, p = 0.05. The
corresponding length of the moving window n (winsize) and the number of moving
windows nw (new_days) are given in the table columns.

n (window size) nw time in seconds time in minutes time in hours

60 5 116 2 0.03

60 10 222 4 0.06

60 200 4288 71 1.19

63 2469 54896 915 15.25

Table 13: Time complexity benchmarks for parallel.lasso.computation of the RiskAnalytics package

As can be expected from Formula 5, the running time of parallel.lasso.computation
scales in proportion to nw. For a better comparison, the same time measurements are
displayed in seconds, minutes and hours, respectively. As main results of the time com-
plexity benchmarks, we can conclude that:
I) The lasso penalized QR implementation in FRM can be performed within 2 minutes
for the calculation of 5 working days and within 15 hours for a time period of 10 years,
which shows that the QR calculation is feasible on a contemporary computer with 16
physical cores.
II) For the increase of the speed, only the physical CPU cores are relevant, what means
that the calculations can be performed on a usual home PC with 4 CPU cores, like for
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example Intel Core i5-2500 with 4 physical cores. In this case, the time demand must be
multiplied by factor of 4 (16 cores ÷ 4 cores).
III) The memory demand for the storage of all necessary data and calculation results is
very modest and is mainly dictated by the dimensions of the data matrices and frames and
the data structure parResult. Saved as files, the data object final_data from Listing
1 and parResult from Listing 2 require around 2 MByte and 60 MByte, respectively.

The parallel.lasso.computation function accepts some additional optional param-
eters for minor validation outputs and allowing to save the calculation results as file
outputs. By default, the parallel computing component operates as an “in-memory ap-
plication” without requiring any disk Input/Output operations.

5.1.3 RiskAnalytics package: QR.analytics part

The code examples in Listing 3 demonstrate the QR.analytics part of RiskAnalytics,
the former being a subset of the “Risk Analytics” software component. QR.analytics com-
prises 3 functions: QR.regressors.stats, QR.beta.stats and QR.variance.vs.beta.
The output parResult from the parallel computing part serves as an “object of investi-
gation”.

Figure 19: Average percentage (over moving windows and companies) of active beta coefficients for
NASDAQ companies and macro variables and the corresponding box plots, produced via QR.beta.stats

The functions QR.regressors.stats and QR.beta.stats analyze the structure of the
beta coefficients from the QR process. QR.regressors.stats provides the frequency
of the covariates for a given percentage threshold sel_threshold and the filter value
min_regressed_comp. For instance, for a given sel_threshold = 0.55 and
min_regressed_comp = 10, we see in the first part of Listing 3 that only the following
covariates: 88, 101, 102, 103, 105, 106 (88 is the number of a NASDAQ company, numbers
higher than 100 are macro variables) have non-zero beta coefficients in the QR of a
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company. Additionally, we have the restrictions that the filtered and displayed covariates
are active regressors in at least 55% of all moving windows (nw) for at least 10 companies.
For sel_threshold = 0.55 and min_regressed_comp = 10 we can conclude that the
company with the number 88 is an active regressor for some 11 companies, being present
in at least 55% of all moving windows for each of those 11 companies. The macro variable
with the number 101 (VIX), on the other hand, is an active regressor with non-zero beta’s
in all 100 NASDAQ companies, being present in at least 55% of all moving windows for
each of them. The second most influential regressor is the macro variable with the number
102 (S&P500), it is an active regressor for 99 NASDAQ companies (in at least 55% of all
moving windows).
#------------------------------------------------
# QR.analytics: QR.regressors.stats
#------------------------------------------------
sapply( c(0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.72), function(x) { QR.regressors.stats(

parResult, sel_threshold = x, min_regressed_comp = 10 )$R_tab_min_regressed_comp
})

[[1]]
15 22 24 31 55 56 58 63 67 81 88 90 101 102 103 105 106
31 46 51 11 74 21 55 15 10 11 79 73 100 100 100 100 100

[[2]]
22 24 55 58 88 90 101 102 103 105 106
13 15 23 21 43 37 100 100 93 100 98

[[3]] [[4]]
88 101 102 103 105 106 101 102 103 105 106
11 100 99 67 86 72 98 99 15 30 16

[[5]] [[6]] [[7]]
101 102 101 102 102
76 87 14 38 16

#------------------------------------------------
# QR.analytics: QR.beta.stats
#------------------------------------------------
ave_beta_share = QR.beta.stats(parResult)
which(ave_beta_share > 0.5)
[1] 101 102 103 105 106
which(ave_beta_share > 0.666)
[1] 101 102

#------------------------------------------------
# QR.analytics: QR.variance.vs.beta
#------------------------------------------------
variance_vs_beta = QR.variance.vs.beta(final_data, ave_beta_share)
# truncated output for illustration
$corr_comp_vars_beta
[1] 0.5752723
$corr_macro_vars_beta
[1] 0.3024359

Listing 3: RiskAnalytics application example: QR.analytics part

Iterating through different sel_threshold values (c(0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.72))
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via the sapply function, we can observe that with the increasing threshold only the macro
variables remain as active regressors for the NASDAQ companies. For sel_threshold =
0.7 only the macro variables 101 and 102 serve as regressors for 14 and 38 companies,
respectively. Reaching sel_threshold = 0.72, the macro variable 101 (VIX) vanishes,
what means that it is a regressor of maximally 9 companies, whereas the macro variable
102 (S&P500) is still an active regressor for some 16 companies.

While QR.regressors.stats provides the frequency of the covariates based on the active
set of the beta coefficients, QR.beta.stats analyzes the beta coefficients themselves. Ba-
sically, QR.beta.stats calculates the average percentage (over all moving windows and
companies) of active beta coefficients for the covariates. The average percentage of active
beta coefficients with the value 0.2, for instance, would mean that the covariate, which
has this percentage, acts as an active regressor in exactly 20% of all moving windows (nw)
averaged over all companies. The vector of the average percentage of active beta coeffi-
cients is stored in the variable ave_beta_share (each element corresponds to a covariate),
see Listing 3. Besides the corresponding plots and box plots for the NASDAQ companies
and macro variables, which are provided by QR.beta.stats based on ave_beta_share
(see also Figure 19), ave_beta_share can be subjected to further statistical analysis.
For example, ave_beta_share is minimal (= 0.095) for the company with the number
70 (Loews Corporation (L)) and is maximal (= 0.484) for the company with the number
88 (CBRE Group, Inc. (CBG)). The distribution of the ave_beta_share values of the
macro variables is provided in Figure 19 and Table 14.

The statistical analysis provided by the functions QR.regressors.stats and
QR.beta.stats reveals that the macro variables have a dominant effect on the regressed
companies. Except the macro variable with the number 104 (3MTCM: the changes in the
three-month Treasury bill rate) all other macro variables have an average percentage of
active beta coefficients of at least 56%. The two most influential regressors are the vari-
ables 101 and 102 (VIX and S&P500). Averaged over all moving windows and regressed
companies, VIX and S&P500 are present in around two thirds of the performed quantile
regressions.

^VIX ^GSPC IYR 3MTCM Yield Credit

Variance 0.0187 0.0042 0.0032 0.0013 0.0447 0.0227

Beta_share 0.6695 0.6865 0.5635 0.2651 0.5840 0.5698

Table 14: Variances versus average percentage of active beta coefficients of the macro variables, pro-
duced via QR.variance.vs.beta

An interesting observation is the relationship between the variances of the covariates and
the average percentages of active beta coefficients as calculated in ave_beta_share. The
function QR.variance.vs.beta examines this issue. Among other details, this function
delivers the correlations between the variances and the ave_beta_share values (0.575
for the companies and 0.302 for macro variables, see the last part of Listing 3), the
corresponding plots and scatter plots in Figure 20, and the output for Table 14. In
particular, the scatter plot in Figure 20 illustrates the positive correlation between the
variances of the NASDAQ companies and the corresponding average percentages of active
beta coefficients, i.e. companies with higher volatility are tendentially more often active
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regressors with non-zero beta coefficients.

Figure 20: Variances versus average percentage of active beta coefficients of the NASDAQ companies:
as a multiple plot with rescaled variances by factor of 200 on the left, and as a scatter plot with linear
regression on the right, produced via QR.variance.vs.beta

5.1.4 RiskAnalytics package: “Risk Analytics” part

#------------------------------------------------
# Aggregate data
#------------------------------------------------
last_lambda = aggregate.parallel.results(final_data, max_companies, parResult,

work_dir = work_dir, new_days = 2469, winsize = 63)

#------------------------------------------------
# Risk Analytics
#------------------------------------------------
lambda.analytics(last_lambda, final_data, max_companies)
# "Lambda Analytics Summary"
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.004418 0.006351 0.007255 0.009206 0.009903 0.032530
# "Lambda quantiles corresponding to the given probabilities:"
# 0% 20% 40% 60% 80% 100%
# 0.004418067 0.006227005 0.006791834 0.008091999 0.010884704 0.032527493
# "last lambda value is the quantile for this probability: 0.384927066450567"
# "last lambda value: 0.00673865282581167"
# "Correlation between Lambda and macro variables"
# ^VIX ^GSPC IYR 3MTCM Yield Credit
# 0.8196245 -0.01427044 -0.01283302 -0.0365718 0.2497622 0.6803068

Listing 4: RiskAnalytics application example: “Risk Analytics” part

Listing 4 shows how the QR calculation results from the parallel computing component of
RiskAnalytics, which are saved in the parResult object, are aggregated and the FRM
risk measure as proposed in Section 2.2 is constructed. It is recalled that the FRM risk
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measure is defined as the averaged lambda over all k NASDAQ companies:

FRM(t) def= 1
k

k∑
j=1

λ∗j(t), t ∈ {t0, . . . , T}. (6)

The function aggregate.parallel.results serves the purpose of combining the λ∗j -
values from each company and applying Formula 6. Additionally, a previous lambda
time series can be read in from a CSV file and concatenated with the new lambda values
counting new_days entries. Finally, the current lambda time series is saved as a CSV file
and returned as the vector last_lambda for further analysis.

Subsequently, the function lambda.analytics provides as part of the “Risk Analytics”
software component descriptive statistics for the current lambda time series last_lambda,
furthermore λ quantiles corresponding to the risk level probabilities as suggested in Sec-
tion 3.3.2, the last λ with its quantile probability, and the correlations between λ and the
macro variables are calculated. Finally, a simple plot preview of the FRM lambda time
series is generated, see Figure 21.

5.1.5 RiskAnalytics package: full program run

library(snow)
library(RiskAnalytics)

work_dir = "c:/r/frm/2017"
max_companies = 100

# Load data
companylist = get.nasdaq.companies()
system.time( yahoo_data <- get.yahoo.data(companylist, max_comp_num = max_companies,

from_date = "2006-12-29") )
system.time( macro_data <- get.macro.data(from_date = "2006-12-28") )
final_data = combine.data(yahoo_data, macro_data)

# Calculate data
parResult = parallel.lasso.computation(final_data, max_companies, work_dir = work_dir,

new_days = 2469, parallel_cpu = 32, winsize = 63)
# Aggregate data
last_lambda = aggregate.parallel.results(final_data, max_companies, parResult,

work_dir = work_dir, new_days = 2469, winsize = 63)

# Risk Analytics / QR.analytics
data.analytics(yahoo_data, macro_data)
QR.regressors.stats(parResult, sel_threshold = 0.5, min_regressed_comp = 10)
ave_beta_share = QR.beta.stats(parResult)
QR.variance.vs.beta(final_data, ave_beta_share)
lambda.analytics(last_lambda, final_data, max_companies)

Listing 5: RiskAnalytics application example: full program run

The full program run of the package RiskAnalytics is demonstrated in Listing 5. The
data processing component extracts all needed data in real time, which are passed over to
the parallel computing component. The latter performs the lasso penalized QR (QR meth-
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ods component) via cluster computing (snowfall (Knaus, 2015)), thereby operating as an
“in-memory application”. That means that only the computational power of the physical
CPU cores is needed and no disk Input/Output operations are required. Subsequently,
the parallelization results are aggregated and the FRM risk measure is calculated. In
conclusion, the “Risk Analytics” component, which comprises the tools data.analytics,
QR.analytics and lambda.analytics, provides descriptive statistics of the data collected at
different stages of the RiskAnalytics program run, hence helping to analyze, evaluate
and forecast the systemic risk for the considered markets (Nasdaq Stock Market).

Figure 21: Simple plot preview of the FRM lambda time series, generated after the full program run
of the RiskAnalytics package

5.2 RiskAnalytics (scientific IDE)

The RiskAnalytics scientific IDE is available under
http://borke.net/RiskAnalytics/. IDE stands for “integrated development environ-
ment”. This interactive and web based IDE has the purpose of combining and presenting
the scientific, technical and visual materials, elements and sources around the topic “Risk
Analytics and FRM”. It provides different risk meter designs both for the risk indicators
and for the time series visualizations, containing current but also previous risk measure
calculations. Further, scientific references concerning the methodology but also software
implementations can be found within the RiskAnalytics scientific IDE.

Interactive exploratory data analysis (EDA) can be conducted with the aid of the D3
based risk measure visualizations, current Google Trends statistics and real-time charts
(encompassing VIX, S&P 500, Nasdaq etc.), see also Figure 22. The real-time charts
are provided by TradingView, a social network for traders and investors on Stock and
Futures and Forex markets (https://www.tradingview.com/chart).

5.3 Future Developments

5.3.1 Package namespace

The current RiskAnalytics package could be improved by using a namespace. Name-
spaces make a package self-contained in two ways: the imports and the exports be-
havior. The imports defines how a function in one package finds a function in another.
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The exports helps to avoid conflicts with other packages by specifying which func-
tions are available outside of the package (internal functions are available only within
the own package and can’t easily be used by another package). For more details, the
following book is recommended (http://r-pkgs.had.co.nz/namespace.html) (Wick-
ham, 2015). Furthermore, a package namespace could help to reduce redundant argu-
ments, which are passed to several functions (see e.g. parallel.lasso.computation,
aggregate.parallel.results), by storing the relevant variables in a namespace, from
where they can be accessed from other functions without being explicitly provided as
redundant arguments.

5.3.2 Incorporation of the hqreg package

The aforementioned hqreg (Yi, 2016) package, which provides efficient and C optimized
algorithms for fitting regularization paths for lasso or elastic-net penalized regression
models with Huber loss, quantile loss or squared loss, is a promising alternative for
the time-intensive lasso penalized QR procedure, see Section 5.1.2. A further version of
the RiskAnalytics package could provide different lasso penalized QR implementations,
with hqreg as a possible option. But first the necessary studies and benchmarks should be
carried out in order to compare the numerical consistency, reliability and time complexity
with the former methods and results.

5.3.3 More risk measures involving the beta coefficients and the market
volatility

The results from Section 5.1.3 indicate that there is a considerable relationship between
the variances of the covariates and the average percentages of active beta coefficients,
i.e. covariates with higher volatility are tendentially more often active regressors with
non-zero beta coefficients. Because the L1-norm penalty in Formula 2 shrinks the fitted
coefficients toward zero by |β1| + . . . + |βp| ≤ s, there is a duality between the λ value
and the shrinkage parameter s of the β’s L1-norm. Hence, the incorporation of the
whole market volatility (in the given moving window or another time period) and some
appropriate transformations of the β-coefficients into the new risk measure variants should
be considered and examined. The RiskAnalytics scientific IDE is a good platform for
further experiments.

5.3.4 More D3/C3 visualizations based on the beta structure

The powerful capabilities and features of the D3.js framework but also the C3.js extension,
a D3-based reusable chart library (http://c3js.org/), can be used to implement more
interactive designs and visualizations of the risk measures. For instance, the rich structure
of the QR-components, lambdas and beta coefficients as time dependent vectors and
matrices, can be exploited for the generation of time-variant risk dependency graphs,
where the beta coefficients serve as proxies for the adjacency matrix of the systemic risk.
First steps within R can be easily done by means of the package networkD3 (Gandrud
et al., 2016), see also https://github.com/Quantlet/forceNetwork.
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Figure 22: D3 based FRM risk measure visualization (created via the RiskAnalytics package), current
Google Trends statistics and real-time charts (encompassing VIX and S&P 500), each of them covering
the same time range; available for interactive exploratory data analysis on the RiskAnalytics scientific
IDE
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6 Conclusion

In this paper we propose and develop a measure for systemic risk in financial markets:
the Financial Risk Meter (FRM). The FRM is a measure for systemic risk based on the
penalty term λ of the linear quantile lasso regression, which is defined as the average of the
λ series over the 100 largest US publicly traded financial institutions. The implementation
is carried out by using parallel computing. The risk levels are classified by five levels. The
empirical result shows that our Financial Risk Meter can be a good indicator for trends in
systemic risk. Compared with other systemic risk measures, such as VIX, SRISK, Google
Trends with the keyword "financial crisis", we find that the FRM and VIX, FRM and
SRISK, FRM and GT mutually granger cause one another, which means that our FRM
is a good measure of systemic risk for the US financial market. All the codes of FRM are
published on www.quantlet.de with keyword FRM. The R package RiskAnalytics
(Borke, 2017) is another tool with the purpose of integrating and facilitating the research,
calculation and analysis methods around the FRM project. The up-to-date FRM can be
found on http://frm.wiwi.hu-berlin.de.
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