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Abstract 

Cancer, which is characterised by aggressiveness and increased capacity for 

metastatic spread still requires basic researchers and clinicians to direct 

enormous efforts toward the development of novel therapeutic targets. Potential 

novel targets can be identified and exploited in combination with currently existing 

therapeutic approaches to improve their efficacy and overcome treatment 

resistance of tumour cells, protecting the patient from recurrence. To achieve this, 

different strategies and techniques can be proposed to identify the most 

promising candidate molecules for further exploitation as therapeutic targets. 

Human epidermal growth factor receptors (HERs) and NF-E2-related factor 2 

(NRF2) are regulators of cellular proliferation and determinants of cancer initiation 

and progression.  NRF2 and HERs confer cancers with resistance to several 

therapeutic agents. Nevertheless, there is limited understanding of the regulation 

of HER expression and activation, and the link between NRF2 and HER 

signalling pathways. This research has demonstrated that pharmacological 

activation of NRF2 by tert-butyl hydroquinone (tBHQ) upregulates the expression 

of HER family receptors, HER1 and HER4, elevates phospho protein kinase B 

(pAKT) levels, and enhances the proliferation of ovarian cancer cells. 

Pharmacological inhibition using retinoic acid (RA) and bexarotene and genetic 

inhibition using small interfering RNA (siRNA), did the opposite. Further, tBHQ 

caused transcriptional induction of HER1 and HER4 with different levels of 

expression, while siRNA-mediated knockdown of NRF2 prevented this and 

further caused transcriptional repression. A panel of potent NRF2 inhibitors were 

screened with the hope of finding the most potent for further investigation. 

Bexarotene was found to be the most potent and was used either alone, or in 

combination with lapatinib or erlotinib. The use of these drugs in combination with 

bexarotene resulted in the repression of HER1, HER2, HER3 and HER4 

expression, inhibition of NRF2, elevation of ROS, depletion of glutathione and 

enhanced cytotoxicity in PEO1, OVCAR3, SKOV3 and MCF7-AREc32 cell lines. 

This explained the crosstalk mechanism between HER receptor family and NRF2 

and the role of NRF2 in drug resistance and as a relevant anti-cancer target 

which opens up novel avenues of targeting HER receptor kinase family and 

NRF2 pathways for improving cancer therapy. 
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Structure of the Thesis 

This thesis is designed into seven chapters and sections of references and 

appendices, chapter one is a general introduction and literature review and 

chapter two is the materials and methods. Chapters three, four, five and six are in 

line with the research aims and objectives of the thesis. Chapter seven is the 

discussion and conclusion while the other sections are references and 

appendices respectively. The following are the brief description of each chapter: 

Chapter One: Provides the general introduction of cancer, then ovarian cancer 

specifically, followed by the deep review of what has been done, what needs to 

be done by the research in the area of this study. This chapter provides a 

background of this research which gives an insight that paved a way of 

developing hypothesis and aims and objectives of this study. 

Chapter Two: Provides material and methods followed for the successful 

completion of this research which involves small portion of bioinformatics and all 

the rest are laboratory based. It gives a complete description of the materials 

used and methods followed during the data collection and analysis.  

Chapter Three: Is the first research chapter and it explains how the first objective 

is achieved. This section of the study reported on cloning of promoter regions of 

human HER1 and HER4 genes which subsequently provides an insight into the 

study in the next research chapter. 

Chapter Four: Is the second research chapter and it explains how the second 

objective is achieved. It provides the molecular basis for regulation of the 

expression of these genes by NRF2. It explains the regulation of HER1 and 

HER4 upon NRF2 activation with tBHQ and inhibition with RA and knocking down 

with siRNA, there by highlighting the possibility of direct linkage between ROS, 

HER family and NRF2 signalling pathways. 

Chapter Five: Is the third research chapter and it explains how panels of 

compounds expected to be the potent NRF2-ARE inhibitors were screened to 

uncover the most potent compound for the next research chapter in this study.  
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Chapter Six: Is the fourth and the last research chapter which explains how the 

last objective of this research is achieved. In this section, all the HER receptor 

family were investigated following treatments with either bexarotene or in 

combination with lapatinib or erlotinib. A series of experiments such as 

cytotoxicity assays, immunoblotting, ROS level detection as well as total 

glutathione were performed. 

Chapter Seven: Discusses and provides key findings and concludes this 

research. It also gives recommendations for future studies. 

References section: Contains all the references cited in this research in 

alphabetical order and in Harvard referencing style recommended by Abertay 

University. 

Appendices section: Provides the information of the materials, equipment, 

reagents, chemicals used in this study as well as their nature, source and the 

company they are purchased or name of the donor. 
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1.1.    Cancer 

Cancer is a complex disorder characterised by abnormal growth and alterations 

in cells, reduced cell death and increased cellular energy metabolism (Ivey et al., 

2016, Hojjat-Farsangi et al., 2014, Hojjat-Farsangi et al., 2017, Hanahan and 

Weinberg, 2011). Cell division and apoptosis are considered the two most 

common physiological processes that regulate normal tissue homoeostasis, and 

their disruption could lead to the pathogenesis of cancer, a fatal disease that 

consists of immortal cells (Hojjat-Farsangi et al., 2014, Nwabo Kamdje et al., 

2014, Hojjat-Farsangi et al., 2017). Cancer is initiated by repeated cell attrition 

and repopulation involving two concepts of cancer initiation. Firstly, cancer is the 

result of a series of genetic changes that subsequently transform normal cells into 

malignant ones. Secondly, deregulation of specific biological processes during 

tumour development helps and sustains cancer initiation and progression (Labi 

and Erlacher, 2015). Cancer is considered one of the leading causes of death 

worldwide, with reported cases in 2012 of approximately 14 million (Torre et al., 

2015, Ferlay et al., 2013, WHO, 2017, Ferlay et al., 2015). In the next 20 years, 

the number of cases of cancer is expected to rise by 70% to 25 million (WHO, 

2017). Possible causes of cancer include tobacco smoking, obesity, poor diet, 

infections such as hepatitis B, hepatitis C and human papillomavirus (HPV), 

exposure to ionising radiation and environmental pollutants (WHO, 2017). 

Different cancers may have dissimilar signs and symptoms depending on the 

organ affected and gender of the sufferer. For example, bladder and kidney 

cancer is associated with blood in urine, have pain increased urination and 

urinary tract infection and interstitial cystitis. Breast cancer has symptoms such 

as lump or thickening of lumps (not all lumps are cancerous), itching, redness or 

soreness of the nipples. Ovarian cancer often has no symptoms until in the later 

stages of development, symptoms include weight loss, fatigue, bloating, and 

abdominal pain (WHO, 2017). Cancer can be detected by physical examinations, 

screenings such as blood tests, scanning or medical biopsy (WHO, 2017).   
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1.2.     Ovarian Cancer 

Ovarian cancer is a fatal type of cancer affecting the female reproductive tract 

and is the leading cause of death from gynaecological malignancies (Permuth-

Wey and Sellers, 2009, Merino and Jaffe, 1993, Barber, 2012, Barber, 1986, 

Colombo et al., 2006, Jacobs et al., 2016). It is estimated that every year up to 

eight out of 100,000 women die of ovarian cancer (Permuth-Wey and Sellers, 

2009, Merino and Jaffe, 1993, Barber, 2012, Barber, 1986, Colombo et al., 2006, 

Jacobs et al., 2016). About 50% of ovarian cancers are diagnosed in women over 

the age of 65, and this proportion is expected to increase in coming years as 

populations and life expectancies increase. This is why ovarian cancer cases 

tend to worsen as the age of a patient rises (Edwards et al., 2002, Oberaigner et 

al., 2012, Tew, 2016). Decreased survival in older women with ovarian cancer is 

as a result of cancer being more aggressive with advanced age, an inherent 

resistance to chemotherapy, and individual patient factors such as multiple 

concurrent medical problems, cognitive impairment, depression, frailty, poor 

nutrition and limited social support leading to greater toxicity of the therapy. 

Others factors can also include physician and health care bias towards the elderly 

which can result in inadequate surgery, suboptimal chemotherapy and poor 

enrolment in clinical trials (Tew, 2016, Tew et al., 2014).  

1.2.1 Types of Ovarian Cancer  

Ovarian cancer is classified according to the type of cell from which it starts. 

Below are descriptions of different types of ovarian cancer. 

1.2.1.1 Epithelial tumours 

Epithelial tumours of the ovary constitute almost 90% of all malignant ovarian 

tumours. This form of ovarian cancer generally occurs in postmenopausal 

women. Epithelial tumours are thought to derive from the surface epithelium 

(coelomic epithelium or mesothelium) covering the ovary and the underlying 

stroma. Although the ovary is not of Müllerian origin, the source of these 

neoplasms, namely the surface epithelium, is derived from the coelomic 

epithelium, which in the embryo gives rise to the Müllerian ducts. The latter form 

the fallopian tubes, uterine body, cervix and possibly the upper part of the vagina 
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with their large variety of epithelia (Seidman et al., 2011). It is generally agreed 

that a large subpopulation of epithelia ovarian cancers arise from fallopian tube 

mucosal epithelium. However, there is still some debate as to whether the 

cancers originate from secretory or ciliate cell lineage (Rohozinski et al., 2017). 

The fallopian tube and associated infundibulum epithelium primarily contain two 

different cell types, ciliated and secretory, that can give rise to epithelial ovarian 

cancers. Whilst the ciliated cells have motile cilia that help in the movement of the 

egg released from the ovary to the uterus, the secretory cells have non-motile 

primary cilia that are thought to act as sensory structures (Rohozinski et al., 2017, 

Hagiwara et al., 2008). Therefore, tracing the patterns of gene and protein 

expression in ovarian tumours may help to determine the cell type that 

contributes to the cancer’s origin. This type of approach was reported by Cheng 

et al., (2005) when they noted that HOX gene expression can be used to clearly 

and successfully identify the region of origin of tissue within the female 

reproductive tract (Cheng et al., 2005). 

Surgery is often the initial treatment of choice for ovarian cancer including 

epithelial types, provided that patients are medically fit. Patients who are not 

candidates for optimal debulking should be considered for neo-adjuvant 

chemotherapy followed by interval debulking surgery and then further 

chemotherapy. Patients who are not fit for surgery may be given chemotherapy 

and considered for surgery later, or treated solely with chemotherapy 

(Holschneider and Berek, 2017). 

1.2.1.2 Germ cell carcinoma tumours 

Germ cell carcinoma tumours make up approximately 5% of ovarian cancer 

cases. In disparity with epithelial ovarian cancers that arise from the surface 

coelomic epithelium, ovarian germ cell tumours are believed to originate from 

primordial germ cells that migrate into the gonadal ridge at six weeks of 

embryonic life. This type of tumour might exhibit a spectrum of histologic 

differentiation that impersonates a primitive developing embryo. The concept of 

germ cell tumours as a specific group of gonadal neoplasms has emerged over 

recent decades. The concept is based on the common histogenesis of these 

neoplasms, the relatively frequent presence of histologically different neoplastic 
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elements within the same tumour, the presence of histologically similar 

neoplasms in extragonadal locations along the line of migration of the primitive 

germ cells from the wall of the yolk sac to the gonadal ridge and the remarkable 

homology between the various tumours in the male and female (Talerman and 

Vang, 2011a, Talerman and Vang, 2011b). For instance, dysgerminoma appears 

to be descended from relatively undifferentiated cells, whereas yolk sac tumours 

show malignant change in a cell line committed to extraembryonic differentiation. 

The immature teratomas are derived from cells predisposed to somatic 

differentiation and recapitulate tissue from all three primitive germ cell layers, 

namely ectoderm, endoderm and mesoderm. Taken together, the dysgerminoma, 

yolk sac tumour, immature teratoma and their hybrid mixed germ cell tumour 

comprise more than 90% of malignant germ cell tumours. Although germ cell 

carcinoma tumours account for less than 5% of ovarian cancers, their importance 

is greater than their numerical incidence implies because they occur in children 

and women in their early 20s (Talerman and Vang, 2011a, Gershenson, 1994, 

Lee-Jones, 2003). 

The preferred initial approach for patients with suspected germ cell tumours for 

both diagnostic and therapeutic intent is surgery, and the safety of such an 

approach has been well established. In the past, radiation therapy was the 

traditional approach for patients with germ cell malignancies and dysgerminomas 

in particular, because dysgerminomas are sensitive to radiation therapy with 

overall survival rates of between 70% and 100%. However, recent advances 

have paved the way for success in combination chemotherapy. The excellent 

response of germ cell malignancies to adjuvant chemotherapy has allowed a 

tailored approach to the surgical management of this disease in women who 

desire fertility preservation (Emily R. Penick and Charlotte S. Marcus, 2018).  

1.2.1.3 Stromal carcinoma tumours 

Stromal carcinoma tumours are the category of ovarian tumours that includes all 

those containing granulosa cells, theca cells and luteinized derivatives, Sertoli 

cells, Leydig cells and fibroblasts of gonadal stromal origin. These types of 

tumours originate from the ovarian matrix, and consist of cells from the embryonic 

sex cord and mesenchyme. About 90% of hormonally active ovarian tumours 
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belong to this category, and are associated with physiologic and pathologic signs 

of estrogen or androgen excess (or both) including isosexual precocity, hirsutism, 

abnormal bleeding, endometrial hyperplasia or carcinoma and increased breast 

cancer risk. Amongst all types of ovarian cancers, 5% to 10% belong in the 

stromal carcinoma tumour group. Most of these (70%) are granulosa cell 

tumours, which are low-grade malignancies with a relapse rate of 10% to 33% 

(Emily R. Penick and Charlotte S. Marcus, 2018).  

Because the majority of stromal carcinoma tumours are benign or low malignant 

potential tumours, surgical therapy is the preferred approach for treating this type 

of cancer. Furthermore, for patients who wish to retain fertility, unilateral salpingo-

oophorectomy with preservation of the uterus, contralateral ovary and full surgical 

staging, is an appropriate therapy for patients with stage IA disease. Advanced-

stage disease and disease in older women should be managed with complete 

staging and hysterectomy with bilateral salpingo-oophorectomy. Patients with 

early-stage disease can be treated with surgical therapy alone and can expect an 

excellent prognosis. However, those with stage IC or greater should be 

counselled about adjuvant therapy. The most common chemotherapy regimen is 

bleomycin, etoposide and cisplatin (Emily R. Penick and Charlotte S. Marcus, 

2018).  

1.2.1.4 Small cell carcinoma of the ovary 

Small cell carcinoma of the ovary is a very rare tumour that affects mainly women 

in their early 20s. Approximately two-thirds of patients with ovarian small cell 

carcinoma have hypercalcemia. Small cell ovarian cancer is very aggressive, 

grows very quickly and is a highly malignant tumour with a poor prognosis. 

Although small cell carcinoma was briefly mentioned in a 1979 monograph by 

Scully (Scully, 1979), its entity was first fully described by (Richard Dickersin et 

al., 1982). Presently, there are around 300 cases of this type of tumour reported 

in the literature (Kapoun et al., 2015). Tumour markers, which are useful in 

epithelial ovarian cancers, are non-informative for this type of tumour. The 

histological diagnosis of small cell carcinoma of the ovary is based on the finding 

of a small cell population with high nuclear atypia, numerous mitoses and 

frequent necrosis. The growth pattern is usually solid and trabecular, with typical 
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and almost pathognomic follicle-like spaces. In addition, some unusual findings 

have been described such as mucinous glands, mucinous signet ring cells, 

spindle cell sarcomatoid change, large cells and rhabdoid cytomorphology 

(Witkowski et al., 2016, Kascak et al., 2016).  

Treatment of this type of ovarian tumour is stage dependent. For example, in 

early stages, surgery (as with ovarian cancers) is preferred, followed by adjuvant 

chemotherapy with cisplatin and etoposide. Most patients with this type of tumour 

respond to chemotherapy treatment employing a combination of agents such as 

cisplatin, etoposide, doxorubicin and bleomycin, or cyclophosphamide and 

vinblastine (Witkowski et al., 2016, Kascak et al., 2016). There are different 

opinions on approaches in the early stages of this type of ovarian tumour. Some 

reports recommend fertility-sparing surgery followed by adjuvant chemotherapy, 

others suggest radical staging surgery with pelvic and paraaortic 

lymphadenectomy (Powell et al., 1998, Pautier et al., 2007). For late stages, it is 

recommended that neoadjuvant chemotherapy followed by radical staging 

surgery should be considered (Harrison et al., 2006). Due to the highly 

aggressive nature of this tumour, prognosis is very poor and despite various 

approaches, one-year survival of patients with this type of tumour is only around 

50% (Witkowski et al., 2016, Richard Dickersin et al., 1982).  

Despite approaches such as surgical and chemotherapeutic treatment 

approaches, metastatic ovarian cancer is still incurable mainly as a result of a 

lack of effective therapeutic strategies. Because of this, intense efforts are being 

made to define potential molecular targets that may augment the survival of 

patients with ovarian cancer (Williams et al., 2007). In this respect, several 

reports have identified potential therapeutic targets, with the efficacy of 

treatments against such targets being analysed in clinical trials in various phases 

of development. Amongst such experimental treatments, agents acting on 

inhibiting tyrosine kinases have received particular attention (Alečković and Kang, 

2015, Goltsov et al., 2014a, Jeong et al., 2013, Lee et al., 2016b, Præstegaard et 

al., 2016).  

Many reports have implicated the HER receptor tyrosine kinase (RTK) family as 

an alternative target in cancer treatment, including ovarian cancer (Gschwind et 
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al., 2004, Mendelsohn and Baselga, 2000, de Bono and Rowinsky, 2002, 

Normanno et al., 2003, Reese and Slamon, 1997). Up to 70% of ovarian cancers 

have HER1 overexpression and most of the drugs targeting this receptor are 

already in clinical use. HER2 overexpression has also been reported in ovarian 

cancer and most of the drugs used in targeting the receptor, especially in breast 

cancer, are in clinical use and being given to patients. A study by Sheng and 

colleagues also reported the involvement of HER3 as a potential target in ovarian 

cancer (Montero et al., 2015). Similarly, high incidences of HER4 expression in 

ovarian cancer have also been reported (Davies et al., 2014). Because of the 

relevance of tyrosine kinases in ovarian cancer, the use of HER family-targeting 

monoclonal antibodies and drugs such as trastuzumab, pertuzumab lapatinib and 

erlotinib are increasingly attractive (White et al., 2014, Khalil et al., 2016b, 

Montero et al., 2015, Mullen et al., 2007, Langdon et al., 2010). 

In contrast, NRF2 has been implicated in cancer development and progression as 

causing resistance to chemotherapy. NRF2 has now become a molecular target 

to overcome chemoresistance in cancers including ovarian cancer (Khalil et al., 

2016a, Khalil and Deeni, 2015, Wang et al., 2008, Ren, 2011, Olayanju et al., 

2015, Chian et al., 2014b, Tang et al., 2011, Wu et al., 2014).  NRF2 inhibitors 

such as bexarotene and RA, whose mechanism of action involves blocking NRF2 

nuclear import and its subsequent binding to deoxyribonucleic acid (DNA) (Wang 

et al., 2007, Wu et al., 2014, Wang et al., 2013), trigonelline and ascorbic acid 

that block NRF2 from translocating to the nucleus (Arlt et al., 2013, Sirota et al., 

2015, Tarumoto et al., 2004) have been identified. Other inhibitors identified 

include brusatol that down-regulates NRF2 levels by affecting NRF2 translation 

and post-translational regulation (Ren, 2011, Olayanju et al., 2015) and luteolin, 

which degrades NRF2 at the messenger ribonucleic acid (mRNA) level (Chian et 

al., 2014b, Tang et al., 2011). In addition, Chrysin, which down-regulates 

phosphoinositide 3-kinase /protein inase B (PI3K/Akt) and extracellular signal-

related kinase (ERK) pathway leading to NRF2 repression (Gao et al., 2013a), 

and apigenin, which inhibits NRF2 via suppressing PI3K/Akt pathways (Gao et 

al., 2013b), are amongst the inhibitors reported. The discovery of additional 

inhibitors that would inhibit the over-activation of NRF2 in such a way as to 

sensitise cancer cells to chemotherapy is in progress (Arlt et al., 2013, No et al., 
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2014). Other methods to improve cancer therapy involve gene therapy using 

small siRNA. Gene therapy involves the insertion of genetic material into the cells 

of a patient, resulting in a therapeutic benefit (Kanninen et al., 2015). siRNA-

based therapy has shown great promise for many diseases and many targets for 

siRNA therapy including oncogenes such as NRF2, which is involved in cancer 

survival and resistance to chemotherapy (Huang et al., 2008). 

Below is a detailed description of the HER receptor family and NRF2, their 

expression and how they are being targeted in cancers, including ovarian cancer. 

1.3.     HER Family 

HER family receptors are one of the families belonging to RTKs that regulate key 

signal transduction pathways. HER family receptors become active when their 

ligands, such as epidermal growth factor (EGF)-like proteins and neuregulins, 

bind to them. It is also reported that there are about 30 ligands and four receptors 

in the HER receptor family in humans that make up the complex signal-

transduction network, and where activated, receptor-ligand complexes vary in 

both the strength and type of cellular responses that they induce (Cook et al., 

2014, Yarden, 2001). The process of transducing extracellular signals occurs 

when growth factor receptors such as HER family receptors, activate intracellular 

messengers or directly use receptor translocation to the nucleus, leading to many 

conformational changes and receptor activations (Wieduwilt, 2008, Cook et al., 

2014, Lee et al., 2016a, Zaczek et al., 2005). This activation subsequently leads 

to the induction of a number of signalling pathways including Ras/ Raf and 

PKI3/Akt MAPK, leading to DNA synthesis cell migration, survival, adhesion and 

proliferation (Cook et al., 2014, Wieduwilt, 2008). The different arrangements that 

the HER family possess to form dimers, either homodimers or heterodimers 

(Figure 1.1), lead to a diversity of distinctive purpose (McCubrey et al., 2015, 

Cook et al., 2014). 
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Figure 1.1: HER family receptors and their respective ligands. The receptors are shown based on their 

ability for homodimerization or heterodimerisation alongside the specific ligands. The figure is retrieved from 
(Cook et al., 2014). 

 

RTK pathways, including the HER receptor family, are frequently impaired in 

cancer and are commonly targeted in cancer treatment, with the treatment 

targeting them being promising (Wieduwilt, 2008, Cook et al., 2014, Lee et al., 

2016a, Zaczek et al., 2005).   

1.3.1   HER1 

HER1 is one of the four members of the HER family receptors. It is a glycoprotein 

with a molecular weight of 175 kDa. This cellular transmembrane protein is 

activated when its ligands such as EGF, transforming growth factor-α (TGFα), 

heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), betacellulin 

(BTC), epi-regulin (EPR) and epigen bind to it, an event that leads to 

homodimerization of this receptor or heterodimerization with other receptors from 

the family. Following this, activation and autophosphorylation of HER1 initiate a 

series of intracellular signalling pathways that steer important cellular processes 

such as proliferation, adhesion, migration and apoptosis. However, studies have 

reported the over-expression of HER1 protein in a variety of cancers such as 

breast, ovarian head/neck and colorectal cancers (Moulder et al., 2001, Witton et 

al., 2003, Lee et al., 2005, Gordon et al., 2005, Reid et al., 2007, Mullen et al., 
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2007). This increase in HER1 expression has been associated with poor 

treatment outcomes (Cook et al., 2014, Ilkhani et al., 2015, Schneider, 2009, 

Witton et al., 2003).  

1.3.2.   HER2 

HER2 is a monomeric protein that belongs to the HER family of receptors, and is 

a membrane-bound tyrosine kinase and glycoprotein of 185 kDa. It has three 

different segments including the extracellular amino end segment, which contains 

four domains. These include the hydrophobic transmembrane segment and the 

carboxyl end segment, which also contains another three domains with 

autophosphorylation sites known as the juxtamembrane, the tyrosine kinase and 

the C-terminal tail parts. Amongst all the family members, HER2 is the only one 

that has no known ligand yet heterodimerizes with other members of the HER 

family following ligand binding, which leads to the activation of various 

intracellular signal transduction pathways involved in cellular processes and 

growth (Cook et al., 2014, Wieduwilt, 2008, Mass, 2004, Laughner et al., 2001, 

Rubin and Yarden, 2001, Klapper et al., 1999, Johnston and Leary, 2006). 

HER2 is reported to be amplified and overexpressed in clear cell and mucinous 

tumours of breast and ovarian origin (McAlpine et al., 2009, Tapia et al., 2007, 

Schraml et al., 2003, Lin et al., 2011, Langdon et al., 2010, Mullen et al., 2007). 

Trastuzumab was the first monoclonal antibody used to try and target HER2, and 

a phase II trial indicated a response rate of 7.3%. Following that, another 

humanised antibody targeting HER2 emerged (pertuzumab), and it was given a 

clinical evaluation in ovarian cancer that indicated an improved response of 

14.5%. Numerous approaches have uncovered more effective ways of targeting 

HER2 over-expressing cancers with the use of a combination of trastuzumab with 

pertuzumab having demonstrated much improvement over the use of single 

agents (Omar et al., 2015, Goltsov et al., 2014a, O'Sullivan and Connolly, 2014, 

Limaye et al., 2013, Scheuer et al., 2009, Baselga et al., 2012, Nahta et al., 2004, 

Langdon et al., 2010, Nagumo et al., 2009b, Sims et al., 2012b). In 2016, a study 

by Li et al. reported a safe and effective continuing treatment of trastuzumab 

beyond first line therapy for HER2 positive advanced gastric cancer (Li et al., 

2016). 
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1.3.3.   HER3 

HER3 is a transmembrane glycoprotein with a molecular weight of 180 kDa. It is 

the third member of the HER family and interacts with various ligands such as 

neuregulin NRG-1 and NRG -2. However, HER3 is different from other HER 

family members for two important reasons: firstly, it lacks a functioning kinase 

domain and evidence suggests that even though HER3 can bind ATP, the 

phospho-transfer reaction is catalytically unstable; and secondly, HER3 has the 

ability to induce the PI3K-AKT pathway which in turn induces cancer cell 

proliferation (Cook et al., 2014, Wang et al., 2014). 

Several studies have shown that HER3 is an indispensable chaperone to HER2. 

This is because as HER2 has no known ligand and HER3 has no functional 

kinase activity, they become suitable in making complexes with each other 

(Calderwood et al., 2006, Gajria and Chandarlapaty, 2011, Khalil et al., 2016a, 

Khalil et al., 2016b). The dimerization of HER2 and HER3 has been implicated in 

cancer initiation and progression (Wang et al., 2014). 

1.3.4.   HER4 

HER4 is another member of the HER receptor family. It is a transmembrane 

glycoprotein with a molecular weight of 180 kDa, multiple furin-like cysteine rich 

domains, a tyrosine kinase domain, a phosphotidylinositol-3 kinase binding site 

and a PDZ domain-binding motif. HER4 is activated following its binding by 

neuregulins (NRG)-2 and -3, a heparin-binding EGF-like growth factor and 

betacellulin. This ligand binding leads to the induction of various cellular 

responses including mitogenesis and differentiation. Overexpression or mutation 

of HER4 has been associated with cancers, including ovarian (Okazaki et al., 

2016, Qiu et al., 2008). Not much is known about the role of HER4 in cancer; 

however, a recent study by Okazaki et al (2016) reported developing a novel 

monoclonal antibody called P6-1 which significantly suppressed NRG-1, one of 

the ligands known to bind to human HER4 protein. The study confirmed that the 

antibody clearly suppresses NRG-1 ligand, which leads to reduced expression of 

HER4 in a number of cell lines used, including T47D and MCF7 cells. This, 
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therefore, suggests that targeting HER4 might be an important strategy for 

treating cancers, especially HER4 expressing ones (Okazaki et al., 2016). 

1.4. Composition and signalling patterns of HER family receptors 

The HER family of four are membrane-bound receptors that protrude into the 

cytoplasm. They have some common extracellular ligand-binding domains and a 

single transmembrane domain (Tanner et al., 2006, Linggi and Carpenter, 2006, 

Maihle et al., 2002). Their intracellular tyrosine kinase domain and C-terminal 

non-catalytic signalling tail are also similar across the HER family. All the HER 

family members have ligand binding domains except HER2, and once the ligand 

binds to the extracellular domain of any corresponding receptor, it induces a 

structural reconfiguration of the receptor leading to dimerization (typically 

homodimerization or heterodimerization) with other family members. This, in turn, 

leads to activation of the receptors resulting in autophosphorylation, 

transphosphorylation and subsequent induction of downstream signalling 

pathways. In another scenario, HER family receptors can be activated without 

any ligand binding, and this involves activation by non-physiological stimuli such 

as oxidative stress, ultraviolet light or γ-irradiation, amongst others (Sheng and 

Liu, 2011). 

HER2 is considered the preferred dimerization partner of all the HER family. It 

has the strongest kinase activity amongst the family members, even though it has 

no known ligand. Hence HER2 can only be activated when it forms a dimer with 

any of the other members. In contrast, HER3 can have a ligand bind to it but has 

no functional kinase activity. It is therefore dependent on other members such as 

HER2 forming heterodimers and phosphorylating its signalling tail, which leads to 

downstream signalling effects. EGF, TGF-α and amphiregulin are HER1 ligands 

that specifically bind to it, whilst HER4 has NRG -3, NRG-4 and tomoregulin as 

ligands. Other ligands such as epiregulin, β-cellulin and heparin-binding EGF-like 

growth factors have dual specificity for both HER1 and HER4. In addition, NRG-1 

and NRG-2 are ligands for both HER3 and HER4 (Sheng and Liu, 2011). 

The activation of HER family members leads to the stimulation and recruitment of 

various adaptors and signalling molecules such as the extracellular signal-
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regulated kinase (ERK) 1/2 via recruitment of growth factor receptor-bound 

protein 2 (Grb2), or SHC-transforming protein 1 (Shc) adaptors and the activation 

of ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which have a 

role in cell proliferation and survival. Additionally, phosphorylation and activation 

of HER family and subsequent ERK1/2 and PI3K activation can also lead to the 

activation of a number of transcription factors. These include signal transducers 

and activators of transcription, as well as zinc-finger transcription factor and Fos 

family transcription factors such as (c-Fos), Jun family transcription factors such 

as (c-Jun), Myc family transcription factors (c-Myc) and nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-Κb) (Sheng and Liu, 2011).  

1.4.1.   HER1 expression in ovarian cancer 

A comprehensive review by Siwak et al. (2010) reported on the role of HER1 in 

ovarian cancer and various ways of targeting it. The increased amplification and 

mutation of HER1 in ovarian cancer for up to 4 – 22% and <4% respectively, has 

also been reported (Siwak et al., 2010). Several studies have reported on the use 

of small molecule inhibitors such as gefitinib, lapatinib and erlotinib to block the 

kinase activity of HER1 (Siwak et al., 2010, Burris Iii et al., 2005, Montemurro et 

al., 2007, Kuang et al., 2010, Reid et al., 2007, Mester and Redeuilh, 2008, 

Murphy and Stordal, 2011, Matar et al., 2004, Johnston and Leary, 2006). Most of 

these drugs are already in clinical use and are being used as either single 

treatments or in combination, but most patients using them have reported 

resistance to the drugs (Siwak et al., 2010, Blackwell et al., 2010, Li et al., 

2008b). Monoclonal antibodies such as cetuximab and futuximab targeting the 

HER1 receptor in ovarian cancer have also been reported, though with limited 

activity due to resistance (Sheng and Liu, 2011, Siwak et al., 2010, Yap et al., 

2009, Matar et al., 2004). 

1.4.2.   HER2 expression in ovarian cancer 

Reports have shown HER2 overexpression in ovarian cancer, for example 

SKOV3 cell line that was extracted from an ovarian cancer patient was known to 

have HER2 overexpression (Langdon et al., 1988, Mullen et al., 2007, Meden 

and Kuhn, 1997, Verri et al., 2005, Bookman et al., 2003, Serrano-Olvera et al., 
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2006). Studies have connected a worse prognosis in ovarian cancer as a result of 

overexpression of HER2 (Bookman et al., 2003, Gordon et al., 2006, McAlpine et 

al., 2009, Serrano-Olvera et al., 2006, Berchuck et al., 1990). Although clinically 

HER2-targeted therapies have not shown significant promise as therapeutic 

agents in ovarian cancer, monoclonal antibodies such as trastuzumab and 

pertuzumab have been used to successfully treat HER2-overexpressing breast 

(BarthÉLÉMy et al., 2014, Langdon and Cameron, 2013), and ovarian (Langdon 

et al., 2010, Mullen et al., 2007, Sims et al., 2012b, Goltsov et al., 2014a) 

cancers, though with a low or partial response rate. Lapatinib, which is a dual 

inhibitor of HER1 and HER2 (Johnston and Leary, 2006, Kuang et al., 2010, 

Montemurro et al., 2007), is in clinical use and is used either alone or in 

combination with other anti-cancer drugs such as carboplatin, for treating patients 

with platinum-sensitive recurrent ovarian cancer (Sheng and Liu, 2011, Kimball et 

al., 2008, Lheureux et al., 2012). 

1.4.3.   HER3 expression in ovarian cancer 

HER3 has been reported to be amplified and over-expressed in epithelial ovarian 

cancers (Sheng and Liu, 2011, Tanner et al., 2006, Nagumo et al., 2009b). A 

number of reports have connected the overexpression of HER3 with poor 

prognosis in cancers, including ovarian (Zhang et al., 2009, Reschke et al., 2008, 

Hayashi et al., 2008, Xu et al., 1999, Tanner et al., 2006, Nagumo et al., 2009b). 

Besides the full-length HER3, several segments of HER3 isoforms that consist of 

its extracellular domains have been mentioned and studied in ovarian cancer, 

though their functional significance remains unclear (Sheng and Liu, 2011, Lee 

and Maihle, 1998). HER3 has been reported to contribute towards resistance of 

drugs targeting HER1, HER2 and HER4 (Amin et al., 2010, Campbell et al., 2010, 

Hynes and Lane, 2005, Gala and Chandarlapaty, 2014, Ma et al., 2014). HER3 

activation is increased, potentially through increased localisation of HER3, to the 

cytoplasmic membrane. Also, HER3 activation is reported to overcome resistance 

to gefitinib, especially in HER1-mutant non-small-cell lung cancer cell lines upon 

MET amplification (Engelman and Jänne, 2008, Turke et al., 2010). Not long ago, 

the inhibition of AKT was implicated in up-regulating HER receptors expression 

and phosphorylation, suggesting that HER3 may also have a role in mediating 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 16 
 

resistance to PI3K/AKT pathway inhibitors (Sheng and Liu, 2011, Chandarlapaty 

et al., 2011, Sergina et al., 2007). 

Several monoclonal antibodies such as pertuzumab and trastuzumab are already 

in clinical use for the treatment of breast and ovarian cancers (Langdon et al., 

2010, Langdon and Cameron, 2013, Khalil et al., 2016b, Khalil et al., 2016a, 

Nahta et al., 2004, Molina et al., 2001, Hudis, 2007, Ajgal et al., 2017, Luen et al., 

2017). These antibodies are used to block the binding sites of the ligands for 

HER2, thereby antagonising the possible homodimerization of HER2 or 

heterodimerization of HER2 with either HER3 or other HER family members. The 

use of the combination of pertuzumab with gemcitabine or of gemcitabine alone 

to treat ovarian cancer has also been reported, though with little improvement 

(Makhija et al., 2010). More recently, signalling through the HER3 receptor 

pathway has been reported to correlate with expression of its natural ligand, 

neuregulin-1 (NRG1), in both ovarian cancer cell lines and in primary human 

ovarian cancer cells (Srinivasan et al., 1999, Gilmour et al., 2002). The 

expression of NRG1 has been observed in 30 – 83% of ovarian carcinomas 

(Gilmour et al., 2002, Sheng et al., 2010).  So far, the potential activity of these 

immunotherapeutics and other drugs as single agents or in combination with 

additional cytotoxic or biological therapies in ovarian and other cancers, is 

currently an area of interest and remains under focus (Sheng and Liu, 2011, 

Sheng et al., 2010, Ciardiello et al., 2000, Vanneman and Dranoff, 2012, Agarwal 

and Kaye, 2003, Gerber and Ferrara, 2005). 

1.4.4.   HER4 expression in ovarian cancer 

HER4 has as yet not been well studied, therefore its full role in cancer is not fully 

understood (Madhusudan and Ganesan, 2004). HER4 is reported to be 

expressed in ovarian cancer (Gilmour et al., 2001), with many cancer cases such 

as melanoma having reported that an increase in the proliferation of cells was as 

a result of the mutation of HER4 (Madhusudan and Ganesan, 2004, Sheng and 

Liu, 2011, Gilmour et al., 2002). This suggests that HER4 has a role in cancer 

initiation and progression (Madhusudan and Ganesan, 2004, Sheng and Liu, 

2011, Gilmour et al., 2002).  
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Despite the unclear role of HER4, most of the known ovarian cancer cell lines 

with high HER4 expression have been derived from platinum-refractory tumours 

(Gilmour et al., 2002, Gilmour et al., 2001), thereby suggesting the possibility that 

platinum resistance is as a result of HER4 overexpression and may be 

associated with the development of platinum resistance. In addition, the HER4 

rate of expression has been implicated in improved ovarian cancer cell survival 

(Gilmour et al., 2002). Moreover, it has been reported that the clone P6-1 

monoclonal antibody blocks HER4 binding to NRG1(Okazaki et al., 2016), and 

that the antibody appeared to show a stimulatory effect in a number ovarian 

cancer cell lines investigated, thereby raising alarm as to the possible role of 

HER4 in cancer cells (Okazaki et al., 2016). It, therefore, appears that HER4 is 

overexpressed in ovarian cancer (Sheng and Liu, 2011). This suggests that 

HER4 could provide alternative and salvage cell signalling and proliferation 

pathway to promote and sustain cancers. Thus, it would be of interest to target 

HER4 as a way to improve ovarian cancer therapy. 

1.5. HER family regulation and expression 

Regulation of HER receptor activation is a complex process (Krähn et al., 2001, 

Wood et al., 2004, Katz et al., 2007, Jorissen et al., 2003). The HER family are 

activated following ligand binding and receptor dimerization. As noted earlier, the 

ligands are specific to their respective receptors, with some having a dual 

specification of binding where they bind to one or more different receptors in the 

family to evoke signal transduction cascades and outcomes (Krähn et al., 2001). 

For example, HER receptors can mediate a signal that activates other 

downstream signalling pathways such as AKT or MAPK, which subsequently 

leads to cell growth, movement, survival, differentiation and death. Some of the 

ligands of these HER family receptors are reported to be overexpressed, with this 

being probably due to mutation of the respective receptors in many cancers 

(Roskoski Jr, 2014, Cell, 2016, Ritter et al., 2007, Rusch et al., 1997, Cuello et 

al., 2001). For example, HER1 has been found to be mutated in gliomas and 

NSCLC due to the gene rearrangements, amplification and subsequent 

overexpression of their aberrant protein products (Schlegel et al., 1994, Nicholas 

et al., 2006). HER2 overexpression is also reported in breast, ovarian, bladder 
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and NSCLC cancers, amongst others (Roskoski Jr, 2014, Cell, 2016, Khalil et al., 

2016b, Shattuck et al., 2008, Mullen et al., 2007). 

HER receptors’ signalling cascade is regulated by both positive and negative 

feed-back and feed-forward loops, including transcription-independent early loops 

and late loops mediated by newly synthesised proteins and microRNAs (review 

reported by (Avraham and Yarden, 2011)). For example, a receptor that has been 

activated can be “switched off” through receptor dephosphorylation, receptor 

ubiquitination or the removal of active receptors from the cell surface through 

endosomal sorting and lysosomal degradation (Cell, 2016, Roskoski Jr, 2014).  

1.6. Targeting the HER receptor family pathway for therapeutic 

intervention in cancer 

Several studies on targeting HER signalling pathways have noted the use of 

small molecules and monoclonal antibodies in cancer chemoprevention and 

tumour suppression (Hynes and Lane, 2005, Fabian et al., 2005, Sequist et al., 

2008, Langdon et al., 2010, Langdon and Cameron, 2013, Huang et al., 2004, 

Sartore-Bianchi et al., 2009, Scartozzi et al., 2004, Xiong et al., 2004, Gonzales 

et al., 2016, Cell, 2016). These drugs are used either in single or combination 

treatments to obtain a desired best result, with a number of suggestions having 

been made both pre-clinically and clinically that targeting more than one receptor 

could display better efficacy than just a single treatment approach (Cell, 2016, 

Gilmour et al., 2001, Zhou et al., 2004).  

Combination therapies are being actively pursued to expand therapeutic options, 

as well as to deal with chemoresistance conferred by cancer. Approaches to 

uncovering effective combination treatments have focused on drugs targeting 

intracellular processes of the cancer cells, and in particular on small molecules 

that target aberrant kinases (Dry et al., 2016). Many clinical drug combination 

successes seem to involve drug pairs with independent effects, rather than 

synergistic activity within the tumour cells. Using combination therapies to target 

different cancer cellular processes such as modulating stromal cells that interact 

with the tumour, strengthening physical barriers that confine tumour growth, 

epigenetic control, boosting the immune system to attack tumour cells and even 
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regulating the microbiome to support antitumor responses, could deal with the 

persistence of cancer chemoresistance (Dry et al., 2016, Klemm and Joyce, 

2015)  

The process and approaches for dealing with inhibitors such as small molecule 

inhibitors, monoclonal antibodies and heat shock protein drugs are under 

constant review to improve cancer treatment. More prodrugs and natural drugs 

are under development in order to achieve production of more blockers of 

receptors from overexpression (Fabbro et al., 2002, Barrera et al., 2012). 

1.6.1.    Small molecule kinase inhibitors 

Small molecules are drugs that are developed to inhibit aberrant RTK signalling 

by selectively interfering with their intrinsic tyrosine kinase activity. This 

consequently blocks receptor autophosphorylation and activation of downstream 

signalling pathways (Levitzki, 1999, Levitzki, 2000, Zwick et al., 2002). Most small 

molecule inhibitors are at present in clinical development for the treatment of 

human cancers (Kim et al., 2009, Workman and Collins, 2014, Paez et al., 2004, 

Kris et al., 2003, Herbst et al., 2002, Harrington et al., 2004). These include 

imatinib, erlotinib, lapatinib, tyrphostin and gefitinib. Inhibitors such as genistein 

and herbimycin A (isolated from fungal extracts) are the beginning stages for the 

generation of many types of synthetic small-molecules, especially for the HER 

family (Noonberg and Benz, 2000). Tyrphostin was the first synthetic RTK 

inhibitor introduced in 1988 (Levitzki and Mishani, 2006, Kim et al., 2009). 

Subsequently, another inhibitor, 2-phenylaminopyrimidine, was identified as a 

lead RTK inhibitor (Kim et al., 2009, Druker et al., 2001, Buchdunger et al., 1996).  

Imatinib was one of the novel anti-cancer drugs reported to inhibit kinase activity 

BCR-ABL fusion protein, which is responsible for constitutive proliferate 

signalling. Imatinib acts by blocking ATP access to its binding sites in the protein, 

thus leading to the inhibition tyrosine phosphorylation of the substrate (Fabbro et 

al., 2002, Manley et al., 2002).  
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1.6.2.    Monoclonal antibodies  

Monoclonal antibodies work by blocking ligand–receptor interaction, thereby 

inhibiting ligand-induced RTK signalling and increasing RTK down-regulation and 

internalisation. By binding to specific epitopes on cancer cells, monoclonal 

antibodies induce immune-mediated responses leading to cellular cytotoxicity, 

and thus apoptosis and growth inhibition (Cragg et al., 1999, Zwick et al., 2002). 

Monoclonal antibodies such as bevacizumab and cetuximab targeting HER1 

(Herbst et al., 2005, Cunningham et al., 2004) and pertuzumab and trastuzumab 

targeting HER2/HER3 (Goltsov et al., 2014a, Workman and Collins, 2014, Khalil 

et al., 2016a, Langdon et al., 2010, Langdon and Cameron, 2013), are the 

inhibitors of RTKs identified as effective drugs for HER receptor overexpressing 

cancers including ovarian cancer, that suppress dimerization of HER family 

receptors (Goltsov et al., 2014a, Workman and Collins, 2014). Bevacizumab is a 

potent, highly selective and orally available HER1 inhibitor that shows higher 

growth inhibition and promising clinical activity, especially when combined with 

other drugs (Herbst et al., 2005, Hurwitz et al., 2004, Saltz et al., 2008, Giantonio 

et al., 2007) to suggest the targeting of oncogenic Ras. Cetuximab binds to HER1 

with high specificity and with a higher affinity, thus blocking ligand-induced 

phosphorylation of HER1 (Cunningham et al., 2004), and its activity tends to be 

enhanced when combined with other drugs (Cunningham et al., 2004, Van 

Cutsem et al., 2009, Pirker et al., 2009, Bonner et al., 2010). Pertuzumab, which 

inhibits HER2 dimerization, has shown improved clinical activity in ovarian cancer 

(Mullen et al., 2007), and against both breast and ovarian cancer (Langdon et al., 

2010). Trastuzumab has also shown an improved treatment activity in patients 

with HER2 overexpressing cancers (Workman and Collins, 2014).  So far, 

trastuzumab, in combination with pertuzumab, has become part of the routine 

way of treating patients with known HER2 overexpressing cancers, with an 

improved pathologic complete response (pCR) of 39% (Workman and Collins, 

2014, Goltsov et al., 2014a, Maly and Macrae, 2014). A combination of 

pertuzumab and trastuzumab has been shown to provide improved anti-tumour 

activity (Sims et al., 2012a, Baselga et al., 2012, Faratian et al., 2011), thereby 

suggesting that this combination could be an effective way of dealing with HER2-

overexpressing ovarian cancers (Faratian et al., 2011). Monoclonal inhibitors act 
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by antagonising the binding of ligands to the receptors at the extracellular 

compartment, thereby resulting in the internalisation of receptors without 

phosphorylation (Goltsov et al., 2014a, Workman and Collins, 2014). 

1.7. Comparisons between small molecules and monoclonal 

antibodies as RTK inhibitors (RTKi) 

Although small molecule inhibitors and monoclonal antibodies are the antagonists 

of RTK-activated cellular responses, they represent separate drug classes with 

different mechanisms of action and efficiency (Gui and Shen, 2012, Gharwan and 

Groninger, 2016, Dassonville et al., 2017). Monoclonal antibodies are specific to 

RTKs and have a longer half-life than the small molecule RTKi. They act by 

recruiting immune effector cells, leading to the stimulation of antibody- and 

compliment-dependent tumour cell cytotoxicity (Gui and Shen, 2012). Small 

molecule inhibitors are less selective than monoclonal antibodies (Harrington et 

al., 2004), thus offering the potential of a broader spectrum of activity against 

other members of the receptor family, such as HER2 and HER4, but probably 

produce more side effects. Small molecule inhibitors are normally taken orally 

and are relatively smaller in size than monoclonal antibodies; a characteristic that 

increases their possibility of easily intruding large tumours, although they are less 

stable in an in vivo environment (Harrington et al., 2004). The small molecule 

RTKi has also been reported to have more side effects such as diarrhoea, 

nausea and vomiting than monoclonal antibodies. This limits incorporating it 

within standard cancer chemotherapeutic regimes and approaches (Gui and 

Shen, 2012, Cell, 2016, Imai and Takaoka, 2006). It is left therefore to 

researchers and clinicians to investigate and decide whether any of these 

differences between monoclonal antibodies and small molecules are clinically 

meaningful in cancer treatment (Gui and Shen, 2012, Cell, 2016, Imai and 

Takaoka, 2006), despite the combination of small molecule inhibitors and 

monoclonal antibodies being more effective than single treatments with a 

reported reduced relative risk of death (Slamon et al., 2001). 
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1.8. NRF2 

Moi and colleagues (1994) were the first researchers to describe NRF2 as NF-E2 

p45-related factor 2 encoded by NFE2L2, when they identified it as the third 

human cap 'n' collar (CNC) basic-region leucine zipper (bZIP) transcription factor 

(Moi et al., 1994). One year later, Masayuki Yamamoto and colleagues (1995) 

reported an orthologous cDNA from chicken encoding a transcription factor that 

they called erythroid cell-derived protein with CNC homology (ECH) (Hayes et al., 

2016, Itoh, 1997, Itoh et al., 1995). The CNC domain has a unique region located 

amino terminal to the basic DNA-binding region that defines its identity (Andrews 

et al., 1993, Bowerman et al., 1992, Mohler et al., 1991). CNC family basic 

leucine zipper transcription factors play a vital role in the regulation of mammalian 

gene expression and development (Derjuga et al., 2004). The protein is now 

designated NRF2 rather than ECH, and in mammalian species NRF2 

translocates into the nucleus where it forms a heterodimer with small 

musculoaponeurotic fibrosarcoma (sMAF), consisting of a 45 kDa NF-E2 and an 

18 kDa subunits. It then binds to antioxidant response element (ARE) for 

subsequent initiation of expression of approximately 250 genes, including 

cytoprotective and detoxification genes, that contain an ARE with a sequence 5′-

TGACNNNGC-3′ in their promoter regions (Hayes et al., 2016). 

NRF2 is a member of the bZIP family of transcription factors (Mohler et al., 1995). 

While the basic region, just upstream of the leucine zipper region is responsible 

for DNA binding the acidic region is required for transcriptional activation. In 

mammals, the CNC family is composed of four closely related proteins; p45-NF-

E2 (Chan et al., 1993b), NRF1(Chan et al., 1993a),  NRF2 (Moi et al., 1994, Itoh 

et al., 1995)  and NRF3 (Kobayashi et al., 1999). Others are two remotely related 

proteins; BTB and CNC homology 1 (Bach1) (Oyake et al., 1996)  and BTB and 

CNC homology 2 (Bach2) (Muto et al., 1998). The roles of some of the 

mammalian CNC factors have been extensively studied. These proteins (Figure 

1.2), form a heterodimer with other b-ZIP proteins, such as small Mafs (MafK, 

MafG, MafF), to function as transcription factors (Igarashi et al., 1994).  For 

example, the pattern of heterodimeric association between NRF2 and small Mafs, 

is that the small Maf protein provides DNA binding activity to NRF2, while NRF2 
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activates transcription via its transactivation domain (Igarashi et al., 1998). 

Hence, NRF2 cannot bind to the ARE as a monomer, but requires dimerizaton 

with one of the small Maf proteins in order to bring about transactivation (Itoh, 

1997).  

 

Figure 1.2: Structural properties of CNC protein family members. Six Neh domains are conserved 

among vertebrate NRF2, while some of them are included in other CNC proteins. Among them, Neh4 is the 

only domain specific to NRF2. NRF1 also contains a Neh2-like motif, an interaction site for Keap1, but the 

precise function of NRF1–Neh2 is not known. None of the Neh domains exist in the Bach proteins. Retrieved 

from (Kobayashi and Yamamoto, 2006)  

NRF2 contains seven basic domains, namely Neh1-Neh7 (Figure 1.3). The Neh1 

domain is shown to bind to ubiquitin-conjugating enzymes to enhance the stability 

and the transcriptional activity of NRF2. The second domain, known as Neh2, 

possess two essential motifs known as DLG, which have less affinity for Kelch-

like ECH-associated protein 1 (KEAP1), and ETGE, which has a high affinity for 

the interaction between NRF2 and KEAP1 (Hayes et al., 2016, O'Mealey et al., 

2017). The Neh3 domain contains a carboxy-terminal which associates with 

transcription co-activators such as chromodomain helicase DNA binding protein 6 

(CHD6), which is responsible for the transactivation of ARE-dependent genes. 

Both Neh4 and Neh5 domains bind with cAMP response element binding (CREB) 

protein, which facilitates the transactivation of NRF2 target genes. These two 
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transactivation domains are also reported to interact with the nuclear cofactor 

known as receptor-associated coactivator 3/ amplified in breast 1/ steroid 

receptor coactivator-3 (RAC3/AIB1/SRC-3), thereby leading to an improved 

NRF2-ARE gene expression. The Neh5 domain also possesses a redox-sensitive 

nuclear export signal that mediates the cellular localisation of NRF2. The sixth 

domain, known as Neh6, contains a domain that is rich in serine amino acid, and 

it contains two motifs known as DSGIS and DSAPGS. The Neh6 domain is 

involved in the degradation of NRF2 even in stressed cells, where the half-life of 

NRF2 protein is longer than in unstressed conditions. The Neh6 domain also 

offers stability control of NRF2 when NRF2 is in the NRF2-KEAP1 complex 

(Ahmed et al., 2017, Namani et al., 2014, Wang et al., 2007). The Neh7 domain 

is a recent discovery and has been found to specifically interact with RXRα, a 

nuclear receptor that inhibits the NRF2–ARE signalling pathway (Hayes et al., 

2015, Hayes and Dinkova-Kostova, 2014, Hayes et al., 2016, McMahon et al., 

2014, Hayes et al., 2010, Krajka-Kuźniak et al., 2017).  

1.9. KEAP1  

KEAP1, also known as INRF2, is a substrate adaptor that has a MW of a 69-kDa. 

It is a protein that is rich in cysteine, and most notably cysteine 27 amino acid 

residues. KEAP1 is normally complexed with E3 ubiquitin ligase (Cul3), an 

enzyme that under normal basal conditions inhibits the transcriptional activity of 

NRF2 via its ubiquitination and proteasomal degradation in the cytoplasmic 

compartment of a cell (Ahmed et al., 2017; Namani et al., 2014). KEAP1 is 

reported to contain five domains (Figure 1.3): (i) an N-terminal end region; (ii) a 

BTB dimerization domain; (iii) a cysteine-rich intervening region (IVR); (iv) a 

double glycine repeat (DGR) domain which possesses six kelch, and (v) a fifth C-

terminal end region domain. The BTB domain controls the KEAP1 binding with 

the Cul3-based ubiquitin E3 ligase that complexes and ubiquitinates NRF2, and 

also contains a Cys151 residue that plays a vital role in NRF2 stimulation and 

activation (Krajka-Kuźniak et al., 2017, Hayes and Ashford, 2012). The IVR 

domain contains the very reactive cysteine residues Cys273, Cys288 and 

Cys297, which are sensitive to oxidation and are sensors of any agent that 

induces NRF2 (Hayes and Ashford, 2012, Hayes and McMahon, 2009). Amongst 
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these cysteine residues, Cys288 and Cys297 residues are primarily responsible 

as triggers to inhibit the activity of NRF2. The DGR domain, which contains six 

similar structures of Kelch, has the ability to negatively modulate NRF2 by binding 

to its Neh2 domain (Hayes and McMahon, 2009, Hayes and Ashford, 2012, 

Hayes et al., 2016). The DGR and C-terminal region domains, also known as the 

collectively named DC domain, in association with BTB (BTB-DC) together act as 

players leading to NRF2 proteasomal degradation (Hayes and McMahon, 2009, 

Higgins et al., 2009, Hayes and Ashford, 2012, Hayes et al., 2016). 

 

 

Figure 1.3: NRF2 and KEAP1 domain structures: NRF2 contains seven different domains while KEAP1 

has five different domains. Retrieved from  (Krajka-Kuźniak et al., 2017).  

1.10. NRF2 regulation pattern by KEAP1 

NRF2 is maintained in low concentration in the cytoplasm under a normal basal 

condition, due to control by KEAP1 that targets and presents NRF2 for 

ubiquitination and subsequent proteasomal degradation (Hayes et al., 2015, 

Ahmed et al., 2017, Namani et al., 2014). However, since degradation of NRF2 

by the 26 S proteasome requires prior ubiquitination of the substrate molecule, 

recognition and targeting of the NRF2 protein by the ubiquitin ligases may 

represent a critical rate-limiting step. NRF2 activation has been found to be 

promoted by oxidative stress in the cells. An increase in the level of NRF2 in 

response to stress leads to its dissociation from KEAP1, and this being mediated 
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by a post-transcriptional mechanism rather than an increase in NRF2 mRNA 

levels.  Hence activation of NRF2 has an important role in its stability and 

transcriptional activity (Huang et al., 2000, Nguyen et al., 2003, Ma, 2013). 

KEAP1-NRF2 complex is formed in the cytoplasm, where NRF2 is ubiquitinated 

and degraded in the event of normal basal conditions. In the event of stress state, 

NRF2 is dissociated from KEAP1 and translocates into the nucleus (Figure 1.4) 

where it heterodimerise with sMAF and then bind to ARE for initiation of 

expression of cytoprotective and detoxifying genes (Namani et al., 2014). 

 

Figure 1.4: KEAP1–NRF2–ARE complex pathway.  Illustrates how under normal conditions, NRF2 binds 

to KEAP1 at its two motifs ETGE and DLG, up to the level of ubiquitination and degradation. The Figure also 

illustrates the event in the stress state, where NRF2 protected from KEAP1 and obviously protected in the 

cytoplasm, is released, leading to its translocation into the nucleus where it binds with sMAF for subsequent 

initiation of cytoprotective, detoxifying and other ARE gene expression. Figure retrieved from (Namani et al., 

2014). 

Studies have shown that the process where KEAP1 interacts with NRF2 is 

through a mechanism called “hinge and latch” in which two motifs of NRF2 (DLG 

and ETGE) bind with the KEAP1 homodimer. The ETGE motif possesses a 

higher affinity for KEAP1 than the DLG motif and acts as a hinge, whilst DLG acts 

as a latch (Hayes and Ashford, 2012, Hayes et al., 2016). NRF2 first binds with 

KEAP1 at the ETGE site where there is high affinity that is through the hinge, 
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then at the DLG site by the latch. Under normal basal conditions, NRF2 would 

remain attached to KEAP1 through the hinge and latch interaction until activated 

by its inducers throwing it into an oxidative stress state, when it would then 

dissociate from KEAP1 in the cytoplasm. This free NRF2 would then translocate 

to the nucleus, where it would bind with sMAF proteins to form a heterodimer, 

and then transactivate ARE-driven gene expression that would lead to the 

expression of many cytoprotective and detoxifying genes (Hayes, 2000, Hayes et 

al., 2016, Wang et al., 2007). The phosphorylation of NRF2 by a series of protein 

kinases is reported to result in changes in the NRF2–KEAP1 complex and 

subsequent stabilisation of NRF2, which promotes the dissociation of NRF2 from 

KEAP1 and its accumulation in the nucleus (Namani et al., 2014, Ahmed et al., 

2017)  

1.11. The basic canonical and non-canonical NRF2 activation 

pathways 

NRF2 activation involves two basic pathways: canonical and non-canonical. The 

canonical pathway accounts for the primary mechanism of NRF2 activation. This 

is based on the dissociation of NRF2 from KEAP1 in the cytoplasm leading to the 

translocation of NRF2 into the nucleus where it dimerizes with sMAF proteins, 

and then binds to ARE-carrying promoters to subsequently initiate the gene 

expression of cytoprotective and detoxifying enzymes (Krajka-Kuźniak et al., 

2017, Krajka-Kuźniak et al., 2016). The activation of the PI3K/Akt signalling 

pathway and stresses on the endoplasmic reticulum are some of the mechanisms 

that can lead to nuclear accumulation of NRF2 and increased ARE-driven gene 

expression (Xiang et al., 2014, Cullinan and Diehl, 2004, Krajka-Kuźniak et al., 

2017). The non-canonical pathways of NRF2 activation involve numerous 

proteins with motifs similar to the ETGE motif in NRF2 competing with NRF2 for 

KEAP1 binding. Because of this competition, in this process the NRF2 loses out 

in the binding to KEAP1 and therefore becomes free, leading to its accumulation 

in the cytoplasm (Krajka-Kuźniak et al., 2017). This is a harbinger to the eventual 

ease of activation and translocation of NRF2 to the nucleus. Some of these 

proteins that compete with NRF2 include p62, a protein that is known to contain 
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the STGE motif, dipeptidyl peptidase 3 (DPP3) and a partner and localiser of 

BRCA2 (PALB2) (Krajka-Kuźniak et al., 2017, Krajka-Kuźniak et al., 2016). 

1.12 Early evidence involving NRF2 activation in cancer 

Earlier NRF2 research has pinpointed the roles of NRF2 in preventing cancers 

(Praslicka et al., 2016). For instance, a study by Ramos-Gomez et al (2001) 

reported that NRF2 null mice are more susceptible to carcinogen-induced 

tumours than their NRF2 wild-type counterparts (Ramos-Gomez et al., 2001). 

Moreover, another study by Pearson et al., (2008) in which they compared the 

effects of caloric restriction on NRF2 wild-type and NRF2 null mice, implicated 

NRF2 as playing an important role in preventing cancer in the caloric restricted 

mice (Pearson et al., 2008). 

Studies by Padmanabhan et al., (2006) and Singh et al., (2006) have reported on 

the activation of NRF2 in cancer, following their investigations on mutations and 

polymorphisms in KEAP1 in lung cancer tissues and cell lines (Padmanabhan et 

al., 2006, Singh, 2006). Increased NRF2 activity in cancer was reported to have a 

role in increased cancer cell survival and resistance to chemo- and radiotherapy, 

which could lead to poor prognosis (Solis et al., 2010). Identified differences in 

the clinical manifestation of tumours suggest that those with sustained NRF2 

activation are distinct from those without (Praslicka et al., 2016). Following the 

findings of the role of NRF2 in chemoresistance, researchers have been focusing 

on identifying NRF2 inhibitors to modulate NRF2 to overcome chemoresistance 

(Wu et al., 2014, Chorley et al., 2012, Wang et al., 2007, Khalil et al., 2016b, 

Khalil and Deeni, 2015, Khalil et al., 2016a, Hayes et al., 2016, Hayes and 

McMahon, 2009, Yen et al., 2004a, Yen et al., 2004b, Yen and Lamph, 2006, 

Olayanju et al., 2015, Ren et al., 2011, Chian et al., 2014b, Tang et al., 2011, 

Gao et al., 2013a, Gao et al., 2013b).  

1.13 Chemopreventive and chemoprotective roles of NRF2 

A number of studies have reported on the double-edged role of NRF2. It displays 

a vital role in preventing normal cells from developing tumours and in killing 
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cancers away from normal cells, yet on the other hand it plays a crucial role in 

promoting carcinogenesis, drug resistance and cancer protection (Grossman and 

Ram, 2013, Na et al., 2008, Kim et al., 2008, Li et al., 2008a, Kim et al., 2014, 

Kim and He, 2014).  

The chemopreventive role of NRF2 is reported in many studies, for example, the 

increased expression of NRF2 effectively yielding a positive result (Thimmulappa 

et al., 2002, Kwak et al., 2002, Lee and Surh, 2005, Yu and Kensler, 2005). 

People under treatment with inducers could obtain a high degree of 

chemopreventive efficacy. Health reflects the ability of an organism, including 

humans’ ability to adapt to stress. Hence the activation of NRF2 as a 

chemopreventive measure is an adaptive response to environmental and 

endogenous stresses that serves to render organisms resistant to chemical 

carcinogenesis and other forms of toxicity (Kensler and Wakabayashi, 2010, 

Sarkar, 2011, Ahn et al., 2010, Talalay et al., 2007).  A wide variety of studies 

have reported several natural and synthetic compounds such as curcumin, 

xanthohumol, sulforaphane and oltipraz as inducing NRF2, which in turn leads to 

chemoprevention in cancers (Grossman and Ram, 2013, Dietz et al., 2005, Lee 

et al., 2011, Balogun et al., 2003, Farombi et al., 2008, Rushworth et al., 2006, 

Clarke et al., 2008, Iida, 2004). 

In contrast, a number of studies have reported the protective role of NRF2 in 

cancer leading to increased cancer cell proliferation and survival, a situation that 

then leads to drug resistance. One of the reasons for NRF2 activation is a loss of 

proper interaction of the KEAP1 protein, with NRF2 leading to increasing and 

persistent nuclear accumulation of NRF2. This thereby activates antioxidant and 

anti-apoptotic gene expression, which in turn leads to drug resistance (McMahon 

et al., 2014, Kwak et al., 2003, Cho et al., 2008, Wang, 2008, Goldstein et al., 

2016, Wu et al., 2017).   

Interestingly some studies have reported on ways of overcoming this problematic 

side of NRF2. For, example, transient transfection of NRF2-siRNA, sensitizes 

cancer cells to be more susceptible to cisplatin and doxorubicin (Wang, 2008). In 

addition, the pharmacological inhibition of NRF2 as a way of overcoming 

chemoresistance and increasing the killing effect of anti-cancer drugs has been 
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demonstrated (Khalil et al., 2016a, Tsuchida et al., 2017). Therefore, the 

pharmacological inhibition or genetic knockdown of NRF2 in cancer would help in 

overcoming chemoresistance (Namani et al., 2014, Ahmed et al., 2017, Khalil et 

al., 2016a, Khalil et al., 2016b). 

1.14 Targeting NRF2 pathway for therapeutic intervention in cancer 

Several studies have reported an increased expression of NRF2 which is 

overexpressed in cancers compared to normal cells, with this being one of the 

chemoprotective roles of NRF2 in cancers discussed earlier (Lister et al., 2011, 

Khalil et al., 2015, Hayes and McMahon, 2009, Kweon et al., 2006, Jiang, 2010, 

Stacy et al., 2006, Kim et al., 2011). Evidence indicates that a dysregulated 

NRF2/KEAP1 system, for example KEAP1 mutation (Ohta et al., 2008, 

Padmanabhan et al., 2006) or NRF2 mutation (Shibata et al., 2008), is 

responsible for NRF2 overexpression in cancers that leads to enhanced cellular 

proliferation and chemoresistance (Lister et al., 2011, Pandey et al., 2017, 

Shibata et al., 2008, Ohta et al., 2008, Padmanabhan et al., 2006). NRF2 tends 

to be overexpressed in cancers when it is freed from KEAP1 anchoring in the 

cytoplasm at the oxidative state and then translocates to the nucleus, where it 

heterodimerizes with sMAF and binds to ARE. This, in turn, leads to the 

expression of cytoprotective and detoxifying genes, such as NAD(P)H 

dehydrogenase quinone 1 (NQO1) and heme oxygenase-1 (HO-1). This confers 

protection to cancer cells against reactive oxygen species (ROS)-induced 

apoptosis and DNA damage, thereby enabling cancer cell survival and growth. 

Nuclear NRF2 expression due to activation of NRF2-ARE signalling may promote 

tumour progression and drug resistance, and hence NRF2 inhibition could be a 

strategic path in cancer treatment (Namani et al., 2014, No et al., 2014, McMahon 

et al., 2014).  

As mentioned earlier, studies have now focussed on the inhibition of NRF2 to 

overcome the prolonged or uncontrolled activation of NRF2 in causing tissue 

damage or cancer progression and chemoresistance. However, the screening, 

discovery and development of specific, potent, and non-toxic NRF2 inhibitors, 

including retinoids (e.g. RA and bexarotene) remain challenging. The possible 
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ways of developing specific inhibitors include: (i) transcriptional down-regulation 

of NRF2; (ii) increased degradation of NRF2 mRNA for subsequently decreased 

translation; (iii) enhancement of NRF2 degradation, through up-regulation of 

KEAP1-CUL3 complex, β-TrCP-SCF or HRD1; (iv) blocking the translocation of 

NRF2 to the nucleus leading to antagonising or blocking the dimerization of NRF2 

with sMAF proteins, and (v) blocking the NRF2-sMAF DNA-binding domain 

(McMahon et al., 2014, Namani et al., 2014, No et al., 2014). 

A review by Namani et al (2014) described retinoids as structurally related to 

vitamin A and other natural and synthetic signalling compounds including retinol, 

retinal, RA and retinyl esters. They are reported to have an anti-cancer effect 

because of their proapoptotic and antioxidant activities. Retinoids are stimulated 

ligands via interaction with two different nuclear receptors called retinoic acid 

receptors (RARs) and retinoid X receptors (RXRs), and these are members of the 

steroid/thyroid hormone receptor super-family. The RARs themselves contain the 

three isotypes RARα, RARβ, and RARγ encoded by the RARA, RARB, and 

RARG genes, and function as ligand-dependent transcription factors. There are 

two important isoforms of RARα (α1 and α2) and RARγ (γ1 and γ2) with vital 

functions; however, RARβ isoform has β1, β2, β3, β4, and β1′) resultant from 

differential use of promoters and alternative splicing (McMahon et al., 2014, 

Namani et al., 2014, No et al., 2014). 

Mostly RARs form heterodimers with RXRs and in the absence of ligand, an 

RAR/RXR heterodimer can interact with multiple co-repressor proteins such as 

the nuclear receptor co-repressor and silencing mediator of RA that regulates the 

transcription of target genes (McMahon et al., 2014, Namani et al., 2014, No et 

al., 2014). Also, endogenous ligands such as RAs act as agonists and activate 

the RAR/RXR heterodimer complex, leading to a reduction in the affinity between 

the co-repressor and the complex. The coactivator proteins such as steroid 

receptor coactivators SRC-1, SRC-2, and SRC-3 and proteins that have histone 

acetyltransferase activity similar to p300-CBP, P300/CBP-associated factor, have 

general control of amino acid synthesis protein 5-like 2. This will then 

subsequently interact with high affinity for the RAR/RXR heterodimer, which 

transactivates the genes targeted by RA through binding to downstream DNA 
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response elements, known as RA response elements (RARE) (McMahon et al., 

2014, Namani et al., 2014, No et al., 2014). 

Nuclear receptors have been reported to have a role in cancer, and are hence 

considered as drug targets in the same way that NRF2 is. Nuclear receptors play 

vital physiological functions and are mostly found in the nucleus, where they bind 

to DNA sequences such as hormone-responsive elements and regulate gene 

expression. The nuclear receptors are regulated either in a ligand-dependent or a 

ligand-independent manner, for example, RXRα physically interacts with NRF2, 

forms a protein–protein complex and then negatively regulates ARE gene 

expression. Studies have reported that nuclear receptors play dual roles in the 

aetiology of cancer. For example, PPARγ has been reported to play the role of 

both tumour promoter and tumour inhibitor in cancers (McMahon et al., 2014, 

Namani et al., 2014, No et al., 2014). 

1.15 Silencing NRF2 gene expression using siRNA to improve cancer 

therapy 

Evidence from studies indicates the application of siRNA for targeting cancer to 

improve treatments so as to overcome resistance to chemotherapy and 

radiotherapy. This provides a promising therapeutic modality for cancer and other 

diseases (Huang et al., 2008, Guo et al., 2013, Kanninen et al., 2015, Duong et 

al., 2017, Esmaeili, 2016). Silencing genes exerts antiproliferative and 

proapoptotic effects upon cell culture systems, animal models in clinical trials and 

in most studies. The recognition of the siRNA mechanism and progress in this 

field has led to several new siRNA-based drugs being applied in clinical trial 

phases (Mansoori et al., 2014). In combination with standard chemotherapy, 

siRNA therapy may reduce the chemoresistance of certain cancers, thereby 

demonstrating the potential of siRNA therapy for treating many cancers (Huang et 

al., 2008), including ovarian. A combination of siRNA-mediated gene silencing 

with natural products has been reported to down-regulate the NRF2-dependent 

response and partly sensitise MCF-7/TAM cells to tamoxifen in a synergic 

manner (Esmaeili, 2016). Another study by Duong et al. (2017) reported that 

NRF2-mediated silencing using siRNA reduced the level of aldehyde 
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dehydrogenase 1 family, member A1 (ALDH1A1) and aldehyde dehydrogenase 3 

family and member A1 (ALDH3A1); as well as glutamate-cysteine ligase catalytic 

subunit (GCLC) expression leading to enhanced antiproliferative effects of the 

chemotherapeutic agent, 5-fluorouracil (5-FU) in pancreatic cancer cells (Duong 

et al., 2017). These studies have suggested that siRNA-mediated NRF2 

knockdown could increase the efficacy of chemotherapeutic drugs. 

1.16 ROS: their dual role in cancer and their relationship with the HER 

family and NRF2 

ROS are ions, molecules or radicals that have a single unpaired electron in their 

outermost shell of electrons. Because of this characteristic, they are highly 

reactive, and more so than molecular oxygen (Zhang et al., 2016a, Liou and 

Storz, 2010). ROS are classified into two groups: free oxygen radicals and non-

radical ROS. Free oxygen radicals include superoxide (O2
•−), peroxyl radicals 

(ROO•), hydroxyl radical (•OH), nitric oxide (NO•), organic radicals (R•), alkoxyl 

radicals (RO•), thiyl radicals (RS•), disulfides (RSSR), sulfonyl radicals (ROS•) 

and thiyl peroxyl radicals (RSOO•). Non-radical ROS include hydrogen peroxide 

(H2O2), singlet oxygen (1O2), trioxygen/ozone (O3), organic hydroperoxides 

(ROOH), hypochloride (HOCl), peroxynitrite (ONO−), nitrosoperoxycarbonate 

anion (O=NOOCO2
−), nitrocarbonate anion (O2NOCO2

−), dinitrogen dioxide 

(N2O2), nitronium (NO2
+) and highly reactive lipid-or carbohydrate-derived 

carbonyl compounds (Liou and Storz, 2010). Amongst these, superoxide, 

hydrogen peroxide and hydroxyl radicals are the most well studied ROS in cancer 

(Zhang et al., 2016a, Liou and Storz, 2010). 

Just like NRF2, ROS play a vital role in various cellular biological activities 

including proliferation, growth and apoptosis. They can also facilitate cancer cell 

proliferation as well as survive and adapt to hypoxia (Zhang et al., 2016b). 

Cancer cells increase their rate of ROS production in comparison with normal 

cells to induce the cell signalling pathways necessary for cellular transformation 

and carcinogenesis (Reczek and Chandel, 2017). Moreover, in order to maintain 

ROS homeostasis and evade cell death, cancer cells increase their antioxidant 

capacity relatively. Compared with normal cells, this altered redox environment of 
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cancer cells may increase their susceptibility to ROS-manipulation therapies 

(Reczek and Chandel, 2017).  

ROS are reported to have dual roles in cancer depending on their concentration 

in cells. ROS facilitate carcinogenesis and cancer progression with mild to 

moderately elevated levels, while excessive ROS damage cancer cells 

dramatically and lead to cell death (Zhang et al., 2016b). Studies have implicated 

the HER family, NRF2 and ROS in the promotion of cancer cell proliferation, 

increased detoxification potential and resistance to therapy (Kang et al., 2014b, 

Manandhar et al., 2012). In particular, the generation of ROS, which are key 

regulators of the NRF2 pathway (Kang et al., 2005), have been demonstrated as 

a regulator of the HER family complex and subsequent activation of its functions. 

Elevation of ROS oxidizes redox sensitive cysteine residues on KEAP1. This 

results in dissociation of NRF2 from KEAP1, which translocates to the nucleus, 

heterodimerizes with sMAF and binds to AREs for the initiation of expression of 

antioxidant genes. Elevation of ROS can trigger signalling pathways such as ERK 

MAPK and PI3K, which are induced following HER receptor family activation to 

activate NRF2. These new mechanisms place ROS in a central position where 

they might act as a point of convergence between the HER receptor family and 

NRF2. Taken together and in consideration of the dual roles of ROS as a point of 

convergence between these two cytoprotective pathways, increasing the level of 

ROS in cancer cells as a strategy could improve treatment. 

The foregoing overexpression of HER family receptors and NRF2 are well 

recognised in cancers and in conferring therapeutic resistance to cancers (Hayes 

and McMahon, 2009, Hayes and Ashford, 2012, Hayes et al., 2015, Marmor et 

al., 2004, Bianco et al., 2006, Friedlander, 1998, Psyrri et al., 2005, Phelps et al., 

2008, Ledermann and Raja, 2010). In addition, a report by Khalil et al. (2016b) 

recently demonstrated transcriptional regulation of HER2 and HER3 by NRF2. In 

addition to demonstrating a relationship between NRF2 function, HER2/HER3 

signalling, ROS generation and the sensitisation of ovarian cancer cells to the 

killing effects of the targeted therapeutics and trastuzumab, pertuzumab or their 

combination (Khalil et al., 2016b, Khalil et al., 2016a) along with reports that 

demonstrate the importance of inhibitors of NRF2, it is reasonable to make the 

following hypotheses: 
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1. Ovarian cancer develops chemoresistance as a result of overexpression of 

HER receptor family and NRF2.  

2. Since NRF2 is a transcription factor to several hundred genes including 

proto-oncogenes, it is feasible that HER receptors are transcriptional 

targets of NRF2 via direct or indirect means involving ROS. 

3. Inhibition of NRF2 function could improve the efficacy of HER receptor- 

targeted chemotherapeutics. 

1.17 The aims and objectives of this study 

1.17.1 Aim 

The main aim of this research is to investigate the regulation of the HER receptor 

family and NRF2 in ovarian cancer. 

1.17.2 Objectives 

1. To clone human HER1 and HER4 proximal gene promoter and reporter 

systems as novel tools for the study of the regulation of HER1 and HER4;  

2. To examine the regulations of HER1 and HER4 by NRF2 in ovarian 

cancer; 

3. To screen for potent inhibitors of the NRF2-ARE signalling pathway and 

then investigate their potential applications in ovarian cancer therapy; 

4. To suggest novel interventions that may improve ovarian cancer therapy. 

The overall findings of this study may add to the regulation of the overexpression 

of HER family receptors and NRF2 in cancer, which may be a contributing 

determinant for the success and/or failure of HER targeted therapies involving 

RTK inhibitors. 
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2.1. Bioinformatics 

2.1.1 Putative NRF2 transcription factor binding sites in promoters HER1 

and HER4  

Approximately 1.5 kb and 1.3 kb proximal promoter regions of HER1 and HER4 

respectively were retrieved from the base (http://www.ensembl.org/index.html) 

subjected to transcriptional factor binding prediction program 

(http://consite.genereg.net/) (Sandelin et al., 2004) (Figure 2.1) to predict for 

putative NRF2 binding sites. The sequences were analysed at 75% stringency. 

 

Figure 2.1: Screen shot of the bioinformatics analysis of the retrieved sequences. This is used to 

predict for putative NRF2 binding sites from the consite tool.  

2.1.2 Primer design and analysis 

All the primer sequences designed in the current research were first analysed 

under different criteria before ordering. Primer analysis was performed using the 

primer analysis software, Oligo-Analyser (Integrated DNA technologies, UK) 

(Figure 2.2). First of all, it was made sure that the primer sequence designed had 

a length between 20-40bp, had a minimum GC content of 50%, and that the 

forward and reverse primers did not have self-complementation. Once, this was 

established, it was made sure that the primer sequences were specific for the 

http://consite.genereg.net/
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gene of interest by carrying out basic local alignment search (BLAST) analysis 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Further analysis was performed using the Oligo- Analyzer web resource 

(https://www.idtdna.com/site/Order/oligoentry/set?seq=CACTCCAGGTACTAGC

CAAGG) which determined its melting temperature, a complementary sequence, 

hairpin formation, and possible self-dimers. 

 

 

Figure 2.2: Screen shot of the Bioinformatics analysis of the designed primer using the Oligo-
Analyser web tool. After the primers were found correct under all the set criteria, they were ordered 

(Integrated DNA technologies, UK) with PAGE purification. Once the primers arrived in lyophilized form, the 
primer vials were centrifuged at full speed for 3 min, and re-suspended in Nuclease free water (Invitrogen) to 
make a stock of 100 μM. 10 μL aliquots of 10 μM final stocks were made and stored at -20°C until used. 

2.2. Molecular biology 

2.2.1. Isolation of genomic DNA 

For the isolation of genomic DNA, buccal swabs were used following the Buccal 

swab spin® protocol (Qiagen). Buccal swabs were used as a less invasive 

alternative to a blood sample. The buccal swabs were collected by swabbing the 

inside of the cheek 5 times with a cotton swab (Whatman bioscience). The cotton 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.idtdna.com/site/Order/oligoentry/set?seq=CACTCCAGGTACTAGCCAAGG
https://www.idtdna.com/site/Order/oligoentry/set?seq=CACTCCAGGTACTAGCCAAGG
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head was ejected in the eppendorf tube (Scientific laboratory supplies) and 

allowed to air dry for at least 2-3 h. Following this, the manufacturer’s instructions 

were followed to isolate total genomic DNA. The quality of the isolated DNA was 

examined by running 10 μL of the final DNA solution on 1% agarose gel and 

genomic DNA was spectrophotometrically quantified. 

2.2.2. PCR amplification 

In this study, two types of PCR techniques were performed. The first one was the 

conventional PCR amplification technique for the amplification and clonal 

manipulation of DNA using a template DNA either from bacterial miniprep 

extraction or genomic DNA extracted from buccal swabs. The second type was 

colony PCR where the bacterial colony used as a source of template DNA used 

to screen for positive clones for a gene of interest. PCR reaction mix was made 

on ice in PCR tubes (Fisher scientific) using commercially available PCR 

reagents (Promega). Typically, each PCR reaction volume was 50 μL. The 

following were added: 

GoTaq® flexi buffer (5x)..................................10 μL 

MgCl2 (25 mM)...............................................2.5 μL (final concentration 1.25 mM) 

Forward primer (10 μM stocks).......................1 μL (final concentration 0.2 μM) 

Reverse primer (10 μM stocks).......................1 μL (final concentration 0.2 μM) 

dNTP mix (10 mM each)..................................1 μL (final concentration 0.2 mM of 

each) 

DNA template...................................................0.25 μg 

GoTaq® DNA polymerase................................1.5 units (0.3 μL) 

Nuclease free water..........................................To 50 μL. 

In the case of colony PCR reactions, these were performed to screen for 

successful clones by using the bacterial cells directly as a source of template 

DNA and examining the presence of the gene of interest using primers specific 

for that gene. Following overnight growth of transformed cells and subsequent to 

the appearance of colonies, individual colonies were picked with the help of 

pipette tips and introduced into PCR tubes containing 5 μL of water. The same 
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tips were also streaked individually from each colony on another plate in order to 

preserve the clone. Then from that 5 μL cell suspension, 1μL was used as a DNA 

template in PCR mix. The total volume of PCR mix was set to 25μL in the 

following set up below: 

GoTaq® flexi buffer (5x)................................5 μL 

MgCl2 (25 mM).............................................1.25 μL (final concentration 1.25 mM) 

Forward primer (10μM stocks)......................0.5 μL (final concentration 0.2 μM) 

Reverse primer (10μM stocks)......................0.5 μL (final concentration 0.2 μM) 

dNTP mix (10mM each).................................0.5 μL (final concentration 0.2 mM of 

each) 

DNA template................................................1 μL of the resuspended colony 

GoTaq® DNA polymerase............................1 unit 

Nuclease free water......................................To 25 μL. 

Following completion of PCR reactions, the whole reaction mixes were run on 1% 

agarose gels using appropriate DNA ladders for analysis and subsequent 

required applications. 

2.2.3. Agarose gel electrophoresis 

The agarose gel electrophoresis was performed for the separation, validation, 

characterization and purification of DNA following PCR amplifications, restriction 

digestions, genomic DNA isolation, estimation of ligation ratios and other clonal 

manipulations required in molecular biology works in this study.  

Throughout the study, 0.5 to 1% solution of agarose (Sigma) was made in 1x 

TAE buffer in a conical flask. The percentage of agarose gel used depended 

upon the size of DNA (for DNA > 10 kb, 0.5 % of agarose was used). Agarose 

was dissolved in TAE by heating in a microwave for 2-3 min and once the 

agarose was fully dissolved, the solution was cooled to 40oC at room temperature 

or sometimes with the help of tap water. For staining the DNA, Gel red nucleic 
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acid stain (Biotium) was added at 5 μL/100 mL of gel. The gel solution was added 

to the agarose gel electrophoresis tank after assembling it and a comb-plate was 

inserted in the gel. After the gel solidified, the comb-plate was carefully removed 

and 1x TAE buffer was added into the gel tank to fully immerse the solidified gel 

in the buffer. Following this, 5 μL of 1 kb DNA ladder (Bioline) for estimation of 

bands was added in the first well and the DNA to be analysed was mixed with the 

DNA loading dye (Bioline) and carefully loaded into each well. In the case of PCR 

amplified products, all the content of tube (usually up to 50 μL) were added in 

each well, and for estimation of ligation ratios, or quality of gel purified DNA, 5 μL 

of DNA was used and for restriction screening, 15-20 μL of DNA was added. The 

lid of the tank was closed and the attached cables plugged into the power pack. 

Agarose gels were usually run for 1 h at 80-100volts. 

2.2.4. Visualisation of DNA bands and image capturing 

The DNA bands within agarose gels were visualised under UV by placing the gels 

on UV illuminator (UVP upland, USA). To capture the gel images, gels were 

placed within the Gel documentation machine (Alpha Innotech, USA), and loading 

the Alphaimager® software. Depending upon the intensity of bands, appropriate 

exposure time was set (usually between 500-1000 milli seconds) and image 

captured through the in-build camera. The images were saved in TIFF file format 

for later analysis. 

2.2.5. Purification of DNA from agarose gels 

Purification of DNA involves purifying different DNA molecules from a common 

mixture (e.g. vector DNA and the insert) or to clean DNA of buffers and salts (e.g. 

after PCR amplification and restriction digestion), DNA of interest was run on 

agarose gels and purified from gel using the gel purification kit (Qiagen). 

Before doing anything else, first, the gel was placed on UV the illuminator to 

visualise DNA. Protective equipment (UV face mask, gloves and lab coat) were 

worn and the UV was turned on. The DNA bands to be purified were carefully 

cleaved from the gel with the help of a scalpel, and straightaway placed in 

labelled eppendorf tubes. The rest of the protocols were followed according to 

manufacturer’s instructions (Qiagen). Once the DNA was purified, it was run on 
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an agarose gel to examine its quality and condition. Its quality and condition were 

assured when tight bands and less degradable levels (smears) of DNA were 

observed. 

2.2.6. Restriction digestion of DNA molecules 

Restriction digestion of DNA involves clonal manipulation of DNA and validating 

the identity of the successfully cloned constructs. The restriction digestions using 

restriction endonucleases were performed according to manufacturer’s 

(Promega) instructions. The final volume of digestion mix was made to 20 μL by 

adding the following: 

10x restriction buffer: To final concentration of 1x. 

DNA: 1 μg (Usual concentration of DNA was maintained at 1 μg/μL, hence 1 μL 

used). 

The contents were gently mixed by pipetting up and down. 

Enzyme-I (between 5-10 units) 

Enzyme-II (between 5-10 units) 

Sterile de-ionized water, (to the final volume of 20 μL). 

This restriction digestion mix was incubated for 1 h at 37oC in a water bath. 

However, for the restriction digestion of PCR amplified products, the DNA was 

first run on the agarose gel in order to gel purify it and then subjected to 

restriction digestion as above. For cloning purpose, the restriction digestion of 

plasmid vector was usually followed by Shrimp Alkaline Phosphatase (SAP) 

mediated (Promega) dephosphorylation of the 5’ overhangs. For this, after the 

completion of the above restriction digestion, the reaction mixture was subjected 

to 65oC for 15 min to inactivate restriction enzymes. This was allowed to cook 

and 1unit of SAP (Promega) was added and the mixture incubated for up to 15 

min at 37° C. SAP enzyme was heat inactivated by incubation at 74oC for 15 -20 

min. 
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2.2.7. Ligation of DNA molecules 

Ligation of the DNA molecules includes the gene of interest or insert and 

linearized cloning vector, both were first run on an agarose gel to have an 

estimate of their relative molar ratios as determined by their relative intensities 

and size. Based on those intensities, the following ligation ratios were made: 

Insert: Vector 3: 1 or 1:1 or 1: 3 

In these ratios, the volume of the vector was usually maintained constant while 

that of the insert was altered to achieve the above molar ratios. After estimating 

the volume of vector and insert needed, the following were added in the 

eppendorf tube in order to make a 10 μL ligation reaction: 

Insert (volume dependent upon molar ratio) 

Vector (volume dependent upon molar ratio) 

10x ligation buffer to the final concentration of 1x (Promega) 

T4 DNA ligase: 3 Weiss units (Promega) 

Nuclease free water, (to final volume of 10 μL). 

A non-insert control was also used where nuclease free water was added instead 

of the insert. The above reaction was incubated either at room temperature for 3 

h, or overnight at 4oC. Following this, the next step was bacterial transformation 

where 5 μL of the ligation mixture was usually used. 

2.2.8. Bacterial transformation 

Bacterial transformation by heat shock using DH-5α bacterial strain was 

employed in this study. In this method, chemo-competent cells were employed. 

For each transformation reaction, 50 μL of competent cells were used. First of all, 

bench surface was swabbed with 70% ethanol and burner was turned on to 

maintain a sterile environment. Frozen cells maintained at -80°C were taken out 

and immediately placed on ice. Cells were allowed to thaw slowly on ice and in 

the meantime, heat block was set to 42°C. After thawing, the chemo competent 

cells were very gently mixed with the help of pipette and 50 μL transferred to a 

pre-chilled and pre-labelled eppendorf tube. The plasmid-vector was next added 

gently to the tube containing 50 μL chemo-competent cells (either 1 μL or 5 μL of 
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vector added depending upon application) and the tube placed back on the ice 

and allowed to incubate for 30 min. After incubation, the tube was placed on the 

heat block maintained at 42°C and heat shock was given for 45 s during which, 

bacterial transformation takes place. The tube was put back on the ice for 2 min 

and then at room temperature. Pre-heated terrific broth (TB) at 37°C was taken 

out of water bath and 500 μL of that was gently added to the transformation tube. 

The tube was placed in the shaking incubator set at 37°C and allowed to incubate 

for 90 min while shaking at 125 revolutions per minute (rpm). In the meantime, 

TB-agar plates, made with appropriate antibiotic selection (either 50 μg/mL 

kanamycin or 100 μg/mL ampicillin) were taken out of the fridge, and placed, with 

lids off, in another incubator set at 37°C. 

After the 90 min incubation period, the transformation tube and the TB-agar 

plates were taken out and placed under the burner. The contents of the 

transformation tube were carefully transferred to the TB-agar plate and spread 

evenly with the help of spreader. The plates were taken to incubator maintained 

at 37°C and placed inverted overnight to allow the transformed bacteria to form 

colonies. 

2.2.9. Screening of the transformed bacterial colonies and making glycerol 

stocks 

Following the bacterial transformation, the growth of transformed bacterial 

colonies on agar plates made with appropriate antibiotics was checked after 16 h. 

Following this, using sterile technique, 5 mL of pre-warmed (37°C) TB medium 

was taken in a 15 mL centrifuge tube and antibiotics (ampicillin 100 μg/mL or 

kanamycin 50 μg/mL, as appropriate) was added into it. 

Based on the number of colonies on the control plate, colonies from the 

experimental plates were picked up using a sterile loop and inoculated in each of 

the 15 mL tubes and allowed to grow overnight at 37°C in a shaking incubator at 

125 rpm. Next day, the tubes with bacterial suspension were taken out and 

centrifuged at 5000 rpm at 4°C for 15 min. The media in the supernatant was 

discarded and the palette dried on a paper towel. After this, to extract the 

transformed plasmid from bacterial cells, Spin Miniprep kit for plasmid extraction 
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(Qiagen) was used according to the manufacturer’s instruction. To screen and 

verify the cloned insert, restriction digestions were performed using appropriate 

restriction enzymes. After successfully transformed bacterial cultures were 

identified, glycerol stocks were made in the following way. A 50% filtered sterile 

glycerol solution in TB containing the appropriate antibiotics (100 μg/mL, 

kanamycin 50 μg/mL) was made. 400 μL of this stock was mixed with 1 mL of the 

successfully transformed bacterial culture, mixed gently and stored in -80°C. 

Whenever required, these glycerol stocks were streaked on agar plates and 

grown overnight at 37°C to get colonies of transformed bacteria. 

2.2.10. Bacterial plasmid extraction: 

The subsequent day after transformation, once individual colonies of the 

transformed bacteria appeared on plates with an antibiotic selection, they were 

grown overnight in the presence of the same selection. The cloned plasmid was 

isolated from transformed bacteria by either microcentrifuge based plasmid 

Miniprep (Qiagen) or Midiprep (Qiagen). For techniques like propagation and 

clonal manipulation, plasmid Miniprep was performed. For transfection of 

mammalian cells, concentrated and high-quality DNA preparations were used 

with plasmid midiprep technique. A typical concentration of up to 0.25 mg/mL and 

up to 1 mg/mL DNA, were achieved by plasmid miniprep and midiprep techniques 

(Qiagen) respectively. 

In the midiprep technique, the glycerol stock sample of successfully transformed 

bacteria, confirmed to be correct clone following sequencing, was taken out of - 

80°C freezer and inoculated in 100 mL of TB with antibiotics in a 500 mL conical 

flask and grown overnight. Next day, the bacterial culture was transferred to 

individual 50 mL centrifuge tubes and centrifuged at 5000 rpm at 4°C for 15 min. 

The supernatant was discarded and palette dried on a paper towel. To extract the 

plasmid, a further procedure was followed according to manufacturer’s (Qiagen) 

instructions. 
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2.3. Mammalian tissue culture: 

2.3.1 Measures taken for the use of cell culture  

Measures such as authentication of cell line, cryopreservation, and avoidance of 

cross-contamination of cell lines were all taken. Furthermore, the cells were 

checked for microbial contamination (regular mycoplasma test).  

2.3.2. Cell lines: 

For all the cell lines listed (Appendix 1, table 9.1.1), the media was 

supplemented with filter sterilised 10% foetal bovine serum (FBS), 2 mM 

glutamine, 1 mM sodium pyruvate, 100 μg/mL streptomycin and 100 U/mL 

penicillin all purchased from Invitrogen UK. Cells were maintained at 37oC in a 

tissue culture incubator with an atmosphere containing 5% CO2. 

2.3.3. Sub-culturing the cells 

Sub-culturing of cells used in this study was performed regularly to ensure their 

survival, regular supply for the study and maintain proper growth conditions. It 

was routinely done with cells that reached 80-90% confluence either in flask or 

tissue culture plates. All the procedures were done using sterile techniques 

performed in a sterile tissue culture hood.  

Briefly, in the process of sub-culturing, the media, buffers and trypsin were placed 

in water bath at 37°C at least 30 min prior to subculturing the cells. Tissue culture 

lab coat and gloves were worn. The gloves were sprayed with 70% ethanol. The 

laminar flow in the hood was turned and the working surface of tissue culture 

hood was swabbed with 70% ethanol. Any apparatus, media, trypsin and buffers 

taken inside the hood was first swabbed by 70% ethanol except for tissue culture 

flasks and plates. The tissue culture flask needed to be sub-cultured (>80% cell 

confluence) was taken out of the incubator, observed under the microscope and 

placed into the hood. With the help of aspirator attached to the suction pump, the 

old medium was removed from the flask. 4 mL of PBS (Invitrogen) was added to 

the cells and the flask gently swirled to wash away the old media and dead cells. 

PBS was aspirated out. 1 mL of pre-warmed 0.25% trypsin (Invitrogen) was 
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gently added on top of cells with the help of serological pipette, and the flask 

swirled to ensure spreading of trypsin on the entire surface area of the flask. The 

flask was taken into tissue culture incubator maintained at 37oC with 5% CO2 

atmosphere and incubated for 5 min (or until the cells were detached as observed 

under the light microscope). After the cells detached, 4 mL of pre-warmed cell 

culture media was added to the flask to stop the further action of trypsin and 

dilute the cells. With the help of serological pipette, the cell suspension was 

mixed thoroughly by pipetting up and down to ensure total detachment and to 

break any cell clumps formed. After this, the number of cells in the suspension 

was determined and either seeded into other flasks for propagation and cell 

culture maintenance, or cryo-frozen for future use. The type of tissue culture 

flasks and plates employed, specific to experimental type with the number of cells 

seeded and the amount of growth media used in the current research study was 

listed in (Appendix I, table 9.1.2).               

2.3.4. Cell counting 

Throughout the course of this study, human cells were routinely counted for 

different experiments via counting chamber method. In this method, first of all, the 

counting chamber and the cover-slip used were cleaned with the help of lens 

paper and put under the light microscope. The coverslip was placed on top of the 

gridded area. The grid in the counting chamber was composed of squares of 

different areas. The cells to be counted were first trypsinized and then diluted in 

cell culture media. Every time micropipette is used to take 10 μL of cell 

suspension from the flask and put underneath the coverslip over the counting 

chamber where the cell suspension spreads quickly. The cells were counted in 

ten 0.04 mm2 squares in the grid. Then, the number of cells per μL was 

calculated with the following formula: 

Supposing, the number of cells counted in ten 0.04 mm2 squares = 20 cells 

(supposed)  

Total area in which 20 cells counted = (10 x 0.04) = 0.4 mm2 

Total volume = 0.4 mm2 x 0.1 (height of chamber) = 0.04 mm3 
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So, 20 cells in 0.04 mm3. 

1 mm3 = 1 μL, hence, 0.04 mm3 = 0.04 μL 

If 0.04 μL has 20 cells, 1 μL has = 20 x 1 μL ÷ 0.04 μL = 500 cells. 

Hence, 1 μL has 500 cells. 

2.3.5. Cryofreezing cells and reviving frozen cells 

In this case, the surplus cells were routinely cryo-frozen for future use. After the 

cells were trypsinized from a T75 flask, 5 mL of cell media was added to stop the 

action of trypsin, and the cell suspension was mixed thoroughly with the help of 

serological pipette attached to the pipette buoy. The cell suspension was 

transferred to a sterile 15 mL centrifuge tube, capped tightly and taken to the 

centrifuge machine set at 37°C. The cell suspension was centrifuged at 1000 rpm 

for 15 min to palette the cells. In the meantime, sterile cryotubes (Thermo 

Fischer) were labelled with cell details and passage number. After centrifugation, 

the tube was taken back to the hood, the supernatant was discarded and the cell 

palette was gently resuspended in 1 ml of freezing media. 

Following this, the cell suspension in freezing media was carefully transferred to 

cryotubes, capped properly and immediately taken for storage in -80°C freezer. 

When previously frozen cells were needed, the media was first warmed in the 

water bath at 37°C and 10 ml of media was transferred to the T75 flask. The 

cryotube with frozen cells was taken out and immediately put in the water bath at 

37°C. As soon as the frozen mixture was thawed (usually after 1- 2 min), the 

cryotube was taken to the tissue culture hood, and with the help of pipette, very 

gently transferred into the T75 flask with the media. After 16-24 h, old media was 

replaced by new media to replenish the nutrients and boost cell growth and after 

every 3-4 days, cell media was usually changed by first aspirating the old media, 

washing the cells with warm PBS, and transferring fresh media into the flask to 

boost the healthy condition of the growing cells. 
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2.3.6 Cell treatments with drugs 

The drugs used in this research work involved the preparation of stock solutions 

of these drugs and stored as instructed by their manufacturers. Working 

concentrations were achieved by diluting the stock in the media used and were 

based on prior literature. Prior to treatment with these drugs, cells to be treated 

were taken out of the incubator; old media removed and pre-warmed PBS added. 

Pre-warmed media was then transferred to falcon tubes (corning) in the tissue 

culture hood and the required amount of drug was added to achieve the working 

concentrations. The PBS over the cells was taken out and the media with the 

drug carefully added. The amount of media added was dependent upon the type 

of tissue culture vial in which the cells were grown. For example, the cell lines 

were maintained in RPMI 1640 media (Gibco® Invitrogen) supplemented with 

10% foetal bovine serum (FBS), 2 mM glutamine, 1 mM sodium pyruvate, 100 

μg/ml streptomycin and 100 U/ml penicillin in an atmosphere of 5% CO2 and 

incubated at 37°C. Before experimental treatments, cells were grown for 24 h in 

RPMI 1640 media prepared as above. Heregulin-β1 (HRG, Sigma) was used by 

preparing 1 μM stock solution made with 5% trehalose, 10% FBS in PBS and 

diluted to a final concentration of 1nM with media during treatments. All the drugs 

were used by directly diluting the drugs in media to desired final concentrations. 

For drugs that are sensitive to light, stock solutions were made in in amber 

Eppendorf tubes pre-aired with nitrogen gas. Once the stock solution was made, 

it was bubbled again with nitrogen gas and closed, stored at -80°C. (Appendix II, 

sub-section 9.2.29) provides the detailed information about the drugs used, their 

storage and working concentrations and their manufacturers. 

 2.3.7. Cell transfection 

Cell transfections were carried out by liposome mediated gene transfer via the 

use of commercially available transfection reagent (Lipofectamine 3000, 

Invitrogen). The transfections aimed at performing Dual-Luciferase based 

promoter assay or siRNA transfections for gene silencing. Briefly, 16-24 h prior to 

transfection, cells were seeded desired 24 well plates containing normal cell 

culture media. Next day, the plates were taken out (with 70-90% confluent cells) 

and put in the tissue culture hood and old media was removed. Cells were 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 50 
 

washed once with warm PBS and 250 μL of pre-warmed serum-free and 

antibiotic free media (Opti-MEM®, Invitrogen) was added per plate and put back 

in the incubator. Next was to prepare the transfection complexes for subsequent 

transfection in the following way: 

1. 0.5-1 μg DNA was diluted in 50 μL serum and antibiotic free media in an 

eppendorf tube labelled tube A.  

2. 1-3 μL transfection reagents was slowly added to 50 μL of serum and 

antibiotic free media in another eppendorf tube labelled tube B.  

3. Both tubes were allowed to stand for 5 min.  

4. The contents of tube A were gently mixed with the contents of tube B in 

another eppendorf tube labelled tube C.  

5. Tube C was incubated at room temperature (inside tissue culture hood) for 

30 min to form the complex.  

6. 150 μL of serum free and antibiotic free media was added to a 1.5 mL 

effendorf tube, and the contents of tube C were gently introduced into it. 

The total volume in this effendorf tube now was 250 μL and was called the 

transfection media.  

7. The cells to be transfected were taken out of tissue culture hood, old 

(serum free, antibiotic free) media was aspirated and the 250 μL of 

transfection media was added on top of these cells gently.  

8. The plate was placed back in the tissue culture hood and allowed to 

incubate for 5 h.  

9. After 5-6 h, the transfection media was removed and pre-warmed normal 

cell culture media was added to the cells. Cells were allowed to grow for 

16-24 h. For transfections involving siRNA, cells were allowed to grow for 

24-96 h depending on the type of experiment before further studies.  

2.4 Biochemistry 

2.4.1 Antibodies and the detection systems used in the study: 

The different primary antibodies employed in the current study are listed in 

(Appendix 1, Table 9.1.1 ). To study different HER receptor family and NRF2 

proteins, this research employed different biochemical detection systems as a 
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requirement of the employed biochemical techniques. The secondary antibody 

detection systems used, its dilution, the name of the technique employed, and the 

manufacturer are listed in (Appendix 1, Table 9.1.2). 

2.4.2 Protein extraction 

For western blot analysis of different proteins, total protein content was extracted 

from cells grown in 60 mm tissue culture plates at 90% confluency (0.5 x 106 – 1 x 

106) during treatment and protein extraction. The entire extraction process was 

done on ice as much as possible and cells were never allowed to dry. 

Tissue culture plates with cells were taken out of tissue culture incubator and 

placed on ice. The old media was discarded from the plates and cells were 

washed three times with 5 mL of ice-cold PBS. After the third wash, 495 μL of ice 

cold PBS was taken in an eppendorf tube, and 5 μL of 100x protease and 

phosphatase inhibitor cocktail (Pierce Biotechnology) added to it and mixed. The 

PBS with the inhibitors added was transferred to the tissue culture plate. 

With the help of a tissue culture cell scraper, the cell monolayer was scraped off 

by gently tilting the plate, and scraping off cells to the bottom. The complete 

monolayer was scraped off to produce a cell suspension. This suspension was 

transferred to a pre-chilled eppendorf tube and centrifuged at 800 rpm for 5 min 

at 4°C to collect the cells in the palette. In the meantime, 1mL of 

radioimmunoprecipitation assay (RIPA) lysis buffer (Thermo Scientific, UK) was 

taken in another tube and 10 μL of the protease and phosphatase inhibitor 

cocktail (Pierce Biotechnology) was added into it and placed on ice. After the 

centrifugation step, the tube with the cell palette and a supernatant was taken out 

and its supernatant discarded. The cell palette was then resuspended in 200 μL 

of RIPA lysis buffer (now with inhibitors added) and thoroughly mixed with the 

help of micropipette. The cell lysate was also subjected vortex for 3 min, followed 

by centrifugation at 10,000 rpm for 15 min at 4°C. After centrifugation, the cell 

lysate was placed back on the ice, and 150 μL of supernatant (extracted protein) 

was transferred into a pre-chilled and labelled eppendorf tubes. This protein 

lysate was either further processed or quantified or stored in -80°C for future use. 
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Subsequently, all protein extracts were quantified using the Bradford reagent 

(Sigma-Aldrich, UK) against BSA as a standard. 

2.4.3 Quantification of extracted protein 

Protein quantification of the extracted proteins was performed with the help of 

Bradford assay by using Bradford assay reagent (Pierce Biotechnology) in 96 

well-plate formats. Before performing the assay for the extracted protein lysates, 

a standard curve was established with a protein with known concentration. 

The protein lysates prepared were taken out of -80°C freezer and allowed to thaw 

on ice. The tubes were centrifuged at 10,000 rpm for 5 min at 4°C. In the 

meantime, the working stock of Bradford reagent (Sigma-Aldrich, UK) was 

prepared by mixing 1 part in 4 parts of distilled water. After the centrifugation 

step, 20 μL of each protein was transferred in triplicates to each well of the 96-

well plate and mixed with 180 μL of the Bradford reagent per protein sample. The 

protein lysate and the Bradford reagent mix was allowed to incubate at room 

temperature for 5-10 min. Next, the 96-well plate was placed in a 

spectrophotometer (Thermospectronic, USA) and its reading at 595 nm was 

recorded. Mean of the readings from three wells for each protein sample were 

taken and quantified by plotting it on the standard curve obtained by performing 

Bradford assay with a known standard protein (Appendix 1, Table 9.1.4). 

Once the concentration of each protein sample was determined, they were all 

mixed with (4x) lithium dodecyl sulfate (LDS) sample buffer (Nupage, Invitrogen) 

to the final concentration of 1x. Sample reducing agent (10x) (Nupage®Sample 

reducing agent, Invitrogen, UK) was added to 1x to the protein lysate boiled at 

100oC for 10-20 min then loaded straight away into the sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gel or stored at -20°C or -80°C 

until further use. 

2.4.4 Processing of proteins for Immunoblotting 

The quantified proteins (1 mg/mL) mixed and stored in LDS-sample buffer were 

taken out of -20°C freezer and allowed to thaw at room temperature. The 

samples were then placed on a thermomixer, heated for 15min at 95°C while 
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shaking. After heating the samples, they were centrifuged at 15000 rpm for 15 

min. 15-20 μL (20 μg) of the supernatant of the centrifuged samples were usually 

loaded (unless otherwise stated) in the SDS-PAGE gels (Novex® Nupage, 

Invitrogen) for further analysis.  

2.4.5 Immunoblotting 

Proteins processed for immunoblotting were first subjected to SDS-PAGE by 

running the samples on precast gels (Novex® Nupage, Invitrogen) using 

commercially available SDS-PAGE apparatus (XCell SureLock Mini-Cell system, 

Invitrogen, UK), transferring them to  polyvinylidene difluoride (PVDF) using a 

new and improved Invitrogen™ iBlot™ 2 Dry Blotting System, a fast western 

transfer which last for only 7 min and processing by enhanced 

chemiluminescence (ECL) reagent and visualizing proteins by syngene G-BOX 

visualising machine. For all the proteins blotted in this study, 4-12% gradient, pre-

cast gels were used. Also, unless otherwise stated in figure legends, 20μg of 

protein was loaded per well of these gels. Two pre-cast gels (Novex® Nupage, 

Invitrogen) were used within the SDS-PAGE apparatus (Novex® Nupage, 

Invitrogen). The gel apparatus was assembled and two pre-cast gels were 

installed. The inserted comb plates in the gels were carefully removed and the 

wells gently washed with distilled water. The SDS-PAGE running buffer was 

poured into the inner chamber until the wells were submerged and in the outer 

chamber until the whole base was submerged. In the first well of each gel, 15 μL 

of pre-stained protein standard (Invitrogen) was loaded followed by loading the 

samples. The lid of the gel apparatus was fitted at its position and the cables 

were connected to the power pack. Gels were run at 150-200 V for 1-2 h or until 

the dye in the protein standard and samples, providing a measure of migration, 

reached the bottom of the gel. After the run was complete, the lid of the gel tank 

was taken off, and the gel plates were carefully taken out. The gel was very 

carefully taken out of the plates and immediately put in the gel trays and given a 

wash in the transfer buffer to remove SDS and excess buffer. While the gels still 

in transfer buffer, filter papers of the right size were soaked distilled water, and 

then all the other set up for iBlot dry transfer system are being made and then 

finally the gel is carefully placed on the bottom stack containing PVDF with the 
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support of the filter paper at the back of the gel and the used the roller to remove 

the bubbles. Following this, the top stack was placed on and the machine was 

started at 20 V for 7 min transfer. 

After the transfer was completed, the machine was disassembled and the PVDF 

membrane transferred to the tray with the help of forceps. The PVDF membrane 

was washed gently with distilled water up to three times to wash away any salts 

and any gel residues. The membrane was examined visually for proper transfer 

of proteins by looking at the transfer efficiency of pre-stained protein standard. 

However, to better examine the transfer efficiency and band separation, the 

PVDF membrane was also stained with Amido black or Ponceau stain (Sigma-

Aldrich UK). Next, to prevent non-specific reactivity, the membrane was blocked 

with either, 5% non-fat dry milk or 5% BSA prepared in 1X TBST (washing 

buffer), a mixture of tris-buffered saline (TBS) and Polysorbate 20 (also known as 

Tween 20) in based blocking buffer for 1h at room temperature with mild shaking. 

Primary antibodies were diluted in antibody blocking buffer according to 

manufacturer’s instructions, typically at 1 in 1000 dilution in 8-10 mL of blocking 

buffer. 

Following 1 h blocking, the blocking buffer was discarded off the membrane and 

primary antibody was added. Primary antibody incubation was performed at 4°C 

overnight with gentle shaking. The subsequent day, the membrane was washed 

three times with washing buffer, each wash for 5 min with gentle shaking. In the 

last washing step, 1 in 1000 dilution of anti-mouse or anti-rabbit IgG, the HRP-

linked secondary antibody was made in washing buffer. The washing buffer in the 

last washing step was discarded from the membrane and the diluted HRB-

conjugated secondary antibody was added. The membrane was incubated for 1-2 

h at room temperature with mild shaking. After incubation with secondary 

antibody, the membrane was washed three times with washing buffer for 5 min 

each with gentle shaking. In the last washing step, pierce ECL 2 western blotting 

substrate (Thermoscientific) was taken out of fridge and equal volume each of 

solution A and solution B on the membrane and incubated for 1-2 min and then 

the membrane was taken and place on clean, clear and transparent flat bag and 

removed the bubbles, the membrane while inside the flat bag was taken 

straightaway to the gel documentation machine for the visualization of bands. 
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Syngene G-BOX was used to capture the images with the attached camera. The 

images were saved in TIFF file format for later analysis typically involving the 

calculation of relative abundance via integrated optical densitometry analysis of 

each protein band. To establish a loading control, the same blot was stripped off 

from previous antibodies by incubating the membrane with stripping buffer and 

then blocked for one hour and reprobing with the β-actin antibody. 

2.4.6 Densitometry 

Densitometry was calculated using Image J software and Densitometry 1 

Channel plugin. All values shown are the protein of interest divided by the 

respective β-actin loading control value. 

2.4.7 Cell viability assay 

The CellTiter-Glo® 2.0 assay kit (Promega) was used to determine cell viability, 

as described by the manufacturer. Briefly, cells were seeded in a luminometer 

compatible 96-well plate and allowed to adhere for 18-24 h. Following treatments 

using different concentrations of the compounds, the plate and its contents  were 

equilibrated to room temperature for approximately 30 min, a volume of CellTiter-

Glo 2.0 reagent equal to the volume of cell culture medium present in each well 

the contents were then mixed for 2 min on an orbital shaker to induce cell lysis 

and the plate was then incubated at room temperature for 10 min to stabilize the 

luminescent signal and finally the luminescence was recorded using luminometer 

(MODULUS, Promega). The luminescent signal is proportional to the amount of 

ATP in the sample, which indicates the presence of metabolically active cells. 

2.4.8 siRNA transfection  

siRNA was used to knockdown NRF2 (Qiagen). For siRNA transfection, cells 

were seeded in triplicate either in 96-well plates in triplicate (2×104) or in 24-well 

plates (0.5 × 105 cells) or in 60 mm plates (0.5 × 106 cells), and allowed to grow 

for 24 h. Following this, cells were co transfected using either 7 pmol of siRNA 

(96-well plate) or 20 pmol siRNA and 1 μg of different PGL3 promoter constructs 

(24-well plates) or 75 pmol siRNA only (60 mm plates) or and incubated for a 

further 24 h or 48 h or as required. Cells transfected in 96 well plates were 
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processed for either cytotoxicity assay, ROS assay or total GSH assay, those in 

24-well plate were further processed for dual luciferase assay while those in 

60 mm plates were harvested for immunoblotting. In all cases, scrambled siRNA 

was used as a control while transfection was performed using Lipofectamine 

3000 (Life Technologies) according to manufacturer’s instructions. 

2.4.9 Luciferase activity assay 

Luciferase activity was measured using the Luciferase Assay System (Promega), 

according to the manufacturer’s instructions to determine NRF2 dependent 

transcriptional antioxidant response following different treatments, stable clones 

of MCF7 cells carrying PGL3 vector with a cloned 8 copies of cis- AREs reporter 

construct (AREc32). Briefly, MCF7-AREc32 cells were seeded in luminometer-

compatible 96 well plates at a density of 1.5×104 cells per well and allowed to 

attach for 18 h. Next day, cells were washed with pre-warmed PBS and 100 µL of 

media containing the required treatments was added and further allowed to 

incubate for 24 h, at the end of treatment, cells in each well of a 96-well plate 

were washed with PBS and lysed in 30 µL of the lysis buffer provided with the kit. 

A 5 µL portion of the lysate was mixed with 25 µL of Luciferase assay reagent 

and the luminescence was quantified (McMahon et al., 2014) using luminometer 

(MODULUSTM, Promega). To normalise the luminescence signal, 2 µL portion of 

the lysate was mixed with 98 µL Bradford reagent assay to estimate protein 

content using to Bradford assay.  

2.4.10 ROS Detection 

ROS detection assay was performed by using 2′,7′-Dichlorofluorescin diacetate 

(DCFDA) staining (Sigma). Briefly, cells were seeded in triplicate at a density of 

0.2 × 105 cells/well of opaque flat-bottom 96-well tissue culture plates in 100 μL 

media without phenol red and allowed to grow for 18 h. Following this, cells were 

either left untreated or treated at a desired time points. A 50 mM stock solution of 

DCFDA was added to each well containing 100 μL pre-existing media to achieve 

a final concentration of 25 μM and incubated for 45 min at 37°C. Fluorescence 

signal intensities indicating ROS levels were recorded by taking readings using 

96-well fluorescent multiplate reader (MODULUS, Promega) using excitation and 
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emission spectra of 485 nm/535 nm. To normalise the fluorescence signal, cells 

in the same wells were stained with Coomassie brilliant blue stain (Sigma) for 1 h 

and washed with distilled water and 10% SDS solution was added to release the 

absorbed dye for 10 min while shaking. The absorbance values at 595 nm were 

then recorded using a multiplate absorbance reader (MODULUS, Promega) data 

used after normalising the fluorescence values. 

2.4.11 Dual-Luciferase-based promoter Assay 

To perform Dual-Luciferase based HER family promoter assay, the HER1 and 

HER4 promoter region was first amplified from the human genomic DNA using 

promoter-specific primers, cloned into the luciferase reporter vector, PGL-3 basic, 

and transfected into human epithelial cell lines, PEO1, OVCAR3 and SKOV3 (For 

all the data of HER1 and HER4 promoter cloning, see CHAPTER 3). Transfection 

of the HER1 and HER4 promoter reporter vector was carried out using 

Lipofectamine 3000 (Thermoscientific, UK) and the vector pRL-CMV was used as 

an internal control for transfection efficiency. Each transfection for a particular 

experiment was performed in triplicates. Transfection was carried out in 24-well 

format by first seeding the cells at a density of 5 x 104 for 24 h prior to 

transfection. At the time of transfection, the cells were 70-90% confluent. 

Old media was removed and cells were gently rinsed with 1 mL of pre-warmed 

PBS. 0.5 mL of serum free and antibiotic free media (Opti-MEM®, Invitrogen, UK) 

was added per well and the plate placed back in the incubator. For transfection, 

the DNA to be transfected i.e. pHER1/PGL3 and prHER4/PGL3, the empty PGL3 

basic vector and the internal control vector (pRL-CMV) and the transfection 

reagent (Lipofectamine 3000, Invitrogen, UK) were taken out and placed in the 

hood. For each well, 0.5 μg of DNA to be transfected (either prHER1/PGL3 or 

prHER4 or empty PGL3 basic vector) and 0.1 μg of pRL-CMV were mixed 

together with 25 μL of serum free and antibiotic free media Opti-MEM®. Next, 1 

μL of the transfection reagent was mixed with 25 μL of Opti-MEM® in a separate 

eppendorf tube. The tubes were incubated for 5 min and their contents mixed 

together and further incubated for 20 min to allow the DNA complex to form. 
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After the incubation, 0.4 mL of Opti-MEM® was added to the tube containing the 

DNA complex and gently mixed together. The contents of this tube were added to 

each well and the plate incubated for 5 h for transfection to take place. After 

incubation, the old media was removed and 0.5 mL of pre-warmed cell culture 

media was added and plates incubated for at least 16 h before further 

experiments and analysis. 

After 16-24 h of transfection, the old media was discarded, cells rinsed once with 

pre-warmed PBS and treatments with the required drug solutions in media were 

performed. On the day of performing the luciferase assay, 1x passive cell lysis 

buffer (Dual Luciferase assay kit, Promega, UK) was prepared. The 24-well plate 

was taken out of incubator, old media discarded, each well gently rinsed with 0.5 

mL of PBS, and 125 μL of the 1x passive lysis buffer added to each well. The 

plates were placed on the shaker and gently rocked (50 rpm) for 30 min to form 

the cellular protein lysates. In the meantime, the Luciferase assay reagent (LAR-

II, Promega) was reconstituted and by means of the multi-channel pipette for 

faster and accurate pipetting, 50 μL of this reconstituted reagent was added per 

well of black bottom, opaque 96-well plate (Sigma-Aldrich). The LAR-II reagent 

provided a substrate of luciferase activity generating a stabilised luminescent 

signal with the addition of the cell lysate. 

Next, 20 μL of the cell lysates from each transfection (done in triplicates) were 

transferred (in quadruplets) to each well of the 96-well plate with the added LAR-

II reagent with the help of multi-channel pipette. Hence, four independent 

readings were taken in 96-well plate for each transfection done in triplicates. After 

the addition of cell lysate, the plate was immediately placed in the 96-well 

Luminometer (Modulus template® Turner biosystems) for measuring the 

luminescence. 

Dual luciferase assay program was set up with 2 s of pre-measurement delay 

followed by measuring luminescence via the inbuilt luminescence filter at 0.5 

second measurement period per well. After the reading, the plate was taken out 

and 50 μL of the reconstituted Stop and Glo® was added per well using a 

multichannel pipette. The addition of the second reagent stopped the 

luminescence generated by Firefly luciferase (sourced from prHER1/PGL3 or 
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prHER4/PGL3) and provided a substrate for Renilla luciferase (sourced from 

pRL-CMV). The plate was returned to the luminometer and another reading was 

taken as above. The first reading (After LAR-II addition) was normalised to the 

second reading (after Stop and Glo® addition). The means of the luminescence 

signals acquired from the quadruplet treatments were taken, with each 

transfection done in triplicates. The mean values were normalised to the mean 

value of untreated controls for that experiment and expressed as 1. 

2.4.12 Measurement of Total Glutathione (GSH) 

The measurement of total GSH was performed using GSH/GSSG-Glo™ Assay 

(Promega) according to manufacturer’s protocols. Briefly 1x104 cells where 

seeded in luminometer-compatible 96-well plates and allow to grow overnight at 

37°C in a 5% CO2
 culture incubator. The following day, the cells were treated 

accordingly. Following this, the contents in the cell were removed. Then 50 µL 

per well of GSH Lysis Reagent, that was prepared no longer than 30 min before 

use, was added. The lysate was shaken at room temperature for 5 min on a plate 

shaker. Following this, 50 µL per well of Luciferin Generation Reagent was added 

to all wells. The Luciferin Generation Reagent was prepared within 30 min before 

use. The plates were then shaken briefly and incubated at room temperature for 

30 min. Finally, 100 µL per well of Luciferin Detection Reagent was added and 

the plates were shaken briefly, waited for 15 min to stabilize the luminescent 

signal and finally the luminescence was recorded using luminometer (MODULUS, 

Promega). 

2.4.13 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism Software version 

6. Test for normality of data was determined by Shapiro-Wilk and D'Agostino-

Pearson tests. The significance (value) of differences of pooled results was 

determined by independent t-tests, one-way or two-way analysis of variance 

(ANOVA) followed by post hoc Tukey’s tests. The reason for choosing these 

types of analysis in this study is that, the study wanted to find out the differences 

between two unrelated groups or the means of three or more independent 

(unrelated) groups or  compares the mean differences between groups that have 
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been split on two independent variables so as understand if there is an interaction 

between the two independent variables on the dependent variable, hence the 

choice of the independent t-test (also called the two sample t-test), one-way 

ANOVA and two-way ANOVA respectively. Independent t-test is an inferential 

statistical test that determines whether there is a statistically significant difference 

between the means in two unrelated groups. The one-way ANOVA is used to 

determine whether there are any statistically significant differences between the 

means of three or more independent (unrelated) groups. It compares the means 

between the groups that are of interest and determines whether any of those 

means are statistically significantly different from each other. It is important to 

note that the one-way ANOVA is an omnibus test statistic and cannot tell which 

specific groups were statistically significantly different from each other only that at 

least two groups were. To determine which specific groups differed from each 

other post hoc tests need to be applied. Post hoc tests attempt to control the 

experiment wise error rate (usually alpha = 0.05) in the same manner that the 

one-way ANOVA is used instead of multiple t-tests. Post hoc tests are termed a 

posteriori tests that are performed after the events; the events in this case are 

after independent t-test and one-way ANOVA. The two-way analysis of variance 

is an extension to the one-way analysis of variance. The Assumptions in two-way 

ANOVA are when the populations from which the samples were obtained are 

normally or approximately normally distributed, the samples are independent, the 

variances of the populations are equal and the groups must have the same 

sample size.  Data presented are the means ± S.D. of n = 3 independent 

experiments performed either in triplicates or in quadruplicates. Significant 

difference was defined as (ns: P > 0.05*: p<0.05, **: p<0.01, ***: p<0.001 and ****: 

p<0.0001), ns= not statistically different, *= statistically significant (*< **<***<****). 

For western blots, images are representative of at least two independent 

experiments for each condition.  

2.4.14 Imaging and Analysis 

Images were camera captured using Syngene G-BOX Chemi-XX6 Gel 

Documentation System (Synoptics, UK). Syngene has unique flatfix technology 

which eliminates saturation from images by using an Auto Aperture feature. The 
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images were saved in TIFF file format and analysed typically involving the 

calculation of relative abundance via integrated optical densitometry analysis of 

each protein band. Densitometry was calculated using Image J software and 

Densitometry 1 Channel plugin (NIH, USA). The band intensities of all the 

untreated/scrambled siRNA and treatment groups were normalized on the band 

intensities of their corresponding β-actin loading controls. The normalized data 

were then processed into bar charts and presented for easy interpretation. 
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3.1 Abstract 

Human HER1 and HER4 are members of the HER family receptors, including 

HER2 and HER3. The HER receptor family of RTKs are one of the most 

extensively studied for their role in aetiology and development, human cancers. 

The cloning of proximal regulatory regions of HER1 and HER4 genes is reported 

here. Approximately 1.5 kb and 1.3 kb DNA fragments encompassing the 

proximal promoters of HER1 and HER4 genes, respectively, were each placed 

upstream of the luciferase reporter gene in the pGL3 vector to be prHER1 and 

prHER4, respectively. These were used to transiently transfect a panel of ovarian 

cell lines (OVCAR3, PEO1 and SKOV3), in order to examine their constitutive 

expression. Both prHER1 and prHER4 showed a high and differential basal level 

of expressions in all the cell lines tested when compared to the control pGL3 

vector. This suggests the functionality of the promoter constructs and their 

feasibility as tools to study the regulation of expression of HER1 and HER4 

receptors. 

3.2 Introduction 

The uniquely close relationship between the members HER receptor family 

suggests that they have evolved from a common ancestral gene. All the genes 

have been linked to cancer transformation. Both HER1 and HER4 are the cellular 

homolog of the oncogene v-erbBB and are all reported to be overexpressed in 

cancers including ovarian. The majority of HER1 and HER4 activities involves 

transcriptional activation, tumour cell proliferation, growth suppression (Jones, 

2008, Sheng and Liu, 2011).The analysis of mechanisms controlling the 

regulation of expression of genes for growth factor receptors is therefore 

important for understanding of the malignant state (Tal et al., 1987). 

Studies have reported that identification of promoter sequences and transcription 

factors essential for transcriptional regulation of the gene may greatly contribute 

to understanding its molecular mechanisms of regulation (Takakura et al., 1999, 

Li et al., 2010). Expression of a target gene in both prokaryotic cell and eukaryotic 

cell has been a common research goal of researches of genes of interest (Cao et 
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al., 2017), since initiation of the genetic engineering by Herbert Boyer and 

Stanley N. Cohen in 1972 (Cohen et al., 1973). PCR has been essential for gene 

cloning because it can provide target gene fragments in vitro in large amount and 

short time without the limitation of restriction sites. The established strategy for 

the construction of recombinant expression vector includes two cloning steps: 

PCR cloning (cloning of PCR amplified target gene into cloning vector) and 

restriction enzyme mediated sub-cloning of the target gene from cloning vector 

into expression vector (Cao et al., 2017). Here in this chapter, the core proximal 

promoter regions of HER1 and HER4 genes were cloned and their activity was 

examined in ovarian cancer cells. Thus, the study in this chapter was undertaken 

to address the following aim and objectives.  

3.3 Aims and objectives 

3.3.1 The aim 

The main aim of this chapter is to clone human HER1 and HER4 gene proximal 

promoters as gene reporter systems.  

3.3.2 The objectives are: 

1. To retrieve approximately 1.5 kb and 1.3 kb of the proximal promoter 

regions of human HER1 and HER4 genes respectively  

2. To analyse and identify the putative NRF2 binding sites present in each 

promoter 

3. To design the primers and then clone the promoter regions of human 

HER1 and HER4 genes 

4. To generate functional HER1 and HER4 proximal DNA promoter gene 

reporter constructs as novel tools for the study of the transcriptional 

regulation of HER1 and HER4. 

The generation of functional proximal core promoters of human HER1 and HER4 

gene reporter constructs would be valuable novel tools in examining NRF2 as an 

important transcriptional regulator of the HER family genes in ovarian cancers. 

The findings of such a study may partly explain the overexpression of HER family 

receptors in cancer and may have implications to the success and/or failure of 
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HER targeted therapies involving RTK inhibitors. Chemotherapies are limited 

when tumour cells circumvent action of therapeutic agents’ due to the 

readjustments in coexpression of the receptors, their ligand binding dynamics, or 

changing preference for the dimerizing partner (Nagumo et al., 2009a, Goltsov et 

al., 2014b) suggest that the anticancer effect of these agents might be better 

predicted by effectively limiting HER receptor family expression at the DNA level 

or at least identifying a common regulatory centre of their transcription. Thus, the 

identification of factors such as NRF2 that coordinately mediate or modulate the 

transcriptional expression of HER receptors will be vital (Khalil et al., 2016b) . 

Consequently, the functionality of the promoter constructs was examined for 

basal activity, when the cloned promoters were transiently transfected in a panel 

of ovarian cell lines with a differential basal level of NRF2, 

PEO1>SKOV3>OVCAR3 (Khalil et al., 2015). 

3.4 Results 

3.4.1 Putative NRF2 transcription factor binding sites found along 5’ 

upstream region of in promoters HER1 and HER4 at 75% cut off score 

Approximately 1.5 kb and 1.3 kb of the proximal promoter regions of HER1 and 

HER4 gene sequences respectively were retrieved from Ensembl Genome 

database (http://www.ensembl.org/index.html). The sequences were subjected to 

bioinformatics analysis (Figure 3.1) insilico; (http://consite.genereg.net/cgi-

bin/consite) (Sandelin et al., 2004) to ascertain the putative NRF2 binding sites 

present in each of the promoters. The sequence was analysed at 75% stringency. 

The 75% stringency was chosen as a fine balance between the identification of a 

putative and likely functional binding sites as against the possibility of predicting 

false positive or non-functional putative NRF2 binding at lower stringency. 
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Transcription factor 
Human_IR 

Sequence From To Score Strand 

NRF-2    CACTCCAGGT 1 10 6.292 - 

NRF-2    AAATTCCTGT 321 330 6.335 - 

NRF-2    GCAGGAAGCA 591 600 6.091 + 

NRF-2    AAAGGAACAG 683 692 6.514 + 

NRF-2    AGCTTCCGCG 1119 1128 7.655 - 

 

 

  

http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.292&pos1=1&seq1=Human_IR&name=NRF-2&jobID=14969224239253
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.335&pos1=321&seq1=Human_IR&name=NRF-2&jobID=14969224239253
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.091&pos1=591&seq1=Human_IR&name=NRF-2&jobID=14969224239253
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.514&pos1=683&seq1=Human_IR&name=NRF-2&jobID=14969224239253
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=7.655&pos1=1119&seq1=Human_IR&name=NRF-2&jobID=14969224239253
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    1 CACTCCAGGT ACTAGCCAAG GACTACAAAA TCAACGTGAA TGTCAGCTTT 

 

   51 TGTATCAAAA GCTCAAAGGA GAAACTCAAA CTTTACATAG ATGTCCCATG 

 

  101 AAGATGTTCA GCAAACCCAT TCTTCTCTGT TCCCTGGAAT CCATCCCAGT 

 

  151 ATTGTGCTAT GTGTGTGTCT AGTAATTCTT TACAAAAAGC TCTGTTTCTT 

 

  201 GTGATGCTAT CAGATCACAT TGAAGAATAT ACAAGCCGTA CTATGAAGGC 

 

  251 TGTTGTCTCA TATAGTCCTA ACGTAGTGAG AACTGATGTT CTTACATGCT 

 

  301 GTCTTTTTGG GCACTCAAAG AAATTCCTGT ACAGTCTTAC AAATCAGTTG 

 

  351 TAGCTTAAAT TGATTTGTGT TGTGACTTGT ACACACAGGT CACATTCCCT 

 

  401 TGACAGAAAA TATAGTTTAA AACCAAATTT GCAGCCCTTG TTAAGTGAAT 

 

  451 GCACAGGACT TTATTGTATT CAGGTCTTTT ATTGTAAGAC TCACTCCTGT 

 

  501 CTTCATTTTA TGTTCCACTG TTGTGCTTCC CATTTGCCTT TCTCTAGTTT 

 

  551 TGTTTTCTGT GTTTCTACGG ACTGCTCTCA GCCCAGGTGT GCAGGAAGCA 

 

  601 CACACATGCC TGCAGAGCCT TCATGGCCTC TGCATTCAGG GCATGACTTC 

 

  651 AACGCACAGT GGCTGTACTG ATTTGTTAAA ACAAAGGAAC AGATTACTTC 

 

  701 TCCTAATTCA CAGGGAAGTT CCAGGTTGTG CGGGCAGTGA GCAGACCTGT 

 

  751 GTCTGTCTGC GCTTGCCCTG GTGAAAAACC CCACCGTTCA GGCTGCAGGG 

 

  801 TGCGAGACCC AGGCACAAAC ATTTTGCTGG ATGAGGAGGA AAGATGTAAG 

 

  851 GTTGCTCCCC TTCAGAGACA GCAAAGGGCA GGTCTGTAGC TTCACTTACT 

 

  901 TCAGGATTGT GATTTTTGAC AGAGCCGAGA GATCAGGGTT GTTGAACCAG 

 

  951 GCCTGAAGGT CCTAGTGAAT CTCGTGAAGA GAGGAGGGGT CTGGCTGTAA 

 

 1001 CATGGACCTA GAGGACATTT TTACTGCAGG AGAAGGAACA GTGGGGATGG 

 

 1051 GGTGGACTTG CCAAAGGAAT ATAGCTCAAG TTCCTGCAGC CCAAAAAAGC 

 

 1101 TCAGTTTCTT TTGGCCAAAG CTTCCGCGAG TTTCCCTGGC ATTTCTCCTG 

 

 1151 CGGGAGCTAC AGGGGCAGTG GGACACTTAG CCTCTCTAAA AGCACCTCCA 

 

 1201 CGGCTGTTTG TGTCAAGCCT TTATTCCAAG AGCTTCACTT TTGCGAAGTA 

 

 1251 ATGTGCTTCA CACATTGGCT TCAAAGTACC CATGGCTGGT TGCAATAAAC 

 

 1301 ATTAAGGAGG CCTGTCTCTG CACCCGGAGT TGGGTGCCCT CATTTCAGAT 

 

 1351 GATTTCGAGG GTGCTTGACA AGATCTGAAG GACCCTCGGA CTTTAGAGCA 

 

 1401 CCACCTCGGA CGCCTGGCAC CCCTGCCGCG CGGGCACGGC GACCTCCTCA 

 

 1451 GCTGCCAGGC CAGCCTCTGA TCCCCGAGAG GGTCCCGTAG TGCTGCAGG 

 

(a) Putative transcription factor binding sites found along HER1 promoter 

1.5kb 
HER1 

promoter 
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Transcription factor 
Human_IR 

 
Sequence From To Score Strand 

      
NRF-2    CAAGGAAGGG 334 343 7.140 + 

      
NRF-2    TCCGTAAGCG 875 884 6.049 + 

      
NRF-2    GAGGGAAGAC 939 948 6.142 + 

      
NRF-2    AGCTTCCCCT 989 998 6.091 - 

      
 

  

http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=7.140&pos1=334&seq1=Human_IR&name=NRF-2&jobID=14969257442016
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.049&pos1=875&seq1=Human_IR&name=NRF-2&jobID=14969257442016
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.142&pos1=939&seq1=Human_IR&name=NRF-2&jobID=14969257442016
http://consite.genereg.net/cgi-bin/jaspartf?ID=MA0062&score1=6.091&pos1=989&seq1=Human_IR&name=NRF-2&jobID=14969257442016
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    1 GAGTGGGAAA TGGAGATCAA GGTCTCAAAT GAAAGGCAGG GTGGTTTGAT 

 

   51 TTTTAAGCTC CCCTGATACT TTTTATTTAT ATATTTGCTG CTTCTAGAAA 

 

  101 AACCAAAAAA GGAAAGTGAT TCATACATAG AATGCCTGTA CAAATAGCAA 

 

  151 ACCAATAACT ACCCCCAGCA GATTCTGGCC CTTGCCAGGG TGCGGTTTCA 

 

  201 GAGCTGTAAA AGGCAAGGGA TATGTACATT GAAATGACCC AGTCCCAGAA 

 

  251 TATTTTAGAT TCAGAAAAGG TCAGAGACTT TCGTAACTAG CAATGACCTC 

 

  301 CAGATTAGGG ACCATGAATG TGCAGAGTGA GGACAAGGAA GGGGCCTAAA 

 

  351 GCTGGGTCTA CTGTAGAATA AACAGAATCA TTTAAGGTTA ATTATGTTCT 

 

  401 GATGTGGCCT CCTTAAATTC TTTCAGGCTG GGGACAATTT CTAGCCCTTT 

 

  451 AAGATCAAAT CAGTGGCTTT GGACTAGAAT CTGCTTAATA AGAATGAACT 

 

  501 CCAAAGGTGA AAAAAAAACA TAAAATCTAA AAATCAAAGG ATATGCCTTT 

 

  551 ATAAATGTGA AAGTTTAGTT TGGCTCAATG TTGGTCAGTT TAGAAATGTG 

 

  601 GGAGTAATCG GAGAGATGGC ATAACTGGGG GCGGGAGGCG GGGCGGTGAT 

 

  651 TATACCCCTA CCACTACCTA ATCCTCAGGG GCTACCAGTT ACTTGCTGTA 

 

  701 CACACTTTTA AAGTACTTTC TAATTGTGGA CCATGAGTGG CAGAGTACTG 

 

  751 CGGGCGGAGG CTTTTTGCTG AAAGCAACAT TGACTTTTAT TTCTAGGGAA 

 

  801 AGTCTTGTCT GTAGATGAGC ACCGTGGGGC AACGGAGAAA ATGCTGACTT 

 

  851 TCTTGTTTAA AAAAAAAAAA AATTTCCGTA AGCGGCCCTC CAATGGTCCG 

 

  901 TCCACTCAGC AGGCCAGCTG TCCCAGGCCT CTGCCAGGGA GGGAAGACGA 

 

  951 GTGCTTCAGT GCATGGCTTC GGTGAGCCCT TTAAATCCAG CTTCCCCTGC 

 

 1001 CCCCACCAAG AGGCTCCCTT TCCCTGACAG GTGTTTTCCC AACTCCGGAG 

 

 1051 GCCCAGGATT TTGGGGAGTG GCTGAGCCAA TAAGATTTCC CTTTGGAAGG 

 

 1101 GGGGGGGAAG GGCGTGGCTA GTTGGGTCAG AGCATGGGCG GGGTTTGCGC 

 

 1151 GGCTGAGCAG AGCCGGCCTG GTTGCGTGGA GGGTTGTTTT ATTCCCACCG 

 

 1201 CCCCCCGCAC CTTTTTTTTT TTTTTTTCTG GAGTCTTATT AATTTCTCTG 

 

 1251 TGGGCTGCAG CTGGAGACCG CGGAGCGCTG GAAATGACGC TCGGAGCTTT 

 

 1301 AATTACCGCA GCCGCCGGAC AAGTGTGAGG AAAGCTGAGA G 

 

b. Putative transcription factor binding sites found along HER4 promoter 

Figure 3.1: An in-silico analysis of HER1 and HER4 promoter sequences. (a) 1.5 kb promoter region of 

HER1 gene was obtained from the database (ensemble.org) and subjected to transcriptional factor binding 

prediction program (http://consite.genereg.net/cgi-bin/consite) to predict for putative NRF2 binding sites as 

indicated. (b) The same analyses were performed for HER4 promoter. In (a) and (b), +1 indicate the 

transcriptional start site (predicted from (http://www.cbs.dtu.dk/services/Promoter/) sequences highlighted in 

blue show NRF2 binding sites as predicted by ConSite, and sequences in bold brown represent transcription 

start sites. The sequence was formatted using EMBOSS Seqret at (http://www.ebi.ac.uk/Tools/services) 

1.3kb 
HER4 

promoter 

http://consite.genereg.net/cgi-bin/consite
http://www.cbs.dtu.dk/services/Promoter/
http://www.ebi.ac.uk/Tools/services
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3.4.2 Designing primers for PCR 

Following the in-silico analysis where the putative NRF2 binding site was 

analysed from the promoter sequence of the HER1 and HER4 gene, specific 

primers to amplify this region were designed and analysed for physical properties 

using primer 3.0 (https://www.ncbi.nlm.nih.gov/gquery/?term=primer+blast) and 

OligoAnalyzer 3.1( (https://eu.idtdna.com/calc/analyzer). In order to maximise the 

chance of capturing the promoter elements upstream of the promoters, the 

reverse primer was constrained to be within the 5’ UTR and situated as close as 

possible to the transcription start codon. The forward primers were constrained to 

be within a tRNAlys sequence approximately 1500 bp 5’ of HER1 and 1300 bp 5’ 

of HER4 genes, respectively. In order to ensure primer specificity, stringent 

primer design parameters were utilised. The Nucleotide BLAST tool from Human 

Genome at National Centre for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/) was used to 

perform a genome-wide homology searches and alignment. 

HER1 promoter primers: 

Forward: CACTCCAGGTACTAGCCAAGG 

GC: 57.1, Tm: 56.8 

Kpn1 forward: GG-GGTACC- CACTCCAGGTACTAGCCAAGG 

Reverse: GTG CCA TTA TCC GAC GCT G 

GC: 57.9, Tm: 56.4 

XhoI Reverse: GTG CCA TTA TCC GAC GCT G-CTCGAG-CGG 

HER4 Promoter Primers: 

Forward: GAGTGGGAAATGGAGATCAAGGTC 

GC: 50, Tm: 57.2 

XhoI Forward: CCG- CTCGAG-GAGTGGGAAATGGAGATCAAGGTC 

Reverse: GGA CAA GTG TGA GGA AAG CTG AGA G 

GC: 52, Tm: 59.2 

NcoI Reverse: GGA CAA GTG TGA GGA AAG CTG AGA G-CCATGG-CATG 

https://www.ncbi.nlm.nih.gov/gquery/?term=primer+blast
https://eu.idtdna.com/calc/analyzer
https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/
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3.4.3 Polymerase chain reaction (PCR) 

Human genomic DNA was used as a template to obtain PCR amplified products 

using the specific primers designed for HER1 and HER4 genes. The expected 

size 1.5 kb and 1.3 kb (Figure 3.2) were extracted and gel purified using the 

Qiagen extraction kit. The PCR products were run and extracted from agarose 

gel (Qiagen), digested using the restriction enzymes (Promega) Kpn1 and XhoI 

for HER1 and XhoI and NcoI for HER4, and ligated into PGL3 vector (Promega) 

to create HER1 and HER4 promoter constructs prHER1 and prHER4 

respectively. These are HER1 and HER4 gene reporter constructs driving the 

expression of luciferase gene for utilisation in dual luciferase reporter assay 

(Promega) (Figure 3.3). More details of the cloning, verification and evaluation of 

the functionality of these gene reporter constructs are given in next following 

sections. 

 

 

Figure 3.2: A 1% agarose gel purification of amplified prHER1 and HER4. 25 μL of PCR products were 

run on gel and 5 μL of DNA hyperLadder 1 kb was used, the gel was run at 100 V for 1 h (Note: lane 1 is a 
ladder, 2 and 3 are for prHER1 and 4 and 5 are for prHER4) 
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3.4.4 Excision of HER1 1.5 kb and HER4 1.3 kb gene promoter sequence 

bands from Agarose Gel 

The amplified HER1 and HER4 gene promoter fragments were excised from their 

respective gels, and subsequently weighed prior to gel purification, in accordance 

with the QIAquick Gel Extraction Kit Protocol according to manufacturer’s 

instructions and as described in the (Chapter 2)  

3.4.5 Ligation, transformation, clonal selection, glycerol stock and Miniprep 

of pGem-T Easy-HER1 1.5 kb and pGem-T Easy-HER4 1.3 kb 

In order to explore and propagate the cloning of (HER1 1.5 kb and HER4 1.3 kb) 

PCR product, the promoter sequences were respectively ligated into the pGEM-

T-Easy Cloning Vector (Promega) (Figure 3.3) in accordance with the 

methodology. Successful growth of bacterial colonies following bacterial 

transformation (with the respective ligation mixtures), spread plating and 24 h of 

incubation were observed. Both blue and white colonies were present. White 

colonies denoted successful ligations as transformed bacteria that have 

assimilated the pGEM-T Easy Vector (Promega) contain the respective insert 

DNA. Blue colonies denoted unsuccessful ligations as transformed bacteria that 

have assimilated the pGEM-T Easy Vector (Promega) do not contain the 

respective insert DNA. 

A single white bacterial colony with respect to each transformation was inoculated 

into 15 ml centrifuge tube (Corning Incorporated) containing 5 ml of LB-Media 

with Ampicillin selection. Inoculated cultures were grown in a shaking incubator at 

37oC for 24 h. Following 24 h of incubation, duplicate glycerol was made and 

stored at -80oC in accordance with the protocol. Remaining bacterial culture was 

used to isolate and purify high-quality plasmid DNA from the bacteria using 

Miniprep (Isolate Plasmid Mini Kit - Bioline). 

3.4.6 Restriction digests of pGem-T Easy-HER1.5 kb and pGem-T Easy-

HER4 1.3 kb constructs and DNA sequencing 

The restriction digest was carried out on the Miniprep DNA samples to further 

verify the successful ligation and cloning of the gel purified DNA fragments of 
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HER1 and HER4 genes. The EcoR1 restriction enzyme (Promega) was used to 

perform a single enzyme digest of the pGEM-T Easy-HER1 and -HER4 gene 

constructs. This was possible owing to multiple EcoR1 recognition sites on both 

sides of the multiple cloning regions in the pGEM-T Easy Vector. Figures 3.4A 

and 3.4B show successful restriction digest. Linearised pGEM-T-Easy vector 

fragments are clearly visible on the agarose gel.  

 

Figure 3.3:  pGEM®-T Vector Map and Sequence Reference Points. pGEM®-T Easy Vectors which are 

linearized vectors with a single 3´-terminal thymidine at both ends. The T-overhangs at the insertion site 
greatly improve the efficiency of ligation of PCR products by preventing recircularization of the vector and 
providing a compatible overhang for PCR products generated by certain thermostable polymerases (Maps) 
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Figure 3.4: EcoR1 restrictions digest of purified pGEM-T Easy-HER1 and HER4 (1.5 kb and 1.3 kb) 
plasmid DNA. Gel was ran for 45 min at 80 volts (a) Lane 1, is 2 µL of 10 kb DNA Hyper ladder I (Bioline). 

Lanes 3, 5, 7 etc, 5 µL of pGEM-T Easy-HER1 1.5 kb restriction digest mixture. (b) Lane 1, is 2 µL of 10 kb 
DNA Hyperladder I (Bioline). Lanes 3, 5, 7 and 9, are 5 µL of pGEM-T Easy-HER4 1.3 kb restriction digest 
mixture.  

Thus, the successful restriction digest of the Miniprep samples signified that 

insert ligation into pGEM-T Easy Vector (Promega) was also successful.  

3.4.7 Restriction digests of PGL3 prHER1.5 kb and prHER4 1.3 kb for sub-

clone to PGL3 vector 

The restriction digest was carried out on the DNA samples of PGL3, prHER1 and 

prHER4 in order create to a sticky end compatible for its respective PGL3 

vectors. HER1 promoter was digested using KpnI and XhoI restriction enzymes at 

the 5’ and 3’ ends of the HER1 promoter respectively and HER4 was digested 

using XhoI and NcoI restriction enzymes at the 5’ and 3’ ends of the HER4 

promoter respectively. Two sets of PGL3 vector were digested with either KpnI 

and XhoI restriction enzymes suitable for ligating HER promoter or XhoI and NcoI 

restriction enzymes suitable for ligating HER4 promoter successful ligation and 

cloning. It is worth knowing that PGL3 vector (Promega) contain all these 

restriction enzymes used (Figure 3.5) 
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Figure 3.5. PGL3-Basic Vector circle map. Additional description: luc+, cDNA encoding the modified 
firefly luciferase: Ampr, gene conferring ampicillin resistance in E. coli; f1 ori, origin of replication derived 

from filamentous phage; ori, origin of replication in E. coli. Arrows within luc+ and the Ampr gene indicate the 
direction of transcription; the arrow in the f1 ori indicates the direction of ssDNA strand synthesis. (Figure 
from Promega) 

3.4.8 Ligation, transformation, clonal selection, glycerol stock and Miniprep 

of PGL3-HER1 1.5 kb and PGL3-HER4 1.3 kb  

In order to explore and propagate the cloning of (HER1 1.5 kb and HER4 1.3 kb) 

PCR product, the promoter sequences were respectively ligated into the PGL3 

cloning vector (Promega) in accordance with the methodology. Successful growth 

of bacterial colonies following bacterial transformation (with the respective ligation 

mixtures), spread plating and 24 h of incubation were observed. A single bacterial 

colony with respect to each transformation was inoculated into 15 ml centrifuge 

tube (Corning Incorporated) containing 5 ml of TB-Media with Ampicillin selection. 

Inoculated cultures were grown in a shaking incubator at 37oC for 24 h. Following 

24 h of incubation, duplicate glycerol was made and stored at -80oC in 

accordance with the protocol. Remaining bacterial culture was used to isolate and 

purify high-quality plasmid DNA from the bacteria using Miniprep (Isolate Plasmid 

Mini Kit - Bioline). 

Subsequently, the successful restriction digest of the Miniprep samples (Figure 

3.6) signified that insert ligation into PGL3 vector (Promega) was successful. 

Therefore, two eppendorfs each containing 10 µL elution buffer and a 5 µL 
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Miniprep sample (HER1 1.5 kb HER4 1.3 kb) were prepared and sequenced 

(DNA Sequencing and Services, College of Life Sciences, University of Dundee, 

Scotland). Following this, the Nucleotide BLAST tool from NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cg) was used to perform a genome-wide 

homology search to verify the cloned and sequenced gene promoter (HER1 1.5 

kb and HER4 1.3 kb) as being HER1 and HER1.  

 

Figure 3.6: Restrictions digest of purified PGL3-HER1 and PGL3- HER4 (1.5 kb and 1.3 kb) plasmid 
DNA. Gel was ran 45 min at 80 volts (a) Lane 1, is 2 µL of 10 kb DNA Hyper ladder I (Bioline). Lanes 2-9 are 

for PGL3-pHER4, digested with NcoI/XhoI and DNA in lane 5 i.e the digested of lane 4) was chosen as the 
successful clone. Lanes 10-17 are for PGL3-pHER1, digested with KpnI/XhoI and all of them were 
successful clones. 

3.4.9 Verification of sequenced DNA by BLAST analysis of cloned and 

sequenced HER1 and HER4 gene promoters 

The Nucleotide BLAST tool from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cg) was 

used to perform a genome-wide homology search to verify the cloned and 

sequenced gene promoter (HER1 1.5 kb and HER4 1.3 kb) as being HER1 and 

HER4.  

3.4.7.1 Pairwise alignment of the cloned and sequenced DNA with retrieved 

HER1 and HER4 promoter sequences from Ensemble 

The EMBOSS needle nucleotide alignment tool (http://www.ebi.ac.uk/Tools/ 

psa/emboss_needle/nucleotide.html) was used to examine the homology 

between the sequenced DNA (HER1 1.5 kb and HER4 1.3 kb) and the retrieved 

HER1 and HER4 promoter sequences from Ensembl (Ensemble Genome 

Browser, 2016; European Bioinformatics Institute, 2012). Figures 3. 7 (A  and B) 
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shows a base pair identity and a 99.8% sequence similarity and the homology 

demonstrated by the sequence alignments verified that the HER1 and HER4 

promoters have successfully been cloned and sequenced. 

A 

EMBOSS_001         1 CACTCCAGGTACTAGCCAAGGACTACAAAATCAACGTGAATGTCAGCTTT     50 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001         1 CACTCCAGGTACTAGCCAAGGACTACAAAATCAACGTGAATGTCAGCTTT     50 

 

EMBOSS_001        51 TGTATCAAAAGCTCAAAGGAGAAACTCAAACTTTACATAGATGTCCCATG    100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001        51 TGTATCAAAAGCTCAAAGGAGAAACTCAAACTTTACATAGATGTCCCATG    100 

 

EMBOSS_001       101 AAGATGTTCAGCAAACCCATTCTTCTCTGTTCCCTGGAATCCATCCCAGT    150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       101 AAGATGTTCAGCAAACCCATTCTTCTCTGTTCCCTGGAATCCATCCCAGT    150 

 

EMBOSS_001       151 ATTGTGCTATGTGTGTGTCTAGTAATTCTTTACAAAAAGCTCTGTTTCTT    200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       151 ATTGTGCTATGTGTGTGTCTAGTAATTCTTTACAAAAAGCTCTGTTTCTT    200 

 

EMBOSS_001       201 GTGATGCTATCAGATCACATTGAAGAATATACAAGCCGTACTATGAAGGC    250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       201 GTGATGCTATCAGATCACATTGAAGAATATACAAGCCGTACTATGAAGGC    250 

 

EMBOSS_001       251 TGTTGTCTCATATAGTCCTAACGTAGTGAGAACTGATGTTCTTACATGCT    300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       251 TGTTGTCTCATATAGTCCTAACGTAGTGAGAACTGATGTTCTTACATGCT    300 

 

EMBOSS_001       301 GTCTTTTTGGGCACTCAAAGAAATTCCTGTACAGTCTTACAAATCAGTTG    350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       301 GTCTTTTTGGGCACTCAAAGAAATTCCTGTACAGTCTTACAAATCAGTTG    350 

 

EMBOSS_001       351 TAGCTTAAATTGATTTGTGTTGTGACTTGTACACACAGGTCACATTCCCT    400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       351 TAGCTTAAATTGATTTGTGTTGTGACTTGTACACACAGGTCACATTCCCT    400 

 

EMBOSS_001       401 TGACAGAAAATATAGTTTAAAACCAAATTTGCAGCCCTTGTTAAGTGAAT    450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       401 TGACAGAAAATATAGTTTAAAACCAAATTTGCAGCCCTTGTTAAGTGAAT    450 

 

EMBOSS_001       451 GCACAGGACTTTATTGTATTCAGGTCTTTTATTGTAAGACTCACTCCTGT    500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       451 GCACAGGACTTTATTGTATTCAGGTCTTTTATTGTAAGACTCACTCCTGT    500 
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EMBOSS_001       501 CTTCATTTTATGTTCCACTGTTGTGCTTCCCATTTGCCTTTCTCTAGTTT    550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       501 CTTCATTTTATGTTCCACTGTTGTGCTTCCCATTTGCCTTTCTCTAGTTT    550 

 

EMBOSS_001       551 TGTTTTCTGTGTTTCTACGGACTGCTCTCAGCCCAGGTGTGCAGGAAGCA    600 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       551 TGTTTTCTGTGTTTCTACGGACTGCTCTCAGCCCAGGTGTGCAGGAAGCA    600 

 

EMBOSS_001       601 CACACATGCCTGCAGAGCCTTCATGGCCTCTGCATTCAGGGCATGACTTC    650 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       601 CACACATGCCTGCAGAGCCTTCATGGCCTCTGCATTCAGGGCATGACTTC    650 

 

EMBOSS_001       651 AACGCACAGTGGCTGTACTGATTTGTTAAAACAAAGGAACAGATTACTTC    700 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       651 AACGCACAGTGGCTGTACTGATTTGTTAAAACAAAGGAACAGATTACTTC    700 

 

EMBOSS_001       701 TCCTAATTCACAGGGAAGTTCCAGGTTGTGCGGGCAGTGAGCAGACCTGT    750 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       701 TCCTAATTCACAGGGAAGTTCCAGGTTGTGCGGGCAGTGAGCAGACCTGT    750 

 

EMBOSS_001       751 GTCTGTCTGCGCTTGCCCTGGTGAAAAACCCCACCGTTCAGGCTGCAGGG    800 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       751 GTCTGTCTGCGCTTGCCCTGGTGAAAAACCCCACCGTTCAGGCTGCAGGG    800 

 

EMBOSS_001       801 TGCGAGACCCAGGCACAAACATTTTGCTGGATGAGGAGGAAAGATGTAAG    850 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       801 TGCGAGACCCAGGCACAAACATTTTGCTGGATGAGGAGGAAAGATGTAAG    850 

 

EMBOSS_001       851 GTTGCTCCCCTTCAGAGACAGCAAAGGGCAGGTCTGTAGCTTCACTTACT    900 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       851 GTTGCTCCCCTTCAGAGACAGCAAAGGGCAGGTCTGTAGCTTCACTTACT    900 

 

EMBOSS_001       901 TCAGGATTGTGATTTTTGACAGAGCCGAGAGATCAGGGTTGTTGAACCAG    950 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       901 TCAGGATTGTGATTTTTGACAGAGCCGAGAGATCAGGGTTGTTGAACCAG    950 

 

EMBOSS_001       951 GCCTGAAGGTCCTAGTGAATCTCGTGAAGAGAGGAGGGGTCTGGCTGTAA   1000 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       951 GCCTGAAGGTCCTAGTGAATCTCGTGAAGAGAGGAGGGGTCTGGCTGTAA   1000 

 

EMBOSS_001      1001 CATGGACCTAGAGGACATTTTTACTGCAGGAGAAGGAACAGTGGGGATGG   1050 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1001 CATGGACCTAGAGGACATTTTTACTGCAGGAGAAGGAACAGTGGGGATGG   1050 
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EMBOSS_001      1051 GGTGGACTTGCCAAAGGAATATAGCTCAAGTTCCTGCAGCCCAAAAAAGC   1100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1051 GGTGGACTTGCCAAAGGAATATAGCTCAAGTTCCTGCAGCCCAAAAAAGC   1100 

 

EMBOSS_001      1101 TCAGTTTCTTTTGGCCAAAGCTTCCGCGAGTTTCCCTGGCATTTCTCCTG   1150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1101 TCAGTTTCTTTTGGCCAAAGCTTCCGCGAGTTTCCCTGGCATTTCTCCTG   1150 

 

EMBOSS_001      1151 CGGGAGCTACAGGGGCAGTGGGACACTTAGCCTCTCTAAAAGCACCTCCA   1200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1151 CGGGAGCTACAGGGGCAGTGGGACACTTAGCCTCTCTAAAAGCACCTCCA   1200 

 

EMBOSS_001      1201 CGGCTGTTTGTGTCAAGCCTTTATTCCAAGAGCTTCACTTTTGCGAAGTA   1250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1201 CGGCTGTTTGTGTCAAGCCTTTATTCCAAGAGCTTCACTTTTGCGAAGTA   1250 

 

EMBOSS_001      1251 ATGTGCTTCACACATTGGCTTCAAAGTACCCATGGCTGGTTGCAATAAAC   1300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1251 ATGTGCTTCACACATTGGCTTCAAAGTACCCATGGCTGGTTGCAATAAAC   1300 

 

EMBOSS_001      1301 ATTAAGGAGGCCTGTCTCTGCACCCGGAGTTGGGTGCCCTCATTTCAGAT   1350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1301 ATTAAGGAGGCCTGTCTCTGCACCCGGAGTTGGGTGCCCTCATTTCAGAT   1350 

 

EMBOSS_001      1351 GATTTCGAGGGTGCTTGACAAGATCTGAAGGACCCTCGGACTTTAGAGCA   1400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1351 GATTTCGAGGGTGCTTGACAAGATCTGAAGGACCCTCGGACTTTAGAGCA   1400 

 

EMBOSS_001      1401 CCACCTCGGACGCCTGGCACCCCTGCCGCGCGGGCACGGCGACCTCCTCA   1450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1401 CCACCTCGGACGCCTGGCACCCCTGCCGCGCGGGCACGGCGACCTCCTCA   1450 

 

EMBOSS_001      1451 GCTGCCAGGCCAGCCTCTGATCCCCGAGAGGGTCCCGTAGTGCTGCAGGG   1500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1451 GCTGCCAGGCCAGCCTCTGATCCCCGAGAGGGTCCCGTAGTGCTGCAGGG   1500 

 

EMBOSS_001      1501 GAGGTGGGGACCCGAATAAAGGAGCAGTTTCCCCGTCGGTGCCATTATCC   1550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1501 GAGGTGGGGACCCGAATAAAGGAGCAGTTTCCCCGTCGGTGCCATTATCC   1550 

 

EMBOSS_001      1551 GACGCTG   1557 

                     ||||||| 

EMBOSS_001      1551 GACGCTG   1557 
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B 

 

EMBOSS_001         1 GAGTGGGAAATGGAGATCAAGGTCTCAAATGAAAGGCAGGGTGGTTTGAT     50 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001         1 GAGTGGGAAATGGAGATCAAGGTCTCAAATGAAAGGCAGGGTGGTTTGAT     50 

 

EMBOSS_001        51 TTTTAAGCTCCCCTGATACTTTTTATTTATATATTTGCTGCTTCTAGAAA    100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001        51 TTTTAAGCTCCCCTGATACTTTTTATTTATATATTTGCTGCTTCTAGAAA    100 

 

EMBOSS_001       101 AACCAAAAAAGGAAAGTGATTCATACATAGAATGCCTGTACAAATAGCAA    150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       101 AACCAAAAAAGGAAAGTGATTCATACATAGAATGCCTGTACAAATAGCAA    150 

 

EMBOSS_001       151 ACCAATAACTACCCCCAGCAGATTCTGGCCCTTGCCAGGGTGCGGTTTCA    200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       151 ACCAATAACTACCCCCAGCAGATTCTGGCCCTTGCCAGGGTGCGGTTTCA    200 

 

EMBOSS_001       201 GAGCTGTAAAAGGCAAGGGATATGTACATTGAAATGACCCAGTCCCAGAA    250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       201 GAGCTGTAAAAGGCAAGGGATATGTACATTGAAATGACCCAGTCCCAGAA    250 

 

EMBOSS_001       251 TATTTTAGATTCAGAAAAGGTCAGAGACTTTCGTAACTAGCAATGACCTC    300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       251 TATTTTAGATTCAGAAAAGGTCAGAGACTTTCGTAACTAGCAATGACCTC    300 

 

EMBOSS_001       301 CAGATTAGGGACCATGAATGTGCAGAGTGAGGACAAGGAAGGGGCCTAAA    350 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       301 CAGATTAGGGACCATGAATGTGCAGAGTGAGGACAAGGAAGGGGCCTAAA    350 

 

EMBOSS_001       351 GCTGGGTCTACTGTAGAATAAACAGAATCATTTAAGGTTAATTATGTTCT    400 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       351 GCTGGGTCTACTGTAGAATAAACAGAATCATTTAAGGTTAATTATGTTCT    400 

 

EMBOSS_001       401 GATGTGGCCTCCTTAAATTCTTTCAGGCTGGGGACAATTTCTAGCCCTTT    450 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       401 GATGTGGCCTCCTTAAATTCTTTCAGGCTGGGGACAATTTCTAGCCCTTT    450 

 

EMBOSS_001       451 AAGATCAAATCAGTGGCTTTGGACTAGAATCTGCTTAATAAGAATGAACT    500 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       451 AAGATCAAATCAGTGGCTTTGGACTAGAATCTGCTTAATAAGAATGAACT    500 

 

EMBOSS_001       501 CCAAAGGTGAAAAAAAAACATAAAATCTAAAAATCAAAGGATATGCCTTT    550 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       501 CCAAAGGTGAAAAAAAAACATAAAATCTAAAAATCAAAGGATATGCCTTT    550 
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EMBOSS_001       551 ATAAATGTGAAAGTTTAGTTTGGCTCAATGTTGGTCAGTTTAGAAATGTG    600 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       551 ATAAATGTGAAAGTTTAGTTTGGCTCAATGTTGGTCAGTTTAGAAATGTG    600 

 

EMBOSS_001       601 GGAGTAATCGGAGAGATGGCATAACTGGGGGCGGGAGGCGGGGCGGTGAT    650 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       601 GGAGTAATCGGAGAGATGGCATAACTGGGGGCGGGAGGCGGGGCGGTGAT    650 

 

EMBOSS_001       651 TATACCCCTACCACTACCTAATCCTCAGGGGCTACCAGTTACTTGCTGTA    700 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       651 TATACCCCTACCACTACCTAATCCTCAGGGGCTACCAGTTACTTGCTGTA    700 

 

EMBOSS_001       701 CACACTTTTAAAGTACTTTCTAATTGTGGACCATGAGTGGCAGAGTACTG    750 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       701 CACACTTTTAAAGTACTTTCTAATTGTGGACCATGAGTGGCAGAGTACTG    750 

 

EMBOSS_001       751 CGGGCGGAGGCTTTTTGCTGAAAGCAACATTGACTTTTATTTCTAGGGAA    800 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       751 CGGGCGGAGGCTTTTTGCTGAAAGCAACATTGACTTTTATTTCTAGGGAA    800 

 

EMBOSS_001       801 AGTCTTGTCTGTAGATGAGCACCGTGGGGCAACGGAGAAAATGCTGACTT    850 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       801 AGTCTTGTCTGTAGATGAGCACCGTGGGGCAACGGAGAAAATGCTGACTT    850 

 

EMBOSS_001       851 TCTTGTTTAAAAAAAAAAAAAATTTCCGTAAGCGGCCCTCCAATGGTCCG    900 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       851 TCTTGTTTAAAAAAAAAAAAAATTTCCGTAAGCGGCCCTCCAATGGTCCG    900 

 

EMBOSS_001       901 TCCACTCAGCAGGCCAGCTGTCCCAGGCCTCTGCCAGGGAGGGAAGACGA    950 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       901 TCCACTCAGCAGGCCAGCTGTCCCAGGCCTCTGCCAGGGAGGGAAGACGA    950 

 

EMBOSS_001       951 GTGCTTCAGTGCATGGCTTCGGTGAGCCCTTTAAATCCAGCTTCCCCTGC   1000 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       951 GTGCTTCAGTGCATGGCTTCGGTGAGCCCTTTAAATCCAGCTTCCCCTGC   1000 

 

EMBOSS_001      1001 CCCCACCAAGAGGCTCCCTTTCCCTGACAGGTGTTTTCCCAACTCCGGAG   1050 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1001 CCCCACCAAGAGGCTCCCTTTCCCTGACAGGTGTTTTCCCAACTCCGGAG   1050 

 

EMBOSS_001      1051 GCCCAGGATTTTGGGGAGTGGCTGAGCCAATAAGATTTCCCTTTGGAAGG   1100 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1051 GCCCAGGATTTTGGGGAGTGGCTGAGCCAATAAGATTTCCCTTTGGAAGG   1100 
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EMBOSS_001      1101 GGGGGGGAAGGGCGTGGCTAGTTGGGTCAGAGCATGGGCGGGGTTTGCGC   1150 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1101 GGGGGGGAAGGGCGTGGCTAGTTGGGTCAGAGCATGGGCGGGGTTTGCGC   1150 

 

EMBOSS_001      1151 GGCTGAGCAGAGCCGGCCTGGTTGCGTGGAGGGTTGTTTTATTCCCACCG   1200 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1151 GGCTGAGCAGAGCCGGCCTGGTTGCGTGGAGGGTTGTTTTATTCCCACCG   1200 

 

EMBOSS_001      1201 CCCCCCGCACCTTTTTTTTTTTTTTTTCTGGAGTCTTATTAATTTCTCTG   1250 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1201 CCCCCCGCACCTTTTTTTTTTTTTTTTCTGGAGTCTTATTAATTTCTCTG   1250 

 

EMBOSS_001      1251 TGGGCTGCAGCTGGAGACCGCGGAGCGCTGGAAATGACGCTCGGAGCTTT   1300 

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1251 TGGGCTGCAGCTGGAGACCGCGGAGCGCTGGAAATGACGCTCGGAGCTTT   1300 

 

EMBOSS_001      1301 AATTACCGCAGCCGCCGGACAAGTGTGAGGAAAGCTGAGAG   1341 

                     ||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001      1301 AATTACCGCAGCCGCCGGACAAGTGTGAGGAAAGCTGAGAG   1341 

 

Figure 3.7: Pairwise alignment of the cloned and sequenced: HER1 1.5 kb and HER4 1.3 kb gene 

promoter with retrieved HER1 1.5 kb and HER4 1.3 kb sequence from Ensemble (Ensemble Genome 
Browser, 2016), (A) is for HER1 and (B) HER4. 

3.4.10 Midiprep of PGL3, pGL3-HER1 and pGL3-HER4 and 

spectrophotometric analysis 

A single white bacterial colony with respect to each transformation (PGL3, pGL3-

HER1 and pGL3-HER4) was inoculated into 15 mL centrifuge tubes (Corning 

Incorporated) containing 5 mL of LB-Media with Ampicillin selection. Inoculated 

cultures were grown in a shaking incubator at 37oC for 24 h. The following day, 

one ml of each remaining bacterial culture was used to inoculate 3 separate 

sterile conical flasks containing 100 mL TB media with Ampicillin selection. The 

bacterial cultures were grown in a shaking incubator for 24 h. These bacterial 

cultures were subsequently used to isolate and purify high-quality plasmid DNA 

from the bacteria using Midiprep (Refer to PureYield Plasmid Midiprep System - 

Promega). 
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Table 3.1: Plasmid DNA was produced form midiprep. The concentration of 

vector or vector/insert was quantified spectrometrically  

MidiPrep DNA Purity Ratio (260/280) Concentration (ng/µl) 

PGL3-Vector 1.897 690 

pGL3-HER1 1.5 kb 1.890 900 

pGL3-HER4 1.3 kb 1.880 800 

 

3.4.11. Examining the functionality of the cloned promoter constructs 

Previous study by our group has reported a significant high basal level and 

differential expression of HER2/HER3 among the cell lines (Khalil et al., 2016b). 

Here similar transcriptional reporter assays to demonstrate basal and differential 

expression of HER1/HER4 alongside the already studied promoters HER2/HER3 

(Khalil et al., 2016b), was investigated. To examine the functionality of cloned 

promoters, 1.5 kb and 1.3 kb DNA fragments encompassing the HER1 and HER4 

gene proximal promoters, as well as that of HER2 and HER3 clone by Khalil et 

al., 2016b were each placed upstream of the luciferase reporter gene in the pGL3 

vector to be prHER1, prHER2, prHER3 and prHER4 accordingly. These were 

used to transiently transfect a panel of ovarian cell lines (OVCAR3, PEO1 and 

SKOV3) in order to examine their constitutive expression. All prHER1, prHER2, 

prHER3 and prHER4 showed a high and differential basal level of expressions in 

all the cell lines tested when compared to the control pGL3 vector (Figure 3.8). 

This suggests the functionality of the promoter constructs and their feasibility as 

tools to study the regulation of HER family receptors. 
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Figure 3.8: Examining the basal activity of the promoters. All the promoters showed a high and 

differential basal level of expression in all the cell lines tested when compared to the control pGL3-basic 
vector. Briefly SKOV3, OVCAR3 and PEO1, cells were transfected with either empty PGL3 basic vector or 1 
𝜇g PGL3 basic vector with cloned fragments of either HER1 (prHER1) HER2 (prHER2) HER3 (prHER3) or 

HER4 (prHER4) promoter driving the expression of luciferase gene. Co-transfection with 0.2 𝜇g pRL-CMV 
plasmid was performed as an internal transfection control. Following 24 h of transfections the lysates were 
prepared and luciferase activity was measured using Dual luciferase reporter assay (Promega) in multiplate 
reader (MODULUSTM, Promega). Data presented are the means ± S.D. of n = 3; independent experiments 
performed in quadruplicates and expressed in fold change to PGL3 with statistical significance determined 
by ONE WAY ANOVA followed by Tukey’s post hoc test (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001 and ∗∗∗∗: 
p< 0.0001). Note that, the already studied prHER2 and prHER3 (Khalil et al., 2016b) are used as positive 
controls here. This study cloned only pHER1 and pHER4.  

3.5. Key findings 

This chapter has reported the information about the cloning of promoter regions 

of HER1 and HER4, and indicate differences in relative basal activity of the 

promoter regions. The computer-based sequence analysis performed had 

revealed that both HER1 and HER4 promoters contain putative NRF2 
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transcription factor response element (Figure 3.1). Following this, the chapter has 

reported the successful clones (Figure 3.6) and sequences (Figure 3.7) of the 

promoter regions of HER1 and HER4 gene, and then finally determine their 

functionality using dual luciferase assays by transfecting their respective DNA 

constructs into the ovarian cancer cell lines (3.8). The presence of conserved cis 

elements for these factors suggests possible additional ways of HER1 and HER4 

regulation and expression.  

Taken together, this section has reported the cloning of the promoter regions of 

the human HER1 and HER4 genes, and testing them, confirmed their activity and 

functionality. This chapter has provided novel tools for the study of the regulations 

of the expression of HER1 and HER4 genes by NRF2, which will be investigated 

further in the next chapter. 
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4. CHAPTER FOUR 

 

 

 

 

 

Regulation of HER1 and HER4 by 

NRF2 in Ovarian Cancer Cells 
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4.1. Abstract 

The HER family cell surface receptors dimerize upon ligand binding to activate 

their tyrosine kinase domains which subsequently lead to the phosphorylation of 

tyrosine residues in the intracellular domain of the receptors. These receptors are 

the regulators of normal cellular proliferation, differentiation and survival, as well 

as determinants of cancer initiation, maintenance, and progression. NRF2 is an 

essential transcription factor for multiple genes encoding antioxidants and 

detoxification enzymes. NRF2 is implicated in promoting cancer therapeutic 

resistance by its detoxification function and link with proliferative pathways. 

However, the linkage between NRF2 and HER family growth factor-induced 

proliferative pathway remains poorly understood. Here, it is demonstrated that 

pharmacological activation of NRF2 by tBHQ or pharmacological and genetic 

inhibition of NRF2 by RA and siRNA upregulates or downregulates HER1 and 

HER4 expression at both transcriptional and protein levels. Also, inhibition of 

NRF2 led to reduced total GSH and an elevation of ROS in all the cell lines used 

in this study. Hence, NRF2 regulates both HER1 and HER4 receptors, via direct 

or indirect means involving ROS, suggesting that regulation of both HER1 and 

HER4 gene expression could be both at the transcriptional and translational 

levels. 

4.2. Introduction 

The HER receptor kinase family and NRF2 are the regulators of cellular 

proliferation, differentiation and survival as well as the casual factors leading to 

cancer initiation, maintenance, and progression (Yarden, 2001, Yarden and 

Sliwkowski, 2001, Normanno et al., 2006, Gschwind et al., 2004, Ritter and 

Arteaga, 2017, Marmor et al., 2004, Gui and Shen, 2012, Cao et al., 2008). 

Overexpression of the HER receptor family and NRF2 acting in synergy with 

various molecular pathways have been shown to correlate with poor survival 

outcomes in cancers including ovarian (Marmor et al., 2004, Bianco et al., 2006, 

Friedlander, 1998, Psyrri et al., 2005, Phelps et al., 2008, Ledermann and Raja, 

2010, Alečković and Kang, 2015, Clayton et al., 2004, Hough et al., 2000, 

Barbosa et al., 2014, Gomperts et al., 2009, Allard et al., 2016, Anuranjani and 
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Bala, 2014, Akhdar et al., 2009, Chen et al., 2013, Ahmed et al., 2017, Namani et 

al., 2014). 

tBHQ, the major metabolite of butylated hydroxyanisole, induces an antioxidant 

response through NRF2. However, the mechanism by which tBHQ induces NRF2 

activity is not entirely understood (Imhoff and Hansen, 2010, Farhoosh and 

Tavassoli-Kafrani, 2010). A rich body of evidence has demonstrated that tBHQ is 

effective in protecting against cellular dysfunction induced by oxidative stress 

inducers, such as alcohol, dopamine, hydrogen peroxide, and glutamate, in 

various cell types (Li et al., 2014). It has been well-established that tBHQ exerts 

its antioxidant function through a mechanism whereby it increases NRF2 protein 

stability via repression of KEAP1-mediated ubiquitination (Turley et al., 2015, 

Alarcón-Aguilar et al., 2014, Li et al., 2014).  Based on these observations, tBHQ 

has become one of the most widely employed NRF2 activators in a number of 

studies 

Retinoids such as RA and bexarotene, on the contrary, are chemopreventive and 

chemotherapeutic agents that inhibit NRF2. RA regulates cell proliferation, 

differentiation, and morphogenesis (Garattini et al., 2014, Wang et al., 2007, Heo 

et al., 2016). It inhibits tumorigenesis through suppression of cell growth and 

stimulation of cellular differentiation (Garattini et al., 2014). Also, RA promotes 

apoptosis and this property may contribute to its antitumor properties. The effects 

of retinoids are mediated by specific nuclear receptors, namely, retinoic acid 

receptors (RAR-α, -β, and -γ) and retinoid X receptors (RXR-α, -β, and -γ). RXRs 

form heterodimers with RARs or other nuclear hormone receptors and function as 

transcriptional regulators. RA, for example, activates RAR-RXR heterodimers and 

exerts its biological actions by binding to retinoic acid response elements 

(RAREs). In addition, retinoids can either activate or repress gene expression 

through RAR/RXR heterodimers interacting with other transcription factors, such 

as AP-1, estrogen receptor α, and NF-κB activities (Heo et al., 2016, Hayes et al., 

2016, Hayes and McMahon, 2009, Wang et al., 2007). 

Based on the previous reports, it is assumed that tBHQ, via activating NRF2, may 

confer protective effects on cancer cells leading to chemoresistance and 

therefore modulating NRF2 could be a great strategy in overcoming the 
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resistance (Khalil et al., 2016b, Li et al., 2014). Both HER receptors and NRF2 

are recognised as agents in cellular proliferation and adaptation to ROS leading 

to therapeutic resistance to cancers. Moreover, NRF2 activation and KEAP1 

inactivation mutations leading to permanent constitutive adaptive activation of the 

NRF2 pathway are often observed in cancers (Khalil et al., 2016b). Number 

therapeutic approaches such as anti-cancer radio- and chemotherapy greatly 

depend on ROS manipulation to induce cytotoxicity. Studies have implicated HER 

family, NRF2, and ROS in the promotion of cellular proliferation and therapeutic 

resistance in cancer cells. (Khalil et al., 2016b, Lu et al., 2017, Roy et al., 2016, 

Chen et al., 2016, Leone et al., 2015, Kovac et al., 2015, Jayakumar et al., 2015, 

Li et al., 2015). This study aims to investigate and identify the link between NRF2 

and the HER family receptors signalling pathway, in order to determine a way of 

improving responses to therapies (Khalil et al., 2016a, Khalil et al., 2016b). 

In this chapter, gene transcriptional reporter assays were generated, followed by 

pharmacological activation and inhibition or siRNA knockdown of NRF2. 

4.3. Aims and objectives 

The main aim of this chapter is to examine the regulations of the HER1 and 

HER4 by NRF2 in ovarian cancer. 

4.3.1 The aim 

4.3.2. The objectives are: 

1. To test the effect of pharmacological activation of NRF2 on HER1 and 

HER4 expression in ovarian cancer cells.  

2. To test the effect of pharmacological and genetic inhibition of NRF2 on 

HER1 and HER4 expression in ovarian cancer cells.  
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4.4.    Results 

4.4.1. Treatment with tBHQ causes transcriptional and translational 

upregulation HER1 and HER4  

Several studies have shown that NRF2 promotes resistance to chemotherapeutic 

agents and contributes to general cytoprotection, metabolic reprogramming, and 

cell survival (Abdullah et al., 2012, Ahmed et al., 2017, Hayes et al., 2016, Hayes 

and Ashford, 2012, Hayes and Dinkova-Kostova, 2014, McMahon et al., 2014). 

Conversely, RTK targeted therapies involving inhibitory monoclonal antibodies 

and small molecules against HER receptors has generated interest in recent 

years as a potential strategy to overcome ovarian cancer cell therapeutic 

resistance (Khalil et al., 2016a, Khalil et al., 2016b, Langdon et al., 2010, 

Langdon and Cameron, 2013).  Here a panel of ovarian cells transfected with the 

prHER1 and prHER4 for reporter assays were exposed to increasing 

concentrations of tBHQ to explore the nature of this transcriptional regulation. 

Interestingly, all the cell lines exhibited significant dose-dependent transcriptional 

upregulation of HER1 and HER4, as well as the other members of HER family 

when tested with varying concentrations of tBHQ (Figure 4.1). 

Furthermore, tBHQ treatment caused upregulation of both total NRF2 and 

phospho Akt alongside total HER1 and HER4 levels (Figure 4.2) in all the ovarian 

cancer cell lines tested (PEO1, OVCAR3 and SKOV3). These results 

demonstrated that pharmacological activation of the NRF2 protein caused 

transcriptional upregulation of HER receptors pathway with concomitant 

translational induction of total HER1 and HER4 proteins. This implied that the 

HER receptor pathways might be subjected to coregulatory mechanisms by the 

antioxidant response pathway and NRF2. 
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Figure 4.1: Treatment with tBHQ causes transcriptional and protein induction of HER1 and HER4. 

tBHQ causes transcriptional induction of HER1 and HER4 and induction of ARE in a concentration 
dependent manner. MCF7-AREc32 which already contains stably cloned 8 x cis-AREs driving NRF2 
dependent expression of luciferase gene was left without any transfection while PEO1, OVCAR3 and 
SKOV3 cells were transfected with either empty PGL3 basic vector or 1 μg PGL3 basic vector with promoters 
of HER1 cloned driving HER1 expression of luciferase gene. Co-transfection with 0.2 μg pRL-CMV plasmid 
was performed as an internal transfection control. Where required PEO1, SKOV3 and OVCAR3 cell lines 
and MCF7-AREc32 stable cell line were treated in quadruplicate with different concentrations of tBHQ as 
indicated at normal condition for 24 h. Data shown are the means ± S.D. of n = 3 independent experiments. 
Each independent experiment consists four replicates. Statistical significance determined by ONE WAY 
ANOVA followed by Tukey’s post hoc test (*: p<0.05, **: p<0.01, ***: p<0.001 and ****: p<0.0001). 
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Figure 4.2. Treatment with tBHQ causes protein induction of HER1 and HER4.  Immunoblot analysis 

following treatment with tBHQ demonstrated protein induction of HER1 and HER4 receptor and also 
activation of total and with an increase of pAKT.  Briefly exponentially growing cells were either left untreated 
(UT) or treated with 100 μM tBHQ for 24 h before being harvested and processed for immunoblotting using 
relevant antibodies. Bar chart shows total NRF2, total HER1, HER4 and phospho-AKT levels in PEO1, 
OVCAR3 and SKOV3 cell lines by quantifying immunoblot signal intensities obtained and normalised to the 
value of UT and expressed as fold change. Images are representative of at least two independent 
experiments performed. 

4.4.2. Treatment with RA inhibited NRF2 pathway leading to downregulation 

of HER1 and HER4  

To further delineate the role of NRF2 in the regulation of HER1 and HER4 

receptors expression, the expression of HER1 receptor following the antagonism 

of NRF2 and its function was examined. Previous studies have used RA to 

pharmacologically inhibit NRF2 and its function (Wang et al., 2007, Wu et al., 

2014, Khalil et al., 2016a). To confirm this, the ovarian cancer cells were treated 

with RA to pharmacologically inhibit NRF2. The generated gene transcriptional 

reporter HER1 and HER4 and western blot analysis of HER1, HER4 and NRF2 

levels were used to delineate the role of NRF2 in the regulation of HER1 and 

HER4 receptor expression. The cell lines were individually transfected with the 

constructs of prHER1 and prHER4, except MCF7-AREc32 stable cell line with 
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served as positive control. This time, the cells were either left untreated or treated 

with 2.5 µM RA for 24 h. The results revealed a significant transcriptional 

downregulation of HER1 and HER4 in all the cell line, PEO1, OVCAR3 and 

SKOV3 as well as MCF7-AREc32 cell lines (Figure 4.3). Moreover, the protein 

level has shown a significant protein repression of total NRF2, HER1, HER4 as 

well as pAKT (Figure 4.4). These results demonstrated that pharmacological 

inhibition of NRF2 protein caused inhibition of HER receptor pathway and 

transcriptional and translational downregulation of HER1 and HER4. This 

supported the hypothesised cross-link between NRF2 and HER receptors. 
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Figure 4.3: Treatments with RA causes inhibition of NRF2 and transcriptional downregulation HER1 
and HER4. Luciferase assay showing transcriptional downregulation of HER1 and HER4 following NRF2 

inhibition by RA in PEO1, OVCAR3 and SKOV3 cell lines. Exponentially growing PEO1, SKOV3 and 
OVCAR3 excluding MCF7-AREc32 cell lines were transfected with either empty PGL3 basic vector or 1 µg 
PGL3 basic vector with cloned NRF2-AREs driving the expression of luciferase gene. Co-transfection with 
0.2 µg pRL-CMV plasmid was performed as an internal transfection control as described in the materials and 
methods. At 24h post-transfection, cells were either left untreated or treated with 100 µM tBHQ or 2.5 µM RA 
for 24 h. Following treatments, lysates were prepared and luciferase activity was measured using Dual 
luciferase reporter assay (Promega) in multiplate reader (MODULUSTM, Promega). Data shown are the 
means ± S.D. of n=3 independent experiments performed in quadruplicates triplicates with statistical 
significance determined by ONE WAY ANOVA followed by Tukey’s post hoc test (*:p<0.05, **:p<0.01, 
***:p<0.001 and ****:p<0.0001). 
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Figure 4.4: Treatments with RA causes repression of NRF2 as well as downregulation HER1 and 
HER4. Immunoblot analysis following treatment with RA demonstrated protein downregulation of both HER1 

and HER4 receptors and decrease of NRF2, pNRF2, HO-1 and pAKT. Exponentially growing cells were 
either left untreated (UT) or treated with 2.5 μM RA for 24 h before being harvested and processed for 
immunoblotting using relevant antibodies. Bar chart shows total NRF2, phosphor-NRF2, HO-1, total HER1, 
total HER4, and phospho-AKT levels in PEO1, OVCAR3 and SKOV3 cell lines by quantifying immunoblot 
signal intensities obtained. Images are representative of at least two independent experiments performed.  

4.4.3. Genetic knockdown of NRF2 causes downregulation HER1 and HER4 

Studies have used siRNA to genetically inhibit NRF2 and its function (Huang et 

al., 2008, Guo et al., 2013, Kanninen et al., 2015, Duong et al., 2017, Esmaeili, 

2016). To assess the effect of siRNA on NRF2 and HER1 and HER4 receptors 

expression, the expression of HER1 and HER4 receptors following the siRNA-

mediated knockdown of NRF2 was examined. The generated gene transcriptional 

reporter for HER1 and HER4 and western blot analysis of HER1, HER4 and 

NRF2 levels were investigated. The PEO1, OVCAR3 and SKOV3 cell lines were 

individually transfected with the constructs of prHER1 and prHER4. Following 

this, cells were co-transfected with 75 pmol NRF2 specific siRNA for 24 h. The 

results revealed a significant transcriptional downregulation of HER1 and HER4 

(Figure 4.5). At the protein level, following the knockdown with siRNA for 24 h 

and 48 h there was a significant protein repression of HER1, HER4 as well as 

pAKT, and with a significant inhibition of total NRF2 (Figure 4.6). Taken together, 
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these interesting results demonstrated that inhibition of NRF2 protein caused 

inhibition of HER receptor pathway and transcriptional and translational 

downregulation of HER1 and HER4. This also supported the implication that both 

antioxidant response and HER receptor family pathways might be subjected to 

coregulatory mechanisms and that NRF2 regulates HER1 and HER4. 
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Figure 4.5: Genetic knockdown of NRF2 causes transcriptional downregulation HER1 and HER4 

Knockdown of NRF2 causes inhibition its transcriptional antioxidant program and the transcriptional level of 
HER1 and HER4 in both constitutive and tBHQ induced states. MCF7-AREc32 which already contains stably 
cloned 8 x cis-AREs driving NRF2 dependent expression of luciferase gene was left without any transfection 
while PEO1, OVCAR3 and SKOV3 cells were transfected with either empty PGL3 basic vector or 1 μg PGL3 
basic vector with promoters of HER1 and HER4 cloned driving HER1 and HER4 expression of luciferase 
gene. Co-transfection with 0.2 μg pRL-CMV plasmid was performed as an internal transfection control. 
Where required, cotransfection with either scrambled RNA (Sc) or NRF2 siRNA was performed using 
20 pmol siRNA. At 24 h after transfection, treatment with 100 μM tBHQ was performed where indicated for 
4 h following which, cells were processed for dual luciferase reporter assay (Promega) to record luciferase 
activity in multiplate reader (MODULUS, Promega). Data are the means with ±S.D. of n=3 independent 
experiments in triplicates, with statistical significance determined by ONE WAY ANOVA followed by Tukey's 

post hoc test. ∗ p < 0.05, ∗∗   p < 0.01, ∗∗∗ p < 0.001 and **** p <0.0001 
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Figure 4.6: Genetic knockdown of NRF2 causes protein downregulation HER1 and HER4. Immunoblot 

analysis following knockdown of NRF2 demonstrated protein downregulation of both HER1 and HER4 
receptors and decrease of NRF2, pNRF2, HO-1 and pAKT in PEO1, OVCAR3 and SKOV3 cell lines. Cells 
were either transfected with scrambled siRNA (Sc) or transfected with 75 pmol of NRF2 siRNA (Si). After 24h 
and 48 h, cells were being harvested processed for immunoblotting using relevant antibodies. β-actin of the 
same blot was used as loading control. Bar chart shows the levels relevant proteins by quantifying 
immunoblot signal intensities obtained and expressed as fold change. Images are representative of at least 
two independent experiments performed. 

4.4.4. Treatment with tBHQ reduces the knocking down effect of siRNA 

Based on the results obtained following activation and inhibition of NRF2 by tBHQ 

and siRNA respectively (Figures 4.5 and 4.6), it is thought that tBHQ dependent 

induction of antioxidant pathways in the cell lines would disrupt the depletion of 
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NRF2 following knockdown by siRNA and to confirm this, cells were exposed 

either genetic inhibition of NRF2 with siRNA or pharmacological activation of 

NRF2 by tBHQ following the genetic depletion of NRF2. The evidence to 

implicate NRF2 in the regulation of HER1 and HER4 expression was obtained 

when co-treatment of ovarian cancer and MCF7 AREc32 cells with tBHQ and 

NRF2-siRNA compromised the tBHQ-dependent induction of either HER1 or 

HER4 promoters-driven or ARE-driven luciferase gene expression in the ovarian 

cancer cells or in MCF7 AREc32 cells (Figure 4.7), respectively. This inhibitory 

effect of siRNA on the tBHQ-dependent induction of gene expression (Figure 4.8) 

appeared to be concomitant with decreased total NRF2 levels in all the cells 

tested, thereby supporting the earlier conclusions drawn from Figure 4.7.
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Figure 4.7: Treatment with tBHQ reduces the knocking down effect of siRNA. Knockdown of NRF2 cause inhibition its transcriptional antioxidant program and the 
transcriptional level of HER1 in both constitutive and tBHQ induced states. MCF7-AREc32 which already contains stably cloned 8 x cis-AREs driving NRF2 dependent 
expression of luciferase gene was left without any transfection while PEO1, OVCAR3 and SKOV3 cells were transfected with either empty PGL3 basic vector or 1 μg PGL3 
basic vector with promoters of HER1 cloned driving HER1 expression of luciferase gene. Co-transfection with 0.2 μg pRL-CMV plasmid was performed as an internal 
transfection control. Where required, cotransfection with either scrambled RNA (Sc) or NRF2 siRNA was performed using 20 pmol siRNA. At 24 h after transfection, treatment 
with 100 μM tBHQ was performed where indicated for 4 h following which, cells were processed for dual luciferase reporter assay (Promega) to record luciferase activity in 
multiplate reader (MODULUS, Promega). Data are the means with ±S.D. of n=3 independent experiments performed in quadruplicates, with statistical significance determined 

by ONE WAY ANOVA followed by Tukey's post hoc test. ∗ p < 0.05, ∗∗   p < 0.01, ∗∗∗ p < 0.001 and ∗∗∗∗ p < 0.0001
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Figure 4.8: Action of tBHQ reduces the knocking down effect of siRNA. Immunoblotting analysis 

showing repression of NRF2 following NRF2 knockdown by siRNA in PEO1, OVCAR3 and SKOV3 cell lines. 
Cells were either transfected with scrambled siRNA (Sc) or transfected with 75 pmol of NRF2 siRNA (Si). 
After 24 h, cells were either left untreated or treated with 100 μM tBHQ (T) for 4 h, before being processed for 
immunoblotting using relevant antibodies. β-actin of the same blot was used as loading control. Bar chart is 
the average of n=3 independent experiments performed showing NRF2 levels by quantifying immunoblot 
signal intensities obtained and expressed as fold change. Images are representative of at least two 
independent experiments performed.  

4.4.5. Pharmacological inhibition and Genetic knockdown of NRF2 by RA 

siRNA respectively elevates the level of ROS 

Based on the above results describing the effects and mechanisms of NRF2 

knockdown and inhibition by siRNA and RA respectively. ROS are expected to 

accumulate as consequential to the loss of NRF2 function. In order to confirm the 

direct relationship between of NRF2 and ROS, the total basal ROS was 

quantified following NRF2 inhibition and knockdown to determine whether NRF2 

depletion caused elevation of ROS. To achieve this, the treated cells were loaded 

with 2′,7′-Dichlorofluorescin diacetate dye which is a fluorescent marker of 

intracellular ROS. The results confirmed an elevation of ROS resulting from both 

NRF2 inhibition and knockdown (Figure 4.9).  
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Figure 4.9:  Inhibition and Knockdown of NRF2 by RA and siRNA respectively elevates the level of 
ROS. (A) RA treatment and (B) knockdown of NRF2 by siRNA causes increase in ROS levels. Exponentially 

growing cells were seeded in triplicates in opaque flat bottom black walled 96-well plates for 24 h. Following 
this, cells were either left untreated (UT)/Scramble (SC) or treated with 2.5 μM RA or 7 pmol of siRNA for 
different time points as indicated. Following incubations, cells were loaded with DCFDA fluorescent stain for 
45 min and assayed for ROS by measuring fluorescence as described in Materials and Methods. Data are 
the mean ± SD of n=3 independent experiments performed in triplicates and shown as fold change of RA or 
siRNA treated cells to UT with statistical significance determined by TWO WAY ANOVA followed by Tukey's 
post hoc test. ∗ p < 0.05, ∗∗   p < 0.01, ∗∗∗ p < 0.001 and **** p <0.0001.   

4.4.6. Action of RA and siRNA on NRF2 causes depletion of total GSH 

Following the observed inhibition of NRF2 and increase in ROS in these cell lines 

following treatment with RA and siRNA, next, it is asked whether NRF2 

knockdown and treatment with RA would cause a depletion of total cellular GSH. 
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To address this, cells were either left untreated or treated with RA or siRNA. 

Here, HRG which is reported to induce total cellular GSH was used as positive 

control. At 24 h, treatment with HRG induced total cellular glutathione, while both 

RA and siRNA significantly reduced this level in all cells (Figure 4.10). This study 

demonstrates that whatever happens to NRF2 also could affect enzymes it 

controls. 

 

Figure 4.10: Pharmacological treatment with RA and Knockdown with siRNA on NRF2 causes 
depletion of total GSH level. (A) RA and (B) siRNA causes depletion of total GSH. Exponentially growing 

cells where seeded in luminometer-compatible 96-well plates and allow to grow overnight at 37°C in a 5% 
CO2 culture incubator. The following day, the cells were either left untreated (UT)/Scramble(SC) or treated 
with media containing 1nM Heregulin alone (HRG) or with co-treatment 2.5 µM RA or 7 pmol siRNA for 24 h 
before being processed for glutathione assay. Data is the mean ± SD of n=3 independent experiments 
performed in triplicates and were normalized and expressed as fold change to the UT and compared to 
HRG. Statistical significance was determined by independent t-test according to the scale * p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001 
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4.5. Key findings 

This chapter has confirmed the transcriptional and translational regulatory role of 

NRF2 on HER1 and HER4 receptors. It started by indicating that, NRF2 

activation by tBHQ not only induced the NRF2 dependent antioxidant response 

pathway as expected but interestingly also induced both transcriptional (Figure 

4.1) and protein levels of HER1 and HER4 (Figure 4.2). NRF2 inhibition by RA 

(Figures 4.3 and 4.4) and knockdown by siRNA (Figures 4.5 and 4.6), also 

repressed NRF2 dependent antioxidant response pathway as well as 

downregulated both transcriptional and protein level of HER1 and HER4. The 

disruption of the knockdown effect of siRNA was observed when tBHQ was 

introduced in the treatment (Figures 4.7 and 4.8). 

Also in order to examine the consequence of NRF2 inhibition and confirm the 

direct link between of NRF2 and ROS, the total basal ROS as well as total GSH, 

following NRF2 inhibition and knockdown were quantified. This will determine 

whether NRF2 depletion caused elevation of ROS. The data indicated that NRF2 

repression led to the elevation of ROS (Figure 4.9) and depletion of total GSH 

(Figure 4.10) in all the cell lines. Thus, these results confirmed the transcriptional 

regulatory role of NRF2 for HER1 and HER4 receptors and illustrated alteration of 

protein abundance as a result of such transcriptional regulation. The data 

presented in this chapter confirm the regulation of HER1 and HER4 by NRF2. 

 

 

  



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 105 
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5.1. Abstract 

NRF2 is a transcription factor that governs the expression of a battery of genes to 

combat oxidative and electrophilic stress. However, modification of KEAP1 by 

ROS stabilises NRF2 by escaping from degradation in the cytoplasm to the 

nucleus. NRF2 then binds to AREs in the promoter region of the cluster of various 

genes. NRF2-ARE pathway hyperactivation can protect cancer cells from 

oxidative stress and promote cell proliferation. Moreover, activation of the NRF2 

pathway is critical for resistance to chemotherapeutic agents. In this chapter, a 

total of ten potent NRF2 inhibitors were screened and then the most potent 

among them were used to provide a molecular and rational basis for the use of 

NRF2 inhibitors in overcoming chemoresistance in ovarian cancer. This would 

give a possible NRF2-inhibiting mechanism of these compounds, their effects of 

sensitizing cancer cells to chemotherapeutic agents, and the prospect of applying 

them in translational and clinical cancer therapies. 

 

 

 

 

 

 

 

 

 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 107 
 

5.2. Introduction 

Drug screening is the process by which potential drugs are tested, identified and 

optimized before selection of a candidate drug to progress to clinical trials. It can 

involve screening large libraries of chemicals for a particular biological activity in 

high-throughput screening assays. The screening would help to find small 

molecular compounds that possess the potential to interact with specific 

biomacromolecules, mostly proteins, thereby bringing the desired effect in the 

functioning of the target molecules (Malik et al., 2017). Cell-based screenings are 

essential for the identification and characterization of drug candidates (Agus and 

Janovjak, 2017). These assays are used to measure cell proliferation, viability 

and cytotoxicity and are commonly used to monitor the response of cells in 

culture after treatment with various stimuli. The luciferase assays and Intracellular 

ATP-based luciferase assays would be suitable for the screening of chemical 

libraries because they allow for simple, efficient, rapid-evaluation of the activities 

of test compounds with signal detection within a short period of time (Suganuma 

et al., 2017). 

NRF2 activity is tightly controlled, suggesting that opportunistic stimulation of 

NRF2 signalling by drugs used in the treatment of cancer is undesirable. NRF2 

contribute to the survival and proliferation of cancer cells leading to chemo 

resistance because of its ability to induce drug detoxifying genes. While transient 

activation of NRF2 in normal cells is desirable, persistent activation of NRF2 is 

detrimental (McMahon et al., 2014). Interrupting the NRF2 activity may be an 

effective way to sensitize cancer cells to chemotherapy and radiotherapy (Arlt et 

al., 2013). In this chapter, cell based assays such as luciferase assay, ATP-

dependent assay, ROS assay as well as total GSH assay were employed. The 

contemporary chemical inhibitors of the NRF2 signalling pathway, their effects in 

cancer cells and their potential clinical applications were examined. 
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5.3. Aims and objectives 

5.3.1 The aim 

The main aim of this chapter is to screen for potent inhibitors of the NRF2-ARE 

signalling pathway and then investigate their potential applications in ovarian 

cancer therapy 

5.3.2 The objectives are: 

1. To firstly, perform the cytotoxicity assay of all the compounds to be 

screened in order to obtain the low-lethal concentration 

2. To screen the compounds using MCF7-AREc32 luciferase reporter stable 

cell line to obtain the most potent modulators of NRF2/ARE-dependent 

activity 

3. To use any of the most potent compounds obtained for further 

investigations of its potency in ovarian cancer therapy.  

5.4. Results 

5.4.1. Cytotoxic screening of the spectrum collection the compounds as 

inhibitors of NRF2 in cancerous cells. 

Firstly, the cytotoxicity of all the compounds was investigated to evaluate the less 

toxic concentration of the compounds to be used for further screening as NRF2 

inhibitors. To address this, an exponentially growing MCF7-AREc32 cell line 

stably expressing 8xcis-ARE were either left untreated (DMSO vehicle) or treated 

with different concentrations of the tested compounds (Figure 5.1).  It was noticed 

that almost all the compounds were less toxic in range of 0-10 µM and therefore 

that range of concentration was chosen for further studies. 
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Figure 5.1: Cytotoxic screening of the spectrum collection the compounds. Briefly, exponentially growing MCF7-AREc32 cells were seeded in a 96-well plate and allowed 

to adhere for 18-24 h. Following 72 h treatments using different concentrations of the compounds, the plate and its contents  were equilibrated to room temperature for 
approximately 30 min, a volume of CellTiter-Glo 2.0 reagent equal to the volume of cell culture medium present in each well the contents were then mixed for 2 min on an 
orbital shaker to induce cell lysis and the plate was then incubate at room temperature for 10 min to stabilize the luminescent signal and finally the luminescence was recorded 
using luminometer (MODULUS, Promega). The luminescent signal which is proportional to the amount of ATP in the sample, also which indicates the presence of metabolically 
active cells is expressed in %. 
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5.4.2. Determination of activities and effects of compounds on NRF2-ARE 

signalling pathway 

To identify novel small molecule inhibitors that will disturb the NRF2/ARE binding 

pathway, a group of compounds, of which some were reported to influence 

NRF2- KEAP1 pathway (McMahon et al., 2014, Kwak and Kensler, 2010), were 

examined. MCF7-AREc32 stable cell line which is known to contain low levels of 

NRF2 (McMahon et al., 2014, Wang et al., 2007), and therefore low levels of 

luciferase expression were used in this investigation. This makes it an excellent 

cell model with which to identify drugs that activate or inhibit NRF2 signalling 

(McMahon et al., 2014, Wang et al., 2007). A total of 10 drugs, which target a 

variety of biochemical pathways were investigated The selection of most of the 

compounds, however, just as reported by Machmahon et al (2014), was made 

with no foreknowledge or preconception of their likelihood to activate or inhibit 

NRF2 signalling (McMahon et al., 2014) except those used as control. The 

screening confirmed that some of the drugs elevated and some inhibited 

luciferase activity in the MCF7-AREc32 cell line (Figure 5.2). Collectively, these 

data showed that all the compounds tested altered NRF2-ARE signalling either 

by activating or by inhibiting it. The improved ability to identify potent inhibitors of 

NRF2 through in vitro screening described here improves the speed and cost 

associated with screening NRF2-ARE inhibiting compounds for drug 

development. 
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Figure 5.2: Screening of panel of compounds gives rise to activation and inhibition of NRF2 
dependent antioxidant response pathway. Exponentially growing MCF7-AREc32 cell line stably 

expressing 8xcis-AREs driving the expression of luciferase gene in an NRF2 dependent manner were either 
left untreated (UT) or treated with different compounds at 2.5 µM, 5 µM or 10 µM. For siRNA treatment, cells 
were treated with scrambled or with NRF2 siRNA (2.5 pmol, 5 pmol, 10 pmol) for 24h. Following this, cell 
lysates were prepared and assayed for Luciferase activity (BrightGlo Luciferase system, Promega). Data are 
the mean values ± S.D of n=3 independent experiments performed in quadruplicates with statistical 
significance determined by ONE WAY ANOVA followed by Tukey’s post hoc test according to the scale ** P 
<0.05, **P <0.01 ***P <0.001. 
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MCF7-AREc32 stable cell line carries a luciferase reporter gene under the control 

of the ARE. Both the basal and the inducible ARE-luciferase activities in these 

cells are primarily regulated by NRF2. Therefore, this cell line provides an ideal 

cell-based assay for screening for antagonists of NRF2.  

Based on the results obtained in (Figure 5.2) and the context of the aim of 

screening to identify the compounds that show more potency towards inhibiting 

NRF2-ARE pathway, the compounds that appeared to be most promising were 

selected for further investigations as described below. 

5.4.3. Potent NRF2-ARE inhibitors repress NRF2, pNRF2 and HO-1 and 

generate ROS 

Although the beneficial effects of NRF2 activation have been demonstrated in 

various healthy cell systems, there is cumulative evidence demonstrating the dark 

side of NRF2 in cancers. NRF2 is reported to contribute tumour resistance to a 

variety of anti-cancer drugs through detoxification of drug-induced ROS thereby 

preventing cellular accumulation of drugs and reducing the efficacy the drugs 

(Choi and Kwak, 2016). Furthermore, ROS which is reported to be a regulator of 

NRF2 stability and activity have also been shown to trigger the ARE pathway, 

implicating the modulation of ROS level by NRF2 function (Khalil et al., 2016b). 

To investigate this matter, the compounds that inhibited the antioxidant 

transcriptional program, were further examined in MCF7-AREc32 cell lines for 

effects at the protein level and then determined their level of ROS generation 

capacity. Exposure of MCF7-AREc32 cell lines to these compounds at 2.5 µM 

caused a decrease in pNRF2, total NRF2 and HO-1 levels (Figure 5.3). 

Interestingly the decrease was more significant in the presence of bexarotene. 

The compounds-induced reduction in NRF2 levels suggests that they can be 

used in targeting NRF2. Next, using the same set of compounds, it was found 

that they also elevated ROS levels (Figure 5.4). These findings suggested that 

while these compounds inhibit NRF2 dependent ARE pathway, such treatment 

also elevates cellular ROS levels in MCF7-AREc32 cell lines. Importantly, 

treatment with bexarotene was found to significantly induce more ROS when 

compared to all the other compounds tested. 
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Figure 5.3: Treatments with panel of compounds causes inhibition of NRF2 dependent antioxidant 
response pathway and generates ROS. (A) Western analysis showing repression of NRF2, pNRF2 and 

HO-1 levels following the compounds treatment in MCF7-AREc32 cell lines. Exponentially growing cells were 
either left untreated or treated with 2.5 μM RA or 9-Cis or bexarotene or tBHQ or Brusatol for 24 h before 
being harvested to prepare protein lysates or processed as described in Materials and Methods. Beta-actin 
(β- actin) was used as loading control and bars indicate total NRF2, phosphor-NRF2 and HO-1 levels 
following quantification of immunoblot signal intensities obtained in (A) and normalized to the value of UT 
and expressed as fold change. The signal intensities of bands were quantified through integrated optical 
densitometry measurement. Images are representative of at least two independent experiments performed.  
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Figure 5.4 Treatment with panel of compounds causes persistent elevation of ROS in MCF7-AREc32. 

Exponentially growing MCF7-ARE cells were seeded in triplicates in opaque flat bottom black walled 96-well 
plates for 24 h. Following this, cells were either left untreated (UT) or treated with 2.5 μM RA or 9-Cis or 
bexarotene or tBHQ or Brusatol for 24h. Following incubations, cells were loaded with DCFDA fluorescent 
stain for 45 min and assayed for ROS as described in Materials and Methods. Data are the mean values ± 
S.D of n=3 independent experiments performed in quadruplicates with statistical significance determined by 
ONE WAY ANOVA followed by Tukey’s post hoc test according to the scale ** P <0.05, **P <0.01 ***P 
<0.001. 

5.4.4. Low-lethal dose of lapatinib and erlotinib causes repression of NRF2-

dependent transcription and generation of ROS 

Following the observation of the effect of the tested compounds on NRF2, the 

widely known RTK inhibitors lapatinib and erlotinib that inhibits HER receptor 

family pathway activation (Ryan et al., 2008, Rolfo et al., 2014, Geyer et al., 

2006, Kuang et al., 2010), were then investigated after establishing their IC50 (15 

µM and 20 µM respectively) to further ascertain whether they will inhibit NRF2-

dependent transcription. To address this the MCF-AREc32 cell line, containing a 

stably expressing 8 copies of NRF2 dependent cis-regulatory AREs, as a 

luciferase reporter was used here as well. The results indicated that both lapatinib 

and erlotinib were toxic at the highest concentration (10 µM) (Figure 5.5A), and 

were able to inhibit the NRF2/ARE dependent transcription (Figure 5.5B) and 

generate ROS (Figure 5.5C) both at the low-lethal dose of 0-10 µM. 
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Figure 5.5: Treatment with low-lethal dose of lapatinib and erlotinib involves repression of NRF2-
dependent transcription and generation of ROS. (A) Treatment with low-lethal dose of lapatinib and 

erlotinib in cell survival. Exponentially growing MCF7-AREc32 cells were seeded in triplicates in 96-well 
plates for 24 h, Following this, were treated with different concentrations of lapatinib and erlotinib (0-10 µM) 
as indicated, following this, cell number was assessed indirectly by use of the cell titre glo assay as 
described in Materials and Methods.  (B) Treatment with low-lethal dose of lapatinib and erlotinib involves 
repression of NRF2-dependent transcription. Exponentially growing AREc32 cell line stably expressing cis-
regulatory AREs driving the expression of luciferase gene in an NRF2 dependent manner were treated with 
different concentrations of lapatinib and erlotinib (0-10 µM). Following this, cell lysates were prepared and 
assayed for Luciferase activity as described in materials and method. (C) Treatment with sub-lethal dose of 
lapatinib and erlotinib involves generation of ROS. Exponentially growing MCF7-AREc32 cells were seeded 
in triplicates in opaque flat bottom black walled 96-well plates for 24 h. Following this, were treated with 
different concentrations of lapatinib and erlotinib (0-10 µM) as indicated. Following incubations, cells were 
loaded with DCFDA fluorescent stain for 45 min and assayed for ROS as described in Materials and 
Methods. Data shown are mean values ± S.D of n=3 independent experiments performed quadruplicates, 
normalized to untreated (UT) and expressed as fold change with statistical significance determined by ONE 
WAY ANOVA followed by Tukey’s post hoc test according to the scale *: p<0.05, **: p<0.01, ***: p<0.001. 
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Based on all the information obtained in (Figures 5..2 and 5.3), in addition to 

being in clinical use (Hatton and Yee, 2008, Farol and Hymes, 2004), bexarotene 

is chosen as the compound for further studies. Further, the cell viability assays of 

lapatinib and erlotinib (as RTK inhibitors) and bexarotene (as NRF2 inhibitor) 

were performed in PEO1, OVCAR3 and PEO1 ovarian cancer cells in order to 

choose the required concentrations for subsequent studies. 

5.4.5. Cell viability of lapatinib, erlotinib and bexarotene in ovarian cancer 

To determine the required concentration of these drugs (lapatinib, erlotinib, and 

bexarotene) for further use, exponentially growing PEO1, OVCAR3 and SKOV3 

cell lines were either left untreated (DMSO vehicle) or treated with different 

concentrations of the tested compounds, lapatinib (Figure 5.6A), erlotinib (Figure 

5.6B) and bexarotene (Figure 5.6C).  It was noticed that almost all the 

compounds are less toxic to the range between 0-10 µM and therefore that range 

of concentration was chosen for further studies. 
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Figure 5.6: Cell viability assay: (A) lapatinib (B) erlotinib and (C) bexarotene in three ovarian cancer 
cells, SKOV3, PEO1 and OVCAR3. Cell viability assay was performed in order choose the less toxic 

consent rations for further studies. Briefly, exponentially growing cells were seeded in a 96-well plate and 
allowed to adhere for 18-24 h. Following 72 h treatments using different concentrations of the drugs, the 
plate and its contents  were equilibrated to room temperature for approximately 30 min, a volume of 
CellTiter-Glo 2.0 reagent equal to the volume of cell culture medium present in each well the contents were 
then mixed for 2 min on an orbital shaker to induce cell lysis and the plate was then incubate at room 
temperature for 10 min to stabilize the luminescent signal and finally the luminescence was recorded using 
luminometer (MODULUS, Promega). The luminescent signal which is proportional to the amount of ATP in 
the sample, also which indicates the presence of metabolically active cells is expressed in %. 

5.4.6. Treatment with lapatinib, erlotinib and bexarotene cause 

transcriptional downregulation of HER receptor family in ovarian cancer. 

Following the determination of cytotoxicity of lapatinib, erlotinib and bexarotene in 

PEO1, OVCAR3 and SKOV3 cell lines, further studies were undertaken to, 

investigate the effects these drugs on the transcription of HER1, HER2, HER3 

and HER4 genes. To address this, the cloned promoter regions of HER1, HER2, 

HER3 and HER4 genes as luciferase-based reporter assays (known as prHER1, 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 118 
 

prHER2, prHER3, and prHER4 respectively) were used. These reporters were 

used to directly report and measure any transcriptional perturbation of the HER 

family receptors.  The prHER1, prHER2, prHER3, prHER4 were transfected into 

the ovarian cancer cell lines, treated the cells with the drugs for 96 h, and then 

assayed for luciferase activity (Figures 5.7, 5.8 and 5.9). Untreated cells or cells 

treated with tBHQ were used as controls. These experiments clearly 

demonstrated transcriptional inhibition of HER1, HER2, HER3 and HER4 genes 

by all the three drugs tested. 

 

Figure 5.7: Lapatinib, erlotinib and bexarotene causes transcriptional downregulation of HER1, 
HER2, HER3 and HER4 in PEO1 cell line. Briefly cells were transfected in quadruplicate with either empty 

PGL3 basic vector or 1 𝜇g PGL3 basic vector with cloned fragments of either HER1 (prHER1) or HER2 
(prHER2) or HER3 (prHER3) or HER4 (prHER4) promoter driving the expression of luciferase gene for 24 h. 
Co-transfection with 0.2 𝜇g pRL-CMV plasmid was performed as an internal transfection control. Following 
this, cells either left untreated or treated with 100 µM tBHQ or 5 µM each of either lapatinib or erlotinib or 2.5 
µM bexarotene for 24 h. Following this, cell lysates were prepared and assayed for Luciferase activity 
(luciferase assay and stop and glo Luciferase system, Promega). Data presented are the means ± S.D. of n 
= 3; independent experiments performed in quadruplicates with statistical significance determined by ONE 
WAY ANOVA followed by Tukey’s post hoc test according to the scale *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 
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Figure 5.8: Lapatinib, erlotinib and bexarotene causes transcriptional downregulation of HER1, 
HER2, HER3 and HER4 in OVCAR3 cell line. Briefly cells were transfected in quadruplicate with either 

empty PGL3 basic vector or 1 𝜇g PGL3 basic vector with cloned fragments of either HER1 (prHER1) or 
HER2 (prHER2) or HER3 (prHER3) or HER4 (prHER4) promoter driving the expression of luciferase gene 
for 24 h. Co-transfection with 0.2 𝜇g pRL-CMV plasmid was performed as an internal transfection control. 
Following this, cells either left untreated or treated with 100 µM tBHQ or 5 µM each of either lapatinib or 
erlotinib or 2.5 µM bexarotene for 24 h. Following this, cell lysates were prepared and assayed for Luciferase 
activity (luciferase assay and stop and glo Luciferase system, Promega). Data presented are the means ± 
S.D. of n = 3; independent experiments performed in quadruplicates with statistical significance determined 
by ONE WAY ANOVA followed by Tukey’s post hoc test according to the scale *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 
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Figure 5.9: Lapatinib, erlotinib and bexarotene causes transcriptional downregulation of HER1, 
HER2, HER3 and HER4 in SKOV3 cell line. Briefly cells were transfected in quadruplicate with either empty 

PGL3 basic vector or 1 𝜇g PGL3 basic vector with cloned fragments of either HER1 (prHER1) or HER2 
(prHER2) or HER3 (prHER3) or HER4 (prHER4) promoter driving the expression of luciferase gene for 24 h. 
Co-transfection with 0.2 𝜇g pRL-CMV plasmid was performed as an internal transfection control. Following 
this, cells either left untreated or treated with 100 µM tBHQ or 5 µM each of either lapatinib or erlotinib or 2.5 
µM bexarotene for 24 h. Following this, cell lysates were prepared and assayed for Luciferase activity 
(luciferase assay and stop and glo Luciferase system, Promega). Data presented are the means ± S.D. of n 
= 3; independent experiments performed in quadruplicates with statistical significance determined by ONE 
WAY ANOVA followed by Tukey’s post hoc test according to the scale *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 

5.5. Key findings 

In this section, ten compounds that alter NRF2/ARE signalling in the MCF7-

AREc32 reporter cell line were investigated. The investigation included 

cytotoxicity screening and the ability of the compound to either cause production 

or sequestration of ROS. The results indicated that these compounds were able 

to engage and the NRF2-KEAP1 either by positive or negative feedback loop 

directly to stimulate or disrupt NRF2 activity and function (Figures 5.2 and 5.3). 

The data also indicated compounds such as RA, 9-cis RA, brusatol and 
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bexarotene inhibited elevated the level of ROS (Figure 5.4) and then lapatinib, 

erlotinib and bexarotene downregulated the transcriptional level of HER family 

receptors in ovarian cancer cell (Figures 5.7, 5.8 and 5.9). This work has 

demonstrated the feasibility of using bexarotene to treat ovarian cancers. 
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6.1 Abstract 

In the previous chapters, it is observed that tBHQ and retinoid treatment led to 

transcriptional upregulation and downregulation of HER1 and HER4, suggesting 

that NRF2 is involved in regulating the receptor expression and as such may 

influence responses to targeted therapies involving HER RTK inhibitors, lapatinib 

and erlotinib. This important question was investigated by treating PEO1, 

OVCAR3, SKOV3 and MCF7-AREc32 cells with, either lapatinib or erlotinib 

alone, or by co-treatment with tBHQ and/or bexarotene to examine the 

consequences of NRF2 activation and/or inhibition on drug responses. It is found 

that pharmacological activation of NRF2 by tBHQ and/or inhibition by bexarotene 

alone was sufficient to enhance or reduce the proliferation of all the cell lines for 

up 72 h. Further, exposure of cells to lapatinib and erlotinib, inhibited the 

proliferation of all the cell lines for up to 72 h of treatment, with slight loss of 

inhibitory effect at 96 h. Interestingly however, pre-treatment of cells with 100 μM 

tBHQ for 5 h before the introduction of the HER family RTK inhibitors significantly 

protected cells from the growth inhibitory action of the subsequently added drugs. 

Moreover, pre-treatment of cells with 2.5 μM bexarotene for 5 h before the 

introduction of HER family RTK targeted drugs significantly increases their 

cytotoxicity. This was consistent in all the cell lines and for all the treatment days 

tested. The combination of tBHQ with the inhibitors did not only protect the cells 

but increased their survival even beyond the untreated levels on all days in all the 

cell lines. The combination of bexarotene with the inhibitors increases the 

cytotoxicity of the drugs and decreased the survival of the ovarian cancer cells far 

below the untreated level. This demonstrated that NRF2 activation is not only 

implicated in resistance to other agents as previously demonstrated but can also 

lead to resistance to chemotherapies involving lapatinib and erlotinib whose 

actions otherwise are very specific to HER family receptors with no clear relation 

to antioxidant response element. Thus, blockade of the cellular anti-oxidative 

system by NRF2 inhibition significantly augmented the lapatinib and erlotinib 

cytotoxicity and can potentially overcome resistance to therapies involving 

lapatinib and erlotinib. Taken together, it is demonstrated that bexarotene alone 

and its combination with either lapatinib or erlotinib exerts inhibition of the NRF2 

to improve ovarian cancer treatment for a better outcome. 
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6.2. Introduction 

There are several studies that highlight the relationship between ROS and NRF2 

and the involvement of NRF2-ARE and HER receptor family pathways (Khalil et 

al., 2016a, Khalil et al., 2016b, Manandhar et al., 2012, Kang et al., 2014b). 

NRF2 is known to promote resistance to chemotherapeutic agents, in addition to 

its contribution to general cytoprotection, metabolic reprograming, and cell 

survival (Hayes and McMahon, 2009, Hayes and Ashford, 2012, Hayes et al., 

2015, Wang et al., 2007, Tang et al., 2011). Moreover, targeted chemotherapy 

involving RTKi against HER family receptors has generated interest as a strategy 

to overcome chemoresistance in breast, ovarian, and other forms of cancers 

(Khalil et al., 2016b, Goltsov et al., 2014a, Khalil et al., 2016a, Langdon et al., 

1988, Langdon et al., 2010, Langdon and Cameron, 2013, Mullen et al., 2007, 

Tang et al., 2011, Tu et al., 2013, Messersmith and Ahnen, 2008, Paez et al., 

2004, Regales et al., 2009).  

Studies have examined the crosstalk between growth promoting MAPK and PI3K 

pathways and NRF2 antioxidant pathways in numerous cell systems (Kang et al., 

2005, He et al., 2012, Kang et al., 2000, Zipper and Mulcahy, 2000, Khalil et al., 

2016a). However, in the majority of such studies, the focus was on the regulation 

of NRF2 activity and its functions by these kinases. While the interaction and 

complex formation of NRF2 with HER2 has been reported to enhance HER 

signalling (Kang et al., 2005, He et al., 2012, Kang et al., 2000, Zipper and 

Mulcahy, 2000), studies by Khalil et al., (2016a and 2016b) recently 

demonstrated the transcriptional regulation of HER2 and HER3 by NRF2  (Khalil 

et al., 2016b, Khalil et al., 2016a). Further, they demonstrated a novel relationship 

between NRF2 function, HER2/HER3 signalling, ROS generation and the 

sensitisation of ovarian cancer cells to the killing effects of the targeted therapy 

agents, trastuzumab, pertuzumab, or combination of the two (Khalil et al., 2016b, 

Khalil et al., 2016a). Interestingly, the work here (in chapters 4, 5 and 6) and 

(Khalil et al., 2016b) suggests that all the members of the HER family receptors 

are regulated by NRF2 in ovarian cancer cells. Furthermore, a mechanism of 

action of lapatinib and erlotinib, like trastuzumab, pertuzumab (Khalil et al., 

2016b), likely involves inhibition of NRF2-ARE function, accumulation of ROS and 
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the subsequent killing of the cancer cells. This led us to hypothesize that 

inhibition of NRF2 function and concomitant cellular accumulation of ROS are 

possible mechanistic components and basis of action of HER2-targeted small 

molecule RTK inhibition. This may equally be the basis and a contributing 

determinant of resistance to RTK inhibitors like lapatinib and erlotinib. 

6.3. Aims and objectives 

6.3.1 The aim 

The main aims of this chapter are: 

1.  To examine whether a novel mechanism of action of lapatinib and 

erlotinib, as RTK inhibitors, involves NRF2 inhibition and the accumulation 

of ROS to sensitise ovarian cancer cells to the killing effect of RTKi 

chemotherapeutic drugs. 

2. To examine and develop novel interventions that may be more effective to 

treat and overcome chemoresistance to RTK inhibition in ovarian cancer. 

6.3.2 The objectives are: 

1. To investigate whether the mechanism of action of RTK inhibitors, 

lapatinib and erlotinib, involves the modulation of NRF2 function in 

ovarian cancer cells  

2. To investigate the effectiveness and the enhancement of the cytotoxic 

action of lapatinib and/or erlotinib and when combined with additional 

NRF2 inhibitor 

3. To identify the connectivity of NRF2 and HER family receptor pathways 

that will open up for a novel strategy of improving cancer treatment. 
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6.4. Results 

6.4.1. Pharmacological activation of NRF2 by tBHQ enhances cellular 

survival and attenuates the cytotoxicity caused by HER family targeting 

RTK inhibitory chemotherapeutic agents in ovarian cancer 

NRF2 is shown to promote resistance to chemotherapeutic agents and to 

increase the proliferation and survival of cancer (Hayes and McMahon, 2009, 

Hayes and Ashford, 2012, Hayes et al., 2015, Wang et al., 2007, Tang et al., 

2011). However, several chemotherapeutic drugs including lapatinib and erlotinib 

are used to treat HER family overexpressing cancers including ovarian cancer 

(Kuang et al., 2010, Roskoski Jr, 2014, Geyer et al., 2006, Ryan et al., 2008). In 

this study, cell lines, PEO1, SKOV3 and OVCAR3 which are known to have 

different expressions of HER family and NRF2 (Khalil et al., 2015, Khalil et al., 

2016a, Mullen et al., 2007) were used. Firstly, it is examined whether 

pharmacological preactivation of NRF2 would change the cytotoxic responses of 

ovarian cells to lapatinib (5 μM) or erlotinib (5 μM). In order to achieve this, cells 

were grown in media containing 5% charcoal-stripped FBS and 1 nmol/L 

Heregulin (HRG) and then all the relevant treatments were done. 

Pharmacological activation of NRF2 by tBHQ alone was sufficient to enhance the 

proliferation of all the cell lines at all the time points (24 h, 48 h, 72 h and 96 h) 

(Figure 6.1). However, and as expected, exposure of these cells to the RTK 

inhibitors, lapatinib or erlotinib, inhibited the proliferation of all the cell lines for up 

to 72 h of treatment, while each drug slightly loses its inhibitory effect after 96 h. 

Interestingly, pretreatment of cells with 100 μM tBHQ for 5 h before the 

introduction of either lapatinib or erlotinib significantly protected cells from the 

growth inhibitory action of the subsequently added RTK inhibitor. These were 

consistent in all the 3 cell lines and for all the treatments time points tested 

(Figure 6.1). Thus, combining tBHQ with the RTK inhibitors did not only protect 

the cells but also enhanced their proliferation and survival significantly in all cell 

lines (Figure 6.1). Therefore, this indicated that NRF2 and its activation is 

modulating the action and effectiveness of the RTK inhibitors, lapatinib and 

erlotinib. Thus, NRF2 is not only implicated in resistance to agents as previously 

demonstrated (Hayes and McMahon, 2009, Hayes and Ashford, 2012, Hayes et 
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al., 2015, Wang et al., 2007, Tang et al., 2011) but can also may be mediating the 

resistance to chemotherapies involving lapatinib and erlotinib whose actions are 

more specific to HER receptors than NRF2-KEAP-1 or ARE pathway. 

 

Figure 6.1: NRF2 activation causes cytoprotection from HER family chemotherapeutic agents, 
lapatinib and erlotinib in ovarian cancer cells. Briefly, exponentially growing cells were seeded in 

triplicates in 96-well plates for 24 h. Following this, cells were either left untreated in media containing 1nM 
Heregulin (H) or treated with same media containing in the presence of 1 nM HRG with 5 μM each of 
lapatinib (H+L) or erlotinib (H+E) or treated with combination 5μM lapatinib and 100 μM tBHQ (H+L+T) or 
combination of 5 μM erlotinib and 100 μM tBHQ (H+E+T) at different time points. Cell number was assessed 
by use of the cell titre glo assay. Data shown are means ± S.D. of n= 3 independent experiments performed 
in triplicates, normalised to (H), expressed in fold change with statistical significance was calculated by ONE 
WAY ANOVA followed by Tukey’s post hoc test according to the scale :(*: p<0.05, **: p<0.01, ***:p<0.001, 
and ****:p<0.0001). 
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6.4.2. Pharmacological inhibition of NRF2 by bexarotene reduces the 

proliferation and survival of Ovarian Cancer Cells by increasing the 

Cytotoxicity Caused by HER Family RTK Targeted Chemotherapeutic 

Agents 

The transcriptional control of HER family by NRF2 and the way that NRF2 

hindrance prompted to the transcriptional constraint of these kinases family gives 

a vital way to sensitisation towards drugs that will thus be more lethal to the 

ovarian tumour (Khalil et al., 2016b, Khalil et al., 2016a).  

To address this and to further confirm that NRF2 is modulating the cytotoxic 

action and effectiveness of lapatinib and erlotinib, cells (PEO1, OVCAR3 and 

SKOV3) were grown in media containing 5% charcoal-stripped FBS and 1 nmol/L 

HRG and then exposed to lapatinib (5 μM) or/and erlotinib (5 μM) alone or their 

combination with bexarotene (2.5 μM) (Figure 6.2). First, it was found that 

treatment with lapatinib alone or erlotinib alone causes cytotoxicity compared to 

the untreated in all the cell lines. Importantly, bexarotene co-treatment greatly 

enhanced both lapatinib and erlotinib cytotoxicity in all the cell lines resulting in 

lower cell survival in comparison with their corresponding single treatments alone 

at all the time points (24 h, 48 h, 72 h, 96 h) with a regain of survival at 96 h. 

These important results demonstrated that bexarotene treatment, which was 

shown to repress NRF2 activity and disrupt the antioxidant response pathway 

reduces ovarian cancer cell proliferation and survival by increasing the 

cytotoxicity caused by lapatinib and erlotinib. This confirms a role for NRF2 in 

modulating the action and effectiveness of RTK inhibitors, lapatinib and erlotinib, 

and makes this a strategy representing a novel finding by which ovarian cancer 

cell proliferation and survival could be diminished and eradicated. 
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Figure 6.2: NRF2 inhibition increases the chance of cytotoxicity of HER family-targeted agents, 
lapatinib and erlotinib in ovarian cancer cells. Briefly, exponentially growing cells were seeded in 

triplicates in 96-well plates for 24 h. Following this, cells were either left untreated in media containing 1 nM 
Heregulin (H) or treated with same media containing in the presence of 1 nM HRG with 5 μM each of 
lapatinib (H+L) or erlotinib (H+E) or treated with combination 5 μM lapatinib and 2.5 μM Bexarotene 
(H+L+BEX) or combination of   5 μM erlotinib and 2.5 μM Bexarotene (H+E+BEX) at different time points. 
Cell number was assessed by the use of the cell titre glo assay. Data shown are means ± S.D. of n=3 
independent experiments performed in triplicates, normalised to (H), expressed in fold change with statistical 
significance was calculated by ONE WAY ANOVA followed by Tukey’s post hoc test according to the scale 
:(*: p<0.05, **: p<0.01, ***: p<0.001, and ****:p<0.0001). 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 130 
 

6.4.3 Chemotherapeutic action of lapatinib and erlotinib involves generation 

of ROS in ovarian cancer 

The biochemical and physiological oxidative processes in the body lead to the 

production of ROS which plays a major role in the initiation and progress of 

various human diseases which are associated with numerous physiological and 

pathophysiological processes. ROS has a vital effect when it is in low amount in 

the cell; a role that involves regulating intracellular signalling and homeostasis, 

processes that favour cell growth, cell division and survival (Prasad et al., 2017). 

Moreover, studies have illustrated the co-modulatory role and interaction of ROS 

with HER family receptors and other growth promoting pathways (Khalil et al., 

2016a). Based on the observation in (Figures 6.1 and 6.2) and the previous work 

reported by Khalil et al. (2016a and 2016b) it is further hypothesised that the 

cytotoxic action of RTK inhibition targeting HER receptor (lapatinib and erlotinib) 

involves cellular accumulation of ROS concomitant to the disruption of NRF2 and 

its function. 

To address this hypothesis using lapatinib and erlotinib, firstly total ROS levels in 

basal, HRG stimulated and drug-inhibited states in all three cell lines were 

studied. Here as well, HRG which is known to be a potent ligand for HER 

receptors, was used. The data in Figure 6.3A illustrates that HRG stimulation 

alone led to a significant increase in ROS levels in all three cell lines as 

compared to basal levels in unstimulated cells. Moreover, it is seen that 

treatments with lapatinib, erlotinib, their combination or their combination with 

bexarotene led to ROS generation in all the ovarian cancer cell line models. ROS 

elevation was seen at all the time points (24 h, 48 h, 72 h and 96 h) tested with 

an observed elevation of ROS being differential in cell- and time-dependent 

fashion (Figure 6.3B). 

Investigation of the single drug treatment (lapatinib or erlotinib), in all the cell lines 

(Figure 6.3B), showed that lapatinib often generated more ROS than erlotinib, 

while their combination failed to generate significant higher levels of ROS than 

their singular administration at all the time points investigated. However, the fact 

that administration of these drugs led to the generation of ROS (Figure 6.3B), 

suggests ROS could be a contributing factor in cellular cytotoxicity of lapatinib 
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and erlotinib and implicates the engagement of AR pathway and inhibition of 

NRF2 function during drug action. Thus, it is next sought to investigate the status 

of the NRF2-ARE antioxidant response of cells following lapatinib and erlotinib 

treatments. 

 

 

 

Figure 6.3: Chemotherapeutic treatment with lapatinib and erlotinib generates reactive ROS in 
ovarian cancer cells: (A) Heregulin treatment causes persistent elevation of ROS in ovarian cancer cells. 

Exponentially growing cells were seeded in triplicates in opaque flat bottom black walled 96-well plates for 24 
h. Following this, cells were either left untreated (UT) or treated with 1 nM Heregulin for different time points 
as indicated. Following incubations, cells were loaded with DCFDA fluorescent stain for 45 min and assayed 
for ROS as described in Materials and Methods. (B) Lapatinib, erlotinib and their combination cause ROS 
generation. Cells were seeded as in (A) and treated with either 1 nM HRG alone or with co-treatment of 5 

µM lapatinib (LAP), erlotinib (ERLO) or their combination (COMB) for different time points as indicated and 
ROS assay was repeated. For both (A) and (B), the fluorescence reading recorded from each well was 

normalized to total cell abundance within the same wells using Bradford assay as described in Materials and 
Methods. Data shown are mean values ± S.D of n=3 independent experiments performed in triplicates, 
normalized to UT in (A) or HRG in (B) and expressed as fold change. Statistical significance was determined 

between treatment groups by TWO WAY ANOVA followed by post hoc Tukey’s test as appropriate and 
significance expressed according to the scale :(*: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001). 
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6.4.4 Lapatinib and erlotinib followed with pharmacological inhibition of 

NRF2 by Bexarotene disrupts its antioxidant transcription, suppresses 

NRF2 and HO-1 protein levels and elevates cellular ROS  

Bexarotene which on its own is reported to be an anticancer agent, has 

previously been shown to inhibit NRF2/ARE in an NRF2 dependent manner 

(Garattini et al., 2014, Saito-Hakoda et al., 2015, Qi et al., 2016, Wu et al., 2014, 

Heo et al., 2016). In order to extend the observations reported in the previous 

section, the consequences of NRF2 inhibition following exposure to the 

chemotherapeutic drugs was further investigated. Experiments were performed, 

firstly in the ovarian cancer cell line models and subsequently in MCF7-AREc32 

cell line in order to validate and confirm the inhibitory action of bexarotene and 

also drugs (lapatinib and erlotinib) on the NRF2 dependent AR pathway. 

Exposure to bexarotene alone caused a decrease in total NRF2 levels in 

OVCAR3 and SKOV3 cells (Figure 6.4A). Interestingly the levels of NRF2 in 

these cell lines were further decreased following co-treatment with combined 

chemotherapy (lapatinib and erlotinib) in PEO1 cells. This drug-induced reduction 

in NRF2 levels suggests that chemotherapy is also targeting NRF2. Next, using 

the luciferase ARE reporter MCF7-AREc32 cell line, it was found that bexarotene 

treatment significantly inhibited the transcriptional activity of NRF2 at all the time 

points tested (Figure 6.4B). Bexarotene treatment of MCF7-AREc32 reporter cell 

line also elevated ROS levels (Figure 6.4C). Furthermore, bexarotene enhanced 

the inhibitory action of the combination of lapatinib and erlotinib on AR pathway. It 

is also observed that bexarotene alone and in combination with lapatinib and 

erlotinib reduced the level of HO-1 (Figure 6.4A). These findings suggest that 

while bexarotene inhibits the NRF2 dependent ARE pathway, such treatment 

might also elevate cellular ROS levels in the ovarian cancer cell lines. Indeed, it is 

found that treatment with bexarotene significantly represses total NRF2 and 

induced ROS in the three cell lines tested (Figures 6.4A and 6.4C). 
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Figure 6.4: Combined treatment with bexarotene causes inhibition of NRF2 dependent antioxidant 
response pathway and generates ROS. (A) Western analysis showing repression of NRF2 and HO-1 

levels following bexarotene treatment in PEO1, OVCAR3 and SKOV3 cell lines. Exponentially growing cells 
were either left untreated, treated with 2.5 μM bexarotene or a combination of 2.5 μM bexaroene together 
with 5 µM of lapatinib and erlotinib for 24 h before being harvested to prepare protein lysates and processed 
as described in Materials and Methods. Beta actin (β-actin) was used as loading control. The bars indicate 
NRF2 and HO-1 levels following quantification of immunoblot signal intensities obtained in (A) and 

normalized to the value of UT and expressed as fold change. The signal intensities of bands were quantified 
through integrated optical densitometry measurement. Images are representative of at least two independent 
experiments performed. (B) Bexarotene treatment causes inhibition of NRF2 dependent transcription. 

Exponentially growing AREc32 cell line stably expressing 8xcis-AREs driving the expression of luciferase 
gene in an NRF2 dependent manner were either left untreated (UT), treated with bexarotene alone, or with 
bexarotene and combination of lapatinib and erlotinib for different time points as indicated. Following this, 
cell lysates were prepared and assayed for Luciferase activity (BrightGlo Luciferase system, Promega). (C) 

Bexarotene treatment causes increase in ROS levels. Exponentially growing AREc32 cell line stably 
expressing 8xcis-AREs driving the expression of luciferase gene in an NRF2 dependent manner were 
seeded in triplicates in opaque flat bottom black walled 96-well plates for 24 h. Following this, cells were 
either left untreated (UT), treated with bexarotene alone or with bexarotene and combination of lapatinib or 
erlotinib for different time points as indicated. Following incubations, cells were loaded with DCFDA 
fluorescent stain for 45 min and assayed for ROS as described in Materials and Methods. Data are the mean 
values ± S.D of n=3 independent experiments performed in quadruplicates, with statistical significance 
determined by TWO WAY ANOVA followed by Tukey’s post hoc test according to the scale * P <0.05, **P 
<0.01, ***P <0. 001. 
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6.4.5 Activity of lapatinib, erlotinib and bexarotene involves repression of 

NRF2-dependent transcription and depletion of total GSH 

Based on the additionally decreased levels of NRF2 observed in MCF7-AREC32 

stable cell line following combined lapatinib and erlotinib with bexarotene (Figure 

6.4A), a single treatment with lapatinib or erlotinib or combination was 

investigated to confirm the inhibition of NRF2-dependent transcription. The 

MCF7-AREc32 cell line, stably expressing 8 copies of NRF2 dependent cis-

regulatory AREs, as a luciferase reporter was used. The results (Figure 6.5) show 

that stimulation with HRG, a potent ligand for HER receptors only, a significant 

induction of antioxidant response pathway was observed. However, the co-

treatment with the combination of lapatinib and erlotinib and with the single drug 

alone disrupted and suppressed the ARE-dependent induction significantly 

thereby inhibiting the NRF2 function. A combination of either lapatinib and 

bexarotene or erlotinib and bexarotene also disrupted the function of NRF2, and 

the greatest inhibition of NRF2/ARE activity was observed when the cells were 

treated with a combination of lapatinib, erlotinib and bexarotene (Figure 6.5).  

Moreover, to investigate whether NRF2 repression would also lead to depletion of 

total cellular glutathione, the ovarian cancer cells (PEO1, OVCAR3 and SKOV3) 

were treated for 72 h. It is found out that the 72 h treatment with HRG induced 

total cellular GSH levels, while the combination of HRG with lapatinib, erlotinib or 

bexarotene significantly reduced the GSH levels in all the cell lines (Figure 6.6). 

Generally, the combination of lapatinib with erlotinib, lapatinib with bexarotene, or 

erlotinib with bexarotene caused more significant GSH depletion than singular 

treatments. These results indicated that NRF2 inhibition, ROS accumulation and 

GSH depletion may be contributing to the unique mechanism of cytotoxicity of 

lapatinib or erlotinib and that bexarotene enhances the mechanism of action and 

the cytotoxicity of lapatinib and/or erlotinib. Overall this provides support and 

strengthens the hypothesis that the cellular cytotoxicity of lapatinib and/or 

erlotinib involves the engagement of the AR pathway and the concomitant 

inhibition of NRF2 function during drug action. 
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Figure 6.5: Treatments with lapatinib, erlotinib and Bexarotene causes inhibition of NRF2 dependent 
transcription. Single and combination of lapatinib and erlotinib cause inhibition of NRF2 dependent 
transcription. Exponentially growing MCF7-AREc32 cell line stably expressing cis-regulatory AREs driving 

the expression of luciferase gene in an NRF2 dependent manner were treated with 1 nM HRG alone or with 
co-treatment of 5 µM lapatinib and erlotinib either individually or in combination for different time points as 
indicated. Following this, cell lysates were prepared and assayed for Luciferase activity as described in 
Materials and Methods. Data shown are mean ± S.D of n=3 independent experiments performed in 
quadruplicates. Statistical significance is determined by ONE WAY ANOVA followed by Tukey’s post hoc 
test. Asterisks indicate significant differences between individual groups as indicated and according to the 
scale *p<0.05, **p<0.01, ***p <0.001, ****p <0.0001.  

 

 

 

 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 136 
 

 

 

Figure 6.6: Treatments with lapatinib, erlotinib and Bexarotene causes depletion of total GSH levels. 

Single and combination of lapatinib and erlotinib causes decrease in glutathione level. Exponentially growing 
cells where seeded in luminometer-compatible 96-well plates and allow to grow overnight at 37°C in a 5% 
CO2 culture incubator. The following day, the cells were either left untreated (UT) or treated with media 
containing 1nM Heregulin alone HRG) or with co-treatment of 5 µM lapatinib or 5 µM erlotinib or 2.5 µM 
bexarotene their combinations for 72 h before being processed for glutathione assay. Data are mean ± S.D 
of n=3 independent experiments performed in quadruplicates. Statistical significance was determined by 
ONE WAY ANOVA followed by Tukey’s post hoc test according to the scale * p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 

6.4.6 Co-treatment of lapatinib and erlotinib with bexarotene reduces the 

HER family and NRF2 protein levels 

The observation that retinoid (bexarotene, RA) or tBHQ treatment caused 

downregulation or upregulation of HER receptors at transcriptional and protein 

levels as demonstrated in the previous chapters suggests that NRF2 may be 
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directly involved in regulating HER receptor expression and as such might have a 

role in responses to targeted chemotherapies involving HER receptor family. The 

cellular cytotoxicity of HER targeting lapatinib and/or erlotinib culminates with the 

engagement of AR pathway and the concomitant inhibition of NRF2 function 

during drug action. 

To answer this important question, PEO1, OVCAR3 and SKOV3 cells either with 

lapatinib and erlotinib alone or by co-treatment with retinoid/rexinoid (bexarotene) 

were investigated to examine the consequences of NRF2 inhibition on drug 

effects and cellular responses. Treatment with lapatinib alone or erlotinib alone 

represses both pNRF2, pHER1 pHER2 pHER3 and pHER4 levels in the cell lines 

(Figure 6.7A and B). There was also similar concomitant marked repression of 

pAKT levels in cell lines by either drugs and in combination with bexarotene. 

These results are consistent with lapatinib or erlotinib inhibiting NRF2 activity and 

repressing HER receptor family. Moreover, co-treatment with an NRF2 inhibitor 

(bexarotene) can further repress the HER signalling pathway and might sensitize 

the ovarian cancer cells to the killing effects of lapatinib and/or erlotinib. 

Furthermore, results in (Figure 6.2) appears to lend support to these assertions, 

as significant increased cytotoxicity of lapatinib or erlotinib following the 

pharmacological inhibition of NRF2 with bexarotene was observed.  

These findings illustrated the important role of NRF2 in influencing outcomes to 

targeted therapies involving HER receptor inhibition. These results indicate the 

effectiveness of anti-cancer therapy involving lapatinib and erlotinib could be 

enhanced by incorporating bexarotene to inhibit the NRF2 dependent antioxidant 

response pathway. As such, this represents a novel mechanism and role for 

NRF2 inhibition by bexarotene in sensitising cancer cells to the killing effect of 

lapatinib and erlotinib. It also highlights the possibility of using the combination of 

lapatinib and bexarotene or erlotinib with bexarotene to overcome drug 

resistance. 
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Figure 6.7: NRF2 inhibition with bexarotene sensitises HER signalling pathway to RTK inhibitors: (A) 
Lapatinib and (B) Erlotinib. Immunoblot analysis showing bexarotene dependent repression of HER 

signalling following its combination with lapatinib and erlotinib. Exponentially growing cells were either left 
untreated in media containing 1 nM Heregulin (UT) or treated with treated with same media containing in the 
presence of 1 nM Heregulin with lapatinib (Lap) alone or erlotinib (Erl) alone, each at 5 µM, or with co-
treatment of 2.5 μM bexarotene (Lap+Bex) or (Erl+Bex) for 24 h before and processed for immunoblotting 
using relevant antibodies and β-actin was used as loading control. Images are representative of at least two 
independent experiments performed. 

6.5. Key findings 

This chapter aims to explore signalling pathways that might explain the 

mechanism of action and efficacy of HER family targeted chemotherapies that 

are critical to use or avoid in order to overcome therapeutic resistance. 

Specifically, it seeks to determine the action mechanism of targeted 

chemotherapeutic agents (lapatinib and erlotinib) and in particular, to understand 

enhanced cytotoxic response, ROS accumulation, NRF2 inhibition and GSH 

depletion triggered uniquely by a combination of either one or two 

chemotherapeutics, with the addition of bexarotene (NRF2 inhibitor) rather than 

individual agents in ovarian cancer cells. It was found that at least part of the 

mechanism of action of these chemotherapeutic agents involved NRF2 inhibition 

(Figure 6.4A) and generation of ROS (Figure 6.3), which contributed to the 

cytotoxic effects and killing of the ovarian cancer cells (Figure 6.2). The cell lines 

exhibited cytotoxicity to lapatinib and erlotinib alone, or their combination with 

bexarotene (Figure 6.2). However, there was inhibition of HER signalling (Figure 

6.7) following lapatinib or erlotinib alone or their combination with bexarotene in 

ovarian cancer cells. 
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7.1. Discussion 

This research work was carried out to further the knowledge of the functional 

regulation of the HER receptor family and NRF2 in different conditions and cell 

lines. It was intended to help gain an overall understanding of how the function of 

NRF2 could have a role in regulating the HER receptor family in ovarian cancer 

cells. This, in turn, may enable the improvement of the efficacy of RTK targeting 

cancer chemotherapeutic agents in order to overcome chemoresistance in 

ovarian cancer. This was achieved by firstly cloning the proximal promoter 

regions HER1 and HER4, and then using the already cloned (Khalil et al., 2016b) 

promoter regions of HER2 and HER3 to examine and re-examine their 

functionality and transcriptional regulation. The basal and inducible expression 

levels of the four genes were evaluated using both the NRF2 inducer (tBHQ) and 

inhibitors (siRNA and RA) with a panel of ovarian cancer cells. The tBHQ 

treatments lead to up-regulation of the transcription of all the HER receptors 

whilst inhibiting NRF2 function leads to their down-regulation, suggesting that 

NRF2 regulates the expression of HER receptors in ovarian cancer cells. 

Following the screening of a panel of compounds expected to be potent NRF2 

modulators, bexarotene was found be one of the most potent NRF2 inhibitors as 

well as the most suitable to include in further studies because it is already a 

clinical and anticancer drug.  

Next, the study looked at the protein levels of both NRF2 and HER receptors in 

order to examine their responses, following different treatments and perturbations 

of NRF2 function. This initial part of the research provided some insight into the 

molecular basis for regulation of the expression of these HER family receptor 

genes by NRF2. The research also found a novel mechanism and role for NRF2 

inhibition by bexarotene in sensitising ovarian cancer cells to the killing effect of 

RTK inhibitors, lapatinib and erlotinib. It also highlighted the possibility of using a 

combination of lapatinib and bexarotene, or erlotinib with bexarotene, to sensitize 

and overcome drug resistance. 
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7.1.1 Cloning of the proximal promoter regions of human HER1 and HER4 

genes 

This section of the study reports on cloning of the promoter regions of human 

HER1 and HER4 genes and examines their transcriptional activity in human 

ovarian cancer cell lines (PEO1, OVCAR3 and SKOV3). The HER family 

receptors are one of the regulators of cellular proliferation and survival and are 

also, in part, the ones that determine the initiation and progression of cancer 

(Kang et al., 2014b, Schlessinger, 2000, Roskoski Jr, 2014, Yarden, 2001, 

Prenzel et al., 2001). Using the computer-based analysis known as bioinformatics 

(Sandelin et al., 2004), it was found that the promoters of HER1 and HER4 

contained putative binding sites of NRF2 (Figure 3.2), this being a transcription 

factor that steers the expression of many genes including cytoprotective and 

detoxifying genes (Hayes, 2000, Hayes et al., 2016, Hayes and McMahon, 2009).  

Recent studies have identified HER family as a target in cancer (Burgess, 2008, 

Downward, 2003, Khalil et al., 2016a, Khalil et al., 2016b, Goltsov et al., 2014a, 

Zwick et al., 2001, Gschwind et al., 2004, Mendelsohn and Baselga, 2000, 

Shende et al., 2017, Koustas et al., 2017, Guo et al., 2016) and showed that the 

expression of HER family could be regulated both at the transcriptional and 

translational level (Khalil et al., 2016b, Khalil et al., 2016a). However, little is 

known about the gene promoter and cognate transcription factors that mediate 

HER family gene expression. So far, only a few studies were undertaken to find 

potential cis-regulatory elements and investigate their influence on HER family 

gene transcription (Khalil et al., 2015, Khalil et al., 2016b, Khalil et al., 2016a). A 

study reported by Khalil et al., (2016) characterised the HER2 and HER3 

promoter genes. The genes contain the putative NRF2 binding sites at the 

proximal promoter level. Further, it has demonstrated crosstalk between the 

transcription factor NRF2 and HER2/HER3 transcription (Khalil et al., 2016b). 

The presence of a putative binding site of NRF2 in the promoters of these genes 

and other previous studies (Khalil et al., 2016b) enables the hypothesis of a 

possible link between HER receptors and NRF2, and is why it was decided to 

clone the promoter regions of HER1 and HER4. 
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One of the aims of this study was to clone and then test basal activities HER1 

and HER4 promoters. 1.5 kb and 1.3 kb DNA fragments encompassing the HER1 

and HER4 gene proximal promoters were each placed upstream of the luciferase 

reporter gene in the pGL3 vector. Following this, the clones were confirmed via 

sequencing before being transiently transfected into three different panels of 

ovarian cell lines, namely PEO1, OVCAR3 and SKOV3. The luciferase reporter 

system assay indicated that both prHER1 and prHER4 showed a high and 

differential basal level of expressions in all the cell lines tested when compared to 

the control pGL3 vector (Figure 3.8). This study found that the transcriptional 

activity of HER1 and HER4 suggested the functionality of the promoter 

constructs, and this, therefore, provided the tools to study the regulation of HER1 

and HER4 receptors. 

The generation basal levels of luciferase activity suggest that the regulation of 

HER1 and HER4 gene expression occur at the transcriptional level. As shown in 

this study, the identification of the putative binding sites of NRF2 in the promoter 

regions of genes may enhance the promoter activity, thereby suggesting a 

possible role of NRF2 in HER1 and HER4 regulation. These findings suggest that 

the 1.5 kb and 1.3 kb fragments upstream of the transcription start site could be a 

core functional promoter, essential for the study of the transcriptional regulation of 

HER1 and HER4 in cancer cells. Recently, a study by Khalil et al. reported the 

cloning of promoter regions of HER2 and HER3, and so provided the importance 

of generating transcriptional reporter assays for both HER2 and HER3 receptors 

in the context of studying transcriptional regulations in cancer therapy (Khalil et 

al., 2016b). Another study by Horikawa et al. (1999) is similar to this study, and 

this provides credence and support for the importance of cloning promoter 

regions of a gene for the study of its regulation. Horikawa et al. (1999) reported 

the cloning and characterisation of human telomerase reverse transcriptase 

(hTERT) gene promoter providing transcriptional regulation of the hTERT gene, 

with this suggesting that investigation of the molecular mechanisms that regulate 

hTERT gene expression could lead to a better understanding of telomerase 

regulation, cellular senescence and immortalization, and human carcinogenesis 

(Horikawa et al., 1999). The expression of telomerase activity is strongly 

associated with human cell immortalization and carcinogenesis (Chiu and Harley, 
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1997, Kim et al., 1994); therefore identification of the NRF2 putative binding sites 

in the promoter sequence of HER1 and HER4 is essential in understanding their 

regulation. 

Studies have reported the roles of several other transcription factors other than 

NRF2, such as specificity protein 1 (sp1), EGFR-specific transcription factor 

(ETF) and activator protein 1 (AP-1) (Kitadai et al., 1992, Johnson, 1996, 

Kageyama et al., 1988) in the transcriptional initiation. These transcription factors 

might thus be one of the critical factors promoting the initiation of HER receptor 

transcription. Thus, the interaction between the relevant transcription factors and 

their possible roles in the transcription of HER1 and HER4 could be investigated 

further. 

7.1.2 Regulation of HER1 and HER4 by NRF2 in ovarian cancer cells 

Previous evidence has implicated NRF2, ROS and HER receptors in cell growth, 

cell survival, cancer initiation and progression and therapeutic resistance in 

cancer cells (Khalil et al., 2016a, Khalil et al., 2016b), therefore highlighting the 

possibility of direct linkage between ROS, HER family and NRF2 pathways.  

This section demonstrates that NRF2 may regulate cancer cell proliferation, 

susceptibility and resistance to chemotherapeutic drugs via transcriptional 

regulation of HER family receptors. In order to demonstrate the role of NRF2 in 

regulating the HER family receptors and subsequently determining the responses 

to targeted therapies, ovarian cancer cell lines, PEO1, OVCAR3, and SKOV3 

with different HER family and NRF2 expressions were used (Langdon et al., 

1988, Mullen et al., 2007, Khalil et al., 2016b), and pharmacological activation 

and pharmacological inhibition and genetic inhibition of NRF2-ARE pathway were 

employed. The mechanisms by which tBHQ induce NRF2 and RA inhibits NRF2 

and its function are known (Khalil et al., 2016a, Khalil et al., 2016b, Wang et al., 

2007), and in this research the basis for using RA was to modulate cellular NRF2 

status and ARE-dependent transcriptional power, as well as to implicate NRF2 in 

regulating cellular susceptibility to RTK targeted drugs. 

First, pharmacological activation of NRF2 with tBHQ up-regulated the 

transcriptional levels of all the HER receptors with a concomitant induction of 
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HER1, HER4, NFR2 and pAkt proteins (Figures 4.1 and 4.2). This is consistent 

with current emerging concepts of transcriptional control and gene expression 

(Khalil et al., 2016b). It is clear that tBHQ treatment leads to induction of NRF2, 

its associated antioxidant transcriptional programme and transcriptional and 

signalling activation of HER1 and HER4, and that this tBHQ response was 

evidently dependent on NRF2. 

Second, to further investigate and confirm the involvement of NRF2 in the 

regulation of HER1 and HER4, both pharmacological and genetic approaches to 

deplete NRF2 level and function using RA and siRNA were employed. This 

strategic approach caused increased transcriptional repression of HER1 and 

HER4 (Figures 4.3 and 4.5) leading to repression of HER1, HER4, total and 

pNRF2 and HO-1 levels (Figures 4.4 and 4.6), while tBHQ dependent induction of 

ARE disrupted the knocking down effect of siRNA (Figures 4.7 and 4.8). 

Moreover, NRF2 depletion by RA and siRNA caused an increase in ROS (Figure 

4.9) and depletion of total GSH (Figure 4.10) in all the ovarian cell lines tested.  

tBHQ is widely known as an NRF2 activator and can upregulate ARE response 

driven genes (Arlt et al., 2013, Wang and Jaiswal, 2006, Li et al., 2014). On the 

other hand, retinoids like RA are chemopreventive and chemotherapeutic agents. 

One source of RA is vitamin A, derived from dietary β-carotene. RA regulates cell 

proliferation, differentiation, and morphogenesis. It inhibits tumorigenesis through 

suppression of cell growth and stimulation of cellular differentiation. Also, RA 

promotes apoptosis, and this property may contribute to its antitumor properties 

(Wang et al., 2007, Tan et al., 2008). siRNA, however, is a class of double-

stranded RNA molecules, 20-25 base pairs in length. siRNA is similar to miRNA 

and operates within the RNA interference (RNAi) pathway, where it interferes with 

the expression of specific genes with complementary nucleotide sequences by 

degrading mRNA after transcription, resulting in no translation (Persengiev et al., 

2004, Elbashir et al., 2001, Tiscornia et al., 2003, Caplen et al., 2001, Xia et al., 

2002, Hannon, 2002). Previous studies have shown the inhibitory nature of 

siRNA and RA in on ARE (Khalil and Deeni, 2015, Wang et al., 2007, McMahon 

et al., 2014, Khalil et al., 2016b, Khalil et al., 2016a). For example, the paper 

published earlier in 2016 by Khalil et al (2016b) has reported that NRF2 regulates 

HER2 and HER3 following the use of widely used NRF2 activator (tBHQ) and 
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repressor (siRNA) which in turn upregulated and downregulated HER2 and HER3 

respectively. Here, the study demonstrates that NRF2 regulates HER1 and HER4 

following the same approach used in the case of HER2 and HER3. 

Pharmacological activation, pharmacological inhibition and genetic inhibition of 

both NRF2-ARE and HER1 and HER4 were studied.  

Several possible NRF2 binding sites were identified in the HER1and HER4 

promoter regions (Figure 3.1). The regulatory role of NRF2 on HER1 and HER4 

expressions is supported by the observed higher induction levels of HER1 and 

HER4 following NRF2 activation and inhibition/knockdown in all the cell lines 

(Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6). The NRF2 activation and inhibition-

dependent regulation of the HER1 and HER4 receptors and their signalling 

pathway were governed and executed by NRF2 at both the transcriptional and 

translational levels. The results from both the receptor gene reporter assays and 

western blotting of HER1 and HER4 expressions indicated that activation or 

inhibition of NRF2 also upregulated or downregulated HER1 and HER4, 

respectively. It is clear that tBHQ treatment led to activation of NRF2, its 

associated antioxidant signalling and transcriptional program, which led to the 

transcriptional upregulation of HER1 and HER4. Moreover, this tBHQ response 

was evidently dependent on NRF2. Also, RA treatment and knockdown of NRF2 

with siRNA led to depletion of NRF2, its associated antioxidant signalling and 

transcriptional program, with subsequent transcriptional and translational 

downregulation of HER1 and HER4, RA or siRNA dependent responses were 

evidently dependent on NRF2. 

In support of the finding that NRF2 depletion by siRNA causes transcriptional 

down-regulation of HER1 and HER4 leading to repression of HER1, HER4 and 

pAkt proteins, a study by Khalil et al (2016a) showed a similar approach and 

outcome. Moreover, it demonstrated that while inhibition of NRF2 significantly 

sensitised ovarian cancer cells to targeted immunotherapy, the parallel approach 

of knockdown of KEAP1 reversed this sensitisation (Khalil et al 2016a). These 

results support and confirm the earlier hypothesis of the regulatory role of NRF2 

in the transcription of HER1 and HER4 receptors, as well as its possible 

involvement of alteration of HER1 and HER4 protein levels. Another study by 

(Kang et al., 2014a), reported a similar role for NRF2 in regulating the expression 
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of one of the members of HER family receptors, but did not show the evidence of 

direct transcriptional regulation as shown in (Khalil et al., 2016b) and this study.  

The direct interaction of NRF2 and HER2 in regulating the expression of NRF2 

target genes, including HO-1 through binding of the complex to the ARE of the 

target genes, has been demonstrated (Kang et al., 2014b). Moreover, the down-

regulation of HER2, HER3 and pAKT as well as HO-1 and pNRF2 levels following 

siRNA-mediated depletion of NRF2, has been reported (Khalil et al., 2016b). This 

adds credence to observed down-regulation of HER1, HER4 and pAkt as well as 

NRF2 and HO-1 levels, following the siRNA-mediated knockdown of NRF2 in this 

study.  

Since NRF2 overexpression has been reported in cancers (Kang et al., 2014b, 

Chian et al., 2014b, Chio et al., 2016, Choi and Kwak, 2016), NRF2 silencing 

using siRNAs as a means of therapy may be a reliable alternative approach for 

treating NRF2 overexpressing cancers (Kanninen et al., 2015), including ovarian. 

Such findings could give insight to further understanding the molecular genetic 

aspect of ovarian cancer and its treatment. Furthermore, understanding that there 

is a limitation of compounds to decrease NRF2 activity could give insight into the 

molecular genetic aspects of ovarian cancer and its treatment, in the context of 

NRF2 targeted gene therapy. To date, over 2,000 clinical trials in gene therapy 

have already been conducted, with cancer being the basis of the majority of these 

trials. Various regulated vectors have been designed so that gene transfer is 

specific, regulated, effective and safe in the same way that conventional drugs 

are. This would prevent the occurrence of unwanted side effects of long-term 

transgene expression, as reported by (Springer et al., 1998). Although NRF2 

silencing using siRNA strategy has been shown to enhance chemo- and 

radiotherapy (Singh, 2006, Singh et al., 2010), there are many problems including 

difficulties in intracellular delivery and trafficking and clearance by the immune 

system, as well as the occurrence of off-target effects associated with this 

approach. These should be talked about further before considering this strategy 

in the clinic (Pecot et al., 2011). Gene therapy may well provide a more specific 

approach than small molecular weight inhibitor in targeting NRF2 in cancer. This 

is due to the fact that general systemic NRF2 inhibition is not desirable, as NRF2 

serves important protective functions in healthy normal cells.  
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In conclusion, these results support and confirm the earlier identified role of NRF2 

in the regulation of HER2 and HER3 reported by Khalil et al. (2016) (Khalil et al., 

2016b). A recent study by Khalil et al. (2016) reported that NRF2 regulates HER2 

and HER3, thereby adding credence to present findings on HER1 and HER4, 

with this further confirming the role of NRF2 as a regulator of all four members of 

the HER family receptors. It also gives further insight into the future possibility of 

using gene therapy in silencing NFR2 hyperactivation in ovarian cancer patients.  

7.1.3 Screening for inhibitors of the NRF2-ARE signalling pathway and their 

potential applications in ovarian cancer therapy 

In this section of the research, a panel of compounds anticipated to be potent 

NRF2-ARE modulators were screened to uncover the most potent compound. 

NRF2 is a transcription factor that mediates protection against electrophiles and 

oxidants. It regulates the expression of many genes such as cytoprotective and 

detoxifying genes. ROS, however, are involved in the physiological aspects of the 

cell, including signal transduction cascades and calcium signalling (Liou and 

Storz, 2010, McMahon et al., 2014). Both NRF2 activation and elevation of ROS 

have been detected in almost all cancers, and these promote tumour 

development and progression (McMahon et al., 2014, Liou and Storz, 2010). 

The panels of potent NRF2 modulators and in particular NRF2 inhibitors, were 

investigated using the MCF7-AREc32 reporter cell line (Wang et al., 2007). Three 

lowest different concentrations (2.5 µM, 5.0 µM and 10 µM) of the compounds 

were used to evaluate their ability to inhibit NRF2 and to elevate ROS. The 

investigation indicated that compounds such as bexarotene, RA, 9-cis RA, 

luteolin and brusatol were able to inhibit the NRF2-ARE in MCF7-AREc32 cell 

line (Figures 5.2 and 5.3) and also elevate ROS (Figure 5.4), even at the lowest 

concentration of 2.5 µM. Interestingly, bexarotene, which is a clinically used anti-

cancer drug, appeared to be one the most potent inhibitors of NRF2-ARE 

dependent activity.  

The compounds that were more promising in their ability to inhibit NRF2 and 

elevate ROS were used at the lowest concentration (2.5 µM), to examine their 

effect on the level of NRF2 and its substrate gene target at a protein level in the 
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MCF7-AREc32 cell line. As expected, all the compounds were able to cause 

repression of total NRF2, pNRF2 and HO-1, with bexarotene still proving to be 

the most potent (Figure 5.3). The ability of bexarotene to inhibit NRF2 levels 

suggests that it can be used in targeting NRF2 to modulate HER receptor 

expression in ovarian cancer cells. The effect of bexarotene, lapatinib and 

erlotinib on MCF7-AREC32, was examined, the results shown that low 

concentrations (2.5 µM and 5 µM) of lapatinib, erlotinib and bexarotene have 

induced the cytotoxicity, increased ROS and inhibit NRF2 dependent ARE 

pathways (Figure 5.5).  

Following cell viability assay to estimate the required concentrations of lapatinib, 

erlotinib and bexarotene for the further treatment of ovarian cancer cell lines, 

PEO1, OVCAR3 and SKOV3 (Figure 5.6), The effect of these drugs was 

examined when the ovarian cancer cells were transiently transfected with 

prHER1, prHER2, prHER3 and prHER4. Interestingly, the results indicated that 

bexarotene as well lapatinib and erlotinib, down-regulated the transcriptional level 

of HER1, HER2, HER3 and HER4 in all the ovarian cancer cell lines (Figures 5.7, 

5.8 and 5.9). These findings suggest bexarotene, has the ability to inhibit NRF2 

dependent ARE pathways, to elevate cellular ROS levels in MCF7-AREc32 cell 

lines and to down-regulate HER1 and HER4 transcriptionally in PEO1, OVCAR3 

and SKOV3 ovarian cancer cell lines.  

NRF2 is increasingly being recognised as a crucial transcription factor which 

mediates protection against electrophiles and oxidants by regulating the 

expression of many cytoprotective and detoxifying genes (Hayes, 2000, Hayes et 

al., 2016, Hayes and McMahon, 2009). Elevated rates of ROS have been 

detected in almost all cancers, where they promote many aspects of cellular 

proliferation, tumour development and progression (Khalil et al., 2016b, Khalil et 

al., 2016a, Khalil and Deeni, 2015, Liou and Storz, 2010, Leone et al., 2015, Park 

et al., 2010, Poillet-Perez et al., 2015, Trachootham et al., 2009, Prasad et al., 

2017). Tumour cells also express increased levels of antioxidant proteins to 

detoxify ROS, suggesting that a delicate balance of intracellular ROS levels is 

required for cancer cell function. To effectively target cancer cells, specific ROS-

sensing signalling pathways that mediate the diverse stress-regulated cellular 
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functions need to be identified (McMahon et al., 2014, Liou and Storz, 2010, 

Tebay et al., 2015). 

The compounds screened in this section were able to induce NRF2-KEAP1 either 

by positive or negative feedback to stimulate NRF2 activity. These compounds 

included an RXR agonist (bexarotene), which possesses anti-cancer activity and 

is reported to inhibit NRF2-ARE pathway (McMahon et al., 2014). These effects 

may be either indirect or due to the modulation of pathways directly involved in 

the regulation of NRF2 function. In the case of bexarotene, an RXR agonist, for 

example, the findings that this compound reduced NRF2 signalling (Figure 5.3) 

are consistent with an earlier finding that RXR acts as a negative regulator of 

NRF2-ARE signalling (McMahon et al., 2014, Qi et al., 2016, Wu et al., 2014). 

The negative regulation occurs when a rexinoid such as bexarotene specifically 

binds to RXR which in turn forms a complex with NRF2 and blocks it from binding 

to ARE, leading to NRF2 repression (Farol and Hymes, 2004, Qi et al., 2016, Wu 

et al., 2014). This provides further evidence supporting the interaction of RXR 

with NRF2 to inhibit NRF2-ARE function that now extends to ovarian cancer cells. 

Thus, bexarotene could be used as a potent inhibitor of NRF2 as part of the drug 

development process to sensitize and overcome cancer chemoresistance. 

Developments in treatment approaches together with the earlier diagnosis have 

considerably increased the average survival of cancer patients. Nevertheless, 

recent reports of the involvement of NRF2 in increasing cancer cell survival 

leading to chemoresistance, have made researchers focus on the screening and 

identification of novel inhibitors of NRF2 that would be recommended for clinical 

trials in treating cancer patients. Drug discovery and development often employs 

high-throughput screening (HTS) of libraries that may contain a huge number of 

compounds typically covering the commercially available chemical diversity. The 

study in this section has revealed a new way for researchers to consider the HTS 

of potent inhibitors of NRF2, so as to increase the number of those that have 

been discovered for improved cancer treatment (Varbanov et al., 2017). 

So far, a number of studies have conducted screenings for NRF2 inhibitors and 

compared to the number of NRF2 activators known, the number of inhibitors is 

quite small (Zhu et al., 2016).  One of the aims of screening for NRF2 inhibitors is 
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to find inhibitors with efficiency and safety profiles for application in clinical cancer 

therapies. Furthermore, applying these inhibitors in clinical settings would be 

more successful if these agents blocked the NRF2 signalling pathway in cancer 

cells, whilst leaving normal cells unaffected or with very low cytotoxicity to normal 

cells (Zhu et al., 2016). Specifically, among the inhibitors studied, ochratoxin A is 

reported to have nephrotoxicity and carcinogenicity (Limonciel and Jennings, 

2014). Triptolide causes oxidative injuries in many cells and tissues (Liu et al., 

2013) and brusatol is reported to cause loss of body weight in nude mice (Ren, 

2011), with the adverse effects of other compounds remaining unexamined. More 

accurate and detailed preclinical studies and clinical trials need to be conducted 

to elucidate dose-dependent, cell-type-dependent and even stage-dependent 

effects (Zhu et al., 2016). In addition, as well as experiments in vitro as per this 

study, long-term animal model experiments are needed. 

7.1.4 NRF2 co-regulates HER family receptors to modulate the efficacy of 

lapatinib and erlotinib as RTK targeting chemotherapeutics in ovarian 

cancer 

The transition from cytotoxic chemotherapy to molecularly targeted cancer drugs 

has resulted in an increasing number of successful therapies that have impacted 

positively on the lives of a large number of cancer patients.  

In this section, all of the HER receptor family were investigated following 

treatments with either bexarotene alone or in combination with lapatinib or 

erlotinib. A series of experiments such as cytotoxicity assays, immunoblotting, 

ROS level detection and total GSH were performed. The HER family receptors 

and NRF2 have already been implicated in numerous reports as key contributors 

to resistance towards anti-cancer drugs (Khalil et al., 2016a, Khalil et al., 2016b, 

Goltsov et al., 2014a, Kobayashi and Yamamoto, 2005, Ercan et al., 2012, Xu et 

al., 2013). However, the majority of these studies have reported the role of NRF2 

in resistance to chemotherapeutic drugs (Namani et al., 2014, Gupta et al., 2012, 

Kundu and Surh, 2010, Singh et al., 2013, Ramos-Gomez et al., 2001, Wang, 

2008, Singh et al., 2010, Ohta et al., 2008). One of the major challenges for 

cancer treatment is to identify and target key survival pathways in cancerous cells 

that can provide selectivity against them that will lead to improved cancer 
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treatment. This is a challenging task owing to the complexity of responses 

generated by different types of cancers, age and different settings (Khalil, 2012). 

Experimental and clinical studies have shown enhanced efficacy and safe 

tolerability of HER targeting drugs such as trastuzumab, pertuzumab, lapatinib 

and erlotinib (Arora and Scholar, 2005, Madhusudan and Ganesan, 2004, 

Haouala et al., 2009, Polli et al., 2009, Leveque, 2008, Arlt et al., 2013, Goltsov et 

al., 2014a, Khalil et al., 2016a, Khalil et al., 2016b, Slamon et al., 2001, Kuang et 

al., 2010). The small molecule cancer drugs, lapatinib and erlotinib have been 

recognized as promising therapeutics targeting the increased EGFR expression 

in triple-negative breast cancer (TNBC), specifically through their use with other 

chemotherapies (Hoelder et al., 2012, Kuang et al., 2010, Roskoski Jr, 2014, 

Haouala et al., 2009, Ryan et al., 2008).  However, outcomes of treatments with 

HER targeting drugs either used singly or in combination, remains unpredictable. 

This could be due to tumour type specificity and tumour biology-dependency, 

especially expression levels of cell surface receptors, their dimerization 

preferences, recycling kinetics and ligand abundance (Khalil et al., 2015, Khalil et 

al., 2016a, Ryan et al., 2008, Slamon et al., 2001). Thus, the efficacy of these 

drugs is potentially reduced due to limited therapeutic efficacy and frequent 

emergence of resistance. 

There are many reasons to be optimistic about cancer drug discovery and 

development because of the novel and improved recent scientific and 

technological breakthroughs. Novel concepts such as ‘non-oncogene addiction’ 

(Luo et al., 2009) and ‘synthetic lethality’ (Kaelin, 2005, Ashworth et al., 2011) 

have widened the scope beyond the exploration of oncogenic pathway 

addictions, and have helped guide the identification of novel targets either 

through hypothesis-driven research or large-scale screening campaigns. 

Enormous genome sequencing and molecular pathology efforts, coupled with 

bioinformatics and system biology approaches, are allowing continuous 

refinement of the understanding of how cancer cells are wired, and how they can 

be targeted through single agents or on several fronts through drug combinations 

(Hoelder et al., 2012, Heller, 2002, Loman et al., 2012, Karp et al., 2002, Weston 

and Hood, 2004, Voelkerding et al., 2009, Subramaniam et al., 2011, Cronin and 

Ross, 2011, Stratton, 2011, MacConaill and Garraway, 2010, Kitano, 2003). 
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This present study demonstrates that NRF2 regulates cancer cell proliferation, 

susceptibility and resistance to targeted therapy via transcriptional regulation and 

alteration of HER family receptors. This study sought to determine the 

mechanism of action of targeted chemotherapeutic agents, lapatinib and erlotinib, 

and in particular to understand their ability to inhibit NRF2, elevate ROS and 

enhance cytotoxic response triggered either by their combination with bexarotene 

or as single chemotherapeutics agents. This research used ovarian cancer cell 

lines PEO1, OVCAR3 and SKOV3 with different degrees of HER family and 

NRF2 expression status (Mullen et al., 2007, Khalil et al., 2016a, Khalil et al., 

2015). The study found that the mechanism of action of lapatinib, erlotinib and 

retinoids used in this research involved generation of ROS and GSH depletion, 

which contributed to killing effects and cancer growth retardation. This is 

consistent with the conventional adage that depletion of GSH can cause oxidative 

stress and sensitise tumours to the killing effects of the therapeutic agents 

(Gorrini et al., 2013, Khalil et al., 2016a, Goltsov et al., 2014a). To demonstrate 

the role of NRF2 in HER signalling pathways and thus determine responses to 

targeted therapies, ovarian cancer cell lines with different expressions of both 

HER receptors and NRF2 (Khalil et al., 2015, Khalil et al., 2016a, Mullen et al., 

2007) were grown in HER receptor ligand HRG, in association with 

pharmacological activation or inhibition of both NRF2-ARE and HER signalling 

pathways. 

Firstly, pharmacological activation of NRF2 with tBHQ enhanced ovarian cancer 

cell growth and protected cells from cytotoxicity caused by combined RTK 

targeting chemotherapeutic agents, lapatinib and erlotinib took place (Figure 6.1). 

The pharmacological inhibition of NRF2 with bexarotene did the opposite and 

increased cytotoxicity caused by the agents (Figure 6.2).  

It is clear that tBHQ treatment led to the induction of NRF2, its associated 

antioxidant transcriptional programme and transcriptional and signalling activation 

of HER1 and HER4, and that this tBHQ response was evidently dependent on 

NRF2. Thus, NRF2 activation by tBHQ desensitised the RTK signalling pathway 

to the inhibitory action of the HER targeting chemotherapeutic agents, lapatinib 

and erlotinib, whilst the inhibition of NRF2 with bexarotene did the opposite. 
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Furthermore, it was observed that treatments with lapatinib, erlotinib, their 

combination with each other or their combination with bexarotene, led to ROS 

generation in all the ovarian cancer cell line models (Figure 6.3). This approach 

also led to the repression of NRF2 and HO-1 (Figure 6.4) and disruption of the 

antioxidant response programme of NRF2 transcription (Figure 4.5), as well as 

depletion of total GSH (Figure 6.6), which confirms the crosslink between NRF2 

and ROS. These results support and confirm an earlier study by Khalil et al. 

(2016b), which reported that treatments with pertuzumab, trastuzumab, their 

combination with each other or with RA, led to ROS generation in cancer cell line 

models, depletion of total GSH, and disruption of the antioxidant response 

programme as well as suppression of NRF2.  

The observation that lapatinib and erlotinib alone or as co-treatment with 

bexarotene caused down-regulation of HER family receptor protein levels as well 

NRF2, suggests that NRF2 may be directly involved in regulating HER receptor 

expression and as such, might have a role in responses to RTK targeted 

chemotherapies, involving the HER receptor family. The action of lapatinib, 

erlotinib and bexarotene culminates with the engagement of the AR pathway and 

the concomitant inhibition of NRF2 function during drug action. 

The fact that treatments with combinations of lapatinib with bexarotene or 

erlotinib with bexarotene repress pNRF2, pHER1 pHER2 pHER3, pHER4 as well 

as pAKT levels in the cell lines (Figure 6.7 A and B), suggests that this might 

sensitize ovarian cancer cells to the killing effects of lapatinib and/or erlotinib. 

Moreover, data in Figure 6.2 appear to support these assertions, as significantly 

increased cytotoxicity of lapatinib or erlotinib following the pharmacological 

inhibition of NRF2 with bexarotene were evident. This demonstrates that 

bexarotene causes repression of NRF2 dependent antioxidant pathway, which 

may contribute to the enhanced cytotoxicity of lapatinib and erlotinib. 

The role of bexarotene as an effective anticancer drug is under active 

examination in various clinical trials (Qi et al., 2016, Saito-Hakoda et al., 2015, 

Heo et al., 2016, Farol and Hymes, 2004). The selective NRF2 inhibition and high 

toxicity to cancer cells and not normal cells may be the major advantage of 

bexarotene, which is already known to be generally safe and well tolerated (Duvic 
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et al., 2001, Papadavid et al., 2008, Rigas and Dragnev, 2005, Abbott et al., 

2009, Whittaker et al., 2012, Yen et al., 2004b, Mehta et al., 2012, VäkEvä et al., 

2012, Quéreux et al., 2013, Talpur et al., 2014). However, NRF2 inhibitory 

therapy combined with bexarotene will be cautiously examined in a pre-clinical 

setting because NRF2 has a protective effect against oxidative damage to normal 

tissue. This study will lead to better molecular and therapeutic understanding of 

NRF2 inhibition using certain compounds including bexarotene, which may lead 

to the sensitization and elimination of resistant cancer cells (Wu et al., 2014, Qi et 

al., 2016, Garattini et al., 2014, Saito-Hakoda et al., 2015). The work here has 

demonstrated that the effectiveness of anti-HER receptors therapies such as 

lapatinib and erlotinib can be reduced even in the presence of HRG, which can 

bind the receptors and activate alternative signalling pathways (in this case 

NRF2-ARE). This leads to subsequent modulation of dimerization profiles and 

activation of associated downstream signalling, thereby overcoming the inhibitory 

effects of the RTK drugs. Importantly, this research has shown an improved 

efficacy of lapatinib and erlotinib when combined with bexarotene against ovarian 

cancer cells, by repressing the HER family receptors NRF2 and AKT. 

Overall, this research is in agreement with the in vitro and in vivo data reported by 

Khalil et al., (2016a and 2016b), which illustrate the important role of NRF2 in 

influencing outcomes to targeted therapies involving HER2 receptor inhibition 

(Khalil et al., 2016a), and on the regulation of HER2 and HER3 by NRF2 to 

oppose HER2 targeted immunotherapy (Khalil et al., 2016b). The study in this 

section opens up a new potential opportunity for improving the effectiveness of 

lapatinib and erlotinib via inhibition of NRF2, as well as a novel strategy of cancer 

cell sensitization during the course of targeted therapy for cancer employing 

chemotherapeutics. 

7.2. Conclusions 

This current PhD research study involved designing novel tools for evaluating the 

regulation of the HER receptor family and NRF2 pathways to ovarian cancer 

treatment and outcome. A number of assays involving cloning, luciferase assay, 

cytotoxicity assay, ROS assay, western blotting and total glutathione assay were 
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employed in the investigation. The research discovered regulatory mechanisms 

of HER family receptor function involving HER1 and HER4 receptors and 

NRF2/ARE-dependent transcriptional modulation through their promoter activity. 

The second means of regulation is via the mechanism of their NRF2 mediated 

modulation and their concomitant alteration at a protein level.  

The novel findings in the current research work extend current knowledge 

regarding the mechanism of HER receptors and NRF2 expression. This research 

provides further insight into the molecular basis for regulation of the expression of 

the HER genes by NRF2, as well as the clinical potential of using siRNA via gene 

therapy to improve cancer treatment. It also highlights a novel mechanism and 

role for NRF2 inhibition by bexarotene in sensitising ovarian cancer cells to the 

killing effect of RTK inhibitors, lapatinib and erlotinib. Finally, it highlights the 

possibility of using the combination of lapatinib and bexarotene, or erlotinib with 

bexarotene, to overcome RTK-associated drug resistance. 

7.3 Recommendations 

The study presented here, albeit being generally successful, was not without 

limitations. In this section, the main recommendations and suggestions of how to 

extend the aforementioned hypothesis in future research are hereby discussed. 

This study has reported on the modulation of HER receptor family and NRF2 in 

improving ovarian cancer therapy. Further experiments such as gel shift assay 

and ChIP assay should be employed to investigate the interaction between other 

relevant transcription factors such AP-1, sp1 and ETF and their possible roles in 

the transcription of HER1 and HER4. The study has shown that NRF2 regulates 

HER1 and HER4, and further experiments are needed to confirm the role of 

NRF2 as a transcription factor for HER receptors. The clinical potential of 

appropriately designed siRNAs in various diseases including cancer has been 

demonstrated (Guo et al., 2013, Huang et al., 2008, Xia et al., 2002, Kanninen et 

al., 2015, Esmaeili, 2016). Many simple questions need to be answered to 

uncover the full therapeutic benefit of this mechanism. These include details of 

the components and function of various enzymes involved in the formation of 

siRNA, the role of siRNA in DNA methylation and chromatin modelling, as well as 
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other epigenetic mechanisms used by cells to control gene expression. Since 

these agents are in clinical trials, issues related to bioavailability and safety need 

to be critically evaluated. Furthermore, the clinical potential of using NRF2 

inhibitors such as brusatol, luteolin and bexarotene has been reported (Ren, 

2011, Chian et al., 2014a, Chian et al., 2014b, Wu et al., 2014). These inhibitors 

have been demonstrated to sensitize cancer cells to chemotherapeutic and 

immunotherapeutic agents, as well as to radiotherapy. Generally, the purpose of 

screening for these inhibitors is to find inhibitors with sufficient potency that are 

safer for application within clinical cancer therapies. To better recommend the 

use of these agents in clinical settings, there is a need for more collective 

research to explore whether these inhibitors can reliably be used in future either 

alone or as efficient sensitizing agents in combination with chemotherapy and 

radiotherapy to improve not only ovarian cancer treatment, but also other cancer 

treatments. 

Most current therapies against cancer consist of empirically combined strategies 

as a way of improving cancer treatment and overcoming drug resistance. Drug 

combinations are widely used because multiple drugs affect multiple targets and 

cell populations, and so enhance their therapeutic effects (Bijnsdorp et al., 2011). 

It is important to test the potency of a combination and its synergic and/or 

antagonistic effects before evaluation in the clinic. A combination can be 

examined by combining two agents in various different ways such as 

simultaneous or sequential combination schedules (Bijnsdorp et al., 2011). One 

of the most widely used ways to evaluate whether a combination is effective is 

the median-drug effect analysis method (Bijnsdorp et al., 2011). Using this 

method, a combination index (CI) is calculated from drug cytotoxicity or growth 

inhibition curves (Bijnsdorp et al., 2011, Ashton, 2015). To calculate a CI, the 

computer software Calcusyn can be used, taking the entire shape of the growth 

inhibition curve into account for calculating whether a combination is synergistic, 

additive or antagonistic (Bijnsdorp et al., 2011, Jia et al., 2009, Ashton, 2015). It 

is recommended that future studies consider how combinations can be designed 

in vitro and then analysed using Calcusyn or Compusyn so as to identify 

limitations and advantages of using such combinations. Thus, future studies 

might expand the role of NRF2 as a key element in driving drug resistance and 
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opens up additional strategies of sensitising cancer cells to HER family targeted 

therapy, as well as overcoming the resistance of cancer cells to such drugs. 

  



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 158 
 

8. REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 159 
 

Abbott, R. A., Whittaker, S. J., Morris, S. L., Russell‐Jones, R., Hung, T., Bashir, 
S. J. and Scarisbrick, J. J. (2009) 'Bexarotene therapy for mycosis 
fungoides and Sézary syndrome', British Journal of Dermatology, 160(6), 
pp. 1299-1307. 

Abdullah, A., Kitteringham, N. R., Jenkins, R. E., Goldring, C., Higgins, L., 
Yamamoto, M., Hayes, J. and Park, B. K. (2012) 'Analysis of the role of 
Nrf2 in the expression of liver proteins in mice using two-dimensional gel-
based proteomics', Pharmacological Reports, 64(3), pp. 680-697. 

Agarwal, R. and Kaye, S. B. (2003) 'Ovarian cancer: strategies for overcoming 
resistance to chemotherapy', Nature Reviews Cancer, 3(7), pp. 502-516. 

Agus, V. and Janovjak, H. (2017) 'Optogenetic methods in drug screening: 
technologies and applications', Current Opinion in Biotechnology, 48, pp. 
8-14. 

Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J. and Tang, X. (2017) 'Nrf2 
signaling pathway: Pivotal roles in inflammation', Biochimica et Biophysica 
Acta (BBA) - Molecular Basis of Disease, 1863(2), pp. 585-597. 

Ahn, Y.-H., Hwang, Y., Liu, H., Wang, X. J., Zhang, Y., Stephenson, K. K., 
Boronina, T. N., Cole, R. N., Dinkova-Kostova, A. T. and Talalay, P. (2010) 
'Electrophilic tuning of the chemoprotective natural product sulforaphane', 
Proceedings of the National Academy of Sciences, 107(21), pp. 9590-
9595. 

Ajgal, Z., de Percin, S., Diéras, V., Pierga, J. Y., Campana, F., Fourquet, A. and 
Kirova, Y. M. (2017) 'Combination of radiotherapy and double blockade 
HER2 with pertuzumab and trastuzumab for HER2-positive metastatic or 
locally recurrent unresectable and/or metastatic breast cancer: 
Assessment of early toxicity', Cancer/Radiothérapie, 21(2), pp. 114-118. 

Akhdar, H., Loyer, P., Rauch, C., Corlu, A., Guillouzo, A. and Morel, F. (2009) 
'Involvement of Nrf2 activation in resistance to 5-fluorouracil in human 
colon cancer HT-29 cells', European Journal of Cancer, 45(12), pp. 2219-
2227. 

Alarcón-Aguilar, A., Luna-López, A., Ventura-Gallegos, J. L., Lazzarini, R., 
Galván-Arzate, S., González-Puertos, V. Y., Morán, J., Santamaría, A. and 
Königsberg, M. (2014) 'Primary cultured astrocytes from old rats are 
capable to activate the Nrf2 response against MPP+ toxicity after tBHQ 
pretreatment', Neurobiology of Aging, 35(8), pp. 1901-1912. 

Alečković, M. and Kang, Y. (2015) 'Regulation of cancer metastasis by cell-free 
miRNAs', Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 
1855(1), pp. 24-42. 

Allard, J. S., Perez, E. J., Fukui, K., Carpenter, P., Ingram, D. K. and Cabo, R. d. 
(2016) 'Prolonged metformin treatment leads to reduced transcription of 
Nrf2 and neurotrophic factors without cognitive impairment in older 
C57BL/6J mice', Behavioural Brain Research, 301, pp. 1-9. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 160 
 

Amin, D. N., Campbell, M. R. and Moasser, M. M. (2010) 'The role of HER3, the 
unpretentious member of the HER family, in cancer biology and cancer 
therapeutics', Seminars in Cell & Developmental Biology, 21(9), pp. 944-
950. 

Andrews, N. C., Erdjument-Bromage, H., Davidson, M. B., Tempst, P. and Orkin, 
S. H. (1993) 'Erythroid transcription factor NF-E2 is a haematopoietic-
specific basic-leucine zipper protein', Nature, 362(6422), pp. 722. 

Anuranjani and Bala, M. (2014) 'Concerted action of Nrf2-ARE pathway, MRN 
complex, HMGB1 and inflammatory cytokines - Implication in modification 
of radiation damage', Redox Biology, 2, pp. 832-846. 

Arlt, A., Sebens, S., Krebs, S., Geismann, C., Grossmann, M., Kruse, M. L., 
Schreiber, S. and Schafer, H. (2013) 'Inhibition of the Nrf2 transcription 
factor by the alkaloid trigonelline renders pancreatic cancer cells more 
susceptible to apoptosis through decreased proteasomal gene expression 
and proteasome activity', Oncogene, 32(40), pp. 4825-4835. 

Arora, A. and Scholar, E. M. (2005) 'Role of tyrosine kinase inhibitors in cancer 
therapy', Journal of Pharmacology and Experimental Therapeutics, 315(3), 
pp. 971-979. 

Ashton, J. C. (2015) 'Drug Combination Studies and Their Synergy Quantification 
Using the Chou–Talalay Method', Cancer research. 

Ashworth, A., Lord, C. J. and Reis-Filho, J. S. (2011) 'Genetic interactions in 
cancer progression and treatment', Cell, 145(1), pp. 30-38. 

Avraham, R. and Yarden, Y. (2011) 'Feedback regulation of EGFR signalling: 
decision making by early and delayed loops', Nature reviews Molecular 
cell biology, 12(2), pp. 104-117. 

Balogun, E., Hoque, M., Pengfei, G., Killeen, E., Green, C. J., Foresti, R., Jawed, 
A. and Motterlini, R. (2003) 'Curcumin activates the haem oxygenase-1 
gene via regulation of Nrf2 and the antioxidant-responsive element', 
Biochemical Journal, 371(3), pp. 887-895. 

Barber, H. R. K. (1986) 'Ovarian cancer', CA: a cancer journal for clinicians, 
36(3), pp. 149-184. 

Barber, H. R. K. (2012) Ovarian carcinoma: etiology, diagnosis, and treatment. 
Springer Science & Business Media. 

Barbosa, M. L. d. C., Lima, L. M., Tesch, R., Sant'Anna, C. M. R., Totzke, F., 
Kubbutat, M. H. G., Schächtele, C., Laufer, S. A. and Barreiro, E. J. (2014) 
'Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 
dual inhibitors', European Journal of Medicinal Chemistry, 71(0), pp. 1-14. 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 161 
 

Barrera, L. N., Cassidy, A., Wang, W., Wei, T., Belshaw, N. J., Johnson, I. T., 
Brigelius-Flohé, R. and Bao, Y. (2012) 'TrxR1 and GPx2 are potently 
induced by isothiocyanates and selenium, and mutually cooperate to 
protect Caco-2 cells against free radical-mediated cell death', Biochimica 
et Biophysica Acta (BBA) - Molecular Cell Research, 1823(10), pp. 1914-
1924. 

BarthÉLÉMy, P., Leblanc, J., Goldbarg, V., Wendling, F. and Kurtz, J.-E. (2014) 
'Pertuzumab: Development Beyond Breast Cancer', Anticancer Research, 
34(4), pp. 1483-1491. 

Baselga, J., Cortés, J., Kim, S.-B., Im, S.-A., Hegg, R., Im, Y.-H., Roman, L., 
Pedrini, J. L., Pienkowski, T. and Knott, A. (2012) 'Pertuzumab plus 
trastuzumab plus docetaxel for metastatic breast cancer', New England 
Journal of Medicine, 366(2), pp. 109-119. 

Berchuck, A., Kamel, A., Whitaker, R., Kerns, B., Olt, G., Kinney, R., Soper, J. T., 
Dodge, R., Clarke-Pearson, D. L. and Marks, P. (1990) 'Overexpression of 
HER-2/neu is associated with poor survival in advanced epithelial ovarian 
cancer', Cancer research, 50(13), pp. 4087-4091. 

Bianco, R., Melisi, D., Ciardiello, F. and Tortora, G. (2006) 'Key cancer cell signal 
transduction pathways as therapeutic targets', European journal of cancer, 
42(3), pp. 290-294. 

Bijnsdorp, I. V., Giovannetti, E. and Peters, G. J. (2011) 'Analysis of drug 
interactions', Cancer Cell Culture: Methods and Protocols, pp. 421-434. 

Blackwell, K. L., Burstein, H. J., Storniolo, A. M., Rugo, H., Sledge, G., Koehler, 
M., Ellis, C., Casey, M., Vukelja, S. and Bischoff, J. (2010) 'Randomized 
study of Lapatinib alone or in combination with trastuzumab in women with 
ErbB2-positive, trastuzumab-refractory metastatic breast cancer', Journal 
of Clinical Oncology, 28(7), pp. 1124-1130. 

Bonner, J. A., Harari, P. M., Giralt, J., Cohen, R. B., Jones, C. U., Sur, R. K., 
Raben, D., Baselga, J., Spencer, S. A. and Zhu, J. (2010) 'Radiotherapy 
plus cetuximab for locoregionally advanced head and neck cancer: 5-year 
survival data from a phase 3 randomised trial, and relation between 
cetuximab-induced rash and survival', The lancet oncology, 11(1), pp. 21-
28. 

Bookman, M. A., Darcy, K. M., Clarke-Pearson, D., Boothby, R. A. and Horowitz, 
I. R. (2003) 'Evaluation of monoclonal humanized anti-HER2 antibody, 
trastuzumab, in patients with recurrent or refractory ovarian or primary 
peritoneal carcinoma with overexpression of HER2: a phase II trial of the 
Gynecologic Oncology Group', Journal of Clinical Oncology, 21(2), pp. 
283-290. 

Bowerman, B., Eaton, B. A. and Priess, J. R. (1992) 'skn-1, a maternally 
expressed gene required to specify the fate of ventral blastomeres in the 
early C. elegans embryo', Cell, 68(6), pp. 1061-1075. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 162 
 

Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Müller, M., Druker, B. J. 
and Lydon, N. B. (1996) 'Inhibition of the Abl protein-tyrosine kinase in 
vitro and in vivo by a 2-phenylaminopyrimidine derivative', Cancer 
research, 56(1), pp. 100-104. 

Burgess, A. W. (2008) 'EGFR family: structure physiology signalling and 
therapeutic targets', Growth Factors, 26(5), pp. 263-274. 

Burris Iii, H. A., Hurwitz, H. I., Dees, E. C., Dowlati, A., Blackwell, K. L., O'Neil, B., 
Marcom, P. K., Ellis, M. J., Overmoyer, B. and Jones, S. F. (2005) 'Phase I 
safety, pharmacokinetics, and clinical activity study of lapatinib 
(GW572016), a reversible dual inhibitor of epidermal growth factor 
receptor tyrosine kinases, in heavily pretreated patients with metastatic 
carcinomas', Journal of Clinical Oncology, 23(23), pp. 5305-5313. 

Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. (2006) 
'Heat shock proteins in cancer: chaperones of tumorigenesis', Trends in 
biochemical sciences, 31(3), pp. 164-172. 

Campbell, M. R., Amin, D. and Moasser, M. M. (2010) 'HER3 comes of age: new 
insights into its functions and role in signaling, tumor biology, and cancer 
therapy', Clinical Cancer Research, 16(5), pp. 1373-1383. 

Cao, C., Lu, S., Sowa, A., Kivlin, R., Amaral, A., Chu, W., Yang, H., Di, W. and 
Wan, Y. (2008) 'Priming with EGFR tyrosine kinase inhibitor and EGF 
sensitizes ovarian cancer cells to respond to chemotherapeutical drugs', 
Cancer Letters, 266(2), pp. 249-262. 

Cao, L., Zhou, Y., Huang, L., Dong, S. and Ma, Y. (2017) 'Development of a dual-
expression vector facilitated with selection-free PCR recombination cloning 
strategy', AMB Express, 7, pp. 98. 

Caplen, N. J., Parrish, S., Imani, F., Fire, A. and Morgan, R. A. (2001) 'Specific 
inhibition of gene expression by small double-stranded RNAs in 
invertebrate and vertebrate systems', Proceedings of the National 
Academy of Sciences, 98(17), pp. 9742-9747. 

Cell, S. (2016) ErbB / HER Signaling Pathway (Accessed: 11/02/2017 2017). 

Chan, J. Y., Han, X.-L. and Kan, Y. W. (1993a) 'Cloning of Nrf1, an NF-E2-related 
transcription factor, by genetic selection in yeast', Proceedings of the 
National Academy of Sciences, 90(23), pp. 11371-11375. 

Chan, J. Y., Han, X.-L. and Kan, Y. W. (1993b) 'Isolation of cDNA encoding the 
human NF-E2 protein', Proceedings of the National Academy of Sciences, 
90(23), pp. 11366-11370. 

Chandarlapaty, S., Sawai, A., Scaltriti, M., Rodrik-Outmezguine, V., Grbovic-
Huezo, O., Serra, V., Majumder, P. K., Baselga, J. and Rosen, N. (2011) 
'AKT inhibition relieves feedback suppression of receptor tyrosine kinase 
expression and activity', Cancer cell, 19(1), pp. 58-71. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 163 
 

Chen, C.-C., Chu, C.-B., Liu, K.-J., Huang, C.-Y. F., Chang, J.-Y., Pan, W.-Y., 
Chen, H.-H., Cheng, Y.-H., Lee, K.-D., Chen, M.-F., Kuo, C.-C. and Chen, 
L.-T. (2013) 'Gene expression profiling for analysis acquired oxaliplatin 
resistant factors in human gastric carcinoma TSGH-S3 cells: The role of 
IL-6 signaling and Nrf2/AKR1C axis identification', Biochemical 
Pharmacology, 86(7), pp. 872-887. 

Chen, Q., Peng, H., Dong, L., Chen, L., Ma, X., Peng, Y., Dai, S. and Liu, Q. 
(2016) 'Activation of the NRF2-ARE signalling pathway by the Lentinula 
edodes polysaccharose LNT alleviates ROS-mediated cisplatin 
nephrotoxicity', International Immunopharmacology, 36, pp. 1-8. 

Cheng, W., Liu, J., Yoshida, H., Rosen, D. and Naora, H. (2005) 'Lineage 
infidelity of epithelial ovarian cancers is controlled by HOX genes that 
specify regional identity in the reproductive tract', Nature medicine, 11(5), 
pp. 531. 

Chian, S., Li, Y.-Y., Wang, X.-J. and Tang, X.-W. (2014a) 'Luteolin sensitizes two 
oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs 
via inhibition of the Nrf2 pathway', Asian Pacific journal of cancer 
prevention: APJCP, 15(6), pp. 2911-2916. 

Chian, S., Thapa, R., Chi, Z., Wang, X. J. and Tang, X. (2014b) 'Luteolin inhibits 
the Nrf2 signaling pathway and tumor growth in vivo', Biochemical and 
Biophysical Research Communications, 447(4), pp. 602-608. 

Chio, Iok In C., Jafarnejad, Seyed M., Ponz-Sarvise, M., Park, Y., Rivera, K., 
Palm, W., Wilson, J., Sangar, V., Hao, Y., Öhlund, D., Wright, K., Filippini, 
D., Lee, Eun J., Da Silva, B., Schoepfer, C., Wilkinson, John E., Buscaglia, 
Jonathan M., DeNicola, Gina M., Tiriac, H., Hammell, M., Crawford, 
Howard C., Schmidt, Edward E., Thompson, Craig B., Pappin, Darryl J., 
Sonenberg, N. and Tuveson, David A. (2016) 'NRF2 Promotes Tumor 
Maintenance by Modulating mRNA Translation in Pancreatic Cancer', Cell, 
166(4), pp. 963-976. 

Chiu, C.-P. and Harley, C. B. (1997) 'Replicative senescence and cell immortality: 
the role of telomeres and telomerase', Proceedings of the Society for 
Experimental Biology and Medicine, 214(2), pp. 99-106. 

Cho, J.-M., Manandhar, S., Lee, H.-R., Park, H.-M. and Kwak, M.-K. (2008) 'Role 
of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer 
cisplatin: Implication to cancer cell resistance', Cancer Letters, 260(1–2), 
pp. 96-108. 

Choi, B.-h. and Kwak, M.-K. (2016) 'Shadows of NRF2 in cancer: Resistance to 
chemotherapy', Current Opinion in Toxicology, 1, pp. 20-28. 

Chorley, B. N., Campbell, M. R., Wang, X., Karaca, M., Sambandan, D., Bangura, 
F., Xue, P., Pi, J., Kleeberger, S. R. and Bell, D. A. (2012) 'Identification of 
novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor 
alpha', Nucleic acids research, pp. gks409. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 164 
 

Ciardiello, F., Caputo, R., Bianco, R., Damiano, V., Pomatico, G., De Placido, S., 
Bianco, A. R. and Tortora, G. (2000) 'Antitumor effect and potentiation of 
cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an 
epidermal growth factor receptor-selective tyrosine kinase inhibitor', 
Clinical Cancer Research, 6(5), pp. 2053-2063. 

Clarke, J. D., Dashwood, R. H. and Ho, E. (2008) 'Multi-targeted prevention of 
cancer by sulforaphane', Cancer letters, 269(2), pp. 291-304. 

Clayton, A. J., Danson, S., Jolly, S., Ryder, W. D. J., Burt, P. A., Stewart, A. L., 
Wilkinson, P. M., Welch, R. S., Magee, B., Wilson, G., Howell, A. and 
Wardley, A. M. (2004) 'Incidence of cerebral metastases in patients treated 
with trastuzumab for metastatic breast cancer', Br J Cancer, 91(4), pp. 
639-643. 

Cohen, S. N., Chang, A. C. Y., Boyer, H. W. and Helling, R. B. (1973) 
'Construction of biologically functional bacterial plasmids in vitro', 
Proceedings of the National Academy of Sciences, 70(11), pp. 3240-3244. 

Colombo, N., Van Gorp, T., Parma, G., Amant, F., Gatta, G., Sessa, C. and 
Vergote, I. (2006) 'Ovarian cancer', Critical reviews in 
oncology/hematology, 60(2), pp. 159-179. 

Cook, N., Frese, K. K. and Moore, M. (2014) 'Assessing the role of the EGF 
receptor in the development and progression of pancreatic cancer', 
Gastrointest Cancer: Targets and Therapy, 4, pp. 23-37. 

Cragg, M. S., French, R. R. and Glennie, M. J. (1999) 'Signaling antibodies in 
cancer therapy', Current opinion in immunology, 11(5), pp. 541-547. 

Cronin, M. and Ross, J. S. (2011) 'Comprehensive next-generation cancer 
genome sequencing in the era of targeted therapy and personalized 
oncology', Biomarkers, 5(3), pp. 293-305. 

Cuello, M., Ettenberg, S. A., Clark, A. S., Keane, M. M., Posner, R. H., Nau, M. 
M., Dennis, P. A. and Lipkowitz, S. (2001) 'Down-regulation of the erbB-2 
receptor by trastuzumab (herceptin) enhances tumor necrosis factor-
related apoptosis-inducing ligand-mediated apoptosis in breast and 
ovarian cancer cell lines that overexpress erbB-2', Cancer research, 
61(12), pp. 4892-4900. 

Cullinan, S. B. and Diehl, J. A. (2004) 'PERK-dependent activation of Nrf2 
contributes to redox homeostasis and cell survival following endoplasmic 
reticulum stress', Journal of Biological Chemistry, 279(19), pp. 20108-
20117. 

Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., 
Bets, D., Mueser, M., Harstrick, A., Verslype, C., Chau, I. and Van 
Cutsem, E. (2004) 'Cetuximab Monotherapy and Cetuximab plus 
Irinotecan in Irinotecan-Refractory Metastatic Colorectal Cancer', New 
England Journal of Medicine, 351(4), pp. 337-345. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 165 
 

Dassonville, O., Bozec, A., Fischel, J. L. and Milano, G. (2017) 'EGFR targeting 
therapies: Monoclonal antibodies versus tyrosine kinase inhibitors', Critical 
Reviews in Oncology / Hematology, 62(1), pp. 53-61. 

de Bono, J. S. and Rowinsky, E. K. (2002) 'The ErbB receptor family: a 
therapeutic target for cancer', Trends in molecular medicine, 8(4), pp. S19-
S26. 

Derjuga, A., Gourley, T. S., Holm, T. M., Heng, H. H. Q., Shivdasani, R. A., 
Ahmed, R., Andrews, N. C. and Blank, V. (2004) 'Complexity of CNC 
transcription factors as revealed by gene targeting of the Nrf3 locus', 
Molecular and cellular biology, 24(8), pp. 3286-3294. 

Dietz, B. M., Kang, Y.-H., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, 
G. F., Farnsworth, N. R., Mesecar, A. D. and Van Breemen, R. B. (2005) 
'Xanthohumol isolated from Humulus lupulus inhibits menadione-induced 
DNA damage through induction of quinone reductase', Chemical research 
in toxicology, 18(8), pp. 1296-1305. 

Downward, J. (2003) 'Targeting RAS signalling pathways in cancer therapy', 
Nature Reviews Cancer, 3(1), pp. 11-22. 

Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. 
M., Capdeville, R. and Talpaz, M. (2001) 'Activity of a Specific Inhibitor of 
the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid 
Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia 
Chromosome', New England Journal of Medicine, 344(14), pp. 1038-1042. 

Dry, J. R., Yang, M. and Saez-Rodriguez, J. (2016) 'Looking beyond the cancer 
cell for effective drug combinations', Genome medicine, 8(1), pp. 125. 

Duong, H.-Q., You, K. S., Oh, S., Kwak, S.-J. and Seong, Y.-S. (2017) 'Silencing 
of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and 
Sensitizes to 5-FU in Pancreatic Cancer Cells', Antioxidants, 6(3), pp. 52. 

Duvic, M., Hymes, K., Heald, P., Breneman, D., Martin, A. G., Myskowski, P., 
Crowley, C. and Yocum, R. C. (2001) 'Bexarotene is effective and safe for 
treatment of refractory advanced-stage cutaneous T-cell lymphoma: 
multinational phase II-III trial results', Journal of clinical oncology, 19(9), 
pp. 2456-2471. 

Edwards, B. K., Howe, H. L., Ries, L. A. G., Thun, M. J., Rosenberg, H. M., 
Yancik, R., Wingo, P. A., Jemal, A. and Feigal, E. G. (2002) 'Annual report 
to the nation on the status of cancer, 1973–1999, featuring implications of 
age and aging on US cancer burden', Cancer, 94(10), pp. 2766-2792. 

Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. 
(2001) 'Duplexes of 21-nucleotide RNAs mediate RNA interference in 
cultured mammalian cells', nature, 411(6836), pp. 494-498. 

Emily R. Penick, M., Chad A. Hamilton, MD, G. Larry Maxwell, MD, and Charlotte 
S. Marcus, M. (2018) 12- Germ Cell, Stromal, and Other Ovarian Tumors. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 166 
 

Engelman, J. A. and Jänne, P. A. (2008) 'Mechanisms of acquired resistance to 
epidermal growth factor receptor tyrosine kinase inhibitors in non–small 
cell lung cancer', Clinical Cancer Research, 14(10), pp. 2895-2899. 

Ercan, D., Xu, C., Yanagita, M., Monast, C. S., Pratilas, C. A., Montero, J., 
Butaney, M., Shimamura, T., Sholl, L. and Ivanova, E. V. (2012) 
'Reactivation of ERK signaling causes resistance to EGFR kinase 
inhibitors', Cancer discovery, 2(10), pp. 934-947. 

Esmaeili, M. A. (2016) 'Combination of siRNA-directed gene silencing with 
epigallocatechin-3-gallate (EGCG) reverses drug resistance in human 
breast cancer cells', Journal of chemical biology, 9(1), pp. 41-52. 

Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., 
Liebetanz, J., Mestan, J., O'Reilly, T., Traxler, P., Chaudhuri, B., Fretz, H., 
Zimmermann, J., Meyer, T., Caravatti, G., Furet, P. and Manley, P. W. 
(2002) 'Protein kinases as targets for anticancer agents: from inhibitors to 
useful drugs', Pharmacology & Therapeutics, 93(2–3), pp. 79-98. 

Fabian, M. A., Biggs, W. H., Treiber, D. K., Atteridge, C. E., Azimioara, M. D., 
Benedetti, M. G., Carter, T. A., Ciceri, P., Edeen, P. T. and Floyd, M. 
(2005) 'A small molecule–kinase interaction map for clinical kinase 
inhibitors', Nature biotechnology, 23(3), pp. 329-336. 

Faratian, D., Zweemer, A. J. M., Nagumo, Y., Sims, A. H., Muir, M., Dodds, M., 
Mullen, P., Um, I., Kay, C. and Hasmann, M. (2011) 'Trastuzumab and 
pertuzumab produce changes in morphology and estrogen receptor 
signaling in ovarian cancer xenografts revealing new treatment strategies', 
Clinical Cancer Research, 17(13), pp. 4451-4461. 

Farhoosh, R. and Tavassoli-Kafrani, M. H. (2010) 'Polar compounds distribution 
of sunflower oil as affected by unsaponifiable matters of Bene hull oil 
(BHO) and tertiary-butylhydroquinone (TBHQ) during deep-frying', Food 
Chemistry, 122(1), pp. 381-385. 

Farol, L. T. and Hymes, K. B. (2004) 'Bexarotene: a clinical review', Expert 
Review of Anticancer Therapy, 4(2), pp. 180-188. 

Farombi, E. O., Shrotriya, S., Na, H.-K., Kim, S.-H. and Surh, Y.-J. (2008) 
'Curcumin attenuates dimethylnitrosamine-induced liver injury in rats 
through Nrf2-mediated induction of heme oxygenase-1', Food and 
Chemical Toxicology, 46(4), pp. 1279-1287. 

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., 
Parkin, D. M., Forman, D. and Bray, F. (2015) 'Cancer incidence and 
mortality worldwide: sources, methods and major patterns in GLOBOCAN 
2012', International journal of cancer, 136(5), pp. E359-E386. 

Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W. 
W., Comber, H., Forman, D. and Bray, F. (2013) 'Cancer incidence and 
mortality patterns in Europe: Estimates for 40 countries in 2012', European 
Journal of Cancer, 49(6), pp. 1374-1403. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 167 
 

Friedlander, M. (1998) 'Prognostic factors', Ovarian cancer, 5, pp. 143-152. 

Gajria, D. and Chandarlapaty, S. (2011) 'HER2-amplified breast cancer: 
mechanisms of trastuzumab resistance and novel targeted therapies', 
Expert review of anticancer therapy, 11(2), pp. 263-275. 

Gala, K. and Chandarlapaty, S. (2014) 'Molecular pathways: HER3 targeted 
therapy', Clinical cancer research, 20(6), pp. 1410-1416. 

Gao, A.-M., Ke, Z.-P., Shi, F., Sun, G.-C. and Chen, H. (2013a) 'Chrysin 
enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing 
PI3K/Akt/Nrf2 and ERK/Nrf2 pathway', Chemico-Biological Interactions, 
206(1), pp. 100-108. 

Gao, A.-M., Ke, Z.-P., Wang, J.-N., Yang, J.-Y., Chen, S.-Y. and Chen, H. 
(2013b) 'Apigenin sensitizes doxorubicin-resistant hepatocellular 
carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 
pathway', Carcinogenesis, 34(8), pp. 1806-1814. 

Garattini, E., Bolis, M., Garattini, S. K., Fratelli, M., Centritto, F., Paroni, G., 
Gianni’, M., Zanetti, A., Pagani, A., Fisher, J. N., Zambelli, A. and Terao, 
M. (2014) 'Retinoids and breast cancer: From basic studies to the clinic 
and back again', Cancer Treatment Reviews, 40(6), pp. 739-749. 

Gerber, H.-P. and Ferrara, N. (2005) 'Pharmacology and pharmacodynamics of 
bevacizumab as monotherapy or in combination with cytotoxic therapy in 
preclinical studies', Cancer research, 65(3), pp. 671-680. 

Gershenson, D. M. (1994) 'Management of early ovarian cancer: germ cell and 
sex cord-stromal tumors', Gynecologic oncology, 55(3), pp. S562-S572. 

Geyer, C. E., Forster, J., Lindquist, D., Chan, S., Romieu, C. G., Pienkowski, T., 
Jagiello-Gruszfeld, A., Crown, J., Chan, A. and Kaufman, B. (2006) 
'Lapatinib plus capecitabine for HER2-positive advanced breast cancer', 
New England Journal of Medicine, 355(26), pp. 2733-2743. 

Gharwan, H. and Groninger, H. (2016) 'Kinase inhibitors and monoclonal 
antibodies in oncology: clinical implications', Nat Rev Clin Oncol, 13(4), pp. 
209-227. 

Giantonio, B. J., Catalano, P. J., Meropol, N. J., O'Dwyer, P. J., Mitchell, E. P., 
Alberts, S. R., Schwartz, M. A. and Benson Iii, A. B. (2007) 'Bevacizumab 
in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for 
previously treated metastatic colorectal cancer: results from the Eastern 
Cooperative Oncology Group Study E3200', Journal of Clinical Oncology, 
25(12), pp. 1539-1544. 

Gilmour, L. M. R., Macleod, K. G., McCaig, A., Gullick, W. J., Smyth, J. F. and 
Langdon, S. P. (2001) 'Expression of erbB-4/HER-4 growth factor receptor 
isoforms in ovarian cancer', Cancer research, 61(5), pp. 2169-2176. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 168 
 

Gilmour, L. M. R., Macleod, K. G., McCaig, A., Sewell, J. M., Gullick, W. J., 
Smyth, J. F. and Langdon, S. P. (2002) 'Neuregulin Expression, Function, 
and Signaling in Human Ovarian Cancer Cells', Clinical Cancer Research, 
8(12), pp. 3933. 

Goldstein, Leonard D., Lee, J., Gnad, F., Klijn, C., Schaub, A., Reeder, J., 
Daemen, A., Bakalarski, Corey E., Holcomb, T., Shames, David S., 
Hartmaier, Ryan J., Chmielecki, J., Seshagiri, S., Gentleman, R. and 
Stokoe, D. (2016) 'Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for 
Nrf2 Pathway Activation in Human Cancers', Cell Reports, 16(10), pp. 
2605-2617. 

Goltsov, A., Deeni, Y., Khalil, H. S., Soininen, T., Kyriakidis, S., Hu, H., Langdon, 
S. P., Harrison, D. J. and Bown, J. (2014a) 'Systems analysis of drug-
induced receptor tyrosine kinase reprogramming following targeted mono- 
and combination anti-cancer therapy', Cells, 3(2), pp. 563-91. 

Goltsov, A., Langdon, S. P., Goltsov, G., Harrison, D. J. and Bown, J. (2014b) 
'Customizing the therapeutic response of signaling networks to promote 
antitumor responses by drug combinations', Frontiers in oncology, 4. 

Gomperts, B. D., Kramer, I. M. and Tatham, P. E. R. (2009) 'Chapter 12 - 
Signalling Pathways Operated by Receptor Protein Tyrosine Kinases', in 
Tatham, B.D.G.M.K.E.R. (ed.) Signal Transduction (Second Edition). San 
Diego: Academic Press, pp. 315-374. 

Gonzales, C. B., De La Chapa, J. J., Saikumar, P., Singha, P. K., Dybdal-
Hargreaves, N. F., Chavez, J., Horning, A. M., Parra, J. and Kirma, N. B. 
(2016) 'Co-targeting ALK and EGFR parallel signaling in oral squamous 
cell carcinoma', Oral Oncology, 59, pp. 12-19. 

Gordon, A. N., Finkler, N., Edwards, R. P., Garcia, A. A., Crozier, M., Irwin, D. H. 
and Barrett, E. (2005) 'Efficacy and safety of erlotinib HCl, an epidermal 
growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients 
with advanced ovarian carcinoma: results from a phase II multicenter 
study', International Journal of Gynecological Cancer, 15(5), pp. 785-792. 

Gordon, M. S., Matei, D., Aghajanian, C., Matulonis, U. A., Brewer, M., Fleming, 
G. F., Hainsworth, J. D., Garcia, A. A., Pegram, M. D. and Schilder, R. J. 
(2006) 'Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization 
inhibitor, in advanced ovarian cancer: potential predictive relationship with 
tumor HER2 activation status', Journal of Clinical Oncology, 24(26), pp. 
4324-4332. 

Gorrini, C., Harris, I. S. and Mak, T. W. (2013) 'Modulation of oxidative stress as 
an anticancer strategy', Nature reviews Drug discovery, 12(12), pp. 931-
947. 

Grossman, R. and Ram, Z. (2013) 'The Dark Side of Nrf2', World Neurosurgery, 
80(3–4), pp. 284-286. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 169 
 

Gschwind, A., Fischer, O. M. and Ullrich, A. (2004) 'The discovery of receptor 
tyrosine kinases: targets for cancer therapy', Nature Reviews Cancer, 4(5), 
pp. 361-370. 

Gui, T. and Shen, K. (2012) 'The epidermal growth factor receptor as a 
therapeutic target in epithelial ovarian cancer', Cancer Epidemiology, 
36(5), pp. 490-496. 

Guo, T., Zhao, L., Zhang, Y., Liu, G., Yao, Y. and Li, H. (2016) 'A monoclonal 
antibody targeting the dimer interface of epidermal growth factor receptor 
(EGFR)', Immunology Letters, 180, pp. 39-45. 

Guo, W., Chen, W., Yu, W., Huang, W. and Deng, W. (2013) 'Small interfering 
RNA-based molecular therapy of cancers', Chinese journal of cancer, 
32(9), pp. 488. 

Gupta, S. C., Hevia, D., Patchva, S., Park, B., Koh, W. and Aggarwal, B. B. 
(2012) 'Upsides and downsides of reactive oxygen species for cancer: the 
roles of reactive oxygen species in tumorigenesis, prevention, and 
therapy', Antioxidants & redox signaling, 16(11), pp. 1295-1322. 

Hagiwara, H., Ohwada, N., Aoki, T., Suzuki, T. and Takata, K. (2008) 'The 
primary cilia of secretory cells in the human oviduct mucosa', Medical 
molecular morphology, 41(4), pp. 193-198. 

Hanahan, D. and Weinberg, Robert A. (2011) 'Hallmarks of Cancer: The Next 
Generation', Cell, 144(5), pp. 646-674. 

Hannon, G. J. (2002) 'RNA interference', Nature, 418(6894), pp. 244-251. 

Haouala, A., Zanolari, B., Rochat, B., Montemurro, M., Zaman, K., Duchosal, M. 
A., Ris, H. B., Leyvraz, S., Widmer, N. and Decosterd, L. A. (2009) 
'Therapeutic drug monitoring of the new targeted anticancer agents 
imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC 
tandem mass spectrometry', Journal of Chromatography B, 877(22), pp. 
1982-1996. 

Harrington, E. A., Bebbington, D., Moore, J., Rasmussen, R. K., Ajose-Adeogun, 
A. O., Nakayama, T., Graham, J. A., Demur, C., Hercend, T. and Diu-
Hercend, A. (2004) 'VX-680, a potent and selective small-molecule 
inhibitor of the Aurora kinases, suppresses tumor growth in vivo', Nature 
medicine, 10(3), pp. 262-267. 

Harrison, M. L., Hoskins, P., Du Bois, A., Quinn, M., Rustin, G. J. S., Ledermann, 
J. A., Baron-Hay, S. and Friedlander, M. L. (2006) 'Small cell of the ovary, 
hypercalcemic type—analysis of combined experience and 
recommendation for management. A GCIG study', Gynecologic oncology, 
100(2), pp. 233-238. 

Hatton, J. L. and Yee, L. D. (2008) 'Clinical use of PPAR Ligands in Cancer', 
PPAR research, 2008. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 170 
 

Hayashi, M., Inokuchi, M., Takagi, Y., Yamada, H., Kojima, K., Kumagai, J., 
Kawano, T. and Sugihara, K. (2008) 'High expression of HER3 is 
associated with a decreased survival in gastric cancer', Clinical Cancer 
Research, 14(23), pp. 7843-7849. 

Hayes, A. J., Skouras, C., Haugk, B. and Charnley, R. M. (2015) 'Keap1–Nrf2 
signalling in pancreatic cancer', The International Journal of Biochemistry 
& Cell Biology, 65, pp. 288-299. 

Hayes, J. D. (2000) 'The Nrf2 transcription factor contributes both to the basal 
expression of glutathione S-transferases in mouse liver and to their 
induction by the chemopreventive synthetic antioxidants, butylated 
hydroxyanisole and ethoxyquin', Biochem. Soc. Trans., 28, pp. 33-41. 

Hayes, John D. and Ashford, Michael L. J. (2012) 'Nrf2 Orchestrates Fuel 
Partitioning for Cell Proliferation', Cell Metabolism, 16(2), pp. 139-141. 

Hayes, J. D. and Dinkova-Kostova, A. T. (2014) 'The Nrf2 regulatory network 
provides an interface between redox and intermediary metabolism', Trends 
in Biochemical Sciences, 39(4), pp. 199-218. 

Hayes, J. D., Ebisine, K., Sharma, R. S., Chowdhry, S., Dinkova-Kostova, A. T. 
and Sutherland, C. (2016) 'Regulation of the CNC-bZIP transcription factor 
Nrf2 by Keap1 and the axis between GSK-3 and β-TrCP', Current Opinion 
in Toxicology, 1, pp. 92-103. 

Hayes, J. D. and McMahon, M. (2009) 'NRF2 and KEAP1 mutations: permanent 
activation of an adaptive response in cancer', Trends in Biochemical 
Sciences, 34(4), pp. 176-188. 

Hayes, J. D., McMahon, M., Chowdhry, S. and Dinkova-Kostova, A. T. (2010) 
'Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 
pathway', Antioxid. Redox Signal., 13, pp. 1713-1748. 

He, J., Xu, Q., Jing, Y., Agani, F., Qian, X., Carpenter, R., Li, Q., Wang, X. R., 
Peiper, S. S. and Lu, Z. (2012) 'Reactive oxygen species regulate ERBB2 
and ERBB3 expression via miR‐199a/125b and DNA methylation', EMBO 
reports, 13(12), pp. 1116-1122. 

Heller, M. J. (2002) 'DNA microarray technology: devices, systems, and 
applications', Annual review of biomedical engineering, 4(1), pp. 129-153. 

Heo, J. C., Jung, T. H., Lee, S., Kim, H. Y., Choi, G., Jung, M., Jung, D., Lee, H. 
K., Lee, J. O., Park, J. H., Hwang, D., Seol, H. J. and Cho, H. (2016) 
'Effect of bexarotene on differentiation of glioblastoma multiforme 
compared with ATRA', Clinical & Experimental Metastasis, 33(5), pp. 417-
429. 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 171 
 

Herbst, R. S., Johnson, D. H., Mininberg, E., Carbone, D. P., Henderson, T., Kim, 
E. S., Blumenschein, G., Lee, J. J., Liu, D. D., Truong, M. T., Hong, W. K., 
Tran, H., Tsao, A., Xie, D., Ramies, D. A., Mass, R., Seshagiri, S., 
Eberhard, D. A., Kelley, S. K. and Sandler, A. (2005) 'Phase I/II Trial 
Evaluating the Anti-Vascular Endothelial Growth Factor Monoclonal 
Antibody Bevacizumab in Combination With the HER-1/Epidermal Growth 
Factor Receptor Tyrosine Kinase Inhibitor Erlotinib for Patients With 
Recurrent Non–Small-Cell Lung Cancer', Journal of Clinical Oncology, 
23(11), pp. 2544-2555. 

Herbst, R. S., Maddox, A.-M., Rothenberg, M. L., Small, E. J., Rubin, E. H., 
Baselga, J., Rojo, F., Hong, W. K., Swaisland, H. and Averbuch, S. D. 
(2002) 'Selective oral epidermal growth factor receptor tyrosine kinase 
inhibitor ZD1839 is generally well-tolerated and has activity in non–small-
cell lung cancer and other solid tumors: Results of a phase I trial', Journal 
of Clinical Oncology, 20(18), pp. 3815-3825. 

Higgins, L. G., Kelleher, M. O., Eggleston, I. M., Itoh, K., Yamamoto, M. and 
Hayes, J. D. (2009) 'Transcription factor Nrf2 mediates an adaptive 
response to sulforaphane that protects fibroblasts in vitro against the 
cytotoxic effects of electrophiles, peroxides and redox-cycling agents', 
Toxicology and Applied Pharmacology, 237(3), pp. 267-280. 

Hoelder, S., Clarke, P. A. and Workman, P. (2012) 'Discovery of small molecule 
cancer drugs: Successes, challenges and opportunities', Molecular 
Oncology, 6(2), pp. 155-176. 

Hojjat-Farsangi, M., Moshfegh, A., Daneshmanesh, A. H., Khan, A. S., 
Mikaelsson, E., Österborg, A. and Mellstedt, H. (2014) 'The receptor 
tyrosine kinase ROR1 – An oncofetal antigen for targeted cancer therapy', 
Seminars in Cancer Biology, 29(0), pp. 21-31. 

Hojjat-Farsangi, M., Moshfegh, A., Daneshmanesh, A. H., Khan, A. S., 
Mikaelsson, E., Österborg, A. and Mellstedt, H. 'The receptor tyrosine 
kinase ROR1–an oncofetal antigen for targeted cancer therapy'. 2014: 
Elsevier, 21-31. 

Holschneider, C. H. and Berek, J. S. 'Ovarian cancer: epidemiology, biology, and 
prognostic factors'. 2000: Wiley Online Library, 3-10. 

Horikawa, I., Cable, P. L., Afshari, C. and Barrett, J. C. (1999) 'Cloning and 
characterization of the promoter region of human telomerase reverse 
transcriptase gene', Cancer research, 59(4), pp. 826-830. 

Hough, C. D., Sherman-Baust, C. A., Pizer, E. S., Montz, F. J., Im, D. D., 
Rosenshein, N. B., Cho, K. R., Riggins, G. J. and Morin, P. J. (2000) 
'Large-scale serial analysis of gene expression reveals genes differentially 
expressed in ovarian cancer', Cancer Research, 60(22), pp. 6281-6287. 

Huang, C., Li, M., Chen, C. and Yao, Q. (2008) 'Small interfering RNA therapy in 
cancer: mechanism, potential targets, and clinical applications', Expert 
opinion on therapeutic targets, 12(5), pp. 637-645. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 172 
 

Huang, H. C., Nguyen, T. and Pickett, C. B. (2000) 'Regulation of the antioxidant 
response element by protein kinase C-mediated phosphorylation of NF-
E2-related factor 2', Proceedings of the National Academy of Sciences, 
97(23), pp. 12475-12480. 

Huang, S., Armstrong, E. A., Benavente, S., Chinnaiyan, P. and Harari, P. M. 
(2004) 'Dual-agent molecular targeting of the epidermal growth factor 
receptor (EGFR)', Cancer Research, 64(15), pp. 5355-5362. 

Hudis, C. A. (2007) 'Trastuzumab—mechanism of action and use in clinical 
practice', New England Journal of Medicine, 357(1), pp. 39-51. 

Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, 
W., Berlin, J., Baron, A., Griffing, S. and Holmgren, E. (2004) 
'Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic 
colorectal cancer', New England journal of medicine, 350(23), pp. 2335-
2342. 

Hynes, N. E. and Lane, H. A. (2005) 'ERBB receptors and cancer: the complexity 
of targeted inhibitors', Nature Reviews Cancer, 5(5), pp. 341-354. 

Igarashi, K., Hoshino, H., Muto, A., Suwabe, N., Nishikawa, S., Nakauchi, H. and 
Yamamoto, M. (1998) 'Multivalent DNA binding complex generated by 
small Maf and Bach1 as a possible biochemical basis for β-globin locus 
control region complex', Journal of Biological Chemistry, 273(19), pp. 
11783-11790. 

Igarashi, K., Kataokat, K., Itoh, K., Hayashi, N., Nishizawa, M. and Yamamoto, M. 
(1994) 'Regulation of transcription by dimerization of erythroid factor NF-
E2 p45 with small Maf proteins', Nature, 367(6463), pp. 568-572. 

Iida, K. (2004) 'Nrf2 is essential for the chemopreventive efficacy of oltipraz 
against urinary bladder carcinogenesis', Cancer Res., 64, pp. 6424-6431. 

Ilkhani, H., Sarparast, M., Noori, A., Zahra Bathaie, S. and Mousavi, M. F. (2015) 
'Electrochemical aptamer/antibody based sandwich immunosensor for the 
detection of EGFR, a cancer biomarker, using gold nanoparticles as a 
signaling probe', Biosensors and Bioelectronics, 74, pp. 491-497. 

Imai, K. and Takaoka, A. (2006) 'Comparing antibody and small-molecule 
therapies for cancer', Nature Reviews Cancer, 6(9), pp. 714-727. 

Imhoff, B. R. and Hansen, J. M. (2010) 'Tert-butylhydroquinone induces 
mitochondrial oxidative stress causing Nrf2 activation', Cell biology and 
toxicology, 26(6), pp. 541-551. 

Itoh, K. (1997) 'An Nrf2/small Maf heterodimer mediates the induction of Phase II 
detoxifying enzyme genes through antioxidant response elements', 
Biochem. Biophys. Res. Commun., 236, pp. 313-322. 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 173 
 

Itoh, K., Igarashi, K., Hayashi, N., Nishizawa, M. and Yamamoto, M. (1995) 
'Cloning and characterization of a novel erythroid cell-derived CNC family 
transcription factor heterodimerizing with the small Maf family proteins', 
Molecular and Cellular Biology, 15(8), pp. 4184-4193. 

Ivey, J. W., Bonakdar, M., Kanitkar, A., Davalos, R. V. and Verbridge, S. S. 
(2016) 'Improving cancer therapies by targeting the physical and chemical 
hallmarks of the tumor microenvironment', Cancer letters, 380(1), pp. 330-
339. 

Jacobs, I. J., Menon, U., Ryan, A., Gentry-Maharaj, A., Burnell, M., Kalsi, J. K., 
Amso, N. N., Apostolidou, S., Benjamin, E., Cruickshank, D., Crump, D. 
N., Davies, S. K., Dawnay, A., Dobbs, S., Fletcher, G., Ford, J., Godfrey, 
K., Gunu, R., Habib, M., Hallett, R., Herod, J., Jenkins, H., Karpinskyj, C., 
Leeson, S., Lewis, S. J., Liston, W. R., Lopes, A., Mould, T., Murdoch, J., 
Oram, D., Rabideau, D. J., Reynolds, K., Scott, I., Seif, M. W., Sharma, A., 
Singh, N., Taylor, J., Warburton, F., Widschwendter, M., Williamson, K., 
Woolas, R., Fallowfield, L., McGuire, A. J., Campbell, S., Parmar, M. and 
Skates, S. J. (2016) 'Ovarian cancer screening and mortality in the UK 
Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a 
randomised controlled trial', The Lancet, 387(10022), pp. 945-956. 

Jayakumar, S., Pal, D. and Sandur, S. K. (2015) 'Nrf2 facilitates repair of 
radiation induced DNA damage through homologous recombination repair 
pathway in a ROS independent manner in cancer cells', Mutation 
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 779, 
pp. 33-45. 

Jeong, K. J., Cho, K. H., Panupinthu, N., Kim, H., Kang, J., Park, C. G., Mills, G. 
B. and Lee, H. Y. (2013) 'EGFR mediates LPA-induced proteolytic enzyme 
expression and ovarian cancer invasion: Inhibition by resveratrol', 
Molecular Oncology, 7(1), pp. 121-129. 

Jia, J., Zhu, F., Ma, X., Cao, Z. W., Li, Y. X. and Chen, Y. Z. (2009) 'Mechanisms 
of drug combinations: interaction and network perspectives', Nature 
reviews. Drug discovery, 8(2), pp. 111. 

Jiang, T. (2010) 'High levels of Nrf2 determine chemoresistance in type II 
endometrial cancer', Cancer Res., 70, pp. 5486-5496. 

Johnson, A. C. (1996) 'Activation of epidermal growth factor receptor gene 
transcription by phorbol 12-myristate 13-acetate is mediated by activator 
protein 2', Journal of Biological Chemistry, 271(6), pp. 3033-3038. 

Johnston, S. R. and Leary, A. (2006) 'Lapatinib: a novel EGFR/HER2 tyrosine 
kinase inhibitor for cancer', Drugs Today (Barc), 42(7), pp. 441-453. 

Jones, F. E. (2008) 'HER4 intracellular domain (4ICD) activity in the developing 
mammary gland and breast cancer', Journal of mammary gland biology 
and neoplasia, 13(2), pp. 247-258. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 174 
 

Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P. J., Ward, C. W. and 
Burgess, A. W. (2003) 'Epidermal growth factor receptor: mechanisms of 
activation and signalling', Experimental Cell Research, 284(1), pp. 31-53. 

Kaelin, W. G. (2005) 'The concept of synthetic lethality in the context of 
anticancer therapy', Nature reviews cancer, 5(9), pp. 689-698. 

Kageyama, R., Merlino, G. T. and Pastan, I. (1988) 'A transcription factor active 
on the epidermal growth factor receptor gene', Proceedings of the National 
Academy of Sciences, 85(14), pp. 5016-5020. 

Kang, H. J., Yi, Y. W., Hong, Y. B., Kim, H. J., Jang, Y.-J., Seong, Y.-S. and Bae, 
I. (2014a) 'HER2 confers drug resistance of human breast cancer cells 
through activation of NRF2 by direct interaction', Scientific reports, 4. 

Kang, H. J., Yi, Y. W., Hong, Y. B., Kim, H. J., Jang, Y.-J., Seong, Y.-S. and Bae, 
I. (2014b) 'HER2 confers drug resistance of human breast cancer cells 
through activation of NRF2 by direct interaction', Scientific Reports, 4, pp. 
7201. 

Kang, K. W., Lee, S. J. and Kim, S. G. (2005) 'Molecular mechanism of nrf2 
activation by oxidative stress', Antioxidants & redox signaling, 7(11-12), 
pp. 1664-1673. 

Kang, K. W., Ryu, J. H. and Kim, S. G. (2000) 'The essential role of 
phosphatidylinositol 3-kinase and of p38 mitogen-activated protein kinase 
activation in the antioxidant response element-mediated rGSTA2 induction 
by decreased glutathione in H4IIE hepatoma cells', Molecular 
pharmacology, 58(5), pp. 1017-1025. 

Kanninen, K. M., Pomeshchik, Y., Leinonen, H., Malm, T., Koistinaho, J. and 
Levonen, A.-L. (2015) 'Applications of the Keap1–Nrf2 system for gene 
and cell therapy', Free Radical Biology and Medicine, 88, pp. 350-361. 

Kapoun, M., Bouda, J., Presl, J., Vlasak, P. and Slunečko, R. (2015) 'Agressive 
small cell carcinoma of the ovary, hypercalcemic type, surgery and 
oncological treatment: case report', Ceska gynekologie, 80(3), pp. 218-
221. 

Karp, P. D., Paley, S. and Romero, P. (2002) 'The pathway tools software', 
Bioinformatics, 18(suppl 1), pp. S225-S232. 

Kascak, P., Zamecnik, M. and Bystricky, B. (2016) 'Small Cell Carcinoma of the 
Ovary (Hypercalcemic Type): Malignant Rhabdoid Tumor', Case reports in 
oncology, 9(2), pp. 305-311. 

Katz, M., Amit, I. and Yarden, Y. (2007) 'Regulation of MAPKs by growth factors 
and receptor tyrosine kinases', Biochimica et Biophysica Acta (BBA)-
Molecular Cell Research, 1773(8), pp. 1161-1176. 

Kensler, T. W. and Wakabayashi, N. (2010) 'Nrf2: friend or foe for 
chemoprevention?', Carcinogenesis, 31, pp. 90-99. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 175 
 

Khalil, H. and Deeni, Y. (2015) 'NRF2 inhibition causes repression of ATM and 
ATR expression leading to aberrant DNA Damage Response', 
BioDiscovery, 1. 

Khalil, H. S. (2012) 'Identification and characterization of novel autoregulatory 
mechanism controlling ataxia telangiectasia mutated gene expression, 
protein traffiking and function'. 

Khalil, H. S., Goltsov, A., Langdon, S. P., Harrison, D. J., Bown, J. and Deeni, Y. 
(2015) 'Quantitative analysis of NRF2 pathway reveals key elements of the 
regulatory circuits underlying antioxidant response and proliferation of 
ovarian cancer cells', Journal of Biotechnology, 202, pp. 12-30. 

Khalil, H. S., Langdon, S. P., Goltsov, A., Soininen, T., Harrison, D. J., Bown, J. 
and Deeni, Y. Y. (2016a) 'A novel mechanism of action of HER2 targeted 
immunotherapy is explained by inhibition of NRF2 function in ovarian 
cancer cells', Oncotarget. 

Khalil, H. S., Langdon, S. P., Kankia, I. H., Bown, J. and Deeni, Y. Y. (2016b) 
'NRF2 Regulates HER2 and HER3 Signaling Pathway to Modulate 
Sensitivity to Targeted Immunotherapies', Oxidative Medicine and Cellular 
Longevity, pp. 22. 

Kim, E.-Y., Choi, Y.-J., Park, C.-W. and Kang, I.-C. (2009) 'Erkitinib, a novel 
EGFR tyrosine kinase inhibitor screened using a ProteoChip system from 
a phytochemical library', Biochemical and Biophysical Research 
Communications, 389(3), pp. 415-419. 

Kim, I. and He, Y.-Y. (2014) 'Ultraviolet radiation-induced non-melanoma skin 
cancer: Regulation of DNA damage repair and inflammation', Genes & 
Diseases, 1(2), pp. 188-198. 

Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. 
C., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) 
'Specific association of human telomerase activity with immortal cells and 
cancer', Science, pp. 2011-2015. 

Kim, S.-J., Kim, J. M., Shim, S. H. and Chang, H. I. (2014) 'Anthocyanins 
accelerate the healing of naproxen-induced gastric ulcer in rats by 
activating antioxidant enzymes via modulation of Nrf2', Journal of 
Functional Foods, 7, pp. 569-579. 

Kim, S. K., Yang, J. W., Kim, M. R., Roh, S. H., Kim, H. G., Lee, K. Y., Jeong, H. 
G. and Kang, K. W. (2008) 'Increased expression of Nrf2/ARE-dependent 
anti-oxidant proteins in tamoxifen-resistant breast cancer cells', Free 
Radical Biology and Medicine, 45(4), pp. 537-546. 

Kim, Y. S., Lee, H. L., Lee, K. B., Park, J. H., Chung, W. Y., Lee, K. S., Sheen, S. 
S., Park, K. J. and Hwang, S. C. (2011) 'Nuclear factor E2-related factor 2 
dependent overexpression of sulfiredoxin and peroxiredoxin III in human 
lung cancer', The Korean journal of internal medicine, 26(3), pp. 304-313. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 176 
 

Kimball, K. J., Numnum, T. M., Kirby, T. O., Zamboni, W. C., Estes, J. M., 
Barnes, M. N., Matei, D. E., Koch, K. M. and Alvarez, R. D. (2008) 'A 
phase I study of lapatinib in combination with carboplatin in women with 
platinum sensitive recurrent ovarian carcinoma', Gynecologic oncology, 
111(1), pp. 95-101. 

Kitadai, Y., Yasui, W., Yokozaki, H., Kuniyasu, H., Haruma, K., Kajiyama, G. and 
Tahara, E. (1992) 'The level of a transcription factor Sp1 is correlated with 
the expression of EGF receptor in human gastric carcinomas', Biochemical 
and biophysical research communications, 189(3), pp. 1342-1348. 

Kitano, H. (2003) 'Cancer robustness: tumour tactics', Nature, 426(6963), pp. 
125-125. 

Klapper, L. N., Glathe, S., Vaisman, N., Hynes, N. E., Andrews, G. C., Sela, M. 
and Yarden, Y. (1999) 'The ErbB-2/HER2 oncoprotein of human 
carcinomas may function solely as a shared coreceptor for multiple 
stroma-derived growth factors', Proceedings of the National Academy of 
Sciences, 96(9), pp. 4995-5000. 

Klemm, F. and Joyce, J. A. (2015) 'Microenvironmental regulation of therapeutic 
response in cancer', Trends in cell biology, 25(4), pp. 198-213. 

Kobayashi, A., Ito, E., Toki, T., Kogame, K., Takahashi, S., Igarashi, K., Hayashi, 
N. and Yamamoto, M. (1999) 'Molecular cloning and functional 
characterization of a new Cap’n’collar family transcription factor Nrf3', 
Journal of Biological Chemistry, 274(10), pp. 6443-6452. 

Kobayashi, M. and Yamamoto, M. (2005) 'Molecular mechanisms activating the 
Nrf2-Keap1 pathway of antioxidant gene regulation', Antioxidants & redox 
signaling, 7(3-4), pp. 385-394. 

Kobayashi, M. and Yamamoto, M. (2006) 'Nrf2–Keap1 regulation of cellular 
defense mechanisms against electrophiles and reactive oxygen species', 
Advances in Enzyme Regulation, 46(1), pp. 113-140. 

Koustas, E., Karamouzis, M. V., Mihailidou, C., Schizas, D. and Papavassiliou, A. 
G. (2017) 'Co-targeting of EGFR and autophagy signaling is an emerging 
treatment strategy in metastatic colorectal cancer', Cancer Letters, 396, 
pp. 94-102. 

Kovac, S., Angelova, P. R., Holmström, K. M., Zhang, Y., Dinkova-Kostova, A. T. 
and Abramov, A. Y. (2015) 'Nrf2 regulates ROS production by 
mitochondria and NADPH oxidase', Biochimica et Biophysica Acta (BBA) - 
General Subjects, 1850(4), pp. 794-801. 

Krajka-Kuźniak, V., Paluszczak, J. and Baer-Dubowska, W. (2016) 'The Nrf2-
ARE signaling pathway: an update on its regulation and possible role in 
cancer prevention and treatment', Pharmacological Reports. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 177 
 

Krajka-Kuźniak, V., Paluszczak, J. and Baer-Dubowska, W. (2017) 'The Nrf2-
ARE signaling pathway: An update on its regulation and possible role in 
cancer prevention and treatment', Pharmacological Reports, 69(3), pp. 
393-402. 

Kris, M. G., Natale, R. B., Herbst, R. S., Lynch Jr, T. J., Prager, D., Belani, C. P., 
Schiller, J. H., Kelly, K., Spiridonidis, H. and Sandler, A. (2003) 'Efficacy of 
gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine 
kinase, in symptomatic patients with non–small cell lung cancer: a 
randomized trial', Jama, 290(16), pp. 2149-2158. 

Krähn, G., Leiter, U., Kaskel, P., Udart, M., Utikal, J., Bezold, G. and Peter, R. U. 
(2001) 'Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-
melanoma skin cancer', European Journal of Cancer, 37(2), pp. 251-259. 

Kuang, Y.-H., Shen, T., Chen, X., Sodani, K., Hopper-Borge, E., Tiwari, A. K., 
Lee, J. W. K. K., Fu, L.-W. and Chen, Z.-S. (2010) 'Lapatinib and erlotinib 
are potent reversal agents for MRP7 (ABCC10)-mediated multidrug 
resistance', Biochemical pharmacology, 79(2), pp. 154-161. 

Kundu, J. K. and Surh, Y.-J. (2010) 'Nrf2-Keap1 signaling as a potential target for 
chemoprevention of inflammation-associated carcinogenesis', 
Pharmaceutical research, 27(6), pp. 999-1013. 

Kwak, M.-K., Itoh, K., Yamamoto, M. and Kensler, T. W. (2002) 'Enhanced 
expression of the transcription factor Nrf2 by cancer chemopreventive 
agents: role of antioxidant response element-like sequences in the nrf2 
promoter', Molecular and cellular biology, 22(9), pp. 2883-2892. 

Kwak, M.-K., Wakabayashi, N., Itoh, K., Motohashi, H., Yamamoto, M. and 
Kensler, T. W. (2003) 'Modulation of gene expression by cancer 
chemopreventive dithiolethiones through the Keap1-Nrf2 pathway 
Identification of novel gene clusters for cell survival', Journal of Biological 
Chemistry, 278(10), pp. 8135-8145. 

Kwak, M. K. and Kensler, T. W. (2010) 'Targeting NRF2 signaling for cancer 
chemoprevention', Toxicol. Appl. Pharmacol., 244, pp. 66-76. 

Kweon, M.-H., Adhami, V. M., Lee, J.-S. and Mukhtar, H. (2006) 'Constitutive 
overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells 
contributes to resistance to apoptosis induced by epigallocatechin 3-
gallate', Journal of Biological Chemistry, 281(44), pp. 33761-33772. 

Labi, V. and Erlacher, M. (2015) 'How cell death shapes cancer', Cell death & 
disease, 6(3), pp. e1675. 

Langdon, S. and Cameron, D. (2013) 'Pertuzumab for the treatment of metastatic 
breast cancer', Expert Review of Anticancer Therapy, 13(8), pp. 907-918. 

Langdon, S. P., Faratian, D., Nagumo, Y., Mullen, P. and Harrison, D. J. (2010) 
'Pertuzumab for the treatment of ovarian cancer', Expert Opinion on 
Biological Therapy, 10(7), pp. 1113-1120. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 178 
 

Langdon, S. P., Lawrie, S. S., Hay, F. G., Hawkes, M. M., McDonald, A., 
Hayward, I. P., Schol, D. J., Hilgers, J., Leonard, R. C. F. and Smyth, J. F. 
(1988) 'Characterization and Properties of Nine Human Ovarian 
Adenocarcinoma Cell Lines', Cancer Research, 48(21), pp. 6166. 

Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. and Semenza, G. L. (2001) 
'HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α 
(HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular 
endothelial growth factor expression', Molecular and cellular biology, 
21(12), pp. 3995-4004. 

Ledermann, J. A. and Raja, F. A. (2010) 'Targeted trials in ovarian cancer', 
Gynecologic oncology, 119(1), pp. 151-156. 

Lee, A. W. and Templeman, C. and Stram, D. A. and Beesley, J. and Tyrer, J. 
and Berchuck, A. and Pharoah, P. P. and Chenevix-Trench, G. and 
Pearce, C. L. and Ness, R. B. and Dansonka-Mieszkowska, A. and 
Gentry-Maharaj, A. and Hein, A. and Whittemore, A. S. and Jensen, A. 
and du Bois, A. and Brooks-Wilson, A. and Rudolph, A. and Jakubowska, 
A. and Wu, A. H. and Ziogas, A. and Ekici, A. B. and Leminen, A. and 
Rosen, B. and Spiewankiewicz, B. and Karlan, B. Y. and Trabert, B. and 
Fridley, B. L. and Gilks, C. B. and Krakstad, C. and Phelan, C. M. and 
Cybulski, C. and Walsh, C. and Hogdall, C. and Cramer, D. W. and 
Huntsman, D. G. and Eccles, D. and Lambrechts, D. and Liang, D. and 
Levine, D. A. and Iversen, E. S. and Bandera, E. V. and Poole, E. M. and 
Goode, E. L. and Van Nieuwenhuysen, E. and Hogdall, E. and Bruinsma, 
F. and Heitz, F. and Modugno, F. and Giles, G. G. and Risch, H. A. and 
Baker, H. and Salvesen, H. B. and Nevanlinna, H. and Anton-Culver, H. 
and Song, H. and McNeish, I. and Campbell, I. G. and Vergote, I. and 
Runnebaum, I. B. and Tangen, I. L. and Schwaab, I. and Gronwald, J. and 
Paul, J. and Lubinski, J. and Doherty, J. A. and Chang-Claude, J. and 
Lester, J. and Schildkraut, J. M. and McLaughlin, J. R. and Lissowska, J. 
and Kupryjanczyk, J. and Kelley, J. L. and Rothstein, J. H. and 
Cunningham, J. M. and Lu, K. and Carty, K. and Terry, K. L. and Aben, K. 
K. H. and Moysich, K. B. and Wicklund, K. G. and Odunsi, K. and 
Kiemeney, L. A. and Sucheston-Campbell, L. and Lundvall, L. and 
Massuger, L. F. A. G. and Pelttari, L. M. and Kelemen, L. E. and Cook, L. 
S. and Bjorge, L. and Nedergaard, L. and Brinton, L. A. and Wilkens, L. R. 
and Pike, M. C. and Goodman, M. T. and Bisogna, M. and Rossing, M. A. 
and Beckmann, M. W. and Dürst, M. and Southey, M. C. and Kellar, M. 
and Hildebrandt, M. A. T. and Siddiqui, N. and Antonenkova, N. and 
Bogdanova, N. and Le, N. D. and Wentzensen, N. and Thompson, P. J. 
and Harrington, P. and Webb, P. M. and Fasching, P. A. and Hillemanns, 
P. and Harter, P. and Sobiczewski, P. and Weber, R. P. and Butzow, R. 
and Edwards, R. P. and Vierkant, R. A. and Glasspool, R. and Orsulic, S. 
and Lambrechts, S. and Olson, S. H. and Wang-Gohrke, S. and Lele, S. 
and Tworoger, S. S. and Gayther, S. A. and Missmer, S. A. and Narod, S. 
A. and Ramus, S. J. and Kjaer, S. K. and Pejovic, T. and Dörk, T. and 
Eilber, U. and Menon, U. and McGuire, V. and Sieh, W. and Wu, X. and 
Bean, Y. and Shvetsov, Y. B. (2016a) 'Evidence of a genetic link between 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 179 
 

endometriosis and ovarian cancer', Fertility and Sterility, 105(1), pp. 35-
43.e10. 

Lee, C.-H., Huntsman, D. G., Cheang, M. C. U., Parker, R. L., Brown, L., 
Hoskins, P., Miller, D. and Gilks, C. B. (2005) 'Assessment of Her-1, Her-2, 
And Her-3 expression and Her-2 amplification in advanced stage ovarian 
carcinoma', International Journal of Gynecological Pathology, 24(2), pp. 
147-152. 

Lee, H. and Maihle, N. J. (1998) 'Isolation and characterization of four alternate c-
erbB3 transcripts expressed in ovarian carcinoma-derived cell lines and 
normal human tissues', Oncogene, 16(25), pp. 3243-3252. 

Lee, I.-S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y. and Choi, H. J. 
(2011) 'Anti-inflammatory activity of xanthohumol involves heme 
oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells', 
Neurochemistry International, 58(2), pp. 153-160. 

Lee, J., Kang, U., Seo, E. K. and Kim, Y. S. (2016b) 'Heme oxygenase-1-
mediated anti-inflammatory effects of tussilagonone on macrophages and 
12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice', 
International Immunopharmacology, 34, pp. 155-164. 

Lee, J.-S. and Surh, Y.-J. (2005) 'Nrf2 as a novel molecular target for 
chemoprevention', Cancer letters, 224(2), pp. 171-184. 

Lee-Jones, L. (2003) 'Ovary: germ cell tumors'. 

Leone, A., Roca, M. S., Ciardiello, C., Terranova-Barberio, M., Vitagliano, C., 
Ciliberto, G., Mancini, R., Di Gennaro, E., Bruzzese, F. and Budillon, A. 
(2015) 'Vorinostat synergizes with EGFR inhibitors in NSCLC cells by 
increasing ROS via up-regulation of the major mitochondrial porin VDAC1 
and modulation of the c-Myc-NRF2-KEAP1 pathway', Free Radical Biology 
and Medicine, 89, pp. 287-299. 

Leveque, D. (2008) 'Off-label use of anticancer drugs', The lancet oncology, 
9(11), pp. 1102-1107. 

Levitzki, A. (1999) 'Protein tyrosine kinase inhibitors as novel therapeutic agents', 
Pharmacology & therapeutics, 82(2), pp. 231-239. 

Levitzki, A. (2000) 'Protein tyrosine kinase inhibitors as novel therapeutic agents', 
CANCER DRUG DISCOVERY AND DEVELOPMENT, 5, pp. 453-466. 

Levitzki, A. and Mishani, E. (2006) 'Tyrphostins and other tyrosine kinase 
inhibitors', Annu. Rev. Biochem., 75, pp. 93-109. 

Lheureux, S., Krieger, S., Weber, B., Pautier, P., Fabbro, M., Selle, F., Bourgeois, 
H., Petit, T., Lortholary, A. and Plantade, A. (2012) 'Expected benefits of 
topotecan combined with lapatinib in recurrent ovarian cancer according to 
biological profile: a phase 2 trial', International Journal of Gynecological 
Cancer, 22(9), pp. 1483-1488. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 180 
 

Li, C., Xu, X., Tao, Z., Wang, X. J. and Pan, Y. (2015) 'Resveratrol dimers, 
nutritional components in grape wine, are selective ROS scavengers and 
weak Nrf2 activators', Food Chemistry, 173, pp. 218-223. 

Li, Q., Jiang, H., Li, H., Xu, R., Shen, L., Yu, Y., Wang, Y., Cui, Y., Li, W., Yu, S. 
and Liu, T. (2016) 'Efficacy of trastuzumab beyond progression in HER2 
positive advanced gastric cancer: a multicenter prospective observational 
cohort study', Oncotarget, 7(31), pp. 50656-50665. 

Li, S., Li, J., Shen, C., Zhang, X., Sun, S., Cho, M., Sun, C. and Song, Z. (2014) 
'tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via 
inducing autophagy independently of Nrf2 activation', Biochimica et 
Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1841(1), pp. 
22-33. 

Li, W., Huang, Y., Yang, B., Chi, X. H., Liu, L. H., Zhang, F., Yan, J. W. and Lu, 
X. C. (2010) 'Cloning of ID4 gene expression regulation promoter and 
subcloning of recombinant ID4 promoter luciferase reporter', Zhongguo shi 
yan xue ye xue za zhi, 18(2), pp. 421-426. 

Li, W., Yu, S., Liu, T., Kim, J.-H., Blank, V., Li, H. and Kong, A. N. T. (2008a) 
'Heterodimerization with small Maf proteins enhances nuclear retention of 
Nrf2 via masking the NESzip motif', Biochimica et Biophysica Acta (BBA) - 
Molecular Cell Research, 1783(10), pp. 1847-1856. 

Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M.-F., 
Hilsenbeck, S. G., Pavlick, A., Zhang, X. and Chamness, G. C. (2008b) 
'Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy', 
Journal of the National Cancer Institute, 100(9), pp. 672-679. 

Limaye, S. A., Posner, M. R., Krane, J. F., Fonfria, M., Lorch, J. H., Dillon, D. A., 
Shreenivas, A. V., Tishler, R. B. and Haddad, R. I. (2013) 'Trastuzumab for 
the treatment of salivary duct carcinoma', The oncologist, 18(3), pp. 294-
300. 

Limonciel, A. and Jennings, P. (2014) 'A review of the evidence that ochratoxin A 
is an Nrf2 inhibitor: implications for nephrotoxicity and renal 
carcinogenicity', Toxins, 6(1), pp. 371-379. 

Lin, W.-L., Kuo, W.-H., Chen, F.-L., Lee, M.-Y., Ruan, A., Tyan, Y.-S., Hsu, J.-D., 
Chiang, H. and Han, C.-P. (2011) 'Identification of the coexisting HER2 
gene amplification and novel mutations in the HER2 protein-
overexpressed mucinous epithelial ovarian cancer', Annals of surgical 
oncology, 18(8), pp. 2388-2394. 

Linggi, B. and Carpenter, G. (2006) 'ErbB receptors: new insights on mechanisms 
and biology', Trends in Cell Biology, 16(12), pp. 649-656. 

Liou, G.-Y. and Storz, P. (2010) 'Reactive oxygen species in cancer', Free radical 
research, 44(5), pp. 10.3109/10715761003667554. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 181 
 

Lister, A., Nedjadi, T., Kitteringham, N. R., Campbell, F., Costello, E., Lloyd, B., 
Copple, I. M., Williams, S., Owen, A. and Neoptolemos, J. P. (2011) 'Nrf2 
is overexpressed in pancreatic cancer: implications for cell proliferation 
and therapy', Molecular cancer, 10(1), pp. 37. 

Liu, Y., Chen, F., Wang, S., Guo, X., Shi, P., Wang, W. and Xu, B. (2013) 'Low-
dose triptolide in combination with idarubicin induces apoptosis in AML 
leukemic stem-like KG1a cell line by modulation of the intrinsic and 
extrinsic factors', Cell death & disease, 4(12), pp. e948. 

Loman, N. J., Constantinidou, C., Chan, J. Z. M., Halachev, M., Sergeant, M., 
Penn, C. W., Robinson, E. R. and Pallen, M. J. (2012) 'High-throughput 
bacterial genome sequencing: an embarrassment of choice, a world of 
opportunity', Nature Reviews Microbiology, 10(9), pp. 599-606. 

Lu, C., Zou, Y., Liu, Y. and Niu, Y. (2017) 'Rosmarinic acid counteracts activation 
of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: 
Involvement of Nrf2 antioxidant system', Toxicology and Applied 
Pharmacology, 318, pp. 69-78. 

Luen, S. J., Salgado, R., Fox, S., Savas, P., Eng-Wong, J., Clark, E., Kiermaier, 
A., Swain, S. M., Baselga, J., Michiels, S. and Loi, S. (2017) 'Tumour-
infiltrating lymphocytes in advanced HER2-positive breast cancer treated 
with pertuzumab or placebo in addition to trastuzumab and docetaxel: a 
retrospective analysis of the CLEOPATRA study', The Lancet Oncology, 
18(1), pp. 52-62. 

Luo, J., Solimini, N. L. and Elledge, S. J. (2009) 'Principles of Cancer Therapy: 
Oncogene and Non-oncogene Addiction', Cell, 136(5), pp. 823-837. 

Ma, J., Lyu, H., Huang, J. and Liu, B. (2014) 'Targeting of erbB3 receptor to 
overcome resistance in cancer treatment', Molecular cancer, 13(1), pp. 
105. 

Ma, Q. (2013) 'Role of nrf2 in oxidative stress and toxicity', Annual review of 
pharmacology and toxicology, 53, pp. 401-426. 

MacConaill, L. E. and Garraway, L. A. (2010) 'Clinical implications of the cancer 
genome', Journal of Clinical Oncology, 28(35), pp. 5219-5228. 

Madhusudan, S. and Ganesan, T. S. (2004) 'Tyrosine kinase inhibitors in cancer 
therapy', Clinical Biochemistry, 37(7), pp. 618-635. 

Maihle, N. J., Baron, A. T., Barrette, B. A., Boardman, C. H., Christensen, T. A., 
Cora, E. M., Faupel-Badger, J. M., Greenwood, T., Juneja, S. C. and 
Lafky, J. M. (2002) 'EGF/ErbB receptor family in ovarian cancer',  Ovarian 
Cancer: Springer, pp. 247-258. 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 182 
 

Makhija, S., Amler, L. C., Glenn, D., Ueland, F. R., Gold, M. A., Dizon, D. S., 
Paton, V., Lin, C.-Y., Januario, T., Ng, K., Strauss, A., Kelsey, S., 
Sliwkowski, M. X. and Matulonis, U. (2010) 'Clinical Activity of Gemcitabine 
Plus Pertuzumab in Platinum-Resistant Ovarian Cancer, Fallopian Tube 
Cancer, or Primary Peritoneal Cancer', Journal of Clinical Oncology, 28(7), 
pp. 1215-1223. 

Malik, V., Dhanjal, J. K., Kumari, A., Radhakrishnan, N., Singh, K. and Sundar, D. 
(2017) 'Function and structure-based screening of compounds, peptides 
and proteins to identify drug candidates', Methods. 

Maly, J. J. and Macrae, E. R. (2014) 'Pertuzumab in Combination with 
Trastuzumab and Chemotherapy in the Treatment of HER2-Positive 
Metastatic Breast Cancer: Safety, Efficacy, and Progression Free 
Survival', Breast Cancer : Basic and Clinical Research, 8, pp. 81-88. 

Manandhar, S., Choi, B.-h., Jung, K.-A., Ryoo, I.-g., Song, M., Kang, S. J., Choi, 
H.-G., Kim, J.-A., Park, P.-H. and Kwak, M.-K. (2012) 'NRF2 inhibition 
represses ErbB2 signaling in ovarian carcinoma cells: Implications for 
tumor growth retardation and docetaxel sensitivity', Free Radical Biology 
and Medicine, 52(9), pp. 1773-1785. 

Manley, P. W., Cowan-Jacob, S. W., Buchdunger, E., Fabbro, D., Fendrich, G., 
Furet, P., Meyer, T. and Zimmermann, J. (2002) 'Imatinib: a selective 
tyrosine kinase inhibitor', European Journal of Cancer, 38, Supplement 
5(0), pp. S19-S27. 

Mansoori, B., Shotorbani, S. S. and Baradaran, B. (2014) 'RNA interference and 
its role in cancer therapy', Advanced pharmaceutical bulletin, 4(4), pp. 313. 

Maps, I. I. V. 'pGEMŪ-T and pGEMŪ-T Easy Vector Systems'. 

Marmor, M. D., Skaria, K. B. and Yarden, Y. (2004) 'Signal transduction and 
oncogenesis by ErbB/HER receptors', International Journal of Radiation 
Oncology* Biology* Physics, 58(3), pp. 903-913. 

Mass, R. D. (2004) 'The HER receptor family: a rich target for therapeutic 
development', International Journal of Radiation 
Oncology*Biology*Physics, 58(3), pp. 932-940. 

Matar, P., Rojo, F., Cassia, R., Moreno-Bueno, G., Di Cosimo, S., Tabernero, J., 
Guzmán, M., Rodriguez, S., Arribas, J. and Palacios, J. (2004) 'Combined 
epidermal growth factor receptor targeting with the tyrosine kinase inhibitor 
gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225)', 
Clinical Cancer Research, 10(19), pp. 6487-6501. 

McAlpine, J. N., Wiegand, K. C., Vang, R., Ronnett, B. M., Adamiak, A., Köbel, 
M., Kalloger, S. E., Swenerton, K. D., Huntsman, D. G. and Gilks, C. B. 
(2009) 'HER2 overexpression and amplification is present in a subset of 
ovarian mucinous carcinomas and can be targeted with trastuzumab 
therapy', BMC cancer, 9(1), pp. 433. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 183 
 

McCubrey, J. A., Abrams, S. L., Fitzgerald, T. L., Cocco, L., Martelli, A. M., 
Montalto, G., Cervello, M., Scalisi, A., Candido, S., Libra, M. and 
Steelman, L. S. (2015) 'Roles of signaling pathways in drug resistance, 
cancer initiating cells and cancer progression and metastasis', Advances 
in Biological Regulation, 57, pp. 75-101. 

McMahon, M., Campbell, K. H., MacLeod, A. K., McLaughlin, L. A., Henderson, 
C. J. and Wolf, C. R. (2014) 'HDAC Inhibitors Increase NRF2-Signaling in 
Tumour Cells and Blunt the Efficacy of Co-Adminstered Cytotoxic Agents', 
PLoS ONE, 9(11), pp. e114055. 

Meden, H. and Kuhn, W. (1997) 'Overexpression of the oncogene c-erbB-2 
(HER2/neu) in ovarian cancer: a new prognostic factor', European Journal 
of Obstetrics & Gynecology and reproductive biology, 71(2), pp. 173-179. 

Mehta, N., Wayne, A. S., Kim, Y. H., Hale, G. A., Alvarado, C. S., Myskowski, P., 
Jaffe, E. S., Busam, K. J., Pulitzer, M. and Zwerner, J. (2012) 'Bexarotene 
is active against subcutaneous panniculitis-like T-cell lymphoma in adult 
and pediatric populations', Clinical Lymphoma Myeloma and Leukemia, 
12(1), pp. 20-25. 

Mendelsohn, J. and Baselga, J. (2000) 'The EGF receptor family as targets for 
cancer therapy', Oncogene, 19(56), pp. 6550. 

Merino, M. J. and Jaffe, G. (1993) 'Age contrast in ovarian pathology', Cancer, 
71(S2), pp. 537-544. 

Messersmith, W. A. and Ahnen, D. J. (2008) 'Targeting EGFR in colorectal 
cancer', N engl j Med, 359(17), pp. 1834-1836. 

Mester, J. and Redeuilh, G. (2008) 'Proliferation of breast cancer cells: regulation, 
mediators, targets for therapy', Anti-Cancer Agents in Medicinal Chemistry 
(Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 8(8), pp. 872-
885. 

Mohler, J., Mahaffey, J. W., Deutsch, E. and Vani, K. (1995) 'Control of 
Drosophila head segment identity by the bZIP homeotic gene cnc', 
Development, 121(1), pp. 237-247. 

Mohler, J., Vani, K., Leung, S. and Epstein, A. (1991) 'Segmentally restricted, 
cephalic expression of a leucine zipper gene during Drosophila 
embryogenesis', Mechanisms of development, 34(1), pp. 3-9. 

Moi, P., Chan, K., Asunis, I., Cao, A. and Kan, Y. W. (1994) 'Isolation of NF-E2-
related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional 
activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin 
locus control region', Proceedings of the National Academy of Sciences of 
the United States of America, 91(21), pp. 9926-9930. 

Molina, M. A., Codony-Servat, J., Albanell, J., Rojo, F., Arribas, J. and Baselga, J. 
(2001) 'Trastuzumab (herceptin), a humanized anti-Her2 receptor 
monoclonal antibody, inhibits basal and activated Her2 ectodomain 
cleavage in breast cancer cells', Cancer research, 61(12), pp. 4744-4749. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 184 
 

Montemurro, F., Valabrega, G. and Aglietta, M. (2007) 'Lapatinib: a dual inhibitor 
of EGFR and HER2 tyrosine kinase activity', Expert opinion on biological 
therapy, 7(2), pp. 257-268. 

Montero, J. C., García-Alonso, S., Ocaña, A. and Pandiella, A. (2015) 
'Identification of therapeutic targets in ovarian cancer through active 
tyrosine kinase profiling', Oncotarget, 6(30), pp. 30057-30071. 

 

Moulder, S. L., Yakes, F. M., Muthuswamy, S. K., Bianco, R., Simpson, J. F. and 
Arteaga, C. L. (2001) 'Epidermal growth factor receptor (HER1) tyrosine 
kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-
overexpressing breast cancer cells in vitro and in vivo', Cancer research, 
61(24), pp. 8887-8895. 

Mullen, P., Cameron, D. A., Hasmann, M., Smyth, J. F. and Langdon, S. P. 
(2007) 'Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-
talk with estrogen receptor signaling', Molecular Cancer Therapeutics, 
6(1), pp. 93. 

Murphy, M. and Stordal, B. (2011) 'Erlotinib or gefitinib for the treatment of 
relapsed platinum pretreated non-small cell lung cancer and ovarian 
cancer: A systematic review', Drug Resistance Updates, 14(3), pp. 177-
190. 

Muto, A., Hoshino, H., Madisen, L., Yanai, N., Obinata, M., Karasuyama, H., 
Hayashi, N., Nakauchi, H., Yamamoto, M. and Groudine, M. (1998) 
'Identification of Bach2 as a B‐cell‐specific partner for small Maf proteins 
that negatively regulate the immunoglobulin heavy chain gene 3′ 
enhancer', The EMBO journal, 17(19), pp. 5734-5743. 

Na, H.-K., Kim, E.-H., Jung, J.-H., Lee, H.-H., Hyun, J.-W. and Surh, Y.-J. (2008) 
'(−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme 
expression via activation of PI3K and ERK in human mammary epithelial 
cells', Archives of Biochemistry and Biophysics, 476(2), pp. 171-177. 

Nagumo, Y., Faratian, D., Mullen, P., Harrison, D. J., Hasmann, M. and Langdon, 
S. P. (2009a) 'Modulation of HER3 is a marker of dynamic cell signaling in 
ovarian cancer: implications for pertuzumab sensitivity', Molecular Cancer 
Research, 7(9), pp. 1563-1571. 

Nagumo, Y., Faratian, D., Mullen, P., Harrison, D. J., Hasmann, M. and Langdon, 
S. P. (2009b) 'Modulation of HER3 Is a Marker of Dynamic Cell Signaling 
in Ovarian Cancer: Implications for Pertuzumab Sensitivity', Molecular 
Cancer Research, 7(9), pp. 1563. 

Nahta, R., Hung, M.-C. and Esteva, F. J. (2004) 'The HER-2-targeting antibodies 
trastuzumab and pertuzumab synergistically inhibit the survival of breast 
cancer cells', Cancer research, 64(7), pp. 2343-2346. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 185 
 

Namani, A., Li, Y., Wang, X. J. and Tang, X. (2014) 'Modulation of NRF2 
signaling pathway by nuclear receptors: Implications for cancer', 
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(9), 
pp. 1875-1885. 

Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. (2003) 
'Increased protein stability as a mechanism that enhances Nrf2-mediated 
transcriptional activation of the antioxidant response element Degradation 
of Nrf2 by the 26 S proteasome', Journal of Biological Chemistry, 278(7), 
pp. 4536-4541. 

Nicholas, M. K., Lukas, R. V., Jafri, N. F., Faoro, L. and Salgia, R. (2006) 
'Epidermal growth factor receptor–mediated signal transduction in the 
development and therapy of gliomas', Clinical Cancer Research, 12(24), 
pp. 7261-7270. 

No, J. H., Kim, Y.-B. and Song, Y. S. (2014) 'Targeting Nrf2 Signaling to Combat 
Chemoresistance', Journal of Cancer Prevention, 19(2), pp. 111-117. 

Noonberg, S. B. and Benz, C. C. (2000) 'Tyrosine kinase inhibitors targeted to the 
epidermal growth factor receptor subfamily', Drugs, 59(4), pp. 753-767. 

Normanno, N., Bianco, C., De Luca, A., Maiello, M. R. and Salomon, D. S. (2003) 
'Target-based agents against ErbB receptors and their ligands: a novel 
approach to cancer treatment', Endocrine-related cancer, 10(1), pp. 1-21. 

Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., 
Carotenuto, A., De Feo, G., Caponigro, F. and Salomon, D. S. (2006) 
'Epidermal growth factor receptor (EGFR) signaling in cancer', Gene, 
366(1), pp. 2-16. 

Nwabo Kamdje, A. H., Seke Etet, P. F., Vecchio, L., Muller, J. M., Krampera, M. 
and Lukong, K. E. (2014) 'Signaling pathways in breast cancer: 
Therapeutic targeting of the microenvironment', Cellular Signalling, 26(12), 
pp. 2843-2856. 

O'Mealey, G. B., Berry, W. L. and Plafker, S. M. (2017) 'Sulforaphane is a Nrf2-
independent inhibitor of mitochondrial fission', Redox Biology, 11, pp. 103-
110. 

O'Sullivan, C. C. and Connolly, R. M. (2014) 'Pertuzumab and its accelerated 
approval: evolving treatment paradigms and new challenges in the 
management of HER2-positive breast cancer', Oncology, 28(3), pp. 186-
186. 

Oberaigner, W., Minicozzi, P., Bielska-Lasota, M., Allemani, C., De Angelis, R., 
Mangone, L., Sant, M. and Eurocare Working, G. (2012) 'Survival for 
ovarian cancer in Europe: the across-country variation did not shrink in the 
past decade', Acta oncologica, 51(4), pp. 441-453. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 186 
 

Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, 
T., Kobayashi, A., Yokota, J. and Sakiyama, T. (2008) 'Loss of Keap1 
function activates Nrf2 and provides advantages for lung cancer cell 
growth', Cancer research, 68(5), pp. 1303-1309. 

Okazaki, S., Nakatani, F., Masuko, K., Tsuchihashi, K., Ueda, S., Masuko, T., 
Saya, H. and Nagano, O. (2016) 'Development of an ErbB4 monoclonal 
antibody that blocks neuregulin-1-induced ErbB4 activation in cancer 
cells', Biochemical and Biophysical Research Communications, 470(1), pp. 
239-244. 

Olayanju, A., Copple, I. M., Bryan, H. K., Edge, G. T., Sison, R. L., Wong, M. W., 
Lai, Z.-Q., Lin, Z.-X., Dunn, K., Sanderson, C. M., Alghanem, A. F., Cross, 
M. J., Ellis, E. C., Ingelman-Sundberg, M., Malik, H. Z., Kitteringham, N. 
R., Goldring, C. E. and Park, B. K. (2015) 'Brusatol provokes a rapid and 
transient inhibition of Nrf2 signaling and sensitizes mammalian cells to 
chemical toxicity—implications for therapeutic targeting of Nrf2', Free 
Radical Biology and Medicine, 78, pp. 202-212. 

Omar, N., Yan, B. and Salto-Tellez, M. (2015) 'HER2: An emerging biomarker in 
non-breast and non-gastric cancers', Pathogenesis, 2(3), pp. 1-9. 

Oyake, T., Itoh, K., Motohashi, H., Hayashi, N., Hoshino, H., Nishizawa, M., 
Yamamoto, M. and Igarashi, K. (1996) 'Bach proteins belong to a novel 
family of BTB-basic leucine zipper transcription factors that interact with 
MafK and regulate transcription through the NF-E2 site', Molecular and 
cellular biology, 16(11), pp. 6083-6095. 

Padmanabhan, B., Tong, K. I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, 
M., Kang, M.-I., Kobayashi, A., Yokoyama, S. and Yamamoto, M. (2006) 
'Structural Basis for Defects of Keap1 Activity Provoked by Its Point 
Mutations in Lung Cancer', Molecular Cell, 21(5), pp. 689-700. 

Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, 
P., Kaye, F. J., Lindeman, N. and Boggon, T. J. (2004) 'EGFR mutations in 
lung cancer: correlation with clinical response to gefitinib therapy', 
Science, 304(5676), pp. 1497-1500. 

Pandey, P., Singh, A. K., Singh, M., Tewari, M., Shukla, H. S. and Gambhir, I. S. 
(2017) 'The see-saw of Keap1-Nrf2 pathway in Cancer', Critical Reviews in 
Oncology/Hematology. 

Papadavid, E., Antoniou, C., Nikolaou, V., Siakantaris, M., Vassilakopoulos, T. P., 
Stratigos, A., Stavrianeas, N. and Katsambas, A. (2008) 'Safety and 
efficacy of low-dose bexarotene and PUVA in the treatment of patients 
with mycosis fungoides', American journal of clinical dermatology, 9(3), pp. 
169. 

Park, E. J., Lim, J. H., Nam, S. I., Park, J. W. and Kwon, T. K. (2010) 'Rottlerin 
induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen 
species (ROS) dependent and PKC δ-independent pathway in human 
colon cancer HT29 cells', Biochimie, 92(1), pp. 110-115. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 187 
 

Pautier, P., Ribrag, V., Duvillard, P., Rey, A., Elghissassi, I., Sillet-Bach, I., 
Kerbrat, P., Mayer, F., Lesoin, A. and Brun, B. (2007) 'Results of a 
prospective dose-intensive regimen in 27 patients with small cell 
carcinoma of the ovary of the hypercalcemic type', Annals of oncology, 
18(12), pp. 1985-1989. 

Pearson, K. J., Lewis, K. N., Price, N. L., Chang, J. W., Perez, E., Cascajo, M. V., 
Tamashiro, K. L., Poosala, S., Csiszar, A., Ungvari, Z., Kensler, T. W., 
Yamamoto, M., Egan, J. M., Longo, D. L., Ingram, D. K., Navas, P. and de 
Cabo, R. (2008) 'Nrf2 mediates cancer protection but not prolongevity 
induced by caloric restriction', Proceedings of the National Academy of 
Sciences of the United States of America, 105(7), pp. 2325-2330. 

Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. and Sood, A. K. 
(2011) 'RNA interference in the clinic: challenges and future directions', 
Nature reviews. Cancer, 11(1), pp. 59. 

Permuth-Wey, J. and Sellers, T. A. (2009) 'Epidemiology of ovarian cancer', 
Cancer Epidemiology: Modifiable Factors, pp. 413-437. 

Persengiev, S. P., Zhu, X. and Green, M. R. (2004) 'Nonspecific, concentration-
dependent stimulation and repression of mammalian gene expression by 
small interfering RNAs (siRNAs)', Rna, 10(1), pp. 12-18. 

Phelps, S. L. B., Schorge, J. O., Peyton, M. J., Shigematsu, H., Xiang, L.-L., 
Miller, D. S. and Lea, J. S. (2008) 'Implications of EGFR inhibition in 
ovarian cancer cell proliferation', Gynecologic oncology, 109(3), pp. 411-
417. 

Pirker, R., Pereira, J. R., Szczesna, A., Von Pawel, J., Krzakowski, M., Ramlau, 
R., Vynnychenko, I., Park, K., Yu, C.-T. and Ganul, V. (2009) 'Cetuximab 
plus chemotherapy in patients with advanced non-small-cell lung cancer 
(FLEX): an open-label randomised phase III trial', The Lancet, 373(9674), 
pp. 1525-1531. 

Poillet-Perez, L., Despouy, G., Delage-Mourroux, R. and Boyer-Guittaut, M. 
(2015) 'Interplay between ROS and autophagy in cancer cells, from tumor 
initiation to cancer therapy', Redox Biology, 4, pp. 184-192. 

Polli, J. W., Olson, K. L., Chism, J. P., John-Williams, L. S., Yeager, R. L., 
Woodard, S. M., Otto, V., Castellino, S. and Demby, V. E. (2009) 'An 
unexpected synergist role of P-glycoprotein and breast cancer resistance 
protein on the central nervous system penetration of the tyrosine kinase 
inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl) oxy] phenyl}-6-[5-({[2-
(methylsulfonyl) ethyl] amino} methyl)-2-furyl]-4-quinazolinamine; 
GW572016)', Drug Metabolism and Disposition, 37(2), pp. 439-442. 

Powell, J. L., McAfee, R. D., McCoy, R. C. and Shiro, B. S. (1998) 'Uterine and 
ovarian conservation in advanced small cell carcinoma of the ovary', 
Obstetrics & Gynecology, 91(5), pp. 846-848. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 188 
 

Prasad, S., Gupta, S. C. and Tyagi, A. K. (2017) 'Reactive oxygen species (ROS) 
and cancer: Role of antioxidative nutraceuticals', Cancer Letters, 387, pp. 
95-105. 

Praslicka, B. J., Kerins, M. J. and Ooi, A. (2016) 'The complex role of NRF2 in 
cancer: A genomic view', Current Opinion in Toxicology, 1, pp. 37-45. 

Prenzel, N., Fischer, O. M., Streit, S., Hart, S. and Ullrich, A. (2001) 'The 
epidermal growth factor receptor family as a central element for cellular 
signal transduction and diversification', Endocrine-related cancer, 8(1), pp. 
11-31. 

Præstegaard, C., Kjaer, S. K., Nielsen, T. S. S., Jensen, S. M., Webb, P. M., 
Nagle, C. M., Høgdall, E., Risch, H. A., Rossing, M. A., Doherty, J. A., 
Wicklund, K. G., Goodman, M. T., Modugno, F., Moysich, K., Ness, R. B., 
Edwards, R. P., Goode, E. L., Winham, S. J., Fridley, B. L., Cramer, D. W., 
Terry, K. L., Schildkraut, J. M., Berchuck, A., Bandera, E. V., Paddock, L., 
Kiemeney, L. A., Massuger, L. F., Wentzensen, N., Pharoah, P., Song, H., 
Whittemore, A. S., McGuire, V., Sieh, W., Rothstein, J., Anton-Culver, H., 
Ziogas, A., Menon, U., Gayther, S. A., Ramus, S. J., Gentry-Maharaj, A., 
Wu, A. H., Pearce, C. L., Pike, M. C., Lee, A. W., Chang-Claude, J. and 
Jensen, A. (2016) 'The association between socioeconomic status and 
tumour stage at diagnosis of ovarian cancer: A pooled analysis of 18 case-
control studies', Cancer Epidemiology, 41, pp. 71-79. 

Psyrri, A., Kassar, M., Yu, Z., Bamias, A., Weinberger, P. M., Markakis, S., 
Kowalski, D., Camp, R. L., Rimm, D. L. and Dimopoulos, M. A. (2005) 
'Effect of epidermal growth factor receptor expression level on survival in 
patients with epithelial ovarian cancer', Clinical Cancer Research, 11(24), 
pp. 8637-8643. 

Qi, L. S., Guo, Y. Y., Zhang, P., Cao, X. R. and Luan, Y. X. (2016) 'Preventive 
and Therapeutic Effects of the Retinoid X Receptor Agonist Bexarotene on 
Tumors', Current Drug Metabolism, 17(2), pp. 118-128. 

Qiu, C., Tarrant, M. K., Choi, S. H., Sathyamurthy, A., Bose, R., Banjade, S., Pal, 
A., Bornmann, W. G., Lemmon, M. A., Cole, P. A. and Leahy, D. J. (2008) 
'Mechanism of Activation and Inhibition of the HER4/ErbB4 Kinase', 
Structure, 16(3), pp. 460-467. 

Quéreux, G., Saint-Jean, M., Peuvrel, L., Brocard, A., Knol, A.-C. and Dréno, B. 
(2013) 'Bexarotene in cutaneous T-cell lymphoma: third retrospective 
study of long-term cohort and review of the literature', Expert Opinion on 
Pharmacotherapy, 14(13), pp. 1711-1721. 

Ramos-Gomez, M., Kwak, M.-K., Dolan, P. M., Itoh, K., Yamamoto, M., Talalay, 
P. and Kensler, T. W. (2001) 'Sensitivity to carcinogenesis is increased 
and chemoprotective efficacy of enzyme inducers is lost in nrf2 
transcription factor-deficient mice', Proceedings of the National Academy 
of Sciences, 98(6), pp. 3410-3415. 

Reczek, C. R. and Chandel, N. S. (2017) 'The Two Faces of Reactive Oxygen 
Species in Cancer'. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 189 
 

Reese, D. M. and Slamon, D. J. (1997) 'HER‐2/neu Signal Transduction in 
Human Breast and Ovarian Cancer', Stem cells, 15(1), pp. 1-8. 

Regales, L., Gong, Y., Shen, R., de Stanchina, E., Vivanco, I., Goel, A., Koutcher, 
J. A., Spassova, M., Ouerfelli, O. and Mellinghoff, I. K. (2009) 'Dual 
targeting of EGFR can overcome a major drug resistance mutation in 
mouse models of EGFR mutant lung cancer', The Journal of clinical 
investigation, 119(10), pp. 3000-3010. 

Reid, A., Vidal, L., Shaw, H. and de Bono, J. (2007) 'Dual inhibition of ErbB1 
(EGFR/HER1) and ErbB2 (HER2/neu)', European journal of cancer, 43(3), 
pp. 481-489. 

Ren, D. (2011) 'Brusatol enhances the efficacy of chemotherapy by inhibiting the 
Nrf2-mediated defense mechanism', Proc. Natl Acad. Sci. USA, 108, pp. 
1433-1438. 

Ren, D., Villeneuve, N. F., Jiang, T., Wu, T., Lau, A., Toppin, H. A. and Zhang, D. 
D. (2011) 'Brusatol enhances the efficacy of chemotherapy by inhibiting 
the Nrf2-mediated defense mechanism', Proceedings of the National 
Academy of Sciences of the United States of America, 108(4), pp. 1433-
1438. 

Reschke, M., Mihic-Probst, D., Van Der Horst, E. H., Knyazev, P., Wild, P. J., 
Hutterer, M., Meyer, S., Dummer, R., Moch, H. and Ullrich, A. (2008) 
'HER3 is a determinant for poor prognosis in melanoma', Clinical Cancer 
Research, 14(16), pp. 5188-5197. 

Richard Dickersin, G., Kline, I. W. and Scully, R. E. (1982) 'Small cell carcinoma 
of the ovary with hypercalcemia: a report of eleven cases', Cancer, 49(1), 
pp. 188-197. 

Rigas, J. R. and Dragnev, K. H. (2005) 'Emerging role of rexinoids in non-small 
cell lung cancer: focus on bexarotene', The Oncologist, 10(1), pp. 22-33. 

Ritter, C. A. and Arteaga, C. L. 'The epidermal growth factor receptor–tyrosine 
kinase: A promising therapeutic target in solid tumors'. Elsevier, 3-11. 

Ritter, C. A., Perez-Torres, M., Rinehart, C., Guix, M., Dugger, T., Engelman, J. 
A. and Arteaga, C. L. (2007) 'Human breast cancer cells selected for 
resistance to trastuzumab in vivo overexpress epidermal growth factor 
receptor and ErbB ligands and remain dependent on the ErbB receptor 
network', Clinical Cancer Research, 13(16), pp. 4909-4919. 

Rohozinski, J., Diaz-Arrastia, C. and Edwards, C. L. (2017) 'Do some epithelial 
ovarian cancers originate from a fallopian tube ciliate cell lineage?', 
Medical Hypotheses. 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 190 
 

Rolfo, C., Giovannetti, E., Hong, D. S., Bivona, T., Raez, L. E., Bronte, G., 
Buffoni, L., Reguart, N., Santos, E. S., Germonpre, P., Taron, M., 
Passiglia, F., Van Meerbeeck, J. P., Russo, A., Peeters, M., Gil-Bazo, I., 
Pauwels, P. and Rosell, R. (2014) 'Novel therapeutic strategies for patients 
with NSCLC that do not respond to treatment with EGFR inhibitors', 
Cancer Treatment Reviews, 40(8), pp. 990-1004. 

Roskoski Jr, R. (2014) 'The ErbB/HER family of protein-tyrosine kinases and 
cancer', Pharmacological Research, 79, pp. 34-74. 

Roy, R. V., Pratheeshkumar, P., Son, Y.-O., Wang, L., Hitron, J. A., Divya, S. P., 
Zhang, Z. and Shi, X. (2016) 'Different roles of ROS and Nrf2 in Cr(VI)-
induced inflammatory responses in normal and Cr(VI)-transformed cells', 
Toxicology and Applied Pharmacology, 307, pp. 81-90. 

Rubin, I. and Yarden, Y. (2001) 'The basic biology of HER2', Annals of Oncology, 
12(suppl 1), pp. S3-S8. 

Rusch, V., Klimstra, D., Venkatraman, E., Pisters, P. W., Langenfeld, J. and 
Dmitrovsky, E. (1997) 'Overexpression of the epidermal growth factor 
receptor and its ligand transforming growth factor alpha is frequent in 
resectable non-small cell lung cancer but does not predict tumor 
progression', Clinical Cancer Research, 3(4), pp. 515-522. 

Rushworth, S. A., Ogborne, R. M., Charalambos, C. A. and O’Connell, M. A. 
(2006) 'Role of protein kinase C δ in curcumin-induced antioxidant 
response element-mediated gene expression in human monocytes', 
Biochemical and biophysical research communications, 341(4), pp. 1007-
1016. 

Ryan, Q., Ibrahim, A., Cohen, M. H., Johnson, J., Ko, C.-w., Sridhara, R., Justice, 
R. and Pazdur, R. (2008) 'FDA drug approval summary: lapatinib in 
combination with capecitabine for previously treated metastatic breast 
cancer that overexpresses HER-2', The oncologist, 13(10), pp. 1114-1119. 

Saito-Hakoda, A., Uruno, A., Yokoyama, A., Shimizu, K., Parvin, R., Kudo, M., 
Saito-Ito, T., Sato, I., Kogure, N., Suzuki, D., Shimada, H., Yoshikawa, T., 
Fujiwara, I., Kagechika, H., Iwasaki, Y., Kure, S., Ito, S. and Sugawara, A. 
(2015) 'Effects of RXR Agonists on Cell Proliferation/Apoptosis and ACTH 
Secretion/Pomc Expression', Plos One, 10(12). 

Saltz, L. B., Clarke, S., Díaz-Rubio, E., Scheithauer, W., Figer, A., Wong, R., 
Koski, S., Lichinitser, M., Yang, T.-S. and Rivera, F. (2008) 'Bevacizumab 
in combination with oxaliplatin-based chemotherapy as first-line therapy in 
metastatic colorectal cancer: a randomized phase III study', Journal of 
clinical oncology, 26(12), pp. 2013-2019. 

Sandelin, A., Wasserman, W. W. and Lenhard, B. (2004) 'ConSite: web-based 
prediction of regulatory elements using cross-species comparison', Nucleic 
acids research, 32(suppl 2), pp. W249-W252. 

Sarkar, F. H. (2011) Nutraceuticals and Cancer. Springer Science & Business 
Media. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 191 
 

Sartore-Bianchi, A., Martini, M., Molinari, F., Veronese, S., Nichelatti, M., Artale, 
S., Di Nicolantonio, F., Saletti, P., De Dosso, S. and Mazzucchelli, L. 
(2009) 'PIK3CA mutations in colorectal cancer are associated with clinical 
resistance to EGFR-targeted monoclonal antibodies', Cancer research, 
69(5), pp. 1851-1857. 

Scartozzi, M., Bearzi, I., Berardi, R., Mandolesi, A., Fabris, G. and Cascinu, S. 
(2004) 'Epidermal growth factor receptor (EGFR) status in primary 
colorectal tumors does not correlate with EGFR expression in related 
metastatic sites: implications for treatment with EGFR-targeted monoclonal 
antibodies', Journal of clinical oncology, 22(23), pp. 4772-4778. 

Scheuer, W., Friess, T., Burtscher, H., Bossenmaier, B., Endl, J. and Hasmann, 
M. (2009) 'Strongly enhanced antitumor activity of trastuzumab and 
pertuzumab combination treatment on HER2-positive human xenograft 
tumor models', Cancer research, 69(24), pp. 9330-9336. 

Schlegel, J., Stumm, G., Brändle, K., Merdes, A., Mechtersheimer, G., Hynes, N. 
E. and Kiessling, M. (1994) 'Amplification and differential expression of 
members of theerbB-gene family in human glioblastoma', Journal of neuro-
oncology, 22(3), pp. 201-207. 

Schlessinger, J. (2000) 'Cell Signaling by Receptor Tyrosine Kinases', Cell, 
103(2), pp. 211-225. 

Schneider, M. R. a. W., E (2009) 'The epidermal growth factor receptor ligands at 
a glance', Journal of Cellular Physiology, 218(3), pp. 460-466. 

Schraml, P., Schwerdtfeger, G., Burkhalter, F., Raggi, A., Schmidt, D., Ruffalo, 
T., King, W., Wilber, K., Mihatsch, M. J. and Moch, H. (2003) 'Combined 
array comparative genomic hybridization and tissue microarray analysis 
suggest PAK1 at 11q13. 5-q14 as a critical oncogene target in ovarian 
carcinoma', The American journal of pathology, 163(3), pp. 985-992. 

Scully, R. E. (1979) 'Tumors of the ovary and maldeveloped gonads', Atlas of 
tumor pathology, 16, pp. 316-317. 

Seidman, J. D., Cho, K. R., Ronnett, B. M. and Kurman, R. J. (2011) 'Surface 
epithelial tumors of the ovary',  Blaustein’s pathology of the female genital 
tract: Springer, pp. 679-784. 

Sequist, L. V., Martins, R. G., Spigel, D., Grunberg, S. M., Spira, A., Jänne, P. A., 
Joshi, V. A., McCollum, D., Evans, T. L. and Muzikansky, A. (2008) 'First-
line gefitinib in patients with advanced non–small-cell lung cancer 
harboring somatic EGFR mutations', Journal of Clinical Oncology, 26(15), 
pp. 2442-2449. 

Sergina, N. V., Rausch, M., Wang, D., Blair, J., Hann, B., Shokat, K. M. and 
Moasser, M. M. (2007) 'Escape from HER-family tyrosine kinase inhibitor 
therapy by the kinase-inactive HER3', Nature, 445(7126), pp. 437-441. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 192 
 

Serrano-Olvera, A., Dueñas-González, A., Gallardo-Rincón, D., Candelaria, M. 
and De la Garza-Salazar, J. (2006) 'Prognostic, predictive and therapeutic 
implications of HER2 in invasive epithelial ovarian cancer', Cancer 
treatment reviews, 32(3), pp. 180-190. 

Shattuck, D. L., Miller, J. K., Carraway, K. L. and Sweeney, C. (2008) 'Met 
receptor contributes to trastuzumab resistance of Her2-overexpressing 
breast cancer cells', Cancer research, 68(5), pp. 1471-1477. 

Shende, P., Patil, S. and Gaud, R. S. (2017) 'A combinatorial approach of 
inclusion complexation and dendrimer synthesization for effective targeting 
EGFR-TK', Materials Science and Engineering: C, 76, pp. 959-965. 

Sheng, Q. and Liu, J. (2011) 'The therapeutic potential of targeting the EGFR 
family in epithelial ovarian cancer', British Journal of Cancer, 104(8), pp. 
1241-1245. 

Sheng, Q., Liu, X., Fleming, E., Yuan, K., Piao, H., Chen, J., Moustafa, Z., 
Thomas, R. K., Greulich, H., Schinzel, A., Zaghlul, S., Batt, D., Ettenberg, 
S., Meyerson, M., Schoeberl, B., Kung, A. L., Hahn, W. C., Drapkin, R., 
Livingston, D. M. and Liu, J. F. (2010) 'An Activated ErbB3/NRG1 
Autocrine Loop Supports In Vivo Proliferation in Ovarian Cancer Cells', 
Cancer Cell, 17(3), pp. 298-310. 

Shibata, T., Ohta, T., Tong, K. I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, 
H., Yamamoto, M. and Hirohashi, S. (2008) 'Cancer related mutations in 
NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote 
malignancy', Proceedings of the National Academy of Sciences, 105(36), 
pp. 13568-13573. 

Sims, A. H., Zweemer, A. J., Nagumo, Y., Faratian, D., Muir, M., Dodds, M., Um, 
I., Kay, C., Hasmann, M. and Harrison, D. J. (2012a) 'Defining the 
molecular response to trastuzumab, pertuzumab and combination therapy 
in ovarian cancer', British journal of cancer, 106(11), pp. 1779-1789. 

Sims, A. H., Zweemer, A. J., Nagumo, Y., Faratian, D., Muir, M., Dodds, M., Um, 
I., Kay, C., Hasmann, M., Harrison, D. J. and Langdon, S. P. (2012b) 
'Defining the molecular response to trastuzumab, pertuzumab and 
combination therapy in ovarian cancer', Br J Cancer, 106(11), pp. 1779-
1789. 

Singh, A. (2006) 'Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung 
cancer', PLoS Med., 3, pp. e420. 

Singh, A., Bodas, M., Wakabayashi, N., Bunz, F. and Biswal, S. (2010) 'Gain of 
Nrf2 function in non-small-cell lung cancer cells confers radioresistance', 
Antioxidants & redox signaling, 13(11), pp. 1627-1637. 

Singh, A., Happel, C., Manna, S. K., Acquaah-Mensah, G., Carrerero, J., Kumar, 
S., Nasipuri, P., Krausz, K. W., Wakabayashi, N. and Dewi, R. (2013) 
'Transcription factor NRF2 regulates miR-1 and miR-206 to drive 
tumorigenesis', The Journal of clinical investigation, 123(7), pp. 2921-
2934. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 193 
 

Sirota, R., Gibson, D. and Kohen, R. (2015) 'The role of the catecholic and the 
electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in 
ovarian carcinoma cell lines', Redox Biology, 4, pp. 48-59. 

Siwak, D. R., Carey, M., Hennessy, B. T., Nguyen, C. T., McGahren Murray, M. 
J., Nolden, L. and Mills, G. B. (2010) 'Targeting the Epidermal Growth 
Factor Receptor in Epithelial Ovarian Cancer: Current Knowledge and 
Future Challenges', Journal of Oncology, 2010, pp. 568938. 

 

Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., 
Fleming, T., Eiermann, W., Wolter, J. and Pegram, M. (2001) 'Use of 
chemotherapy plus a monoclonal antibody against HER2 for metastatic 
breast cancer that overexpresses HER2', New England Journal of 
Medicine, 344(11), pp. 783-792. 

Solis, L. M., Behrens, C., Dong, W., Suraokar, M., Ozburn, N. C., Moran, C. A., 
Corvalan, A. H., Biswal, S., Swisher, S. G., Bekele, B. N., Minna, J. D., 
Stewart, D. J. and Wistuba, I. I. (2010) 'Nrf2 and Keap1 Abnormalities in 
Non-Small Cell Lung Carcinoma and Association with Clinicopathologic 
Features', Clinical cancer research : an official journal of the American 
Association for Cancer Research, 16(14), pp. 3743-3753. 

Springer, M. L., Chen, A. S., Kraft, P. E., Bednarski, M. and Blau, H. M. (1998) 
'VEGF gene delivery to muscle: potential role for vasculogenesis in adults', 
Molecular cell, 2(5), pp. 549-558. 

Srinivasan, R., Benton, E., McCormick, F., Thomas, H. and Gullick, W. J. (1999) 
'Expression of the c-erbB-3/HER-3 and c-erbB-4/HER-4 growth factor 
receptors and their ligands, neuregulin-1 α, neuregulin-1 β, and 
betacellulin, in normal endometrium and endometrial cancer', Clinical 
cancer research, 5(10), pp. 2877-2883. 

Stacy, D. R., Ely, K., Massion, P. P., Yarbrough, W. G., Hallahan, D. E., Sekhar, 
K. R. and Freeman, M. L. (2006) 'Increased expression of nuclear factor 
E2 p45‐related factor 2 (NRF2) in head and neck squamous cell 
carcinomas', Head & neck, 28(9), pp. 813-818. 

Stratton, M. R. (2011) 'Exploring the genomes of cancer cells: progress and 
promise', science, 331(6024), pp. 1553-1558. 

Subramaniam, S., Fahy, E., Gupta, S., Sud, M., Byrnes, R. W., Cotter, D., 
Dinasarapu, A. R. and Maurya, M. R. (2011) 'Bioinformatics and systems 
biology of the lipidome', Chemical reviews, 111(10), pp. 6452-6490. 

Suganuma, K., Yamasaki, S., Molefe, N. I., Musinguzi, P. S., Davaasuren, B., 
Mossaad, E., Narantsatsral, S., Battur, B., Battsetseg, B. and Inoue, N. 
(2017) 'The establishment of in vitro culture and drug screening systems 
for a newly isolated strain of Trypanosoma equiperdum', International 
Journal for Parasitology: Drugs and Drug Resistance, 7(2), pp. 200-205. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 194 
 

Takakura, M., Kyo, S., Kanaya, T., Hirano, H., Takeda, J., Yutsudo, M. and 
Inoue, M. (1999) 'Cloning of human telomerase catalytic subunit (hTERT) 
gene promoter and identification of proximal core promoter sequences 
essential for transcriptional activation in immortalized and cancer cells', 
Cancer research, 59(3), pp. 551-557. 

Tal, M., King, C. R., Kraus, M. H., Ullrich, A., Schlessinger, J. and Givol, D. 
(1987) 'Human HER2 (neu) promoter: evidence for multiple mechanisms 
for transcriptional initiation', Molecular and cellular biology, 7(7), pp. 2597-
2601. 

Talalay, P., Fahey, J. W., Healy, Z. R., Wehage, S. L., Benedict, A. L., Min, C. 
and Dinkova-Kostova, A. T. (2007) 'Sulforaphane mobilizes cellular 
defenses that protect skin against damage by UV radiation', Proceedings 
of the National Academy of Sciences, 104(44), pp. 17500-17505. 

Talerman, A. and Vang, R. (2011a) 'Germ cell tumors of the ovary',  Blaustein’s 
pathology of the female genital tract: Springer, pp. 847-907. 

Talerman, A. and Vang, R. (2011b) 'Nonspecific Tumors of the Ovary, Including 
Mesenchymal Tumors',  Blaustein’s Pathology of the Female Genital Tract: 
Springer, pp. 909-928. 

Talpur, R., Thompson, A., Gangar, P. and Duvic, M. (2014) 'Pralatrexate alone or 
in combination with bexarotene: long-term tolerability in relapsed/refractory 
mycosis fungoides', Clinical Lymphoma Myeloma and Leukemia, 14(4), 
pp. 297-304. 

Tan, K. P., Kosuge, K., Yang, M. and Ito, S. (2008) 'NRF2 as a determinant of 
cellular resistance in retinoic acid cytotoxicity', Free Radical Biology and 
Medicine, 45(12), pp. 1663-1673. 

Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H. and Wang, X. J. (2011) 
'Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE 
pathway and sensitization of human lung carcinoma A549 cells to 
therapeutic drugs', Free Radical Biology and Medicine, 50(11), pp. 1599-
1609. 

Tanner, B., Hasenclever, D., Stern, K., Schormann, W., Bezler, M., Hermes, M., 
Brulport, M., Bauer, A., Schiffer, I. B. and Gebhard, S. (2006) 'ErbB-3 
predicts survival in ovarian cancer', Journal of clinical oncology, 24(26), 
pp. 4317-4323. 

Tapia, C., Glatz, K., Novotny, H., Lugli, A., Horcic, M., Seemayer, C. A., Tornillo, 
L., Terracciano, L., Spichtin, H. and Mirlacher, M. (2007) 'Close 
association between HER-2 amplification and overexpression in human 
tumors of non-breast origin', Modern pathology, 20(2), pp. 192. 

Tarumoto, T., Nagai, T., Ohmine, K., Miyoshi, T., Nakamura, M., Kondo, T., 
Mitsugi, K., Nakano, S., Muroi, K., Komatsu, N. and Ozawa, K. (2004) 
'Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-
dependent gene expression in the imatinib-resistant cell line', Experimental 
Hematology, 32(4), pp. 375-381. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 195 
 

Tebay, L. E., Robertson, H., Durant, S. T., Vitale, S. R., Penning, T. M., Dinkova-
Kostova, A. T. and Hayes, J. D. (2015) 'Mechanisms of activation of the 
transcription factor Nrf2 by redox stressors, nutrient cues, and energy 
status and the pathways through which it attenuates degenerative 
disease', Free Radical Biology and Medicine, 88, Part B, pp. 108-146. 

Tew, W. P. (2016) 'Ovarian cancer in the older woman', Journal of geriatric 
oncology, 7(5), pp. 354-361. 

Tew, W. P., Muss, H. B., Kimmick, G. G., Von Gruenigen, V. E. and Lichtman, S. 
M. (2014) 'Breast and ovarian cancer in the older woman', Journal of 
Clinical Oncology, 32(24), pp. 2553-2561. 

Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M. and 
Biswal, S. (2002) 'Identification of Nrf2-regulated genes induced by the 
chemopreventive agent sulforaphane by oligonucleotide microarray', 
Cancer research, 62(18), pp. 5196-5203. 

Tiscornia, G., Singer, O., Ikawa, M. and Verma, I. M. (2003) 'A general method 
for gene knockdown in mice by using lentiviral vectors expressing small 
interfering RNA', Proceedings of the National Academy of Sciences, 
100(4), pp. 1844-1848. 

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J. and Jemal, A. 
(2015) 'Global cancer statistics, 2012', CA: a cancer journal for clinicians, 
65(2), pp. 87-108. 

Trachootham, D., Alexandre, J. and Huang, P. (2009) 'Targeting cancer cells by 
ROS-mediated mechanisms: a radical therapeutic approach?', Nature 
Rev. Drug Discov., 8, pp. 579-591. 

Tsuchida, K., Tsujita, T., Hayashi, M., Ojima, A., Keleku-Lukwete, N., Katsuoka, 
F., Otsuki, A., Kikuchi, H., Oshima, Y., Suzuki, M. and Yamamoto, M. 
(2017) 'Halofuginone enhances the chemo-sensitivity of cancer cells by 
suppressing NRF2 accumulation', Free Radical Biology and Medicine, 
103, pp. 236-247. 

Tu, S.-H., Ho, C.-T., Liu, M.-F., Huang, C.-S., Chang, H.-W., Chang, C.-H., Wu, 
C.-H. and Ho, Y.-S. (2013) 'Luteolin sensitises drug-resistant human 
breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression', 
Food Chemistry, 141(2), pp. 1553-1561. 

Turke, A. B., Zejnullahu, K., Wu, Y.-L., Song, Y., Dias-Santagata, D., Lifshits, E., 
Toschi, L., Rogers, A., Mok, T. and Sequist, L. (2010) 'Preexistence and 
clonal selection of MET amplification in EGFR mutant NSCLC', Cancer 
cell, 17(1), pp. 77-88. 

Turley, A. E., Zagorski, J. W. and Rockwell, C. E. (2015) 'The Nrf2 activator tBHQ 
inhibits T cell activation of primary human CD4 T cells', Cytokine, 71(2), 
pp. 289-295. 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 196 
 

Van Cutsem, E., Köhne, C.-H., Hitre, E., Zaluski, J., Chang Chien, C.-R., 
Makhson, A., D'Haens, G., Pintér, T., Lim, R. and Bodoky, G. (2009) 
'Cetuximab and chemotherapy as initial treatment for metastatic colorectal 
cancer', New England Journal of Medicine, 360(14), pp. 1408-1417. 

Vanneman, M. and Dranoff, G. (2012) 'Combining immunotherapy and targeted 
therapies in cancer treatment', Nature Reviews Cancer, 12(4), pp. 237-
251. 

Varbanov, H. P., Kuttler, F., Banfi, D., Turcatti, G. and Dyson, P. J. (2017) 
'Repositioning approved drugs for the treatment of problematic cancers 
using a screening approach', PloS one, 12(2), pp. e0171052. 

Verri, E., Guglielmini, P., Puntoni, M., Perdelli, L., Papadia, A., Lorenzi, P., 
Rubagotti, A., Ragni, N. and Boccardo, F. (2005) 'HER2/neu oncoprotein 
overexpression in epithelial ovarian cancer: evaluation of its prevalence 
and prognostic significance', Oncology, 68(2-3), pp. 154-161. 

Voelkerding, K. V., Dames, S. A. and Durtschi, J. D. (2009) 'Next-generation 
sequencing: from basic research to diagnostics', Clinical chemistry, 55(4), 
pp. 641-658. 

VäkEvä, L., RankI, A. and Hahtola, S. (2012) 'Ten-year experience of bexarotene 
therapy for cutaneous T-cell lymphoma in Finland', Acta dermato-
venereologica, 92(3), pp. 258-263. 

Wang, H., Liu, K., Geng, M., Gao, P., Wu, X., Hai, Y., Li, Y., Li, Y., Luo, L. and 
Hayes, J. D. (2013) 'RXRα inhibits the NRF2-ARE signaling pathway 
through a direct interaction with the Neh7 domain of NRF2', Cancer 
research, 73(10), pp. 3097-3108. 

Wang, L., Yuan, H., Li, Y. and Han, Y. (2014) 'The role of HER3 in gastric 
cancer', Biomedicine & Pharmacotherapy, 68(6), pp. 809-812. 

Wang, W. and Jaiswal, A. K. (2006) 'Nuclear factor Nrf2 and antioxidant response 
element regulate NRH:quinone oxidoreductase 2 (NQO2) gene expression 
and antioxidant induction', Free Radical Biology and Medicine, 40(7), pp. 
1119-1130. 

Wang, X.-J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, 
X., Zheng, W. and Wondrak, G. T. (2008) 'Nrf2 enhances resistance of 
cancer cells to chemotherapeutic drugs, the dark side of Nrf2', 
Carcinogenesis, 29(6), pp. 1235-1243. 

Wang, X. J. (2008) 'Nrf2 enhances resistance of cancer cells to 
chemotherapeutic drugs, the dark side of Nrf2', Carcinogenesis, 29, pp. 
1235-1243. 

Wang, X. J., Hayes, J. D., Henderson, C. J. and Wolf, C. R. (2007) 'Identification 
of retinoic acid as an inhibitor of transcription factor Nrf2 through activation 
of retinoic acid receptor alpha', Proceedings of the National Academy of 
Sciences of the United States of America, 104(49), pp. 19589-19594. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 197 
 

Weston, A. D. and Hood, L. (2004) 'Systems biology, proteomics, and the future 
of health care: toward predictive, preventative, and personalized medicine', 
Journal of proteome research, 3(2), pp. 179-196. 

White, M., Cohen, J., Hummel, C., Burky, R., Cruz, A. and Farias-Eisner, R. 
(2014) 'Chapter 5 - The Role of Oxidative Stress in Ovarian Cancer: 
Implications for the Treatment of Patients', in Preedy, V. (ed.) Cancer. San 
Diego: Academic Press, pp. 41-50. 

Whittaker, S., Ortiz, P., Dummer, R., Ranki, A., Hasan, B., Meulemans, B., 
Gellrich, S., Knobler, R., Stadler, R. and Karrasch, M. (2012) 'Efficacy and 
safety of bexarotene combined with psoralen–ultraviolet A (PUVA) 
compared with PUVA treatment alone in stage IB–IIA mycosis fungoides: 
final results from the EORTC Cutaneous Lymphoma Task Force phase III 
randomized clinical trial 21011 (NCT00056056)', British Journal of 
Dermatology, 167(3), pp. 678-687. 

WHO (2017) Cancer fact sheet 2017). 

Wieduwilt, M. J., Moasser, M. M.    (2008) 'The   epidermal growth factor receptor 
family: Biology driving targeted therapeutics', Cellular and Molecular Life 
Sciences, 65(10), pp. 1566–1584. . 

Williams, T. I., Toups, K. L., Saggese, D. A., Kalli, K. R., Cliby, W. A. and 
Muddiman, D. C. (2007) 'Epithelial ovarian cancer: disease etiology, 
treatment, detection, and investigational gene, metabolite, and protein 
biomarkers', Journal of proteome research, 6(8), pp. 2936-2962. 

Witkowski, L., Goudie, C., Foulkes, W. D. and McCluggage, W. G. (2016) 'Small-
cell carcinoma of the ovary of hypercalcemic type (malignant rhabdoid 
tumor of the ovary): A review with recent developments on pathogenesis', 
Surgical pathology clinics, 9(2), pp. 215-226. 

Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G. and Bartlett, J. (2003) 
'Expression of the HER1–4 family of receptor tyrosine kinases in breast 
cancer', The Journal of pathology, 200(3), pp. 290-297. 

Wood, E. R., Truesdale, A. T., McDonald, O. B., Yuan, D., Hassell, A., Dickerson, 
S. H., Ellis, B., Pennisi, C., Horne, E. and Lackey, K. (2004) 'A unique 
structure for epidermal growth factor receptor bound to GW572016 
(Lapatinib)', Cancer research, 64(18), pp. 6652-6659. 

Workman, P. and Collins, I. (2014) 'Chapter 1 - Modern Cancer Drug Discovery: 
Integrating Targets, Technologies, and Treatments for Personalized 
Medicine', in Neidle, S. (ed.) Cancer Drug Design and Discovery (Second 
Edition). San Diego: Academic Press, pp. 3-53. 

Wu, J., Wang, H. and Tang, X. (2014) 'Rexinoid inhibits Nrf2-mediated 
transcription through retinoid X receptor alpha', Biochemical and 
Biophysical Research Communications, 452(3), pp. 554-559. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 198 
 

Wu, Q., Yao, B., Li, N., Ma, L., Deng, Y., Yang, Y., Zeng, C., Yang, Z. and Liu, B. 
(2017) 'Nrf2 mediates redox adaptation in NOX4-overexpressed non-small 
cell lung cancer cells', Experimental Cell Research, 352(2), pp. 245-254. 

Xia, H., Mao, Q., Paulson, H. L. and Davidson, B. L. (2002) 'siRNA-mediated 
gene silencing in vitro and in vivo', Nature biotechnology, 20(10), pp. 1006-
1010. 

Xiang, M., Namani, A., Wu, S. and Wang, X. (2014) 'Nrf2: bane or blessing in 
cancer?', Journal of cancer research and clinical oncology, 140(8), pp. 
1251-1259. 

Xiong, H. Q., Rosenberg, A., LoBuglio, A., Schmidt, W., Wolff, R. A., Deutsch, J., 
Needle, M. and Abbruzzese, J. L. (2004) 'Cetuximab, a Monoclonal 
Antibody Targeting the Epidermal Growth Factor Receptor, in Combination 
With Gemcitabine for Advanced Pancreatic Cancer: A Multicenter Phase II 
Trial', Journal of Clinical Oncology, 22(13), pp. 2610-2616. 

Xu, F., Yu, Y., Le, X.-F., Boyer, C., Mills, G. B. and Bast, R. C. (1999) 'The 
outcome of heregulin-induced activation of ovarian cancer cells depends 
on the relative levels of HER-2 and HER-3 expression', Clinical cancer 
research, 5(11), pp. 3653-3660. 

Xu, Y., Duan, C., Kuang, Z., Hao, Y., Jeffries, J. L. and Lau, G. W. (2013) 
'Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated 
transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP 
kinase signaling in pulmonary epithelial cells', PLoS One, 8(8), pp. 
e72528. 

Yap, T. A., Carden, C. P. and Kaye, S. B. (2009) 'Beyond chemotherapy: 
targeted therapies in ovarian cancer', Nature Reviews Cancer, 9(3), pp. 
167-181. 

Yarden, Y. (2001) 'The EGFR family and its ligands in human cancer: signalling 
mechanisms and therapeutic opportunities', European Journal of Cancer, 
37, Supplement 4, pp. 3-8. 

Yarden, Y. and Sliwkowski, M. X. (2001) 'Untangling the ErbB signalling network', 
Nature reviews Molecular cell biology, 2(2), pp. 127-137. 

Yen, W.-C., Corpuz, M. R., Prudente, R. Y., Cooke, T. A., Bissonnette, R. P., 
Negro-Vilar, A. and Lamph, W. W. (2004a) 'A Selective Retinoid X 
Receptor Agonist Bexarotene (Targretin) Prevents and Overcomes 
Acquired Paclitaxel (Taxol) Resistance in Human Non–Small Cell Lung 
Cancer', Clinical cancer research, 10(24), pp. 8656-8664. 

Yen, W.-c., Prudente, R. Y. and Lamph, W. W. (2004b) 'Synergistic effect of a 
retinoid X receptor-selective ligand bexarotene (LGD1069, Targretin) and 
paclitaxel (Taxol) in mammary carcinoma', Breast cancer research and 
treatment, 88(2), pp. 141-148. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 199 
 

Yen, W. C. and Lamph, W. W. (2006) 'A selective retinoid X receptor agonist 
bexarotene (LGD1069, Targretin) prevents and overcomes multidrug 
resistance in advanced prostate cancer', The Prostate, 66(3), pp. 305-316. 

Yu, X. and Kensler, T. (2005) 'Nrf2 as a target for cancer chemoprevention', 
Mutation Research/Fundamental and Molecular Mechanisms of 
Mutagenesis, 591(1), pp. 93-102. 

Zaczek, A., Bielawski, K. P. and Brandt, B. (2005) 'The diverse signaling network 
of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the 
consequences for therapeutic approaches', Histology and histopathology. 

Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. and Dong, W. (2016a) 
'ROS and ROS-mediated cellular signaling', Oxidative medicine and 
cellular longevity, 2016. 

Zhang, L., Li, J., Zong, L., Chen, X., Chen, K., Jiang, Z., Nan, L., Li, X., Li, W. and 
Shan, T. (2016b) 'Reactive oxygen species and targeted therapy for 
pancreatic cancer', Oxidative medicine and cellular longevity, 2016. 

Zhang, X. L., Yang, Y. S., Xu, D. P., Qu, J. H., Guo, M. Z., Gong, Y. and Huang, 
J. (2009) 'Comparative study on overexpression of HER2/neu and HER3 
in gastric cancer', World journal of surgery, 33(10), pp. 2112-2118. 

Zhou, J., Chen, J., Mokotoff, M. and Ball, E. D. (2004) 'Targeting gastrin-
releasing peptide receptors for cancer treatment', Anti-cancer drugs, 
15(10), pp. 921-927. 

Zhu, J., Wang, H., Chen, F., Fu, J., Xu, Y., Hou, Y., Kou, H. H., Zhai, C., Nelson, 
M. B. and Zhang, Q. (2016) 'An overview of chemical inhibitors of the Nrf2-
ARE signaling pathway and their potential applications in cancer therapy', 
Free Radical Biology and Medicine, 99, pp. 544-556. 

Zipper, L. M. and Mulcahy, R. T. (2000) 'Inhibition of ERK and p38 MAP kinases 
inhibits binding of Nrf2 and induction of GCS genes', Biochemical and 
biophysical research communications, 278(2), pp. 484-492. 

Zwick, E., Bange, J. and Ullrich, A. (2001) 'Receptor tyrosine kinase signalling as 
a target for cancer intervention strategies', Endocrine-related cancer, 8(3), 
pp. 161-173. 

Zwick, E., Bange, J. and Ullrich, A. (2002) 'Receptor tyrosine kinases as targets 
for anticancer drugs', Trends in Molecular Medicine, 8(1), pp. 17-23. 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 200 
 

9. APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 201 
 

9.1 Appendix I 

Table: 9.1.1: List of cell lines sources, nature and media used 

Cell line Type Source Nature 

Media 

(Invitrogen) 

MCF7-

AREc32 

Breast cell line 

pGL-8xARE, along 

with the pcDNA3.1 

plasmid containing 

the neomycin 

selectable marker, 

was stably 

transfected into 

MCF7 cells 

Breast 

cancer RPMI 

SKVO3 

Ovarian 

adenocarcino

ma Human 

Ovarian 

cancer RPMI 

PEO1 

Ovarian 

epithelial cell 

line 

Human 

Ovarian 

cancer RPMI 

OVCAR3 

Ovarian 

epithelial cell 

line Human 

Ovarian 

cancer RPMI 
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Table 9.1.2: Type of tissue culture flasks and plates used  

Flasks 
or 
Plates 

Number 
of cells 
seeded 

Growth 
media(m
L) 

Experiment type 

96-well 2.5 x 103 0.2 
Cytotoxicity assays (Cell viability), Total 
Gluthathione and ROS assays 

24-well 5 x 104 0.5 Promoter transfection for luciferase assay 

12-well 1 x 105 1 
Immunofluorescence studies: For drug 
treatments of cells grown on Poly-L lysine 
coated coverslips 

60mm 8 x 105 3 
For liposome mediated cell transfections by 
harvesting protein lysates of cells treated with 
different drugs. 

100mm 2 x 106 10 
For liposome mediated cell transfections by 
harvesting protein lysates of cells treated with 
different drugs. 

25cm2 
flask 

7 x 105 5 For cell propagation and maintenance 

75 cm2 
flask 

2 x 106 12 For cell propagation and maintenance 
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Table 9.1.3: Antibodies used in the study. 

Antibody Isotype 
Catalogue 

number 
Company 

HER1- EP38Y Rabbit ab52894 Abcam 

pHER1 Rabbit ab40815 Abcam 

HER2 Rabbit 2165S 
Cell 

signalling 

pHER2-Try877 Rabbit 2241S 
Cell 

signalling 

HER3 Rabbit 4754S 
Cell 

signalling 

pHER3-Tyr1289 Rabbit mAb #4791 
Cell 

signalling 

HER4 Rabbit ab32375 Abcam 

pHER4- Y1284 Rabbit ab61059 Abcam 

NRF2 Rabbit ab89443 Abcam 

pNRF2- EP1809Y Rabbit ab76026 Abcam 

HO-1 Rabbit 5853S 
Cell 

signalling 

pAkt- Ser473 Rabbit ab9271 
Cell 

signalling 

Akt Rabbit ab 9272 
Cell 

signalling 

HRP linked anti 

secondary 

antibody 

Rabbit 7074 
Cell 

signalling 

β-actiin Rabbit 1801 Abcam 
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           9.1.4:  Bradford assay 

The standard protein concentration curve for Bradford assay was established 

by using a standard protein Bovine Serum Albumin (BSA). The stock was at a 

concentration of 2mg/mL and was diluted to produce varying concentrations, 

carrying out Bradford assay and plotting the standard graph. The dilutions 

were made as shown in the Table 9.1. 

 

           Table 9.1.4.1: Dilution of the standard protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each of the 20μL mix was transferred to wells in 96-well plate and 180μL of 

1x Bradford reagent was introduced and the contents mixed together. After 

10min of incubation, absorbance from each well was measured at 595nm 

shown in table 9.2. 

 

 

 

2mg/mL Water Final 

BSA (μL) (μL) concentration 

  (mg/mL) 

0 20 0 

   

1 19 0.1 

   

2.5 17.5 0.25 

   

5 15 0.5 

   

7.5 12.5 0.75 

   

10 10 1.0 
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                      Table 9.1.4.2: Absorbance of standard protein 

 

BSA Absorbance @ 

(mg/mL) 595nm 

  

0 0.214 

  

0.1 0.401 

  

0.25 0.780 

  

0.5 1.371 

  

0.75 1.834 

  

1.0 2.309 

  

 

 

The absorbance value of the blank (0mg/mL) was subtracted from the 

absorbance values of the samples and the resulting values were plotted on a 

graph to establish a concentration curve. 
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Figure 9.2: Protein standard curve for Bradford assay. To provide a 

protein standard curve for Bradford assay different dilutions of a known 

standard (2mg/mL BSA) were made as set out in table A1.6 and their 

absorbance measured at 595nm. The data was plotted in a graph using the 

x,y scatter and its trend line shown. Using the equation shown in the figure, 

protein concentrations of the experimental protein lysates were determined 

and used as mentioned. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ibrahim Hamza Kankia Regulation of HER family and NRF2 in ovarian cancer  

PhD THESIS Page 207 
 

           9.2 Appendix-II:  

        Buffers and chemicals 

9.2.1 50x TAE buffer 
 
121gm Tris Base 
 
28.5mL Glacial acetic acid 
 
100mL 0.25M EDTA 
 
Contents mixed together and water added to the final volume of 500mL. The 
pH of the buffer is around 8.5. 
 
To make 0.25M EDTA stock, 46.5 gm of EDTA disodium salt was added to 
400mL of water, pH adjusted to 8 with NaOH, and the contents dissolved until 
clear. The final volume was taken up to 500mL with water. 

 
 
9.2.2 Poly L-lysine coating 
 
For immunostaining procedures, cells were seeded on sterile cover-slips 
which were first coated with Poly L-lysine. All the procedure was performed in 
tissue culture hood under sterile condition in the following way: 
 
Cover-slips to be coated were first autoclaved and placed in tissue culture 
hood. 1% Poly L-lysine solution was made in sterile water by taking 9.9mL of 
sterile water and 100μL of Poly  
L-lysine solution. The cover-slips to be coated were then put in 50mL 
eppendorf tube and the solution was poured in it so that all the cover-slips are 
covered in the liquid. The eppendorf was capped tightly and the tube was 
placed on a gyro shaker and shaken gently at 30rpm for 2 hr. After that, the 
tube was placed back into the hood, the solution poured off and the coverslips 
washed three times with sterile water in the same tube. After the last wash, 
the water was decanted, the coated cover-slips placed flat on a sterile paper 
towel placed in the hood for to dry them for 30min. Cover-slips were stored in 
a sterile jar ready to use. 
 

 
9.2.3 3% Paraformaldehyde (PFA) 
 
3gm Paraformaldehyde 
 
100mL Phosphate buffered saline 
 
100μL 0.1M NaOH 
 
Heated to 70°C and dissolved. Allowed to cool to room temperature and pH 
adjusted to 7.2 with concentrated HCL. 
 
To make 0.1M NaOH, 40mg of NaOH was dissolved in 10mL of water. 
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9.2.4 Terrific Broth (TB) 
 
12 gm Tryptone 
 
24gm Yeast extract 
 
4mL Glycerol 
 
Distilled water added to 900mL 
 
Next, salts for TB made in another bottle as: 
 
1.85gm KH2PO4 
 
10gm K2HPO4 
 
Distilled water added to 100mL 
 
Both bottles autoclaved and the contents of each mixed together in a sterile 
environment to make a litre of TB. 

 

 

9.2.5 10x Phosphate Buffered Saline (PBS) 
 
80gm NaCL 
 
2gm KCL 
 
14.4gm Na2HPO4 
 
2.4gm KH2PO4 

 
Water was added to the volume of 800mL. pH was set at 7.4 and again water 
was added until the final volume of 1 L. 1x PBS was made from the stock with 
water and usually autoclaved before using. 

 
 
9.2.6 Preparation of Luciferase Assay Reagent II (LAR-II): 

 
All the reagents used were provided in the Dual Luciferase Assay kit 
(Promega, UK). The lyophilized Luciferase Assay Substrate was resuspended 
in the 10ml of the supplied Luciferase Assay Buffer II. Once the substrates 
and buffer were mixed, the vial was labelled “LAR II” and stored at -80°C. At 
the time of use, the frozen LAR-II was thawed in water bath set at 37°C. 
 
 
9.2.7 Preparation of Passive Lysis buffer: 
 
The passive lysis buffer was provided as 5x concentrate (Dual Luciferase 
Assay kit, Promega, UK). 5mL of this concentrate was mixed with 20mL of 
distilled water to make a working stock of passive lysis buffer. 
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9.2.8 Preparation of Stop and Glo® reagent:  
The Stop and Glo® reagent was provided as 50x concentrate (Dual Luciferase 
Assay kit,  
Promega, UK). It was always prepared on the day of use by transferring 10μL 
of this reagent with 490μL of distilled water. The working stock was protected 
from light and stored at - 80°C until used. At the time of use, the frozen stock 
was thawed in water bath set at 37°C. 

 
 
9.2.9: Running buffer for immunoblotting: 
 
50mL 20x Nupage® MOPS SDS running buffer (Invitrogen, UK) 
 
1mL Nupage® Sample reducing agent (Invitrogen, UK) 
 
Distilled water was added to the final volume of 1 Litre. Mixed and stored at 
4°C until used. 

 
9.2.10 Transfer Buffer for immunoblotting: 
 
50mL 20x Nupage® Transfer buffer (Invitrogen, UK) 
 
100mL Methanol 
 
1mL Nupage® Sample reducing agent (Invitrogen, UK) 
 
Distilled water was added to the final volume of 1 Litre. Mixed and stored at 
4°C until used. 
 
 
9.2.11: Washing buffer for Immunoblotting: 
 
A 10x concentrated washing buffer provided with WesternDOTTM625 Goat 
anti rabbit/mouse western blot kit (Invitrogen, UK) was diluted to 1x with 
distilled water. Alternatively, a 0.1% solution of Tween20 in PBS was used in 
the same manner. 

 
9.2.12:  Blocking buffer for Immunoblotting: 
 
For antibodies used (Table 9.1.5), BSA based blocking buffer was used as: 
 
2.5gm BSA 
 
50μL Tween20 
 
TBS or PBS added to 50mL and mixed well until all contents were dissolved. 
 
Also, milk based blocking buffer was used by replacing BSA above with 
2.5gm milk keeping everything else the same. 
 
 
9.2.13 SDS sample buffer for western blot: 
  
A 4x concentrated Nupage® LDS sample buffer was used by diluting it to 1x 
with the RIPA extracted protein lysates. 
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9.2.14 Super Optimal Broth (SOB) media: 
 
20gm Tryptone 

 
5gm Yeast Extract 
 
0.5gm NaCl 
 
Dissolved in 800mL distilled water. 
 
10mL 0.25M KCl 
 
pH adjusted to 7. Water added to the final volume of 1 Litre. The media was 
autoclaved. Before use, 5mL of sterile 2M MgCl2 added.0.25M KCl made by 
dissolving 0.93gm of KCl in water to the final volume of 50mL. 2M MgCl2 
made by dissolving 9.52gm of MgCl2 in water to the final volume of 50mL. 
 

 
9.2.15 Freezing Medium for mammalian cell storage: 
 
Freezing medium was made in tissue culture hood using sterile reagents. 
10mL of freezing medium was made in a 15mL falcon tube in the following 
way: 
 
7mL Cell culture media 
 
2mL Foetal bovine serum 
 
1mL DMSO 
 
These contents were mixed together and stored at -20°C. During use, the 
freezing medium was thawed in water bath set at 37°C. 1mL of the medium 
was usually used to store 100% confluent cells from a T75 flask in cryotubes. 
 
 
9.2.16 Stripping Buffer for reprobing immunoblot: 

 
20% SDS 

 
67.5μM Tris-HCl of a pH 6.7 

 
100μm β-Marcaptoethanol 

 
The solution was applied to the immunoblot and incubated usually for 1 h at 
37°C. 

 
9.2.29 Drug solutions used in this study: 
 
All solutions were filter sterilized before using. 
 
 
9.2.29.1 tBHQ (Sigma-Aldrich, UK): 
 
20mM stock solution of tBHQ was prepared by dissolving 34mg tBHQ powder 
in sterile DMSO to a final volume of 10mL. The vial was protected from light 
and stored at -20°C. The final concentration of the drug (usually 100μM) was 
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obtained by diluting it in the cell culture media. 
 
 
 
 
9.2.29.2 9-CIS-RETINOIC ACID (Carbosynth, UK): 
 
6.7mM stock of 9-Cis retinoic acid was prepared by dissolving 2mg 9-Cis 
retinoic acid powder in DMSO to a final volume of 1mL. The vial was 
protected from light and stored at -80°C. The final concentrations of drug 
(usually 2.5, 5.0, 10μM) were obtained by diluting the stock in cell culture 
media during treatment. 
 
 
9.2.29.3 RETINOIC ACID (Carbosynth, UK): 
 
20mM stock of retinoic acid was prepared by dissolving 60mg retinoic acid 
powder in sterile DMSO to a final volume of 10mL. The vial was protected 
from light and stored at -80°C. The final concentrations of the drug (usually 
2.5, 5.0, 10μM)   were obtained by diluting the stock in cell culture media 
during treatment. 
 
 
9.2.29.4 PROCYANIDIN B2 (Carbosynth, UK): 
 
3.5mM stock of Procyanidin B2 was prepared by dissolving 2mg Procyanidin 
B2 powder in sterile DMSO to a final volume of 1mL. The vial was stored at -
20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting the stock in cell culture media during treatment. 
 
 
9.2.29.5 BRUSATOL (Carbosynth, UK):  
 
3.85mM stock of Brusatol was prepared by dissolving 2mg cisplatin in sterile 
distilled water to a final volume of 1mL. The vial was protected from light and 
stored at -20°C. The final concentrations of the drug (usually 2.5, 5.0, 10Μm) 
were obtained by diluting it in cell culture media during treatment. 
 
 
9.2.29.6 NALIXIDIC ACID (Sigma-Aldrich, UK): 
 
20mM stock of Nalixidic acid was prepared by dissolving 23.8mg of Nalixidic 
acid powder in sterile DMSO to a final volume of 5ml. The vial was protected 
from light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  
 
9.2.29.7 QUERCETIN (Carbosynth, UK): 
 
20mM stock of Quercetin was prepared by dissolving 61mg of Quercetin 
powder in sterile DMSO to a final volume of 1ml. The vial was carefully 
wrapped and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0,10μM) were 
obtained by diluting it in cell culture media during drug treatment.  
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9.2.29.8 BEXAROTENE (Carbosynth, UK): 
 
20mM stock of Bexarotene acid was prepared by dissolving 35mg of 
Bexarotene powder in sterile DMSO to a final volume of 5ml. The vial was 
protected from light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  

 
9.2.29.9 LUTEOLIN (Carbosynth, UK): 
 
35mM stock of Nalixidic acid was prepared by dissolving 100mg of Luteolin 
powder in sterile DMSO to a final volume of 10ml. The vial was protected from 
light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  

 
9.2.29.10 ASCORBIC ACID (Carbosynth, UK): 
 
20mM stock of Ascorbic acid was prepared by dissolving 35.2mg of Ascorbic 
acid powder in sterile DMSO to a final volume of 10ml. The vial was protected 
from light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM were 
obtained by diluting it in cell culture media during drug treatment.  
 
9.2.29.11 GLYCETEIN (Carbosynth, UK): 
 
35mM stock of Glycetein was prepared by dissolving 100mg of Glycetein 
powder in sterile DMSO to a final volume of 10ml. The vial was protected from 
light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  
 
9.2.29.12 XANTHOHUMOL (Carbosynth, UK): 
 
20mM stock of Xanthohumol acid prepared by dissolving 72mg of 
Xanthohumol powder in sterile DMSO to a final volume of 10ml. The vial was 
protected from light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  
 
9.2.29.13 p-COUMARIC ACID (Carbosynth, UK): 
 
20mM stock of p-Coumaric acid prepared by dissolving 33mg of p-Coumaric 
acid powder in sterile DMSO to a final volume of 1ml. The vial was protected 
from light and stored at  
-20°C. The final concentrations of the drug (usually 2.5, 5.0, 10μM) were 
obtained by diluting it in cell culture media during drug treatment.  
 
9.2.29.14 LAPATINIB (Cell Signaling, UK): 
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10mM stock of lapatinib prepared by dissolving 14gm of lapatinib powder in 
sterile DMSO to a final volume of 1ml. The vial was protected from light and 
stored at  
-20°C. The final concentrations of the drug (usually 5.0Μm) was obtained by 
diluting it in cell culture media during drug treatment.  
 
9.2.29.13 ERLOTINB (Cell Signaling, UK): 
 
10mM stock of Erlotinib prepared by dissolving 14gm of Erlotinib in sterile 
DMSO to a final volume of 1ml. The vial was protected from light and stored 
at  
-20°C. The final concentrations of the drug (usually 5.0Μm) was obtained by 
diluting it in cell culture media during drug treatment.  

          9.3 Appendix-III 

 
Purchased reagents, chemicals and kits 
 
 

           Table 9.3. 1: Chemicals, reagents and kits used  

Chemical/Reagent/Kits Company and catalogue number 

Agar A5306-250G Sigma-Aldrich 

Agarose BIO-41025 Bioline 

Bovine serum albumin A2153-100G Sigma Aldrich 

Bradford reagent 23200 Pierce Biotechnology 

DMEM cell culture media 12491-015 Invitrogen 

Lipofectamine™ Invitrogen 

Dual luciferase assay 
reagent E1910 Promega 

Gel pilot DNA loading dye 239901 Qiagen 

Gel pilot DNA loading 
ladders 239045 Qiagen 

Glycerol G5516 Sigma Aldrich 

GoTaq® Flexi DNA 
polymerase M8305 Promega 

HaltTM Protease 
phosphatase Inhibitor 
Cocktail 78440 Pierce Biotechnology 

HRP linked anti mouse 
antibody 7076 Cell signalling 
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HRP linked anti rabbit 
antibody 7074 Cell signalling 

Hybond ECL nitrocellulose 
membrane NP0322BOX Invitrogen 

 

 

Cont. Chemicals, reagents and kits used 

 

Novex®sharp prestained 
protein standard LC5800 Invitrogen 

Nupage® LDS sample 
buffer NP0007 Invitrogen 

Nupage® MOPS SDS 
running buffer NP0001 Invitrogen 

Nupage® Sample reducing 
agent NP0009 Invitrogen 

Nupage® Transfer buffer NP0006 Invitrogen 

I Blot dry blotting system Thermofisher 

Omni swab pack WHA-WB100035 Whatman 

OPTIMEM serum reduced 
media 31985070 Invitrogen 

PBS 20012-027 Invitrogen 

Poly L lysine solution P4707-50ML Cell signalling 

QIAprep spin miniprep kit 27104 Qiagen 

QIAquick gel extraction kit 28704 Qiagen 

plasmid plus Maxi kit 12963 Qiagen 

Restriction endonucleases R6161 Promega 

RIPA buffer 89901 Pierce biotechnology 

GelRed DNA stain NBS-SV NBs biological 

Sodium chloride S3014-1KG Sigma Aldrich 

T4 DNA ligase M1801 Promega 

  M1801 Promega 

Trypsin 25300054 Invitrogen 

Tryptone T7293-1KG Sigma Aldrich 

Shield mounting medium 
with DAPI 

H-1200 Vectashield 

  H-1200 Vectashield 
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Xcell Surelock® mincell 
system 

E10007 Invitrogen 

Yeast Extract Y1625 Sigma Aldrich 

 
 

Table 9.3.2: Scientific Equipment used in the current research. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Equipment Makers 

  
Ultra violet transillumation box UVP Upland USA 

  
Gel documentation machine Alpha-innotech, USA 

  
PCR amplification machine Techgene, UK 

  
96 well plate reader for absorption Rosys anthos HTIII 

  
96 well Luminometer and Modulus microplate, Turner biosystems, 

fluorometer UK. 
  

Autoclave machine Priorclave, UK 

  
Nanopure water Barnsted Nanopure DiamondTM, USA 

  
Microscope Lieca DM-IRE2 inverted fluorescence 

 microscope 

Syngene G:BOX 

Chemi-XX6 Gel Documentation System 

(Synoptics, UK) 

  
Spectrophotometer Thermospectronic, USA 

  
Thermomixer comfort Eppendorf, UK 


