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ABSTRACT 

 
Adhesion properties of microorganisms are crucial for many essential biological processes such 

as sexual reproduction, tissue or substrate invasion, biofilm formation and cell-cell aggregation. 

One of such controlled forms of cellular adhesion in yeast that occurs preferentially in the 

liquid environments is a process of asexual aggregation of cells which is also referred to as 

flocculation. The timing during growth and the causes of onset of yeast flocculation are of 

commercial interest to the brewing industry, as flocculation can determine the degree of 

attenuation of the wort. Early or premature flocculation is one common causes of ‘hung’ or 

‘stuck’ fermentations giving rise to sweeter beer whereas a lack or delay in flocculation can 

cause filtration difficulties and some problems in obtaining a bright sparkling beer; in addition, 

the presence of excess yeast in beer during ageing can cause off flavours due to yeast 

autolysis. Despite this commercial interest, limited information is available about the onset of 

flocculation and the various factors that may be responsible in the process. In particular, what 

are the signals that trigger flocculation? Adhesion properties applicable in improving yeast 

biotechnology are dependent directly or indirectly on characteristics of cellular surfaces, usually 

the outer layer of the cell wall. Change in the structure and or composition of the cell wall 

leads to changes in the microbial adhesion properties. Exploring more into the cell wall and 

studying the nanoscale structure of the yeast cell wall would thus be beneficial to augment our 

understanding of flocculation. 
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1.1 Introduction   

1.1.1 Sociobiology of the microorganism with the environment and with 

mankind 

The adhesion properties of microorganisms, which may involve adhering of the 

microbe to other cells, tissues or solid substrates, have been the focus of wide 

ranging scientific and biotechnological interest (Verran and Whitehead, 2005; 

Verstrepen and Klis, 2006; Zhao and Bai, 2009). Adhesion properties are 

known to play an important role in governing many essential aspects of the life 

cycles of microorganisms like sexual reproduction (Chen et al., 1995), cellular 

aggregation during processes such as flocculation and bio-film formation 

(Reynolds and Fink, 2001; Ramage et al., 2009), invasion and/or pathogenic 

behaviour and many others. Many of these microbial adhesion phenotypes are 

controlled by factors such as nutrient availability or the presence of 

pheromones.   

Adhesion properties are also dependent on the characteristics of the cellular 

surface, usually the outer layer of the cell wall. Microorganisms can adjust their 

adhesion properties by changing the structure of their external cell surface. 

Since these are adaptive responses to environmental parameters, they thus 

impart environment-specific adhesion phenotypes. Previous research has 

shown that the genes involved in conferring such adaptability involve a set of 

highly complex and diverse regulatory pathways. In Saccharomyces cerevisiae, 

adhesion mechanisms are controlled by combinational transcriptional factor 

networks as well as allele specific and epigenetic regulation (Verstrepen et al., 

2004 and Verstrepen et al., 2005). 
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Adhesion properties also play an important role in controlling some phenotypes 

that have become relevant targets for the improvement of microorganisms 

during industrial process. In particular, some of these phenomena like 

flocculation, wherein the microorganisms display controlled asexual aggregation 

that leads to the formation of compact groups of cells or flocs, has been 

exploited to improve various processes, such as wine making, brewing, 

bioethanol production and waste water treatment.  

Cell adhesion is promoted by the proteins that are expressed on the adherent 

cells known as the adhesins (see Fig 1.1). These cell adhesion proteins are 

critical to fungal cell interactions in cellular development, symbiosis and in 

pathogenesis, thus they mediate the interaction of the fungus with the outside 

world. They play an important role in mating, colony morphology changes, 

biofilm formation, fruiting body development and interaction with mammalian 

and plant hosts. Thus, depending on the kind of role they play, their interaction 

is either termed as “social” or “antisocial”.  

Social interactions are the intraspecific interactions involved in mating and 

differentiation, the ones that we normally encounter in Saccharomyces 

cerevisiae and those involved in formation of colonies and biofilms that adhere 

and invade the substrate. In contrast to social interactions that are not of much 

harm to humans, these adhesins also promote antisocial interactions that 

basically constitute the pathogen binding to the host organisms. For example, 

eicosapentaenoic acid (EPA) galectins in Candida glabrata and the hydrophobic 

cell surface proteins and peptide binding Als proteins from Candida albicans 

promote such interactions. These agglutinin- like sequence (ALS) proteins also 

mediate colony and biofilm formation, but they also have equally antisocial 
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effects on human beings. Thus, proteins that facilitate cell interactions in fungal 

development may also play interactions with host organisms in commensal and 

pathogenic situations (Guo et al., 2000; Kumamoto & Vinces, 2005; Nobile and 

Mitchell, 2006; Zara et al., 2005). 

 

Figure 1.1 Major adhesins present on Saccharomyces cerevisiae cell wall, 

which play an important role in mating and adhesion properties. Affinity 

estimates were derived by radioligand binding (r), plasmon resonance (p) 

and/or 50% inhibitory concentration for competitive ligand (c).  

  Modified from Dranginis et al., 2007 

1.1.2 Social role of adhesins in Saccharomyces cerevisiae 

1.1.2.1 The adhesins of Saccharomyces in mating 

Among the social roles of adhesins, the best example to be quoted here is the 

Saccharomyces cerevisiae mating interactions. The mating types of this species 

secrete the a and α agglutinins that are specialized for mating. When these two 

mating agglutinins bind they eventually promote the fusion of the haploid cells.  
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1.1.2.1.1  S. cerevisiae a-agglutinin 

a-agglutinin consists of two subunits, AGA1 and AGA2. a agglutinin shows less 

similarity to the other adhesins. While Aga1p is a 725- residue polypeptide with 

an N-terminal secretion signal sequence and a C- terminal GPI additional 

signal, which is expressed in both mating types and plays a role in agar 

invasion. But the binding specificity to Aga1p is provided by Aga2p which is 

expressed only in cells that express the a-agglutinin that is the a-cells. In the 

normal state the cells exhibit low concentrations of the a-agglutinin, while the 

concentration increases to about 5104  per cell, once the cell detects the 

presence of sex pheromone α-factor in the surroundings. The Aga2p subunit 

then binds with either low intensity or high intensity with the α-agglutinin, which 

is expressed on the cells with opposite mating type.  

1.1.2.1.2  S. cerevisiae α –agglutinin   

α –agglutinin consists of a globular head and a highly glycosylated extended 

stalk (Cappellaro et al., 1994). Studies suggest that the globular head of α–

agglutinin is basically three tandem immunoglobulin (Ig)-like folds (Chen et al., 

1995). 

In summary, the a-agglutinin GPI-anchored subunit Aga1p has an adhesive role 

as well. It functions as a anchorage subunit of a-agglutinin and is expressed in 

both the mating types.  

1.1.3 The S. cerevisiae flocculins: adhesins for social aggregation and 

foraging.   

S. cerevisiae yeast cells undergo Ca2+ dependent, irreversible, asexual 

aggregation known as flocculation. Adhesins play a major role in this kind of 
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cell-cell interaction. Such interactions also take place between opposite mating 

types and are also responsible for biofilm formation. 

Flocculation is associated with five flocculin genes that are expressed in S. 

cerevisiae, namely, FLO1, FLO5, FLO9 FLO10 and FLO11. Of these FLO11 is 

expressed in laboratory strains where it exhibits profusion of phenotypes. 

Flo11p shows a variety of roles in yeast that helps cells change and adapt 

during nutritional deficiencies by switching to pseudohyphal states (Lambrechts 

et al., 1996 and Lo et al., 1998). Such filamentous chains of pseudohyphae help 

the yeast to invade the substrate and develop in response of starvation of 

nitrogen and glucose. Pseudohyphal differentiation involves changes in gene 

transcription, in cell cycle progression as well as changes in the morphology. 

For the cell to become invasive the prior step of adhesion is required and that is 

partially contributed by the Flo11p. Apart from this, FLO11 plays a significant 

role in biofilm formation on agar, adhesion on plastic and for the formation of 

specialized floating biofilms called flors that are produced on sherry wines 

(Reynolds et al., 2001). 

In contrast to Fl011p, Flo1p and Flo5p, which are 95% similar, are the major 

proteins responsible for flocculation behaviour. These proteins are large and 

have a typical flocculin structure: a hydrophobic N terminus with signal 

sequence, a hydrophobic C terminus with GPI anchor consensus sequence and 

a central domain comprising of the Thr rich tandem repeats. These adhesins 

are responsible for cell-cell interaction. Flo1p, Flo5p and Flo11p are collectively 

called as the “Flo1-type flocculins” whose activity is inhibited by mannose but 

not by glucose (Bayly et al., 2005). Whereas the “New-Flo1 type” has a variant 

of Flo1p called as the Lg-Flo1. 
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FLO9 and FLO10 also share sequence similarity with Flo1p and also play a role 

in flocculation. These flocculins proteins have varied roles when expressed at 

normal levels in the cell, once over-expressed they could potentially substitute 

for one another. For example, overexpression of Flo1p does not cause agar 

invasion unlike Flo11p but promotes flocculation, while expression of Flo10p 

can promote both flocculation and Flo11p like pseudohyphal development. 

Therefore, the roles of flocculins are overlapping but not identical and the 

flocculin members have partial functional redundancy. 

1.1.4 Importance of microbial cell adhesion especially in Saccharomyces 

cerevisiae 

To produce a high quality beer, the yeast should possess certain desirable 

features to ensure efficient fermentation. These are: 

 Effective fermentation of the sugar, from the wort 

 High ethanol tolerance levels 

 Imparting the desired flavour to the beer 

 Efficient yeast removal from the wort at the end of fermentation. 

Thus, it is widely desired in the brewing industry that the yeast must also leave 

a clear beer and give a yeast crop suitable for repitching into subsequent brews 

(Stewart and Russell, 1981). It is therefore important for yeast biotechnologists 

to study the flocculation properties of particular yeast cultures while considering 

the selection of a yeast strain for brewing purposes. 

The process of flocculation is a subject of significant scientific and 

biotechnological interest because of its relevance in industrial fermentation 

processes such as production of foods, fermented beverages, biofuels and 

pharmaceuticals (Bauer et al., 2010). 
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1.1.5 Medical and industrial relevance of fungal adhesion  

The cell wall, serves just not only to stabilize and shield cells from mechanical 

forces, but also serves as a tool for microbes to interact with their environment 

and vice versa.  

One of the most critical functions of the cell surface is its ability to adhere to 

other cells and surfaces. Adhesion is very useful in preventing cells from being 

washed away, when they find themselves in a nourishing environment. This 

allows them to form biofilms that offer protection from hazardous conditions. For 

example, pathogenic yeasts exploit their capacity to adhere to abiotic surfaces 

such as plastic prostheses to gain access to the bloodstream and internal 

organs of patients (Kojic and Darouiche, 2004). Prostheses and catheters can 

serve as carriers for fungal biofilms and this may provide an internal reservoir of 

highly drug resistant infective cells (Kojic and Darouiche, 2004). 

The industrial importance of fungal adhesion is of considerable economic 

importance for food processing companies, because adherent fungi can form 

highly resistant biofilms in industrial installations. However, a positive impact of 

cell-cell adhesion occurs in industrial brewing and winemaking when separating 

yeast biomass at the end of fermentation. This cell-cell adhesion between yeast 

cells is called flocculation.  

1.1.6 Flocculating microorganisms of industrial relevance 

1.1.6.1 Bacterial flocculation 

Bacterial flocculation is controlled by extracellular interactions, but the precise 

mechanism for the formation of bacterial flocs is not well understood. Bacterial 
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flocculation plays a major role in the process of sludge treatment during sewage 

processing. The formation of bacterial flocs affects the physico-chemical 

properties of the sludge thus improving the aggregate structure settling and 

ensuring solid-effluent separation. Many mechanisms leading to bacterial floc 

formation have been suggested. For example, it may involve extracellular 

polymeric substances such as glycoproteins, together with the involvement of 

divalent ions (Park and Novak, 2009). 

1.1.6.2 Yeast flocculation 

Yeast flocculation has been defined as the asexual, reversible, calcium 

dependent aggregation of cells to form flocs that has many yeast cells. Such 

flocs are desired in some fermentation industries such as brewing, as they help 

to rapidly sediment the yeast cells to the bottom of the fermentor at the end of 

the fermentation process (Bony et al., 1997 and Stratford, 1989). This process 

is an ideal, cost effective procedure that can happen in the brewing process 

only if the flocculation of yeast cells occurs at the desired time required for the 

product recovery. A variety of commodities are produced by yeast: beer, wine, 

champagne, fermented foods, bioethanol, insulin (Kjeldsen, 2000), L-lactic acid 

(Saitoh et al., 2005) and polypetides (Maury et al., 2005). 

Flocculence refers to the ability of yeast cells to flocculate under optimal 

conditions, which is a cell wall property independent of its environment. Thus 

while one studies flocculation one needs to consider both the cell wall 

properties and the effects of the fermenter environment (Speers et al., 2006). 

In some cases, co-flocculation may occur between flocculent and non flocculent 

strains. In such a phenomenon the non flocculent cells adhere to the flocculent 
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cells (Miki et al., 1982). So far co flocculation or mutual flocculation has not 

been reported.  

Flocculation is reported to be a calcium dependent phenomenon. According to a 

lectin–like mechanism, yeast flocculation is caused by specific cell wall proteins 

known as lectins, present only in flocculent cells (Miki et al., 1982). The N–

terminal part of this lectin-like protein binds to mannose residues of 

neighbouring cells. In this adhesion process, calcium ions ensure the correct 

conformation of the lectins (Miki et al. 1982; Stratford, 1989).  

1.1.7 The mechanism of flocculation in S. cerevisiae 

The lectin hypothesis proposed that specific surface cell wall anchored 

glycoproteins or flocculins specifically recognise and bind to α- mannan 

carbohydrates of neighbouring yeast cell walls (Miki et al., 1982; Hough et 

al.1982 ;Taylor and Orton 1978). Furthermore, such  binding is supported by  

calcium ions that act as co-factors in maintaining the active conformation of the 

surface proteins, thereby enhancing the capacity of these lectin like proteins to 

interact with the α- mannan carbohydrates (Bauer et al., 2010). FLO gene 

products, the Flo proteins, are responsible for carrying the lectin domains that 

enhance flocculation and can thus transform non flocculent S. cerevisiae strains 

into flocculent ones (Watari et al., 1994). 

Flocculation is believed to be reversibly inhibited by sugars that directly affect 

flocculation bonding by competing with the sugars (mainly mannose) of the 

yeast cell wall. Flo1 phenotype strains are inhibited by sugars like mannose and 

its derivatives. NewFlo phenotype strains are inhibited by mannose, maltose, 
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glucose and sucrose. Finally the MI strains are the mannose insensitive strains 

(Stratford & Assinder, 1991; Masy et al., 1992). 

There are two phenotypes in brewing yeast strains that are defined by the type 

of zymolectins they produce. 

Flo 1 Phenotype 

In the Flo1 phenotype, the zymolectins produced bind to only mannose residues 

and the zymolectins are inhibited only by mannose. In this yeast type, 

flocculation is not affected by the growth stage of the yeast. Many ale strains fall 

into this category. 

NewFlo phenotype 

In the NewFlo phenotype, the zymolectins produced bind to mannose and 

glucose residues and are inhibited by mannose, glucose, maltose and sucrose. 

Flocculation is typically expressed late in the exponential phase and into the 

early stationary phase. This group contains most lager strains and some ale 

strains.  

1.1.8 Factors that lead to yeast flocculation – cell surface characteristics 

The lectin hypothesis describes the mechanism that makes yeast cells stick 

together, but what factors promote this mechanism: 

 Genetic background of the strain:  for flocculation to occur the strain 

must carry the Flo genes responsible for encoding and regulating the 

production of Flo proteins. FLO genes are very unstable and have 

extremely high frequencies of mutation. This instability leads to 

deletion of FLO gene and loss of flocculation characteristics. 
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 Zymolectin concentration: The increase of zymolectin concentration in 

the cell wall may enhance flocculation. Depletion of nutrients, an 

increase in fermentation by products and temperature increases all 

causes an increase in zymolectin concentration in the cell wall. 

 Mechanical factors that increase collision between the cells: 

Turbulence caused by CO2 production, temperature gradients, or 

other factors will cause more collisions and increase cell aggregation. 

Thus, further agitation is also known to increase the flocculation rate. 

 Factors that decrease repulsive electrostatic charge: Ethanol 

concentration, pH and changes in the cell wall composition. 

 Factors that increase Cell Surface Hydrophobicity or CSH (CSH is the 

description of how much the cell surface repels water molecules): 

Increase in surface protein concentration, increase in zymolectin 

density due to hydrophobic regions in the protein, change in the ratio 

of phosphorus rich to nitrogen rich polypeptides in the cell wall and an 

increase in the production and accumulation of oxylipins, sterols and 

fatty acids in the cell wall.  

 Reduction of zymolectin inhibiting sugars: Over the course of 

fermentation, sugars that competitively bind to the zymolectins will be 

consumed by yeast; this will make these sites available to cell wall 

mannans. 

 Cell Age: Older cells tend to have rougher and more wrinkled cell 

walls than virgin cells which tend to increase the binding ability of the 

older cells. Older cells tend to have a more filamentous growth. It has 
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been seen that there is more zymolectin density on the cell wall of 

older cells. 

 Another important aspect that governs the degree of flocculation is cell surface 

hydrophobicity. Hydrophobic interactions play a major role in microbial adhesion 

phenomenon. It has been observed that an increase in flocculation is strongly 

correlated with an increase in cell wall surface hydrophobicity (Azeredo, et al., 

1997). Various methods have been applied to study cell surface hydrophobicity. 

Some are based on the specific binding properties of the microorganism, 

measuring the actual binding to the substances that carry hydrophobic groups 

such as hexadecane, octyl sepharose and polystyrene. Others give an estimate 

of the overall surface properties, such as salting out and contact angle 

properties. 

Apart from cell surface hydrophobicity, other properties like electron 

donor/acceptor properties and zeta potential are also important in flocculation 

studies. Techniques like microbial adhesion to solvent techniques (MATS), 

based on cell surface affinities for a monopolar and non polar solvent, have 

been used to determine the electron donor or acceptor properties. While zeta 

potential and surface charge could be quantified by measurement of the 

electrophoretic mobility of cells on laser zeta compact equipment. Furthermore, 

using Smoluchowski’s equation, zeta potential (mV) can be calculated (Vichi et 

al., 2010). 

Another important cell surface property, cell size is expected to influence the 

sedimentation of particles with a diameter >0.2 μm (Mortensen et al., 2005). 

Therefore, possible modifications of yeast cell size during ageing could 

influence flocculation capacity, due to the effects of gravity (Vichi et al., 2010). 
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1.1.9 Physiology of yeast flocculation 

Even though flocculation is a cell wall related phenomenon, environmental 

conditions play a significant role in governing the extent and the onset of 

flocculation. Some factors that govern the flocculation include salt and sugar 

content, pH, temperature, aeration and agitation. Of the metal ions that promote 

flocculation, Ca2+ ions are widely accepted to “activate” the flocculation process 

(Taylor and Orton 1973). Calcium ions appear to be mandatory for flocculation 

to occur and as low as 10-8 M Ca2+ may flocculation. However, Nishihara et al. 

(1982) also reported the need of Mg2+, at a concentration of 20μM, for 

flocculation to occur. Stewart and Goring (1976) also reported the significance 

of Mg2+ and Mn2+, that could imitate the role of Ca2+.  Lower concentrations of 

sodium and potassium (1-10mg/L) may also induce flocculation to some extent. 

Conversely, some chemicals inhibit flocculation including the alkaline earth 

metal ions like Sr2+, Ba2+, Na+, Mn2+,Cs salts, Al3+,La3+ and Li+ (Stratford, 1989; 

Kuriyama et al., 1991). 

Apart from the metal ions concentration in the medium, sugar concentration 

also governs the extent of flocculation. Initially Stratford and Assinder (1991) 

grouped flocculent yeast strains into two categories on the basis of their 

inhibition by mannose. For example, S cerevisiae strain MUCL28323, a top 

fermenting yeast strain, is inhibited by mannose and is thus classified as 

Flo1phenotype being mannose sensitive, while a bottom fermenting yeast like S 

uvarum MUCL28235 and M259, is inhibited just not by mannose but by 

maltose, glucose. The latter cells are thus classified as NewFlo phenotype, as 

such yeast strains are inhibited by several sugars. Later Masy et al. (1992) 

showed that some strains are not inhibited by mannose and glucose. Such 
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strains belong to the mannose-insensitive group. Thus sugar inhibition on 

flocculation is very much a strain dependent phenomenon. 

The pH of the medium also plays a significant role in flocculation as it alters the 

cell surface charge. The Flo1 phenotype shows a very broad tolerance, 

exhibiting flocculation between pH 1.5 and 10 (Stratford, 1992). The NewFlo 

strains exhibit two distinct phenotypes: some flocculated over a broad range 

while some flocculated over a narrow range (Stratford, 1996). Thus for the latter 

strains, and in some brewing yeast strains, pH may act as a determinant to 

govern the timing of flocculation. With these strains, a simple change of pH at 

any desired time during fermentation, allows cell separation from the medium 

(Stratford, 1996). 

Another important factor that determines flocculation is temperature which can 

influence flocculation development and expression. From studies, it has been 

concluded that temperature does not inhibit cell-cell interactions but it induces 

or represses the formation of cell wall components and may alter the availability 

of the Flo proteins that are involved in flocculation (Garsoux et al., 1993 and 

Stratford, 1992). 

Oxygen also seems to play an important role in flocculation and this is related to 

mitochondrial function (Nishihara et al., 1977). The effect of oxygen/aeration in 

the medium leads to activation or repression of certain mitochondrial proteins 

that induce flocculation. Agitation serves two antagonistic effects as well, that is 

enhanced particle collision rate induces flocculation on one hand while on the 

other hand higher shear forces causes particle breakage (Stratford and Keenan, 

1988). Thus the rate of agitation can govern the size of floc formation, as gentle 



                                                                                            General Introduction 

 

Chapter One                                             - 16 -                                 Abertay University, Dundee, UK 
 

agitation intensity can lead to larger floc sizes, while vigorous agitation leads to 

smaller floc sizes that settle more slowly and give compact sediments (Burrel, 

1996). 

Next to these fermentation parameters, yeast management plays a crucial role 

in dictating the physiological state of yeast, and in its ability to flocculate. For 

instance, a highly flocculant yeast strain can take on the characteristics of a 

powdery yeast strain simply by being subjected to excessive aeration during the 

propagation phase the first time it is pitched. This is because the transcriptional 

activity of the flocculation genes depends on the physiological state of the 

yeast, the contents of minerals and trace elements in the yeast, and the stress 

to which the yeast is exposed. Likewise, manipulation of the yeast’s cell surface 

by acidification, or coating the cell surface by trub particulate material can play a 

crucial role in the agglutination behaviour of yeast cells. 

During fermentation, the drop in both pH and gravity depends on the largest 

possible contact area between the wort and yeast, which happens during 

maximum and uniform suspension of the yeast. The same dependence applies 

to the maturation phase when yeast activity reduces diacetyl and aldehydes. 

After completion of the maturation phase, however, continued yeast suspension 

poses both technological and quality problems for the brewer. Excessive yeast 

in suspension at that stage can cause filtration problems and pose a risk in 

autolysis with the related deterioration of foam, flavour, pH and stability. 

If late sedimentation is one problem, early sedimentation is another. Such 

flocculation is also known as Premature Yeast Flocculation (PYF). In PYF, 

yeast starts to flocculate well before the beer has reached the final gravity. This 
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in turn, has a significant impact on the beer quality and stability. The cause of 

PYF is still not precisely understood but there are indications that there is so 

called PYF factor at work. The suspect is a polysaccharide that is introduced 

into the wort by the malt .Other factors may be anaerobic conditions during 

malting, as well as certain microorganisms. 

For these reasons, a well delineated rapid and timely onset of flocculation in the 

ferment and the resulting sedimentation of yeast are very important for the 

brewer. Thus flocculation behaviour is a critical criterion to consider in the 

choice of yeast strain. 

1.1.10 Genetics of yeast flocculation  

Gilliland and Thorne in the 1950’s established the existence of flocculation 

genes by genetic crosses (Gilliland, 1951 and Thorne, 1951). Until the 1970’s 

flocculation was thought to be a dominant characteristic and was presumed to 

be controlled by several genes. Lewis and Johnston (1974) suggested that 

FLO1 and FLO2 as the dominant genes and flo3 as the recessive gene. There 

are at least 35 genes that are involved in flocculation. The gene family consists 

of dominant genes like FLO1 and FLO5 (sharing 96% homology with FLO1 

gene), and the two other dominant genes FLO9 (sharing 96% sequence 

homology with FLO1 gene) and FLO10 (sharing 58% homology with FLO1) that 

were later identified on the basis of sequence homology to FLO1 gene. The 

other dominant gene FLO11 shares a sequence homology of 37% with FLO1 

gene thus sharing a distant homology with FLO1 gene while a high degree of 

homology with STA1 gene. Later another gene was described by Sieiro et al. 

(1997) sharing no homology with FLO1 gene but conferring a high degree of 



                                                                                            General Introduction 

 

Chapter One                                             - 18 -                                 Abertay University, Dundee, UK 
 

flocculence. This FLO2 gene, is found on the right arm of chromosome XII. 

Gene FLO8 is somewhat controversial regarding its function in flocculation, but 

later results by Kobayashi and collaborators suggested that FLO8 gene 

mediates flocculation via transcriptional activation of FLO1 gene (Kobayashi et 

al., 1996). Apart from the dominant genes there are a set of recessive or semi 

dominant genes like flo3, flo6 and flo7 and are likely to be allelic to their 

dominant counter parts FLO1, FLO5, FLO9 and FLO10. Expression of some of 

the human heterologous genes like Ha-ras and the viral tax gene has also been 

shown (Hinrichs et al., 1988) to cause flocculation. Expression of the GTS1 has 

been reported (Bossier et al., 1997) to lead to constitutive flocculation even in 

the yeast strains lacking FLO1 gene. It was later suggested that overexpression 

of GTS1 leads to thermo tolerance in strains thus leading to increased lethal 

shock resistance and changes in the cell wall long chain fatty acids profile. All 

these changes lead to lowering of the cell surface hydrophobicity (Domingues et 

al., 2000).  

Strains that exhibit the four dominant structural genes FLO1, FLO5, FLO9 and 

FLO10 belong to the FLO1 phenotype.It was later realised by Kobayashi and 

co-workers, that replacement of FLO1 gene that is Lg-FLO1 exists in cells in 

addition to the other genes in NewFlo phenotype strains (Kobayashi et al., 

1998). While mannose-insensitive strains that don’t require Ca2+ ions, a distinct 

flocculation mechanism other than that involving FLO1 and NewFlo phenotype 

strains occurs. The most probable reasons for such flocculation are 

hydrophobic interactions. 
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1.1.10.1 Lectin like proteins that are responsible for flocculation: 

The FLO1 gene product is localised on the cell surface by immunofluorescent 

microscopy (Bidard et al., 1995). The flocculation level is related to the amount 

of Flo1p level on the cell surface and their concentration increases as the yeast 

cells progress from one phase of the growth to another. It’s seen that the FLO 

proteins are incorporated polar into the cell wall at the bud tip and at the 

mother-daughter junction (Bony et al., 1988). Fig 1.2 shows the molecular 

representative of Flo proteins. The deduced amino acid sequence from the 

FLO1gene revealed a serine and threonine rich protein with the N- and C- 

terminal regions that are hydrophobic and contain potential membrane spanning 

region. All this data suggests that Flo1p is an integral membrane protein, a true 

cell wall mannoprotein. The studies also indicated that the hydrophobic C-

terminus, which is a putative GPI anchoring domain, is necessary for anchoring 

of the Flo1p in the cell wall as well as for the cell- cell interactions, while the N-

terminal domain of the protein is responsible for the sugar recognition 

(Kobayashi et al., 1998). The protein coded by Flo5 gene is Flo5p, which is a 

GPI-anchored protein attached to the yeast cell wall at the bud tip and the 

mother-daughter neck junction (Bony et al. 1997). It has been observed that 

there is irreversible loss of flocculation in FLO1 and FLO5 genes, if the cells are 

treated with pronase, proteinase K, trypsin or 2-mercaptoethanol. However, the 

FLO1 strain was sensitive to chymotrypsin and stable to 70oC incubation 

whereas the FLO5 strain was thermolabile and chymotrypsin resistant (Hodgsin 

et al., 1985) 

FLO8 gene is also equally important for flocculation. Although it shares no 

significant homology with the FLO1 gene, it does mediate flocculation by 
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transcriptional activation of the FLO1 gene, since the level of FLO1 gene 

transcription is dependent on its transcription rate (Kobayashi et al., 1996). 

On the other hand, there are two dominant genes apart from FLO1 and FLO5, 

including the FLO9 gene. The N terminal region of Flo9p is similar to Flo1p. The 

same is true with Flo10p which is 58% similar to Flo1p (Teunissen et al., 1995). 

The FLO11 gene produces “mucin like protein” and is required for invasive 

growth of haploid cells and for diploid cells to form pseudo hyphae in response 

of nitrogen starvation. The proteins share about 26% homology with the Flo1p. 

 

Figure 1.2 Molecular features of representative Saccharomyces adhesins. 

These features are based on HCA plots of the adhesins. 

  (A) HCA plot of the N-terminal 440 residues of Flo1p. HCA draws each 

open reading frame as a helical projection, which is vertically repeated. 

Individual amino acids are denorted as red for acidic, blue for basic and green 

for hyfrophobic, with hydrophic patched bounded by black lines. Thr residues 

are as hollow squares, Ser as dark centered squares, Gly as diamonds and Pro 

as red stars. Cys residues are marked with  triangles below the HC plots and N-

glycosylation sites are marked with maroon hexagons.Transparent boxes 

designate the N-terminal secretion signal (light blue) and the beginning of the 

tandem repeat region (open box). 

 (B) Summary of HCAs of representative yeast adhesins, aligned at the C 

termini, where they are linked to the cell wall polysaccharide through the 
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GPI anchor remnant. N- terminal secreation signals are blue while GPI 

addition signals are green in colour. Repeated sequences are boxed. Diagnol 

stripes in white boxes indicate the tandem repeats that are not homologus to 

other repeats in the illustrated proteins. Potential N-glycosylation sites are 

shown in maroon colour hexagons above each open reading frame. Cys 

residues are shown as triangles below each open reading frame. The content of 

Thr is denoted by bars below each open reading frame, which are dotted where 

the Thr content exceed 20% and solid where the content exceeds 25%. 

 Modified from Dranginis et al., 2007 

1.1.11 The role of cell wall in yeast flocculation  

The yeast cell wall plays a major role in governing the rate and the extent of 

flocculation (Calleja, 1987). Evidence has been reported to show that yeast 

flocculation occurs even in heat killed cells and in isolated cell walls. 

1.1.11.1 The yeast cell wall  

The cell wall is an external envelope shared by yeast and filamentous fungi that 

defines the interface between the microorganism and its environment. It 

surrounds the plasma membrane and is strategically placed at the interface 

between the cell and its environment. It is an extremely complex structure 

consisting of an elastic framework of microfibrillar polysaccharides (glucans and 

chitin) that surrounds the plasma membrane and to which a wide array of 

different proteins, often heavily glycosylated, are anchored in various ways. 

Intriguingly, the proteins present on the cell wall known as the cell wall proteins 

(CWP’s) play multiple  key roles in morphogenesis, adhesion, pathogenicity, 

antigenicity and are also promising targets for antifungal drug design (eg. 

against pathogenic Candida spp.).   

In brewing yeasts, the cell wall is a hugely important and frequently 

underestimated organelle. It is primarily made up of an array of carbohydrates 
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(80-90%) with proteins embedded within it. So it’s not like an ‘inorganic egg 

shell”’, rather its properties and functions keep on changing during the yeast 

cell’s lifetime. It accounts for 15-20% of cell dry weight. 

1.1.11.2 Function of the yeast cell wall 

Much is known about the yeast cell wall functions, roles and responsibilities. It 

provides osmotic protection, acts as a selective permeability barrier and plays 

an instrumental role in maintaining cell shape and morphology. It provides a 

matrix for various enzymes involved in wall maintenance and development 

together with hydrolytic proteins. In pathogenic yeasts, the cell wall plays a 

major role in virulence, pathogenicity, antigenicity, immunomodulation of the 

immune response and adhesion to host substrates. In brewing, the major role 

that could be emphasized is its role in cell attachment to surfaces and cell-cell 

attachment. Finally, the role of the cell wall in flocculation has attracted more 

than its fair share of attention from brewing scientists.  

1.1.11.3 Structure of cell wall 

The yeast cell wall is every carbohydrate chemists dream! The fractionation and 

structural analysis of cell wall carbohydrates is usually a harsh affair involving 

acid and alkali extraction. But the major components of cell wall are: 

(I) Glucans: The glucans are the major polymers in the cell wall, accounting 

about 30-60% of the wall. There are three classes of glucans (Fleet,1999)   

1(a) Alkali insoluble acetic acid insoluble ß-(1-3) (35% of the cell wall): 

maintaining cell wall rigidity and shape. 
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1(b) alkali soluble ß-(1-3) (20% of the cell wall): playing an important role in 

conferring cell wall flexibility 

(a) highly branched ß-(1-6) glucans are branched through ß-(1-3) linkages.: 

essentially playing a major role in interconnecting the cell wall 

polysaccharides, ß-(1-3) glucans, mannoprotein and chitin. 

(II) Mannoprotein: The outer layer of the cell wall is composed of 

mannoprotein. This glycoprotein is a major player, accounting for 25-50% of the 

cell wall. It has been shown that the ‘structural’ mannoproteins are anchored to 

the cell wall through linkage with ß-(1-6) glucan (Cid et al., 1995; Fleet and 

Manners, 1977). In addition to that, extracellular (periplasmic) enzymes like 

invertase are mannoproteins. As such the cell wall mannoproteins don’t play 

any important role in conferring cell with cell shape or rigidity. Nevertheless, 

they are found to play ‘interactive’ roles as antigenic determinants, as receptors 

for ‘killer toxins’ and in sexual agglutination. More importantly in a brewing 

context, mannoproteins are the receptors in the flocculation process. Apart from 

roles in flocculation, mannoproteins play an important role in cell wall porosity. 

They are thought to obstruct diffusion through ionic interactions and the web of 

mannan side chains. 

(III) Chitin: Chitin is a liner polymer of β-(1-4) linked N-acetylglucosamine. This 

polymer is found exclusively in the bud scars left on the mother cell surface 

after the cell has undergone reproduction through budding. These bud scars are 

used to measure  cell age in Saccharomyces cerevisiae. 

(IV) Proteins:  
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Proteins account for 5-10% of the cell wall. Broadly there are three types of cell 

wall proteins: (1) structural proteins (2) enzymes and (3) surface receptor 

proteins (see- Fig 1.3). The structural proteins include the heterogeneous 

mannoproteins and other proteins that are believed to be involved in the 

interaction with cell wall glucans. The enzymes are divided in two groups: those 

that are involved in cell wall morphogenesis and ones that are involved in the 

metabolism of nutritional substrates - for example, invertases and acid 

phosphatases. Finally the surface receptor proteins are the lectin-like proteins 

that are responsible for the phenomenon of flocculation. 

The β-1,6-glucan, a flexible minor cell wall component interconnects certain cell 

wall proteins (CWP’s), the so called glycosyl phosphatidylinositol (GPI)- CWP’s, 

with β-1,3 glucan (~90% of GPI-CWPs) or chitin (~10% of GPI-CWPs) through 

a phosphodiester bridge in their GPI remnant. 

The CWPs are mostly located outside the β1,3-glucan-chitin network (i.e, at the 

cell wall electron dense outer layer) and in minor amounts, throughout the cell 

wall, determining its porosity. These CWPS can be: 

1. Loosely associated, either noncovalently or through disulfide bonds, with 

other cell wall components. This group of CWP’s comprises  

 

(1) soluble precursor forms of covalently linked CWPs 

(2) proteins related to the biosynthesis and modulation of wall 

constituents, such as β-1,3 glucosyltransferase (Bgl2p), β-exoglucanase 

(Exg1p) and chitinase (Cts1p) and  
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(3) noncanonical proteins that are confined to the intracellular 

compartment because they lack the conventional secretory signal 

sequences.(Pitarch et al., 2002 ; Klis et al. 2001). 

2. Cell wall proteins that are covalently linked to β-1,3-glucan. 

 2(a). Directly via an alkali-labile linkage (through a O-linked side chain) 

such as PIR-CWP’s. PIR-CWP’s are highly O-mannosylated proteins 

with one or more internal repeat regions, a N-terminal signal peptide, a 

Kex2 proteolytic processing site and a C-terminal sequence with four 

cysteine residues at highly conserved positions (Klis et al. 2006; Weig et 

al. 2004).These proteins are normally located in the inner layer of the cell 

wall (Kapteyn et al.,  2000). 

 2(b) Indirectly bound by a β-1,6-glucan moiety through their GPI 

remnant, such as GPI-CWPS. The GPI-CWPs are highly O-glycosylated 

proteins with an N-terminal signal peptide, a C-terminal GPI anchor 

addition signal and serine and threonine-rich regions (Klis et al., 

2006).These CWPs are predominantly present in the outer layer of the 

cell wall.  

 3. Covalently anchored to the chitin by a β-1,6-glucan moiety via their 

GPI remnant such as some GPI-CWPs (Sestak et al., 2004).Such kind of 

CWP-polysaccharide complex is largely found in the lateral walls or 

under stress conditions.  
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Figure 1.3 Suggested interrelationships of major wall components of 

Saccharomyces cerevisiae. There are covalent linkages between all 

components, to give pne macromolecular structure, as described in the text. 

Chitin microfibrils lie adjacent to the plasma membrane; β(1-3) and  β(1-6) 

glucan chains are attached to the chitin; some of the cell wall mannoproteins 

(GPI-CWP) are attached to the β(1-6)glucan via remnants of glycosyl 

phosphatidylinositol anchors; cell wall proteins with internal repeats (PIR-CWP) 

are attached to the β(1-3) glucan. 

 

Source: Carlile et al., 2001 

 

1.2 Aims of this thesis 

1.2.1 Study rationale  

The main aims of the research presented in this Thesis was to have a 

comparative understanding of the various factors that lead to flocculation in four 

industrial strains of Saccharomyces cerevisiae by comprehensive study on their 

cell surface properties, nano mechanical properties and genetic behaviour. 

Such information is useful for the food industries to control certain factors to 
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control the output and yield of the end products, thus favouring its application in 

food and beverage biotechnology. 

It is important to study the cell wall properties of industrial yeast strains so as to 

have a better understanding of the phenomenon of flocculation. Cell surface 

parameters including cell surface hydrophobicity (CSH) and cell surface charge 

were investigated in these yeast strains at different (lag, logarithmic, early 

stationary and late stationary) phases of growth  and our findings are pertinent 

to further understanding and potential manipulation of industrial fermentations 

involving S. cerevisiae. Thus investigations regarding the cell surface properties 

and flocculation behaviour of different strains of S. cerevisiae employed in 

brewing, winemaking and bioethanol industries are reflected as the main aim of 

Chapter three presented in this thesis.  

In brewing fermentation processes, repeated pitching of yeast may lead to a 

loss in their flocculation ability, and this is difficult to predict (Heine et al. 2009). 

It was hypothesized that a direct determination of the cellular mannose residues 

or flocculin contents could provide more dynamic information regarding 

flocculation behaviour of industrial yeast strains. Here in, I made use of the 

fluorescent lectins Concanavalin A- Alexa Fluor®-350 (Con A) and Pisum-

sativum-agglutinate-Fluorescein isothiocyanate (PSA-FITC) to analyse to 

investigate if their flocculation behaviour was linked to  lectin receptor density 

and the distribution patterns of glucans and mannans on the cell wall and this 

was identified as the major aim of Chapter four of this thesis. 
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According to lectin like theory, flocculation occurs as a consequence of 

interaction between the specific flocculation proteins (flocculins) present only on 

the flocculent cells and the carbohydrate residues (receptors) of the cell walls of 

the neighbouring cells (Miki et al., 1982). Flocculins in addition to other proteins 

present on the yeast cell surface play a crucial role in adhesion, communication 

and microbial infection (Jendretzki et al., 2011). Close inspection of these 

proteins at the single molecule or cell level would be helpful in understanding 

the several physiological and biotechnological processes such as molecular 

recognition and cell adhesion, aggregation and flocculation, biofilm formation 

(Verstrepen & Klis 2006; Bauer et al. 2010). Thus in this context, atomic force 

microscopy (AFM) appears to play a crucial role, as it allows manipulations at 

single cell level and observing the cell surface at nanometer resolution directly 

on the living cell, which is not seen to be achieved by any thin section 

transmission electron microscopy (TEM) (Binnig et al. 1986; Burnham and 

Colton, 1989; Mizes et al. 1991) and this was the cardinal aim of Chapter five of 

this thesis. 

The genetic variability of flocculation genes may have an important 

consequence for studies and applications targeting these genes in industrial 

yeasts strains with unknown genomes. This study dwelt on examining the 

presence of the dominant genes namely, FLO1, FLO5, FLO8, FLO9 and FLO10 

by designing specific primers. FLO1 is the most studied gene associated to 

flocculation and its regulation and expression is well known (Bester et al. 

2006 and Liu et al. 2007). Genetic variability related to the number of tandem 

repeats in this gene is responsible of the flocculation degree of yeast strains: 

longer repeats are associated to stronger flocculation ability (Liu et al. 
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2007 and Sato et al. 2002). In industrial yeasts, FLO1 has been shown to be 

active and regulated by FLO8. It is considered to play an important role in 

mannose specific flocculation, which is inhibited by mannose but not by glucose 

(Kobayashi et al., 1996; 1998; 1999).To understand the function of FLO genes 

mainly, FLO1 and FLO8 in greater detail, it was necessary to investigate genes 

and their expression levels and this was identified as the major aim of Chapter 

six of this thesis. 

1.2.2 Specific objectives listed by chapter 

Chapter 3: Cell surface properties and flocculation behaviour of industrial 

strains of Saccharomyces cerevisiae 

 To obtain greater insight into the fermentation performance of selected 

industrial strains 

 To conduct comparative analysis of flocculation behaviour among the 

strains during the different phases of growth curve 

 To evaluate the effect of cell surface properties like cell surface 

hydrophobicity (CSH) and cell surface charge (CSC) on flocculation 

behaviour of the selected strains of Saccharomyces cerevisiae. 

Chapter 4: Role of cell wall polysaccharides and lectin-like receptors on 

flocculation of industrial strains of the yeast, Saccahromyces cerevisiae 

 Direct determination of the cellular mannose residues and flocculin 

contents in industrial strains of yeast. I hope this could provide more 

dynamic information regarding flocculation behaviour of industrial S. 

cerevisiae strains. 
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 Determination of the lectins or the mannose binding sites by using 

Avidin-FITC probes and plotting the values using Langmuir’s equation. 

 Correlating the above information with the percentage flocculation ability 

of the strains, in order to find a connection between the flocculation 

ability and number of mannose sites on the cell and number of lectin 

binding sites on the cell surface.  

Chapter 5: Cell surface elastic properties influence flocculation behaviour 

of industrial Saccharomyces cerevisiae strains. 

 To understand the discrete cell adhesion forces and other nano 

mechanical properties for example cell surface elasticity, cell surface 

roughness at nano level.  

   Correlate these nano-mechanical properties to the reversible adhesion 

phenomenon that the cell undergoes during fermentation in the presence 

of calcium ions known as flocculation.                      

Chapter 6: FLO1 and FLO8 gene expression levels governs the extent of 

yeast flocculation in industrial strains of S. cerevisiae 

 To investigate the presence of ‘FLO’ genes, mainly, FLO1, FLO5, FLO8, 

FLO9 and FLO10 genes in all the four industrial strains. 

 Clone and obtain sequence for the genes which has not been sequenced 

before in these industrial strains.  

 Comparison of the expression levels of FLO8 and FLO1 by performing 

quantitative PCR, to determine the number of transcripts produced in real 

time for all the four strains. 
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2.1 Microbiological techniques 

2.1.1 Yeast cultures used in this research 

The yeast cultures used in the study were obtained courtesy of Lallemand Inc. 

(Montreal, Canada). The four Saccharomyces cerevisiae strains are listed in 

Table 2.1. The cultures were supplied in glycerol-covered agar slopes, and sub-

culturing conducted directly from these for further experimentations.  

Strain Name LYCC Number (given) 

Brewing strain LYCCI 

Champagne strain LYCCII 

Wine strain LYCCIII 

Fuel Alcohol strain LYCCIV 

 

Table 2.1 The four industrial strains of Saccharomyces cerevisiae from 

Lallemand culture collection, employed for our study.  

 

2.1.2 Yeast culture maintenance 

The glycerol stocks of the yeasts supplied by Lallemand Inc. were streaked on 

YEPD agar plates (Yeast Extract, Peptone, Dextrose, Agar medium) consisting 

of 20g/L glucose, 20g/L peptone, 10g/L yeast extract and 20g/L agar, at 28oC 

for 24 hours. The plates were prepared in duplicate and then stored at -20oC. 

For testing, from these plates isolated colonies were selected and  inoculated in 

100ml YEPD broth (20g/L glucose, 20g/L peptone, 10g/L yeast extract) for 12-

16 hours. This acted as the seed culture used as inoculum for experimental 

cultivations investigating different phases of yeast growth. The main culture 

medium was YEPD medium with the same composition but 500 ml of the media 
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was inoculated with the seed culture and allowed to incubate at 25oC on an 

orbital shaker at 170 rpm. Yeast samples were collected after 2, 8, 24 and 48 

hours of growth in the medium (representing lag, log, early and late stationary 

growth phases, respectively)*.  Yeast cells were recovered by centrifugation 

(5000 rpm for 5 min) and washed in double distilled water prior to performing 

further analyses. 

2.1.3 Streak plating 

The glycerol slopes that were provided by Lallemand Inc were streaked for 

single colonies using the streak plate method on YEPGA (see Fig 2.1).  

 

Figure 2.1 A YEPGA plate showing the growth of single colonies of S. 

cerevisiaes (Fuel alcohol strain, LYCCIV) strain in a quadrant streak 

pattern.  

*To be discussed later in chapter three 
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2.1.4 Serial dilution 

Serial dilutions of yeast cultures were carried out in order to count cells using a 

Coulter Counter and haemocytometer. Routine dilutions of 10-1, 10-2, 10-3, 10-4 

were prepared in normal saline as shown in Fig 2.2  

 

Figure 2.2 The serial dilution method followed for enumerating the cells 

using haemocytometer and Coulter Counter.  

 

2.1.5 Determination of cell count 

 Typically, 5×106 cells from  seed cultures were inoculated in experimental 

culture flasks from which cells were harvested at 2, 8, 24 and 48hrs (for 

analysis of lag phase, logarithm phase, early stationary phase and late 

stationary phase, respectively).  A minimum of 1× 107 cells/ml were harvested 

from each of these stages for yeast flocculation assays.  

2.1.5.1 Determination of cell count using a haemocytometer 

A Improved Neubauer haeomocytometer (Sussex, UK) was assembled and 

10µL of yeast cell suspension pipetted into the chamber, and visualized 

microscopically (see Fig 2.3)   
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Figure 2.3 Haemocytometer image of cells of fuel alcohol strain (LYCCIV) 

at 40X objective.  

The number of cells in five such large squares was counted and then the 

number of cells/ml was calculated as follows to determine the sample cell 

density.  

The area under each large square is = 0.2 * 0.2 = 0.04 mm2 

The chamber is 0.1mm deep, so the volume under a large square = 0.04* 0.1= 

0.004 mm3  

Thus, in order to get the number of cells in 1 mm3, one divides the number of 

cells in each large square by 0.004 or multiply by 250. To get number per ml, 

multiplied by further 103. 

Thus,  

 Number of cells/ml =   X/Y × 250 × 103                     Equation 2.1 

Where X is number of cells in Y large squares 
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2.1.5.2 Determination of cell count using a Coulter Counter 

A Coulter Counter Beckman Coulter Counter II (High Wycombe, UK)  (see Fig 

2.4) was used for counting yeast cells.  In this instrument,  a particle is pulled by 

vacuum through an orifice, concurrent with an electric current, and this 

produces a change in impedance that is proportional to the volume of the 

particle traversing the orifice. This pulse in impedance originates from the 

displacement of electrolyte caused by the particle. For the sample preparation 

20uL of yeast suspension was pipetted into 20ml of Isoton to obtain a 1:1000 

dilution. After obtaining a background count (Isoton alone), the number of yeast 

cells present in 0.5ml of suspension was determined. In order to obtain the 

number of cells per ml in the original culture sample, the number was multiplied 

by two and then with the dilution factor of 1000.  

 

Figure 2.4 Coulter Counter used to enumerate yeast cell number/ml 
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2.1.6 Chemical analyses  

In order to have an idea about the fermentative properties of the yeasts under 

study and their efficiency for industrial processes, estimation of their ethanol 

and CO2 production was carried out.  

2.1.6.1 Ethanol  

Ethanol production by the yeasts under study was done using an instrument 

called Fermento Flash (Funke Gerber, 3572 –see Fig 2.5). Yeast sample 

supernatants were analysed to give measurements of alcohol content (v/v) and 

extract as well as the values derived from them: density, apparent extract, 

original wort and osmotic pressure.  

 

Figure 2.5 Fermento Flash (Funke Gerber) that provided 

the amount of ethanol (v/v) present in media after yeast 

fermentation. 
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2.1.6.2 Carbon dioxide production 

Carbon dioxide was measured using the ANKOMRF Gas Measurement system 

(see Fig 2.6) which gives a measure of cumulative carbon dioxide gas 

measurement in Psi versus time.  From such graphs, comparative fermentation 

kinetics of the yeast strains was evaluated. The system consists of RF pressure 

sensor modules, a "zero Remote" that measures ambient pressure, a computer 

interface base coordinator and operational software that can be used with any 

PC using a Windows XP or Vista based operating system. In our study, I 

inoculated yeast strains in 250 ml bottles with 100 ml of YEPD media. The RF 

sensor module was attached and placed in an incubator. The pressure of each 

bottle was then measured at selected time intervals. Pressure measurements 

were recorded on a standard Excel spreadsheet and gas production curves 

were then generated.  Pressure could be outputted in psi or bar.  

 

Figure 2.6 ANKOMRF Gas measurement system, used for measurement of 

cumulative carbon dioxide gas measurement.   
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2.1.7 Yeast growth curves 

100 ml of YEPG broth was prepared and each of the four strains inoculated in 

different flasks. The cells were allowed to grow at 30oC at a shaking speed of 

170 rpm for 12-18 hours after which the cell number was counted by using the 

Coulter Counter. Yeasts at a concentration of 5×106 cells/ml were inoculated in 

the main fermenter containing 300 ml of media.  

The main flask containing 300 ml of media (where the four phases of growth 

had to be monitored) were kept on a shaker incubator at 30oC at 170 rpm for a 

period of 48 hours. The sample was taken out from the main fermenter after 

every two hours and the cells were then centrifuged at 5000 rpm for four min.  

Each sample that was collected after every two hours was centrifuged and then 

washed twice with deionised water and resuspended in deionised water. The 

absorbance was measured for each sample at a wavelength of 600 nm.  

2.2 Biotechnological techniques 

2.2.1 Flocculation assay 

Flocculation abilities of the yeast strains were monitored using the modified 

Bony method (Nayyar et al., 2014).  At defined periods of growth, yeast cells 

were harvested by centrifugation (4500×g for 5min), washed and re-suspended 

in de-flocculation buffer (50mM sodium acetate, pH 4.5, 5mM EDTA buffer) and 

washed two times. The cells were then washed twice in double distilled water. 

Subsequently, cells were re-suspended in flocculation buffer (50mM sodium 

acetate, 5mM CaCl2, pH 4.5) while the culture absorbance at 600 was adjusted 

at 2. The cells suspended in flocculation buffer containing CaCl2 were placed in 
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test tubes of 15 mm diameter and 50 mm height at a final absorbance at 600 of 

2. The tubes were sealed and kept on the shaking incubator at 140 rpm for 

30mins. After agitation, 5ml of the cell suspension was transferred to a new test 

tube and allowed to stand undisturbed for 6 min in a vertical position, after 

which, samples (1000µl) were taken from just below the meniscus and the 

absorbance at 600 determined spectrophotometrically (Thermo Spectronic 

Genesys 10UV/10 UV Scanning Spectrophotometer 10-S). The percentage of 

flocculated cells was calculated by subtracting the fraction of cells remaining in 

suspension from the total cell count. 

2.2.2 Cell surface properties 

    2.2.2.1 Hydrophobicity assay 1  

Cell surface hydrophobicity (CSH) was determined by the Hydrophobic 

Microsphere Assay (HMA) (Hazen and Hazen, 1992). Cells were harvested 

during the stationary growth phase and washed thrice with cold, sterile double 

distilled water. A final concentration of 4×106 cells were transferred to 2 ml cold 

HMA buffer (0.05 M NaPO4, pH 7.2). Meanwhile, in a separate glass tube 

containing 6 µl of bead suspension was added to 2 ml of cold HMA buffer, such 

that the final concentration of beads was 9.02×108 spheres/ml. In a 

polypropylene tube at room temperature, 100 µl each of yeast cell and bead 

suspension was added and the tube left undisturbed for 2 min at 4oC. After 

incubation the tube was vortexed for 30 s and 20-30 µl of the cell-bead 

suspension loaded on a haemocytometer. For statistical analysis, 100 cells 

were counted that had three or more than three beads attached to it. 

Determining the percentage of cells with 3 or more attached microspheres gave 

the Hydrophobicity Index.  
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2.2.2.2 Hydrophobicity assay 2  

 Hydrophobicity assay was also performed by Microbial Adhesion to 

Hydrocarbons (MATS test; Bellon-Fontaine et al., 1996; Mortensen et al., 2005). 

This assay determines the hydrophobic nature and the Lewis acid-base 

(electron donor/acceptor) characteristics of yeast cell surfaces. In the MATS 

test, the affinity of microbial cells was compared to a pair of monopolar/ apolar 

solvents of similar Lifshitz-van der Waals surface tension. The pair of solvents 

used was: (1) apolar solvent - hexadecane and the acidic monopolar solvent - 

chloroform, (2) apolar solvent - decane and the strongly basic monopolar 

solvent - ethyl acetate. Since these solvents have different surface tensions, the 

affinity of yeast cells to the hexadecane-chloroform and decane-ethylacetate 

would reflect the electron donor and the electron acceptor property of the yeast 

cell surface. The hydrophobic nature was judged by the affinity to apolar 

solvents, specifically hexadecane.  

The cell surface hydrophobicity was measured using the MATS test (Bellon-

Fontaine et al., 1996 and Mortensen et al., 2005). Yeast cells from the 

stationary growth phase were washed with 10 mM MES (2-(N-morpholino) 

ethanesulfonic acid) buffer, 0.9% NaCl, pH 5.0 buffer and re-suspended to an 

absorbance of 0.8 at 400 nm (A0). Hexadecane + chloroform and decane + 

ethyl acetate constituted two electron donating and accepting pairs. A 0.4 ml of 

each of the solvent was added to four separate test tubes, each containing 2.4 

ml cell suspension and vortex-mixed for 1 min. The mixture was allowed to 

stand for 15 min to ensure complete separation of the two phases. Once the 

distinct phases appeared, 1ml of the sample was removed very carefully without 
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disturbing the aqueous phase and OD measured at 400 nm (A). The 

percentage of bound cells was subsequently calculated by: 

                                                         Equation (2.2) 

Where, A0 is the absorbance at 400 nm of the cell suspension before mixing 

and A is  the absorbance after mixing. 

    2.2.3 Cell surface charge 

Yeast cells were cultivated and centrifuged at 4500 × g for 10 min and re-

suspended in 0.02 M sodium acetate buffer (pH 4) at 5× 107 cells/ml. The yeast 

cell suspension (1 ml) was then re-suspended in 1.8ml of alcian blue dye buffer 

solution (50 mg/L). Alcian blue is a phthalocyanine complex that has four 

charged sites in the molecule and is adsorbed by the negatively charged yeast 

cell surfaces. The suspension was incubated for 30 min at 25oC on the orbital 

shaker at 75 rpm, centrifuged and the free dye remaining in the supernatant 

was determined by absorbance at 615 nm.The concentration of alcian blue was 

determined by reference to an alcian blue standard curve prepared from original 

dye/buffer solution. Thus alcian blue retention was expressed as mg of alcian 

blue per 5 × 107 cells/ml.  

2.3 Nanotechnology Studies 

2.3.1 AFM sample preparation 

Air drying was used  to immobilize yeasts on hydrophilic glass slides. The glass 

slides were made hydrophilic by immersing them in aqueous 20% H2SO4 for 24 

h, washing five times with ultrapure water, keeping immersed in ultrapure water, 

and then air drying them before use. The AFM samples were prepared by 
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placing aliquots of 50µl (equivalent to 1× 108cells/ml) of yeast suspensions onto 

the surface of glass slides and were allowed to air dry for about 3h at room 

temperature and scanned by AFM (JPK atomic force microscope on Olympus 

IX71 inverted optical microscope – see Fig 2.7) soon after, in order to preserve 

the original morphology of the yeast samples under study. In order to know the 

differences in roughness, elastic and adhesion properties for each of the 

strains, the cells were scanned at bud scar (B), cytoplasm (C) and edge (E). 

The yeast samples were scanned in contact mode (CM) by using Si3N4 

triangular cantilevers (Veeco, Santa Barbara, CA, USA). The Si3N4 cantilever’s 

spring constant was calibrated systemically using the thermal tune method and 

was found to be in the range of 0.01-0.02N/m. All the images (512×512 pixels) 

were captured at room temperature with a scanning speed of 0.5µm/s. Since 

water of hydration allows the yeast cells to maintain their native structure as 

suggested by Canetta et al. (2009), thus the experiments were carried out in air 

at room temperature. 
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Figure 2.7 Atomic Force Microscope (JPK atomic force microscope on 

Olympus IX71 inverted optical microscope) used in this study.     

 

2.3.2 Force spectroscopy experiments 

After attaining the AFM images, the yeast cells on the slide were subjected to 

AFM spectroscopy. Fig. 1 shows a typical force spectroscopy curve. For the 

purpose of AFM spectroscopy, the maximal force applied to the cell was limited 

to 1.5 nN in order to probe the cell wall elasticity (Young’s modulus) and not the 
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cell turgor pressure, as made at higher loading forces (Arnoldi et al., 2000; Yao 

et al., 2002). The force (F) vs. displacement curves were converted into force-

distance curves and then using the Nanowizard II software, the curves were 

fitted to the Hertz model (Hertz, 1881), Eq. 1, taking into account a conical tip 

with an opening angle of 35◦(α). 

A simple model for describing the elastic response of a sample indented by an 

AFM tip is the Hertz model (see- Fig 2.8). The most appropriate geometry for the 

AFM tip in our case is a cylindrical cone with an opening angle α (Radmacher et 

al. 1995). The Hertz model predicts in the case of an infinite stiff tip and a soft, 

flat sample the following relation between indentation and loading force:                                     

                                   Equation (2.3) 

Where, F= Force , E= Young’s modulus, ϑ= Poisson’s ratio, δ= Indentation (tip 

sample separation) and α= half cone angle 
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Figure 2.8 Schematic representation of atomic force microscopy used in 

force spectroscopy mode. Force spectroscopy gives access to force curves 

that can be analysed in different ways to get the values for the nanomechanical 

properties of the yeast cell surface. Indentation is read on the force curve and 

represents the Young’s modulus (KPa), the area under the triangle (efg) gives 

the amount of work done to detach the t5ip from the point of contact and gives 

the adhesion energy (J) and the force required to detach is the adhesion force 

(nN). 

 

2.3.3 Surface roughness and height measurement 

Roughness analysis of the yeasts surface was carried out by measuring the 

root mean square roughness, Rrms, on the AFM height image. This analysis 

was carried out on raw AFM images (i.e., the images which were not 

subjected to any processing, neither flattened nor elaborated with any filter).  

For each of the four strains, 35 cells were selected at random and the Rrms 

was evaluated at three different areas (B, C and E) on each cell. The 

roughness analysis was carried using JPK software over a surface of 2.25µm2 
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per cell area .The roughness values were analysed within the framework of 

the sampling theory by considering the yeasts as a very large population.  

The roughness (RMS) was calculated according to equation (2.4): 

                                 Equation (2.4) 

The cross sectional analysis was also performed over 35 cells. Briefly, the 

height differences from peak to peak were taken in micrometer on the raw AFM 

height measured images and along the entire length of individual cells using the 

point-to point measurement tool. The height cross section was taken three 

times on individual yeast cells and statistics was applied to get the average 

height of the individual cells.  
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2.4 Biochemical studies on the Saccharomyces cell wall 

2.4.1 Mannan and glucan staining  

The following method for staining yeast cell wall glucans and mannans was 

modified from Heine et al. (2009).  Yeast cells were harvested at late stationary 

phase of the growth curve by centrifugation at 5000rpm for 5 mins at 20oC.The 

pellet was then washed with PBS buffer and then the cells were counted using 

haemocytometer to a desired concentration of 3.15  106 cells/ml. Final 

concentration of the cells (1ml) was prepared in PBS and then 5μl Pisum 

sativum-agglutinate FITC Conjugate was added and incubated in dark for 

25mins.The cells were centrifuged and the suspension was then transferred to 

96 well plate and the fluorescence was read using a Modulus Microplate reader 

(Turners Biosystem). A small amount of sample was dropped on a clean slide 

and then the fluorescence was observed under  inverted fluorescence 

microscope (Leica DMIRE2).The cells were then incubated with 25 μl 

Concanavalin A Alexa Fluor 350 for 10 mins and then centrifuged and 

transferred to 96 well plate. The fluorescence was noted and slides were 

prepared in the similar manner. The images were captured using charged 

coupled EMCCD camera and analysed using Andor SOLIS for imaging X-3043 

software to generate the distribution of the mannans and glucans on the cell 

wall. 

2.4.1.1 Microscopy 

The stained cells were observed using an inverted fluorescence microscope 

(Leica DM IRE2, Germany – see Fig 2.9) and image analysis (camera: Charged 

coupled EMCCD iXon3, Andor, UK; software: Andor SOLIS for imaging X-
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3043). The fluorescence filters used were: Zeiss filter set 02 for Alexa Fluor®- 

350 fluorescence (excitation G 365, BS 395, emission LP 420), Zeiss filter set 

09 for FITC fluorescence (excitation BP 450-490, BS 510, emission LP 515). 

 

Figure 2.9 Leica DMIRE2 inverted fluorescent microscope used in this 

study. 

The microscope incorporates a built-in Bertrand lens, 12V/100W transmitted 

light illumination, and a magnification changer. It currently possesses three 

fluorescent channels: DAPI, A488 and UV.A live cell imaging microscope 

configured for the acquisition of digital multi-channel fluorescence images of live 

cells using wide-field illumination. 

2.4.2 Lectin like receptor quantification 

The density of lectin like receptors present on the yeast cell surface was 

quantified using a Avidin-FITC probe (Sigma, England, UK). The protocol 

employed was modified from Patelakis et al. (1998) in the following manner.  

The probe and FITC conjugates were prepared at concentrations of 1500, 1200, 

900, 600, 300 and 100 µg/ml in Ca-ethanol sodium acetate buffer (pH 4.0). 20 
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µl of the probe-FITC conjugates was added to 2980µl of buffer respectively and 

mixed properly such that the final concentration of solution ranged from 10 

mg/ml down to 0.66 mg/ml. The solution was then vortexed for 15 s and 

measured using an excitation wavelength of 494±5 nm, and fluorescence read 

during 1 s at 520±5 nm, using a Modulus Microplate reader (Turners 

Biosystem). 

In order to quantify the presence of mannose receptors sites on the yeast cell 

surface, the cells were harvested between 12-24 hours. The method of analysis 

is based on spectrofluormetric measurements that generate the amount of free 

and bound probe. This concentration of free and bound probe on the yeast cell 

surface gives the estimate of the mannose binding receptors. 

Briefly, the yeast cells were washed twice with distilled water and counted using 

a coulter counter (Beckman coulter, Germany). 2980ul of 106 cells/ml 

suspension of yeast cells in Ca-ethanol buffer (pH 4) was prepared to which 

20ul of each of the probe was added, vortexed for 15 s and fluorescence  

intensity was noted on a using a Modulus Microplate reader (Turners 

Biosystem). This was repeated for all the selected probe concentrations of 

(1500, 900,540,324,192 µg/ml). These readings gave the probe bound to the 

receptor reading (A). The solution was then centrifuged for 6 min at 4,400 rpm 

and the supernatant was then slowly removed and the fluorescence was 

measured again using the Modulus Microplate reader (Reading B). For the 

blank determination 106 yeast cells/ ml were put into Ca-ethanol buffer and the 

volume was made up to 3 ml. In this case no probe was added. The solution 

was vortexed for 10 s and fluorescence reading was taken in a Modulus 
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Microplate reader (Reading C).The suspension was again centrifuged at 4,400 

rpm for 6 min and then the readings were taken. (Reading D).  

After measuring the yeast and buffer background fluorescence (free probe 

fluorescence intensity (B-D) and the bound probe fluorescence intensity (A-

[C+(B-D)])), the actual amount of free and bound probe to the receptor was 

calculated in µg/ml. Further, free and bound probe concentrations were then 

analysed according to Langmuir equation (Knight 1970) in order to obtain the 

receptor density.  

The bound and free probe density was then analysed according to the following 

Langmuir equation (Knight 1970) to obtain receptor density. 

P/x = k/x’ + (1/x’) P 

Where, P stands for the concentration of free probe, x is the concentration of 

bound probe, k is the proportionality constant and x’ is the number of binding 

sites per molecule (number of lectin sites). After deriving the equation by P, 

plotting 1/x versus 1/P will give a y-intercept of 1/x’. 

2.4.2.1 Statistical analyses 

Statistical analysis was performed using SPSS software (version 22).One way 

ANOVA analysis was performed to ascertain the change in parameters in 

respect to yeast strains and type of sugar in the growth medium. Significance 

was noted using Bonferroni and Tukey’s estimation. Correlation analysis was 

performed taking into consideration the Pearson’s coefficient at two tailed level.  
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2.5 Molecular Studies  

2.5.1 Bioinformatics tools 

Ensembl 

Ensembl is an online tool that was used to study the genomic sequence of 

FLO1, FLO5, FLO8, FLO9, FLO10 and PDA1. The complete cDNA sequence of 

Saccharomyces cerevisiae FLO genes transcripts was taken from the Ensembl 

and the primers were designed based on this cDNA sequence.   

NCBI BLAST 

BLAST (Basic Local Alignment Tool) from NCBI was used to carry out the 

similarity search of the primers. Primer sequences were analysed in BLAST to 

confirm its similarity only with the specific FLO gene of interest sequence (NCBI 

2014). 

Integrated DNA technologies (oligo analyzer) 

Oligonucleotide analyzer tool from Integrated DNA technologies (IDT) was used 

to analyse the primers. Various properties of the primer including length, GC 

content, melting temperature, molecular weight and concentration were 

analysed. The primers were designed with more than 50% of GC content, 

melting temperature in the range of 58 -680C and no matches with other regions 

of the entire cDNA sequence (Integrated DNA technologies 2014). 

Clustal Omega 

Clustal Omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/) was used to 

do multiple sequence alignment. The software helped to generate alignments 

between three or more sequences. The software was helpful in order to align 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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the sequences of Saccharomyces strains closer to strains under study to finally 

yield the conserved regions. These conserved regions were then targeted to 

prepare primers for PCR and real time PCR.  

Life Technologies, Vector NTI 

Life Technologies, Vector NTI, is a completely integrated suite of sequence 

analysis and design tools that helped to manage, view and analyse the 

sequences of FLO genes that I was working with. The tool also provided the 

flexibility to design primers for polymerase chain reaction (PCR), sequence 

alignment and store sequences for future references. 

Primer 3 primer designing tool 

Primer 3 primer designing tool (http://simgene.com/Primer3) is a free online tool 

to design and analyse primers for PCR and real time PCR. The software was 

used to design primers for real time PCR. The software’s user friendly nature 

helped me to prepare primers which would yield a product length of less than 

250 bp which are ideal for quantitative real time PCR. 

2.5.2 Molecular Techniques 

2.5.2.1 Isolation of genomic DNA 

For the isolation of DNA the 25 mg of the yeast was added to 660ul of TE50X 

containing 10% SDS. It was then vortexed and incubated at 65oC for 10 min 

whole inverting the tubes after 5 min. Then 340µl of 5M potassium acetate was 

added in the same Eppendorf and kept in the fridge until it solidifies, usually 15 

min. After which the tubes were centrifuged at 13,000 rpm for 10 min. An 

aliquote of 600µl of the supernatant was then transferred to the new tube. To 

http://simgene.com/Primer3
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this, 600ul of isopropanol was added and the tubes were mixed and inverted 

well with a further incubation of 10 min at room temperature. The tubes were 

then again centrifuged at 10,000 rpm for 10 min. The supernatant was 

discarded and the DNA pellet was rinsed with 100ul of cold ethanol (95%). After 

washing, the ethanol was discarded and the pellet was allowed to dry on the 

absorbent paper for 1 hr at room temperature or 10 min at 55oC. Finally the 

pellet was resuspended in 60ul of TE1X and incubated overnight at 4oC. 

2.5.2.2 PCR Amplification 

Two kinds of PCR amplification was performed. The former being the 

conventional PCR amplification for targeting the specific gene of interest from 

the genome, or using the template genomic DNA from the yeast samples or the 

template DNA from the bacterial minipreparations extraction of the 

isolated/cloned gene. The other PCR that was performed was the colony PCR. 

The technique was employed to screen for positive clones for genes of interest. 

PCR reaction mix was made in PCR tubes placed on ice using commercially 

available PCR reagents. Typically, each PCR reaction volume was 30 uL. The 

following were added. 

Go Taq® Flexi Buffer……………… 3µL 

MgCl2(25mM) ……………………………………..3µL (final concentration 2.5mM) 

Forward Primer (5uM stocks)………… 3µL (final concentration 0.5uM) 

Reverse Primer (5uM stocks)…………3µL (final concentration 0.5uM) 

dNTP mix (2mM each)………………..3µL (final concentration 0.2mM) 
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DNA template…………………………50ng 

Go Taq® DNA polymerase…………1 unit 

Nuclease Free water…………………upto 30µL 

2.4.2.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a powerful separation method frequently used to 

analyze DNA fragments generated by PCR amplifications, restriction digestion, 

genomic DNA or RNA isolation, estimation of ligation ratios and other cloning 

manipulations. The method could be conveniently used for determining the size 

of DNA molecules in the range of 500 to 30,000 base pairs. 

Closely 1% solution of agarose (Biorad) was made in 1x TAE buffer in a conical 

flask. Agarose was fully dissolved in TAE by heating in microwave for 1 min and 

30s. The agarose solution was then allowed to cool down to 40oC.before 

beingpoured down in the gel tank cast with comb plate. After the gel solidifies, 

the comb plate was carefully removed and 1x TAE buffer was added in the gel 

tank fully immerse the solidified gel in the buffer. The sample DNA that has to 

be analysed was mixed with the DNA loading loading dye (Qiagen) and 

carefully loaded in each of the well. For the PCR amplified products, normally all 

the contents of the tube (30 µl) was used, while for estimating the quality of gel 

purified DNA normally 5µl of the sample was used. 5µl of the DNA ladder 

(Qiagen) was added in one of the wells to provide a reference point for the size 

estimation of the test DNA samples. Once the whole set up is made the gel tank 

was covered with a lid and the attached cables were connected with the power 

pack. Agarose gels were then run at 100 V for 1 h. 
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2.4.2.4 Visualization of the DNA bands image capturing 

DNA bands within the agarose gel were visualized under UV by placing the gel 

on UV trans illuminator (Biorad).Before directly observing the gel in the trans 

illuminator the gel was first kept in the staining bath containing ethidium bromide 

for 15 min. Proper safety conditions were carried out and then the gel was 

shifted to the decolouration bath for 30 min. Once the gels are stained with 

ethidium bromide, the gel was placed on the UV trans illuminator and the 

software used to capture images was Quantity One. Depending upon the 

intensity of bands, appropriate exposure time was set and the image was then 

captured. The images were then saved in TIFF format for later analysis. 

2.5.2.5 Purification of DNA from agarose gels 

Purification of DNA fragments from the gel following gel electrophoresis was 

carried out using the gel purification kit (Qiagen). 

To start with the gel was placed on the UV illuminator to visualize the DNA. With 

the protective clothing on and proper face mask and gloves, the bands of 

interest were cut with a sharp scalpel and then without much exposing them to 

UV , carefully and quickly transferred to the labelled Eppendorf tubes. The rest 

of the protocol was followed according to the manufacturer’s instructions 

(Qiagen). Once the DNA was purified, it was run on the agarose gel to examine 

its quality. 

2.5.2.6 Ligation of the DNA molecules 

To carry out the Ligation procedure, Promega transformation kit was used. The 

Promega cloning vector pGem T-easy was employed. Before proceeding to the 
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ligation step, prior quantification of the purified DNA was required. The 

quantification of the DNA was done using a Nano Drop Spectrophotometer ND-

1000. Based on the DNA quantity the following ligation ratios were made: 

Insert: Vector 

3:1 

After estimating the volume of the insert and vector that would be required, the 

following were added in an Eppendorf tube in order to make a 10 ul ligation 

mixture: 

Insert (Volume dependent on the Quantity of DNA fragments after purification, 

in my case I used 3 ul of the insert) 

Vector  

10x ligation buffer to the final concentration of 1x  

T4 DNA ligase : 3 weiss units/ul  

Nuclease free water to final volume of 10 ul. 

A non-insert control was also used where nuclease free water was added with 

no insert added  serves as a negative control, while a positive control provided 

by the Promega Transformation kit are also two kinds of controls that were set 

up with the ligation reaction. The above reaction was incubated either at room 

temperature for 3 h, or overnight at 4oC. 
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2.5.2.7 Bacterial Transformation 

Bacterial transformation was performed to either propagate pre-existing plasmid 

vectors, in which case 1µl of vector was used, or for the ligated vectors having 

inserts, for which 5µl ligation mix was used. In order to carry out transformation, 

Promega pGEM®-T and pGEM®-T Easy vector systems transformation kit (Cat. 

#L2001) was used. High efficiency competent cells (JM109) were supplied in 

the kit and were used to carry out transformation according to manufacturer’s 

guidelines. Selection of transformants was carried out on LB/ampicillin/IPTG/X-

Gal plates.  

2.5.2.8 Screening of the transformed bacterial colonies and making 

glycerol stocks 

Following the method of bacterial transformation, the growth of the transformed 

colonies on agar plates containing X Gal 80ug/ml, Ampicillin 100ug/ml and 

IPTG 0.5mM made was checked after 16 – 24 hours. The plates showed a 

mixed collection of both white and blue colonies. The white colonies are the 

transformed one and were selected and six of such colonies were streaked on a 

fresh plate containing X gal, IPTG and Ampicillin. After a further incubation of 

16-24 h the clones that appear to be pure white were selected and further 

inoculated in 5 ml of LB medium containing 100ug/ml Ampicillin. Next day the 

tubes with the bacterial suspension were taken out and centrifuged at 14,000 

rpm for 2 min. The media in the supernatant was discarded. In order to extract 

the transformed plasmid from the bacterial cells, Spin Miniprep kit from plasmid 

extraction (Qiagen) was used according to manufacturer’s instructions. To 

screen and verify that the insert of interest is present in the vector, a PCR 
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amplification using T7 and SP6 primers was carried out. As I was aware that the 

two promoters are situated at either side of the insert, thus this way, I could get 

an amplified copy of the insert. After successfully transformed bacterial cultures 

were identified glycerol stocks were prepared with 500 ml of 20% glycerol and 

500 ml of the bacterial suspension and then stored at -80oC. 

2.5.2.9 Bacterial plasmid extraction 

Once the white colonies appear on the plate, this indicates that the cells have 

been transformed. After which Miniprep kit (Qiagen) was employed to extract 

the bacterial plasmid DNA. For techniques like propagation and clonal 

manipulations, plasmid Miniprep was performed. 

2.5.3 Total RNA isolation 

In order to prepare cDNA for the amplification of FLO1 and FLO8 by QPCR 

using specific relevant primers , total RNA was isolated from the four industrial 

strains of Saccharomyces cerevisiae. The total RNA for the strains was isolated 

using RNeasy Mini kit (Qiagen, Cat # 74104) according to manufacturer’s 

guidelines with slight modifications. In order to extract total RNA from the cells, 

the yeast cells were grown on YEPG media for 36-48 hours (late stationary 

phase). The yeast lysate was prepared by mechanical disruption. Cells were 

harvested by centrifuging at 1000×g for 5 min at 4oC. Not more than 5 × 107 

cells were mixed with 600 µl of acid washed beads (0.45-0.55 mm dia) and 600 

µl of buffer RLT and centrifuged for 20 min at 4500×g. After centrifugation, the 

supernatant was collected into a new microcentrifuge tube. To 1 volume of 

homogenized lysate 1 volume of 70% ethanol was added and mixed well 

withoutby inversions. The sample was then transferred to an RNeasy spin 
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column placed in a 2 ml collection tube and centrifuged for 15s at 8000×g. The 

flow through was discarded. Then 700 µl of Buffer RW1 was added to RNeasy 

spin column and centrifuged again 15s at 8000×g. The flow through was 

discarded. Then 500 µl of buffer RPE was added to RNeasy spin column and 

centrifuged for 2 min at 8000×g to wash the spin column membrane. Lastly the 

RNeasy spin column was placed in new 1.5 ml collection tube and 50 µl of 

RNase-free water was added directly to the spin column membrane and 

centrifuged for 1 min at 8000×g to elute the RNA. To examine the integrity and 

quality of the extracted RNA, 5 µl  of the RNA was run on 1.5% agarose gel in a 

gel tank previously washed with 10% SDS and autoclaved to remove residual 

ribonucleases. The resulting two bands (corresponding to 28S and 18S 

subunits of ribosomal RNA) ensured the integrity of the RNA isolated. 

2.5.3.1 RNA quantification and determination of purity 

Once the RNA was purified and checked for integrity by running it on agarose 

gel, it was quantified using spectrophotometric analysis. First, the RNA dilution 

buffer (10mM Tris.Cl, pH 7) was taken in a sterile cuvette and placed in the 

spectrophotometer. This was used as a reference buffer at 260nm wavelength. 

Next 50µl of RNA was diluted in 9950µl of RNA dilution buffer in a cuvette and 

its absorbance was measured at A260nm. Each reading was taken 3 times and 

their means calculated. 

 The RNA was quantified by the following formula: 

A260 × Dilution factor (200) ×40 = x µg/ml                            Equation 2.5 
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In order to determine the purity of RNA, a ratio of the Absorbance at 260 and 

280(A260/A280) was calculated after dilution RNA in 10mM Tris.Cl, pH 7.5. An 

absorbance ratio of around 2 was considered to indicate good quality RNA.   

2.5.3.2 cDNA synthesis 

The total RNA isolated in the above step was subjected to DNase digestion, so 

any DNA contamination was removed using the Qiagen RNase- Free DNase 

set (Cat# 79254) according to manufacturer’s guideline. Known amount of RNA 

was used for cDNA synthesis, using RT2 First strand kit (Qiagen, Cat # 330401) 

according to manufacturer’s guideline. 

2.5.3.3 DNA & cDNA quantification 

The DNA was quantified using spectrophotometric method. First of all, 500 µl of 

distilled water was taken in a cuvette and placed in the spectrophotometer. The 

wavelength was adjusted at 260nm and the water was used to blank the 

spectrophotometer. Next, 10µl of DNA was diluted to 490µl of distilled water in a 

cuvette and its absorbance was read at 260nm. The readings were taken in 

triplicates and their means were calculated. The quantity of DNA was calculated 

according to this formula: 

A260 × Dilution factor (50) ×50 = x µg/ml                         Equation 2.6 

In order to determine the purity of DNA, a ratio of the Absorbance at 260 and 

280 (A260/A280) was calculated after dilution RNA in 10mM Tris.Cl, pH 7.5. An 

absorbance ratio of around 1.8 was considered to indicate good quality DNA.  

All cDNA’s were diluted 10-fold with nuclease free water and 5µl of cDNA was 

used in subsequent reactions for QPCR. 
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2.5.3.4 Primer design for QPCR 

In order to know the expression of the gene of interest, optimal primers were 

required for Quantitative real time PCR (QPCR). The primer pairs should be 

able to yield a highly specific PCR product and have minimal nonspecific 

annealing. Three pairs of exon-exon boundary crossing primers for FLO1, FLO8 

and PDA gene were designed using Primer 3 software (Broad Institute, USA) 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

Gene                          Sequence Annealing           

temperature 

Transcript   

length  



FLO1RQ1 CCAAGAAACAGCGTTCGAG       63.6 177 bp 

FLO1FQ4 TCTATCAGTAGGTGGTGCAAC       59.3  

FLO1RQ4 AGAAACAGCGTTCGAGTAAAC       60.0 190 bp 

PDA1FQ1 TGAGACTTCGAAAGCCACC       63.1  

PDA1RQ1 AGTGAAACCGTGACATCTG       58.7 240 bp 

PDA1FQ2 GACTTCGAAAGCCACCTTG       62.4  

PDA1RQ2 TGTGATGGCATTCTCGATACC       64.8 350 bp 

FLO8F1 CCCGTGTAACAATAATACCAC       58.2  

FLO8R1 ACCCTTCGCTTTTGAGGTTG       65.2 180 bp 

FLO8F2 TGGGAAGTTTCAACAAGCCG       67.1  

FLO8R2 CCAGACCGAGGTGTTGCTAT       64.0 200 bp 

 

Table 2.2 List of primer pairs used for qPCR for FLO1, FLO8 and the 
housekeeping gene PDA1.The primer pairs were used on cDNA that was 
obtained after RNA extraction.The primers for qPCR were designed using 
Primer 3 online software. The primers were checked for dimer formation, GC% 
content etc.  

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Gene expression of the test genes (FLO1 and FLO8 gene) were normalized 

against housekeeping gene (HKG) which is constitutively expressed in all 

strains under the study. The reference gene should not be affected/regulated by 

the experimental conditions. Thus for my study, I used pyruvate dehydrogenase 

genes (PDA1), that is E1 alpha subunit of pyruvate dehydrogenase (PDH) 

complex, which catalyzes the direct oxidative decarboxylation of pyruvate to 

acetyl-CoA. The E1 subunit is phosphorylated and regulated by glucose 

(Govender  et al. 2008). 

Since the exact nucleotide sequence for FLO1 and FLO8 gene was not known 

for all the strains except the champagne strain, thus in order to proceed for 

primer designing, I first got the transcript or the CDS sequence for Champagne 

strain from Ensembl (http://www.ensembl.org/index.html) and then proceeded 

with BLAST, which gave me the list of the FLO1 and FLO8 sequence of the 

champagne strain and top 10 Saccharomyces strains were picked. The primers 

were designed for the conserved sequence that was obtained after multiple 

alignment.  

Table 2.2 summarizes the primer pair sequences for the FLO1, FLO8 and 

PDA1 gene. Each gene was amplified in triplicates (N=3) for each of the three 

biological repeats of the four strains. PCR conditions* were optimized and 5µl of 

the amplified product was electrophoresed on a 1.5% agarose gel to verify 

amplicon size. 

*PCR conditions remain same for all the three genes except the annealing 

temperature differed slightly. 
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Step Temperature Time 

Initial Denaturation      94
o
C 30s 

Denaturation      94
o
C 30s 

Annealing*      55
o
C* 60s 

Extension      65
o
C 40s 

Final Extension      65
o
C 10 min 

*Annealing temperature for PDA1, FLO1 and FLO8 gene was 55
o
C, 52

o
C and 53

o
C 

respectively. 

Table 2.3 PCR conditions used for the amplification of the particular 

region of interest from FLO1, FLO8 and PDA1 cDNA.  

 

2.5.3.5 Semi Quantitative qPCR (Gel densitometry analysis) 

Gel densitometry analysis (Semi quantitative PCR) was used to compare the 

differential expression of each of the test gene with HKG between the four 

strains using Gel DocTM imager (Life Technologies, Carlsbad, CA, USA).The 

primers (Table 2.2) were used to amplify the cDNA from all the four strains and 

subjected to PCR. The PCR was performed in triplicates for each of the strain 

and each of the gene using the conditions (Table 2.3). The final PCR product 

was resolved by electrophoresis on 1.5% agarose gels. The gels were 

photographed using Gel Doc 100 (Bio-Rad, Hercules, USA) and the images 

were analysed by using Band scan analyser 5.1 software. 

 

 

35 Cycles 
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2.5.3.6 Quantitatve or realtime PCR (QPCR) using SYBR® Green Master 

Mix 

Two genes out of five genes were selected to check for the expression levels. 

These were FLO1 and FLO8 genes. Flo1 gene is the main flocculation gene 

and FLO8 gene product is required for the transcriptional activation of all the 

other flocculation genes namely FLO1, FLO5, FLO8, FLO9 and FLO10. 

Quantitaive or realtime PCR is a standard PCR with the advantage of detecting 

the amount of DNA formed after each cycle with either fluorescent dyes or 

fluorescently tagged oligonucleotides probes. In this study I used SYBR® green 

dye to measure the degree of fluorescence at the end of each cycle. The 

intensity of the fluorescence emitted during QPCR correlates to the amount of 

DNA product formed. Fluorescence exponentially increases as the DNA 

template is amplified. After a few cycles of qPCR, fluorescence surpasses a 

threshold level set above background fluorescence and starts to increase 

exponentially. Eventually the fluorescence signal levels off because the 

fluorescence saturates the detector of the real time PCR machine. 

Fluorescence is no longer related to the starting template copy major 

development of PCR technology that enables reliable detection and 

measurement of products generated during each cycle of PCR process. QPCR 

reactions were carried out in 96 well polypropylene plates, Stratagene (Cat. # 

40133, Carlsbad, CA, USA) in a volume of 20µl and in triplicates. Briefly, the 

reaction mixture consisted of: 
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Components Quantity 

10 fold diluted cDNA 5 µl 

SYBR® Green Reaction mix 10 

Forward Primer (5µM) 1µl 

Reverse Primer (5µM) 1µl 

RNase/DNases free water 3µl 

Total volume 10µl 

 

Table 2.4 Reaction setup for performing qPCR reaction. The reaction was 

set up in triplicates in 96 well PCR tubes. QPCR was carried out in 

Stratagene MX3000P SYSTEM. 

 

The reaction was carried out using SYBR® green master mix (Qiagen, Cat. # 

204141). SYBR® green is an intercalating dye which binds to double stranded 

DNA and results in fluorescencent signal of intercalated dye which is several 

orders of magnitude higher than that of unbound dye. The working of SYBR 

green has been explained in Fig 2.10 
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Figure 2.10 (a) Fluorescence Resonance Energy Transfer. The 

efficiency of FRET is dependent on the overlap of fluorescence of the 

fluorophore emission and quencher absorption spectra, as well as the 

physical distance between fluorophore and quencher. (b)SYBR Green 

Chemistry. A) DNA is denatured and SYBR Green molecules are free in 

the reaction mix. B) Primers anneal and SYBR Green molecules bind to 

the dsDNA. C) DNA polymerase elongates the template and more SYBR 

Green molecules bind to the product formed resulting in exponential 

increase in the fluorescence level. 

 

The reaction was run on a MX3000P SYSTEM (Stratagene, Santa Clara, CA, 

USA) with the following cycling conditions: initial denaturation at 950C for 10 min 

followed by 40 cycles of denaturation at 950C for 30 s, annealing of 55 0C for 1 

min, and a primer extension of 720C for 1 min with melting curves run after each 

end point amplification at 1 min for 950C, followed by 30 s increments of 1 0C 

from 550 C to 95 0C and a subsequent melting curve analysis. All reactions were 

run in triplicate and the mean Ct-values were used for further analysis. Three 

independent experiments were performed. Relative expression levels of FLO1 

and FLO8 gene were calculated using the comparative cycle threshold (Ct) 

a. b. 
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method described by Pfaffl (2001) (see Fig 2.11). The housekeeping gene used 

was PDA1. The relative change in the quantity of the PCR product formed was 

directly proportional to the amount of dye incorporated which emits at 520 nm 

and fluorescence emitted can be detected and related to the amount of target. 

 

Figure 2.11 The graph explains the threshold definition and the Ct value 

calculation. 

The threshold refers to the level of fluorescence above the baseline, at which 

the signal can be considered not to be background. The threshold in this study 

was set automatically using the calculation of threshold corresponding to the 

average baseline + “X” standard deviation of the baseline. The Ct value which is 

defined as the cycle in which there is significant increase in the reporter signal, 

above the threshold, that is the cycle in which the growth curve crosses the 

threshold. The Ct value is consequently in inverse proportion to the expression 

level of the gene. If the Ct value is low, it means the fluorescence crosses the 

threshold early, meaning that the amount of target in the sample is high. The 
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ROX is a fluorescent dye that is used as a passive reference for Stratagene. 

This dye is usually spiked into the master mix and the reporter fluorescence is 

normalized to the ROX signal on Stratagene Mx3000P machine. 

2.5.3.7 Normalization and quantification methods 

The two major methods of normalization are the absolute quantification and the 

relative quantification (Sellars et al., 2007). In absolute quantification, the exact 

number of copies of the gene of interest was calculate, while in relative 

quantification, the expression of the gene of interest is expressed relatively to 

another gene. Relative quantification is the most widely used technique. Gene 

expression levels were calculated by the ratio between the amount of target 

gene and an endogenous reference gene, which is present in all samples. The 

reference gene has to be chosen so that its expression does not change under 

the experimental conditions or between different tissues (Cook and Stevenson, 

2009). 

Delta delta Ct (∆∆Ct) method is the simplest and a direct comparison of Ct 

values between the target gene and the reference gene. Relative quantification 

involves the choice of a calibrator sample. The calibrator sample can be the 

untreated sample (internal control or a no template control (NTC)) the time=0 

sample, or any sample you want to compare your unknown to.  

Firstly, the ∆Ct between the target gene and the reference gene was calculated 

for each sample (for the unknown samples and also for the calibrator sample). 

 ∆Ct = Ct target – Ct reference gene                                 Equation 2.7 
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Then the difference between the ∆Ct of the unknown and the ∆Ct of the 

calibrator is calculated. 

∆∆Ct value:  

∆∆Ct = (Ct target – Ct reference) calibrator – (Ct target – Ct reference) sample            Equation 2.7 

 

The normalized target amount in the sample is then equal to 2-∆∆Ct and this 

value can be used to compare expression levels in samples.
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Abstract 

 

Cellular adhesion properties of yeasts depend on the characteristics of the outer 

layer of the cell wall. In this study, the flocculation behaviour of four industrial 

strains of Saccharomyces cerevisiae used for production of beer, champagne, 

wine and fuel alcohol was evaluated; their flocculation abilities being, 42.5%, 

14.8%, 13.8% and 11.6%, respectively.  The brewing yeast strain was found to 

be the most flocculent. Very little flocculation was observed during the lag and 

logarithmic phases of growth (1-15%), while during the early and late stationary 

phases, different strains exhibited variable flocculation patterns. Cell surface 

hydrophobicity (assayed using HMA and MATS) and surface charge (assayed 

by Alcian Blue dye retention) played important roles in dictating flocculation 

behaviour in different yeast strains, as did the yeast growth phase. 

Hydrophobicity index (HI) and % hydrophobicity of the four strains followed, 

respectively, the same order, viz Beer (66.6, 21.5) > Champagne (33, 10.5) > 

fuel alcohol (22.4, 7.4) > wine (20.5, 2.7). Our findings provide new insight into 

yeast cell surface properties and how these relate to behavioural characteristics 

of yeasts employed in industrial fermentations. 
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3.1 Introduction 

The adhesion properties of microorganisms, which involve adhering of the 

microbe to other cells, tissues or solid substrates, have been the focus of  wide 

ranging scientific and biotechnological interest (Verran and Whitehead, 2005; 

Verstrepen and Klis, 2006; Zhao and Bai, 2009; Kjeldsen, 2000). Adhesion 

properties are known to play important roles in governing many essential 

aspects of the life cycles of microorganisms including sexual reproduction 

(Chen et al., 2007), cellular aggregation (e.g. flocculation), biofilm formation and 

invasion, and/or pathogenic behaviour (Reynolds and Fink 2001; Palmer et al., 

2007; Ramage et al., 2009, Maury J et al., 2005). 

Yeast cells undergo Ca2+-dependent, reversible, asexual aggregation known as 

flocculation.  In Saccharomyces cerevisiae, floc formation is helpful in certain 

industrial fermentations such as brewing, as this aids in sedimentation of yeast 

cells at the bottom of cylindro-conical fermenter vessels at the end of the 

fermentation process (Bony et al., 1997; Stratford, 1989).  In some cases, co-

flocculation has been reported to occur by adhesion of flocculent and non-

flocculent strains of S. cerevisiae  and lactic acid bacteria (Miki et al., 1982a). 

One important factor that governs the degree of flocculation is cell surface 

hydrophobicity which plays major roles in microbial adhesion phenomena. For 

example, an increase in flocculation ability is strongly correlated with an 

increase in cell wall surface hydrophobicity (Azeredo et al., 1997). Additional 

factors are involved, including electron donor/acceptor properties and zeta 

potential (White and Walker 2011).  Techniques like microbial adhesion to 

solvent techniques (MATS), based on cell surface affinities for a monopolar and 

non-polar solvent, may be used to determine the electron donor or acceptor 
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properties of yeast cells, whilst  zeta potential  can be quantified by measuring 

the electrophoretic mobility of cells  (Vichi et al.,  2010).  

Yeast flocculation is also governed by genetic determinants. Five flocculin 

genes are expressed in S. cerevisiae, namely, FLO1, FLO5, FLO9 FLO10 and 

FLO11. Flo11p exhibits a variety of roles in yeast that helps cells change and 

adapt during nutritional deficiencies by switching to a pseudohyphal state, 

enabling cells to invade substrates in response to starvation of nitrogen and 

glucose (Dranginis et al., 2007, Saitoh et al., 2005). 

It is important to study the cell wall properties of industrial yeast strains so as to 

have a better understanding of the phenomenon of flocculation.  This study thus 

investigated the cell surface properties and flocculation behaviour of different 

strains of S. cerevisiae employed in brewing, winemaking and bioethanol 

industries. Cell surface parameters including cell surface hydrophobicity (CSH) 

and cell surface charge were investigated in these yeast strains at different (lag, 

logarithmic, early stationary and late stationary) phases of growth  and our 

findings are pertinent to further understanding and potential manipulation of 

industrial fermentations involving S. cerevisiae.   

Thus, the main aim of this chapter is:- 

 To obtain greater insight into the fermentation performance of selected 

industrial strains 

 To conduct comparative analysis of flocculation behaviour among the 

strains during the different phases of growth curve 
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 To evaluate the effect of cell surface properties like cell surface 

hydrophobicity (CSH) and cell surface charge (CSC) on flocculation 

behaviour of the selected strains of Saccharomyces cerevisiae. 

3.2 Results 

3.2.1 Performance of individual strain in terms of their fermentation 

capability 

 

The strains of Saccharomyces cerevisiae under study were industrial strains 

that were provided by Lallemand Inc. (Montreal, Canada). All the four strains 

have varied roles in industry and are employed for achieving a different end 

product.  

I have denoted these strains on the basis of their end product for eg. LYCCI 

(Brewing strain), LYCCII (Champagne strain), LYCCIII (Wine strain) and 

LYCCIV (Fuel Alcohol strain). When observed under the microscope the cells of 

each of the strain had different cell morphology, size, diameter and different 

growth curves.  

Growth curves were plotted for all the strains (see section 2.1.7). All the four 

strains had different growth curves, in which it was observed that the brewing 

strain (LYCCI) grew more slowly  at the beginning but then caught up with the 

other strains during the exponential stage. Cultures were initiated using a 

starting cell density of 5×106 cells/ml and cells were allowed to grow in YEPG 

broth with growth monitored by enumerating the cells after 2 hours over a 

period of 48 hours. It was observed that all the strains (LYCCI, LYCCII, LYCCIII 

and LYCCIV) had a brief 2 hours period which was the “lag phase”. Oxygen is 

rapidly absorbed from the media during the lag phase in order to produce 
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important cell membrane constituents such as sterols and unsaturated fatty 

acids. It is thus important to provide enough oxygen at the beginning of 

fermentation and this was accomplished by shaking the flasks. 

The strains exhibited steep increases in cell number/ml after 2 h and continued 

to increase for a further 15 h. This was considered to be the logarithmic growth 

phase. After 15 h the cell number remained more or less stable and thus I 

considered that stage to be the early stationary phase (Fig 3.1). 

The accurate distinction of the phases could not be made until I plotted the 

cumulative CO2 pressure curves versus time graph, which gave a better picture 

of when each strain entered different phases of growth. From the data I 

concluded that  there were three phases in yeast life cycle: namely; Adaptive, 

Attenuative and Conditioning. The adaptive phase is the aerobic growth phase, 

attenuative is the anaerobic alcohol production phase, and conditioning is a 

seemingly quiet but nonetheless important phase in which certain primary 

fermentation metabolites are produced. 

S. cerevisiae does not use “aerobic metabolic pathways” in high sugar media 

due to the Crabtree effect. This phase involves uptake of oxygen, nitrogen and 

sugars. With the cell membranes now permeable to sugars and to nitrogen 

compounds such as amino acids and small peptides, the yeast cells now have 

all the necessary nutrients to enter a period of rapid growth and reproduction. 

The growth and reproduction will continue rapidly as long as there is sufficient 

oxygen. When oxygen is no longer available, the yeasts will be forced to use 

their anaerobic metabolic pathway, which is far less efficient. The result of this 

shift is that growth slows dramatically, and the transition to the attenuative 
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phase begins. During the attenuative phase, or the beginning of the early 

stationary phase, is when the yeasts process sugars in media anaerobically. 

This is when the majority of the alcohol is produced.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Growth curve for the strains (A) LYCCI (brewing strain)  (B) 

LYCCII (Champagne strain) (C) LYCCIII (wine strain) (D) LYCCIV (fuel 

alcohol strain). Time points from 0-2 h are considered to be lag phase, 2 h 

onwards till 8 hours is the logarithm phase, 8-24 h is early stationary phase and 

24 h onwards is the late stationary phase. 

 

 

 

A. B. 

C. D. 
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3.2.1.1 Comparative analysis of industrial yeast strains in terms of ethanol 

production and cumulative CO2 production.  

Fermentative characteristics of the yeast strains were obtained by estimating 

their ethanol production v/v and cumulative CO2 pressure v/s time graph (see 

section 2.1.6). This not only helped us to achieve an understanding about their 

fermentative properties, but also helped in selection of suitable time points to 

carry out specific studies during specific phases of the growth curve. I could 

easily allocate specific phases the cells were for each of the strain as the curves 

helped us understand the proper transitioning of the cells for each of the strain. 

From ethanol content (v/v) v/s time curve (Fig 3.2(A)) I concluded that the 

brewing strain (LYCCI) yielded the highest amount of ethanol (v/v) followed by 

champagne strain (LYCCII), wine strain (LYCCIII) and finally the fuel alcohol 

strain (LYCCIV). Maximum production of ethanol was seen only during the early 

stationary phase and then started reducing as the cells proceeded into late 

stationary phase. From Fig 3.2(B) I can see the clear transitioning of the strains 

through all the four major phases of growth curve namely the lag, log, early 

stationary and late stationary phase. 
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Figure 3.2(A) Ethanol production by four different strains of 
Saccharomyces cerevisiae during lag, log, early and late stationary 
phases of growth.  

Figure 3.2(B) Carbon dioxide production by four different strains of 
Saccharomyces cerevisiae depicted in terms of cumulative CO2 pressure 
measured in psi.  

 

 

 

 

 

(A) 

(B) 
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3.2.2 Comparative analysis of industrial yeast strains in terms of their 
flocculation ability during different growth phases 

The flocculation behaviour and cell surface properties of four different industrial 

strains of S. cerevisiae were studied. The aim of this study was to obtain greater 

insight into the fermentation performance of selected industrial strains and how 

their flocculation behaviour is affected by changes in cell surface properties 

which in turn are affected by changes in nutrient availability and physico-

chemical conditions.  

 

3.2.2.1 Basis for Yeast Flocculation assay 

The flocculation experiments performed here were based on the use of 

controlled inocula, yeast growth, cell density of the suspension and the 

experimental temperature. Flocculation was expressed as a percentage of A600 

as shown in equation 1. 

Strains were then classified as non-flocculent (<20%), very flocculent (>85%) 

and moderately flocculent (20-80%) (ASBC,1986). Yeast flocculation could also 

be measured based on sugar de-flocculation, thermal de-flocculation, turbidity 

of the suspension in a glass capillary or hydrophobic interaction 

chromatography (Jin & Speers, 1998). 

                           Equation 3.1 

Cell-cell adhesion 

The fermentation performance of the industrial yeasts in YEPG was initially 

evaluated in small-scale fermenters. The brewing yeast strain produced the 

highest amount of ethanol (v/v) followed by the champagne, wine and fuel 
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alcohol strains. As shown in Fig 3.2(B), the CO2 production kinetics indicated 

the transition of the yeast cells from one growth phase to another. 

The activation and thus the expression of various flocculins resulted in the 

formation of macroscopic biofilms ranging in diameter from around 100 

micrometres to several millimetres. Flocculation tests were carried out during all 

the phases of growth for the four industrial strains and it was found that all 

yeasts were flocculent either during the early or late stationary phases of 

growth. The strains exhibited significant (p<0.05) differences in their flocculation 

abilities during all the phases of growth (Fig 3.3).  The brewing yeast strain was 

found to be highly flocculent throughout the fermentation including the late 

stationary phase (42.5%) when the flocculence character of the other strains 

diminished.  

The champagne yeast strain may also be categorized as highly flocculent as it 

showed flocculence of about 28% during early stationary phase. The main 

reason for flocculation predominating during early and late stationary phase 

may be due to progressive crenellation and wrinkling of the cell wall during 

aging. This increases the potential surface area of contact compared with that 

of smooth younger cells and therefore promotes cell - cell adhesion (Barker and 

Smart, 1996). 
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Figure 3.3 Percentage flocculation ability of different strains of 

Saccharomyces cerevisiae during different phases of growth. Champagne 

strain (Green) showed high flocculation during early stationary phase, while 

comparatively less flocculation was seen during late stationary phase. The 

same held true for wine strain (blue) and fuel alcohol strain (black). In contrast, 

beer strain (red) became more flocculent during late stationary phase. 

Significant difference (p ≤ 0.05) was observed between the flocculation ability of 

all the strains during different phases of growth curve. 

 

3.2.2.2 Phase wise performance of the strains 

 

The majority of brewing yeast strains belong to the NewFlo phenotype (Stratford 

and Assinder 1991) and possess cyclic flocculation abilities (Soares and Mota 

1996). The flocculent cells, when placed in YEPG medium, progressively lose 

flocculation ability and become flocculent towards the end of logarithmic phase 

of growth (Fig 3.3). 



Cell surface properties and flocculation behaviour of industrial strains of S. cerevisiae  

 

Chapter Three                                              - 83 -                               Abertay University, Dundee, UK 
 

 

 

Figure 3.4 Percentage flocculation ability for the strains during different 

phases of growth curve. (A) Lag phase (B) Logarithm phase (C) Early 

stationary phase (D) Late stationary phase.  

 

On the basis of results so obtained it is clear that LYCCII, LYCCIII and LYCCIV 

belonged to NewFlo type as flocculation was inhibited by mannose, glucose, 

maltose and fructose, suggesting proteins in these strains that were present on 

the cell surface were able to bind to a wider range of all these sugars, except 

galactose (See section 4.2.1). 
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3.2.3 Loss of flocculation 

In the beginning of growth, the declining of flocculation of NewFlo phenotype 

strains can be attributed to a loss, blockage or inactivation of flocculation lectins 

or the receptors. However, it was shown that flocculation receptors are available 

in all stages of growth of these strains (Stratford 1993; Soares and Mota, 1996); 

this means that flocculation cycle is dependent of the presence of active 

flocculation lectins (Stratford and Carter, 1993).  

In a general way, the triggering of flocculation of NewFlo phenotype strains 

occurs at the end of exponential phase of growth (Fig 3.3), when a critical 

nutrient, for example, sugars such as glucose, fructose or maltose (Soares and 

Mota, 1996; Sampermans et al., 2005), in ale strains are almost depleted from 

the culture medium. The initial concentration of glucose of the culture medium 

provokes a delay in the expression of flocculation (Soares and Mota, 1996). On 

the other hand, cells under catabolic repression when transferred to a medium 

with a lower sugar concentration have shown a rapid triggering of flocculation; 

this fact suggests a casual link between sugar limitation and the induction of 

flocculation (Sampermans et al,. 2005). Conversely, another important point 

observed here is that flocculation was normally not observed during the lag 

phase of the growth. I assume that the majority of the cells are virgins during 

this phase and trying to adapt themselves to the new cultural conditions. As 

flocculation is more or less a stress response, the considerable % flocculation 

ability during the lag phase may be due to a Hangover phase that cells undergo 

when they were in a preculture state. Since the duration was 14-16 hours I can 

assume that some cells may have entered a senescence stage in the seed 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b91
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b79
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culture conditions, which when transferred to the new medium show flocculation 

as they express the flocculation genes (FLO genes). 

Flocculation expression is an energetic-dependent process, which requires the 

presence of a residual external energy source (Soares and Mota, 1996), but not 

an external source of nitrogen. Non-flocculent cells, in exponential phase of 

growth, when placed in a culture medium without carbon source do not express 

flocculation; on the contrary, these cells when transferred to a complete medium 

except nitrogen source developed a flocculent phenotype (Sampermans et 

al., 2005). 

The triggering of flocculation seems to be influenced by metabolism of the 

carbon source. The presence of small amount of sugars or ethanol allows the 

onset of flocculation while the presence of glycerol impairs the expression of 

flocculation (Sampermans et al., 2005). Small amounts of ethanol have a 

positive effect on the triggering of yeast flocculation. The presence of 1% (v/v) 

of ethanol induces an early development of flocculation in cells growing in low 

amounts [0·2% (w/v)] of fermentable carbon source. This reason also partially 

explains the reason for the brewing strain (LYCCI) being highly flocculent 

compared to all other strains as it produces much higher (1.43% ethanol v/v). 

The shortage of nutrients combined with the presence of ethanol may be the 

signal that induces the onset of flocculation (Sampermans et al., 2005; Claro et 

al., 2007). 
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3.2.4 Cell surface hydrophobicity directly influences the degree of 

flocculation 

 

3.2.4.1 Cell surface hydrophobicity 

Cell surface hydrophobicity was determined by two techniques, HMA and MATS 

(See section 2.2.2.1 and 2.2.2.2). HMA employs latex microspheres with a 

diameter of 0.845 ± 0.001 µm. About 100 cells for each of the four strains were 

counted and percentage hydrophobicity was calculated for those cells having  

3 beads attached (Fig 3.6). The reason for using  0.845 ± 0.001 µm 

microspheres was the ease of homogeneous suspensions as opposed to 

smaller microspheres (<0.845 µm dia).  

Fig 3.5a shows that there were significant (p<0.05) differences in the 

hydrophobicity indices of the 4 industrial yeasts, with the brewing strain 

exhibiting the highest hydrophobicity index (65%).  These observations  were 

validated using both MATS test and HMA assay indicating that the brewing 

strain was the most hydrophobic (21.5%) toward hexadecane (apolar solvent), 

followed by the champagne strain (10.5%), fuel alcohol strain (7.4%) and wine 

strain (2.7%). In addition, the strains also showed high electron donor capacity 

(percentage affinity to chloroform minus percentage affinity to hexadecane). 

The brewing strain showed highest electron donating capacity (68.8%) while 

champagne strain showed the lowest (44.1%). Our studies show a direct 

correlation between increased CSH and initiation of flocculence during 

fermentation (Fig 3.8a, b). A high level of CSH facilitates higher cell-cell contact 

in an aqueous medium resulting in more specific lectin-carbohydrate interaction 

(Jin and Speers, 1998). 
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Figure 3.5a. Percentage Hydrophobicity Index (HI) of different strains of 

Saccharomyces cerevisiae by HMA test. Significant differences (p ≤ 0.01) 

were observed amongst the strains. Beer strain exhibited highest %HI. Due to 

high CSH, more latex beads were observed to be attached to the cell surface. 

Figure 3.5b. Percent Hydrophobicity of different strains of Saccharomyces 

cerevisiae by MATS test. Significant differences (p ≤ 0.01) were observed 

between different strains. HMA and MATS tests showed similar pattern of 

results (compare Fig 3a with 3b). 
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Figure 3.6 Photograph of strains (A) LYCCI (brewing strain) (B) LYCCII 

(Champagne strain) (C) LYCCIII (Wine strain) (D) LYCCIV (Fuel alcohol 

strain) at 100X objective as observed under light microscope. The small 

black beads are the latex microspheres which attached on the cell walls of 

hydrophobic yeast strains. 
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3.2.5 Cell surface charge 
 
Many forces are involved in cell-cell interactions that determine the extent of 

attachment/adhesion of cells and also the extent of floc formation. After testing 

all the strains using the alcian blue retention test (see section 2.2.3), it was 

observed that all the strains were negatively charged during their late stationary 

phase.  Fig. 3.7 shows that the brewing yeast strain was significantly (p<0.05) 

highly negatively charged compared to the champagne, wine and fuel alcohol 

strains. The presence of carboxylic and phosphodiester groups are responsible 

for the negative character of yeast (Jin and Speers, 1998).  Cells in aqueous 

environments are subjected to many forces that influence cell-cell and cell-

water interactions. Due to highly negative charges on the cell surface, 

electrostatic forces of repulsion keep cells about 10 nm from one another 

(Dengis et al., 1995). Such forces act as a barrier to flocculation. When yeast 

cells age, the zymolectin biosynthesis is initiated and the CSH increases, thus 

hydrophobic forces come into play. These forces consist of long range Van der 

Waals attractions and the short range interactions, particularly hydrogen 

bonding (Van Oss and Giesse, 1995). 

Our findings indicate that cell surface properties play important roles in 

determining the extent of flocculation in industrial strains of S. cerevisiae (Fig 

3.7). This phenomenon is important in industrial fermentation processes and 

deeper understanding of it may lead to practical approaches (e.g. manipulation 

of media or physical conditions) to alter CSH and CSC, thereby providing some 

degree of control over the timing and extent of yeast flocculation.  
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Figure 3.7. Alcian Blue retention ability of different strains of 

Saccharomyces cerevisiae. Significant differences (p ≤ 0.05) were observed 

for Alcian blue retention for beer strain compared to Champagne, wine and fuel 

alcohol strains. 

3.2.6 Correlation between the cell surface parametres and the flocculation 
ability of the strains 

I analysed whether cell surface hydrophobicity and surface charge are 

important in flocculation processes of S. cerevisiae LYCC strains. 

Hydrophobicity and cell surface charge (CSC) were determined during growth in 

standard YEPG medium and after treatments of the yeast cells (with 

microsphere latex beads and non-polar and polar solvents) for cell surface 

hydrophobicity and Alcian blue dye test for CSC. When the interaction between 

flocculent yeast cells and hexadecane and with microsphere latex beads were 

studied by light microscopy, the yeast cells appeared to form a monolayer of 

cells around each of the hexadecane droplet and in case of HMA test, each 
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yeast cell surrounded by more than 3 latex beads. These results demonstrate 

that flocculent yeast cells are highly hydrophobic. 

3.2.6.1 Positive correlation between cell surface hydrophobicity and 

flocculence 

Cell surface hydrophobicity (CSH) has been reported as one of the contributors 

of yeast flocculation (Jin et al., 1998; Straver et al., 1993). In order to examine 

CSH, the yeast cells were harvested during the exponential and stationary 

phase, washed and counted for their CSH. It was observed that the CSH 

increased rapidly in the exponential phase but it reached the highest and stable 

levels in stationary phase. The reduced CSH of yeast cells in the exponential 

phase can be explained due to the occurrence of large number of daughter cells 

or virgins cells that are significantly less hydrophobic than their older counter 

parts (Powell et al. 2003). The flocculation ability of the yeast strains was found 

to positively correlate with CSH (r=0.53 (HMA) and r=0.4(MATS), p ≤ 0.05). The 

variation in CSH partially explains the reasons for change in flocculation ability 

of the strains. This result also supports the previous reports on relationships 

between CSH and flocculation of the strains. 

Cell surface charge (CSC) did not change as significantly as CSH. Apparently 

there were significance in the cell charge levels for the strains (r=0.35,p ≤ 0.05) 

but not a direct correlation between the cell surface charge and flocculation 

ability was seen during growth phases for the strains. However, it was still 

important to recognize the possible role of (non-specific) electrostatic repulsion 

in flocculation, since without this repulsion in flocculation; selective cell-cell 

adhesion cannot function. As the cells proceeds from logarithmic phase to the 

stationary phase the nutrient availability in the medium decreases and thus 
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there is change in the surface charge on the yeast cell surface (Fischer, 1975). 

According to Geilenkotten and Nyns (1971) that have explained that yeast cell 

surface consists of phosphomannan complex overlying the protein layer. They 

suggested that changes in pH usually at 4.5 (when ethanol is present in 

medium), a pH-dependent rearrangement of the surface phosphomannan–

protein complexes may be responsible for flocculation. 
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Figure 3.8a. Correlation between hydrophobicity index and flocculation 

ability of Saccharomyces cerevisiae.  

Figure 3.8b. Correlation between percentage hydrophobicity and 

flocculation ability of Saccharomyces cerevisiae 

Figure 3.8c. Correlation between cell surface charge and flocculation 

ability of Saccharomyces cerevisiae. 

Significant difference (p ≤ 0.05) in the above figures indicates that to some 

extent CSH and CSC are directly correlated with Flocculation ability. These 

observations were made for cells in their late stationary phase. 

3.3 Key Findings 

 

Yeast flocculation, as a particular case of yeast aggregation, is a complex, 

fascinating and industrially relevant phenomenon. The ability of yeast cells to 

form flocs facilitates enormously downstream processing, especially in the 

brewing process. As a natural way of yeast self-immobilization, the use of 

flocculent strains opens the possibility of exploiting different fermentation 

configurations and novel fermentation designs. 

C. 
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At physiological pH values, the yeast cell wall has net negative charge due to 

the ionization of carboxyl and phosphodiester groups of cell wall proteins and 

phosphomannans, respectively. The repulsion of charges of the same sign 

prevents cells from approaching sufficiently close and thus acts as an effective 

barrier to cell aggregation. As a consequence, cells remain dispersed in 

suspension at a distance of the order of 10 nm from each other (Dengis et 

al., 1995). The reduction of cell charge should facilitate cell–cell interactions and 

yeast flocculation. However, no clear relationship between yeast surface charge 

and the onset of flocculation was found (Dengis et al., 1995). 

Conversely, a positive correlation between cell-surface hydrophobicity (CSH) 

and flocculation was found (Jin et al., 2001). CSH is partially responsible for the 

triggering of flocculation of brewing strains (Smit et al., 1992; 

Straver et  al., 1993 and Speers et al., 2006). Consistent with these results, 

other researchers described an increase of yeast surface hydrophobicity when 

Flo1, Flo5, Flo9, Flo10 and Flo11p are present in yeast cell wall (Verstrepen et 

al., 2001b; Govender et al., 2008 and Mulders et al., 2009). 

Brewing yeast cells (LYCCI) were found to be highly flocculent followed by 

Champagne strain (LYCCII), wine strain (LYCCIII) and finally fuel alcohol strain 

(LYCCIV). The reason being that brewing strains are usually exposed to several 

negative conditions such as cold-shock, nutrient starvation, osmotic stress and 

ethanol toxicity (Gibson et al., 2007). Consequently, flocculation can act as a 

communitarian mechanism of survival: the external cells from the floc structure 

can protect the inside cells against a harmful environment by physical shielding. 

The possibility that flocculation can be a response to stress seems to be strain 

dependent.

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b17
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http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b88
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Abstract 

Yeast flocculation is reversible aggregation of yeast cells promoted by the 

interaction between lectin-like protein receptors with mannose side chains on 

adjacent cell walls. Flocculation is also governed by several physiological 

factors, including the type of nutrient sugar available to yeast.  Since most 

industrial fermentation media comprise mixtures of different carbohydrates, I 

aimed to evaluate the effect of sugars on yeast flocculation. I grew four 

industrial strains of S. cerevisiae, representing applications in the brewing, 

winemaking and bioethanol sectors, to late stationary phase and quantified the 

content of mannans, glucans and lectin-like proteins on yeast cell surfaces.  I 

found that brewing and champagne yeast strains showed moderate to high 

flocculation ability when grown with glucose, fructose and galactose, but  very 

low to no flocculation when grown with mannose. Winemaking and fuel alcohol 

strains showed moderate flocculation when grown on maltose and galactose 

and low flocculation with mannose. With regard to lectin-like receptors, I 

showed that their number plays a more important role in governing yeast 

flocculation than the mannan and glucan contents in the cell wall. 
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4.1 Introduction 

Yeast flocculation is a type of asexual aggregation involving Ca2+-dependent 

interaction between lectins and cell wall polysaccharides, notably mannans and 

glucans.  Certain physical factors such as cell wall hydrophobicity, cell surface 

charge, cell surface topography, and cell age all contribute to the ability of yeast 

cells to flocculate (Amory et al., 1988; Wilcocks and Smart, 1995; Straver et al., 

1993). Nevertheless, all factors that determine yeast cell flocculation are 

unknown.  

Eddy and Rudin (1958) proposed the lectin hypothesis of yeast flocculation 

which states that in presence of calcium, cells that exhibit flocculation are able 

to bind highly branched mannose polymers that are located in the cell walls of 

the adjacent cells, leading to cell-cell adhesion (Miki  et al., 1982, Eddy and 

Rudin, 1958). Lectins are sugar-binding proteins of non-immune origin, with no 

catalytic activity, which play a role in cell recognition (Goldstein et al., 1980). In 

yeast, these lectins (or flocculins) are products of a family of genes known as 

Flo genes. S. cerevisiae have five flocculin – encoding genes (FLO1, FLO5, 

FLO8, FLO9, FLO10 and FLO11). The genes FLO1, FLO5, FLO9 and FLO10 

encrypt proteins related to cell-cell adhesion, while FLO11 encodes a protein 

responsible for cellular adhesion to substrates, diploid pseudohyphae formation 

and haploid invasive growth Guo et al., 2000; Teunissen and Steensma, 1995; 

Lo  and Dranginis, 1996). 

Studies have shown that the N terminal part of a three-domain lectin protein is 

responsible for carbohydrate binding (Goosens et al., 2011). This protein was 

found to be glycosylated at both N and O terminals and composed mainly of β- 

sheets. The N terminal of the protein shows high affinity binding towards 
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carbohydrate moieties, specifically to D-mannose, α- methyl-D-mannoside, 

various dimannoses, and mannans. Fluorescence microscopy has confirmed 

that the N terminal contains two mannose carbohydrate binding sites with 

different affinities. The low molecular weight mannose carbohydrates are mostly 

bound to the high affinity binding site of the N terminal domain while the 

mannans bind to the low affinity binding site. Thus, the N terminal part of the 

lectin is responsible for flocculation by interacting with the mannose chains.  

Three types of flocculent yeast cells are known:  

 (i) Flo1 phenotype strains that are inhibited by mannose and derivatives 

 (ii) New Flo type strains, which are inhibited by mannose, glucose, maltose and 

sucrose, but not by galactose, and  

(iii) MI (mannose insensitive) strains, in which flocculation is insensitive to 

mannose (Stratford and Assinder, 1991).  

In brewing fermentation processes, repeated pitching of yeast leads to a loss in 

their flocculation ability, and this is difficult to predict (Heine et al., 2009). I 

hypothesized that a direct determination of the cellular mannose residues or 

flocculin contents could provide more dynamic information regarding 

flocculation behaviour of industrial yeast strains. I selected 4 strains of yeast 

used in different fermentation applications to investigate if their flocculation 

behaviour was linked to  lectin receptor density and the distribution patterns of 

glucans and mannans on the cell wall. I made use of the fluorescent lectins 

Concanavalin A- Alexa Fluor®-350 (Con A) and Pisum-sativum-agglutinate-

Fluorescein isothiocyanate (PSA-FITC) to analyse the flocculation ability of 

yeast cells.  
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4.1.1 Fermentation of hexoses by Saccharomyces cerevisiae 
 

Wild-type S. cerevisiae ferments glucose, the dominant sugar in all plant 

hydrolysates, at high rates even under anaerobic conditions. S. cerevisiae 

contains an elaborate system for hexose transport. The 32 members of the HXT 

(hexose transporter) family in S. cerevisiae differ with respect to transcriptional 

and posttranscriptional regulation, substrate specificity and affinity for glucose 

(Boles and Hollenberg 1997; Kruckeberg 1996). However, since they all 

transport glucose via facilitated diffusion, glucose uptake only requires a 

concentration gradient across the plasma membrane. After uptake, glucose 

dissimilation proceeds via the Embden-Meyerhof glycolytic pathway. This 

pathway oxidizes glucose to two pyruvate, resulting in the net formation of two 

ATP per glucose (Fig. 4.1). In anaerobic, fermentative cultures of S. cerevisiae, 

the NADH formed by glyceraldehyde-3-phosphate dehydrogenase is reoxidized 

via alcoholic fermentation. But obviously glucose is not the only carbohydrate 

present in the hydrolysates. In order to ferment such non-glucose 

carbohydrates with S. cerevisiae, three key criteria have to be met: (i) presence 

of a functional transporter in the plasma membrane,  

(ii) presence of enzyme(s) that couple metabolism of the carbohydrate to the 

main glycolytic pathway and  

(iii) maintenance of a closed redox balance.  

Mannose and fructose are two isomers of glucose that occur in all plant-derived 

biomass hydrolysates and that can be fermented by all wild-type S. cerevisiae 

strains. Both mannose and fructose are transported by all the different members 

of the HXT family, although the Km value is generally higher than that for 

glucose (Reifenberger et al., 1997). After phosphorylation by hexokinase, 
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mannose-6-phosphate is isomerized to fructose-6-phosphate by 

phosphomannose isomerase, encoded by the PMI40 gene. Hexokinase is also 

responsible for phosphorylation of fructose to fructose-6-phosphate, which is 

subsequently metabolized through glycolysis. 

Galactose, another sugar that can be fermented by S. cerevisiae, is first taken 

up by a dedicated member of the HXT family, the galactose permease Gal2p, 

and subsequently converted into glucose-6-phosphate via the Leloir pathway 

(Leloir, 1951; Melcher, 1997) 
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Figure 4.1 Hexose catabolism of Saccharomyces cerevisiae. 

 

Glucose catabolism: 2.7.1.1, hexokinase (HXK1/HXK2); 2.7.1.2, glucokinase 

(GLK1); Galactose catabolism: via the Leloir pathway: 2.7.1.6, galactokinase 

(GAL1); 2.7.7.12, galactose-1-phosphate uridylyltransferase (GAL7); 5.1.3.2, 

UDP-glucose 4-epimerase (GAL10); 5.4.2.2 phosphoglucomutase 

(GAL5/PGM2). Mannose catabolism: 2.7.1.1, hexokinase I (HXK1); 5.3.1.8, 

mannose- 6-phosphate isomerase (PMI40). G-3-P, Glyceraldehyde- 3-

phosphate; DHAP, dihydroxy-acetone-phosphate; PEP, phospho-enol pyruvate; 

PPP, Pentose phosphate 

pathway.  
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(Source : Maris  et al., 2006) 

Thus the main aims of this chapter are  

 Direct determination of the cellular mannose residues and flocculin 

contents in industrial strains of yeast. I hope this could provide more 

dynamic information regarding flocculation behaviour of industrial S. 

cerevisiae strains. 

 Determination of the lectins or the mannose binding sites by using 

Avidin-FITC probes and plotting the values using Langmuir’s equation. 

 Correlating the above information with the percentage flocculation ability 

of the strains, in order to find a connection between the flocculation 

ability and number of mannose sites on the cell and number of lectin 

binding sites on the cell surface.  
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4.2 Results 

The effects of carbohydrates on the overall factors that affect the flocculation 

ability of industrial strains of S.  cerevisiae are shown in Table 1. Results from 

flocculation assays are expressed as means (± standard deviation) of two 

independent experiments. In order to have a better understanding of the 

flocculation behaviour of industrial strains of S. cerevisiae, I studied the 

distribution patterns and semi-quantitative measurement of mannan and glucan 

as well as the presence of lectin-like receptors on the yeast cell walls. 

4.2.1 Effect of sugars on flocculation 

Fig 4.2 shows the variation in flocculation ability when the strains were grown in 

media containing different sugars (i.e. maltose, glucose, mannose, galactose 

and fructose). The interactions mediated by Flo glycoproteins can be divided 

into two categories namely lectin-like (cell-to-cell adhesion) and sugar-

insensitive (adhesion to abiotic surfaces) adhesion phenotypes (Verstrepen and 

Klis, 2006). Furthermore, cell-cell adhesion phonotypes are divided into three 

sub types on the basis of their sensitivity towards sugars (Masy et al., 1992; 

Stratford and Assinder, 1991). In our study, choice of yeast strain and sugar 

were observed to have significant effects on flocculation ability (p≤0.001). In 

terms of strains, it was observed that a winemaking strain (LYCCIII), exhibited a 

range of flocculation from 2-24%. The strain almost lost flocculation when 

cultured on mannose and maltose in contrast to when the yeast cells were 

cultured in galactose, fructose and glucose where it showed high to moderate 

flocculation.  A fuel alcohol strain, LYCCIV, exhibited consistently weak 

flocculation behaviour which ranged from 10-17%, when cultured on the five 

selected sugars. Unlike all the other strains, there was no effect on the 
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flocculation when cultured on mannose. For a champagne yeast strain 

(LYCCII), this exhibited a range of 15-29% flocculation ability. LYCCII yeast 

cells flocculated more when cultured on galactose and maltose, as the cells 

contained a high mannan content as well as mannose binding sites on the cell 

wall. Lastly, the brewing strain, LYCCI, flocculated highly on fructose (53%) and 

glucose (43%) and lost their flocculation ability when cultured on mannose 

(10%). Maltose and galactose had a moderate effect on the flocculation ability 

of the brewing strain.  

 

 

 

 

 

    

 

 

 

 

Figure 4.2 Effect of sugars on flocculation ability of four industrial yeast 

strains.  

Representation of sugars is as follows:   Glucose,    Mannose,   Maltose,     

Fructose and    Galactose. Statistical significance was determined in reference 

to glucose for all the other sugars studied. Mean ± s.d. (n=3 on five different 

sugars).*P>0.05; **P>0.01 and ***P>0.001 was obtained by using one-way 

ANOVA (SPSS software version 22) and the data represents the least 

significance.  
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4.2.2 Effect of sugars on mannan and glucan content in yeast cell walls. 

Fluorometric analysis of the selected industrial yeast strains was performed by 

applying fluorescent lectins ConA-Alexa Fluor and PSA-FITC to measure the 

levels of mannans and glucans, respectively, on the cell wall (Fig 4.3 (A), (B)). 

The strains were grown in media containing five different sugars (glucose, 

mannose, maltose, galactose and fructose) and harvested at the early 

stationary growth phase when a desired cell density was achieved. The protocol 

followed was modified from Heine et al. (2009). Best results were obtained 

when 5µg PSA-FITC per 3.15 ×106 cells/ml was used for 25 min followed by 

incubation with 25µg ConA-Alexa Fluor for 10 min respectively. PSA-FITC 

application was done first in order to mask the effect of excess glucose residues 

(Fig 4.5). 

From the data obtained and analysed from the spectrofluormetric findings, it 

was observed that the type of sugar nutrient employed governed the extent of 

distribution of glucans on the yeast cell wall (p≤0.001), while no such effect was 

observed for mannans (p≥0.05). The overall distribution of mannan remained 

same for all the strains when grown in different sugars. Interestingly, glucose 

and galactose had similar effects on cell wall glucan distribution as compared to 

maltose, mannose and fructose. The overall distribution pattern of mannan and 

glucan helped us understand the flocculation pattern of these strains grown in 

different sugars as these are the binding sites for the lectin like protein 

receptors as stated by the lectin theory (eg. Miki et al., 1982). 
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Figure 4.3 Effect of sugars on (A) Glucan content (RFU) and (B) Mannan 

content of industrial yeast strains. Representation of sugars is as follows:   

Glucose,   Mannose,   Maltose,   Fructose and   Galactose. Statistical 

significance was determined in reference to glucose for all the other sugars 

studied. Mean ± s.d. (n=3 on five different sugars).*P>0.05; **P>0.01 and 

***P>0.001 was obtained by using one-way ANOVA and the data represents 

the least significance. 

A. 

B. 

*** *** 

*** 
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4.2.3 Effect of sugar on the density of lectin like receptors.  

In an attempt to quantify bound fluorescence due to lectin sites on yeast cell 

walls, an investigation of the amount of cell wall mannan and glucan of the four 

yeast strains was undertaken. Fluorescent probe intensity was unaffected by 

binding to the yeast cell wall and the intensity of bound probe to the yeast cell 

wall was similarly unaffected by the length of the binding period, or by the 

number of receptors occupied.  

Fluorescence due to binding of the avidin-FITC complex to lectin sites provided 

an indication of the number of lectin sites available on the cell surface for the 

attachment to the neighbouring mannan residues. The bound and free probe 

concentrations were analysed according to the Langmuir relationship (Knight, 

1970) to obtain the receptor density, and data revealed significant relationship 

(p≤0.001) in the four strains when grown on different sugars (Fig 4.4). This 

implies that the number of lectin-like receptors on the cell surface differs 

depending on the type of sugar available in the growth medium. In general, the 

brewing yeast strain LYCCI exhibited the maximum number of receptors on the 

cell surface, except when grown on galactose, followed by the champagne 

strain LYCII. Sugars in the medium may affect the transcription of FLO genes 

(Verstrepen and Klis, 2006). The protein products for these genes (flocculins) 

could either be Flo1 or NewFlo type. Flo1 type strains have flocculins that are 

only mannose sensitive while NewFlo has a broader sugar range for sensitivity. 

Thus, despite having high receptor numbers on the yeasts when cultured on 

mannose sugars, they exhibited weak flocculation ability. 
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Figure 4.4 Effect of sugars on receptor density on industrial yeast cell 

surfaces. Representation of sugars is as follows:   Glucose,   Mannose      

Maltose,   Fructose and    Galactose. Statistical significance was determined in 

reference to glucose for all the other sugars studied. Mean ± s.d. (n=3 on five 

different sugars).*P>0.05; **P>0.01 and ***P>0.001 was obtained by using one-

way ANOVA and the data represents the least significance.  

Receptor density was characterized by bound and free probe concentrations 

and analysed according to the Langmuir relationship. Data revealed significant 

(p≤0.001) relations in the four strains when grown on five different sugars 

suggesting that the number of lectin like receptors differ on the cell surface 

when the cells were cultured on different sugars. 

 

Strain-sensitivity to different sugars is the basis of the distinction of Flo1 and 

NewFlo phenotypes. Furthermore, fermentable sugars, including those found in 

brewer’s wort, induce the loss of flocculation in the early lag and logarithm  

phase of growth (Soares et al., 2004) or in starved cells (Soares and Duarte, 

2002; Soares and Vroman, 2003) most likely affecting the expression of FLO 

genes. Reversible inhibition of flocculation by specific sugars such as mannose, 

maltose, glucose or fructose, which leads to cell dispersing of the flocs and 
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eventually leading to loss of flocculation ability, by competitive inhibition with 

sugars of the yeast cell wall for lectin like receptors, has been described 

previously  (Miki et al., 1982; Stratford and Assinder, 1991; Masy et al., 1992).  

 

Figure 4.5 Stationary phase yeast cells of (A) brewing strain LYCCI (B) 

champagne strain LYCCII (C) wine strain LYCCIII (D) fuel alcohol strain 

LYCCIV. Mannan and glucan staining was performed using fluorescent dyes 

Concanavalin A-Alexa Fluor 350 (blue) and PSA-FITC (green) respectively. The 

cells were stained with the fluorescent dyes, incubated for 25 min and observed 

using an inverted microscope at 100X objective. The cells were in the range of 

4-5µm.  
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Figure 4.6 Strain wise representation of an overall effect of all the 

parameters studied on their flocculation ability. Representation is as 

follows: mannan content (Ο), glucan content (□), % flocculation ability ( ) and 

receptor concentration × 107/cell ( ). For each of the strains (A) brewing strain 

LYCCI (B) champagne strain LYCCII (C) wine strain LYCCIII (D) fuel alcohol 

LYCCIV, x-axis represent the 5 sugars under investigation (glucose, mannose, 

maltose, fructose and galactose), primary y-axis shows the mannan and glucan 

content in (RFU) and secondary y-axis shows the %flocculation ability and 

receptor concentration ×107. 

I examined the effect of sugars commonly found in industrial fermentation 

media employed for brewing, winemaking, fuel alcohol production processes 

(mainly glucose, fructose, maltose or  sucrose), as well as the other 

A. B. 

C. D. 
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carbohydrates like galactose, on yeast flocculation. Flocculation was 

determined in washed cells, in standard conditions making it possible to 

correlate flocculation with the presence of lectin-like cell wall receptors.  

The generally accepted mechanism of yeast flocculation is lectin mediated 

adhesion of adjacent yeast cells to form large cell clusters. Lectins (flocculins) 

are required for flocculation to occur, as their presence on one cell binds to 

mannose residues in the cell wall of adjacent cells and so link the yeast cells 

into clusters that contain thousands of cells. (Stratford, 1993; Soares and Mota, 

1996; Masy et al., 1992; Bony et al., 1998). 

Maximum flocculation ability was observed for the strains when they were in the 

stationary phase of growth curve due to sugar depletion. I found that all the 

industrial yeast strains under the study belonged to the NewFlo type as 

flocculation behaviour in these strains was inhibited by mannose, glucose, 

maltose and fructose. This suggests that cell surface proteins were able to bind 

to a wider range of sugars, except galactose. Homologues of the FLO1 gene 

known as Lg-FLO1, FLONL and FLONS are believed to encode for flocculin 

proteins conferring the NewFlo phenotype (Kobayashi et al., 1998, Liu et al., 

2009). 

Quantification of cell wall polysaccharides and receptor sites indicated that 

mannan and glucan levels remained relatively constant on cell surfaces of all 

the strains studied (Table 1.). The main difference in flocculation ability was due 

to varying lectin receptor concentrations; their higher numbers on the cell 

surface per cell, then the higher the propensity of cells to flocculate.  
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4.2.4 Correlation between the cell wall mannan-glucan content, receptor 

binding site and flocculation ability 

Yeast flocculation is generally considered to result from interactions between 

protein components on one cell surface and carbohydrate components on an 

adjacent cell surface. Thus, it is important to ascertain the effect of sugars on 

the cell wall polysaccharides as well as the protein or the lectin sites. Figure 4.5 

shows the relationship amongst the mannan-glucan content (RFU), flocculation 

ability and the receptor density in yeast cells cultured with different sugars. 

When the data was analysed on the basis of sugars, taking each independent 

parameter namely (mannan content, glucan content and receptor density) vs. % 

flocculation ability, it was observed that sugars like maltose, fructose and 

galactose gave a negative correlation when plotted for mannan content (r2 = -

0.013,-0.066, -0.914, respectively) while glucose and mannan gave a positive 

correlation (r2= 0.785, 0.663, respectively). Significantly less important appears 

to be the role of cell wall glucans in yeast flocculation.  I quantified the amount 

of glucans in cells cultured on different sugars and their role in yeast 

flocculation. It was observed that glucan content vs. flocculation ability gave 

negative correlation for all the sugars except for maltose, which gave a positive 

correlation (r2= 0.802). Finally, when the receptor density was plotted against 

flocculation ability, I observed a positive correlation (r2= 0.872, 0.613, 0.938, 

0.708, 0.748) for glucose, mannose, maltose, fructose and galactose, 

respectively. 
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Figure 4.5 Correlation analysis performed in respect to each parameter 

(mannan, glucan content and receptor density) for all the strains when 

grown in five different sugars. (A) glucose (B) mannose (C) maltose (D) 

fructose or (E) galactose. Mixed response was obtained when mannan 

content and glucan content were plotted against % flocculation ability 
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respectively, while a positive indication between % flocculation ability and 

receptor concentration indicated that flocculation is dependent more on 

concentration of receptors on the cell surface, apart from being controlled by the 

competitive inhibition by certain sugars ( eg. mannose).  

 

4.3 Key Findings  

Emergence of these receptors may be directly related to the expression levels 

of FLO genes. Sugars like glucose, fructose and galactose are responsible for 

expression of FLO genes though the Ras/ cAMP / PKA pathway (Verstrepen 

and Klis, 2006). In this pathway, activation of PKA, TpK2 kinases leads to 

inactivation Sfl1 (a suppressor of flocculation) and activates the positive 

regulation gene FLO8 (Gagiono et al., 2003; Kim et al., 2004). The FLO8 gene 

product acts as a transcriptional factor for other FLO genes mainly, FLO1 gene 

that is responsible for the formation of the lectin like receptors on the yeast cell 

surface (Rolland et al., 2000 ; Lemair et al., 2004). The pathway explains 

differences in the number of lectin like receptors, when the strains were grown 

in different sugars. In addition to the interconnection of the sugar metabolic 

pathways with the activation of flocculation genes, other physiological factors in 

the medium also influence the emergence of receptors on the yeast cell surface 

(eg. pH, temperature, cell age etc.) (Amory et al., 1988). 
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Table 4.1 Mean values of mannan, glucan content (RFU), % flocculation 

ability and receptor density × 107/cell for the four industrial yeast strains. 

The industrial yeast strains were cultivated with 1% yeast extract, 2% peptone 

and 2% sugar (glucose, mannose, maltose, fructose or galactose). The mean 

contents of mannan and glucan measured with the fluorescent dyes with their 

standard deviation are given in relative fluorescent units (RFU). The mean 

Sugars Strains Mannans (RFU) Glucans (RFU) %Flocculation 

ability 

Receptor 

concentration 

x10
7
 /cell 

Glucose LYCCI 1928.5± 4.2    18852.2±3.5 43.3±1.1 271±1.4 

LYCCII 1023.7±2.0 26531.3±2.3 15.6±1.2 175±1.20 

LYCCIII 776.2±2.2 23025.4±3.0 14.0±0.3 50±1.0 

LYCCIV 1464.1±2.6 24236.9±3.6 12.2±0.8 66±0.1 

Mannose LYCCI 789.2±1.8*** 5460±10.7*** 10.8±0.7*** 249±4.2* 

LYCCII 1240±6.5*** 1250.3±4.2* 18.15±0.9 227±1.4* 

LYCCIII 614.1±7.2 12791.4±6.2*** 2.25±0.8** 50±4.2 

LYCCIV 551.8±2.0*** 5652.7±10.7*** 14.5±0.4 113±4.2*** 

Maltose LYCCI 1407.8±3.3*** 12982.4±5.5*** 32.4±1.6** 223±4.2 

LYCCII 1205.6±3.6*** 12455.4±4.5 29±1.4** 183±4.2 

LYCCIII 1485.6±5.0 12227.8±6.2*** 4.7±0.8* 33±3.5** 

LYCCIV 457.0±2.7*** 12516.6±1.3*** 17±0.8 58±2.1 

Fructose LYCCI 1048.7±9.6*** 6011.4±18*** 53.5±1.4** 127±1.4*** 

LYCCII 1119.7±7.8** 7584.8±13.2* 16.2±2.0 107±2.1** 

LYCCIII 461.7±9.2 10328.2±11.1*** 17.7±2.4 63±4.2* 

LYCCIV 1512.7±4.1*** 16441.6±5.0*** 12.5±0.8 54±4.2 

Galactose LYCCI 1523.4±1.1*** 24535.6±9.4*** 15.7±1.5*** 87±4.2*** 

LYCCII 1214.5±7.4*** 14656.7±23.6 27.2±4.3* 188±2.8 

LYCCIII 1258.5±3.1 19196.2±19.4*** 24.2±2.6** 89±1.4*** 

LYCCIV 2475.3±7.8*** 26368.5±10.4*** 9.9±3.7 97±4.4*** 
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receptor concentrations × 107 /cell were calculated using Langmuir’s equation. 

Statistical analyses were performed using one way ANOVA using SPSS 

(version 22). The p values of less than 0.05 ,0.01 and 0.001 are indicated as *, 

**, *** respectively, are in reference to the parameters measured when yeast is 

grown in glucose.   

 

Activation of the FLO genes is not only governed by presence of glucose but is 

also triggered by carbohydrate depletion, which may explain the role of the 

glucose repression pathway, which represses FLO11 as long as glucose is 

present in medium. Thus, these pathways cannot be considered as single, 

independent entities, but rather as integrated systems working together to 

control adhesion (Gagiono et al., 2003, Schwartz and Madhani, 2004). This 

explains that why strains, when cultured on glucose, fructose, galactose and 

maltose (to some extent) exhibit sufficient receptors on the cell surface, which in 

turn govern the extent of flocculation (Kobayashi  et al. 1998). Our findings may 

benefit brewers, winemakers and other food manufacturers in design of 

fermentation media comprising sugars that would not induce premature 

flocculation during the early stages fermentation, resulting in better product 

quality and quantity. 
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                                                Abstract 

A variety of atomic force microscopy (AFM) force spectroscopy approaches have 

been developed for investigating native cell surfaces with high sensitivity and 

nanometer lateral resolution. For yeast cells, this has provided novel information on 

the nanomechanical properties of cell walls that play a major role in determining the 

flocculation characteristics.  In this study, I used AFM to visualize the cell surface 

topography and to determine cell wall mechanical properties of different strains of 

Saccharomyces cerevisiae employed for brewing, winemaking and fuel alcohol 

production. Cell surface topography was found to correlate with the flocculation 

behaviour of these strains during their late stationary phase.  Cell surface 

roughness of flocculent cells was much higher (146 ± 8 nm) compared to a weakly 

flocculent wine yeast strain, which had smoother surface (37.5 ± 8 nm). 

Nanomechanical properties of yeast cell surfaces were also investigated by AFM 

spectroscopy. From force-indentation curves, the Young’s modulus was determined 

and provided insight into cell wall elasticity of the selected industrial strains. A value 

of ~ 1.1 MPa was obtained for the fuel alcohol strain (weakly flocculent strain) and 

~ 0.4MPa for a brewing strain (highly flocculent strain). In terms of adhesion force 

and adhesion energy, the strains exhibited significant differences (p ≥ 0.001). For 

example, the brewing strain (highly flocculent) and champagne strain (moderately 

flocculent) had a higher adhesion force (10 ± 0.60 nN) and adhesion energy (14.7 ± 

0.7 × 10
-15

), compared to less flocculent strains.  Our findings provide evidence that 

yeast cell surface nanomechanical properties, including cell surface elasticity and 

roughness, play major roles in governing flocculation. Of lesser importance are cell 

surface adhesion forces and adhesion energies which display weak correlation with 

flocculation behaviour in Saccharomyces cerevisiae. 
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5.1 Introduction 

The yeast cell wall is a complex carbohydrate entity, which not only protects the 

yeast cells from adverse conditions but also helps to maintain an optimum 

osmotic balance for the cell so that it could carry out its normal cellular 

activities. The cell wall of yeast is a mechanically and chemically resistant 

complex structure made up of a of microfibrillar matrix of (β- glucans,  β -1,3 

and β -1,6 glucans). The latter represents 50-60% of the cell wall mass, which is 

overlaid by highly glycosylated proteins decorated by long chains of mannose 

residues representing 40-50% of the cell wall mass. Another important 

component of yeast cell wall is chitin (~ 1-3% of the cell wall). The thickness of 

yeast cell wall is about 200 nm, thus utilizing AFM probes with small radius of 

apex and by applying a low force on the cell wall, its local mechanical properties 

can be investigated (Francois, 2006; Dufrêne et al., 1999).  

Thus, it would be interesting to understand that what forces do exactly come 

into play at the cell surface when the cells come close to each other during the 

process of flocculation visualize that what exactly is occurring at the cell surface 

and how much stresses impact on the biological properties of the cell wall. 

Moreover, it is well-known that the yeast cell surface is decorated with proteins 

that play a pivotal role in adhesion, communication and microbial infection 

(Jendretzki et al., 2011). Proteins are thought to play an important role in cell 

wall molecular organization and remodelling, since the organization patterns 

differ in ways of protein attachment to the polysaccharide moiety. The first class 

comprises of the proteins that are bound non covalently to the β-1,3- glucan 

network (the SCWs family), second category are the proteins attached 

covalently through a remnant of the GPI anchor to β-1,6-glucans (the GPI-
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CWPs) finally the third type are cell wall mannoproteins that are characterized 

by Protein Internal Repeat regions (PIR-CWPs or CCWs family) that are directly 

linked to β-1,3- glucans (Klis et al 2006). This outer layer is made of highly 

mannosylated proteins together with large polysaccahrides complex of 150 or 

more D- mannose units. The mannoprotein layer thus bears crucial biochemical 

and biotechnological properties, some of which are adhesion, aggregation and 

flocculation (Caridi, 2006; Verstrepen & Klis, 2006) as well as virulence 

(Francois et al., 2013, de Groot et al., 2008). 

According to lectin-like theory, flocculation occurs as a consequence of 

interaction between the specific flocculation proteins (flocculins) present only on 

the flocculent cells and the carbohydrate residues (receptors) of the cell walls of 

the neighbouring cells (Miki et al., 1982).Close inspection of these proteins at 

the single molecule or cell level would be helpful in understanding the several 

physiological and biotechnological  processes such as molecular recognition 

and cell adhesion, aggregation and flocculation, biofilm formation (Verstrepen 

and Klis, 2006; Bauer et al., 2010), resistance to antifungal drugs  (Mishra et al., 

2007; Heinisch, 2008). Atomic force microscopy (AFM) appears to play a crucial 

role in the investigation of the mechanical properties of cells, as it allows 

manipulation at single-cell level and direct observation of the cell surface at 

nanometer resolution (Binnig et al., 1986; Burnham and Colton, 1989; Mizes et 

al., 1991). 

5.1.1 Basic principle for AFM: 

The technique was introduced by Binnig and Quate in 1986. Since the 

technique is based on the measure of interactive forces between the sharp tip 
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and the sample, AFM belongs to the scanning probe microscopes family, 

wherein the microscope scans the sample, while maintaining constant given 

parameter. This allows us to scan living cells close to their physiological 

environment. Deflections of cantilever (typically 100-400µm in length are noted 

as the tip (10-100 nm radius of curvature) scans over the surface of the cell to 

produce a three dimensional image of the surface. In force spectroscopy mode, 

the cantilever and tip are successively approached and retracted from the 

surface. The tip is approached to the surface sample and then retracted in the 

Z- direction; forces versus distance (F-D) curves are recorded. In a biological 

sample the F-D curves consist in non-contact and deformation component. 

Force distance curves are obtained and fitted to models (normally hertz) 

describing the nanomechanics of indentation, giving the elastic properties of the 

surface (Figure 5.1). The retraction curve also provides relative quantitative 

information on adhesion or interaction events. This is because when the AFM 

tip is in contact with the sample, higher force is required to disrupt the 

interaction during the retraction of the tip from the sample, which results in the 

measurement of adhesion force.  

Thus, the main aim of this chapter is:- 

 To understand the discrete cell adhesion forces and other nano 

mechanical properties for example cell surface elasticity, cell surface 

roughness at nano level.  

   Correlate these nano-mechanical properties to the reversible adhesion 

phenomenon that the cell undergoes during fermentation in the presence 

of calcium ions known as flocculation.                      
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5.2 Results  
 

 The main aim of this study was to understand the discrete cell adhesion forces 

and other nanomechanical properties for example cell surface elasticity, cell 

surface roughness at nano level and correlate it to the reversible adhesion 

phenomenon that the cell undergoes during fermentation in the presence of 

calcium ions known as flocculation. Thus in order to achieve this, the 

flocculation pattern of the strains was studied during all the phases of growth 

curve and then the AFM analysis was performed only on the samples prepared 

from  late stationary phase of the growth cycle as they exhibited maximum 

flocculation behaviour. 

5.2.1 Imaging live yeast cells at high resolution 

Yeast cells for each of the strain were scanned in contact mode (CM) by using 

Si3N4 triangular cantilever with spring constant of 0.01 N/m in air. The samples 

for AFM studies were prepared by immobilizing the yeasts on hydrophilic glass 

slides. The entire procedure followed is explained in (section 2.3). The main aim 

for imaging was to investigate the differences in the cell wall morphology at the 

nanoscale level. The cells of each strain were air dried in order to preserve the 

natural morphology of the cells. Small imaging forces (0.1-0.5 nN) were used to 

obtain images of small areas on the air dried slides without detaching the cells 

or altering the surface morphology significantly.  

Both height as well as error images are shown in (Figure 5.1). Note that the 

border of the cell was surrounded by an artefactual structure resulting from the 

contact between the AFM probe and the glass slide. From the data it was clear 

that the brewing strain LYCCI had the roughest cell wall (146 ±8 nm), followed 
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by the champagne strain LYCCII (95.1 ± 8nm), fuel alcohol strain LYCCIV 

(73.5± 5 nm) and finally wine strain LYCCIII (35.7± 8 nm). The surface 

roughness pattern could be correlated (R2 = 0.846) to the flocculation pattern 

observed for the strains (Figure 5.3). It was observed that the higher the surface 

roughness of the cell surface, the larger the frictional force between the two 

surfaces of yeasts coming together. Thus, more sites for anchorage to hold on 

each other’s surface and this could explain the formation of stable flocs in the 

fermenter and the increase in the flocculation ability for the strain (Ahimou F et 

al., 2003; Dague et al., 2010). Cross sectional analysis was also performed on 

the height images and along the entire length of individual cells. From the data I 

observed that brewing strain LYCCI were much bigger cells (2.1± 0.05µm) 

followed by fuel alcohol strain LYCCIV (1.1±0.1 µm), champagne strain LYCCII 

(0.9 ± 0.1 µm) and wine strain LYCCIII (0.6 ± 0.05 µm). 
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Figure 5.1 AFM images of the surface of four industrial strains of 

Saccharomyces cerevisiae. (a,d,g,f) represent the height images. (b,e,h,k) 

represent the error signal images and ( c,f,i,l) are the height measurement taken 

using the JPK Nanowizard software. 
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Figure 5.2 Effect of (A) RMS roughness (nm) , (B) Cell height measurement 

(µm) on the % Flocculation ability of four Saccharomyces cerevisiae 

strains during their late stationary phase. Statistically significant direct 

relationship (p ≤ 0.001) explained that more the roughness and size the cell, 

higher is their % flocculation ability. The columns represent the % flocculation 

ability, while (■) are the plotted secondar axis parametres. 

 

5.2.2 Effect of Young’s modulus on the flocculation behaviour 

Flocculation tests were carried out during all the phases of growth for the four 

industrial strains and it was found that all yeasts were flocculent either during 

the early or late stationary phase. The strains exhibited significant (p < 0.05) 

Strains 

A. 

B. 
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differences in their flocculation abilities during all the phases of growth (Figure 

5.3).  The brewing yeast strain LYCCI was found to be highly flocculent 

throughout the fermentation including the late stationary phase (42.5%) when 

the flocculence character of the other strains diminished. The order followed 

champagne strain LYCCII (14.8%), wine strain LYCCIII (13.8%) and finally fuel 

alcohol strain LYCCIV (11.6%) (Nayyar et al., 2014).  

The mean Young’s modulus was calculated by performing AFM force 

spectroscopy experiments. Analysis of more than 100 cells for each strain at 

three different areas, that is, budscar (B), cytoplasm (C) and edges (E) 

respectively revealed the overall difference in the elasticity of the strains over 

these areas. The curves were fitted using the conical model using a value of 35° 

for the half opening angle  From the fit and assuming a Poisson’s ratio of 0.5, 

which is expected for soft biological materials, I deduced the Young’s modulus. 

The higher Young’s modulus, the lower the elasticity of the material. 

From the data (Figure 5.3), I found that the strains were significantly different in 

their cell wall elasticity (p ≤ 0.001).  To know if the number of bud scars on the 

cell wall contributed to the change in the elasticity of the cell wall, the force 

spectroscopy measurements were performed at bud scar (B), cytoplasm (C) 

and edges (E). Analysis revealed that there was no significant change in 

elasticity (p ≥ 0.05). Brewing strain LYCCI was found to be quite elastic (389 ± 7 

kPa), followed by champagne strain LYCCII (685 ± 7 kPa), wine strain LYCCIII 

(787 ± 9 kPa) and finally fuel alcohol strain LYCCIV (1152 ± 11 kPa). The rather 

large standard error on the obtained average values reflects variability of the 

measurements across the surface of the same cell as well as variability 

associated with independent cell cultures. 
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5.2.3 Effect of Adhesion force and adhesion energy on flocculation 

behaviour 

The adhesion force gives a measure of maximum adhesion of the cell onto the 

AFM probe. In the current study I could only gather information about the 

maximum adhesive force that the yeast cell wall exerted on the cantilever. 

Linking the AFM probe with the lectins specific to mannans, could give the 

quantitative measurement of the adhesive forces between the mannans and the 

lectins and also the number of lectin binding sites on the yeast cell wall. But in 

the present study, our work is restricted on the combined adhesive force that 

comes into play when another surface comes in contact. Thus, this relation 

indicates that the higher the adhesion forces (nN), the higher the adhesion force 

between the yeast cells and thus higher would be the stability of the flocs in the 

fermenter. The force of adhesion was found to be higher at the edges or the 

point of contact between the cells for brewing strain LYCCI (10± 0.60 nN) and 

followed by champagne strain LYCCII (9 ± 0.60 nN), fuel alcohol strain LYCCIV 

(7 ± 0.63 nN) and wine strain LYCCIII (6± 0.65  nN).    

From the statistical analysis performed on the data, I observed that the strains 

differed significantly in their overall adhesion force on the cell wall (p ≤ 0.001). 

Adhesion forces differed for the strains at different areas when analysed (p ≤ 

0.001). Cytoplasm region showed almost consistent adhesive force for the four 

strains while the adhesive force for the brewing strain LYCCI was found to be 

significantly different at the bud scar (B) and edge (E) region to the other three 

strains (Fig 5.1).   
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Adhesion energy measurements give the amount of work or energy required for 

the cell to detach from the AFM probe. It was observed that wine making strain 

LYCCIII had maximum adhesion energy (22.5±0.6 × 10-15 J) followed by 

brewing strain LYCCI (14.7 ±0.7 × 10-15 ±J), fuel alcohol strain (10.5±0.5 × 10-15 

J) and champagne strain LYCCII (9.1 ±0.5 × 10-15 J). The differences in the 

adhesion energy were observed more significantly at the cytoplasm and edges 

(p≤ 0.001) of the cells of respective strains and to a lesser extent on the bud 

scar region of the cell (p≥0.05). 
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Figure 5.3 Nanomechanical properties analysis of yeast cell wall from four 

industrial strains of Saccharomyces cerevesiae. 100 force curves were 

converted into indentation curves and fitted to the Hertz model. The Young’s 

modulus, adhesion energy and adhesion force for each condition was 

measured for each force curve and the data was collected at Bud scar (B), 

Centre (C) and Edge (E). Overall, brewing strain LYCCI was found to be most 

elastic and had the maximum adhesion force, while LYCCII, champagne strain 

had the maximum adhesion energy. 

 

5.2.4 Correlation studies between the percentage (%) flocculation ability 

and the different nano mechanical properties studied  

The differences in the cell wall architecture of strains provoked strong 

nanomechanical changes of the cell wall, accompanied by significant 

topological change, it was interesting to plot flocculation ability and surface 

roughness vs. parameters (like for e.g. elasticity modulus, adhesion energy and 

adhesion force) to investigate a possible correlation between these biophysical 

parameters. As shown in Figure 5.4, a negative correlation between 

%flocculation ability and elasticity could be drawn. When using data from cells 

at late stationary phase this correlation was relatively strong (r = −0.824, p ≤ 

0.001),, while a strong positive correlation could be drawn between 

%flocculation ability and mean surface roughness (r = 0.846, p ≤ 0.001). These 

findings seems to show that the higher the surface roughness of the cell wall, 

the higher the flocculation ability of the respective strains during fermentation. 

One of the reasons could be a better and stable anchorage that the rough 

surfaces provide in holding the flocs in the liquid medium.  

As we are aware of the inverse of the Young’s modulus and elasticity thus, from 

the data it was inferred a positive correlation between %flocculation ability and 

elasticity of the cell wall. This is suggestive of flexibility of cell wall as one of the 
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important contributors towards aiding in higher flocculation ability of the yeast 

strain during fermentation.  

In contrast to the strong correlation observed between %flocculation ability vs. 

elasticity and surface roughness measurement, there was a weak positive 

correlation between %flocculation ability vs. adhesion force and adhesion 

energy (r = 0.354, p ≥ 0.05), suggesting that the forces of attraction and 

repulsion played a lesser role in governing the flocculation ability as the cell wall 

topography especially cell wall elasticity and cell surface roughness played. 

 

Figure 5.4 Correlation studies between the percentage (%) flocculation 

ability and the different nanomechanical properties studied. (●) represents 

a positive correlation (R2= 0.846) between   %flocculation ability and the mean 
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surface roughness. (A) (▲) Correlation between % Flocculation ability v/s mean 

Young’s modulus (R = -0.826), which states a statistically significant positive 

correlation between % Flocculation ability and Elasticity, as p≤0.001. (B), (C) 

(▲) Correlation between % Flocculation ability v/s Adhesion force (R= 0.177) 

and % Flocculation ability v/s Adhesion energy (R= 0.051) show a positive 

correlation which is statistically insignificant (p≥0.05). 

5.3 Key Findings  

 

Parameter
s 

LYCCI LYCCII LYCCIII LYCCIV 

 B C E B C E B C E B C E 

Young's 
modulus 

(KPa) 

129 
±11 

124 
±15 

135 
±20 

257 
±17 

214 
±11 

213 
±16 

292 
±17 

250 
±17 

245 
±16 

383 
±21 

397 
±28 

372 
±19 

Adhesion 
Energy × 10

-

15
 (J) 

3.7 
±1 

4.4 
± 1 

6.5 
±1.
4 

2.7± 
0.8 

2.0
± 

0.7 

4.4
± 1 

4.9
± 1 

7.0
± 1 

10.7 
± 

1.2 

3.2 
± 

0.8 

2.2 
± 

0.8 

5.1 
± 1 

Adhesion 
Force (nN) 

8.2 
±1 

6.3 
±1 

9.7 
±1 

10.3 
±1.2 

9.5 
±1 

8.8 
±1 

7.5 
±1.
4 

5.6 
±1 

5.8 
± 2 

7.0 
± 

0.9 

9.3 
±1 

7.0 
±1.
3 

Surface 
Roughness 

(nm) 

146 ±17 95 ±16 36 ±17 73.5 ±10 

Height (µm) 2.1 ±0.1 0.9 ±0.2 0.6 ±0.1 1.1 ±0.2 

% 
Flocculation 

ability 

42.5 ±0.8 15 ±0.8 14 ±0.4 12 ± 0.5 

 

Table 5.1 Measure of each of the parameters (Young’s modulus, Adhesion 

force, Adhesion energy) at three different areas namely bud scar (B), 

cytoplasm (C) and edge (E). Measure for surface roughness, Height 

measurements and % flocculation ability were done on the overall cell surface.   

 

Analysis revealed that there was not much significant change in elasticity 

(p≥0.05) at bud scar, cytoplasm and at edges, but significant difference in their 

cell wall elasticity (p≤ 0.001) overall. I observed that the strains differed 

significantly in their overall adhesion force on the cell wall (p≤0.001). Adhesion 

forces differed for the strains at different areas when analysed (p≤ 0.001). The 

differences in the adhesion energy were observed more significantly at the 
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cytoplasm and edges (p≤ 0.001) of the cells of respective strains and to a lesser 

extent on the bud scar region of the cell (p≥0.05). 

 
Exploration of biochemical properties of cell surface using AFM 
 

The yeast cell wall is a dynamic organelle that has to adapt to the changing 

environment. The outer layer of the yeast cell wall is made of highly 

mannosylated proteins decorated with large polysaccharides complex of 150 or 

more D-mannose units (mannan layers). Chemical and genetic studies 

pioneered by Ballou and collaborators have largely elucidated the structure of 

these polysaccharides attached to cell wall proteins (Ballou, 1990). This 

mannoproteins coat bears important biochemical and biotechnological 

properties, such as adhesion, aggregation and flocculation (Caridi, 2006; 

Verstrepen and Klis, 2006) as well as virulence (de Groot et al., 2005; de Groot 

et al., 2008). Expression of these properties can be exerted through various 

types of interactions that can involve hydrophobic or electrostatic forces, or 

specific receptor-ligand binding forces. These forces can be measured using 

AFM tips. 

I conclude that AFM shares a lot of similarity with scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM), but is advantageous in 

yeast cell wall research, by being a force spectroscopy that produces a 

qualitative description of the ultrastructure of cell wall (Osumi, 1998). 

Information on integrity and local nanomechanical properties of the microbial 

ultrastructure were obtained using AFM. Morphological changes in the yeast 

cell surface for different strains, at nanoscopic  level were observed by 
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immobilizing the cells on hydrophilic slides by air drying for as long as 5h 

(Canetta et al., 2006a, 2006b, 2009). 

The topological changes were quantified in terms of changes in roughness, 

which was found to be maximum for the brewing strain LYCCI, which was also 

found to be highly flocculent (Table 5.1). The dramatic change in roughness 

may have some consequence on the adherence capacity of yeast to material 

surface (Gollardo-Moreno et al. 2004, Mercier-Bonin et al., 2004). Also it is clear 

from our observation that the elasticity of the cell wall, as determined by force-

indentation curves, is directly related to the flocculation patterns for the strains. 

This explains why strains with higher mean Young’s modulus, adherence 

energy and adhesion force exhibited higher % flocculation ability. Altogether 

these changes help us understand the rigidness of the cell wall which could 

help us relate to the reasons contributing to different flocculation patterns for the 

strains.  

Also, it was concluded from the data that was obtained for the adhesion force 

and adhesion energy suggesting difference in the stretching of the 

macromolecules between the four yeast strains. Based on these data, it could 

be further suggested that the much longer rupture distances on S. cerevisiae 

may reflect the stretching of both mannans and the polypeptidechains of the 

mannoproteins. The different physical properties of the mannoproteins between 

the four strains may explain why the surface of LYCCI was more hydrophobic 

than that of other S cerevisae strains. 

In conclusion, the cell wall elasticity is predominantly dependent upon the 

modular architecture of the cell wall, which is largely dependent on the cross-
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links between chitin and β-glucan. Our results indicate an important role of cell 

wall elasticity and cell surface roughness in governing the extent of flocculation 

of specific strains during the fermentation. As a corollary, cell adhesion force 

and adhesion energy, which is mainly dependent on cell wall composition, is 

probably not an important factor in cell flocculation. In the near future, it would 

be interesting to investigate how the modular architecture takes place at the 

nanoscopic level, by the use of functionalized AFM tips with either specific cell 

wall-perturbing drugs or antibodies targeted against cell wall remodelases. 
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FLO1 and FLO8 gene expression levels 

governs the extent of yeast flocculation in 

industrial strains of Saccharomyces 

cerevisiae 
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Abstract 

In Saccharomyces cerevisiae, a group of structurally related, cell-wall 

associated proteins encoded by the FLO gene family are directly responsible for 

many of the cellular adhesion phenotypes displayed by this organism. In this 

chapter, I tried to detect the presence of the dominant flocculation genes, 

namely FLO1, FLO5, FLO8, FLO9 and FLO10 in four industrial yeast strains, 

using the primers based on S288c, whose sequence is known. Detecting these 

genes in the industrial yeast genomes validates their presence and role in 

flocculation, but the expression levels of only FLO1 and FLO8 gene was 

determined using quantitative PCR. FLO1 encodes a dominant flocculation 

factor and appears to be exclusively required for cell-cell adhesion. Induction of 

flocculation is abolished by deletion of FLO1, the dominant flocculation gene. 

This explains that flocculation is not just the structural parameter of the yeast 

cell, but genetic as well. In order to activate the transcription of FLO1, Flo8p is 

required, which acts as a transcriptional activator of FLO1. In this study, I tried 

to correlate the differential expression of FLO1 and FLO8, to the percentage 

flocculation ability of the strains, explaining the molecular basis of the 

flocculation behaviour of these strains which governs their performance during 

fermentation. I concluded that the strains show presence of different truncated 

forms of FLO1 and the internal tandem repeats affected the flocculation ability 

of the strains, thus making brewing strain LYCCI having FLONL as highly 

flocculent amongst all the strains. The absence of bands for FLO10 (B) and 

FLO5 (A) when amplified using different forward primers and same reverse 

primer suggested polymorphism in the FLO genes, which has been previously 

been reported only in FLO1. Lastly results from quantitative PCR analysis 

suggested that higher expression of truncated form of FLO1 (FLONL) with 

higher number of internal tandem repeats in brewing strain LYCCI makes it  

highly flocculent strain, followed by champagne strain which shows high 

expression levels of truncated form FLO1NS gene with lesser tandem repeats 

as the second most flocculent gene amongst the industrial strains. 
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6.1 Introduction 

Flocculation is a cooperative protection mechanism that shields cells from 

stressful environments (Smukalla et al., 2008). Flocculation in S. cerevisiae is 

mediated by specific cell surface proteins, known as flocculins, or zymolectins 

or adhesins, which are capable of binding directly to mannose residues present 

on the cell wall of adjacent yeast cells (Stratford, 1989).As there are two main 

flocculation phenotypes, based on sugar inhibitions: Flo1-type which is 

mannose sensitive only and NewFlo-type which is sensitive to glucose, maltose, 

sucrose as well as mannose (Stratford and Assinder, 1991; Masy et al., 1992). 

These two types of flocculation are not only just influenced by the environmental 

conditions, but genetic conditions also play an important role in controlling the 

type expressed. Different chromosomal genes, FLO1, FLO5, FLO8, FLO9, 

FLO10, FLO11, FLOƝS, FLOƝL and Lg-FLO1 related to flocculation of S. 

cerevisiae have been identified and all described as dominant genes (Govender 

et al., 2008, Liu et al., 2007 and Verstrepen et al., 2004). The Flo11p flocculin 

enables yeast to adapt to a changing nutritional environment by switching to a 

pseudohyphal mode of growth. Of these, only FLO11 is expressed in most 

laborartory strains of S cerevisiae, where it exhibits a profusion of phenotypes. 

FLO11 expression is required for flocculation in S. cerevisiae var. diastaticus 

(Lo and Dranginis, 1996) and for invasion of substrates and formation of 

pseudohyphae in Ʃ1278b strains (Lo and Dranginis, 1996; Lipke and Kurjan, 

1992) FLO1 is the most studied gene associated to flocculation and its 

regulation and expression is well known (Bester et al., 2006 and Liu et al., 

2007). Genetic variability related to the number of tandem repeats in this gene 

is responsible of the flocculation degree of yeast strains: longer repeats are 
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associated to stronger flocculation ability (Liu et al., 2007 and Sato et al., 

2002). Verstrepen et al. (2005) demonstrated that size variation of FLO1 

induced phenotypic alterations of adhesion, flocculation and biofilm formation. 

Proteins encoded by these FLO genes share a common modular organization 

that consists of three domains as reported by Li et al. (2013): the C- terminal 

domain is modified by the secretion machinery of the cells and finally anchors 

the adhesion to the yeast cell wall (Pittet and Conzelmann, 2007). The central 

region acts a spacer that improves the accessibility of the N- terminal binding 

domain outside of the yeast cell wall. It is rich in serine and threonine regions 

(Bony et al., 1997; Breinig and Schmitt, 2002). Finally the N terminal domain is 

responsible for formation of amyloid responsible for the flocculation (Ramsook 

et al., 2010; Bauer et al., 2010). The central domain contains many tandem 

repeat regions of DNA sequence that due to their instability can drive slippage 

and recombination reactions within and between FLO genes, with the 

generation of novel FLO alleles, conferring to yeast cells diversity and variety in 

flocculation ability (Verstrepen et al., 2004 and Verstrepen et al., 2005). The 

mutational frequency of tandem repeats, which is at least 100 times higher than 

normal point mutation, explains that industrial yeast strains may thus have their 

personal small reservoir of different adhesion- encoding genes that differs from 

the FLO gene family described in the sequenced S. cerevisae S288C strain.  

FLO1, present on chromosome I is the best-known flocculation gene in yeast. It 

contains an open reading frame of 4614 bp encoding for a protein of 1537 

amino acids, which shares the common three-domain structure with other 

flocculation proteins. The large central domain of flocculin Flo1 contains: 

eighteen tandem repeats of 45 amino acid residues (repeat unit A), two repeats 
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of 20 amino acid residues (repeat unit B), three repeats of 51 amino acid 

residues (repeat unit C) and three repeats of 9 amino acid residues (repeat unit 

D). This makes FLO1 unstable in genetics and evolves in nature rapidly, even 

converting the Flo1 type in NewFlo type phenotypes (Verstrepen et al., 2005). 

Sequence analysis indicated that the deletion in these truncated forms occurred 

only in the tandem repeat unit A of FLO1. Meanwhile, the number variation of 

repeats in unit A of FLO1 influences the degree of flocculation, the more the 

repeats, the stronger the flocculation (Verstrepen et al., 2005). FLONL and 

FLONS are the two popular known truncated forms of FLO1 (Liu et al., 2007). 

The full length of FLONS and FLONL was 3843 and 4293bp, respectively. 

Moreover it was found that there was no obvious difference in the mRNA 

transcripts level of the two gene. FLONL and FLONS genes presented an ORF 

of 1686bp and 3396bp respectively. Flo1p is anchored in the cell wall by a non-

covalent stabilization (Bony et al., 1997); the hydrophobic C-terminal region of 

Flo1 protein corresponds to a GPI-anchor signal addition (Watari et al., 1994). 

Deletion of this hydrophobic region impairs the anchorage of protein to cell wall 

and results in the loss of flocculation (Bony et al., 1997). The deletion of N-

terminal region impairs the development of a flocculent phenotype (Bony et 

al., 1997). However, the N- terminal of Flo1 protein contains the sugar 

recognition domain, which is important for flocculation definition of Flo1 to 

NewFlo phenotypes (Kobayashi et al., 1999).  

Flocculation is controlled by many genes of which the FLO1, FLO8 and FLO11 

play an important role. The global repressors of Tup1p and Ssn6p are 

responsible for repression of FLO1 transcription (Teunissen et al., 1995). Flo8 

was originally reported to be the dominant gene which confers haploid cell 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b7
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b132
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b7
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b7
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b7
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specific flocculation ability and also encodes for the putative activator of FLO1 

(Kobayashi et al., 1996). Flo8p activates transcription of genes required for 

filamentous growth and adhesion, such as the cell wall adhesin 

genes FLO1, FLO10, and FLO11, and the glucoamylase gene STA1.Flo8p 

activity is regulated by the cAMP-protein kinase A (PKA) pathway. 

Phosphorylation of Flo8p by PKA (Tpk2p) promotes Flo8p binding 

to FLO11 promoter. 

In industrial yeasts, FLO1 has been shown to be active and regulated by FLO8. 

It is considered to play an important role in mannose specific flocculation, which 

is inhibited by mannose but not by glucose (Kobayashi et al., 1996; 1998; 

1999). The FLO8 gene is present on chromosome V of the S. cerevisae 

genome and encodes one of the key transcriptional activators of FLO genes 

(Lie et al., 1996). Kobayashi et al. (1996) reported that Flo8p are mainly 

localized in the nucleus and are required in diploid filamentous growth, haploid 

invasion and flocculation. Flo8p has similar binding sites on FLO1 and FLO11 

promoters as shared by the negative regulators of flocculation Ssn6p, Srb8p 

and Tup1pSsn6p-Tup1p act as a complex in transcriptional repression (Keleher 

et al., 1992), in repressing the transcription of FLO1. 

The genetic variability of flocculation genes may have an important 

consequence for studies and applications targeting these genes in industrial 

yeasts strains with unknown genomes. I therefore designed primers to detect 

specific flocculation genes namely FLO1, FLO5, FLO8, FLO9 and FLO10. All 

the yeast strains showed the presence of the 5 dominant flocculation genes. I 

then tried to sequence the most important two genes which I selected for our 

study, FLO1 and FLO8 in the four industrial strains. The complete sequence 
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was not easy to obtain due to the presence of tandem repeats in the genes 

specially in FLO1 but still our major aim to have an idea about the expression 

level in the strains and correlating it with the their physical aspects seen in the 

flocculation behaviour was achieved by performing quantitative PCR.  

To understand the function of FLO genes mainly, FLO1 and FLO8 in greater 

detail, it is necessary to investigate genes and their expression levels. The 

complete S. cerevisiae genome sequence has been determined, which makes it 

possible to carry out a comprehensive analysis of mRNA (Lashkari et al., 1997; 

DeRisi et al., 1997). 

Thus, the main aims of this Chapter are: 

 To investigate the presence of ‘FLO’ genes, mainly, FLO1, FLO5, FLO8, 

FLO9 and FLO10 genes in the four industrial yeast strains. 

 Clone and obtain sequences for the genes which have not been 

sequenced before in these industrial strains.  

 Examine and compare the expression levels of FLO8 and FLO1 among 

the four yeast strains by performing quantitative PCR.  
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6.2 Results  

6.2.1 Identification and amplification of major FLO genes in the industrial 

yeast strains 

The four strains under study are employed for different industrial applications. In 

order to understand the physiological behaviour of the yeast strains under 

fermentation conditions, it’s equally important to study the genetic aspects of 

the strains (See Table 6.1). As it’s already reported that the laboratory strains 

have “Flo” gene family, that consists of dominant genes like FLO1 and FLO5 

(sharing 96% homology with FLO1), FLO9 (sharing 96% sequence homology 

with FLO1) and FLO10 (sharing 58% homology with FLO1) that were later 

identified on the basis of sequence homology to FLO1. The other dominant 

gene FLO11 shares a sequence homology of 37% with FLO1, thus sharing a 

distant homology with FLO1, while having a high degree of homology with STA1 

gene. Strains that exhibit the four dominant FLO structural genes, FLO1, FLO5, 

FLO9 and FLO10, belong to the FLO1 phenotype. While later it was realised 

that replacement of FLO1 gene, that is Lg-FLO1 exists in cells in addition to the 

other genes in NewFlo phenotype strains (Kobayashi et al. 1998). 
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Gene (under study) Length (bp) 

FLO1 4808 

FLO5(A) 3629 

FLO5(B) 3429 

FLO8 2383 

FLO9 3303 

FLO10(A) 3670 

FLO10(B) 3222 

 

Table 6.1 Dominant FLO genes for this study. The lectins that play an 

important role in flocculation are a product of these FLO genes. The table 

shows the dominant FLO genes and their length found in a laboratory strain 

SC288c.  

6.2.1.1 DNA isolation 

Isolation of yeast genomic DNA was carried out using the procedure described 

in section 2.4.2.1. 

 

 

 

 

 

M      1       2       3       4     5 

10 Kb 
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Figure 6.1 Isolation of genomic DNA from the four industrial strains of 

Saccharomyces cerevisiae.10µl of isolated genomic DNA was run on 1% 

agarose gel along with 1Kb DNA ladder (Qiagen) to check for its integrity. Lane 

1,2,3,4,5 represents the genomic DNA bands from brewing strain LYCCI, 

champagne strain LYCCII, wine strain LYCCIII , fuel alcohol strain LYCCIV and 

unknown strain used as a control respectively. 

6.2.1.2 Primer design 

Since the strains under study were industrial strains and the exact sequence for 

the genes was not known, thus I progressed with designing primers keeping the 

FLO gene sequences of S288C as the template and designed the primers for 

FLO1, FLO5, FLO8, FLO9 and FLO10.  

The genes were amplified in fragments and the length of each fragment was 

around 1000 bp. Only those primers that were 18-22 nucleotide long, had a 

melting temperature between 52-58oC, GC content between 40-60% and gave 

no formation of secondary structure were selected. Care was taken while 

designing the primers was to avoid any repeats especially AT rich repeats at the 

end of the primer. Table 6.2 gives a list of all the primers that were used to 

amplify the genes in the industrial strains. 
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Gene Fragme

-nts 

Primer 

combination 

Length 

(bp) 

                            Sequence 

FLO1  F1:R1 4804  FLO1F1:ACTACTGCCTACATATTTATTCGGAAG 

FLO1R1:AGCAAAGAAAAGATACACAGATACG 

FLO5 (A) 

(B) 

(C) 

F1:R5 

F2:R3 

F4:R1 

827  

1383  

1467 

FLO5F: GTCCTTCTTTGGGTTAGAAAATAGCGG 

FLO5F1:GGTAGAGAAGTTCCTCTGGTC 

FLO5R5:GATAATAGTAGCCTGCATACATG 

FLO5F2:AGAGATTCTTCTGATGAATGG 

FLO5R3:TAATAATTGGACGCGAAGAC 

FLO5F4:AGTGAGGGTCTAATCAGCAC 

FLO5R: GAAATTTCACCATCGCGATACACCA 

FLO5R1:GAACTACTGTTTTCGTCTCAGC 

FLO8  F:R 2383  FLO8F:GAATAGTTCGTATCCAGATTCAATTCC

T 

FLO8R:GCCTTGGGAATTAATAAAATTGAAATC 

FLO9 (A) 

(B) 

F1:R3 

F3:R 

1580  

1670  

FLO9F: TACCATACGATTGCCAGCAATACGG 

FLO9F1:AGTAACTAGCGTAGTTTGTTGC 

FLO9R3:AACTGCTAGCACCATAATAACTAC 

FLO9F3:CATTTCAGTGGATGTAGATGTG                              

FLO9R:GCACATTATCGTGCCAAATTATTCT 

FLO10 (A) 

(B) 

(C) 

 

F1:R4 

F3:R3 

F4:R1 

1054  

653  

1144  

FLO10F: GGTTGTTGTGATCCGTCACGTGTAT 

FLO10F1:ATCTGTAGCTAATGTTGCTCTAG 

FLO10R4:ATGAGGTTGCATATGGAGTG 

FLO10F3:ACCGAAACTGAGTCTACCAG 

FLO10R3:AGCTGTGAAATATTTGTTCG 

FLO10F4:CCAACTAATTTGATTACCAGC 

FLO10R1:ACGAGGCTGTTGAGACTGTG 
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Table 6.2 List of primers used to amplify the genes of interest using 

normal PCR conditions. The genes were amplified in fragments as they were 

long. Forward and reverse primers were designed for every 500 bp through the 

entire length of each of the gene. Selected combinations of forward and reverse 

primers gave us the fragments of the gens which were collated to get the whole 

gene product. 

 

6.2.1.3 Amplification 

In order to carry out the PCR reaction, I used two types of DNA Polymerase 

Taq. Initial set of PCR amplification was carried out using the DNA Polymerase 

MyTaqTM  (Bioline). Since this Taq does not amplifying fragments up to 5 Kb 

with good efficiency, thus I tried to amplify the genes in fragments. As can be 

seen the genes and their primers used for amplification are mentioned in Table 

6.2. Later I used LongAmp® DNA Taq (New England Biolabs), which gave us 

the genes in their full length. In this case only the first forward (F1) and last 

reverse (R1) primer was used to amplify the whole gene of interest.  

Initial Denaturation……95oC for 10 mins 

Denaturation…………..95oC for 1 min 

Primer Annealing……...47oC/50oC* for 1 min 

Extension………………72oC for 4 min 

Final Extension………...72oC for 10 min 

*The conditions for amplification used for gene amplification for genes FLO1, 

FLO10 and FLO8 were carried out at 47oC. Annealing for FLO9 and FLO5 were 

carried at 50oC with MyTaqTM (Bioline). 

35 cycles 
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Conditions used for gene amplification with LongAmp®  DNA Taq (NEB): 

Initial Denaturation………94oC for 1 min 

Denaturation……………..94oC for 30s 

Primer Annealing……......47oC for 1 min 

Extension…………………65oC for 5 min 

Final Extension…………...65oC for 10 min 

6.3.1.3.1 PCR amplification for whole gene fragments 

The list of primers used for amplifying the specific genes  in fragments have 

been mentioned in Table 6.3 and in order to amplify whole genes using 

LongAmp®  DNA Taq, primers were used in combinations. I tried to detect 

whole genes with some upstream and downstream sequences. However, in 

some cases the genes due to their long sizes were amplified using different sets 

of primers which included the whole coding sequences but the upstream and 

downstream sequences differed. For FLO10 (A) primer combination of 

FLO10F:FLO10R gave a PCR product of 3670bp (CDS+ 514 upstream+ 327 

downstream sequences). FLO10 (B) was obtained using FLO10F1:FLO10R in 

combination to yield a PCR product of 3222bp (CDS + 61 upstream+ 327 

downstream sequences). For FLO5 (A) primer combination of FLO5F:FLO5R 

gave a PCR product of 3629bp (CDS+ 406 upstream + 226 downstream 

sequences) and primer combination FLO5F1:FLO5R gave FLO5 (B) 3429bp 

product (CDS + 206 upstream+ 226 downstream). In case of FLO1, FLO8 and 

FLO9, only one whole gene product was obtained. Primer combination 

FLO9F:FLO9R was used to obtain a fragment of 3303bp (CDS+ 160 upstream 

35 cycles 
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sequence). For FLO1 primer combination used was FLOF1:FLO1R1 which was 

targeted to obtain a product of 4808bp (CDS+ 149 upstream +45 downstream), 

while for FLO8, FLO8F:FLO8R gave a product of 2383bp (CDS). Figure 6.2 

shows the presence of  FLO1/FLO5/FLO8/FLO9/FLO10 genes in the four 

industrial strains. 

 

Figure 6.2 Detection of genes FLO1, FLO10A, FLO10B, FLO8, FLO9, 

FLO5A and FLO5B in industrial yeast strains of S. cerevisiae by PCR 

using their respective primers. (a) Brewing strain (LYCCI) (b) Champagne 

strain (LYCCII) (c) Wine strain (LYCCIII) (d) Fuel alcohol strain (LYCCIV). 10µl 

of PCR product was run on 1% agarose gel along with 1Kb marker (lane M). 

Lane 1, 2, 3, 4, 5, 6, 7 represent amplified product for genes FLO1, FLO10A, 

FLO10B, FLO8, FLO9, FLO5A and FLO5B respectively. In case of presence of 

nonspecific PCR products, arrows represent the specific bands. 
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All the five genes of interest namely FLO1, FLO5, FLO8, FLO9 and FLO10 

were found to be present in the four industrial strains. Figure 6.2 shows the 

presence of bands on the gel for the specific genes, however, the presence of 

either of the forms (A) and (B) for FLO10 and FLO5 confirms the presence of 

FLO10 and FLO5 genes respectively in the genome of these industrial strains. 

The result of these amplifications allowed us to identify the presence of 

truncated versions of FLO1 gene in the strains. These were the FLONS, FLONL 

and FLO1M genes. FLONS lost two internal repeated regions, whereas one 

repeated sequence was inserted into the middle repetitive sequence of FLO1 

gene and FLO1M was also reported to have deletion in middle region. (Liu et al 

2007). FLONS (3.8 Kb) , FLONL (4.3 Kb) and FLO1M (3.1Kbp) were  derived 

from FLO1 gene. Brewing strain LYCCI showed the presence of  two fragments, 

one at 4.3 Kb and another at 3.8 Kb, which confirmed the presence of FLONL 

and FLONS respectively .However champagne strain LYCCII and wine strain 

LYCCIII showed the presence of only one band at 3.8 Kb, which indicates the 

presence of only FLONS in their genome. Fuel alcohol strain LYCCIV also 

showed the presence of two bands at positions 3.8 Kb and at 3.1 Kb, indicating 

the presence of FLONS and FLO1M in its genome. From the experiment, it can 

be explained that why brewing strain LYCCI has higher flocculation ability as 

compared to other three strains, as higher the number of tandem repeats 

present, higher is the flocculation ability. Also it explains the NewFLO 

phenotype of these strains, as repeated deletions in the FLO1 gene caused the 

flocculation phenotype conversion from FLO1 to NewFlo (Teunissien et al. 

1993a, Watari et al. 1989 and Liu et al. 2007). 
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In the case of FLO10(A), all the strains gave a band at 3.6Kb, however, the 

same didn’t hold true for FLO10(B) where all the strains gave a band at 3.2 Kb 

except fuel alcohol strain LYCCIV. Moreover a similar situation was observed 

for FLO5(A) and (B) genes , where only champagne strain gave the band 

amongst all the other industrial strains. In the study I used different primer 

combinations to detect the presence of the genes in strains and moreover, the 

primers were designed keeping the laboratory strain S288c in mind. The 

reverse primer in case of both the sets of FLO10 and FLO5 genes were kept 

same and the only difference was at the forward primer. Thus it indicates a 

probable presence of polymorphism within 400 bp and 200 bp to the coding 

sequence of FLO10 and FLO5 gene respectively within the strains. Lane 4 and 

5 (Fig 6.2) showed the presence of FLO8 and FLO9 gene at 2.4 Kb and 3.3 Kb 

in all the four strains. Lane 6,7 showed the presence of FLO5 (A) and FLO5(B) 

respectively. However, it was observed that all the strains showed the presence 

of 3.6 Kb fragment, but only champagne strain showed the presence of 3.4 Kb 

fragment. As there is only a difference of 200 bp upstream of the coding 

sequencing compared to the attained PCR product in case of FLO5(A) 

explaining the brewing strain LYCCI, wine strain LYCCII and fuel alcohol strain 

LYCCIV could probably harbour a mutation in approximately 200 bp upstream 

to the coding sequence thus not providing any site for primer binding while PCR 

amplification.  
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6.3.1.3.2 PCR amplification results for of fragments obtained with MyTaqTM   

 

Figure 6.3 (a)  Detection of genes fragments for FLO1, FLO10, FLO8, FLO9 

and FLO5 in brewing yeast strains of S. cerevisiae LYCCI by PCR using 

their respective primers. Lane represents the gene fragments obtained in 

ascending order, FLO10A, FLO10B, FLO10C, FLO9A, FLO9B, FLO9C, FLO5A, 

FLO5B, FLO5C, FLO1, FLO8A, FLO8B respectively. In case of presence of 

nonspecific PCR products, arrows represent the specific bands. 

 

Figure 6.3 (b) Detection of genes fragments for FLO1, FLO10, FLO8, FLO9 

and FLO5 in champagne yeast strains of S. cerevisiae LYCCII by PCR 

using their respective primers with MyTaqTM . 10µl of the sample was run 
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along with 100bp marker on 1% agarose gel. Lane represents the gene 

fragments obtained in ascending order, FLO10A (L1,L2), FLO10B (L3,L4), 

FLO10C (L5,L6) ,FLO9A (L7,L8), FLO9B (L9) , FLO9C (L10) , FLO5B (L11), 

FLO5C (L12), FLO8B (L13) respectively. 

 

Figure 6.3 (c). Detection of genes fragments for FLO1, FLO10, FLO8, FLO9 

and FLO5 in wine yeast strains of S. cerevisiae LYCCIII by PCR using their 

respective primers with MyTaqTM.10µl of the sample was run along with 

100bp marker on 1% agarose gel. Lane represents the gene fragments 

obtained in ascending order, FLO10A, FLO10B, FLO10C, FLO9A, FLO9B, 

FLO9C, FLO5A, FLO5B, FLO5C, FLO1, FLO8A, FLO8B respectively. 
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Figure 6.3 (d) Detection of genes fragments for FLO1, FLO10, FLO8, FLO9 

and FLO5 in fuel alcohol yeast strains of S. cerevisiae LYCCIV by PCR 

using their respective primers with MyTaqTM . Lane represents the gene 

fragments obtained in ascending order, FLO10A, FLO10B, FLO10C,FLO9A, 

FLO9B, FLO9C, FLO5A, FLO5B, FLO5C, FLO1, FLO1P (promoter), FLO8A, 

FLO8B respectively. 

 

6.2.1.4 Transformation and cloning 

I obtained the PCR products for both the whole genes for FLO1, FLO5, FLO8, 

FLO9 and FLO10 as well as the fragments of these genes. The fragments of 

the genes were ligated in pGEM Teasy vector. However, not all the fragments 

were efficiently cloned into. This was revealed by gel images obtained after 

miniprep followed by PCR using the primers specific for T7 and SP6.  

 

Figure 6.4 (a) The presence of desired fragments (inserts) from the vector 

after transformation of E.coli JM109 competent cells with T7 and SP6 

specific primers. 10µl of the product was run along with 100bp marker on 1% 

agarose gel. Each lane for brewing strain, LYCCI, represents the following 

inserts in ascending order, FLO8, FLO10A, FLO10B, FLO10C, FLO9A, FLO9C, 

FLO5B, FLO5C respectively. Each lane for the champagne strain, LYCCII, 

represents the following inserts in ascending order, FLO8, FLO10B, FLO9A, 

FLO9B, FLO5B and FLO5C respectively.  
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Figure 6.4 (b) The presence of desired fragments (inserts) from the vector 

after transformation of E.coli JM109 competent cells with T7 and SP6 

specific primers. 10µl of the product was run along with 100bp marker on 1% 

agarose gel. Each lane for wine strain, LYCCIII, represents the following inserts 

in ascending order, FLO8, FLO10A, FLO10B, FLO10C, FLO9A, FLO9C, 

FLO5B, FLO5C respectively. Each lane for the fuel alcohol strain, LYCCIV, 

represents the following inserts in ascending order, FLO8, FLO10C, FLO10B, 

FLO10A, FLO9A, FLO9B, FLO5B, FLO5C, Positive control and negative control 

respectively.   

From Fig 6.4 (a) and (b), it’s observed that not all the fragments were 

transformed efficiently in the yeast strains. Transformation was only observed 

for fragments FLO10 (A), (B) and (C) in brewing strain LYCCI, fragments 

FLO10B, FLO9A for champagne strain LYCCII, fragments FLO10A, FLO10B 

and FLO9C and fragments FLO8, FLO10C, FLO10B, FLO10A and FLO9A for 

fuel alcohol strain LYCCIV. Troubleshooting was carried out and perhaps 

mainly the ligation reaction was not carried for sufficiently long time to allow 

proper ligation. Another reason observed was that short fragments of less than 

1000bp, in most of strains showed the presence of band after PCR with T7 and 

SP6 primers. Therefore, the construct size could have affected the 

transformation efficiency. Alternatively it could be due to variable PCR 

conditions. 
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6.2.2 DNA sequencing of the selected genes of interest: FLO1 and FLO8 

Figure 6.4 (a) and (b) shows that not all the fragments were successfully 

transformed and cloned. Due to time constrains, I selected only two genes for 

sequencing i.e FLO1 and FLO8 genes for the four industrial strains. The 

presence of FLO1 and FLO8 genes was done by making use of the commercial 

sequencing service and then performing blast   

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=OGP__4932__9518) 

of the PCR product of these two genes for the four industrial strains.  

6.2.2.1 DNA sequencing for FLO1 

6.2.2.1.1 Brewing Strain, LYCCI 

For FLO1- Forward Primer (F1) 

TTTTACCAGTATTGAAGTTCCTCNACATAAAAGGGGTNCTACGAAGTAAGTAAGATCTT

CGTAACAAGACANAANGGGNCTNGGCGGGAGNNATATAGTTGTGTCCCGTTAGGAANGG

TCGNNTNTTGGATATTGGGGGCCCTGGTGATTTATTTGGTTTCTATACTACCCCAACAA

ACGTAACC 
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Figure 6.5 (a) The BLAST result of the DNA sequence obtained for brewing 

strain, LYCCI for FLO1 gene obtained after DNA sequencing. The maximum 

identity to S. cervisiae chromosome I confirms the presence of FLO1 gene. 

For FLO1- Reverse Primer (R1) 

TGCTGGGACGATAACNNNAGTGACTTATTGGCTTTCAAAATCTGATCCGGCTGGAACAC

AGACGGCTTCCGCGACCGATGTGATTGGTCNNNCAGCAGTAGTCTTGTTTCTGTATGAA

ACGTGGCAACACCAA 

 

 

Figure 6.5 (b) The BLAST result of the DNA sequence obtained for 

brewing strain, LYCCI for FLO1 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome I confirms the presence of FLO1 

gene. 
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6.2.2.1.2 Champagne Strain, LYCCII 

For FLO1- Forward Primer (F1) 

TTCCTTGTCCTCAAGAAGATTCCTATGGAAACTTNCATGTACGTTCACCTTTCGGGTTT

TTGGCTTGTGGGGGGGCGTGTTGCCGTNGAGNAGATGCACCCCTATTGTGTTGNCAGNG

GCNTACNTCNCNATNTAGATTTTGGGNTAGGCGGTGTT 

 

Figure 6.6 (a) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO1 gene obtained after DNA sequencing. 

The maximum identity to S. cervisiae chromosome I confirms the presence of 

FLO1 gene. 

For FLO1- Reverse Primer (R1) 

ACGACGCCTCTAACCATTATAATATTGCCAGCAATAAGGAGCATGAAGACCNGCAGTTN

CNGGTTCTTGACGATGTCGCAACAGCCTNNNAGCACACCANNAAGCAGCTTCTTAGGAT

ATNNNACAGCTTCTTTAGAAATTTCAACGTATGCTGGCAGTGCCAACGCTACTGGCCGG

TAGTGGGTTTA 
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Figure 6.6 (b) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO1 gene obtained after DNA sequencing. 

The maximum identity to S. cervisiae chromosome I confirms the presence of 

FLO1 gene. 

6.2.2.1.3   Wine Strain, LYCCIII 

For FLO1- Forward Primer (F1) 

CCAGAGGAAAAGTGGGANNNATATAAATTTTTACNNNNATTCATTGAAAGACATAT

CCACATACAATAATGCAGCATATATGGATAATGGATATGCCTCAAAAACCAAAACT

AGTTCTGTCGGAGGAAATTATGATATCTCGNNNNATTATAATATTCCCTGTGTTAG

TTCATCCGGCACATTTCCAGAGACTCAAGAAGAT 
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Figure 6.7 (a) The BLAST result of the DNA sequence obtained for wine 

strain, LYCCIII for FLO1 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome I confirms the presence of FLO1 

gene. 

For FLO1- Reverse Primer (R1) 

GCTGGTTCTGTCTAGCTTACTGCAAAATGTGGCGCATTGAGACCTTTGACAAGTGCTCGGGGA
AACGCCTGATGCCGCATCTCCATCCTTCTGGGTGCGGTCTTTTCCAACCCGGCAATTCTTGCG
AGAGTCATCTCTGCAATAAATCCATNNNNCCAATGATTGTTTCCACAGCTACTCGTACTGTTA
GCGGCGGTCACAACA 
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Figure 6.7 (b) The BLAST result of the DNA sequence obtained for wine 

strain, LYCCIII for FLO1 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome I confirms the presence of FLO1 

gene. 

 

6.2.2.1.4     Fuel Alcohol Strain, LYCCIV 

For FLO1- Forward Primer (F1) 

TTGAATATAATACTCCCTGCGTTAGCTTAGCAGGCACATTTGCTTTTCCTCAAGAAGATTC
CTATNNAANCTGGGGATGCANAGGAATGGGTGNGCATTCTGATAGTCAAGGAATTGCANNN
CACATTATCGGAATTTTGGGATTGGGNGGTGACAGTGCGAATACTGNCGGGCCGTGGTCGT
GTTAAGNAAGGGNNTTCGGTNTCGANTAAGTGGANGGCCNTAG 
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Figure 6.8 (a) The BLAST result of the DNA sequence obtained for fuel 

alcohol strain, LYCCIV for FLO1 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome I confirms the presence of FLO1 

gene. 

For FLO1- Reverse Primer (R1) 

CTAAGAAGCGGAATTCATTAATGGAGGCCGACACAATGACAGTTTCATCAGTTGGCAAGCC
ATTGTAATATTCCCTGTGTTAGTTCATCAGGCACATTTCCTTGTCCTCAAGAAGATTCCTA
TGGAAACTGGGGATGCAAAGGAATGGGTGCTTGTTCTAATAGGTTCCAGTGACAGTAGCCA
TTTCAGTGGATGTAGATGTAAATTACCGGTCATGGTGCGGTTGTAGTATTCGGCGTGTCTG
TGTTGGTGTGTTGACAACAATGATGGTCGCTCACTTACACAGCGCTCGTCTGGTAACAGC 
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Figure 6.8 (b) The BLAST result of the DNA sequence obtained for fuel 

alcohol strain, LYCCIV for FLO1 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome I confirms the presence of FLO1 

gene. 

 

Thus, from (Fig 6.5-6.8) BLAST on sequencing results pointed chromosome I 

(with maximum hits), indicated that the gene so amplified and sequenced was 

for FLO1 gene. 

6.2.2.2   DNA sequencing results for FLO8 gene 

6.3.2.2.1   Brewing strain  

For FLO8- Forward Primer (F1) 

GCCCAGTAACCGTAATGGCAGCCAGTATAACAAGATTTGCAGAGCAATATTGCAATGGC

AACAAATAGTGAACAGCAGCGACAACAACAGCAGCAGCAGCAACAGCTGCAACAGCAGT

GGATAACTTACCTACCNNGGAATATTNNGTTNNNATTCTTGTATCTTTGATTATTTATT 
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Figure 6.9 (a) The BLAST result of the DNA sequence obtained for brewing 

strain, LYCCI for FLO8 gene obtained after DNA sequencing. The maximum 

identity to S. cervisiae chromosome V confirms the presence of FLO8 gene. 

For FLO8- Reverse Primer (R1) 

TTTTTCCATTTGTATCAGTAATTGAGTCGTATCCGGTCCTTGGTCTTCAACCATACCAA

TATTCCCAAACTTCAAGTTCTGAGAGTGTACATTCTGATTTTCATTAGTACTGGTTTGC

TGAGGACCCAAAGTTGTACCC 

 

Figure 6.9 (b) The BLAST result of the DNA sequence obtained for 

brewing strain, LYCCI for FLO8 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome V confirms the presence of FLO8 

gene. 

For FLO8- Reverse Primer (R2) 

GAACATCAGTGAGCTTCTCACGATGGGCTAGATTTGGATTAGAATAAAAACGTCCTGGC

CAACGGAAGAGCGTGAACGGGGCGTCCTTTACTTTGAAGATCGCGTCACCGTCCGGCGG

GCAGCCAGCAATGAAGTAGTCCATTTTAACAACTTCGTGGCACGGGTAAACTTTGGTGG

TGATACGCGGGATGTCCGGGTGGAACGGAACAACCGCTTTCGCACCCGGAACCGCGGTC

GCAGAGTTAACGTACGCTTCCGCCAGGCAGTCTTTCAGTTCGAAAACGTTACGCATCGC

CGGACACCACCCCAACCGCGCACGCACAAAGAGATCAGGAGTCCAGTTTCCGGAGTGTT
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CCGGGTTCATGTTTCTTCAAAAAACACCACCTTCACGAACCGATCGCGCTCTTCCGGGA

TACGTTTGATGTCGTCACAATAACGCACAGGATACGTTTCCTC 

 

Figure 6.9 (c) The BLAST result of the DNA sequence obtained for brewing 

strain, LYCCI for FLO8 gene obtained after DNA sequencing. The maximum 

identity to S. cervisiae chromosome V confirms the presence of FLO8 gene. 

6.2.2.2.2    Champagne strain  

For FLO8- Forward Primer (F1) 

CCAGGCTCTCGTAATGGCAGCCAGTATAAACAAGATTGCAGAGTATATTGCAATGGCAA

CGAATAGTGAACAGCAGCGACAACAACAGCAGCAGCAGCAACAGCAGCAACAGCAGTGG

ATAAATCAACCTACGGCGGAAAATTCGGATTTGAAGGAAAAAATGAACTGCAAGAATAC

GCTCAATGAGTACATATTTGACTTTCTTACGAAGTCGTCTTTGAAAAACACTGCAGCAG

CCTTTGCTCAAGATGCGCACCTAGATAGAGACAAAGGCCAAAACCCAATCGACGGACCC

ACCTCTAAAGAAA 

 

Figure 6.10 (a) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO8 gene obtained after DNA sequencing. 
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The maximum identity to S. cervisiae chromosome V confirms the presence of 

FLO8 gene. 

For FLO8- Forward Primer (F2) 

TACGAGCTAGCTAAGCCGGTCTAGTGGCTAAGAGACGAAGAAAAAATAATACCGCTACA

GTTTCCGCGGGATCGACGAACGCTGGTTCGCCAAATATTACCACACCAGGCTCAACAAC

AAGTGAACCCGCTATGGTAGGTTCAAGAGTAAATAAGACTCCAAGATCAGATATTGCTA

CTAACTTCCGCAATCAAGCAATAATATTTGGCGAGGAAGATATTTATTCTAATTCCAAA

TCTAGCCCATCGTTGGATGGAGCATCACCTTCCGCTTTAGCTTCTAAACAGCCCACAAA

GGTAAGGAAAAATACAAAAAAGGCATCCACCTCAGCTTTTCCAGTAGAGTCTACGAATA

AACTCGGTGGCAACAGCGTGGTGACAGGTAAAAAGCGCAGTCCCCCTAACACTAGAATG

TCGAGGAGGAAATCCACTCCTTCTGTTATTCTGAATGCTGATGCCACTAAGGATGAGAA

TAATATGTTAAGAACATTCTCGAATACTATTGCTCCGAATATTCATTCCGCTCCGCCCA

CTAAAACTGCGAATTCTCTCCCTTTTCCAGGTATAAATTTGGGAAGTTTCAACAAGCCG

GCTGTATCCAGTCCATTATCTTCAGTGACAGAGAGTTGCTTCGATCCAGAAAGTGGCAA

GATTGCCGGAAAGAATGGACCCAAGCGAGCAGTAAACTCAAAAGTTTCGGCATCATCCC

CATTAAGCATAGCAACACCTCGGTCTGGTGACGCTCAGAAGCAAAGAAGTTCTAAGGTA

CCAGGAAACGTGGTTATAAAGCCGCCACATGGGTTTTCAACCACCAATTTGAATATTAC

TTTAAAGAACTCTAAAATAATCACTTCACAAAATAATACAGTATCCCCAAGAATTGCCG

AAATGGGGGAAAAACATATTGGAAGCCGCAAGTAAGGCAATGATTCAAGAAATAGGTAA

AGGCAATCGTAACACATTTATCTACTCCATAAGGAAAAAATAGCGCAATCTCTCATAAG

CCAACGGCATCGATT 
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Figure 6.10 (b) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO8 gene obtained after DNA sequencing. 

The maximum identity to S. cervisiae chromosome V confirms the presence of 

FLO8 gene. 

For FLO8- Reverse Primer (R1) 

TATTTCTTTGATCAGTAAATTGAGATCGTAATCCGGTCCTTGGTCTTCAACCATACCAA

TATTCCCAAACTTCAAGTTCTGAGAGTGTACATTCTGATTTTCATTAGTACTGGTTTGC

TGAGGACCCAAAGTTGTACCCACATTGGATGAGGGCTGAATTAATGTGTTATCATTATC

GCCACTATTTGTAGATGCAGAGGTTTCATCAGCAACATTTGAATTCTCGTTTGGTGTTC

TATTGTTAGAAGCATAAGCTTGATTAGGAAACAACAAAGAACTTGAATTTTTGAGGGCG

TCAAAATCATATCCTTGATTATTACTACTCGGCTTTTTTTCCTCTGGAGTAGATAATGT

GTTACGATTGCCTTTACTACTTCTTGAATCATTGCCTACTTGCGCCTCCAGTATGTTTC

CCCCATTCGGCAATTCTTGGGATACTGTATTATTCTGTGAAGTGATTATTTTAGAGTTC

TTTAAAGTAATATTCAAATTGGTGGTTGAAAACCCATGTGGCGGCTTTAGAACCACGTT

TCCTGGTACCTTAAACTTCTTTGCTTCTGAGCGTCCTGCAGACCG 

AGGAGTTGCTACTGCT 

 

Figure 6.10 (c) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO8 gene obtained after DNA sequencing. 

The maximum identity to S. cervisiae chromosome V confirms the presence of 

FLO8 gene. 

For FLO8- Reverse Primer (R2) 
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CTAAGGGTAGCTCATCACGATGGGCTAGATTTGGATTAGAATAAATATCTTCCTCGCCA

AATATTATTGCTTGATTGCGGAAGTTAGTAGCAATATCTGATCTTGGAGTCTTATTTAC

TCTTGAACCTACCATAGCGGGTTCACTTGTTGTTGAGCCTGGTGTGGTAATATTTGGCG

AACCAGCGTTCGTCGATCCCGCGGAAACTGTAGCGGTATTATTTTTTCTTCGTCTCTTA

GCCACTAGACCGGCTTTAACTTTACCCTTCGCTTTTGAGGTTGCAGATCTACTTCTTGT

AGATTTTGACGTCGGGACATTATTTGGTTTATCTGTTGAATGCATAGTTTTTAAACTTT

TAGGTTGGTTCACTGGAGATTTGTTATTAGTTGTATTATTTGTGGTATTATTGTTACAC

GGGTTTCCCACTGGATTTTCCGTAGTGGGTTGCATTGGATAATTATAGACTGGCCAGCC

AGTAACGTTTTGACTCCGATTCTGGGTTGGCCCTACATTTGTAAAATCGCCGGAAGGCG

GCGCTGTGGGAGCAACAGCAGTTGCACCAGTCGTGGGGTTTGCATTATTGTATGGTGGA

ATGGAAAAATTATTAACGATAGGGTTACCAACCATAGGAATTGGTATAGGGTTCATATT

AACATTGCGCATTTGAACCGCAGGTGCCATAGGATTTCCTAGCATCATAGCAGCCAAGT

GCATGGGGTCTATGTCCTCGTTACTATATTCCCCTCTTCGTTCTGCATCGTGTTGTAGC

CTTGCCGCATGAACAGCCAAGCTTCTATATATTTGTTCCTGCCTTTGTTCTTGAAGAAC

TAGTTGATAATATTGCTGAGCGAACTCTGAGCCACCTCTGGAAGAACTGGTATTAAAGA

TGTCCCAGAATATTTGCCACCATTCATACAAAAAGCCTTGAGGTGGATCTACTACCTTC

GAGAACGTATTCTGGTTACCATTGTTTTCTTTAGATTTGGGTCCCGCCAATTGGGTTTT

GGCCTTTGTCTCTTTCTAGGTGCGCATCTTGAACAAAGGCTGCTGCAGTGTTTTTCAAA

AACAACTTCCTAAAAAAGTCAAATATGTACTCATTGAGCGGTTTCTTGGCGTTCCTTT 

 

Figure 6.10 (d) The BLAST result of the DNA sequence obtained for 

champagne strain, LYCCII for FLO8 gene obtained after DNA sequencing. 
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The maximum identity to S. cervisiae chromosome V confirms the presence of 

FLO8 gene. 

 

6.2.2.2.3     Wine strain  

For FLO8- Forward Primer (F2) 

CAAAAATGTAATTTCCTTAAGGAGGAACAAAGGCGAAAAAAAATGTCTCGTAAACTGGT

TGTTCATCATCCGGGTACCACGAATAGATCAAGCAATAGTTGTGTTCGCCTGGACGACG

ACCCCATGCACTTGGCTAAANTGATGCTAGGCTATGGCACCTGCGTTCAAATGCGCAAT

GTTAATATGAACCCTATACCAATTCCTATGGTTGGNNNNNTATCGTTAATCGTATTTCC

ATTCCACCATACAATAATGNNNNNCCCACGACTGGTGCTATCGATGTTGCTCCCACAGC

GCCGCCTTTTAATGATTTTAC 

 

Figure 6.11 (a) The BLAST result of the DNA sequence obtained for wine 

strain, LYCCIII for FLO8 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome V confirms the presence of FLO8 

gene. 

For FLO8- Reverse Primer (R2) 

CCTCAAAAATTTTTTTAGCGAGTTATGCAAAATGTGGCGCATTGAGACCTTTGACAAGT

GCTCGGGGAAACGCCTGATGCCGCATCTCCATCCTTCTGGGTGCGGTCTTTTCCAACCC

GGCAATTCTTGGAGTGACCGAGGTCGCGACC 
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Figure 6.11 (b) The BLAST result of the DNA sequence obtained for wine 

strain, LYCCIII for FLO8 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome V confirms the presence of FLO8 

gene. 

 

6.2.2.2.4       Fuel Alcohol strain  

For FLO8- Forward Primer (F1) 

AATGGTAACCAGAATACGTTCTCGAAGGTAGTAGATACATTCTTATTCGANGGTCCTGA

ATGAACCATGGTATGTTTTGGTAGCAANNNNNCTGGGACATCTTTAAATANNNTATANA

TGGCAAGCAGAATAAACCAAT 

 

Figure 6.12 (a) The BLAST result of the DNA sequence obtained for fuel 

alcohol strain, LYCCIV for FLO8 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome V confirms the presence of FLO8 

gene. 

For FLO8- Reverse Primer (R2) 

CTAAGAAGCGGAATTCATTAATGGAGGCCGACACAATGACAGTTTCATCAGTTGGCAAG

CCATTGGTTCCANNNHCAGTAGCCATTTCAGTGGATGTAGATGTAAATTACCGGTCATG

GTGCGGTTGTAGTATTCGGCGTGTCTGTGTTGGTGTGTTGACAACCTTATGCTTCTAAC

AATAGAACACCAAACGAGAATTCAAATGTTGCTGATGTCTGCATCTACAAATAGTGGCA

ATGATGGTCGCTCACTTACACAGCGCTCGTCTGGTAACAGC 



                             Discussion and Conclusion 
 

Chapter Seven                                              - 170 -                              Abertay University, Dundee, UK 
 

 

Figure 6.12 (b) The BLAST result of the DNA sequence obtained for fuel 

alcohol strain, LYCCIV for FLO8 gene obtained after DNA sequencing. The 

maximum identity to S. cervisiae chromosome V confirms the presence of FLO8 

gene. 

 

Thus, from (Fig 6.9-6.12) BLAST on sequencing results pointed chromosome V 

(with maximum hits), indicated that the gene so amplified and sequenced was 

for FLO8 gene. 

6.2.3 Gene Expression levels for FLO1 and FLO8 genes 

6.3.3.1 RNA isolation from the four industrial strains 

In order to prepare cDNA for the amplification of FLO1 and FLO8 primers using 

QPCR, total RNA was isolated from the four industrial strains of 

Saccharomyces cerevisiae (see Fig 6.13) 
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Figure 6.13 Two distinct bands (18S, below and 26S, above) observed 

after RNA isolation of the four industrial strains. 5µl of the sample was run 

in each lane on 1.5% agarose gel along with 1 Kb ladder. The lanes represent 

the isolates in duplicates: (L1,L5) Brewing strain, (L2,L6) Champagne strain, 

(L3,L7) Wine strain and (L4,L8) Fuel alcohol strain.  

 

6.2.3.2   Primer designed for QPCR 

Gene                          Sequence Annealing           

temperature 

Transcript   

length  



FLO1RQ1 CCAAGAAACAGCGTTCGAG       63.6 177 bp 

FLO1FQ4 TCTATCAGTAGGTGGTGCAAC       59.3  

FLO1RQ4 AGAAACAGCGTTCGAGTAAAC       60.0 190 bp 

PDA1FQ1 TGAGACTTCGAAAGCCACC       63.1  

PDA1RQ1 AGTGAAACCGTGACATCTG       58.7 240 bp 

PDA1FQ2 GACTTCGAAAGCCACCTTG       62.4  

PDA1RQ2 TGTGATGGCATTCTCGATACC       64.8 350 bp 

FLO8F1 CCCGTGTAACAATAATACCAC       58.2  
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FLO8R1 ACCCTTCGCTTTTGAGGTTG       65.2 180 bp 

FLO8F2 TGGGAAGTTTCAACAAGCCG       67.1  

FLO8R2 CCAGACCGAGGTGTTGCTAT       64.0 200 bp 

 

Table 6.3 List of primer pairs used for qPCR for FLO1, FLO8 and the 
housekeeping gene PDA1.The primer pairs were used on cDNA that was 
obtained after RNA extraction. The primers for qPCR were designed using 
Primer 3 online software. The primers were checked for dimer formation, GC% 
content etc.  

 

 6.2.3.3 Quantitative and realtime PCR (QPCR) using SYBR® Green Master 

Mix 

Table 6.3 summarizes the primer pair sequences for the FLO1, FLO8 and 

PDA1 gene. Each gene was amplified in triplicates (N=3) for each of the three 

biological repeats of the four strains. PCR conditions* were optimized and 5µl of 

the amplified product was electrophoresed on a 1.5% agarose gel to verify 

amplicon size. 

*PCR conditions remain same for all the three genes except the annealing 

temperature differed slightly. 
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Step Temperature Time 

Initial Denaturation      94
o
C 30s 

Denaturation      94
o
C 30s 

Annealing*      55
o
C* 60s 

Extension      65
o
C 40s 

Final Extension      65
o
C 10 min 

*Annealing temperature for PDA1, FLO1 and FLO8 gene was 55oC, 52oC 

and53oC respectively. 

Table 6.4 PCR conditions used for the amplification of the particular 

region of interest from FLO1, FLO8 and PDA1 cDNA.  

 

Figure 6.14 (a) FLO8 gene PCR product obtained after using the QPCR 

primers on the cDNA isolates from the four industrial strains. 10µl of the 

sample was run on 1.5% agarose gel along with 100 bp ladder. The sample 

was loaded in duplicates and the arrows represent the specific band at (180bp). 

Lane (L1,L5) represents fuel alcohol strain LYCCIV, lane (L2,L6) wine strain 

LYCCIII, lane (L3,L7) champagne strain LYCCII and lane (L4,L8) brewing strain 

LYCCI.  

35 Cycles 
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Figure 6.14 (b) PDA 1 gene PCR product obtained after using the QPCR 

primers on the cDNA isolates from the four industrial strains. 10µl of the 

sample was run on 1.5% agarose gel along with 100 bp ladder. The sample 

was loaded in duplicates and the arrows represent the specific band at (240bp). 

Lane (L1,L2) represents fuel alcohol strain LYCCIV, lane (L3,L4) wine strain 

LYCCIII, lane (L5,L6) champagne strain LYCCII and lane (L7,L8) brewing strain 

LYCCI.  

 

Figure 6.14 (c) FLO1 gene PCR product obtained after using the QPCR 

primers on the cDNA isolates from the four industrial strains. 10µl of the 

sample was run on 1.5% agarose gel along with 100 bp ladder. The sample 

was loaded in duplicates and the arrows represent the specific band at (190bp). 

Lane (L1,L2) represents fuel alcohol strain LYCCIV, lane (L3,L4) wine strain 

LYCCIII, lane (L5,L6) champagne strain LYCCII and lane (L7,L8) brewing strain 

LYCCI.  
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Gel densitometry analysis (Semi quantitative PCR) was used to compare the 

differential expression of each of the test gene with HKG between the four 

strains using Gel DocTM imager (Life Technologies, Carlsbad, CA, USA).The 

primers (Table 2.2) were used to amplify the cDNA from all the four strains and 

subjected to PCR. The PCR was performed in triplicates for each of the strain 

and each of the genes using the conditions (Table 2.3). The final PCR product 

as shown in (Fig 6.14(a),(b) and (c)) was resolved by electrophoresis on 1.5% 

agarose gels. The gels were photographed using Gel Doc 100 (Bio-Rad, 

Hercules, USA) and the images were analysed by using Band scan analyser 

5.1 software. 

6.2.3.4 Relative quantification of  FLO1 and FLO8 genes 

Quantification of expression levels of each gene, FLO1 and FLO8, were 

assessed by both the gel Densitometry (Biorad, Hercules, CA, USA) and real 

time PCR machine MX3000P system (Stratagene, Santa Clara, CA, USA). 

Figure 6.15 shows the relative gene expression levels for the two genes under 

study. 
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Figure 6.15 Relative QPCR expression of FLO1 and FLO8 genes in 
selected industrial strains normalised with PDA1 (housekeeping gene). 
Samples were taken during the late stationary phase. The relative expression 
value for each sample was defines as 2-ΔCt where Ct (target)represents the 
cycle number at which a sample reaches a predetermined threshold signal 
value for the specific target gene. Relative expression data were normalized to 
the relative expression value of the housekeeping gene PDA1 in each 
respective sample, thus normalized relative expression for the target gene as 2-

ΔCt (target) /2-ΔCt (PDA1). Data are presented as Mean ± SE of three replicates (N=3). 
 

To investigate the expression levels of truncated forms of FLO1 genes and 

FLO8 genes, the LYCCI, LYCCII, LYCCIII and LYCCIV cells were harvested in 

their stationary phase. RNA isolation was carried out, followed by cDNA 

synthesis as explained in section (2.4.3.2). It was assumed that nutrient 

starvation and oxidative stress would have induced the expression of 

flocculation genes namely FLO1 and its derivatives as well as FLO8 genes in 

these strains (Sampermans et al., 2005). FLO1 is the most studied gene related 

to flocculation (Russell et al., 1980). It encodes a large flocculation protein rich 

in Ser/Thr amino acids (Watari et al., 1994). High number of tandem repeats 

present in the central domain of FLO1 gene makes it genetically quite unstable. 

http://www.sciencedirect.com/science/article/pii/S0960852411018530#b0135
http://www.sciencedirect.com/science/article/pii/S0960852411018530#b0185
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Therefore, we normally encounter the truncated forms of FLO1 in these 

industrial strains. As suggested by Liu et al.(2007)  both the truncated forms of 

FLO1 gene produced the same transcript levels indicating significantly no 

contribution of the upstream sequence of FLONL. The product of FLO1 are thus 

important in order to study the cell adhesion properties as these proteins 

endowed with calcium dependent lectin activity help cell–cell adhesion events 

during yeast flocculation (Verstrepen et al. 2003). Bester et al. (2006) observed 

that FLO8 gene product Flo8p extensively plays an important role in regulating 

FLO1 gene apart from  FLO11 and STA genes. The housekeeping gene 

selected was PDA1 gene which encodes for the protein product pyruvate 

dehydrogenase (acetyl-transferring) subunit E1 alpha. E1 alpha subunit of 

pyruvate dehydrogenase (PDH) complex catalyses the direct oxidative 

decarboxylation of pyruvate to acetyl-CoA. The protein product of PDA1 gen is 

active in phosphorylated form and is regulated by glucose.  

From the data, it’s clear that the levels of both the genes were up-regulated as 

compared to the housekeeping gene. Figure 6.15 shows the levels of FLO1 and 

FLO8 genes normalized to the housekeeping gene. The transcription levels of 

FLO1 were higher than FLO8 in all the industrial strains. These transcription 

levels are strongly correlated with the percentage flocculation ability in all 

strains. Brewing strain (LYCCI) and champagne strain (LYCCII) exhibited higher 

levels of FLO1 gene expression compared to wine strain (LYCCIII)  and fuel 

alcohol strain (LYCCIV)  strain. Moreover, it is clear from the data that even 

though direct correlation was observed between the FLO8 and FLO1 

expression levels in all the strains ( i.e higher expression levels for FLO1 were 

observed with higher expression levels of FLO8), it was not the case for the 
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champagne strain LYCCII. FLO1 expression was found to be independent of 

FLO8 expression level which is believed to be one of the transcriptional 

activator for FLO1 gene. This could be due to three main reasons, firstly as both 

FLO8 and MSS11 genes are critical for the process of flocculation in addition to 

presence of FLO1 (Fichtner et al., 2007). Bester et al. (2006) also confirmed 

this by northern blot analysis and identified FLO1 as the main target gene for 

Flo8p and Mss11p with regards to flocculation, and that the levels of FLO1 

transcription can in all cases be broadly correlated with the levels of 

flocculation. Thus chances are in case of champagne strain LYCCII, the high 

levels of FLO1 might be primarily due to Mss11p and not Flo8p. Meanwhile, it 

was also observed that increased copies of MSS11 can support transcription of 

flocculation genes (FLO1) even in lower expression levels of Flo8p protein. The 

expression levels of MSS11 were not studied here, thus it cannot be confirmed. 

Another reason for higher FLO1 expression levels in champagne strain LYCCII 

even with lower expression level of Flo8p compared to brewing strain LYCCI 

could be due to the regulation of FLO1 gene by those involved in chromatin 

remodelling, including the Swi-Snf co activator and the Tup1p-Ssn6p co-

repressor complexes (Fleming and Pennings, 2001). Lastly another reason for 

higher expression of FLO1 levels in champagne strain LYCCII could be due to 

greater stability and half-life of FLO1 mRNA in the champagne strain LYCCII 

over the other three industrial strains.  

6.3 Key Findings  

Flocculation is an attractive property of Saccharomyces cerevisiae, which plays 

important roles in the fermentation industry and in environmental remediation. 

The process of flocculation is mediated by a family of cell surface flocculins. 
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Amongst the dominant flocculation genes are FLO1, FLO5, FLO8, FLO9, 

FLO10, FLO11, FLONS, FLONL and Lg-FLO1. Proteins encoded by these FLO 

genes share a common modular organization that consists of three domains: an 

amino-terminal lectin domain which protrudes from the cell surface and is 

responsible for the binding to carbohydrate, a central domain that is extremely 

rich in serine and threonine residues, and a carboxyl-terminal domain 

containing a glycosyl phosphatidylinositol anchoring sequence (Pittet and 

Conzelmann, 2007; Li et al., 2013). DNA sequence responding to the central 

domain contains many tandem repeat regions, which are highly dynamic 

components of yeast genome. These repeats drive slippage and recombination 

reactions within and between FLO genes, leading to the generation of novel 

alleles or pseudogenes, which endows yeast cells with diversity and variety in 

flocculation ability. 

 

 The result of PCR amplification helped us to identify the major dominant genes 

in the four industrial strains. Truncated forms of FLO1 were observed in the 

strains, since the complete length of FLO1 was difficult to amplify due to its 

genetic instability. While the brewing strain showed the presence of both 

FLONL and FLONS, the champagne and wine strains showed the presence of 

only FLONS sequence which is expected to be 3.8Kbp compared to the 4.3Kbp 

of FLONL sequence. FLO1M (3.1Kb) was found to be present in addition to 

FLONS in fuel alcohol strain. This data strongly suggests that higher the 

tandem repeats present in FLO1, higher is the flocculation ability of the strain, 

explaining why brewing strain LYCCI is highly flocculent as compared to the fuel 

alcohol strain LYCCIV. Thus the presence of repeats in FLO adhesins, enables 

Saccharomyces to adapt its adhesion behaviour, finding an optimal balance 
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between the adherent cells and free cells that can escape from the mass and 

explore new surfaces (Verstrepen et al., 2005 and Liu et al., 2007). In addition 

to variations in the flocculation ability of the industrial strains due to the variation 

in tandem repeats in FLO1 region, I also observed flocculation phenotype 

conversion from Flo1 to NewFlo (Liu et al., 2007) explaining that all the 

industrial strains belong to NewFlo type of flocculation phenotype.  

Another important point to be noted from the PCR amplification experiments 

was the absence of FLO10(B) band for champagne strain and  the absence of 

FLO5(A) band in brewing, wine and fuel alcohol strain. Since the primers were 

designed keeping the laboratory strain S288c sequence of FLO10 and FLO5 in 

mind, wherein the primers chosen for PCR amplification of FLO10 (A), FLO10 

(B), FLO5 (A) and FLO5 (B) had only differences in few sequences upstream to 

the coding sequence. It was concluded that the strains that did not give any 

band for FLO10(B) and FLO5(A) probably had mutations in upstream region, 

thus not providing the adequate sites for primer binding and hence amplification 

of the genes.  

The analysis of FLO1 gene expression using quantitative PCR method 

demonstrated a correlation with flocculation data of the strains. The high level of 

flocculation of the strain LYCCI (brewing) correlated with the high level of FLO1 

gene expression. A correlation between the FLO1 gene expression and the 

ability of other strains to flocculate in industrial substrates was also determined. 

This enables predicting the flocculation ability using a molecular method, which 

allows for a quick, economically desired and reasonable selection of industrial 

strains. From Fig (6.15) it is clear that the levels of both  genes (FLO1 and 

FLO8) were up-regulated as compared to the housekeeping gene. Higher levels 
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of FLO1 gene in the brewing strain along with the presence of FLONL sequence 

(which is believed to contain more repeat sequences as compared to FLONS) 

makes the brewing strain highly flocculent compared to the other industrial 

yeasts  under study. According to Liu et al. (2007), FLONL protein possesses 

the intact N- terminal of the FLO1 protein, but has lost most of the C-terminal 

sequence. However, not just deletion in repeat units in the middle caused 

conversion in flocculation type, but also affected the sugar binding affinity. 

Strains carrying FLONL exhibited weaker inhibition on flocculation as compared 

to the strains that carried only FLONS form. The internal repeat deletion 

activated a latent, high affinity conformational state of FLON proteins for both 

the C-1 hydroxyl group of glucose and the C-4 hydroxyl group of galactose. 

Thus the higher affinities of the FloNL protein implies that the C- terminal in the 

Flo1p can also influence the sugar binding strength, despite the indirect 

demonstration that the N terminal region of Flo1p contains the sugar recognition 

domain (Wang D et al., 2008; Liu et al., 2007 and Verstrepen et al., 2005). Thus 

I concluded that the strains showed presence of different truncated forms of 

FLO1gene and the internal tandem repeats affected the flocculation ability of 

the strains, thus making brewing strain LYCCI having  4.2 Kb of  FLONL as the 

most highly flocculent amongst the strains. The absence of bands for FLO10 (B) 

and FLO5 (A) when amplified using different forward primers and same reverse 

primer suggested polymorphism in the FLO genes, which has been previously 

been reported only in FLO1 gene (Kobayashi et al., 1996; Javadekar et al., 

2000).  

Lastly quantitative PCR analysis also helped us understand the reason behind 

different degree of flocculation exhibited by these industrial strains due to 
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differential gene expression levels. The two dominant genes were subjected to 

QPCR analysis. The results suggested higher expression of the truncated form 

of FLO1 gene (FLONL), with higher number of internal tandem repeats, makes 

the brewing yeast strain LYCCI highly flocculent. This was followed by the 

champagne strain (being the second most flocculent yeast under study) which 

shows high expression levels of the truncated form of the FLO1NS gene with 

lesser  tandem  repeat.
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7.1 Discussion 

This research work investigated four industrial strains of Saccharomyces 

cerevisiae in terms of their physiological and genetic profiles which are believed 

to lead differences in their flocculation behaviour.  The research also highlighted 

the dynamic nature of Saccharomyces cell wall and the need to acquire more 

information in terms of its nano mechanical properties, such as elasticity and 

surface roughness, which were found to contribute profoundly in terms of 

governing flocculation in industrial strains.  Overall, this study aimed to provide 

a clearer understanding of the cell wall properties in industrial yeast strains so 

that successful interventions may lead to more successful fermentations 

processes of value to the food and beverage industry. 

The current research work was carried out to further our knowledge on the 

comparative understanding of the flocculation behaviour of industrial strains 

employed in industry for different applications, mainly brewing, wine making and 

bio-ethanol production, specifically gaining an overall understanding on their cell 

surface properties (in terms of CSH and CSC), nano mechanical properties, 

some biochemical aspects of the cell wall (for e.g. quantifying the lectin-like 

receptors and mannan sites per cell) and lastly understanding the gene 

expression levels by quantifying the expression of mRNA. Subsequently, 

additional knowledge gained in these domains were further elaborated and 

transformed into the generation for a prospective predictive strategy to handle 

some of the most concerning problems faced by the food and beverage industry 

nowadays with flocculation at its nodal point. This research work produced a 

comparative study of the four industrial strains of Saccharomyces cerevisiae in 

terms of their physiological and genetic profiles which are believed to lead 
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differences in terms of their flocculation behaviour. This research also 

highlighted the dynamic nature of Saccharomyces cell wall and the need to 

acquire more information in terms of its cell wall nano mechanical properties 

mainly elasticity and surface roughness levels which were found to contribute 

profoundly in terms of controlling the flocculation behaviour in these industrial 

strains.  Altogether this study aims to have precise and clearer understanding of 

the cell wall properties of these industrial strains so that a successful 

intervention could be conceptualized and then actualized to achieve better 

quality end products which are cost effective to food and beverage industry.  

7.1.1 Cell surface properties, like CSH and CSC contribute towards high 

flocculating nature of brewing strains (LYCCI) compared to 

Saccharomyces strains employed for wine making (LYCCCIII), champagne 

(LYCCII) and bio-ethanol (LYCCIV).  

Since cellular adhesion properties of yeast depend on the outer layer of the cell 

wall (Coltri et al., 2006; Singh et al., 2011; Javadekar et al., 2000). This section 

of study reported on investigation of physiological parameters as well as the cell 

surface properties that helped us to evaluate the flocculation ability of the 

strains during their growth (Fig 3.3). Brewing yeast cells LYCCI (42.5%) were 

found to be highly flocculent followed by Champagne strain LYCCII (14.8%), 

wine strain LYCCIII (13.8%) and finally fuel alcohol strain LYCCIV (11.6%). The 

reason being that brewing strains are usually exposed to several negative 

conditions such as cold-shock, nutrient starvation, osmotic stress and ethanol 

toxicity (Gibson et al., 2007). Consequently, flocculation can act as a 

communitarian mechanism of survival: the external cells from the floc structure 

can protect the inside cells against a harmful environment by physical shielding.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2672.2010.04897.x/full#b28
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The possibility that flocculation can be a response to stress seems to be strain 

dependent. Very little flocculation was observed during the lag and logarithmic 

phases of growth (1-15%), while during the early and late stationary phases, 

different strains exhibited variable flocculation patterns. Thus our study supports 

the finding of Speers et al. (2010) and Soares and Vroman (2003) indicating the 

importance of flocculation more towards the brewing strain as the brewing strain 

disperses, replicates, ferments as  single cells and then flocculates rapidly 

following the depletion of nutrients (sugars in wort). This gives rise to early or 

premature flocculation which leaves unattenuated sweet beer, whilst late or 

poor flocculation requires yeast cells to be removed by filtration or 

centrifugation. Thus the flocculation characteristics of yeast strains are of major 

significance in brewing making it highly necessary to have a fit for purpose 

yeast for modern brewing industry with strong flocculation characteristics 

towards the end of fermentation (Jin and Speers, 1998; Soares, 2010; Stewart 

and Russell, 1981) 

As suggested by Panteloglou et al. (2012), physiological state of cells is one the 

four main factors in addition to genetic background (presence of flocculation 

(FLO) genes and their regulatory elements, wort nutritional status (free amino 

acids and divalent cations), environmental conditions (temperature, pH, 

presence of alcohol, osmotic pressure etc.) which were found to affect the 

extent of flocculation in a particular strain. Thus on similar lines, it was observed 

from our studies that Cell surface hydrophobicity (assayed using HMA and 

MATS) and surface charge (assayed by Alcian Blue dye retention) played 

important roles in dictating flocculation behaviour in different yeast strains, as 

did the yeast growth phase. Hydrophobicity index (HI) and % hydrophobicity of 
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the four strains followed, respectively, the same order, viz Beer (66.6, 21.5) > 

Champagne (33, 10.5) > fuel alcohol (22.4, 7.4) > wine (20.5, 2.7). 

Cell surface hydrophobicity (CSH) is one of the factors that governs the degree 

of flocculation in microbial adhesion (Nayyar et al., 2014; Potter et al., 2015; Jin 

et al., 2001). Cell surface hydrophobicity was determined by two techniques, 

HMA and MATS. While HMA employs latex microspheres and informs only 

about the overall hydrophobic nature of the cell wall in a population. About 100 

cells for each of the four strains were counted and percentage hydrophobicity 

was calculated for those cells having  3 beads attached (Fig 3.6). Additional 

factors involved, including electron donor/acceptor properties and zeta potential 

were determined using MATS test (White and Walker 2011).  Techniques like 

microbial adhesion to solvent techniques (MATS), based on cell surface 

affinities for a monopolar and non-polar solvent, may be used to determine the 

electron donor or acceptor properties of yeast cells. When the interaction 

between flocculent yeast cells and hexadecane and with microsphere latex 

beads were studied by light microscopy, the yeast cells appeared to form a 

monolayer of cells around each of the hexadecane droplet and in case of HMA 

test, each yeast cell surrounded by more than 3 latex beads. These results 

demonstrate that flocculent yeast cells are highly hydrophobic. 

Yeast cell surface charge was found to be negative using Alcian blue retention 

test, but whether the degree of negativity of the cell surface affected the 

flocculation ability in the strains is still not very clear. From our data it was 

observed that the brewing strain LYCCI was highly negatively charged 

compared to the champagne, wine and fuel alcohol strains. The presence of 
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carboxylic and phosphodiester groups are responsible for the negative 

character of yeast (Jin and Speers, 1998). 

Thus to sum up on the cell surface properties, it could be concluded that as 

suggested by Jin et al., (2010) and co-workers, cell surface hydrophobicity 

(CSH) has been reported as one of the contributors of yeast flocculation and I 

further conclude that a positive correlation between CSH and flocculation 

explains the reasons for change in flocculation ability of the strains. Meanwhile, 

Cell surface charge (CSC) did not change as significantly as CSH. Apparently 

there were significance in the cell charge levels for the strains but not a direct 

correlation between the cell surface charge and flocculation ability was seen 

during growth phases for the strains.  

7.1.2 Sugars in the media show variability in flocculation pattern for the 

four industrial strains. Number of lectin-like receptors influences the 

flocculation behaviour more than the mannans and glucans present on 

the Saccharomyces cell wall.  

In this section of research work, I tried to culture Saccharomyces strains in five 

different sugars namely, glucose, mannose, maltose, fructose and galactose. 

As observed in Chapter three, I have already seen effect on flocculation when 

the cells of each of four strains were cultured in glucose, thus in the current 

study, effects of other sugars was explained in Fig 4.2, 4.4 and 4.4 in reference 

to when the cells were cultured in glucose (standard).  I hypothesized that a 

direct determination of the cellular mannose residues or flocculin contents could 

provide more dynamic information regarding flocculation behaviour of industrial 

yeast strains. Thus I investigated if the flocculation behaviour in these four 
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industrial strains was linked to lectin receptor density and/or distribution patterns 

of glucans and mannans on the cell wall. I made use of the fluorescent lectins 

Concanavalin A- Alexa Fluor®-350 (Con A) and Pisum-sativum-agglutinate-

Fluorescein isothiocyanate (PSA-FITC) to analyse the flocculation ability of 

yeast cells.  

It would not be justified to make exact classification of the four strains in Flo-1 

type or NewFlo type phenotype, just on the basis of their flocculation 

performance on test sugars (glucose, mannose, maltose, fructose and 

galactose), as in here , I examined the effect of sugars on the three parameters 

(for e.g. mannan content, glucan content and receptor density/ cell) which are 

believed to contribute to the flocculation profiles of the strains under study, 

however, once the cells of particular strains were harvested from the growth 

media containing different sugars, the flocculation was determined in washed 

cells, in standard conditions making it possible to correlate flocculation with the 

presence of lectin like receptors.  Genetic factors also play an important part in 

defining the overall profile of the strain and thus the classification of the strains 

was made, only once some knowledge about dominant FLO genes was 

attained about the strain from Chapter six of this thesis.  

The strains displayed a more or less NewFlo type phenotype as they were seen 

to be equally sensitive to all the sugars and not just mannose, unlike the 

characteristic property observed in Flo-1 type strains. But still the clear 

distinction could be made only after some genetic tests because as much as 

flocculation is a cell surface property, but however, the phenomenon of 

flocculation is also under the control of certain proteins known as flocculins/ 

zymolectins that are poduct of FLO genes (Holle et al., 2012).  
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This effect on the flocculation ability of the strains was widely because the 

sugars had a significant effect on the receptor number/ cell. The presence of 

active lectins on the yeast cell surface could be explained due to fluorescence 

observed when the cells were treated with Avidin-FITC probe in the presence of 

Ca2+ in the solution. This study also indicated that mannan and glucan levels 

remained relatively constant on cell surfaces of all the strains studied (Table 

4.1). The overall distribution of mannan remained same for all the strains when 

grown in different sugars. Interestingly, glucose and galactose had similar 

effects on cell wall glucan distribution as compared to maltose, mannose and 

fructose. 

As summed up by Singh et al. (2012), lectins play an important role in 

flocculation as their presence on the flocculated cells helps to promote the 

aggregation of yeast cells by binding to the non-reducing termini of α- (1-3)-

linked mannan side ranches (Stratford and Assinder, 1991; Stratford and 

Carter, 1993; Taylor and Orton, 1978). Since much of flocculation in case of 

Saccharomyces cerevisiae was observed during the stationary phase (Stratford 

and Carter, 1993), thus I selected cells of the four industrial strains in their 

stationary phase to measure the active lectins as well as to quantify the mannan 

and glucan content. Brewing strain LYCCI was found to harbour maximum 

number of active receptors/ cell on its cell wall. This was much clearer from the 

correlation analysis performed (Fig 4.7) which explained that glucan content vs. 

flocculation ability gave negative correlation for all the sugars except for 

maltose, which gave a positive correlation, whereas, the same held true for 

mannan content vs. flocculation where a negative correlation was observed for 

sugars like maltose, fructose and galactose. It was only the receptor density 
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when plotted against flocculation ability, gave a positive correlation for all the 

sugars, strongly suggesting the role of receptors on the cell surface playing a 

dominant role in governing the flocculation of the strains.  

However, it is equally important to point out the strong influence of different 

carbon source on the cell wall composition of yeast. The data so obtained gave 

a semi quantitative measure of glucan and mannan by employing Concanavalin 

A- Alexa Fluor®-350 (Con A) and Pisum-sativum-agglutinate-Fluorescein 

isothiocyanate (PSA-FITC) respectively on the yeast cells. The results indicated 

a significant difference in the amounts of mannan and glucan content in the cell 

wall of the strains when ther were cultured on culture medium containing 

different sugars. This was found to be in agreement with some of the work by 

Aguilar-Uscanga and François, (2013) who measured the polysaccahrise 

composition of Saccahromyces cerevisiae cell wall under various growth 

conditions. Thus it would be better to conclude that the kind of carbon source 

employed for the culture of these industrial strains influences the amounts of 

lectin like receptors and cell wall composition of glucans and mannans for each 

of the industrial strains, however, it’s only the active lectin like receptors that 

play an important role over the cell wall composition of mannan and glucans in 

governing the different patterns for flocculation in these industrial strains of 

Saccharomyces cerevisiae. 

7.1.3 Cell surface topography parameters play an important role in 

governing the extent of flocculation. Higher the cell surface elasticity and 

surface roughness, higher are the possibilities of the cell exhibiting 

flocculence in media. 
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Research in this part of thesis was conducted by using Atomic force microscope 

(AFM) in order to investigate the nanomechanical properties of the yeast cell 

surfaces. The tool is extremely beneficial as it’s been used to investigate the 

native cell surfaces with high sensitivity and nanometer lateral resolution. The 

technique helped us to understand that what forces do exactly come into play at 

the cell surface when the cells come close to each other during the process of 

flocculation visualize that what exactly is occurring at the cell surface and how 

much stresses impact on the biological properties of the cell wall. Atomic force 

microscopy (AFM) makes it possible to observe, manipulate and explore the cell 

surface at a molecular resolution, and therefore has produced a wealth of new 

opportunities in cell biology, including understanding the nanoscale organization 

and dynamics of cell membranes and cell walls, measuring cell mechanics and 

cell adhesion, unraveling the molecular elasticity of cellular proteins and the 

mechanisms by which they assemble into nanodomains in the membrane 

(Müller and Dufrêne, 2011; Müller et al., 2009). In this Commentary, I explain 

the basic principles of AFM, discuss the strategies employed for imaging live 

cells, provide the discreet role of these nanomechanical properties in governing 

the extent of flocculation and provide a critical evaluation of the potential and 

limitations of the technique.  

Soon after its invention, AFM became a valuable tool for imaging cells (Butt et 

al., 1990; Radmacher et al., 1992). However, AFM imaging of single cells 

requires their firm attachment to a surface, which is not always a simple task. A 

straightforward approach is to exploit the ability of animal cells to spread and 

adhere to solid supports (Radmacher et al., 1992). In my study, I fixed the yeast 

cells directly on the glass slide which were made hydrophilic by immersing in 

http://jcs.biologists.org/content/125/18/4189.full#ref-42
http://jcs.biologists.org/content/125/18/4189.full#ref-43
http://jcs.biologists.org/content/125/18/4189.full#ref-8
http://jcs.biologists.org/content/125/18/4189.full#ref-8
http://jcs.biologists.org/content/125/18/4189.full#ref-46
http://jcs.biologists.org/content/125/18/4189.full#ref-46
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conc. Sulphuric acid (Canetta et al., 2009). Although a lot of research on 

nanomachanical properties of the yeast cell surface has been done (Binnig et 

al., 1986; Müller and Dufrêne, 2011; Müller et al., 2009; Dufrêne, 2008,Dufrêne, 

2008b; Engel and Gaub, 2008). 

One of the attempts of this study was to see if the cell surface elasticity varied 

at the three different areas on the cell surface i.e. cell centre (C), edges (E) and 

at the bud scar (B). AFM imaging and AFM spectroscopy studies revealed that 

there was not much significant change in elasticity over the three specific areas 

studied for each of the strain, but overall, the strains differed in their elasticity 

patterns suggesting that more elastic a particular strain is higher are the 

chances it would flocculate. As much as a lot of literature points out the stiff 

nature of the bud scare, it was seen after the AFM analysis that the young’s 

modulus was not very significantly different at the bud scar compared to the 

edge and the centre of the cell. Another important deduction was made on the 

cell surface roughness patterns for the strain (Fig 5.3). Higher the surface 

roughness of the cell surface, larger the frictional force between the two 

surfaces of yeasts coming together. Thus, more sites for anchorage to hold on 

each other’s surface and this could explain the formation of stable flocs in the 

fermenter and the increase in the flocculation ability for the strain.  

An important note here is that in the current work I tried to measure the forces 

between the yeast cell surface and the tip of cantilever and not between the 

yeast cell surface and a probe/cell attached to the tip of cantilever. In the 

present study, our work is restricted on the combined adhesive force that comes 

into play when another surface comes in contact. Here, the study regarding the 

adhesive forces between the cell surface and cantilever (i.e. adhesion force and 

http://jcs.biologists.org/content/125/18/4189.full#ref-6
http://jcs.biologists.org/content/125/18/4189.full#ref-6
http://jcs.biologists.org/content/125/18/4189.full#ref-42
http://jcs.biologists.org/content/125/18/4189.full#ref-43
http://jcs.biologists.org/content/125/18/4189.full#ref-13
http://jcs.biologists.org/content/125/18/4189.full#ref-14
http://jcs.biologists.org/content/125/18/4189.full#ref-14
http://jcs.biologists.org/content/125/18/4189.full#ref-20
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adhesion energy) by no means suggests the forces in reality that plays an 

important role between cell-cell adhesions. The forces mentioned (adhesion 

force and adhesion energy) are clearly representing the forces involved in cell-

surface adhesion. Linking the AFM probe with the lectins specific to mannans, 

could give the quantitative measurement of the adhesive forces between the 

mannans and the lectins and also the number of lectin binding sites on the 

yeast cell wall (Dufrêne, 2015). 

From the data, I observed that cytoplasm region showed almost consistent 

adhesive force for the four strains while the adhesive force for the brewing 

strain LYCCI was found to be significantly different at the bud scar (B) and edge 

(E) region to the other three strains (Fig 5.1), suggesting another reason for 

brewing strain, LYCCI to be highly flocculent amongst the industrial strains 

studied. Thus, I could conclude that there was a positive correlation between 

%flocculation ability and elasticity of the cell wall. This is suggestive of flexibility 

of cell wall as one of the important contributors towards aiding in higher 

flocculation ability of the yeast strain during fermentation.  

The dramatic change in roughness may have some consequence on the 

adherence capacity of yeast to material surface (Gollardo-Moreno et al. 2004, 

Mercier-Bonin et al., 2004). Also, it was concluded from the data that was 

obtained for the Adhesion force and adhesion energy suggesting difference in 

the stretching of the macromolecules between the four yeast strains. Based on 

these data, it could be further suggested that the much longer rupture distances 

on S. cerevisiae may reflect the stretching of both mannans and the 

polypeptidechains of the mannoproteins. The different physical properties of the 

mannoproteins between the four strains may explain why the surface of LYCCI 
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was more hydrophobic than that of other S cerevisae strains. Our results 

indicate an important role of cell wall elasticity and cell surface roughness in 

governing the extent of flocculation of specific strains during the fermentation. 

As a corollary, cell adhesion force and adhesion energy, which is mainly 

dependent on cell wall composition, is probably not an important factor in cell 

flocculation. 

Undoubtedly, the main limitation of AFM imaging in yeast biology is their rather 

slow temporal resolution. Hopefully, current efforts in developing high-speed 

AFM techniques should soon provide access to millisecond resolutions using 

live cells.  

7.1.4 Elevated relative expression levels of FLO1 and higher number of 

intergenic tandem repeats made the brewing strain, LYCCI, highly 

flocculent amongst the four industrial Saccharomyces strains, while FLO8 

mediated activation of FLO genes is strain specific.  

As much as natural flocculation provides brewers with a cost effective way to 

separate yeast cells from green beer at the end of fermentation (Powel and 

Diacetis, 2007). Correct floc formation at the end of fermentation is a vital 

phenomenon for brewers (Verstrepen et al., 2003) as late or weak flocculation 

makes it necessary for the industries to employ expensive filters and 

centrifugation systems for separating the yeast from the end products. As learnt 

from the literature the process of flocculation is mediated by a family of cell 

surface flocculins. Amongst the dominant flocculation genes are FLO1, FLO5, 

FLO8, FLO9, FLO10, FLO11, FLONS, FLONL and Lg-FLO1 (Govender et al., 

2008, Liu et al., 2007 and Verstrepen et al., 2004). 



                             Discussion and Conclusion 
 

Chapter Seven                                              - 196 -                              Abertay University, Dundee, UK 
 

In this part of current research, novel and important findings on the genetic 

profiles of the strains, mainly in terms of presence of dominant FLO genes and 

understanding the relative expression levels of two of dominant genes (FLO1 

and FLO8) in these industrial strains was made. Such a genetic profile in 

addition to the physiology and cell surface properties (as studied in Chapter 3-5) 

contributed to the variation in the flocculation ability in industrial strains of 

Saccharomyces. 

The genetic variability of flocculation genes may have an important 

consequence for studies and applications targeting these genes in industrial 

yeasts strains with unknown genomes. I therefore designed primers to detect 

specific flocculation genes namely FLO1, FLO5, FLO8, FLO9 and FLO10. All 

the yeast strains showed the presence of the 5 dominant flocculation genes. 

The result of PCR amplification revealed: 

 That one of the main reasons for higher flocculation rates in brewing 

yeast strains due to presence of both truncated forms of FLO1 namely, 

FLONL and FLONS, the champagne and wine strains showed the 

presence of only FLONS sequence which is expected to be 3.8Kbp 

compared to the 4.3Kbp of FLONL sequence. FLO1M (3.1Kbp) was 

found to be present in addition to FLONS in fuel alcohol strain. This data 

strongly suggests that higher the tandem repeats present in FLO1, 

higher is the flocculation ability of the strain 

 In addition to variations in the flocculation ability of the industrial strains 

due to the variation in tandem repeats in FLO1 region, I also observed 

flocculation phenotype conversion from Flo1 to NewFlo (Liu et al., 2007) 
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explaining that all the industrial strains belong to NewFlo type of 

flocculation phenotype.  

 Another important point to be noted from the PCR amplification 

experiments was absence of FLO10 (B) band for champagne strain and 

absence of FLO5(A) band in brewing, wine and fuel alcohol strain. Since 

the primers were designed targeting the laboratory strain S288c, thus 

suggesting probable presence of polymorphism within 400 bp and 200 

bp to the coding sequence of FLO10 and FLO5 gene respectively within 

the strains. 

Due to time constraints, I was only able to obtain the sequence results for FLO1 

and FLO8 gene for the four industrial strains. I wished to move ahead with the 

quantitative PCR (QPCR) analysis for FLO1 and FLO8 gene as discussed 

FLO1 gene is dominant gene responsible for flocculation in Saccharomyces and 

FLO8 being one of the transcriptional activator, made it necessary for selecting 

these two genes for QPCR analysis. With the help of bioinformatics software, it 

was already known that the location of FLO1 and FLO8 gene was Chromosome 

I and Chromosome V respectively. The sequences so obtained from the 

sequencing services were subjected to BLAST and the results identified FLO1 

and FLO8 gene. I was not able to sequence the whole gene, and only first few 

250-500 bp were only sequenced as the PCR product was directly used as a 

template and moreover FLO1 gene contained a lot of internal tandem repeats.  

The analysis of FLO1 and FLO8 gene expression using quantitative PCR 

method demonstrated a correlation with flocculation data of the strains. The 

high level of flocculation of the strain LYCCI (brewing) correlated with the high 

level of FLO1 gene expression. A correlation between the FLO1 gene 
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expression and the ability of other strains to flocculate in industrial substrates 

was also determined (Fig 7.1). Higher levels of FLO1 gene in the brewing strain 

along with the presence of FLONL sequence (which is believed to contain more 

repeat sequences as compared to FLONS) makes the brewing strain highly 

flocculent compared to the other industrial yeasts  under study. According to Liu 

et al. (2007), FLONL protein possesses the intact N- terminal of the FLO1 

protein, but has lost most of the C-terminal sequence. However, not just 

deletion in repeat units in the middle caused conversion in flocculation type, but 

also affected the sugar binding affinity. Strains carrying FLONL exhibited 

weaker inhibition on flocculation as compared to the strains that carried only 

FLONS form. 
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Fig 7.1 Correlation pattern observed between the relative expression of 

FLO1 and FLO8 gene vs. %flocculation ability.  

In terms of FLO8 gene relative expression, direct correlation was observed 

between the FLO8 and FLO1 expression levels in all the strains (i.e higher 

expression levels for FLO1 were observed with higher expression levels of 

FLO8), except for champagne strain LYCCII. In champagne strain, FLO1 

expression was found to be independent of FLO8 expression level which is 

believed to be one of the transcriptional activator for FLO1 gene. This was 

concluded to be probably due to the following reasons: 

 As studies by Fichtner et al. (2007) and Bester et al. (2006) suggest a 

the role of both FLO8 and MSS11 genes are critical for the process of 

A. 

B. 
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flocculation in addition to presence of FLO1. Thus chances are in case of 

champagne strain LYCCII, the high levels of FLO1 might be due to 

primarily due to Mss11p and not Flo8p. The expression levels of MSS11 

were not studied in this study, thus it cannot be confirmed and 

completely stated as the sole reason for higher FLO1 expression even 

with low expression of FLO8. 

 Another reason for higher FLO1 expression levels in champagne strain 

LYCCII even with lower expression level of Flo8p compared to brewing 

strain LYCCI could be due to regulation of FLO1 gene by those involved 

in chromatin remodelling, including the Swi-Snf co activator and the 

Tup1p-Ssn6p co-repressor complexes (Fleming and Pennings, 2001).  

 Lastly another reason for higher expression of FLO1 levels in 

champagne strain LYCCII could be due to greater stability and half-life of 

FLO1 mRNA for champagne strain LYCCII over other three industrial 

strains.  

7.2 General conclusions 

The current study of yeast flocculation in industrial yeast strains covered 

aspects ranging from nano mechanical to biochemical and molecular properties 

of the yeast cell wall and how it plays a major role in controlling the 

phenomenon of yeast flocculation. Even though just a structure on the yeast cell 

which envelops the yeast cell and protects the yeast cell from environmental 

stress and osmotic pressures, it resides within the proteins which promotes the 

adhesion between two yeast cells. A lot of laboratory strains have been studied 

extensively in past, but this is one of the comparative studies covering in depth 

knowledge on various analysis of the yeast cell wall to produce an overall 
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picture of the factors that contribute towards the flocculating nature of industrial 

yeast strains. 

One of the major challenges for the yeast biologist and industries today is to 

identify the prime reasons for flocculation and devising strategies to have a fit 

for purpose yeast for the modern brewing industry which exhibits strong 

flocculation characteristics towards the end of fermentation (Verstrepen et al., 

2003). Thus the flocculation characteristics of yeast strains are of major 

significance in brewing as well as food and beverage industry as the number of 

suspended yeast cells in wort during both primary and secondary fermentation 

affects the speed of fermentation, flavour formation, maturation and filtration. 

Thus I conclude from this study: 

Factors which influence flocculation of commercial yeast strains 

During a particular industrial fermentation process, flocculation can be affected 

by multiple parameters. For a given strain, flocculation depends on a 

combination of four main factors: (1) genetic background (presence of 

flocculation (FLO) genes and their regulatory elements), (2) wort nutritional 

status (in particular the content and profiles of sugars), (3) environmental 

conditions (shearing and adhesive forces) and (4) physiological state of cells 

(cell surface hydrophobicity, cell surface charge.).  

For industrial yeast strains, the establishment of a universal and reliable test for 

flocculation would be very worthwhile. Towards such goals, the sharing of 

information and samples between industry research labs is needed to further 

our understanding of industrial yeast flocculation mechanisms and to prevent 

premature flocculation. Finally, developments in knowledge of the genetic and 
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epigenetic regulation of flocculation in commercially relevant lager brewing 

strains should help to explain apparent inconsistencies observed in the 

incidence of this phenomenon.
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