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ABSTRACT 

Background 

String searching within a large corpus of data is a critical component of digital forensic 

(DF) analysis techniques such as file carving. The continuing increase in capacity of 

consumer storage devices requires similar improvements to the performance of string 

searching techniques employed by DF tools used to analyse forensic data.  

 As string searching is a trivially-parallelisable problem, general purpose graphic 

processing unit (GPGPU) approaches are a natural fit. Currently, only some of the 

research in employing GPGPU programming has been transferred to the field of DF, of 

which, a closed-source GPGPU framework was used— Complete Unified Device 

Architecture (CUDA). Findings from these earlier studies have found that local storage 

devices from which forensic data are read present an insurmountable performance 

bottleneck.  

 

Aim 

This research hypothesises that modern storage devices no longer present a 

performance bottleneck to the currently used processing techniques of the field, and 

proposes that an open-standards GPGPU framework solution – Open Computing 

Language (OpenCL) – would be better suited to accelerate file carving with wider 

compatibility across an array of modern GPGPU hardware. This research further 

hypothesises that a modern multi-string searching algorithm may be better adapted to 

fulfil the requirements of DF investigation. 

 

Methods 

This research presents a review of existing research and tools used to perform file 

carving and acknowledges related work within the field. To test the hypothesis, parallel 
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file carving software was created using C# and OpenCL, employing both a traditional 

string searching algorithm and a modern multi-string searching algorithm to conduct an 

analysis of forensic data. A set of case studies that demonstrate and evaluate potential 

benefits of adopting various methods in conducting string searching on forensic data are 

given. This research concludes with a final case study which evaluates the performance 

to perform file carving with the best-proposed string searching solution and compares 

the result with an existing file carving tool— Foremost. 

 

Results 

The results demonstrated from the research establish that utilising the parallelised 

OpenCL and Parallel Failureless Aho-Corasick (PFAC) algorithm solution demonstrates 

significantly greater processing improvements from the use of a single, and multiple, 

GPUs on modern hardware. In comparison to CPU approaches, GPGPU processing 

models were observed to minimised the amount of time required to search for greater 

amounts of patterns. Results also showed that employing PFAC also delivers significant 

performance increases over the BM algorithm. The method employed to read data from 

storage devices was also seen to have a significant effect on the time required to 

perform string searching and file carving. 

 

Conclusions 

Empirical testing shows that the proposed string searching method is believed to be 

more efficient than the widely-adopted Boyer-Moore algorithms when applied to string 

searching and performing file carving. The developed OpenCL GPGPU processing 

framework was found to be more efficient than CPU counterparts when searching for 

greater amounts of patterns within data. This research also refutes claims that file 

carving is solely limited by the performance of the storage device, and presents 

compelling evidence that performance is bound by the combination of the performance 

of the storage device and processing technique employed. 
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Definitions  

 

Digital forensics: A field of forensic science that encompasses the recovery and analysis of data found on 

digital devices. 

Forensic image: An exact digital copy of the data held on a digital storage device. 

Digital evidence: A corpora of electronic data that contains information that may be of forensic interest 

to a digital forensic investigation. 

File carving: The process of reassembling digital files from large unstructured streams of electronic data. 

String searching: The act of searching for a combination of characters, or words, within a larger body of 

text. 

Pattern matching algorithm: An algorithm that systematically performs string searching through a 

sequence of operations and rules. 

File system: A record used by computers to store and retrieve data held on storage devices. 

File fragmentation: The term given to a file that may be stored in more than one physical area of a storage 

device. 

 

Central Processing Unit (CPU): The main processing component within a computer that executes 

instructions required by a computer program. 

Graphics Processing Unit (GPU): A specialised electronic component within most modern computers that 

is designed to process large amounts of information quickly in parallel. 

Integrated Graphics Processor (IGP): An often scaled down version of a graphics processing unit that 

coexists as an integrated component on most recent central processing units. 

Algorithmic Processing Unit (aka: Processing core): A vital component of all processors that allows the 

processor to processing data with a set of instructions. 

Cache: A hardware or software component that stores data so that future requests for that data can be 

served faster. 

Computer Bus: The communication channels used to transmit data between components of a computer. 

Speedup: The improvement in speed executing a task on two similar architectures with different 

resources. 
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Chapter 1: INTRODUCTION 

1.1 Motivation 

The goal of a digital forensics (DF) investigation, like any other investigation, is to 

uncover and present the truth (Casey 2011). DF can be defined as the science of 

ascertaining, analysing, and presenting digital evidence recovered from an electronic 

device, while DF investigation, on the other hand, aims to reconstruct a sequence of 

events that may have transpired from the digital evidence recovered. In recent criminal 

cases, DF investigations are of paramount importance when investigating any crime 

where electronic devices may have been used. DF investigations start from the moment 

an electronic device is discovered at the scene of a crime. Authorities have specific 

procedures and guidelines to ensure that any electronic devices and media are seized 

securely, safeguarding any data present on the devices from interference or 

modification. Any data held on electronic devices recovered is copied securely to a 

forensic image as part of the investigation process to ensure the actual device is 

unaltered from the state it was seized. However, due to the size of the data corpora 

being recovered in each investigation, it is becoming more conventional for forensic 

investigators to analyse the data directly from the drive with specialist write-blockers, a 

device which stops data on the drive from being altered. 

 Technology is evolving with each passing year, where today consumers have 

access to more types of devices – such as mobile phones, tablets, smart wearables and 

smart appliances – that are becoming just as sophisticated as a desktop computer, 

providing users smarter and easier access to entertainment, banking, communication 

and more. Unfortunately, alongside technology advancement, methods and devices 

which criminals are choosing to commit a crime have also diversified. With criminals 

more frequently using all manner of technology to facilitate crimes and avoid 
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apprehension, the amount of data gathered in criminal investigations is growing. The 

increasing volumes of evidence collected in modern digital forensic cases now challenge 

law enforcement agencies and researchers alike to advance techniques and 

technologies that are used to perform DF investigations and reconstruct electronic 

evidence. 

 The source of inspiration for this research originates from reviewing current 

literature in the field around what problems DF face in modern times. Garfinkel (2010, 

p. S64–S73) paints a bleak state of affairs that indicate that the successes that the DF 

community enjoyed for the last ten years are quickly coming to an end; that the tools 

and techniques used by DF professionals are being outpaced by the modern 

advancements in technology. This thesis is written in the context which primarily aims 

to address the problems faced by DF investigation carried out by policing authorities. 

Although, it is also with the hope that this research would also benefit all applications 

of DF recovery, including that used for personal and commercial use. 

1.2 Problem 

The growth of data storage available on modern storage devices has raised significant 

concern within the DF community, as current generation DF tools already encounter 

difficulty in processing modest-sized corpora of digital evidence within a reasonable 

timescale (Richard III and Roussev 2006, p. 76–91; Garfinkel 2010, p. S64–S73). This is 

mainly due to current techniques employed by DF tools to inspect each segment of 

forensic data held on storage devices seized in a DF investigation. Researchers have 

suggested moving processing intensive tasks to powerful purpose-built Beowulf clusters 

or super-computers (Ayers 2009, p. S34–S42) or distributing computationally intensive 

tasks amongst a group of machines (Roussev and Richard III 2004, p. 1–16). However, 

this research proposes to investigate the application of graphic processing units (GPUs) 

paired with parallel-friendly algorithms to compute processing intensive tasks— a 
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compelling alternative that may prove more efficient and cost-effective for DF 

professionals. 

 Modern GPUs can contain thousands of general purpose processing cores able 

to compute large amounts of data in a short time due to effective parallel processing 

design. Significant research has been conducted on utilising GPGPU programming on 

GPUs to provide aid in the calculation of highly demanding processing tasks. However, 

only some advances made in this research have been transferred into the field of DF, all 

which are primarily focused utilising CUDA— a closed-source programming framework 

presented by Nvidia exclusively for use on their line of discrete graphics cards (Marziale, 

Richard and Roussev 2007, p. 73–81; Skrbina and Stojanovski 2012; Collange et al. 2009, 

p. 1–10; Breß, Kiltz and Schäler 2013, p. 115–129; Chen and Wu 2013, p. 1–5; Zha and 

Sahni 2011, p. 141–158). 

 The introduction of central processing units (CPUs) with powerful integrated 

graphics processors (IGPs) in recent years from Intel (Intel n.d.) and AMD (Advanced 

Micro Devices n.d.) have opened up the possibility of powerful parallel processing 

without the requirement of discrete graphics hardware. Consequently, as these modern 

CPUs with IGPs are restricted from employing CUDA, utilising the cross-compatibility of 

an open-standards GPGPU processing framework – such as OpenCL – would be a logical 

step in tackling the processing demands of analysing extensive digital corpora on even 

modest specification computers. 

1.3 Thesis aim 

As modern storage technologies continue to improve the speed that data can be read 

from a storage device, the speed that DF tools can analyse data from storage devices 

have not. This research presents a study into methods to speed up DF analysis on 

modern storage devices. This aim of this research is to investigate whether the 

application of GPGPU technologies and modern parallelisable string searching 
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algorithms could speed up pattern matching—and by extension, reduce the time 

required to perform file carving on forensic data in DF investigations. This thesis aim can 

be broken down into the following research questions: 

 

Q1: “Could an OpenCL GPGPU framework provide a reliable foundation to analyse 

digital evidence and decrease the time required for processing forensic images 

without affecting accuracy?” 

 

Q2:  “Is there any benefit of employing multiple GPGPU processing devices to 

perform pattern matching on forensic data?” 

 

Q3: “Are there any advantages of employing GPGPU processing over traditional 

CPU processing methods for performing pattern matching on forensic data?” 

 

Q4: “Could further performance be gained through employing a multi-string search 

algorithm to perform string searching with the proposed processing 

techniques?” 

 

Q5: “Is the potential processing rate in performing data analysis within the context 

of digital forensics limited by the speed of the storage device or the speed of the 

processor?” 

1.4 Thesis contribution  

This thesis will present a comprehensive investigation into the possible benefits of 

employing modern GPUs and IGPs to conduct string searching on forensic data. The 

contribution of this research will build upon existing work around GPGPU processing 



  P a g e  | 5 

within DF, conducting experiments where OpenCL, an open-standards GPGPU 

programming framework, is used to analyse forensic data.  

 This research also investigates currently used algorithms used within DF, 

specifically analysing a well-established open-source file carving tool— Foremost 

(Kendall, Kornblum and Mikus n.d.). This investigation will determine whether currently 

employed algorithms used by Foremost are still suitable, or whether modern multi-

string algorithms would be better suited for the requirements of modern DF 

investigation. 

 The resulting investigation of the above areas of string searching will then be 

used to measure whether the proposed methods could improve the overall 

performance when employed to conduct file carving. File carving is a technique used in 

DF where a forensic image is dissected for specific files that might be contained within 

its data. It can often provide a thorough and accurate view of all files contained within 

electronic evidence to DF investigators, including files which may have been deleted or 

stored in unallocated space of a computer’s storage device. 

 The thesis aims to refute any claims that GPGPU processing has limited, or no, 

benefit to the problems faced by modern DF investigation. Results from this thesis aim 

to outline any performance benefits of applying modern parallel technologies over 

currently employed conventional CPU techniques. The advantages of introducing GPUs 

to handle the processing and analysis of forensic data are expected to succeed existing 

methods used in the field. The thesis makes an original contribution to DF research by 

being the first to investigate and analyse the benefits of applying OpenCL and the PFAC 

algorithm to the problems of DF investigation. 

1.5 Thesis organisation 

The remaining chapters of this thesis are organised as follows:  
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 Chapter 2 explores the background required to grasp the topics presented in this 

research. This chapter will start by presenting a historical perspective on the current 

state of the field of DF. This will be followed by a technical walkthrough of; the concepts 

of string searching and file carving, an examination of the differences between 

traditional CPUs and modern GPUs, an introduction to OpenCL and GPGPU processing, 

and finally, presenting characteristics of pattern matching algorithms. The chapter will 

conclude with presenting related work in the field. 

 Chapter 3 will describe the methodology used in this research. This chapter 

presents the reasoning behind the chosen technologies and algorithms used to create 

the proposed solution. This chapter also outlines the adopted testing strategy, including 

how testing was conducted and what was measured. Finally, the hardware 

specifications of the test platforms are presented, which were used to conduct testing.  

 Chapter 4 presents the various case studies carried out during the length of this 

research. These case studies are similarly structured, outlining; the methodology behind 

each case study, the results that each case study produced and a discussion on what 

each case study showed. Finally, this chapter will summarise the findings of each 

presented case studies and analyse the significance of the results submitted by each. 

 Chapter 5 concludes by answering the research questions and presents future 

work intended on the expansion of this study.  
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Chapter 2: BACKGROUND 

2.1 A historic perspective on the current state of digital forensics 

The recognition of DF as a profession and scientific discipline can be traced back to the 

late 1980s and early 1990s when policing authorities set up specialist groups focused on 

investigating the technical aspects of computer related crimes (Casey 2011). Similarly, 

in the same era, multiple countries started introducing new laws that outlined clear 

guidelines for computer-related crimes where existing laws failed to prosecute against, 

these laws included dealing with issues such as; copyright, privacy and harassment, and 

child pornography (Crown 2008, p. 16; Nugent 1995, p. 159–182). 

 Since the field’s early conception, DF matured through the 1990s with research 

and development of new tools and methods to facilitate the scientific acquisition of 

digital evidence; however, proper standards outlining the best practices to train and 

perform digital evidence seizure and investigation were not developed until the 2000s. 

Most notably, in 2002, the Scientific Working Group for Digital Evidence (SWGDE) 

published guidelines outlining best practices in the field (Scientific Working Group on 

Digital Evidence 2002). Comparably, in 2005, there were efforts to develop the 

examination of digital evidence into an accredited discipline under international 

standards (International Organization for Standardization n.d.).  

 While these international standards have been further interpreted by most 

countries and shaped into localised practical models outlining procedures to conduct DF 

investigations, such as the National Police Chiefs’ Council (NPCC) guidelines adopted by 

the policing authorities within the United Kingdom, which replaces the Association of 

Chief Police Officer (ACPO) guidelines (Chief Police Officers 2008, p. 72). All guidelines 

on how to perform DF investigations arguably share the same core principles— that is 

that all information must be authentic, reliably obtained, and admissible. These 
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requirements also aid enforcements of strict requirements and standards which DF 

software tools used by DF investigators must abide by, ensuring that any evidence 

produced by these tools can be reconstructed using the same means to be admissible 

as evidence in a DF investigation.  

 Since its inception, DF tools have been known to keep ahead of the technological 

curve as they were capable of analysing modest sized corpora of forensic data 

associated with DF cases of that time; however, this opinion has changed in recent years, 

as concerns have been raised within the community around the lack of innovation and 

evolution of DF tools to cope with the increasing demand and volume of cases involving 

digital evidence. Paired with the lack of an effective research direction, some 

researchers are arguing that the “golden age [of digital forensics] is quickly coming to 

an end” (Garfinkel 2010, p. S64–S73).  

 A report was published on the conclusions of the Colloquium for Information 

Systems Security Education (CISSE) summit in 2009. The summit gathered a group of DF 

researchers, educators, and practitioners to discuss ideas for the developments of 

research and education within the field of DF (Nance, Hay and Bishop 2009, p. 1–6). It 

was identified that the current developments in the field have been largely a credit to 

practitioners of the trade. As a result, the tools that were developed have been in 

reaction to a particular niche set of scenarios or issues faced. This response-driven 

development cycle was seen by the panel as a danger, with the risk that DF methodology 

and associated tools eventually would lag behind the advancements of modern 

technology without adequate research efforts focused on advancing key areas. It was 

clear from the summit that this could have been drawn down to the absence of any 

research or development plan, and a lack of guidance for academic students to focus on 

in this ever evolving field. 

 The systematic review from Raghavan (2013, p. 91–114) also highlighted the 

need of DF triage tools to allow investigators to quickly analyse data corpora and present 

a high-level overview of the contents of forensic data. It is suggested that the ability to 
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conduct triage on large amounts of data will provide investigators with the ability to 

prioritise analysis of data that could be of key importance to a case. A thesis by Hales 

(2016) supports this claim, concluding that – in some scenarios – visualisation tools can 

help the investigator draw more accurate conclusions than what is achievable with 

traditional textual based tools. The ability to perform effective triage relies heavily on 

two predominant research areas, the ability to analyse large amounts of data quickly, 

and the ability to visualise data in an easy-to-decipher format for the DF investigator.  

 “In the decade since the inception of first generation tools, the limitations of this 

architecture have become apparent,” quotes Ayers (2009), who identifies the 

constraints of the current generation of tools at processing large amounts of digital 

corpora. The author offers criticism on the existing trend of incremental updates to 

existing first generation of investigative tools, such as EnCase and FTK. Calling the tools 

“Generation 1.5” due to their lack of addressing significant limitations, and further 

failing to employ the necessary ingredients that the DF community desperately requires 

to stay ahead of technological advancements. 

 The problem of coping with the increasing volumes of digital evidence is not the 

only challenge that is faced in modern DF investigation. Advances in full-disk encryption 

have posed an insurmountable challenge to conduct any post-incident DF analysis 

unless the key used to encrypt the drive is known. As full-disk encryption is becoming 

commonplace in modern consumer operating systems – including Microsoft Windows, 

Apple OSX, and many popular distributions of Linux – there has recently been a gradual 

shift of research focus to investigate what evidence can be collected during, or prior to, 

a crime being committed. Naturally, this has called for improving the capability of 

network forensic techniques. 

 An example of network forensics is deep-packet inspection (DPI). DPI was 

originally conceptualised to allow internet service providers (ISPs) to analyse and 

optimise the flow of data transferred on their network. However, modern applications 

of DPI allow for data mining—revealing exactly what data is being requested over 
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networks (Dharmapurikar et al. 2003, p. 52–61). DPI conducts data mining through 

pattern matching, comparing live data sent over the network against a catalogue of 

known patterns of illegal or unwanted data. In practice, ISPs typically utilise data mining 

approaches with DPI to enforce policies on illegal material, however, state governments 

have been accused of using DPI for surveillance and internet censorship (Wagner 2009). 

 Intrusion detection systems (IDS) are another network devices employed to 

perform network forensics. IDS systems are typically employed on a local network to 

monitor live network traffic for the existence of any anomalies in the data transmitted 

(Vasiliadis et al. 2008, p. 116–134). Whilst primarily used to detect the presence of 

malware or unauthorised access on a network, the role of IDS systems could be 

extended to analyse live data for events of forensic significance on the local network— 

such as unusual usage patterns, or increased file sharing activities (Sommer 1999, p. 

2477–2487). 

 Undeniably, utilising network forensic tools and expanding their role for 

proactive DF investigation could reap evidence that could be useful to an investigation, 

however, both approaches are surrounded by privacy, legal and ethical challenges that 

limit the amount of useful information that could be gathered by network forensic 

techniques (Khan et al. 2016, p. 214–235). Asides from these nontechnical issues, 

network forensics also share a mutual technical problem with traditional DF tools, as 

monitoring network traffic is typically a processor-bound activity that requires efficient 

processing frameworks to monitor live real-time traffic with minimal latency. As such, it 

could be argued that the greatest challenge faced by modern DF is the lack of efficient 

processing frameworks that can process the typical data associated with computing of 

the modern era. 
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2.2 An introduction to the concepts of file carving 

File carving is the process of extracting a collection of data from a larger data set. File 

carving techniques are often used to discover and reconstruct files from data contained 

by storage devices, often when a file system’s directory is missing or corrupted. In 

several DF cases, it was found that the recovery of deleted data or partial file data could 

greatly aid an investigation, which gave rise to the necessity of file carving (Raghavan 

2013, p. 91–114). Recognised as “a science and an art unto itself” (Altheide and Carvey 

2011), file carving reconstructs files by attempting to recognise content or structure of 

file types from an otherwise unstructured stream of data. The technique can be used to 

search for files on any file system type or device, as the file system is not used during 

the process; instead, data is interpreted in a raw form and searched sequentially for 

residual data that match the characteristics of certain files. Providing that the data held 

on the storage device not be encrypted, overwritten, or securely deleted, files can be 

reliably reconstructed through file carving techniques (Merola 2008, p. 40). 

 File carving is most effectively used in criminal investigations where files would 

often be obscured through some means, such as within hidden partitions, or through 

deletion. Through employing file carvers, DF investigators are often able to recover 

greater amounts of evidence in cases than relying on logically searching the files 

contained within a storage device’s file system.  

 In its most basic form, file carving uses file headers and footers to identify files 

from the stream of forensic data. File headers and footers used are certain patterns of 

bytes which simply mark a location where a file begins and ends on the storage device. 

This simplistic method of file carving can often reconstruct a copy of discovered files 

from assembling the data between each header and footer found. However, it assumes 

that the files searched for are not fragmented, that the beginning of the file is intact and 

present, and that the file headers searched for are not a common pattern of bytes (Beek 

2011). Files recovered that don’t possess all of these assumptions may be unusable or 
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incomplete. Unusable and incomplete files are often referred to as false positives in file 

carving results as they often cannot be interpreted by the investigator. 

 Aside from the role that file carving plays in DF, file carving also has vital roles in 

other computing fields, such as personal and commercial data recovery on damaged 

hard drives. Several data recovery programs (WiseCleaner n.d.; File Recovery Ltd. n.d.; 

Grenier n.d.; Piriform n.d.; EaseUS n.d.) include, and rely on, file carving methods to 

restore files when a storage device’s file system is damaged beyond recovery. These 

commercially available programs allow users to recover files from a storage device 

which would otherwise be lost. 

 File fragmentation is known to be one of the largest problems faced when 

performing file carving, as tools fail to detect whether a file had been saved into more 

than one location of the storage device. In recent years, file fragmentation has been one 

of the prominent areas of DF research. The DFRWS File Carving Challenge (Carrier, Casey 

and Venema 2006) challenged researchers to produce algorithms to detect fragmented 

files with minimal false positive rates. In response, research from Garfinkel (2007, p. 2–

12) evidenced that files are rarely split into more than two fragmented pieces after 

conducting extensive fragmentation research on more than 300 used hard drives. 

Interestingly, Garfinkel also noted that most files of forensic interest are not typically 

fragmented. Findings from this research raise a compelling argument on whether 

developing smarter algorithms would benefit DF investigation when it may introduce 

the risk of ignoring some valuable evidence. 

 File carving performance relies heavily on string searching algorithms to 

accelerate searching through forensic data for patterns— as searching data is arguably 

the most computationally complex task involved when performing file carving. Although 

we traditionally associate string searching as a method of searching for particular strings 

in bodies of text, the concepts of string searching can also be applied to other areas of 

search, such as the current problem of searching for bytes within data. 
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2.3 Introduction to string searching algorithms 

String searching could be considered to be one of the most important subjects in the 

wider domain of text processing. String searching algorithms are one of the fundamental 

components employed in lots of software and operating systems as a technique to 

perform the searching of one – or more – patterns within a body of text. String searching 

is used in a wide range of scientific fields where the processing and analysis of large 

volumes of data is required. As the typical amounts of data handled by many 

computational sciences arguably tend to double in size every eighteen months, research 

around string searching algorithms continues to provide theoretical computer scientists 

challenging problems to overcome (Charras and Lecroq 2004). 

 There are two forms of string searching algorithms; approximate and exact. The 

form of string searching algorithms that this research is interested in are exact string 

searching algorithms. This type of algorithm deals with absolute, rather than 

approximate, matching of patterns.  

 The effectiveness of string searching algorithms is typically measured by using 

computational complexity theory. Computational complexity theory is the study 

measuring the scalability of algorithms, and allows representation of how the time 

required to solve a problem grows as the input grows. The concept of growth is 

represented through the use of big O (𝑂) notion. Through utilising this notion, the 

scalability of an algorithm can be presented without the added considerations of 

processor speed, programming language, machine architecture, and other factors 

(Mohr n.d.). Use of computational complexity theory will be used in this research to 

present the effectiveness of the algorithms discussed. 

 There have been copious amounts of string matching algorithms over the years, 

most which were developed in response to a particular problem. Alongside it, there have 

been many attempts to categorise algorithms based upon their searching 
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characteristics. This section will introduce three categories of string matching algorithms 

which will sufficiently cover the topics presented later in this research. 

 Brute force algorithms, also known as naïve search algorithms, presents a rather 

straightforward approach in performing string searching for patterns within text. Brute 

force algorithms typically operate by analysing each position within the text individually, 

attempting to match the following sequential characters with the searched pattern for 

a match. Arguably, brute force algorithms are the easiest to understand as it follows a 

very humanistic approach to finding patterns in text; however, this form of algorithm 

typically is found to perform slower than others as the time to analyse every position 

within the text is arguably ineffective for many applications. 

 Single string searching algorithms are a general classification of algorithms which 

incorporate optimisations to accelerate searching for a single pattern. These 

optimisations typically reduce the amount of text being analysed through employing a 

variety of pre-processing techniques; for instance,  the Rabin-Karp algorithm (Karp and 

Rabin 1987, p. 249–260) utilises hashing to accelerate searching by hashing the searched 

pattern and parts of the text and comparing the derived results. The Boyer-Moore (BM) 

algorithm (Boyer and Moore 1977, p. 762–772), on the contrary, utilises what is known 

about the pattern to skip positions within the text where the pattern cannot be 

matched— accelerating searching performing and lessening the computational work 

required to analyse text. 

 Multi-string searching algorithms are defined by this research as an algorithm 

which can find a finite set of patterns. Although most brute force and single string 

searching algorithms could be modified to handle searching for multiple patterns, the 

effectiveness of these algorithms could diminish. Finite-state automaton algorithms, 

such as the Aho-Corasick (AC) algorithm (Aho and Corasick 1975, p. 333–340), employ 

the use of state machine logic to instruct the computer on how to proceed with each 

character read from text. Unlike other forms of string searching, finite-state automaton 
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string searching algorithms can handle the searching of multiple patterns with little, or 

no, performance degradation. 

2.4 Differences between CPU and GPU architecture 

This section will introduce both CPUs and GPUs and how the underlying architecture of 

both of these processors vary. While both CPUs and GPUs are very complex in 

architecture – consisting of a wide array of components which accelerate the processing 

of data – this introduction will focus on the essential features relevant to this study— 

arithmetic logic units (ALUs), cache, and computer bus. ALU cores – often referred to as 

processing cores – are where instructions are processed. These cores vary in complexity 

and can include various additional functions to aid the processing of complex tasks, such 

as performing encryption and decryption on data. The cache is typically a small area of 

memory embedded on the processor for storing data actively being processed and the 

resulting processed data. Lastly, the computer bus – sometimes referred to as a bus – is 

the communication channel that the processor has with the main system memory. 

 Throughout technological evolution, the design and implementation of CPUs 

have changed drastically, growing more complex in design and functionality; however, 

the fundamental purpose of CPUs have remained largely the same. Modern mainstream 

consumer CPUs typically range from two physical ALU cores (Intel n.d.) to eight physical 

ALU cores from high-end offerings (Intel n.d.). Some CPUs produced by Intel also employ 

Hyper-Threading; a proprietary technique belonging to Intel which allows each physical 

ALU core to host two virtualised cores that allow multiple tasks to be performed at once 

on one physical core— which Intel claim that enables the computer to make better use 

of the available resources on the CPU (Intel n.d.). An IGP is a frequently seen integrated 

feature of modern CPUs. IGPs are commonly a substantially large component on 

modern CPU chips, which as can be seen in figure 1, and consist of similar features that 

can be found on a discrete GPU. 
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Figure 1: Intel Skylake CPU architecture 

 

 The ALU cores possessed by the CPU typically host an extensive array of 

arithmetic, bitwise and bit shift instruction operations, which can process a variety of 

tasks with ease. It is common for CPUs also to possess a significant amount of specialised 

operation instructions that can handle complex tasks with minimal effort. The additional 

specialised operation instructions found on CPU ALU cores ensure that common 

processing tasks requested by software and operating systems are done efficiently with 

less computational effort from the processor. ALU cores on the CPU are typically found 
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to be paired with a large shared cache for temporarily storing data from the main system 

memory. The cache of the CPU is usually large to cater for processing of more 

multifaceted data. 

 Concluding, CPU architecture is optimised for perpendicular processing of 

complex tasks with minimal latency; however, the architecture is not well equipped to 

handle large sets of superficial calculations on data due to its small quantity of ALU 

cores. 

 

 

Figure 2: Nvidia Maxwell GPU architecture 

 

 In comparison, discrete GPUs – such as the Nvidia GeForce GTX 980 (Nvidia n.d.) 

depicted in figure 2 – possess thousands of general purpose ALU cores. Groups of ALU 
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cores form stream processors that can perform high magnitudes of highly intensive 

parallel calculations. ALU cores found on GPUs are far simpler in design to that typically 

employed of CPUs, and possess a limited algorithmic instruction set designed for the 

mathematical demands of graphical processing tasks; yet, due to the sheer volume of 

ALU cores that discrete GPUs employ, they are significantly faster than CPUs when used 

to compute simplistic arithmetic tasks. 

 The underlying processing model is the defining characteristic difference 

between CPUs and GPUs. GPUs employ a single instruction multiple data (SIMD) 

processing model, where its many ALU cores are used to perform the same operation 

on multiple data points simultaneously. While the SIMD processing model excels at 

sequential processing – performing simultaneous parallel computation with a single 

instruction – the model cannot process data concurrently with multiple instructions.  

 The ALU cores of the GPU are typically found paired with a smaller cache than 

CPU counterparts that hinders the ability to handle complex datasets. The small cache 

is a characteristic by design as GPUs do not benefit from having a large cache for typical 

graphics workloads. The disadvantage of having a relatively small cache on discrete 

GPUs for compute purposes, however, is offset by the fast data transfer rate of the bus 

from the system memory to the processor’s dedicated memory.  

 Discrete GPUs possess a vast store of dedicated memory to hold data. The 

memory found on discrete GPUs is characteristically optimised for transferring high 

volumes of data at low latency between memory and the discrete GPU’s processing 

units. However, to utilise discrete GPU memory, it requires the transferral of data from 

the main system memory to discrete GPU memory. This data transfer required by 

discrete GPUs is an additional step that is not needed by CPUs and IGPs, both of which 

directly utilise the main system memory to read and store data. Nonetheless, the 

transferal of data from main memory to discrete GPU memory is not a particularly timely 

operation to do due to the high bandwidth bus typically found to exist between the two 

memory locations. 
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 The architecture employed by discrete GPUs – by design – is irrefutably better 

suited for handling large quantities of simple but intensive calculative loads. 

Respectively making discrete GPUs not only exceptional at fulfilling its primary role of 

processing graphical and physics based instructions, but also arguably superior at 

assisting in the scientific calculation of processor intensive numeric datasets than CPU. 

2.5 Understanding OpenCL and GPGPU processing 

OpenCL is a heterogeneous open-standards GPGPU programming framework that is 

managed by Khronos Group (n.d.), a non-profit technology consortium. The GPGPU 

framework is widely compatible across a variety of devices offered by various vendors, 

including GPGPU devices from leading hardware vendors such as Intel, AMD, and Nvidia. 

OpenCL allows applications to perform multiple levels of parallelised processing across 

one, or more, processing devices— allowing programs that employ OpenCL the ability 

to utilise the full range of processing power available on the computer. 

 GPGPU processing adopts elements above traditional programming languages 

which normally operate through executing each command in a perpendicular or limited 

threaded parallel fashion. As GPGPU processing languages employ the use of a system’s 

GPGPU device – such as the GPU or IGP –  to perform processing on a massively parallel 

basis, additional code in the form of a kernel is required. In principle, a kernel is a set of 

instructions which direct the GPU on how to process data. The instructions that form 

GPGPU kernels tend to be far more restricted in functionality— only offering logical and 

arithmetic functions. 
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Figure 3: OpenCL processing methodology 

 

 A brief overview of the processing methodology with OpenCL is outlined in figure 

3. In this analogy, the program serves as the main program binary written in a 

programming language; such as C#, Java, Python, etc. The host refers to the computer 

that processes the instructions provided by the main program. The context refers to 

OpenCL specific instructions which are provided by the host from the program. Inside 

the context, kernels dictate the instructions sent by the host through the program that 

instructs GPGPU processors on how to process data. Devices within the context refer to 

the OpenCL compatible processors that the kernels are sent to. 

 In a program, there may be multiple kernels required to execute a series of tasks 

on GPGPU devices, a group of kernels are defined as a command queue. Likewise, a 

context may have many GPGPU devices available to process the command queue of the 

program. Each GPGPU device used can only have one command queue.  

 To help explain the process and how each of the five elements work, a 

walkthrough of a simple addition calculation program (𝑐 = 𝑎 + 𝑏) execution will be 

described. When executed, the program initially sends a list of instructions for the host 

to carry out. Within the program instructions, it outlines two integer arrays of numbers 

that require to be processed (arrays 𝑎 and 𝑏). Firstly, the program assigns a context to 

process the arrays of numbers – in this example – a singular GPGPU device. The program 

then instructs the host to copy both integer arrays 𝑎 and 𝑏 from the host’s main memory 

to the GPGPU device memory. Following this, the program also allocates space on the 
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GPGPU device memory to store the results (array 𝑐). After all the relevant data is loaded 

onto the GPGPU device, the program then instructs the host to load and run a kernel on 

the device. The kernel loaded onto the GPGPU device simply instructs the processor to 

add each entry of arrays 𝑎 and 𝑏 and store the result in array 𝑐 within GPGPU device 

memory. When the GPGPU device has finished executing the kernel, the host copies the 

results contained within array 𝑐 from GPGPU device memory to the host’s main 

memory. Once retrieved, the program has finished processing and should have an array 

of calculated integers. 

 

 

Figure 4: OpenCL kernel memory model 

 

 To achieve a full basic understanding of GPGPU processing, this research will 

outline the key memory components specified within an OpenCL kernel. Figure 4 

illustrates the OpenCL kernel memory model that can be translated to compatible 

parallel processing devices. Within this diagram, there are a few memory areas of 

importance in the kernel for processing large quantities of data. The biggest memory 

location available on the GPGPU device is the global and constant memory – these 
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memory locations can be read by all the GPGPU device’s computation units. The global 

and constant memory location shares similarities with the main memory of a computer 

and the relationship it has with the CPU.  

 Global memory signifies the memory which can be directly accessed by the host, 

and can be used to send and receive data from GPGPU devices. Constant memory shares 

the same function as global memory, with the exception that it is only used to store 

static variables. In the previous simple addition program example, the integer arrays 

would have been stored in global memory, so that all processing units could access the 

required data to compute and store. Additionally, once the integer arrays were 

processed, it allowed the host to read the GPGPU device’s global memory to retrieve 

the results.  

 Within each workgroup resides two forms of memory. The first is called local 

memory. The local memory on each processing unit tends to be notably small in size. 

The primary purpose of the local memory is to serve as a scratchpad for the processing 

unit, such as temporary storing intermediate calculations related to processing. All work 

items can make use of this memory to store variables.  

 Storing a counter could be an obvious example of where utilising local memory 

is vital; as if different workgroups are trying to change the same counter held in global 

memory, the counter could be accessed and changed at the same time by several 

processing units— potentially causing inconsistent and unreliable results. However, if 

each workgroup counted within their local memory, the values would only be accessed 

and changed by their belonging stream processor. This allows an accurate count record, 

which can then be combined with other stream processor counts once processing ends 

to provide an accumulated value on completion. 

 Private memory is the second form of workgroup memory that serves as unique 

storage dedicated for each work item. Typically, this memory cannot be accessed by 

default and serves as the storage space for processing each work item. 
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Figure 5: OpenCL kernel to GPGPU translation 

 

 Figure 5 shows how the OpenCL kernel memory model translates seamlessly to 

GPGPU hardware. Global memory and constant memory reside on the GPGPU’s primary 

memory, which could be the dedicated memory on a discrete GPU, or if using an IGP, a 

dedicated area of main memory. The local memory records to the stream processor’s 

local data share. Lastly, private memory maps to the stream processor’s register file. 

However, if the work item requires to work with a private array or an oversized register, 

it should be assigned to the GPGPU’s primary memory instead due to memory capacity 

constraints. 

 This concludes the basic concepts of GPGPU processing and the underlying 

processes. Additional recommended reading on OpenCL and processor architectures 

can be found within the pages of Heterogeneous Computing with OpenCL (Gaster et al., 

2012). 

2.6 Related work 

Whilst there have been many studies of the benefits of utilising GPU and parallel 

processing in research areas where the processing of significant amounts of data is 
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paramount (Pungila and Negru 2012, p. 354–369; Wu 2013; Bellekens et al. 2014, p. 

295–301; Vasiliadis et al. 2008, p. 116–134; Bellekens et al. 2013, p. 5; Haseeb 2013, p. 

9–14; Bhamare and Banait 2014, p. 24–28; Kouzinopoulos et al. 2015), there has been 

little research that investigates what benefits DF could reap by employing such methods. 

The majority of existing research in DF is implemented using CUDA to accelerate DF 

searching. While the research incorporating CUDA shows clear performance advantages 

(Karimi, Dickson and Hamze 2010, p. 12; Fang, Varbanescu and Sips 2011, p. 216–225), 

CUDA suffers greatly from being incompatible with GPUs from vendors other than 

Nvidia. This may have been insignificant at the time of the research, but as it has become 

commonplace for modern computers to have access to both a discrete GPU as well as 

powerful IGPs onboard the CPU, there is little reason now to choose CUDA over an open-

standard alternative like OpenCL which would make full use of the computer’s full 

computational power. 

 The papers reviewed in this section are the most complete in investigating the 

application of GPU processing within the field of DF. The studies highlighted here argue 

both for and against the application of GPUs to tackle the processing issues of modern 

DF investigation; however, most papers suffer a common inadequacy in failing to 

provide enough information to reproduce experiments for validation. More importantly, 

the lack of detail from the papers renders it difficult to transition their research to create 

beneficial tools that could be used by the DF community. 

 A theoretical insight was presented by Skrbina and Stojanovski (2012) which 

discussed the preparation and processes involved in creating a GPGPU solution to 

accelerate file carving. The authors explored how CUDA could be utilised within the 

context of DF investigations, examining how the different characteristics of string and 

pattern matching algorithms are suitable for GPGPU parallelisation. The authors 

conclude that the most appropriate algorithms for parallel applications are the BM 

(Boyer and Moore 1977, p. 762–772) and AC (Aho and Corasick 1975, p. 333–340) 

algorithms for handling single- and multi-string searches, respectively. However, the 
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study failed to mention modern algorithms, including recent adaptations of the AC 

algorithm, which were specifically designed for parallel execution. 

 Richard and Roussev (2005, p. 1–10) were amongst the first to apply parallelism 

to DF investigation by presenting a paper outlining the requirements needed to 

reproduce high-performance file carving. As part of the author’s research, they present 

an open-source tool called Scalpel, a parallel file carver based largely upon modifying 

Foremost— a well-established Linux file carver. Where Foremost only utilises a single 

core of the CPU to perform file-carving, Scalpel utilises parallel processing on all 

available cores to accelerate performing file carving on forensic data. The author’s 

results prove that parallelism undeniably – yet unsurprisingly – yields much faster 

results. 

 A further empirical study conducted by Marziale, Richard and Roussev (2007, p. 

73–81) expanded upon Richard and Roussev’s earlier research by investigating how the 

use of CUDA GPGPU processing could accelerate Scalpel. The study compares the time 

taken to complete various searches through different sized forensic images using the 

unmodified and modified GPU versions of Scalpel. Results from the study show 

significant improvement with GPGPU acceleration, which clearly demonstrated that 

incorporating GPU technology is a practical option for significantly increasing processing 

performance in existing DF tools. At the time of the research, however, the CUDA 

framework was still in its early stages of development. The authors acknowledge that 

the beta release that was used for the study may have possessed some bugs, and further 

suspected that the compiler did not fully optimise the code; these factors may have 

limited the proposed solution’s potential achievable performance compared to that 

which could be derived today. 

 Contrasting research from Zha and Sahni (Zha and Sahni 2011, p. 141–158) states 

that when incorporating a fast multi-pattern matching algorithm, the performance gain 

achievable from file carving is limited by the time required to read data from the disk 

(“disk-bound”), as opposed to the time needed to conduct string searching on the data. 
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The authors similarly conducted experiments through modifying Scalpel, where they 

incorporated a series of BM and AC algorithms to aid string matching on the CPU. The 

authors’ experiments indicate that multi-threaded acceleration using a dual-core CPU 

did not improve the required processing time, concluding with an arguable assumption 

that there are no advantages of using other accelerators such as GPUs, despite 

presenting no actual experiments involving GPGPU processing. Later research from the 

same authors (Zha and Sahni 2011, p. 277–282, 2013, p. 1156–1169) shows that 

incorporating similar algorithmic techniques using GPGPU processing produced notable 

improvements over single-threaded CPU approaches, surpassing multithreaded CPU 

processing in some scenarios. Results of these later studies from the authors form the 

argument that Zha and Sahni’s earlier research on processing techniques to improve file 

carving had not been thoroughly explored. 

 Another interesting method of utilising GPGPU processing in file identification 

was adopted in a thesis by Mohan (2010), who utilised an MD6 file hashing method on 

a CUDA GPGPU framework to identify similar files individually and contained within an 

archive. His results demonstrate a significant performance increase over traditional CPU 

processing, which led to conclude that the parallel nature of GPUs is well suited for the 

large-scale processing of MD6 file hashing. Despite the author’s findings, this method of 

discovery requires a list of known file hash signatures to search for, limiting its 

usefulness when performing an exploratory examination for unknown incriminating 

files. 

 Collange et al. (Collange et al. 2009, p. 1–10) demonstrated a similar but novel 

method of utilising GPU processing to aid file identification in DF investigation. The 

authors use a CUDA GPGPU implementation to calculate and compare hashes of data to 

identify potential image file identifiers located on storage devices. The authors 

concluded in their study that, with the computational power of the hardware, GPUs 

make an ideal platform on which to perform parallel hash calculations, potentially 

delivering a powerful and usable file identification technique for DF investigation. 
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 Although Collange et al. eliminate the requirement of knowing complete file 

hashes by searching for file identifiers, the proposed approach still requires and is 

heavily dependent on the CPU to verify the matches found as valid image files; this 

potentially slows the overall performance when faced with forensic images containing 

significant amounts of data.  

2.7 Chapter summary 

This chapter has presented a background of the current state of digital forensics and the 

problem of DF tools failing to innovate. It was reported that current tools are failing to 

address significant limitations in processing large amounts of forensic data, suggesting 

the need for tools to incorporate more capable processing techniques. Also presented 

in this chapter is the basic knowledge required to comprehend the themes presented in 

the context of this research, including an introduction to the concepts of; file carving, 

string search algorithms, CPU and GPU architecture, and OpenCL GPGPU processing. 

 The chapter concludes by critically evaluating previous attempts of investigating 

the benefits of applying GPGPU programming to the field of DF. Existing research shows 

that there are significant areas of the field’s current GPGPU research that would benefit 

from further investigation. It is hypothesised that further performance enhancement 

could be achievable through the careful application of GPGPU processing techniques 

and modern multi-string searching algorithms to the problem of file carving. 

 In the following chapter, this thesis will present how this research approached 

the problem. This section will include how a GPGPU solution was devised and the testing 

strategy used to evaluate the performance enhancements over current DF file carving 

tools at performing string searching and file carving. 
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Chapter 3: SOLUTION CONSTRUCTION AND TESTING METHODOLOGY 

3.1 Research platform development 

A software platform was created to test different methodologies in performing string 

searching and file carving of forensic data. While previous studies in this field used one 

of the freely available open-source file carving tools as a software platform to perform 

performance related research; it is anticipated that clearer data could be obtained from 

starting with a bespoke platform built specifically to measure performance. The 

developed software platform would ensure that both the CPU and GPU processes 

inherently follow the same chain of processing operations without the need to modify 

existing file carving software. Additionally, the software created could ensure that any 

processing undertaken was relevant to the task of performing string searching or file 

carving. 

 While the decision to build new software over modifying an existing file carving 

tool may seem to be far greater of an undertaking, there were clear advantages of 

building a new platform. Building a new platform provided complete control of 

measuring performance metrics and debugging, and allowed a modular design to be 

adapted— allowing the platform to be easily modified to trial different processing 

approaches as this research progressed. The software platform built to perform testing 

within this research will be referred to within the rest of this thesis as OpenForensics. 

 This section will outline some of the development choices made when creating 

the OpenForensics research platform. The source code of OpenForensics is readily 

available on GitHub at: https://github.com/ethanbayne/OpenForensics. The source 

code available on GitHub outlines the latest build of OpenForensics, which may have 

changed significantly since the time of writing this thesis. 
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 As the research took a rather exploratory approach in each case study, 

OpenForensics was developed with an iterative software development cycle, producing 

several prototypes for analysis and performance comparisons at regular points during 

the research. Through prototyping, known and unknown performance factors were 

easier to identify, which overall aided – and developed – further research goals. The rest 

of this section will outline the development cycle that OpenForensics followed— design, 

implementation, and testing. 

3.1.1 Technologies used 

C# .NET (Microsoft n.d.) was used to build OpenForensics. The decision to choose C# 

was simply due to the language’s ability to be easily used as a rapid application 

development platform with a wealth of analytical and performance metric tools. This 

enabled easy monitoring of currently running processes and allowed for painless 

debugging— factors that greatly aided development. It is recognised that C# admittedly 

falls short of the possible performance and cross-platform compatibility that could be 

achieved with other programming languages, such as C++. However, it is envisioned that 

the margin of performance gain measured by the final solution would not differ 

substantially from the choice of the programming language used. By building with the 

.NET framework, it was also easy to incorporate a simple GUI to help drive the research 

and allowed for more visual feedback during testing. This proved later to be invaluable 

during the testing of larger datasets utilising multi-threaded approaches as it provided 

effective feedback of what was happening on each processing thread as data was being 

processed. There were other advantages of choosing C# as a development environment, 

as it also benefits by adopting the .NET framework’s memory management feature— 

garbage collection (GC). GC manages the allocation and release of memory used by the 

application; for string processing, amortised GC is more efficient than manual memory 

management. 
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 To handle GPU instructions, CUDAfy.NET (Hybrid DSP n.d.) was utilised. 

CUDAfy.NET provides the necessary libraries that allowed the easy management of 

GPUs from within the C# software platform. Cudafy .NET provides a comprehensive set 

of libraries and methods to allow C# applications to interface with GPUs. The framework 

also hosts a wealth of emulation features, which simulate the processing of GPU kernels 

on the CPU, providing excellent simulation and debugging functionality. The most 

significant advantage of using Cudafy .NET within this research arises with kernel 

creation. Cudafy .NET comes with the ability to translate a kernel written in C# into 

OpenCL. Generated code from CUDAfy .NET for OpenCL kernels was manually validated 

in each case study for optimisation. 

3.1.2 Research platform design 

This section aims to provide a general overview of design choices taken with the 

OpenForensics framework, providing an insight into what features remained largely 

static across case studies. As each case study presented within this research varies in 

the method used to search through data, the various implementations will not be 

discussed here. Information about the processing framework implemented by each case 

study can be found in the methodology section of the respected case study. 

 Designing a new framework to carry out testing was done to isolate and control 

the identified processing tasks that GPGPU processing aimed to improve. Early in the 

research, it was decided that it would be appropriate for the research to develop and 

maintain a simplistic application that measured the performance metrics related to 

string searching, rather than refactor an existing file carving application. It was believed 

that this approach allowed the researcher to fully dissect other related processes that 

support string searching – such as file reading – and investigate methods of improving 

them. 
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 As the research was focused on how GPGPU processing could aid DF 

investigation, identifying processing intensive operations was paramount to satisfy the 

design goals of OpenForensics. The initial design stages of OpenForensics revolved 

around analysing current open-source file carving tools – Foremost and Scalpel – and 

dissecting how they performed file carving. When investigating these open-source tools, 

there was an assumption that string-searching operations would be the most processor 

intensive task that file carving carried out. This assumption was later confirmed by 

conducting profiling against the open-source tools and analysing what processing loops 

within the code took the longest to process. It was found that string-searching was the 

most processor intensive task carried out.  

 Identifying processor intensive processes enabled the research to focus its 

development cycles around these aspects. Thus, string searching and file reading 

components followed a constant design, implementation and testing development cycle 

between case studies—much more so than any other component of OpenForensics. 

Case studies were often completed when significant improvements were obtained 

through newly implemented string searching and file reading features. The results of 

testing newly implemented features also fed design decisions for the next cycle of 

development. 

 During development, a front-end GUI was developed to aid the testing of the 

application. The front-end GUI went through only two iterations, from being a largely 

simplistic and unpolished interface that had largely hard-coded test options, to later 

being a more customisable interface that linked many of the variables for conducting 

string searching and file carving experiments. The latter changes to the interface being 

implemented for the purpose of external testing, providing investigators more control 

and customisability over the tests performed. The options for the interface were 

designed to incorporate the commonly used command line options of Foremost into the 

GUI interface. 
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 The latest OpenForensics interface is illustrated in figure 6. The interface is split 

into a few sections. The topmost section containing inputs for any case and evidence 

references, which are used only to uniquely label each test. Below this, a hard drive or 

file selector to select what data should be analysed. This is followed by a search target 

selection, where file types or keywords to be searched for can be selected from a drop-

down list. Lastly, there is a hardware platform selection, where it is possible to select 

what processor present on the system should be employed to conduct the string 

searching or file carving. 

 

 

Figure 6: OpenForensics GUI interface 

 

 Developing a new framework allowed for processing monitoring tools easier to 

implement, such as the core activity monitor illustrated in figure 7. The core monitoring 

tool allowed for visual analysis of what each CPU, or GPU, core was doing at any given 

moment during testing. Having passive visual monitoring allowed identification of any 
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processing bottlenecks more apparent during testing. This was used in conjunction with 

profiling to aid the development of the processing frameworks. 

 

 

Figure 7: OpenForensics processing interface 

3.1.3 Research platform implementation 

In the implementation section, the author outlines the initial implementation of 

OpenForensics. This section was written as a supplement to the source-code available 

on OpenForensics repository. The research took an iterative approach to development 

and refactored various areas on response to the previous case study. As such, the 

implementation of OpenForensics focused on developing three classes; interface, 

analysis, and engine. The interface class contains methods relevant to the main GUI of 

the application, including test parameters and general program implementation 

functions. The analysis class comprises of procedures relevant to string searching or file 

carving operation and reading forensic data from disk. Lastly, the engine class has 

functions related to algorithms used to search, pre-processing, and interfacing with 

processors. Figure 8 presents an abstract class diagram to show the relationships that 

these classes have with each other. A more detailed class diagram of the final case study 

solution can be seen in appendix A. 

 The interface class, as the name suggests, is responsible for the OpenForensics 

front-end interface. The primary role of this class is to deal with the configuration of the 
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test parameters. Asides from the visual elements of the interface, the interface class 

deals with loading file-type settings from the XML configuration file. The class also 

populates information about the system and, if available, sets up multi-GPU processing 

parameters. The multi-GPU parameters identifies, and filters, all available discrete GPU 

and IGP devices on the system and allow these devices to be passed to the analysis class 

as a variable. The last responsibility of the interface class is to sanity check the selected 

options for the operation, ensuring that all inputs selected are valid before the analysis 

class is invoked. 

 

 

Figure 8: OpenForensics class diagram 

 

 The analysis class is responsible for a large proportion of the string searching and 

file carving tasks carried out by OpenForensics, including; file reading, processor thread 

initialisation, and allocation of data segments to the aforementioned processing threads 

for analysis. The analysis class also incorporated a very basic file carving operation. The 

ability to perform file carving was considered to be a low priority, as the primary goal of 

this research was to ascertain whether GPGPU processing would accelerate string 

searching in a DF context. As such, the file carving method used by OpenForensics – at 

the time of writing – is very basic when compared to the file-specific carving operations 

carried out by Foremost. OpenForensics adopts a rather naïve method of extracting files 

from data, by simply reconstructing the data found between a file header and a 

matching file footer. 

 The engine class instructed the processors how to process the data. This class 

contained three components. The first is the processor object initialisation that handles 

requests from the analysis class for a new processing threads to be set up. When 



  P a g e  | 35 

invoked, the processing thread initialisation will set up space in memory for the 

processing thread to load volatile data, such as the buffer for data read and counters for 

the results. The second primary role that the engine class had was the ability to do any 

pre-processing required for algorithms—such as the lookup table generation for the 

Boyer-Moore algorithm. The third, and most important, role that the engine class is 

responsible for is searching data. The engine searches data by utilising the algorithm 

declared by the analysis class. 

 

 

Figure 9: OpenForensics operation activity diagram 
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 The XML configuration file loaded by OpenForensics on launch contains the 

necessary parameters needed for OpenForensics to conduct analysis with file types. The 

configuration file contains a list of file types, each with four properties. The first of the 

properties is the file type extension. The file type extension is used by OpenForensics 

for the file type interface menu and, if reconstructing found files, to set the file 

extension. The second property classifies what type of file it is—whether an image, 

video, audio document or miscellaneous file. The classification information is used to 

define groups of file types to allow easier batch analysis, e.g. to search for all image file 

types. The third property is the file header value, the byte sequence that marks the start 

of that file type. There may be multiple header values defined for each file type to cope 

with variations of file type headers. The fourth – and optional – property is the file footer 

value (“EOF”), a sequence of bytes that marks the end of that file type.

 

 

Figure 10: Case study 4 file carving 

process activity diagram 

 

 

Figure 11: Case study 4 string searching 

process activity diagram 
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 The operation of OpenForensics is as outlined in the activity diagram in figure 9. 

In this operation diagram, the results stipulate the output of the processing. Performing 

a string searching analysis will output what file types – or keywords – were detected in 

the forensic data. Whereas performing a file carve operation will report back the 

aforementioned and present files that were reconstructed from the forensic data—

assuming that the file types specified have a valid header and footer in the XML 

configuration file. A processing activity diagram, based on case study 4, is outlined in 

figures 10 and 11—outlining an example of both string searching and file carving 

processes respectfully. 

3.1.4 Research platform testing 

The initial CPU implementation aimed to mimic Foremost in its approach by 

implementing the same modified Boyer-Moore algorithm. By doing so, early builds of 

OpenForensics focused on accuracy over functionality, ensuring that the developed 

string searching method would correctly identify file headers and footers. To ensure the 

compliance of this, the developed framework was tested against three forensic 

images—the 20GiB image used in this research, a 5.36GiB Windows XP image, and a 

120GiB Windows 7 image. The latter two of the three images were artificially created by 

digital forensic educators to mimic realistic usage and used as forensic cases to teach DF 

investigation. Results from these tests with OpenForensics were compared with the 

results gathered by Foremost. It was assumed, and later confirmed, that results from 

the initial algorithm and Foremost would be the same as they utilised the same 

algorithm. 

 As development adopted an iterative development cycle, test cases were 

developed alongside OpenForensics, often in response to errors and inconsistencies 

found during development. Algorithm and pre-processing tests were validated through 

automation utilising a pre-set configuration file and comparison against expected results 
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from earlier trials, but also manually by the researcher by inspecting the forensic data 

with a hex editor. Testing was reinforced with frequent code reviews and refactoring 

exercises during development. 

 Before each case study, the accuracy tests above were rigorously followed to 

ensure the integrity of any changes made to the processing approach or algorithm used. 

On the occasions where there was a mismatch between the results obtained and 

Foremost, case studies were delayed until the problem could be identified, and rectified 

accordingly. As DF is a science, scientific standards were maintained as a paramount 

objective of the research. As such, case studies could only proceed when the parameters 

presented reported accurate findings. 
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3.2 Algorithm choices for data analysis 

Careful consideration had to be done around what algorithms would be best suited to 

accelerate processing of forensic data. There have been plentiful amounts of research 

that aims to compare the efficiency of algorithms in processing large data within 

different fields (Gharaee 2014, p. 946–953; Lin et al. 2013, p. 1906–1916; Rasool and 

Khare 2013, p. 6–16; Arudchutha, Nishanthy and Ragel 2013, p. 231–236; Mokaram 

2015; Soroushnia et al. 2014, p. 253–264), the problems and comparisons presented by 

this research are relatable to the problem faced within DF. 

 As GPGPU devices have powerful parallel capabilities, a brute force algorithm 

was adopted in early research to measure baseline performance of GPGPU solutions. 

The brute force algorithm – being the simplest of the algorithms presented within this 

research – operates by searching each byte of data sequentially looking for any potential 

pattern match. The time that the brute force algorithm will take to search for a pattern 

of length 𝑚 within a data stream of length 𝑛 is 𝑂(𝑛) in its best case where the first byte 

of searched patterns are not found, and 𝑂(𝑛𝑚) in its worst case where each byte 

requires validation against the longest pattern. 

 As this research aimed to improve upon current DF tools, an investigation was 

done on how current open-source DF tools processed data. It was found that two 

popular Linux-based tools – Foremost and Scalpel – favoured the use of a modified BM 

algorithm for performing string searches. This research decided to replicate the BM 

processing method employed by these tools for CPU processing. This allowed the study 

to produce baseline performance metrics of the modified BM algorithm employed by 

the tools above, which could be used to compare against the performance gain of any 

proposed GPU implementations or alternative algorithms. 
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Figure 12: Boyer-Moore algorithm example 

 

 The BM algorithm operates by searching through a stream of data for the last 

byte of a pattern. When the algorithm discovers the last byte, the rest of the pattern is 

validated byte by byte. If the algorithm validates the complete pattern, the program will 

record an index on where that pattern was found within the stream of data before 

continuing to search through the rest of the data. Searching through the data stream is 

accelerated using a skip table. The skip table is created before the search begins, and 

acts as a reference on how far to move in the data stream depending on the value read, 

significantly reducing the search time required looking for a potential match. 

Theoretically, the time for the BM algorithm to find a pattern of length 𝑚 inside data 

stream of length 𝑛 is 𝑂(𝑛/𝑚) time in its best case where the last byte of the pattern 

does not occur and the skip table is used to minimise the data analysed, and 𝑂(𝑛𝑚) in 

its worst case where the pattern begins and ends with the same byte and each byte read 

matches the last byte of the pattern. 
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 Despite its popularity in current DF tools, this research also investigates whether 

the BM algorithm remains an optimal choice for string searching within DF. The BM 

algorithm has been recognised as being efficient when searching for a single pattern 

(Skrbina and Stojanovski 2012), however, as DF investigations quite commonly require 

the ability to search for multiple patterns simultaneously, its effectiveness is degraded— 

even when modified to handle multiple pattern searches. In this regard, it is envisioned 

that an algorithm built specifically to find multiple patterns would be better suited for 

the requirements of DF investigations, such as the AC algorithm.  

 The AC algorithm searches with the aid of a tree topology state machine, which 

can search for multiple strings with a single read of the data. This state machine has two 

transition states. The first being a successful transition upon the next character read 

being part of a pattern being searched for. The second transition is a failure transition, 

which, depending on the character sequence read, will look for another pattern with the 

data processed so far. The state machine will continue to search through data until a 

pattern has been completely matched and location recorded, or until it reads a 

character which has no state. In these instances, it will reset the state machine back to 

its initial state and continue to read through the data stream for further patterns. The 

AC algorithm can match all searched patterns in 𝑂(𝑛) time for processing a data stream 

of length 𝑛. The AC algorithm is not dependent of pattern length 𝑚 as it uses a state 

transition table to find all possible patterns within a single read of the data. 

 

 

Figure 13: AC algorithm state machine example 
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 An example of an AC state machine is outlined in figure 13 where the patterns 

being searched for are “team”, “telephone”, and “elephant”. If, for example, the state 

machine has processed up to state 9 – indicating that it has found “teleph” so far – and 

the next character read is an “a”, the algorithm will do a failure transition turning the 

active search from “telephone” to “elephant”, recognising that the data read thus far 

could still form part of a pattern. The advantage of the AC algorithm is its ability to search 

for multiple patterns in a single read of data. However, in its unaltered form, the 

algorithm is best suited for linear operation as the state machine cannot distribute 

search operations easily to multiple processing threads. 

 Modern parallel algorithms have flourished in the last 5 years, in which many 

studies have presented modified parallel algorithms that have demonstrated significant 

improvements over parallelising earlier algorithms (Tran et al. 2013, p. 1143–1152; 

Jeong et al. 2014, p. 265–272; Tran et al. 2012, p. 432–438). One of which, the PFAC 

algorithm (Lin et al. 2010, p. 1–5; Lin, Liu and Chang 2011, p. 1–5; Takahashi and Inoue 

2012, p. 242–246) makes two fundamental changes to the way that the AC algorithm 

operates; firstly, by removing the use of a failure table that checks for other matches in 

processed data, and secondly, by requiring each byte of data to be processed 

individually by a separate processing thread. Whilst creating a thread for each byte of 

data read may seem a computationally expensive operation, if the first byte does not 

match what it expects, it terminates immediately, freeing the thread at an early stage 

(Lin et al. 2013, p. 1906–1916; Tran et al. 2012, p. 432–438). Each thread of the PFAC 

algorithm can search through data in the best time of 𝑂(1) where the byte read does 

not match first byte of the searched patterns, and the worst time of 𝑂(𝑚) when the 

longest pattern 𝑚 is matched. 

 Research presents the benefits of employing the PFAC algorithm, showing that 

the algorithm is effective at processing significant amounts of data on GPGPU devices, 

however, for smaller data sets, employing CPU processing may still prove more efficient 

(Thambawita, Ragel and Elkaduwe 2014, p. 1–4). Since its inception, the PFAC algorithm 
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has had many proposed changes from later research, research have suggested changes 

to the way data structures are allocated to better fit GPU architecture (Soroushnia et al. 

2014, p. 153–160; Acharya 2014, p. 21–24) and also proposing segmented approaches 

to the PFAC algorithm (Agarwal, Rasool and Khare 2013, p. 52–58).  

 

 

Figure 14: Parallel Failureless Aho-Corasick algorithm state machine example 

 

 The PFAC algorithm operates in a relatively similar fashion to the AC algorithm 

by relying on a tree-topology state machine. It differs by removing the failure transition 

operation from the algorithm and by introducing the requirement to process each byte 

of data from the tree’s initial state. These changes make the AC algorithm far more 

usable for parallel operation as each thread processes data asynchronously, and does 

not require data from other processing threads. Although it is envisioned that the PFAC 

algorithm was designed with GPUs in mind, due to its broad array of independent 

processing cores, it is anticipated that multi-cored processors could also benefit from 

the application of PFAC algorithm.  

 This research has applied the PFAC algorithm to DF investigation, investigating 

whether this algorithm would offer substantial performance gains compared to the 

modified BM algorithm that is employed in Foremost. The author predicted that 

performance would be enhanced due to the PFAC algorithm being purposely designed 

for multi-pattern searching; however, it is also recognised that running a parallel 

algorithm in a linear fashion on a single-threaded CPU may not be as efficient as other 

string searching algorithms available.  
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3.3 Testing strategy 

The following section focuses on outlining what testing strategy was used for the 

presented case studies. This section presents the test parameters, system setup 

strategy, and finally outlines the specifications of the test platforms used. Test 

parameters outline the purpose of the test performed and presents, and discusses, a list 

of controlled and free variables. System setup strategy specifies the environment set up 

on each test platform and what controls were put in place to minimise interference to 

conducted tests from external processes. 

3.3.1 Test parameters 

The objective of each case study was to measure what possible performance 

enhancements that could be achieved by introducing various processing techniques and 

technologies to perform string searching. A standardised test was designed for this 

research to gather unbiased data for each solution trialled. This standardised test 

involved performing string searching or file carving on forensic data – using either CPU 

or GPU processing – for a range of different file types by file headers.  

 At the end of each test, totals of how many file types were detected on the 

forensic data were presented. As it is known that string searching is the most 

computationally intensive task involved in performing file carving, no files were 

reproduced in string searching case studies. This allowed the tests to measure 

performance derived from each string searching method used. To test for scalability, 

each test of the case study would be tasked with finding increasing amounts of file 

headers; which, in turn, increased the amount of processing involved for each test. The 

file headers that were searched for in each test are presented in Table 1. 
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Table 1: File type headers 

 

File Type File Header (bytes) 

Patterns used 

5 19 40 

jpg FF D8 FF E0 00 10 ● ● ● 

jpg FF D8 FF E1 35 FE ● ● ● 

gif 47 49 46 38 39 61 ● ● ● 

gif 47 49 46 38 37 61 ● ● ● 

png 89 50 4E 47 0D 0A 1A 0A ● ● ● 

tiff 49 49 2A 00  ● ● 

tiff 4D 4D 00 2A  ● ● 

wim 4D 53 57 49 4D   ● 

mpg 00 00 01 BA  ● ● 

mpg 00 00 01 B3  ● ● 

mp4 00 00 00 14 66 74 79 70 69 73 6F 6D   ● 

mp4 00 00 00 18 66 74 79 70 33 67 70 35   ● 

mp4 00 00 00 1C 66 74 79 70 4D 53 4E 56 01 29 00 46 4D 53 4E 56 6D 70 34 32   ● 

mov 00 00 00 14 66 74 79 70 71 74 20 20   ● 

m4v 00 00 00 18 66 74 79 70 6D 70 34 32   ● 

wmv 30 26 B2 75 8E 66 CF 11 A6 D9 00 AA 00 62 CE 6C  ● ● 

mkv 1A 45 DF A3 93 42 82 88 6D 61 74 72 6F 73 6B 61   ● 

wma 30 26 B2 75  ● ● 

m4a 00 00 00 20 66 74 79 70 4D 34 41 20   ● 

doc D0 CF 11 E0 A1 B1  ● ● 

docx 50 4B 03 04 14 00 06 00  ● ● 

pdf 25 50 44 46  ● ● 

zip 50 4B 03 04  ● ● 

zip 50 4B 05 06  ● ● 

zip 50 4B 07 08  ● ● 

zip 50 4B 03 04 14 00 01 00 63 00 00 00 00 00   ● 

rar 52 61 72 21 1A 07 00  ● ● 

rar 52 61 72 21 1A 07 01 00  ● ● 

xar 78 61 72 21   ● 

xz FD 37 7A 58 5A 00   ● 

jar 4A 41 52 43 53 00   ● 

jar 5F 27 A8 89   ● 

iso 43 44 30 30 31   ● 

cso 43 49 53 4F   ● 

img 50 49 43 54 00 08   ● 

img 51 46 49 FB   ● 

img 53 43 4D 49   ● 

cas 5F 43 41 53 45 5F   ● 

rpm ED AB EE DB   ● 

mof FF FE 23 00 6C 00 69 00 6E 00 65 00 20 00 31 00   ● 

 

 During the design of these tests, controlled and free variables were identified to 

aid comparison between case studies. Controlled variables of each of the case studies 

were; the size and content of the forensic data used for analysis, the specified patterns 

searched in each test, and the test platforms used for analysis. These variables were 
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deemed important to remain constant across tests to compare performance between 

the different case studies. 

 Free variables were identified as possible areas where searching performance 

could be improved. Those include; the processing technique used, the algorithm 

employed to perform string searching, and the method that data is read from the 

storage device. These identified variables were changed in each of the OpenForensics 

case studies presented. Each case study discusses changes to the free variables and 

presents reasoning behind the changes as part of the methodology. 

 Revisiting the research questions, two key elements required consideration 

during the testing phase to determine how successful the hypothesis is. The first, and 

most prominent, is the factor of false-negative result accuracy. As DF is a scientific 

discipline, results are required to be accurate and reproducible. To facilitate this, this 

research used a forensic data image of an external hard drive where a number of files 

present in the image were already known. This was further validated through analysing 

the results gathered by Foremost. As Foremost is a recognised and established tool 

within DF, the forensic soundness of the results derived from the tool is assumed to be 

accurate, serving as an additional benchmark of forensic soundness. 

 The testing was conducted against a 20GB forensic data file that was produced 

from an external storage device. The external storage device was securely wiped to 

erase any previous traces of data on the drive and reset the contents to zero bytes. The 

external storage device was then loaded with a wealth of various file formats— including 

images, videos, audio, documents and compressed files. Each file-type consisted of the 

same data. The external storage device was cloned using the dd command in Linux to 

produce a forensically sound image. The forensic image was verified with the original 

storage device through comparing the MD5 checksum of the original drive and the 

produced image. 

 The methodology behind creating the forensic image for testing was not to 

simulate a realistic scenario, but rather to know the ground truth of how many files of 
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each format were contained in the image used. The files loaded on the 20GB drive also 

exhausted the space available, leaving little unused space on the drive.  Whilst the data 

on the storage device is not deemed to be a realistic case, the tests performed within 

this research was interested in the comparative performance between the proposed 

and existing processing methods. It is assumed that the observed performance 

differences when performing string searching or file carving operations on the simulated 

forensic data would not vary significantly when tasked with different data. 

 To aid testing, baseline performance data was gathered by string searching with 

Foremost on the 20GB forensic image. Generated reports from Foremost produces two 

key values— the time that Foremost started analysis and the time that the analysis 

completed. From the two times produced by Foremost, the overall time in seconds 

analyse took and the data processing rate can be calculated, which will be later used for 

comparison against the proposed solutions in this research. 

 The OpenForensics platform which this research used reported back on all the 

performance metrics needed after each test. This included the time started, time 

concluded, the total time taken in seconds, average processing rate, total bytes analysed 

and patterns found. Each of the 3 series of patterns was searched for 5 times each, in 

which it was observed that each of the 5 times produced shown a minimal variation of 

less than 5%. Due to the consistency of times produced, the mean average time was 

used for analysis with 95% confidence levels. Result data produced from all the tests 

were then compiled into spreadsheets, and raw logs kept for reference. Performance 

speedup (𝑆) will be calculated by 𝑆 =
𝑎

𝑏
, where a is the first sample time recorded, and 

b is the time achieved by the second sample. 

3.3.2 System setup strategy 

Procedures throughout followed strict guidelines to ensure that each case study was 

undertaken with the same environmental variables on each test system. This ensured 
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that the data gathered was a fair representation of the possible performance with each 

test case, but that each evaluated solution could be cross-analysed for performance 

gain. 

 Except gathering the base performance metrics with Foremost (version 1.5.7) – 

which used Ubuntu Linux 15.10 – each system tested ran Windows 10 to test the various 

solutions, which had the latest updates and same up-to-date drivers installed at the time 

of testing— mid-January 2016. The operating system (OS) were limited to run only 

essential services to ensure no other third-party programs or services could interfere 

with the achievable performance of the solution. 

 The effects of caching were eliminated by rebooting the system prior to running 

each test case. When performing string searching with a small 5.36 GiB forensic image 

in earlier experiments, it was found that clearing Windows cache and performing a 

system memory clean was not sufficient enough to ensure repeatable times between 

tests. This was due to other hardware, from the storage devices used to the GPUs, 

caching the test’s forensic data in other areas of volatile memory. When forensic data is 

read from cache, the tests performed would complete significantly quicker than when 

reading data from a storage device. It was found that caching effects were minimised by 

rebooting the system in-between running the same test case. 

3.4 Test platforms 

This main corpus of this research was benchmarked on equipment which was available 

to the experimenter— two desktops and a laptop of mid- to high-end specification. 

Table 2 shows system specifications of the computers which served as test platforms 

along with their allocated platform identifier. It was predicted that, despite the varying 

specifications of hardware, correlations would be seen between each system when 

comparing performance gain of the tested solutions. However, by including three 
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separate systems of varying hardware, we could analyse any performance bottleneck 

imposed by the storage device during testing. 

 In previous research, Zha and Sahni (2011b, p. 141–158) concluded that DF 

processing was disk-bound. This research anticipated that by equipping two computers 

with storage devices with a relatively high data transfer speed would allow far greater 

opportunity to analyse to what extent the storage devices limit performance. Sequential 

read speeds were measured for each test system using CrystalBenchMark (CrystalMark 

n.d.), freeware software which has a good reputation amongst technological editorial 

sites to accurately measure storage drive performance. The author hypothesises that 

the sequential read speeds of a storage device will be the theoretical maximum that 

forensic data can be processed at. 

 

Table 2: Test platform specifications 

 

Test Platform A B C 

Computer Type Desktop Desktop Laptop 

Operating System Windows 10 Windows 10 Windows 10 

Processor Intel Core i7-5820K Intel Core i5-4690K Intel Core i7-4700HQ 

Processor 

Specifications 
6 Core @ 3.8GHz, 12 Threads 

4 Cores @ 3.9GHz, 4 

Threads 
4 Cores @ 3.5GHz, 8 Threads 

Processor IGP --- 
Intel HD4600 (20 Core @ 

350MHz) 

Intel HD4600 (20 Core @ 

400MHz) 

Memory 16GB DDR4 2400MHz 16GB DDR3 1600MHz 16GB DDR3 1866MHz 

GPU 
Nvidia 980Ti (6GB), Nvidia 750Ti 

(2GB) 

Nvidia 980 GTX (3GB 

GDDR5) 
Nvidia 970M GTX (6GB GDDR5) 

GPU Specifications 
2816 @ 1279MHz, 

640 @ 1255MHz 
2048 @ 1304MHz 1280 @ 924MHz 

Storage Device 
2x 250GB Samsung Evo 850 SATA3 

SSD (RAID0) 

120GB Corsair Force 3 

SATA3 SSD 

3x 256GB Plextor M5M mSATA 

SSD (RAID0) 

Sequential Read 

Performance 
947 MiB/s 254 MiB/s 1305 MiB/s 

 

3.5 Chapter summary 

In this chapter, the research presents the approach taken to address the processing 

problems faced in DF investigation. The study developed a software platform – 
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OpenForensics – where different processing methods were trialled. The technologies 

used to create OpenForensics are stated alongside their role in processing forensic data. 

Consideration of the algorithms used in this research was presented. It was decided to 

employ a; brute-force, Boyer-Moore and PFAC algorithm to undertake string searching, 

and measure how quickly the selected algorithms would perform searching in the 

context of DF. This section further defined how testing was conducted, including details 

of how testing was performed on CPU and GPU implementations in the following case 

studies. The chapter also outlined the forensic data and the searched patterns that each 

test used to measure performance. Concluding, details of the three test platforms were 

described, including the hardware configuration, operating system, and drivers were 

presented. 

 The following chapter presents the case studies undertaken as part of this 

research. The case studies are presented uniformly, with an evaluation of the processing 

method, results from testing, and concluding with a discussion analysing the results. 
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Chapter 4: EVALUATION 

4.1 Evaluation introduction 

The aim of the evaluation presented in this thesis attempts to answer the research aim 

posed— to establish whether the application of GPGPU technologies and modern 

parallelisable algorithms could aid the problem of file carving in DF. The evaluation 

presents the initial base performance metric results gathered using Foremost, followed 

by 4 case studies with OpenForensics that introduce changes to processing approach 

adopted by Foremost. The final case study, case study 5, presents the developed string 

searching processing model to the problem of conducting file carving. Times to conduct 

file carving with OpenForensics will be compared to the performance derived from 

Foremost to measure how successful the developed processing framework is. 

 The evaluation will attempt to present evidence that would support or refute the 

research questions presented as part of the research aim. OpenForensics case study 1 

to 5 presents data relevant to answer whether an OpenCL GPGPU framework provides 

a reliable foundation to analyse digital evidence and decrease the time required for 

processing forensic images without affecting accuracy. OpenForensics case studies 3 to 

5 investigate whether further performance could be gained through employing a multi-

string search algorithm to perform string searching with the proposed processing 

techniques. Finally, evidence to answer whether the potential processing rate in 

performing data analysis within the context of digital forensics limited by the speed of 

the storage device or the speed of the processor can be demonstrated from 

OpenForensics case study 3 to 5. 

 Each case study will be structured alike, presenting an introduction, aim, 

method, results, and conclusions of the experiment. At the end of the evaluation 

section, a discussion will summarise the significant findings from each case study.  



  P a g e  | 52 

4.2 Foremost: gathering base performance metrics 

4.2.1 Introduction 

Foremost was chosen to gather base performance metrics due to the software being 

open-source and widely used. As the code for Foremost is freely available to review, it 

was possible for this research to tune OpenForensics to closely mimic the same 

processing methods that Foremost employs to search through forensic data. 

 Base performance metrics were firstly gathered by running the file searches 

through Foremost, an open-source file carver still currently used today by DF 

professionals to perform file carving. The time Foremost takes to analyse forensic data 

is intended to be a fair representation of the current state of DF tools, and will later be 

used to base any perceived performance increases produced by the research.  

 Whilst it is acknowledged that baseline comparisons could have been done with 

Scalpel, another established file carving tool based from Foremost, earlier trials 

performing string searching with both tools resulted in similar times being produced 

with little or no significance. At the time of this research, Scalpel’s GPU extension 

developed by Marzielle, Richard and Roussev (2007, p. 73–81) was not openly available 

for comparison. A more thorough comparison of how OpenForensics compares with 

Scalpel to conduct file carving is planned as part of future work. 

4.2.2 Aim 

The aim of this case study is to gather a baseline performance from Foremost to perform 

string searching. It is projected that the baseline performance results could be used to 

draw comparisons to the single-threaded CPU approaches of OpenForensics. It is 

anticipated that an insight can be gained on how optimised the OpenForensics 
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processing approach is by comparing the base performance metrics supplied by 

Foremost to the single-threaded CPU approaches of OpenForensics in each case study. 

4.2.3 Method 

As the previous chapter lightly touched upon, Foremost ran within a fresh Ubuntu 15.10 

OS. The OS was live booted from an external USB 3.0 USB flash drive, where OS files are 

loaded and ran directly from system memory. The system memory available in each of 

our test systems used was deemed more than sufficient to handle both the OS and any 

forensic data loaded into memory. The forensic data for this test was read from the 

same drive as what would later be used for testing each case study presented in this 

research. Foremost was configured for testing for varying amounts of search patterns 

which were stated in a custom configuration file, and instructed only to write the audit 

file back to the storage drive used to read the forensic data from.  

 The command carried out is presented in figure 15, whilst the full configuration 

files used for each test can be found in appendices B1, B2, and B3. The “-w” flag of the 

command specifies that only a log file of results should be produced and that Foremost 

should not reconstruct files found within forensic data. It is acknowledged that, whilst 

albeit no files are reproduced, Foremost may still opt to conduct a second pass through 

data to verify file integrity. If so, the second pass may affect times produced to conduct 

string searching with Foremost. 

 

 
foremost -i TestImage.dd -c /cdrom/foremost/foremost.conf -o ./foremost -w 

  

Figure 15: Foremost command used with launch options 

 

 Foremost analyses forensic data in 100 MiB segments in a linear fashion and by 

using only a single processing thread. Although the results produced are deemed 
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precise, Foremost does not scale well with processor resources. It is expected that 

Foremost would produce modest search times in our tests. It is also envisioned that 

times taken to search forensic data may scale significantly with the addition of more 

search targets due to Foremost’s algorithm choice. 

4.2.4 Results 

Results from Foremost of the time required to search for varying amounts of file headers 

are presented in table 3. Search times produced by Foremost confirm the earlier 

prediction that Foremost struggles to handle the additional search targets as we see 

each test system’s search slowing significantly between the 5, 19 and 40 search target 

trials.  

Table 3: Foremost search time results 

5 defined patterns — Time (secs.)  19 defined patterns — Time (secs.)  40 defined patterns — Time (secs.) 

Test Platform Single CPU  Test Platform Single CPU  Test Platform Single CPU 

A 114  A 415  A 741 

B 160  B 453  B 761 

C 104  C 440  C 792 

 

 From the results, it can be observed that all three test systems produced 

somewhat similar results between one another; surprisingly, however, while test 

platform C performed the best for searching for 5 targets, it produced the slowest times 

when tasked with 40 search targets. The variance in result could have been caused by 

Intel CPU’s dynamic overclocking ability as well as performance throttling occurring due 

to the laptop’s thermals levels during heavy processing, both of which are outside of the 

control of the experimenter. 

 Similarly, further analysing the processing rate drawn from the three test 

systems in figure 16 help visualise Foremost’s performance obtained from the test 

platforms. Analysing the processing rate which each system processed the forensic data 

produced yet more surprising results, as none of the systems tested could process 
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forensic data particularly fast. Excluding test platform B’s result when searching for 5 

targets, all the systems produced comparable processing rates. The theoretical 

maximum processing rate, based upon the sequential read performance of the storage 

devices used, were in all cases much faster than the processing rate achieved with 

Foremost. 

 

 

Figure 16: Foremost processing rate analysis with 95% confidence intervals 

4.2.5 Conclusions 

The base performance gathered from performing string searching with Foremost has 

confirmed a lot of known factors and limitations of the file carving tool. However, the 

results have also presented an unknown. The unknown being the large variance 
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between test platform B’s weaker ability to search for 5 search targets, producing times 

that are significantly slower than both test platforms A and C. This specific test was rerun 

to validate the result in this case, which came back with the identical time of 160 seconds 

to perform string searching. Although test platform B has the slower storage device, it 

was theorised that the storage device of the system possessed enough data throughput 

to not become a factor in producing this slowdown and that the slowdown may have 

been a factor from elsewhere. However, at this stage of the research, the reason for the 

slowdown remained unclear as analysing the two other results obtained from test 

platform B shown comparable times that collated with results gathered from the other 

two test platforms. 

 

 

Figure 17: Foremost patterns searched and time relationship 

 

 Figure 17 analyses the time variance between searching for 5 and 19 file headers, 

and 19 and 40 file headers for all test platforms. It can be observed from these graphs 

that a clear linear trend occurs between the amount of targets searched for and the 

time required to complete the search. This trend signifies not only the inability of 

performing string searching on a single threaded CPU, but also highlights probable 
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inadequacies searching for multiple patterns with the modified BM algorithm employed 

by Foremost. 

 To digress, the first proposed solution that this research presents to improve 

upon Foremost introduces how a multi-threaded GPGPU device would tackle the 

problem. The research will achieve this while keeping data processing methods as close 

as possible to the methods that Foremost employs. 
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4.3 Case study 1: Using GPUs to conduct string searching 

4.3.1 Introduction 

The first solution presented introduces two deviations to the Foremost formula. This 

case study investigates the possible benefits that these changes will make to the overall 

string searching performance. The first change introduces GPU processing to undertake 

the processing associated with string searching. The GPU, in this case study, will adopt 

a naïve algorithm for searching through the data for patterns. The second change 

introduces a change to the processing cycle adopted. Currently, Foremost employs a 

proactive approach for checking for partial patterns split between two sections by 

overlapping data read by the maximum file size. We propose, as part of this case study, 

a reactive processing method that rewinds data only when a partial match is detected. 

4.3.2 Aim 

It was hypothesised that introducing GPGPUs will somewhat improve the performance 

of string searching through forensic data when compared to CPU processing. Even with 

an unsophisticated algorithm, the GPU processing technique was envisioned to surpass 

the performance achievable with CPU processing, a novel prediction based upon the 

greater processing capacities of GPUs when applying simple operations to big data. It 

was also predicted that the relationship between the patterns searched for and the time 

required to search would be less on the GPU than the CPU, due to the GPU being able 

to handle more simultaneous processes on its massively parallel architecture. 

4.3.3 Method 

The first implementation – being the focus of this case study – is how performance 

would be affected by introducing a GPU to perform string searching of forensic data. 
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The GPU algorithm adopted varies considerably from the modified BM algorithm 

employed by Foremost, as the modified BM algorithm is not well optimised for parallel 

processors working from the same forensic data. With multiple processors working on 

the same data, each byte of the data is distributed in turn to an available processor to 

process and return the result. The problem with assigning an algorithm with unique 

byte-skipping operations, such as the skip table of the BM algorithm, means that the 

processors would have to synchronise after each process to find out how far forward 

the next possible match lies. Synchronising a GPU is a somewhat timely operation and 

would likely waste valuable processing time, whereas processors held by a 

synchronisation request could have continued to process more data. 

 

 
Declare int for GPU position in data 
Declare int for GPU stride in data 
 
Allocate temporary GPU memory to store results 
 
For each byte in data segment 

If the byte is equal to the first character of the pattern 
Set the pattern is found 

              If first header byte is within the last (header length -1) bytes of data 
Set rewind flag 

 
For each byte next to found header 

               Check byte against expected pattern byte 
    If byte doesn’t match 
     Set the pattern is not found 
 
  If pattern is found 
   Record location of first header byte 
    

Go to next byte 
 
Synchronise GPU threads 
Count headers found 
  

Figure 18: Case study 1 GPU brute force algorithm pseudocode 

 

 Ultimately, when taking into these points, applying Foremost’s modified BM 

algorithm for GPU processing would not make much sense and would hold back the 

potential processing power that GPUs have on offer. Pseudocode of the algorithm 
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designed to process data on the GPU can be seen in figure 18. The algorithm itself is a 

brute force searching algorithm that searches data sequentially start to finish. When 

data is loaded to the GPU, the program launches an examination on the GPU for each 

pattern searched for. The algorithm instructs to inspect each byte of data in a forward 

direction, recording the locations of found patterns within the forensic data in an empty 

array with a unique file type indicator. When finished with a segment, the GPU transfers 

the array with all the locations of found files and a found match count back to the host 

computer. When this data has been transferred, the CPU first checks if the beginning of 

a pattern was found at the end of the segment – rewinding the data back if necessary – 

then proceeds to process the results whilst the GPU is tasked with analysing the next 

segment. Checking for a partial match at the end of a segment is an operation which is 

not required when processing with backwards searching BM algorithm. 

 In contrast to the algorithm devised for GPU processing, the CPU algorithm 

employed the same processing steps used by the modified BM algorithm seen in 

Foremost. The CPU algorithm pseudocode used to process forensic data is presented in 

figure 19. In early experiments before conducting the first case study, the research 

experimented both with creating a skip table from a combination of the patterns 

searched for and creating a skip table for each pattern searched for. Results from these 

earlier experiments revealed that searching was conducted faster when each pattern 

was searched for individually rather than in combination. The concluding reason for this 

result was that with so many different patterns being searched for, the skip table 

became less and less effective. When searching for multiple strings, the skip table 

became more-or-less as efficient as a byte-by-byte brute-force search. Searching each 

pattern individually in memory, however, took full advantage of BM’s skip table to 

search for each target byte, proving surprisingly more efficient for the CPU workload in 

trials. 
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For each pattern being searched for 
Create a counter for position in data initialising at (pattern length -1) 
 

For each byte in data segment 
If the current byte is equal to the last byte of the pattern 

Set the pattern is found 
 

For each byte before the found byte 
               Check byte against expected pattern byte 
    If byte doesn’t match 
     Set the pattern is not found 

 
   If pattern is found 
    Record location of first header byte 

  
Go to next byte 

  
Else 

Go to next byte using skip table 
  

Figure 19: Case study 1 CPU modified Boyer-Moore algorithm pseudocode 

 

 The second proposed variation introduced a change on processing cycle and how 

data is searched. Early research from this case study examined how Foremost processed 

data, and a different approach was adopted in this study to attempt to create a more 

efficient way of searching for files that may occur at the end of sections. This check is 

used to ensure that when a file header is found near an end of a section without 

matching file footer, the program will react and rewind its position in the forensic data 

to ensure a file has not been split into two data sections. While this is done in Foremost 

with the use of a windowed technique, by overlapping all segments of data by the 

maximum file size being searched for, the research proposes only to rewind the position 

in the forensic data when a partial match has been found— creating a reactive rather 

than a proactive response.  

 While the tests in our case study are only interested in the search for the headers 

of files and not complete files, this change is only used in the tests by the forward 

searching GPU algorithm in ensuring file header itself is not split between two data 

sections. The reverse searching modified BM algorithm employed in this study uses a 
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reverse search method, signifying that any file header matches cannot be split between 

two sections. If the program detected the start of a pattern which was searched for, the 

program would flag for the program to rewind the data back a number of bytes to 

account for any patterns which may exist between the two sections. A diagram that 

outlines the full revised processing cycle is presented in figure 20, which both the CPU 

and GPGPU processes adhere to. The dotted arrow lines of the diagram signify the check 

which the GPGPU algorithm uses to check for an incomplete file header. 

 

 

Figure 20: Case study 1 processing cycle 

 

 The final proposed variation is the size of the segments that are processed, 

increasing the size from 100 MiB to 300 MiB. This change was made to test the theory 

on whether the benefit of reducing the number of times required to check for patterns 

or files which may be split over two segments would outweigh the timely operation of 

pre-loading greater amounts of data from storage device to memory. 

4.3.4 Results 

The times taken to search the forensic data are presented in table 4. The results 

presented some intriguing findings. The times taken to search the forensic data using 

the proposed modified BM algorithm on the single CPU in this case study are far greater 

than times produced by Foremost. This indicates that the changes made to the 

algorithm, primarily instructing the CPU to search for each pattern separately rather 

than in combination, slowed searching down significantly despite earlier 

experimentation. Despite the disappointing performance from the single CPU 
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implementation derived from this study, comparisons can still be made between the 

GPU and IGP times and the base performance results gathered with Foremost. 

 

Table 4: Case study 1 search time results 

5 defined patterns — Time (secs.)  
19 defined patterns — Time (secs.) 

 
40 defined patterns — Time (secs.) 

Test 

Platform 

Single 

CPU 

Single 

GPU 

Single 

IGP  

Test 

Platform 

Single 

CPU 

Single 

GPU 

Single 

IGP  

Test 

Platform 

Single 

CPU 

Single 

GPU 

Single 

IGP 

A 222 44 48*  A 1198 50 64*  A 2461 58 88* 

B 274 98 109  B 1237 104 158  B 2471 113 232 

C 253 49 56  C 1384 61 114  C 2850 80 199 

* - Secondary discrete GPU, no IGP present on system 

 

 From the time results, the GPUs and IGPs from all test platforms managed to 

achieve respectable performances. All significantly besting times derived from the CPU 

implementation as well as the previous Foremost tests. Nonetheless, this was an 

expected novel finding, as the processors were processing data much faster on a 

massively parallel scale. Furthermore, the CPU implementation is limited to run only one 

thread, not utilising the full computational power of the processor. The fastest time to 

search all 40 search targets, achieved from test platform A’s GPU, took only 58 

seconds— a phenomenal result which surpassed initial expectations from applying a 

minimalistic algorithm to conduct string searching through forensic data.  

 When comparing the result from test platform A’s GPU to the time Foremost 

took to search for 40 patterns (741 seconds), the GPU algorithm performed searching 

for 40 search patterns 12.78x faster. This result was not unusual when comparing test 

platforms B and C’s GPU results, both which delivered 6.56x and 9.26x faster 

performance respectively. Slight differences in deliverable performance enhancements 

in these tests can be explained by the variation in processor hardware between the 

different test platforms, some which have more powerful processors than others. 

 Test platform’s B and C’s IGP also delivered impressive results from the time 

results, with the initial unexpected observation that the laptop’s Intel HD4600 

outperformed its desktop counterpart of the same model. With further inspection, 
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however, this result is explained by referring to the precise specifications of the two 

IGPs. The Intel HD4600 of test platform C is clocked 14.3% higher (50 MHz) than the Intel 

HD4600 of test platform B— resulting in faster speed in processing forensic data. 

 Test platform A’s secondary GPU, the Nvidia 750Ti, performed commendably 

too, producing only marginally slower results than the high-end discrete laptop GPU 

found on test platform C. Nevertheless, it is also observed from the results of this case 

study that test platform A’s secondary GPU seemed to show the most deterioration out 

of all discrete GPUs when tasked to search for increasing amounts of patterns. 

 

 

Figure 21: Case study 1 processing rate analysis with 95% confidence intervals 

 

 One of the fascinating results from this first case study is seen from the 

processing rate analysis as shown in figure 21. As anticipated, the quicker processing 

times achieved from the GPUs and IGPs on the test platforms have translated to 

significantly higher processing rates. However, the proposed solutions of this case study 
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have failed to achieve the theoretical maximum speed that the storage devices can read 

forensic data. The test platform with the slowest storage device on trial, test platform 

B, demonstrates that even by conducting searching on a GPU with a naïve algorithm, 

searching may not be limited by storage device transfer rates, but rather by the 

technique employed to search for evidence. 

 Also from analysing the processing rate and times gathered, it is also hinted that 

the GPU and IGP times seem to depreciate less when searching for larger amounts of 

patterns. Analysing this further, figure 22 visualises and confirms this hypothesis to be 

true, showing that both GPUs and IGPs demonstrate significantly less time deterioration 

when more search patterns are defined. This observation is due in large part – once 

more – to the GPU and IGP’s ability to parallelise searching of multiple targets better 

than both the single threaded CPU implementation in this study as well as Foremost’s 

method of searching. 

 

 

Figure 22: Case study 1 patterns searched and time analysis 

4.3.5 Conclusions 

This case study presented two changes to Foremost’s formula to try and improve upon 

string searching within DF. While Foremost is limited in design to only use only a single 
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thread of a CPU to search through forensic data; it is found to run well despite this 

limitation, significantly outperforming this case study’s single threaded CPU 

implementation. Notwithstanding this case study’s CPU algorithm being designed 

around Foremost’s algorithm, the study found that the changes made to the algorithm 

and processes were not as optimised as anticipated. It is granted that other factors, such 

as the different OSs each solution was ran within and languages each solution was 

developed in may have had significant effects on the resulting times. Even so, this case 

study highlights important lessons to take forward to optimise further the approach of 

the GPU and IGP approaches in conducting string searching. 

 Analysing the changes in this case study, the introduction of conducting string 

searching on GPUs proved very successful and provided significant performance 

increases over both the study’s CPU implementation and Foremost alike. While this was 

expected in our initial predictions, the hypothesis was that the possible performance of 

the GPU implementation may have been limited by storage device data transferal rates. 

After further analyses of the results, however, it became apparent that processing on 

the GPU did not utilise the full capability of the storage device— even with the test 

platform with the slowest storage device on the test. IGPs found on the CPUs of test 

platforms B and C also performed well during testing, while slower than the discrete 

GPUs found on the test platforms, they proved viable processors to conducting string 

searching. As most modern mainstream CPUs available now in consumer and 

workstations are equipped with some form of IGP, it would be beneficial to utilise the 

power behind these capable chips to provide additional processing power for the 

discrete GPU— treating the IGP as a partnered asynchronous GPGPU processor. With 

this change, it is anticipated that searching could be performed faster still. 

 The result gained by test platform B’s GPU raises another further peculiar result 

when comparing the performance shown by each platform’s discrete GPUs. Platforms A 

and C’s discrete GPUs, the Nvidia 980Ti, 750Ti and 970M, all managed to process the 

forensic data significantly better than test platform B’s Nvidia 980 GPU. With the 
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specifications of the GPUs on test, it was expected that test platform B’s Nvidia 980 

should have attained processing rates in between the Nvidia 970M of test platform C 

and the Nvidia 980Ti of test platform A— signifying that the GPU on test platform B 

should have been able to hit the theoretical maximum processing rate for this system.  

 An explanation can be found when revisiting the processing cycle adopted to 

process the forensic evidence in this case study. With the processing cycle used, the data 

is not processed asynchronously by any of the processors within this case study. Instead, 

data is handled in a rather synchronous way, where the storage device will only fetch 

the next segment of forensic data when the processor has finished processing the 

current data segment— meaning that between processing, the storage device sits idle 

until instructed to serve the next segment of data. Within the results of this case study, 

synchronous processing can be seen to have a negative effect on performance that 

makes the theoretical maximum unachievable by any of the tests demonstrated— due 

to the storage device idling during processing. 

 Concluding on the introduction of GPUs, further experiments should be 

extrapolated and further performance enhancements introduced, such as the 

introduction of multiple GPU processing and more sophisticated GPGPU algorithms, to 

discover whether the theorised maximum processing limit of the storage device could 

be reached, or whether there are any other factors which may limit the speed analysing 

forensic data. 

 The second change introduced in this case study attempts to modify the 

processing cycle employed by Foremost by only rewinding the position in the forensic 

data back when an incomplete pattern is found at the end of the current section. This 

change seemed logical at first. However, further iterations of this research would 

deteriorate the possible performance with this technique, particularly when exploring 

multi-threaded processing. This is because if one thread – or one processor – flags the 

requirement to check data at the end of its current section, it may cause the storage 

device to make significant jumps back and forth between locations on the storage device 
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to serve data to processing threads. All the jumps back and forth through data would 

inevitably cause delays to processing forensic data, with a greater impact on traditional 

HDDs where a physical movement of the disk platters and read heads are required to 

find the data requested. 

 While the tests presented in this research are only interested in file headers and 

the searching of forensic data without extracting files, the tests carried out are less 

impacted by the problem above as the chance of finding patterns of a few bytes long 

being split between data segments is unlikely. However, in the interest to present the 

best possible way to explore forensic data for the purposes of reconstructing files, it is 

deemed that future experiments should report back to a more multi-threaded friendly 

way of employing a windowed technique. Akin to the technique employed by Foremost, 

having an overlap of the maximum possible file size between sections to ensure files are 

not split into two sections. By reporting to the windowed section technique, it is 

anticipated that storage devices will be more efficiently used when conducting string 

searching and file carving on forensic data on traditional HDDs. 

 Part of this case study increased the file data segments that the forensic data is 

split was into from 100 MiB to 300 MiB. It was anticipated that comparisons could have 

been possible between Foremost and OpenForensics CPU results; however, due to the 

OS, processing, and other unexpected differences, this case study supplies little 

evidence that supports or refutes that larger segments enable faster searching through 

forensic data. In the next case study, the file data segments will be reduced to 100 MiB 

to see if it has any impact on the times produced by the test platforms on single threaded 

CPU tests. It is also worth noting that when experimenting with parallel multi-threading 

on CPUs and multiple GPGPU devices, it is envisioned that smaller data segments would 

benefit systems with limited availability of main memory as the volatile memory 

required to perform searching in parallel would grow exponentially with the number of 

threads employed by the CPU, or, GPGPU devices used. 
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4.4 Case study 2: Utilising asynchronous parallel techniques 

4.4.1 Introduction 

The previous case study showed some immediate advantages when employing GPUs to 

conduct string searching within forensic data. With this said, there were some lessons 

learnt about the execution of searching that this case study aims to address, as well as 

obvious improvements which could have been made to further enhance searching 

performance.  

 This case study investigates how GPGPU processing compares with a fully utilised 

CPU to conduct string searching. This is achieved by implementing the use of threaded 

processing to both CPU and GPU processing. The second change introduced by this case 

study reverts to a Foremost style of proactive searching with the “windowed” section 

technique. This change, albeit reverting to a proactive search technique, was done to 

optimise searching on traditional mechanical storage devices. This is deliberated in more 

detail in the discussion. 

4.4.2 Aim 

The aim of this case study is to demonstrate further performance gains by performing 

string searching through employing multiple processors, or multi-threading, 

approaches. Results will be collated in the same way as presented in the last case study 

to ensure consistency and make presentation of performance gains easier to analyse 

between studies. It is also hoped that through employing a parallel multi-GPU approach, 

evidence of a performance limit can be witnessed when analysing data processing rates, 

confirming that theoretical data processing limits exist when processing forensic data. 
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4.4.3 Method 

The most significant change that this case study presents is the use of multi-threading 

and multiple processors to perform searching for patterns within forensic data, using an 

asynchronous model where each processing thread acts independently. It is envisioned 

that the employment of such techniques would offer substantial benefits. However, 

performance may be limited in some cases by the theoretical maximum data transferal 

rate of storage devices that forensic data is read from. Experiments with multi-threading 

and multi-GPUs would indicate whether the theoretical maximum data transferal rate 

is bound solely by the storage device, or whether there are other confounding factors 

which limit performance from performing string searching within the context of DF. 

 To help analyse the extent of performance gains between this case study and the 

previous case study, the same algorithms were employed in this case study to conduct 

the string searching on the forensic data. The GPU algorithm utilising the same brute-

force algorithm, and the CPU implementation – albeit less efficient than Foremost’s 

execution – still employed the modified BM algorithm, as outlined in the pseudocode of 

figures 18 and 19 within the previous case study. 

 As previously mentioned within the earlier study, there was little evidence of 

performance gains from searching in larger sections. This case study read forensic data 

in 100 MiB section blocks to gain more understanding on whether the change of section 

size effected searching positively or not. Further, the previous case study changed the 

method that the program handled checking for patterns which may have been split into 

two sections. In the tests conducted, it was deemed highly improbable that a header 

pattern of several bytes would be split between two sections, however, far more 

probable that a whole file – which may be several MiB – may be divided between 

sections when searching in smaller data sections of 100 MiB. 

 When designing the multi-threaded approach to performing file carving within 

the context of DF, it was deemed that the processing method adopted in the previous 
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case study would have caused delays when used in a parallel scenario with multiple 

running search threads. Particularly when reading data from traditional HDDs. HDDs 

differ from modern SSDs by having mechanical parts that spin the disk platters where 

the data is stored, and a head assembly mounted on actuator arms that are used to read 

data. Reading data at different locations on the disk platters causes seek time, where 

the storage device endures a time delay to move the head assembly on the actuator arm 

to the place on the disk platters where the data is located.  

 

 

Figure 23: Case study 1 section processing approach 

 

 The first case study’s processing approach, as shown in figure 23, may have 

caused HDDs a delay, as if multiple processing threads detected a partial match at the 

end of a section, the HDD would be tasked with reading previously processed data as 

well as fetching current data for other processing threads. The requirement to check 

historic data may cause additional time to read forensic data stored in different areas of 

the storage device. When searching in a parallel fashion, each additional processing 

thread could potentially mark an end of section check on the segment of data the thread 

has analysed, exponentially increasing the time required by the storage device to read 

forensic data.  

 The processing cycle adopted in this case study is presented in figure 24, where 

each processor follows the same simplistic approach to process data. In multi-threaded 

and multi-GPU approaches, the available processors on the system work asynchronously 

in parallel to handle all of the forensic data in 100 MiB segments. Processing is carried 
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out sequentially, where each segment only requires being processed once. In turn, each 

segment of forensic data is dynamically assigned and processed independently by an 

available processor until all of the segments of forensic data have been processed. 

Within the context of the string searching tests performed in this case study, discovered 

file header patterns are recorded in memory and presented back to the user when all 

forensic data has been processed. If file carving, files are reproduced when the 

processor finishes an analysis of a section. 

 

 

Figure 24: Case study 2 processing cycle 

 

 It was deemed logical to resort back to reading data in a windowed fashion, 

where data is read in sequence with an overlap of the largest possible target size 

specified in the configuration— for this case study, the window size was the length of 

the longest file header. This was foreseen to be a more optimised approach, ensuring 

that slower performing mechanical HDDs would not be disadvantaged when performing 

file carving and ensuring that forensic data is only read and accessed once, which should 

– in theory – have a positive effect on file carving performance. 
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Figure 25: Case study 2 section processing approach 

4.4.4 Results 

The results produced from this case study are outlined in table 5. Presented are the 

times which each technique took to conduct string searching on the forensic data with 

the varying amount of search patterns defined. A few differences can be seen when 

comparing the times achieved by the single CPU, GPU, and IGP to the previous case 

study. Despite observing a few improved times, it is generally shown within the results 

that performance has degraded slightly within this case study; indicating that, albeit an 

insignificant variation, the changes to both the segment sizes that forensic data is split 

into, and the changes to the processing cycle may have produced a negative effect on 

the performance achievable with the algorithms and technology used. 

 Aside from the minor time variations between the two case studies, this case 

study presents exceptional results from applying multi-threading and multi-GPU 

technologies to carry out string searching on forensic data. Most notable results are 

provided by the most powerful system on test – test platform A – which manages to 

reduce the time required to search for 40 defined search patterns from 2418 seconds to 

341 seconds through using all 12 available logical CPU cores on the processor to search 

through forensic data. Likewise, test platform A’s application of both GPGPU devices 

reduced the time from 69 seconds from using the platform’s fastest GPU to only 47 

seconds to process all 20 GB of forensic data. 
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Table 5: Case study 2 search time results 

5 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 220 33 43 27 48* 

B 254 94 94 85 118 

C 259 47 44 36 73 

19 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 1182 168 53 34 67* 

B 1234 306 104 87 170 

C 1403 303 59 46 124 

40 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 2418 341 69 47 96* 

B 2444 613 120 102 245 

C 2823 624 82 65 206 

* - Secondary discrete GPU, no IGP present on system 

 

 Unlike test platforms A and C, test platform B was already quite close to the 

theoretical maximum performance limit of the storage device used to read the forensic 

data within the previous case study, hindered by the synchronous processing cycle 

adopted for single processor testing. Times produced from test platform B’s multi-GPU 

tests suggest that that theoretical processing rate may have been met, as the time 

produced by test platform B for the multi-GPU test does not show the same pattern of 

performance gain as observed by the other two test system’s 5 pattern tests. This 

observation is validated when we calculate the processing rates produced by each 

platform in figure 26. 

 The processing rates which each platform produces offers further insight on how 

applying an asynchronous multi-GPU and multi-threaded approach affects the 

performance achievable. As predicted at the beginning of this study, the results show 

significant improvements. Multi-threading on the CPU show the most benefit over its 

synchronous counterpart, as the CPUs employ all logical cores to process data instead 

of using just a single core. The multi-GPU results also show noteworthy improvements 

by employing all GPGPU devices available on the test system to perform string 
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searching. In the case of test platform B’s 5 pattern search, the multi-GPU string 

searching performance appears to be limited by the performance of the storage device. 

 

 

Figure 26: Case study 2 processing rate analysis with 95% confidence intervals 

  

 Multi-GPU results don’t initially appear as impressive as multi-threaded CPU 

results mainly due to CPUs having more headroom for improvement when employed in 

a multi-threaded approach; for example, test platform A can spur twelve asynchronous 

threads – one for each logical CPU core – whilst only instructed to create two 

synchronous threads for the two GPGPU devices— signifying a maximum potential 

speedup of 12x for the CPU and 2x for the GPU. In consideration of this fact, while the 

multi-threaded CPU does produce much better results over its single-threaded 

counterpart, the performance is still relatively minor in the 40 pattern search when 

compared to that gained from all the GPU, IGP and multi-GPU respectively. 
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Figure 27: Case study 2 patterns searched and time analysis 

 

 When analysing the relationship between the time taken and patterns searched 

for in figure 27, it can be identified how each processing technique’s processing time is 

affected when tasked to find more patterns. Within these graphs, it can be identified 

that utilising multi-CPU processing has an overall favourable advantage when searching 

for larger amounts of patterns within data, showing not only a significant reduction in 

time required, but also less time deterioration when tasked with to search for more 

patterns. Nonetheless, due to the limitations of the modified BM multiple string 

searching algorithm as well as the underlying processor architecture, both CPU 

techniques are significantly outperformed by GPU, IGP and the combination of multiple-

GPGPU devices when performing searching for 19 and 40 patterns— with the latter 

multi-GPU solution demonstrating the best performance as predicted. 

 The results can be further interpreted by investigating the speedup of each 

technique over the single CPU technique, as shown in figure 28. Test platform A 

demonstrates average 6.9x speedup over all tests utilising all 12 logical cores on the 

CPU. Whereas test platform B that employs 4 processing threads shows an overall 3.6x 

speedup, and test platform C that employs 8 threads demonstrates 4.9x speedup 
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compared to their single-threaded counterparts. The 5 pattern result from the multi-

CPU method of test platform B is seen to show only a 2.7x speedup, skewing the average 

result for this platform. The result from this test is seen to also perform similarly to the 

single GPU test, which was found in the first case study to be limited by the storage 

device idling when the single processor was processing forensic data, however, as the 

multi-CPU processes data in an asynchronous fashion between the different processing 

threads, it would be improbable that storage device idling would be the problem. 

 Further, closer inspection of the multi-CPU processing of this test confirms that 

the delay was due to the four processing threads employed by the CPU not being able 

to process data quick enough, instigating the storage device to idle when all four threads 

were actively processing and did require data from the storage device. It is assumed that 

the storage device would have less time idling if test platform B had access to more 

threads to process forensic data on, or alternatively if a more optimised algorithm was 

employed to process forensic data on the CPU. 

 Inspecting the speedup over the single CPU, GPGPU processing excelled over 

CPU techniques when searching for increasing amounts of patterns. GPGPU processing 

had a clear trend of the greater amount of patterns searched for, the larger the speedup 

would be. This can be explained, like in the previous case study, by the GPU and IGP’s 

ability to massively parallelize simplistic mathematical problems. Technology onboard 

GPGPU devices possess far greater amounts of algorithmic units which make it capable 

of processing data at a far greater rate than CPUs. Speedups reached a significant 51.5x 

faster when using multi-GPUs to search for 40 patterns within forensic data on test 

platform A. Test platforms B and C also reached impressive speedups of 24x and 43.4x 

respectively when performing the same tests. 
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Figure 28: Case study 2 technique speedup over single CPU solution 

4.4.5 Conclusions 

This case study’s goal was to improve upon the results produced by the last case study 

by introducing some variables into the existing framework. The first – and most 

significant – of implemented changes being the introduction of asynchronous multi-

threaded CPU and multi-GPU processing to conduct string searching on forensic data. It 

was predicted that introducing parallelization to process forensic data could significantly 

improve the performance achievable to that attained by the previous case study, 

wherein only a single threaded, or single GPGPU, the approach was adapted to process 

data. 

 Results produced by this case study confirm this hypothesis, as adapting parallel 

techniques on the CPU produced a speedup of 3.6-6.9x over its single threaded 

operation. Likewise, applying multi-GPU techniques achieved an average speedup 

between 1.2-1.5x over utilising just a single GPU. The largest of the observed speedups 

was produced by test platform A, which employed two discrete GPUs to process data. 

Even though utilising parallel processing provided the CPU with far more significant 

speedups, CPU processing also had the greatest headroom to improve. Overall, it is 

recognised within this case study that partnering all available GPGPU devices on a 

system will produce the best performance when processing forensic data. 
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 Processing performance limitations were observed only when performing string 

searching for 5 patterns with multiple GPUs on test platform B. As the test platform with 

the slowest storage device on trial and performance closest to the theoretical maximum 

in the previous case study, it was anticipated with the introduction of asynchronous 

processing that performance bottlenecking may have occurred for this test platform. 

This result provides an early indication that the theoretical maximum indeed does exist, 

however, one instance of this anomaly is deemed insignificant until further evidence of 

the bottleneck is presented. 

 In the case of test platform B’s multi-CPU result, storage device idling could still 

be witnessed due to processor unavailability; this is due in large part to the lack of 

processing threads and/or the suspected lack of an efficient multi-string searching 

algorithm. While the same could be claimed by GPGPU approaches, GPGPU devices 

using a simple brute force algorithm still possessed enough raw processing power to 

process segments of forensic data in less time than it takes to read the next segment of 

forensic data from the storage device. The GPGPU processor’s efficiency at processing 

data significantly minimises the amount of time that the storage device is idle, and when 

pairing GPGPU devices, more of the storage device’s performance can be utilised. In test 

platform B’s case when using multi-GPU processing, we can see that the theoretical 

maximum performance of the storage device is fully utilised. 

 To improve these results further, an investigation on how a parallel multi-string 

algorithm could reduce the time required to search for multiple patterns within forensic 

data. As both the CPU and GPGPU both use algorithms which are seen to be ill-suited 

for performing string searching for multiple patterns. It is hypothesised that significant 

advantages could be reaped from employing a parallel friendly multi-string searching 

algorithm. It is anticipated that the degradation of performance would be less in all tests 

conducted. However, it is expected that, similar to this case study and the last, utilising 

GPGPU processing will show the quickest results and greatest performance gain. It is 

unknown, however, how the introduction of an improved multi-string algorithm would 
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affect the performance gap seen between synchronous and asynchronous 

implementations of the CPU and GPGPU methods— whether the performance 

improvement gained through asynchronous parallel deployment would increase, or 

otherwise diminish. 

 Within this case study, the segments which the forensic data was separated into 

was decreased from 300 MiB to 100 MiB to facilitate parallel processors having enough 

independent memory space to process and record results asynchronously. This change 

was applied globally to all processing techniques to measure how the reduction in 

segment size affected the speed which data was processed. Results largely show a 

negative effect when comparing single CPU, GPU, and IGP results of this case study to 

that of the previous case study. Whilst the difference between the two sets of results is 

arguably small, it remains enough of a difference to demonstrate that slightly enhanced 

performance can be gained from splitting forensic data into larger 300 MiB segment 

sizes for processing within a single threaded application.  

 Within an asynchronous processing model, however, segment sizes which the 

forensic data is separated into must be treated differently than synchronous processing. 

In the asynchronous processing model adopted by this study, segment sizes are mostly 

limited by the amount of RAM memory available on the system to store each processor’s 

current data segment and results. Whilst the system memory available on all three of 

the test platforms in this research are deemed plentiful and could entertain handling 

300 MiB of data per processor, having larger data segments may also introduce 

processor blocking— whereas available processing threads are held idle by the storage 

device transferring data segments to other threads. It is predicted from these 

observations that segment size may be best allocated dynamically, taking into 

consideration the amount of processors and RAM available for the analysis and other 

search parameters – such as maximum potential file sizes – to adopt an optimal file 

segment size to separate the forensic data into without blocking either the storage 

device nor asynchronous processors. 
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 Another change made in this case study was altering the processing cycle that 

the processors used to process forensic data, modifying how checking is done for results 

that may be split between two sections. The reactive detection-based approach of the 

previous case study was changed to a proactive approach of having a small overlap 

between segments. The results of the reactive approach gained from the last case study 

showed promising results, however, the tests performed searching for file headers likely 

gave the reactive processing cycle an advantage, as the chance of discovering 

fragmented headers of several bytes is significantly less than when searching for whole 

files of several MiB. Nonetheless, tests performed with the proactive processing 

approach shown little degradation to the overall time taken to search forensic data. 

 With the advantages that proactive processing brings, especially considering the 

benefit of reducing the seek time required from traditional HDDs when searching 

forensic data, it is the belief of the author that a proactive processing cycle would 

provide the overall quickest and most reliable file carving times when tasked with 

reproducing files from forensic data. 
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4.5 Case study 3: Employing the parallel failureless Aho-Corasick (PFAC) 

algorithm 

4.5.1 Introduction 

Within the previous OpenForensics case studies, experiments have been completed 

using a modified BM algorithm to perform CPU searching, and a brute-force algorithm 

to perform GPU searching. Case study 2 has shown significant performance gains when 

employing single- and multiple-GPUs to conduct string searching. This case study 

investigates whether further performance could be gained through employing a multi-

string search algorithm to perform string searching with the proposed processing 

techniques.  

 It is anticipated that with the employment of a better multi-string algorithm that 

CPU and GPGPU processing could both benefit with enhanced string searching 

performance. With the introduction of a more optimised algorithm, however, it is 

expected that performance advantages in some test cases may be limited by the 

theoretical maximum sequential data transfer speed of each test platform’s storage 

device. 

4.5.2 Aim 

This case study aims to demonstrate how each processing technique would perform 

with a more optimised multi-string searching algorithm – the PFAC algorithm – to 

perform string searching within the context of a DF investigation. This case study will 

compare and interpret the attained results to those produced by case study 2. 
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4.5.3 Method 

The implementation of the PFAC algorithm into OpenForensics entailed modifying two 

entities; the pre-processing of searched for patterns, and the processing steps that both 

CPU and GPGPU devices followed. The PFAC lookup table generation is processor 

agnostic, in which both CPU and GPGPU implementations can follow the state machine 

table to look up their next instruction. The processing steps, on the other hand, are not 

due to the requirement of GPGPU specific code. However, the steps carried out by both 

implementations are widely identical as can be seen by comparing both figures 29 and 

30 that outline the pseudocode used to construct both the GPGPU and CPU methods. 

 

 
Declare int for GPU position in data 
Declare int for GPU stride in data 
 
For each byte in data segment 
 Declare int for state, set as initial state 
 Declare int for walk, set at current position in data 
 

While walk is less than data segment length 
Set state according to lookup table (using state & byte of data[walk]) 
If state is 0 

Break 
              If state is less than initial state 

Record location as result and add to found results count 
    

Go to next byte 
 
Synchronise GPU threads 
  

Figure 29: Case study 3 GPU PFAC algorithm pseudocode 

 

 With the PFAC algorithm, processing is minimised with the use of the lookup 

table that acts as a state machine, which simply instructs the processor to progress 

searching depending on the byte read at the current position and the current state, as 

described in section 3.2. As the state machine drives the search, the actual processing 

steps are simplistic in nature when compared to the earlier algorithms adopted in this 
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research. The main fundamental difference of this algorithm, compared to the modified 

BM algorithm employed by the CPU in previous case studies, is that each and every byte 

of forensic data is processed in turn by an available processing thread to search for all 

patterns defined within the search parameters. This may sound expensive for the 

processor to do, however, if the first byte of the searched patterns is not discovered, 

the processing thread will be freed— only using a few instructions to reach that point. 

 

 
Declare int array for found results 
 
For each byte in data segment 
 Declare int for state, set as initial state 
 Declare int for walk, set at current position in data 
 

While walk is less than data segment length 
Set state according to lookup table (using state & byte of data[walk]) 
If state is 0 

Break 
              If state is less than initial state 

Record location as result and add to found results count 
    

Go to next byte 
 
Return found results 
  

Figure 30: Case study 3 CPU PFAC algorithm pseudocode 

 

 It is envisioned that the PFAC algorithm employed in this case study would 

benefit any processor that is tasked with searching for multiple patterns, as all defined 

patterns are searched for in a single scan of the data read from the drive. The benefit of 

the algorithm is imagined to significantly affect the times taken to complete in the 19 

and the 40 pattern searches of the tests devised but would have less improvement on 

the 5 pattern searches as a multi-string searching algorithm is predicted to lose 

performance gain when tasked to search for fewer patterns. 

 Aside from the change of algorithm employed to conduct searching, this case 

study has no other changes to the method of searching adopted within case study 2. As 

this algorithm is a fundamental change to how data is searched for, it was deemed 
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necessary as part of this case study to keep other variables the same to obtain results 

which could be fairly compared to that attained in case study 2. From the performance 

comparison between the two studies, the difference in performance can lead to answer 

whether a more optimised algorithm could benefit string searching for multiple targets 

in the context of DF. 

4.5.4 Results 

Table 6 presents the results gathered from this case study. Performance improvements 

are witnessed across all technologies used to search for patterns within forensic data 

when comparing the results to that of case study 2. Indicating that all processing 

techniques used to process data are notably quicker with the PFAC algorithm when 

compared to both the brute force algorithm employed by GPGPU processing and the 

modified BM algorithm on CPU technologies. Comparing the times derived to the 

previous case study, the CPU gained the most benefit from applying the PFAC algorithm 

to search through forensic data, achieving a speedup across all test platforms averaging 

1.15x, 3.55x, and 5.96x for the 5, 19 and 40 pattern search tests respectively. GPGPU 

technologies were also improved, showing speedups averaging 1.06x, 1.37x, and 1.86x, 

for the 5, 19 and 40 pattern tests.  

 What is interesting to note here is the performance growth between the 40 and 

5 search pattern test from each processing technique, as the 40 search pattern tests 

showing the possible optimisation that a multi-string algorithm like PFAC provides when 

searching for larger amounts of patterns within data. 

 



  P a g e  | 86 

Table 6: Case study 3 search time results 

5 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 177.82 29.21 39.64 26.91 44.81* 

B 234.78 84.66 98.37 85.04 115.01 

C 195.37 45.12 41.65 32.48 60.35 

19 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 309.18 46 40.09 26.86 46.51* 

B 366.1 111.05 98.78 84.97 116.28 

C 343.05 83.3 42.52 32.43 63.77 

40 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 377.34 55.05 40.44 27.06 47.34* 

B 431.92 126.3 99.13 84.68 118.28 

C 444.72 99.47 42.55 34.38 66.43 

* - Secondary discrete GPU, no IGP present on system 

 

 Another observation within the results collected can be observed from the 

improvements of the single CPU performance. All times recorded were significantly 

faster than single CPU results from previous studies. The single CPU results of the 19 and 

40 pattern searches now outperform the base performance metrics gathered using 

Foremost with a speedup of 1.29x and 1.84x respectively. The 5 pattern search, 

however, still performs best with Foremost (0.62x)— an expected result when 

comparing algorithm characteristics. 

 One more noteworthy inspection from the times gathered is the performance of 

the multi-threaded CPU, which outperforms the single IGP or secondary discrete GPU in 

some tests when searching data with the PFAC algorithm. This can be observed from 

test platforms A and B in the 5 and 19 pattern searches. Within the 40 pattern searches, 

however, it is observed that the IGP and secondary discrete GPU retain the lead over 

the multi-threaded CPU as the multi-threaded CPU times are seen to depreciate with 

more search patterns defined. 

 When visualising the times gathered to analyse processing rate in figure 31, a 

clear overview of each processing method’s performance can be seen. When comparing 
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the processing rate to that of case study 2, there are notable improvements in the 19 

and 40 string searches, with all processing techniques deteriorating significantly less 

when searching for greater amounts of patterns—with discrete GPUs showing near no 

deterioration at all in some instances. When analysing the performance benefit on test 

platforms A and C, it can be seen that the 5 pattern test seems to reap less improvement 

than the previously used algorithms than the 19 and 40 pattern searches. 

 

 

Figure 31: Case study 3 processing rate analysis with 95% confidence intervals 

 

 Processing rates derived from test platform B successfully manage to reach the 

theoretical maximum data transferal rate of the storage device on four counts—from all 

of the multi-GPU tests, and also the 5 pattern multithreaded CPU test. When analysing 

the performance of string searching with multiple GPUs, the multi-GPU test on test 



  P a g e  | 88 

platform B manages to employ an average 63% of the total performance of the 

combined performance of the individual GPGPU devices, notably lower than the average 

77% of the combined performance utilised on test platform C, which similarly pairs a 

discrete GPU and IGP in its multi-GPU test. Test platform A, which utilises two discrete 

GPUs within its multi-GPU test, uses an average 80% of the combined performance of 

the two separate cards. 

 When analysing the direct comparison between the patterns searched and time 

is taken in figure 32, familiar patterns previously seen in the last case study reappear. 

While the PFAC algorithm has significantly improved the overall times to search from 

case study 2, the single CPU technique is seen to still require an increasing amount of 

time when more patterns are defined. The single CPU still shows the worst deterioration 

from all techniques trialled. The multi-threaded CPU showed improvements when 

utilising the PFAC algorithm, however, similar to its single threaded counterpart, its 

performance is still seen to depreciate when tasked with increasing amounts of search 

patterns. 

 

 

Figure 32: Case study 3 patterns searched and time analysis 
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 The GPGPU technologies faired the best in this analysis once more. From the 

graphs; the multi-GPU, single GPU, and single IGP, performed all tests showing little, or 

no, depreciation in performance when tasked to search for increasing amount of search 

patterns. Evidenced in the graph, once again, is the multi-GPU technique performing the 

fastest of all processing techniques trialled in this case study. 

 When comparing the processing technique speedup over the single CPU solution 

in figure 33, we observe different results to that drawn by case study 2. While the multi-

threaded CPU technique manages to maintain its arguably overall linear speedup over 

its single CPU equivalent, its speedup has notably increased with the employment of the 

PFAC algorithm. The multi-threaded CPU technique overall fairs better with the other 

GPGPU techniques on trial, managing to show larger speedups than the single GPGPU 

devices on the 5 pattern test, and besting the speedup of the secondary discrete GPU 

and IGP in the 19 pattern tests for test platforms A and B. 

 Test platforms A and C show the greatest variation of observed speedups, 

however, as mentioned earlier when analysing the processing rates of each platform, it 

is clear that the multi-GPU tests on test platform B are limited by storage device 

performance. In turn, this affects the potential speedup of the multi-GPU technique on 

this test platform. 

 

Figure 33: Case study 3 technique speedup over single CPU solution 
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Figure 34: Average time taken for single-threaded CPU to conduct string searching 

with modified BM and PFAC algorithm processing 

 

The Boyer-Moore algorithm took the longest to process data (median = 1234, 

min = 220 and max = 2823). The quickest processing algorithm was the PFAC algorithm 

(median = 343.05, min = 177.82 and max = 444.72). 

A Kruskal-Wallis H test showed that there was no significant difference in time 

elapsed between the different processing techniques, χ2(1) = 3.604, p = 0.058. 
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Figure 35: Average time taken for multi-threaded CPU to conduct string searching 

with modified BM and PFAC algorithm processing 

 

The Boyer-Moore algorithm took the longest to process data (median = 

303, min = 33 and max = 624). The quickest processing algorithm was the PFAC 

algorithm (median = 83.3, min = 29.21 and max = 126.30). 

A Kruskal-Wallis H test showed that there was a significant difference in 

time elapsed between the different processing techniques, χ2(1) = 4.306, p = 

0.038. 
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Figure 36: Average time taken for single GPU to conduct string searching with 

modified BM and PFAC algorithm processing 

 

 The Boyer-Moore algorithm took the longest to process data (median = 68, min 

= 43 and max = 120). The quickest processing algorithm was the PFAC algorithm (median 

= 43.68, min = 39.64 and max = 99.13). 

A Kruskal-Wallis H test showed that there was a significant difference in time 

elapsed between the different processing techniques, χ2(1) = 4.320, p = 0.038. 
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Figure 37: Average time taken for multi-GPU to conduct string searching with 

modified BM and PFAC algorithm processing 

 

The Boyer-Moore algorithm took the longest to process data (median = 

47, min = 27 and max = 102). The quickest processing algorithm was the PFAC 

algorithm (median = 32.48, min = 26.86 and max = 85.04). 

A Kruskal-Wallis H test showed that there was no significant difference in 

time elapsed between the different processing techniques, χ2(1) = 2.123, p = 

0.145. 
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Figure 38: Average time taken for single IGP to conduct string searching with 

modified BM and PFAC algorithm processing 

 

The Boyer-Moore algorithm took the longest to process data (median = 147, min 

= 73 and max = 245). The quickest processing algorithm was the PFAC algorithm (median 

= 90.72, min = 60.35 and max = 118.28). 

A Kruskal-Wallis H test showed that there was a significant difference in time 

elapsed between the different processing techniques, χ2(1) = 5.026, p = 0.025. 

4.5.5 Conclusions 

Revisiting the predicted outcomes of this case study, it was predicted that both CPU and 

GPGPU searching would process forensic data faster than previous case studies when a 

more optimised multi-string searching algorithm was used. Overall, this prediction was 

correct, as statistical analysis revealed that substituting the modified BM algorithm with 
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the PFAC algorithm yielded significant performance improvements across most CPU and 

GPGPU processing techniques. The results from this case study also demonstrate 

relatively minor improvements over that achieved in case study 2 when searching for 5 

patterns, however, more substantial improvements are attained when the algorithm 

was employed to search for 19, and 40 patterns. 

 Observations of how the PFAC algorithm affected each technology produced 

some fascinating results. Analysis of the times produced revealed that both the single- 

and multi-threaded CPU applications reaped the most benefit of the algorithm, 

demonstrating that the algorithm lessened the processing burden of searching for 

multiple strings with a more efficient state-machine driven algorithm. Likewise, GPGPU 

methods all benefitted from the algorithm’s characteristics, allowing the processor to 

optimise searching of larger amounts of patterns while showing little, or no, degradation 

of the time required to perform searching through data. 

 The improvements brought by employing the PFAC algorithm also produced 

results which shown processing performance at the theoretical maximum transfer rate 

of the storage device on test platform B— largely from employing multi-GPUs to process 

data on this platform. Observing the single GPU and the single IGP performance of test 

platform B, it would be novel to presume that – if both GPGPU processors were tasked 

with processing forensic data from a faster storage device – the achievable processing 

rate observed would have been faster. 

 Analysing the processing rate from other platforms also pose some questions in 

regards to the efficiency of reading forensic data from the storage device. The storage 

devices on test platform A and C seemed to reduce the effectiveness of applying parallel 

techniques to asynchronously analyse forensic data. When testing the PFAC algorithm 

on all CPU and GPGPU tests, it was noted that the time that the processor took to 

process had become significantly quicker than the time required to load the 100 MiB 

segments of forensic data to the processor.  
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 The result of this change in processing behaviour had shown that tests which 

employed multiple threaded asynchronous processes had many processors idling, 

bottlenecked by the transfer rate of the storage device serving data to other processors. 

However, when comparing this observed behaviour to the results produced from 

analysing processing rates, the witnessed delays do not coincide with the theoretical 

maximum performance of the storage devices tested on platforms A and C, indicating 

that the data transfer rate from the storage device to the processor was not reaching its 

fullest potential.  

 In order to fully investigate the delays on how forensic data was read from the 

storage device, additional storage device benchmarking tests were undertaken with a 

file reading tool developed in C#, where time was measured on how long it took to read 

the forensic data used within this research. This benchmarking tool utilised the same 

methods that OpenForensics used to read data from the storage device. Additionally, 

the program did not perform any further processing on the data read— the forensic 

data was simply read sequentially from the storage device in 100 MiB segments. After 

the file had been read, a time was produced displaying how long the tool took to read 

the data. 

 Benchmarking tests were performed on test platform A to confirm the suspected 

bottleneck, as this test platform possessed the most powerful processors of all platforms 

tested, and therefore more likely to suffer from the bottlenecking from reading files. 

Results from the benchmarking tool revealed that, by simply reading forensic data from 

the storage device, it achieved file reading performance of around 760 MiB per second. 

The measured result was lower than the measured sequential read performance 

measured by CrystalDiskMark and akin to the performance achieved by searching for 

patterns with multiple GPUs within this case study. The result recorded signifies a 

further requirement to investigate how forensic data is read from the storage device, to 

identify any other potential bottlenecks that may limit string searching performance. 
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4.6 Case study 4: Investigation of data reading performance 

4.6.1 Introduction 

Applying a multi-string algorithm improved the speed of performing string searching on 

forensic data significantly. Enhancements to the processing performance have raised a 

further requirement to investigate precisely how data is read from storage devices, as 

the recorded processing rate and the observed processing behaviours of case study 3 

have raised uncertainties that the forensic data is not being read at an optimal rate that 

the storage device is capable of. 

 Processing behaviour witnessed during case study 3 shown that, during 

asynchronous threaded processing tests, freed processing threads were seen to idle— 

queued waiting for the storage device to pass segments to partnered threads. However, 

results investigating the processing rate revealed that data was not being read at the 

theoretical maximum transfer rate that the storage devices were capable of. The slow-

down was confirmed when performing a post-analysis of case study 3, where a tool was 

created to simply read forensic data without performing any further processing. The test 

performed confirmed that the storage device was loading forensic data at a slower rate 

than the sequential read speed measured at the beginning of this research using 

CrystalDiskMark. 

4.6.2 Aim 

This case study aims to explore faster techniques to read data from storage devices. 

Through implementing a quicker method of reading from the storage device, it is 

anticipated that the delay observed during testing to read data will be minimised, which 

– in turn – will result in faster overall processing. 
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4.6.3 Method 

Research was done that analysed how the storage device benchmarking tool used – 

CrystalDiskMark – measured the theoretical maximum sequential read speeds of each 

storage device. Research into CrystalDiskMark’s operation revealed that the program 

serves as a front-end GUI to Microsoft DiskSpd storage performance tool, which 

measured the disk performance using options selected in CrystalDiskMark.  

 By default, CrystalDiskMark benchmarks sequential read speeds by having a 

queue depth of 32 on a single thread. The queue depth specifies how many dimensions 

of parallelism that a thread has to deploy read instructions— e.g. a queue depth of 32 

would indicate that any threads tasked to read the storage device can queue a maximum 

of 32 read tasks at any one time. By having queued read tasks, the storage device could 

theoretically manage read tasks better, increasing the input/output operations per 

second (IOPs) and increasing performance reading and writing data. 

 When performing a CrystalDiskMark benchmark with the queue depth set to 1 

instead of 32 – replicating the levels of parallelism employed by OpenForensics in case 

study 3 – test platform A records a sequential read performance of around 760 MiB per 

second. This signifies that, whilst synthetic benchmarks do not necessarily reflect real-

world file reading performance, employing a thread without queuing read instructions 

may be suppressing the potential performance reading data from storage devices used 

in previous case studies. 

 To take full advantage of the storage devices within this case study, it was 

decided to allocate a single thread to read the data with a queue depth of 32 read 

instructions – akin to the default settings of CrystalDiskMark that were used to produce 

the benchmarks – as the settings produced data transfer rates similar to the sequential 

read speeds stated by the storage device manufacturer. Only a single thread was used 

so that it wouldn’t interfere with the performance of other asynchronous threads. For 

multi-threaded CPU tests where all logical cores of the CPU were used to process data, 
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if more threads were employed to read data, it may disadvantage active processing of 

another processing thread. Allowing a queue depth of 32 read instructions, however, 

provided that single thread plentiful resources to queue enough read instructions to 

make full use of the IOPs of the storage devices on test. 

 

 

Figure 39: Data transferal differences between case study 3 and 4 

 

As part of investigating data handling, other variables which may impend the 

performance of the storage device were also reviewed as part of this case study, such 

as; the size of the stream buffer, and the length of data read by each read instruction 

queued. 

 The stream buffer is a setting which tells the system on the rate to read data 

from the physical drive to memory. The stream buffer has a default rate of 4 KiB, as used 

within the previous case studies. This size is also set as the default used by the Microsoft 

DiskSpd utility. As the data from the storage device is transferred into memory by the 

CPU, the size of the stream buffer defined is largely limited by the size of the internal 

cache of the CPU. All of the CPUs tested in this research possessed fairly large internal 

cache, so it was assumed that by increasing the stream buffer size may have had a 

positive effect on data transfer speed. However, experimenting with the C# 

benchmarking tool on the test platforms – expanding the stream buffer to 8, 16 and 32 



  P a g e  | 100 

KiB – shown that larger stream buffer sizes did not produce faster transfer rates, as 

increasing the stream buffer produced no significant effects in data transfer speeds from 

the storage device to memory. In conclusion, it was found that maintaining a small 

stream buffer size of 4 or 8 KiB remains effective while maintaining compatibility with a 

wider range of processors. For this case study, the default rate of 4 KiB was maintained. 

 When reviewing the length of data read by each read instruction queued by the 

read thread to fill each 100 MiB segment. The sequential read tests used to measure 

data in CrystalDiskMark set the size of 1024 KiB for read instructions. However, an 

investigation conducted on how varying sizes affect the speed of data transfer on the 

test systems involved in this research. The C# benchmarking tool was used once again 

to measure the time taken to load forensic data in varying lengths. Data read by each 

queued task was tested in sizes of; 32, 64, 128, 256, 512, 1024, and 2048 KiB segments 

respectfully. Results from testing the various sizes of data read by each queued task 

revealed that the sizes smaller than 256 KiB performed significantly slower than the 

larger sizes when reading the forensic file from the storage device; additionally, larger 

segment sizes of 1024 and 2048 KiB segments were found to produce the most 

consistent results when tested on all three test platforms multiple times. From the 

observations of the trial, a segment size of 1024 KiB was deemed to be the optimal 

segment size of each queued read instruction. 

 

 

Figure 40: Case study 4 data transfer method 
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 Figure 40 outlines the finalised design of how forensic data will be read from 

storage devices in this case study. The most significant difference employed by this case 

study is the further split of the 100 MiB data segments in 1024 KiB – or 1 MiB – sections, 

which are – in turn – read concurrently by queued read instructions. Illustrated by the 

figure are how all of the components, as previously discussed in this section, all fit 

together. The storage device – where forensic data is stored – is read by the CPU at a 

rate of 4 KiB; all of the 4 KiB ‘blobs’ of data, read by the CPU, fill the read instruction 

which is requested by the read thread; which lastly builds up the 100 MiB data segment 

requested by the method invoked to fetch the next segment of forensic data. 

 

Table 7: Storage device benchmark results 

Storage Device Performance (MiB/s) 

Test Platform CrystalDiskMark C# Benchmark 

A 903 974 

B 242 254 

C 1244 1050 

 

 Final measurements using the C# storage device benchmarking tool using the 

variables set produce performance results which are arguably different to that recorded 

by CrystalDiskMark, as shown in table 7. Despite this, as the C# storage device 

benchmark follows the same methods to read data as what OpenForensics employs to 

conduct the tests, it provides a more accurate insight of the possible data transfer 

speeds achievable with any processing method conducted with OpenForensics. It is 

reasonable, in this case, to assume that the theoretical maximum data transfer speed 

for each processing method trialled in this case study would be that recorded by the C# 

storage device benchmarking tool and not that recorded by CrystalDiskMark. 

 It is anticipated that the changes made to how OpenForensics reads forensic 

data from storage devices would reduce processing limitations imposed by utilising a 
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single read instruction that previous case studies used. While asynchronous search 

methods employed by the multi-threaded CPU and multi-GPU tests should theoretically 

take full advantage of the possible data transfer speeds of the storage device. It is also 

anticipated that the single threaded technologies will also benefit from faster data 

transfer speeds as less time should be required to read data. Aside from the way that 

forensic data is read, this case study employs no further changes to the way that 

OpenForensics operates within case study 3. This will allow this case study to achieve an 

accurate representation of how changing file reading affects the overall performance to 

perform string searching on forensic data. 

4.6.4 Results 

Results produced by applying a different file reading technique to read forensic data can 

be seen in table 8. In all test cases on all platforms, times were significantly improved. 

Comparing the differences in recorded times between this case study and results 

gathered by case study 3, the single CPU method of searching obtained the most benefit 

of the new method of reading data, as test platforms showed an average speedup of 

3.1-3.5x over the single CPU results gathered by case study 3. Likewise, multi-threaded 

CPU tests gained a noteworthy speedup of between 1.53-2.46x over the multi-threaded 

CPU tests of the previous case study. 
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Table 8: Case study 4 search time results 

5 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 50.27 21.17 30.21 21.07 33.37* 

B 115.27 80.67 90.61 80.38 100.94 

C 53.96 20.89 30.25 22.89 33.31 

19 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 81.82 21.63 30.67 21.11 35.34* 

B 144.05 81.34 94.22 80.65 108.39 

C 88.82 24.49 31.46 22.92 37.88 

40 defined patterns — Time (secs.) 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 101.18 22.43 30.86 21.1 35.84* 

B 156.11 81.42 95.09 80.15 111.29 

C 108.56 29.38 32.51 22.91 40.54 

* - Secondary discrete GPU, no IGP present on system 

 

 Comparing the results gathered by GPGPU technologies, the observed speedups 

achieved with the new method of searching did not reach the same levels that CPU 

technologies demonstrated. Nonetheless, GPGPU technologies produced results which 

were – on average – 1.3x better than the previous case study, which remains a 

noteworthy improvement over the results of the last case study.  

 Looking at platform B, which managed to reach the theoretical data transfer limit 

recorded by CrystalDiskMark in the last case study, we can see the times achieved with 

the multi-GPU being improved again. This signifies that further performance was gained 

from incorporating a different file reading method in this case study. This is further 

evidenced when looking at the performance analysis of the results, as shown in figure 

41, which reveals that all multi-GPU tests and multi-threaded CPU tests of test platform 

B reached the theoretical maximum data transfer rate recorded by the C# storage device 

benchmarking tool. 
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Figure 41: Case study 4 processing rate analysis with 95% confidence intervals 

 

 Further evidenced from test platform B is the growth in performance seen from 

the single-threaded CPU tests, showing a processing rate when searching for 5 patterns 

of 177.67 MiB/s, an impressive result when considering running the tests on the single 

IGP and single GPU achieved 202.89 MiB/s and 226.02 MiB/s respectively. However, 

platforms A and C found that employing a single GPU, or IGP, produced processing rates 

that were 200 MiB/s greater than the capabilities of the single CPU. The single-threaded 

processing methods performing arguably similar to each other on test platform B is likely 

due to the limitations of the storage device, and the synchronous nature of the single 

threaded tests undertaken. 

 Test platform A’s results show that on four counts – all of the multi-GPU tests, 

and the 5 pattern search of the multi-threaded CPU test – seem to achieve performance 
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alike to the measured theoretical maximum performance of the storage device. The test 

platform showed that multi-threaded CPU processing performance of the 19 and 40 

pattern searches deteriorated slightly, showing that the multi-GPU processing method 

handles searches for a greater amount of pattern better on this test platform. 

 From the processing rate analysis, test platform C saw the most improvement all 

round from the implemented changes, however, all tested processing methods fell short 

of the theoretical maximum processing rate which was measured by the C# 

benchmarking tool. The best performance of the 5 search pattern test was achieved by 

the multi-threaded CPU test, however, when tasked with more search patterns, the 

multi-threaded CPU’s performance started to diminish. In comparison, the multi-GPU 

performance – which was the second best performing processing method on this test 

platform – produced similar processing performance through all pattern tests. 

 

 

Figure 42: Case study 4 patterns searched and time analysis 

  

 Analysing the relationship between the patterns searched and time taken to 

search, as shown in figure 42, shows that the single CPU has produced a trend line in 

closer proximity to that produced by other processing methods, due to its search times 
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being significantly reduced with new file reading method. The single CPU still shows the 

most deterioration in time when tasked with increasing amounts of search patterns. 

 Interestingly, the new method introduced to read files has had a great impact on 

the time variation of the multi-threaded CPU tests, as there is less deterioration 

between trials than what is observed in previous case studies. The only test platform 

which produces any debatable growing trend line is test platform C, which is equipped 

with a laptop grade CPU that is susceptible to performance throttling due to thermal 

overheating. Nonetheless, the trend lines between multi-threaded CPU tests signifies 

notable improvements of the performance obtained, as the multi-CPU method is 

observed to perform consistently better than both the single GPU and single IGP in all 

trials performed.   

 Trends between search time and patterns searched within this case study 

otherwise show largely the same pattern as the previous case study, with the multi-GPU 

tests performing quickest in the majority of tests undertaken by all test platforms. 

Likewise, the multi-GPU processing method also performed the best out of all 

processing methods when tasked with increasing amount of defined search patterns. 

 

 

Figure 43: Case study 4 technique speedup over single CPU solution 

 

 Figure 43 illustrates the speedups observed comparing each technology’s 

performance improvement over the results gained from the single CPU test. From this 
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analysis, it can be seen how significantly the performance of the multi-threaded CPU 

tests has been improved from the new file reading method, presenting speedups very 

close to that achieved by multi-GPU tests. The only oddity in the multi-threaded CPU 

trends is the trend line produced by test platform C, which shows the trend unusually 

dropping significantly within the 40 pattern search test. 

 Important to note within this illustration is the change of scale with the 

speedups, where the largest observed speedup over the single-CPU is 4.8x, which is 

significantly less than the maximum possible speedup observed in case study 3. This 

reduction in observed speedups is due to the stronger performance achieved by the 

single CPU in this case study. 
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Figure 44: Average time taken to conduct string searching with each processing 

technique 

The single-threaded CPU took the longest to process data (median = 101.18, min 

= 50.27 and max = 156.11), followed by the single-IGP (median = 37.88, min = 33.31 and 

max = 111.29), the single-GPU (median = 31.46, min = 30.21 and max = 95.09), the multi-

threaded CPU (median = 24.49, min = 20.89 and max = 81.42). The quickest processing 

technique was the multi-GPU (median = 22.91, min = 21.07 and max = 80.65). 

A Kruskal-Wallis H test showed that there was a significant difference in time 

elapsed between the different processing techniques, χ2(4) = 19.119, p = 0.001. 
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Follow-up tests revealed there to be a significant difference between the 

multi-GPU and single-threaded CPU processing techniques on time elapsed, p = 

0.002. There was a significant difference between the multi-threaded CPU and 

single-threaded CPU on time elapsed, p = 0.005. There were no other significant 

comparisons. 

4.6.5 Conclusions 

This case study was created out of necessity after the observation of data transfer 

limitations within case study 3; however, this case study which investigates an 

alternative method of reading forensic data from storage devices has arguably produced 

the most unexpected results of this research. The experiments that were undertaken in 

this case study, which only modified the method of reading data from the storage device 

from case study 3, aimed to answer whether modifying how forensic data was read 

would have a positive effect on the time required to perform string searching. Results 

from all processing techniques show that the new method of reading forensic data 

employed in this case study achieved significantly improved performance when 

compared to the previous method used in case study 3. 

 Through employing a single thread, 32 queue depth method of reading files, the 

overall single- and multi-threaded CPU improvements demonstrated by this case study 

gained an average 2.7x speedup over the results gathered by case study 3. Likewise, 

single and paired GPUs took less time to search when compared to case study 3, showing 

an overall average speedup of 1.29x over the previous case study. This demonstrates 

how the technique employed to read data could significantly contribute to the overall 

performance obtainable when performing string searching against forensic data, as the 

results exemplify that the time required by the test platforms to transfer data to the 

processor was notably reduced. 
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 Exploring the overall processing results further, there are no apparent 

relationships between the levels of parallelism between the synchronous and 

asynchronous tests and the level of performance speedup observed over the previous 

case study. However, when comparing the asynchronous multi-threaded CPU results, 

the speedup between this case study and the previous is seen to be quicker as fewer 

processing threads are observed waiting for the storage device to assign data to a 

partnered processor. 

 Overall, all processing techniques tested – in the large majority of cases – shown 

a greater speedup over the previous case study when tasked with more search patterns. 

This increased speedup when searching for larger amounts of patterns is higher on CPU 

tests than it is on GPGPU tests. This finding presents evidence suggests that, although 

all processing techniques have benefitted from the improved method to read data, the 

time to conduct searching is still largely influenced by the processor’s processing power. 

 The theoretical maximum data transfer speed for this case study was recorded 

by using the C# storage device benchmark tool, which recorded how long it took to read 

data using the same methods employed in OpenForensics. The maximum data transfer 

speed was achieved through performing string searching on multi-threaded CPU, and 

multi-GPU, techniques on the two desktop computers tested— test platforms A and B. 

The multi-GPU on both platforms showed no deterioration in search time when tasked 

with greater amounts of patterns; however, performing searches for increasing 

amounts of search patterns using a multi-threaded CPU on test platform A did show 

performance waning. This indicates that whilst the multi-threaded CPU method could 

effectively handle lower amounts of search patterns, performing searches for greater 

amounts of strings may still more efficiently processed with a multi-GPU method. 

 Through applying a new file reading method using a concurrent queue system 

for data reads, OpenForensics was also able to perform string searching faster on two 

test platforms than the theoretical maximum storage device transfer speeds recorded 

by CrystalDiskMark. This was unforeseen as the parameters used to read data from the 
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storage device are largely comparable to the parameters used by CrystalDiskMark to 

perform benchmarking.  

 There could be many factors behind this observation. However, it is 

acknowledged that the variances in performance may potentially be due to differences 

in the underlying methods that OpenForensics and Microsoft DiskSpd – used by 

CrystalDiskMark – use to handle data transfers. Microsoft DiskSpd is a tool developed in 

C++ and possesses no .NET platform dependency to perform file reading, as all read 

operations are performed by methods defined within the tool’s source code using direct 

IO to access the storage device. OpenForensics, however, employs .NET 4.0’s FileStream 

class to perform file reading operations and benefits from using a buffer to read data 

from the drive. 

 The single CPU performance was also seen to surpass the performance 

measured using Foremost within this case study, whereas before, the single CPU 

performance was observed to be notably worse— even within case study 3, where a 

better multi-string searching algorithm was employed to conduct searching. This would 

suggest that performance was being restricted in all previous case studies by the 

method used to transfer data from the storage device into memory. It is reasonable to 

assume that, if the same file reading technique were to be applied to earlier studies, 

similar performance gains observed between this case study and case study 3 may also 

be gained. 

 Applying the file reading technique to earlier case studies remains a frivolous 

task, as performance between algorithms – shown in case studies 2 and 3 – 

demonstrated that the PFAC algorithm was better suited than both the modified BM 

algorithm and a brute force GPGPU algorithm in performing string searching. These 

findings remain relevant, and conducting further tests with the improved file reading 

method would likely demonstrate the same findings. 

 While it was anticipated to see performance enhancements across all processing 

methods trialled, the substantial improvements produced over the previous case study 
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suggest that processing power and efficient algorithms are not sole factors in achieving 

the best performance out of a storage device. This case study produces results which 

suggest that the technique employed to read files from the storage device remains 

equally important as the other factors mentioned. 

 

Table 9: Case study 4 speedup over base performance metrics gathered by Foremost 

5 defined patterns — Speedup over Foremost 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 2.27 5.38 3.77 5.41 3.42* 

B 1.39 1.98 1.77 1.99 1.59 

C 1.93 4.98 3.44 4.54 3.12 

19 defined patterns — Speedup over Foremost 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 5.07 19.19 13.53 19.66 11.74* 

B 3.14 5.57 4.81 5.62 4.18 

C 4.95 17.97 13.99 19.20 11.62 

40 defined patterns — Speedup over Foremost 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 7.32 33.04 24.01 35.12 20.68* 

B 4.87 9.35 8.00 9.49 6.84 

C 7.30 26.96 24.36 34.57 19.54 

* - Secondary discrete GPU, no IGP present on system 

 

 As it could be argued that performing string searching against forensic data is 

not entirely grounded in the academic field of DF, but rather computer science in 

general. This series of case studies presented in this research has so far aimed to dissect, 

improve and measure string searching performance in a bid to improve upon the overall 

processing rate in which DF tasks could be performed. To this end, this has been 

accomplished, as comparing string searching times gathered from this case study to the 

base performance metrics gathered using Foremost show performance speedups as 

presented in table 9. Statistical analysis also shows that employing asynchronous multi-

CPU or multi-GPU techniques are significantly faster than employing a single CPU to 
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conduct string searching. Within the next case study, this research aims to present how 

the proposed improvements to how string searching is conducted affect the overall 

performance of performing file carving. 

  



  P a g e  | 114 

4.7 Case study 5: Applying proposed string searching methods to conduct file 

carving 

4.7.1 Introduction 

This research presents significant improvements to how string searching is conducted 

that also caters to the scientific accuracy necessitated by DF investigation. The changes 

presented are the outcome of investigating; the process which drives searching through 

forensic evidence, the application of a multi-string searching algorithm to conduct 

searching, and the method which forensic data is transferred from the storage device to 

memory. The results produced from applying revisions in the areas above have shown 

substantial growth in performance between each case study. When conducting string 

searching, the latter of the case studies – case study 4 – demonstrates performance 

speedups of up to 35.12x when compared to results gathered using an existing DF file 

carving tool— Foremost. 

4.7.2 Aim 

This final case study aims to investigate how improvements to string searching will 

impact the time required to perform file carving on the forensic data used in previous 

case studies. The processing framework used in case study 4 will be used to accelerate 

the string searching operations. 

4.7.3 Method 

In this test, file headers and footers will both be searched, then found files will be 

reconstructed from the forensic data and saved back to the storage device used to read 

forensic data. This case study varies from past case studies by introducing the 
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requirement to search for matching footers for each header searched for. Due to this, it 

requires this case study to undertake a different set of patterns to search for. 

 

Table 10: Case study 5 patterns searched 

   

File Type File Header (bytes) File Footer (bytes) 

jpg FF D8 FF E0 00 10 FF D9 

jpg FF D8 FF E1 35 FE FF D9 

gif 47 49 46 38 39 61 00 3B 

gif 47 49 46 38 37 61 00 3B 

png 89 50 4E 47 0D 0A 1A 0A 49 45 4E 44 AE 42 60 82 

mpg 00 00 01 BA 00 00 01 B7 

mpg 00 00 01 B3 00 00 01 B7 

docx 50 4B 03 04 14 00 06 00 50 4B 05 06 

pdf 25 50 44 46 0A 25 25 45 4F 46 

 

 The tests conducted in this case study will search for and reconstruct 9 file types. 

A file type is defined by this case study as a file which possesses a unique file header. All 

the file types searched for are presented in table 10. As some of the file types searched 

for share the same file footer – which indicates an end of a file – the overall amount of 

patterns searched for within this case study is 15. Duplicate strings do not require to be 

searched for individually. 

 Alongside the change in the defined search patterns, this case study modifies the 

processing cycle utilised by OpenForensics, introducing a check to see if there are any 

found patterns within the file segment before retrieving the next segment of data from 

the storage device. The revised processing cycle used for OpenForensics in this case 

study is presented in figure 45. If there are any found patterns in the processed segment, 

that segment is handed to a CPU thread which extracts all files within the data segment 

by using the array of file headers and footers found. Once the extraction thread finishes, 

the processing thread will request another segment of data. The maximum possible file 

size set for all searched file types was set to 10 MiB, indicating that if a footer were not 
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found in the first 10 MiB after the header position, the program would extract the 10 

MiB of data from the header location and label the file as incomplete.  

  

 

Figure 45: Case study 5 processing cycle 

 

 For Foremost, testing was done by using the command stated in figure 46, which 

is identical to the previous command used to gather base performance metrics in 

Foremost, however, omits the use of the -w flag. This instructs Foremost to reconstruct 

all found files within forensic data analysed and produce an audit file outlining the 

results of the file carving. The configuration file used – documented in appendix B.4 – 

specifies all file types and headers outlined within table 10, and specified a maximum 

file length of 10 MiB for all file types defined, identical to that set by OpenForensics. 

Foremost behaves in the same fashion as OpenForensics when a matching footer is not 

found for the header in forensic data. For this case study, Foremost is set to extract 10 

MiB of data from the found header and marking it as an incomplete file if a matching 

footer is not found. 

 

 
foremost -i TestImage.dd -c /cdrom/foremost/foremost.conf -o ./foremost 

  

Figure 46: Case study 5 Foremost command 
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 Results from testing file carving on forensic data are predicted to produce similar 

findings from the previous string searching tests of case study 4, as the possible 

processing performance in conducting file carving is highly dependent on the ability to 

efficiently perform string searching. Nonetheless, it is noted that the time required to 

extract found files will give processing techniques with higher degrees of asynchronous 

parallelism an advantage in this test, as it is envisioned that file reconstruction will 

potentially stall threads from processing other segments of data. By employing more 

processing threads, it is theorised that the stall in extracting files will be less noticeable 

due to other processing threads being able to occupy data transfers from the storage 

device more efficiently. 

4.7.4 Results 

Times recorded to perform file carving for the 9 defined file types are presented in table 

11. Expectedly, the time required to perform file carving – which performs more 

processing operations than string searching – took between a 5 and 19 pattern string 

search in Foremost testing. However, contrasting performance was observed from all 

processing techniques tested on the OpenForensics software platform, whereas the 

time required to complete file carving was observed to be slower than the performance 

of a 40 pattern string search. 

 

Table 11: Case study 5 file carving time results 

9 File Types (15 patterns) — Time (secs.) 

Test Platform Foremost Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 244 145.53 28.5 51.6 35.77 61.17* 

B 282 206.41 83.02 117.27 87.38 146.59 

C 217 154.87 40.51 59.26 44.2 74.29 

* - Secondary discrete GPU, no IGP present on system 
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 Regardless of the performance differences between performing string searching 

and file carving on the respective platforms, it was found that the time required for all 

processing techniques trialled on OpenForensics were significantly faster than the time 

taken with Foremost. Analysing the different processing techniques tested with the 

OpenForensics platform, it was also found that the multi-threaded CPU technique 

performed the best on all three test platforms, outperforming the result of the 

asynchronous multi-GPU method. 

 

 

Figure 47: Case study 5 processing rate analysis with 95% confidence intervals 

 

 When performing processing rate analysis in figure 47, we get a clearer picture 

of how the times took affect the performance of each platform. It is found that the 

performance delivered by Foremost is the worst on all test platforms, performing 
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between 72-94 MiB/s. OpenForensics results for the single-threaded CPU test achieved 

between 99-140 MiB/s in comparison. When comparing the best performing 

techniques, performance varies between 246-719 and 234-573 MiB/s for the multi-

threaded CPU and multi-GPU respectively. 

 Test platform B came closest to achieving the theoretical maximum performance 

of the storage devices on test when performing file carving. However, other platforms 

which possessed much faster-performing storage devices did not. 

 Table 12 presents how much speedup over Foremost that each processing 

technique utilised by OpenForensics achieved. The greatest speedups observed were 

attained by the multi-threaded CPU tests, which showed speedups over Foremost by up 

to 8.56x. Multi-GPU tests likewise shown notable improvements over Foremost’s file 

carving performance, demonstrating speedups of up to 6.82x. 

 

Table 12: Case study 5 speedup over Foremost results 

9 File Types (15 patterns) — Speedup over Foremost 

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP 

A 1.68 8.56 4.73 6.82 3.99 

B 1.37 3.40 2.40 3.23 1.92 

C 1.40 5.36 3.66 4.91 2.92 

* - Secondary discrete GPU, no IGP present on system 
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Figure 48: Average time taken to perform file carving with each processing technique 

Foremost took the longest to process data (median = 244, min = 217 and max = 

282), followed by the single-threaded CPU (median = 154.87, min = 145.53 and max = 

206.41), the single-IGP (median = 74.29, min = 61.17 and max = 146.59), the single-GPU 

(median = 59.26, min = 51.6 and max = 65.67), the multi-GPU (median = 44.2, min = 

35.77 and max = 87.38). The quickest processing technique was the multi-threaded CPU 

(median = 40.51, min = 28.5 and max = 83.02). 

A Kruskal-Wallis H test showed that there was a significant difference in time 

elapsed between the different processing techniques, χ2(5) = 12.883, p = 0.024. 
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4.7.5 Conclusions 

The aim of this case study was to establish how much of an affect the improvements to 

string searching would have on the performance of completing file carving against 

forensic data. Results from this case study have shown significant improvements when 

file carving 9 different file types. The largest of the speedups were attained from the 

multi-threaded CPU method of file carving, which demonstrated up to 8.52x speedups 

over the results derived from Foremost. All of the processing techniques tested with 

OpenForensics managed to surpass the performance of Foremost, indicating that better 

performance can be achieved by applying a combination of; asynchronous parallelism, 

multi-string searching algorithms, and an enhanced file reading technique. 

 The file carve test involved in this study searched for 15 unique patterns, placing 

this test between the 5 and 19 string tests of the previous string searching case studies. 

While it is true that the multi-threaded CPU performance exhibited the best 

performance conducting file carving in this test, results from case study 4 demonstrate 

that the performance of a multi-threaded CPU solution would deteriorate when asked 

to carve greater amounts of files. Therefore, it is determined that, although performing 

slower than multi-threaded CPU in this test, multi-GPUs will have the greatest benefit 

within performing processor intensive DF operations with greater amounts of file types. 

 It was observed during testing with OpenForensics that the levels of 

asynchronous parallelism had a positive effect on the ability to better use the data 

transfer performance of the storage device. The introduction of recreating files from 

data segments presented further delay for the processing thread as it waited for the file 

reconstruction operation to finish before moving to analyse a new segment of data. 

When more processing threads were applied to perform file carving, the effect of this 

delay was less noticeable, as there were sufficient processors available to queue to read 

file segments from the storage device. The multi-GPU tests of the test platforms, which 

only employed two asynchronous processing threads, were at a disadvantage when 
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compared to the multi-threaded CPU tests, which employed one asynchronous thread 

for each of the 4 to 12 logical CPU cores.  

 It is recognised that if more asynchronous threads were created for the multi-

GPU method, whether through the employment of more GPU hardware or allowing the 

GPU to process more than one segment at a time, further performance could have been 

achieved. This has been identified by the author for future work within the area. 

 While it may also be true that the delay of reconstructing files from the current 

data segment could have been mitigated by allowing the processor to load another 

segment into a new location of memory, it may have introduced the danger of causing 

the memory stack to overflow due to the stockpiling of segments requiring file carving. 

It is predicted that better method of performing file carving would have been to produce 

a map of where all of the discovered files were, then conduct a second pass through the 

data to reconstruct files. Testing another method of file carving, however, was deemed 

to be outside of the scope of this research. It is envisioned that through utilising this 

approach, it may have produced results closer to that demonstrated within the string 

searching case studies. 

 In closing remarks, this case study successfully showed that applying an 

asynchronous parallelised model using a PFAC algorithm and enhanced file reading 

technique improved performance over Foremost when tasked to perform file carving of 

9 different file types. It is envisioned that, within future work, investigating better file 

carving strategies may further enhance the performance seen through applying these 

methods. 
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4.8 Case study conclusions 

4.8.1 Summary of case study results 

To answer the research questions presented, a software platform – OpenForensics – 

was created to conduct string searching and file carving similarly to a currently available 

open-source file carving tool— Foremost. Four case studies were designed and 

presented showing the effects of introducing varying changes to the methods that 

Foremost utilised to perform string searching of forensic data, with the fifth case study 

measuring and presenting how these improved string searching methods affected file 

carving performance. 

 The first case study, which introduced GPGPU processing with a basic brute-force 

algorithm, showed significant improvements that exceeded the single threaded CPU 

performance presented by OpenForensics as well as Foremost. This remained true even 

when utilising the less powerful IGP processor onboard the CPU. Changes were also 

made to the program’s processing operation, which introduced a reactive rather than 

proactive approach for checking for pattern matches which may be split between data 

segments. However, this was later deemed to be an inefficient approach when 

introducing asynchronous parallelization, as the proactive approach may have caused 

delays searching for historic data on traditional HDDs. Lastly, this case study introduced 

another change by increasing the data segment size, but it was later found that there 

were no significant benefits observed when comparing comparative results from the 

single threaded processing techniques to that achieved with case study 2. Like the 

deduction of the reactive processing approach, the increase of segment sizes may have 

posed memory issues or delays reading data when massively parallelised. 

 Comparable to the performance gained from the first case study, the second 

case study demonstrated significant improvements in processing performance once 

more through the incorporation of asynchronous threaded processing methods. This 
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case study also reverted to using the same segment size and processing method used 

by Foremost. While the results of the single threaded processing techniques were 

largely like the comparative results of case study 1, the second case study showed 

noticeable improvements when running both CPU and GPU technologies 

asynchronously, employing all available logical processors as separate independent 

processing threads. When employing an asynchronous multi-GPU approach with 5 

search patterns, slower storage devices on test were seen to limit the achievable 

performance of the device, providing early evidence that an insurmountable bottleneck 

may limit the achievable processing rate. 

 The third case study shows the effect of applying an optimised multi-string 

algorithm, PFAC, to conduct string searching on digital evidence. While in most instances 

the general performance was improved across all test platforms, the most noticeable 

improvements could be seen when searching for larger amounts of search patterns. 

When searching for more patterns, the performance searching with the PFAC algorithm 

deteriorated significantly less than the CPU’s modified BM algorithm and the GPGPU’s 

brute force algorithm used in the previous study. The asynchronous multi-threaded CPU 

tests of this case study were seen to beat that of a single synchronous GPU when 

searching for 5 patterns. However, the single GPU was quicker than the multi-threaded 

CPU when tasked to search for 19 and 40 search patterns. The multi-GPU on the slower 

storage device was observed to fully utilise the storage device performance on all 

pattern tests, strongly suggesting that the sequential read speed of the storage device 

is the maximum processing rate achievable by any processing technique. 

 The results of case study 3 showed inconsistencies between the recorded results 

and the observed behaviour during testing. The storage device during multi-threaded 

asynchronous tests was seen to be constantly transferring data on test platforms A and 

B, however, the achieved performance from the asynchronous tests on these platforms 

did not reflect upon the observed behaviour, indicating that the data was not being 

transferred efficiently from these storage devices. 
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 Case study 4 aimed to address these concerns by introducing a different method 

to load data from storage devices. The method used in this case study reflected and 

applied techniques used by benchmarking software to read data from the storage 

device. The resulting times derived from testing showed significant improvements 

across all test platforms on all tests. This was due to the storage device being able to 

read data at a faster rate than before, causing processors to idle less than previously 

seen in case study 3. All processing rates achieved, once again, did not exceed the 

theoretical maximum transfer speed of the storage device, however, on some 

occurrences, both the multi-threaded CPU and multi-GPU met the theoretical maximum 

processing rate when conducting string searching. 

 The final case study aimed to measure how the proposed changes to conducting 

string searching affected the speed of performing file carving of forensic data. For this 

case study, the techniques used in case study 4 were benchmarked against Foremost to 

perform file carving, where found files within the forensic data were reconstructed and 

saved back to the storage device. It was found that the processing techniques produced 

in case study 4 performed significantly better than Foremost when performing file 

carving 9 file types consisting of 15 unique patterns. 
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Figure 49: Test Platform C performance progression 

4.8.2 Validation of research in a real-world digital forensics scenario 

Testing conducted with a prototype tool based on the solution of case study 2 was 

trialled by the digital forensics division of Police Scotland in November 2015. The test 

carried out by Police Scotland involved analysis of a 120GB storage device connected to 

a workstation PC. The storage device was analysed by software used by the forensics 

division as well as a prototype file carving version of OpenForensics. Both the software 
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used by Police Scotland and OpenForensics were reported to have the same search 

criteria used to perform file carving. 

 Feedback received from Police Scotland stated that the OpenForensics tool was, 

on average, 160% faster than an equivalent product used by the forensics division. 

Feedback also further commenting that the equivalent product used for comparison 

only selectively searched around 50% of the forensic data on the drive, whereas 

OpenForensics searched the full volume of forensic data (appendix C).  

 Unfortunately, after reaching out for more information, Police Scotland was not 

very forthcoming with any other information regarding the tests performed or the 

equivalent tool used. Regardless, the feedback received by Police Scotland validates the 

methods and approach proposed by this research surpass equivalent tools used by 

Police Scotland for performing file carving. It is envisioned that the developments and 

improvements adopted and evidenced by later case studies would significantly improve 

upon the reported performance. 

 At the time of writing this thesis, no further trials have been conducted with 

Police Scotland, however, it is planned that a further prototype tool would be 

distributed freely to Police Scotland and other digital forensic institutions for further 

trials. It is also envisioned that further in-depth case studies will be completed to 

compare the developed OpenForensics processing framework with commercially 

available digital forensic tools.  
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Chapter 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This conclusion will revisit the research aim of whether the application of GPGPU 

technologies and modern parallelisable string searching algorithms could reduce the 

time required to perform file carving in DF investigations. This will be answered by 

addressing the research questions on; whether the OpenCL GPGPU framework was 

reliable and quick in analysing forensic evidence, if there were advantages of employing 

GPGPU processing over CPU processing methods, and whether there were any benefits 

of applying multiple GPGPU devices to perform pattern matching. The conclusion will 

also answer whether modern parallelisable algorithms are better suited for the 

requirements of DF investigation, and whether the potential performance file carving is 

limited by storage device performance. 

5.1.1 Research question Q1 

This research has attempted to answer whether OpenCL GPGPU framework provides a 

reliable foundation to analyse digital evidence and decrease the time required for 

processing forensic images without affecting accuracy. From the evidence presented in 

all case studies (1-5), this research can confidently claim that it does, further adding that 

it is well-suited to the exploratory nature of DF investigation due to its ability to search 

for large amounts of patterns with less time detrition than multi-threaded CPU options. 

 Throughout all case studies (1-5), utilising OpenCL and GPGPU devices shown 

perfect reliability and accuracy throughout all tests, returning results identical to 

OpenForensics CPU driven techniques, and matching the results derived from Foremost. 

Therefore, the research presents that there are no disadvantages to reliability and 

accuracy when employing OpenCL in DF tools. 
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5.1.2 Research question Q2 

The decision of choosing the OpenCL programming language to operate GPGPU devices 

was to increase compatibility beyond only one device vendor, albeit, at a small cost to 

performance. This was done so that all available GPGPU devices available on that system 

would be able to aid the processing of digital evidence— making full use of the 

computational power available. The ability to share processing workload across the 

available GPGPU devices on a system has proven very beneficial when adopted in case 

studies 2-5, showing substantial improvements over employing a single GPGPU device. 

 In case study 4, asynchronous multi-GPU processing was found to fully utilise the 

available theoretical processing rate from test platforms A and B, whilst also achieving 

~85% utilisation on test platform C. Compared to singular GPGPU operation, multi-GPU 

string searching was seen to similarly depreciate significantly less than CPU counterparts 

when searching for larger amounts of patterns. Whilst it is acknowledged within this 

research that further research into the asynchronicity of the GPGPU approaches would 

benefit performance, multi-GPU processing would arguably allow for more processing 

capacity—future proofing pattern matching techniques within DF tools. 

5.1.3 Research question Q3 

The results from all case studies (1-5) show that utilising GPGPU devices show less time 

depreciation when searching for larger amounts of search patterns than using CPUs. It 

is demonstrated through case study 5 that, if using a file carving technique as an 

exploratory tool to find many file types from forensic data, utilising OpenCL and all 

available GPGPU devices would be the best option to employ due to its ability to handle 

greater amounts of search targets with little loss of performance. However, if file carving 

for a few specific file types, a multi-threaded CPU technique would be arguably better 

suited to perform the file carving.  
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 Nonetheless, future work planned to evolve the GPGPU solution presented in 

the case studies may yield greater processing power from GPGPU devices. 

Improvements such as hosting more than one processing thread on each available 

GPGPU device – increasing the level of asynchronous processing – may result in further 

performance enhancements. 

5.1.4 Research question Q4 

The introduction of the PFAC multi-string search algorithm in case study 3 demonstrated 

the best performance improvements across all case studies when conducting string 

searching for 19 and 40 patterns. When compared to the CPU’s modified BM algorithm 

– the same algorithm as employed by Foremost – and the GPGPU’s brute force 

algorithm, all processing techniques tested demonstrated less depreciation of the time 

required to conduct searching on larger amounts of search patterns when employing 

the PFAC algorithm. While PFAC was chosen due to its optimisation for highly-

parallelized application; it was seen that the single CPU processing technique also 

benefitted from notable performance improvements through utilising this algorithm. 

 This performance enhancement was likewise seen in case study 5, where the 

PFAC algorithm was used to conduct string searching as part of a file carving operation. 

Comparing the single CPU processing performance of OpenForensics to that of 

Foremost, it was observed that the PFAC algorithm employed by OpenForensics could 

conduct the file carving quicker than the modified BM algorithm used by Foremost. The 

significance of this comparison indicating that the delivered framework searches data 

more efficiently than the methods used by Foremost. 

 While the employment of a GPU paired with a naïve search algorithm showed 

improvements over current search methods in case study 1, it was found in case study 

3 that the employment of modern parallel-friendly algorithms notably contributed to 

the final performance enhancements achieved. This observation presents compelling 
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evidence that suggests that the modified BM algorithm could no longer fulfil the 

requirement of DF investigation due to its inefficient speed when searching for multiple 

patterns. In its place, this research supports the adoption of parallel optimised multi-

string searching algorithms – such as the PFAC algorithm – as a modern standard for 

future DF tools which rely on string searching to perform analysis. 

5.1.5 Research question Q5 

Whilst employing multi-threaded CPU and multi-GPU processing with the PFAC 

algorithm has shown remarkable processing improvements, the performance of 

conducting file carving has been suggested to be limited by the data transfer speed of 

the storage device. Case study 4 demonstrated that the method used to read the 

forensic data from the storage device remains a vital factor which needs to be 

considered to achieve the best performance from a storage device. The method used to 

read data was evidenced in this case study to be as important a factor as what 

processing technique or algorithm was used. 

 The case studies included in this thesis conducted tests on an SSD and SSD arrays. 

While SSD and SSD arrays are considerably quicker than traditional HDDs, technological 

trends have evidenced that SSDs will continue to become much more prevalent in 

consumer computers (Pal and Memon 2009, p. 59–71). Alongside this technological 

evolution, it is reasonable to expect that the corpora of digital storage devices seized as 

part of a DF investigation will evolve alongside it. 

 Results produced by Foremost to conduct file carving on test platform B, which 

employed the slowest SSD device on test, showed that Foremost utilised only 29% of 

the available data transfer performance of the storage device. Contrastingly, utilising a 

multi-threaded PFAC CPU method in OpenForensics, which was based on the solution 

presented in case study 4, achieved 97% of the available storage device performance 

performing file carving.  
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 This suggests that performance conducting file carving in modern DF 

investigation is no longer bound by storage device performance, but rather a 

combination of processing performance and storage device performance combined. 

Foremost evidence that, without modern processing techniques or algorithms, DF tools 

can struggle to utilise the full performance of a storage device to conduct string 

searching. Nonetheless, it is important to note that the sequential read performance of 

the storage device remains to be an insurmountable processing rate limit regardless of 

the available processing technique used. 

5.1.6 Answering the research aim 

The results from case study 5 demonstrate that the proposed string searching 

framework used in case study 4 had notable improvements in speeding up file carving 

performance— one of the fundamental DF techniques used to analyse forensic 

evidence. Evidencing that the application of GPGPU technologies and modern 

parallelisable string searching algorithms reduced the time required to perform file 

carving in DF investigations. 

 Fundamentally, as DF operations such as file carving rarely deal with searching 

for single strings when conducting a search, employing a multi-string algorithm is seen 

by the author as a necessity for all investigatory tools of this field. While this study 

utilised the PFAC algorithm to conduct string searching, mainly due to its massively-

parallel optimisations, it is assumed that other parallelable multi-string search 

algorithms would reap similar performance benefits over modified single-string 

searching algorithms when employed to conduct string searching in DF. 

 The commonplace belief in the DF community stipulates that the speed of data 

analysis within DF investigation is solely limited by the storage device that forensic data 

is read from, however, currently used tools such as Foremost were found to use only a 

fraction of the available performance of the storage device in the tests performed. The 



  P a g e  | 133 

findings of this research present the argument that the speed of data analysis is not 

limited solely by the storage device transfer rate, but rather a combination of the 

aforementioned and processing performance— comprising of processing hardware, 

string searching algorithms used, and the methods employed to read forensic data from 

the storage device. 

 This conclusion was further evidenced in trials conducted by Police Scotland with 

an early prototype tool. Where there was noteworthy evidence that the methods and 

techniques proposed by case study 2 of this research significantly improve performance 

over currently employed tools. Suggesting that later developments of this research 

would again produce more notable improvements. 

 In concluding remarks, to mitigate the diminishing ability to analyse the 

increasing amounts of data seized as part of a DF investigation, it is deemed vital to 

modernising processing methods used by DF tools. It is evidenced from this research 

that processing improvements could be achieved through many avenues; whether 

through employing more optimised algorithms or utilising the processing power of 

GPGPU hardware. It is believed that only through proper tool optimisation and 

modernisation of processing techniques will we return to the golden age the DF 

community once enjoyed. 

  



  P a g e  | 134 

5.2 Future work 

5.2.1 OpenForensics future work 

This thesis has presented an embodiment of research which largely covers some aspects 

relating to string searching within DF techniques. Short term aims beyond this thesis are 

to develop GPGPU processing to include the further application of asynchronous 

processing. It is envisioned to investigate the benefits of applying the methods and 

techniques contained within this research to other research areas, such as aiding live 

network and malware analysis. 

 With the current trends in technology improving IGP architecture in CPUs, it is 

intended to continue research into whether the use of these GPGPU processors could 

lessen the computational strain of other processing tasks associated with DF 

investigation. As part of this further research, an investigation is planned to measure the 

possible benefits of applying different algorithms to DF. Utilising hashing algorithms has 

been evidenced in existing research as being a natural fit for GPGPU processing. 

Therefore, it seems a logical step to investigate the benefits of applying Bloom filters to 

identify the presence of file structures within data. Measuring any resulting 

performance and accuracy differences to the string searching algorithms predominately 

used in DF tools today. 

 OpenForensics, the software created as part of this research, will be continued 

to be developed further with the intent to release to the public. It is planned to continue 

research into further improving upon the levels of parallelism employed by each GPU in 

a bid to increase performance file carving for fewer file types. It is also intended to 

review and integrate advanced file detection methods and fragmented file detection 

utilising OpenCL and GPU hardware to validate and verify the integrity of the file before 

reconstruction. Research is also planned to integrate smarter analysis based on the file 
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system structure detected on the storage device, allowing investigators to target unused 

space on the file system instead of performing analysis on the full drive. 

 A comparative file carving review of OpenForensics and a wide selection of 

commercial and freeware file carving tools is planned to fully explore the benefits of the 

presented processing framework. It is anticipated that a study from this will be 

published alongside a paper outlining the processing framework implemented. It is 

anticipated that the comparative review will highlight other areas where GPGPU 

processing could aid the DF analysis process. 

 It is anticipated that with further involvement of forensic divisions and 

academics will ensure that OpenForensics, and associated researched processing 

techniques alike, will continue to evolve and benefit the DF community. It is hoped that 

the content of this research would ignite further investigation and inspiration to evolve 

a new generation of forensic tools. 

5.2.2 Broader applications 

An investigation will be done investigating how the OpenForensics processing 

framework could benefit other fields when employed in other similar applications. 

Applying the existing processing framework to perform network analysis and live 

network forensics is believed to be a good fit, as the data analysed and methods used 

to analyse network traffic share a lot of similarities with DF forensic data analysis. 

Research is already underway by the author in analysing how the same techniques could 

be applied to analyse data within live network traffic. It is hoped to further expand this 

research to include filtering data of forensic importance in network monitoring systems. 

 This author will also investigate other applications of the processing framework 

outside of computer forensic fields, as it is apparent that the framework developed 

could be applied to computational problems of other fields. Initially, an investigation 

would aim to seek possibilities of applying the processing model to; machine learning, 
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AI, malware analysis, and health sciences. It is strongly believed that exploring and 

applying the processing framework to the computational problems of these fields would 

aid develop and broaden the capabilities of the processing framework. 

 The author further plans an investigation into visualisation techniques to aid the 

rapid analysis of live data drawn from DF and network analysis. Whilst this research has 

proposed a framework to accelerate the acquisition of evidence from unstructured 

streams of data, the author proposes that powerful visualisation tools could further aid 

the interpretation of the obtained evidence. Effective visualisation techniques paired 

with the processing framework would serve as a powerful triage tool in DF investigation. 

For live network analysis, effective visualisation tools would enhance the ability to 

quickly identify anomalies in live network traffic. 
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Appendices 

 

Appendix A 

OPENFORENSICS CLASS DIAGRAM 
 

  

1 1..* 1 1 
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Appendix B 

FOREMOST CONFIGURATION FILES

 

B.1 Foremost String Searching Configuration File Settings – 5 String Search 

 

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10 

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE 

gif y 1000 \x47\x49\x46\x38\x39\x61 

gif y 1000 \x47\x49\x46\x38\x37\x61 

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A 
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B.2 Foremost String Searching Configuration File Settings – 19 String Search 

 

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10 

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE 

gif y 1000 \x47\x49\x46\x38\x39\x61 

gif y 1000 \x47\x49\x46\x38\x37\x61 

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A 

tiff y 1000 \x49\x49\x2A\x00 

tiff y 1000 \x4D\x4D\x00\x2A 

mpg y 1000 \x00\x00\x01\xBA 

mpg y 1000 \x00\x00\x01\xB3 

wmv y 1000 \x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C 

wma y 1000 \x30\x26\xB2\x75 

doc y 1000 \xD0\xCF\x11\xE0\xA1\xB1 

docx y 1000 \x50\x4B\x03\x04\x14\x00\x06\x00 

pdf y 1000 \x25\x50\x44\x46 

zip y 1000 \x50\x4B\x03\x04 

zip y 1000 \x50\x4B\x05\x06 

zip y 1000 \x50\x4B\x07\x08 

rar y 1000 \x52\x61\x72\x21\x1A\x07\x00 

rar y 1000 \x52\x61\x72\x21\x1A\x07\x01\x00 
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B.3 Foremost String Searching Configuration File Settings – 40 String Search 

 

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10 

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE 

gif y 1000 \x47\x49\x46\x38\x39\x61 

gif y 1000 \x47\x49\x46\x38\x37\x61 

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A 

tiff y 1000 \x49\x49\x2A\x00 

tiff y 1000 \x4D\x4D\x00\x2A 

wim y 1000 \x4D\x53\x57\x49\x4D 

mpg y 1000 \x00\x00\x01\xBA 

mpg y 1000 \x00\x00\x01\xB3 

mp4 y 1000 \x00\x00\x00\x14\x66\x74\x79\x70\x69\x73\x6F\x6D 

mp4 y 1000 \x00\x00\x00\x18\x66\x74\x79\x70\x33\x67\x70\x35 

mp4 y 1000

 \x00\x00\x00\x1C\x66\x74\x79\x70\x4D\x53\x4E\x56\x01\x29\x00\x46\x4D\x53\x4E\x56\x6D\x70\x34\x32 

mov y 1000 \x00\x00\x00\x14\x66\x74\x79\x70\x71\x74\x20\x20 

m4v y 1000 \x00\x00\x00\x18\x66\x74\x79\x70\x6D\x70\x34\x32 

wmv y 1000 \x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C 

mkv y 1000 \x1A\x45\xDF\xA3\x93\x42\x82\x88\x6D\x61\x74\x72\x6F\x73\x6B\x61 

wma y 1000 \x30\x26\xB2\x75 

m4a y 1000 \x00\x00\x00\x20\x66\x74\x79\x70\x4D\x34\x41\x20 

doc y 1000 \xD0\xCF\x11\xE0\xA1\xB1 

docx y 1000 \x50\x4B\x03\x04\x14\x00\x06\x00 

pdf y 1000 \x25\x50\x44\x46 

zip y 1000 \x50\x4B\x03\x04 

zip y 1000 \x50\x4B\x05\x06 

zip y 1000 \x50\x4B\x07\x08 

zip y 1000 \x50\x4B\x03\x04\x14\x00\x01\x00\x63\x00\x00\x00\x00\x00 

rar y 1000 \x52\x61\x72\x21\x1A\x07\x00 

rar y 1000 \x52\x61\x72\x21\x1A\x07\x01\x00 

xar y 1000 \x78\x61\x72\x21 

xz y 1000 \xFD\x37\x7A\x58\x5A\x00 

jar y 1000 \x4A\x41\x52\x43\x53\x00 

jar y 1000 \x5F\x27\xA8\x89 

iso y 1000 \x43\x44\x30\x30\x31 

cso y 1000 \x43\x49\x53\x4F 

img y 1000 \x50\x49\x43\x54\x00\x08 

img y 1000 \x51\x46\x49\xFB 

img y 1000 \x53\x43\x4D\x49 

cas y 1000 \x5F\x43\x41\x53\x45\x5F 
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rpm y 1000 \xED\xAB\xEE\xDB 

mof y 1000 \xFF\xFE\x23\x00\x6C\x00\x69\x00\x6E\x00\x65\x00\x20\x00\x31\x00 
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B.4 Foremost File Carving Configuration File Settings – 9 File Types 

 

jpg y 10485760 \xFF\xD8\xFF\xE0\x00\x10 \xFF\xD9 

jpg y 10485760 \xFF\xD8\xFF\xE1\x35\xFE \xFF\xD9 

gif y 10485760 \x47\x49\x46\x38\x39\x61 \x00\x3B 

gif y 10485760 \x47\x49\x46\x38\x37\x61 \x00\x3B 

png y 10485760 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A \x49\x45\x4E\x44\xAE\x42\x60\x82 

mpg y 10485760 \x00\x00\x01\xBA \x00\x00\x01\xB7 

mpg y 10485760 \x00\x00\x01\xB3 \x00\x00\x01\xB7 

docx y 10485760 \x50\x4B\x03\x04\x14\x00\x06\x00 \x50\x4B\x05\x06 

pdf y 10485760 \x25\x50\x44\x46 \x0A\x25\x25\x45\x4F\x46 
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Appendix C 

POLICE SCOTLAND CORRESPONDANCE 

 

From: aaaaaaaaaaaa 

Sent: 08 November 2015 21:46 

To: Bayne, Ethan 

Cc: Ferguson, Ian 

Subject: Re: File Carving 

  

  

Hi Ethan - 

  

Sorry I didn't get a chance to get back to you sooner, but I am barely ever in the office these days (or so it seems) and haven't 

therefore been working on too many cases. 

  

Having said that, I made sure I unleashed your file carver on a couple of test cases (ie, rigged drives!) to see what it revealed.  I was 

pleased to find that it managed to recover files from a 'live' drive very quickly indeed and found absolutely everything I was after, 

all of which is of course positive and what I hope you were after.  On average I found it worked about 160% faster than an equivalent 

product, which is all the more remarkable given the obvious shortcoming to the product. 

  

The tool I compared it with is smart enough to know what is an unallocated cluster and what is not, and searched only those sectors, 

whereas your product seemed to search the entire drive content from one end to the other.  That it managed to do this faster than 

a different tool which was far more selective (and in doing so searched only about 50% of the 120Gb drive's storage area).  The 

drawback really is that your program assumes that everything is a drive 'artefact' and not a live file, which means that we cannot 

differentiate between one and the other.  Finding deleted and unallocated files is a substantial - and slow - part of what we do, and 

anything that can speed that up would be of benefit.  Unfortunately we would have to have some way of saying that what a program 

recovers definitely comes from only that unallocated region, and not from the actual filing system.  Am I making sense? 

  

Having said that - it's really good! 

  

kind regards 

  

aaaaaaaa 


