
ACCELERATING DIGITAL FORENSIC SEARCHING

THROUGH GPGPU PARALLEL PROCESSING

TECHNIQUES

A thesis submitted for the degree of Doctor of Philosophy (PhD)

by

Ethan Bayne

School of Design and Informatics,

Abertay University.

February 2017

ii

Declaration

Candidate’s declarations:

I, Ethan Bayne, hereby certify that this thesis submitted in partial fulfilment of the

requirements for the award of Doctor of Philosophy (PhD), Abertay University, is

wholly my own work unless otherwise referenced or acknowledged. This work

has not been submitted for any other qualification at any other academic

institution.

Signed ………………………………………………………………………

Date………………………………………………………………………….

Supervisor’s declaration:

I, Robert Ian Ferguson, hereby certify that the candidate has fulfilled the

conditions of the Resolution and Regulations appropriate for the degree of Doctor

of Philosophy (PhD) in Abertay University and that the candidate is qualified to

submit this thesis in application for that degree.

Signed ………………………………………………………………………

Date………………………………………………………………………….

Certificate of Approval

I certify that this is a true and accurate version of the thesis approved by the

examiners, and that all relevant ordinance regulations have been fulfilled.

Supervisor………………………………………………………………….

Date…………………………………………………………………………

iii

Dedication

I would like to thank my supervisors – Dr Robert Ian Ferguson and Dr Adam Sampson –

for the countless conversations around the different aspects of this research. Their

timely encouragement and suggestions have aided in achieving successes beyond

anything we expected at the beginning of this investigation.

A notable mention goes to Dr Lynsay Shepherd and Dr Gavin Hales. Their friendship (and

“bants”) in the department against the dark arts office has kept me sane for the duration

of my PhD studies.

This work is dedicated to my mum and dad for their continued love and support, without

it, this research would have been impossible to accomplish. I would also like to thank

my wife – Cecilia – for her continued patience and encouragement. Without her

emotional support and supply of caffeine at home, I would not have had the same

motivation to succeed in my research.

iv

ABSTRACT

Background

String searching within a large corpus of data is a critical component of digital forensic

(DF) analysis techniques such as file carving. The continuing increase in capacity of

consumer storage devices requires similar improvements to the performance of string

searching techniques employed by DF tools used to analyse forensic data.

 As string searching is a trivially-parallelisable problem, general purpose graphic

processing unit (GPGPU) approaches are a natural fit. Currently, only some of the

research in employing GPGPU programming has been transferred to the field of DF, of

which, a closed-source GPGPU framework was used— Complete Unified Device

Architecture (CUDA). Findings from these earlier studies have found that local storage

devices from which forensic data are read present an insurmountable performance

bottleneck.

Aim

This research hypothesises that modern storage devices no longer present a

performance bottleneck to the currently used processing techniques of the field, and

proposes that an open-standards GPGPU framework solution – Open Computing

Language (OpenCL) – would be better suited to accelerate file carving with wider

compatibility across an array of modern GPGPU hardware. This research further

hypothesises that a modern multi-string searching algorithm may be better adapted to

fulfil the requirements of DF investigation.

Methods

This research presents a review of existing research and tools used to perform file

carving and acknowledges related work within the field. To test the hypothesis, parallel

v

file carving software was created using C# and OpenCL, employing both a traditional

string searching algorithm and a modern multi-string searching algorithm to conduct an

analysis of forensic data. A set of case studies that demonstrate and evaluate potential

benefits of adopting various methods in conducting string searching on forensic data are

given. This research concludes with a final case study which evaluates the performance

to perform file carving with the best-proposed string searching solution and compares

the result with an existing file carving tool— Foremost.

Results

The results demonstrated from the research establish that utilising the parallelised

OpenCL and Parallel Failureless Aho-Corasick (PFAC) algorithm solution demonstrates

significantly greater processing improvements from the use of a single, and multiple,

GPUs on modern hardware. In comparison to CPU approaches, GPGPU processing

models were observed to minimised the amount of time required to search for greater

amounts of patterns. Results also showed that employing PFAC also delivers significant

performance increases over the BM algorithm. The method employed to read data from

storage devices was also seen to have a significant effect on the time required to

perform string searching and file carving.

Conclusions

Empirical testing shows that the proposed string searching method is believed to be

more efficient than the widely-adopted Boyer-Moore algorithms when applied to string

searching and performing file carving. The developed OpenCL GPGPU processing

framework was found to be more efficient than CPU counterparts when searching for

greater amounts of patterns within data. This research also refutes claims that file

carving is solely limited by the performance of the storage device, and presents

compelling evidence that performance is bound by the combination of the performance

of the storage device and processing technique employed.

vi

TABLE OF CONTENTS

Declaration ... ii

Certificate of Approval .. ii

Dedication.. iii

ABSTRACT .. iv

List of Figures .. x

List of Tables .. xii

Definitions .. xiii

Chapter 1: INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Problem .. 2

1.3 Thesis aim ... 3

1.4 Thesis contribution ... 4

1.5 Thesis organisation ... 5

Chapter 2: BACKGROUND .. 7

2.1 A historic perspective on the current state of digital forensics .. 7

2.2 An introduction to the concepts of file carving .. 11

2.3 Introduction to string searching algorithms ... 13

2.4 Differences between CPU and GPU architecture ... 15

2.5 Understanding OpenCL and GPGPU processing ... 19

2.6 Related work ... 23

2.7 Chapter summary ... 27

Chapter 3: SOLUTION CONSTRUCTION AND TESTING METHODOLOGY.. 28

3.1 Research platform development .. 28

3.1.1 Technologies used .. 29

vii

3.1.2 Research platform design .. 30

3.1.3 Research platform implementation ... 33

3.1.4 Research platform testing .. 37

3.2 Algorithm choices for data analysis .. 39

3.3 Testing strategy .. 44

3.3.1 Test parameters ... 44

3.3.2 System setup strategy .. 47

3.4 Test platforms ... 48

3.5 Chapter summary ... 49

Chapter 4: EVALUATION .. 51

4.1 Evaluation introduction .. 51

4.2 Foremost: gathering base performance metrics .. 52

4.2.1 Introduction ... 52

4.2.2 Aim ... 52

4.2.3 Method .. 53

4.2.4 Results .. 54

4.2.5 Conclusions .. 55

4.3 Case study 1: Using GPUs to conduct string searching ... 58

4.3.1 Introduction ... 58

4.3.2 Aim ... 58

4.3.3 Method .. 58

4.3.4 Results .. 62

4.3.5 Conclusions .. 65

4.4 Case study 2: Utilising asynchronous parallel techniques .. 69

viii

4.4.1 Introduction ... 69

4.4.2 Aim ... 69

4.4.3 Method .. 70

4.4.4 Results .. 73

4.4.5 Conclusions .. 78

4.5 Case study 3: Employing the parallel failureless Aho-Corasick (PFAC) algorithm 82

4.5.1 Introduction ... 82

4.5.2 Aim ... 82

4.5.3 Method .. 83

4.5.4 Results .. 85

4.5.5 Conclusions .. 94

4.6 Case study 4: Investigation of data reading performance .. 97

4.6.1 Introduction ... 97

4.6.2 Aim ... 97

4.6.3 Method .. 98

4.6.4 Results .. 102

4.6.5 Conclusions .. 109

4.7 Case study 5: Applying proposed string searching methods to conduct file carving 114

4.7.1 Introduction ... 114

4.7.2 Aim ... 114

4.7.3 Method .. 114

4.7.4 Results .. 117

4.7.5 Conclusions .. 121

4.8 Case study conclusions ... 123

4.8.1 Summary of case study results .. 123

4.8.2 Validation of research in a real-world digital forensics scenario 126

ix

Chapter 5: CONCLUSION AND FUTURE WORK ... 128

5.1 Conclusion .. 128

5.1.1 Research question Q1 .. 128

5.1.2 Research question Q2 .. 129

5.1.3 Research question Q3 .. 129

5.1.4 Research question Q4 .. 130

5.1.5 Research question Q5 .. 131

5.1.6 Answering the research aim .. 132

5.2 Future work .. 134

5.2.1 OpenForensics future work.. 134

5.2.2 Broader applications .. 135

Appendices ... 143

x

List of Figures

Figure 1: Intel Skylake CPU architecture .. 16

Figure 2: Nvidia Maxwell GPU architecture ... 17

Figure 3: OpenCL processing methodology .. 20

Figure 4: OpenCL kernel memory model ... 21

Figure 5: OpenCL kernel to GPGPU translation .. 23

Figure 6: OpenForensics GUI interface... 32

Figure 7: OpenForensics processing interface ... 33

Figure 8: OpenForensics class diagram .. 34

Figure 9: OpenForensics operation activity diagram ... 35

Figure 10: Case study 4 file carving process activity diagram .. 36

Figure 11: Case study 4 string searching process activity diagram .. 36

Figure 12: Boyer-Moore algorithm example .. 40

Figure 13: AC algorithm state machine example ... 41

Figure 14: Parallel Failureless Aho-Corasick algorithm state machine example .. 43

Figure 15: Foremost command used with launch options ... 53

Figure 16: Foremost processing rate analysis with 95% confidence intervals ... 55

Figure 17: Foremost patterns searched and time relationship .. 56

Figure 18: Case study 1 GPU brute force algorithm pseudocode .. 59

Figure 19: Case study 1 CPU modified Boyer-Moore algorithm pseudocode .. 61

Figure 20: Case study 1 processing cycle ... 62

Figure 21: Case study 1 processing rate analysis with 95% confidence intervals 64

Figure 22: Case study 1 patterns searched and time analysis .. 65

Figure 23: Case study 1 section processing approach .. 71

Figure 24: Case study 2 processing cycle ... 72

Figure 25: Case study 2 section processing approach .. 73

Figure 26: Case study 2 processing rate analysis with 95% confidence intervals 75

Figure 27: Case study 2 patterns searched and time analysis .. 76

Figure 28: Case study 2 technique speedup over single CPU solution ... 78

Figure 29: Case study 3 GPU PFAC algorithm pseudocode .. 83

Figure 30: Case study 3 CPU PFAC algorithm pseudocode .. 84

xi

Figure 31: Case study 3 processing rate analysis with 95% confidence intervals 87

Figure 32: Case study 3 patterns searched and time analysis .. 88

Figure 33: Case study 3 technique speedup over single CPU solution ... 89

Figure 34: Average time taken for single-threaded CPU to conduct string searching with modified BM and

PFAC algorithm processing ... 90

Figure 35: Average time taken for multi-threaded CPU to conduct string searching with modified BM and

PFAC algorithm processing ... 91

Figure 36: Average time taken for single GPU to conduct string searching with modified BM and PFAC

algorithm processing .. 92

Figure 37: Average time taken for multi-GPU to conduct string searching with modified BM and PFAC

algorithm processing .. 93

Figure 38: Average time taken for single IGP to conduct string searching with modified BM and PFAC

algorithm processing .. 94

Figure 39: Data transferal differences between case study 3 and 4 .. 99

Figure 40: Case study 4 data transfer method ... 100

Figure 41: Case study 4 processing rate analysis with 95% confidence intervals 104

Figure 42: Case study 4 patterns searched and time analysis .. 105

Figure 43: Case study 4 technique speedup over single CPU solution ... 106

Figure 44: Average time taken to conduct string searching with each processing technique 108

Figure 45: Case study 5 processing cycle ... 116

Figure 46: Case study 5 Foremost command ... 116

Figure 47: Case study 5 processing rate analysis with 95% confidence intervals 118

Figure 48: Average time taken to perform file carving with each processing technique 120

Figure 49: Test Platform C performance progression .. 126

xii

List of Tables

Table 1: File type headers .. 45

Table 2: Test platform specifications ... 49

Table 3: Foremost search time results ... 54

Table 4: Case study 1 search time results .. 63

Table 5: Case study 2 search time results .. 74

Table 6: Case study 3 search time results .. 86

Table 7: Storage device benchmark results ... 101

Table 8: Case study 4 search time results .. 103

Table 9: Case study 4 speedup over base performance metrics gathered by Foremost 112

Table 10: Case study 5 patterns searched .. 115

Table 11: Case study 5 file carving time results ... 117

Table 12: Case study 5 speedup over Foremost results ... 119

xiii

Definitions

Digital forensics: A field of forensic science that encompasses the recovery and analysis of data found on

digital devices.

Forensic image: An exact digital copy of the data held on a digital storage device.

Digital evidence: A corpora of electronic data that contains information that may be of forensic interest

to a digital forensic investigation.

File carving: The process of reassembling digital files from large unstructured streams of electronic data.

String searching: The act of searching for a combination of characters, or words, within a larger body of

text.

Pattern matching algorithm: An algorithm that systematically performs string searching through a

sequence of operations and rules.

File system: A record used by computers to store and retrieve data held on storage devices.

File fragmentation: The term given to a file that may be stored in more than one physical area of a storage

device.

Central Processing Unit (CPU): The main processing component within a computer that executes

instructions required by a computer program.

Graphics Processing Unit (GPU): A specialised electronic component within most modern computers that

is designed to process large amounts of information quickly in parallel.

Integrated Graphics Processor (IGP): An often scaled down version of a graphics processing unit that

coexists as an integrated component on most recent central processing units.

Algorithmic Processing Unit (aka: Processing core): A vital component of all processors that allows the

processor to processing data with a set of instructions.

Cache: A hardware or software component that stores data so that future requests for that data can be

served faster.

Computer Bus: The communication channels used to transmit data between components of a computer.

Speedup: The improvement in speed executing a task on two similar architectures with different

resources.

 P a g e | 1

Chapter 1: INTRODUCTION

1.1 Motivation

The goal of a digital forensics (DF) investigation, like any other investigation, is to

uncover and present the truth (Casey 2011). DF can be defined as the science of

ascertaining, analysing, and presenting digital evidence recovered from an electronic

device, while DF investigation, on the other hand, aims to reconstruct a sequence of

events that may have transpired from the digital evidence recovered. In recent criminal

cases, DF investigations are of paramount importance when investigating any crime

where electronic devices may have been used. DF investigations start from the moment

an electronic device is discovered at the scene of a crime. Authorities have specific

procedures and guidelines to ensure that any electronic devices and media are seized

securely, safeguarding any data present on the devices from interference or

modification. Any data held on electronic devices recovered is copied securely to a

forensic image as part of the investigation process to ensure the actual device is

unaltered from the state it was seized. However, due to the size of the data corpora

being recovered in each investigation, it is becoming more conventional for forensic

investigators to analyse the data directly from the drive with specialist write-blockers, a

device which stops data on the drive from being altered.

 Technology is evolving with each passing year, where today consumers have

access to more types of devices – such as mobile phones, tablets, smart wearables and

smart appliances – that are becoming just as sophisticated as a desktop computer,

providing users smarter and easier access to entertainment, banking, communication

and more. Unfortunately, alongside technology advancement, methods and devices

which criminals are choosing to commit a crime have also diversified. With criminals

more frequently using all manner of technology to facilitate crimes and avoid

 P a g e | 2

apprehension, the amount of data gathered in criminal investigations is growing. The

increasing volumes of evidence collected in modern digital forensic cases now challenge

law enforcement agencies and researchers alike to advance techniques and

technologies that are used to perform DF investigations and reconstruct electronic

evidence.

 The source of inspiration for this research originates from reviewing current

literature in the field around what problems DF face in modern times. Garfinkel (2010,

p. S64–S73) paints a bleak state of affairs that indicate that the successes that the DF

community enjoyed for the last ten years are quickly coming to an end; that the tools

and techniques used by DF professionals are being outpaced by the modern

advancements in technology. This thesis is written in the context which primarily aims

to address the problems faced by DF investigation carried out by policing authorities.

Although, it is also with the hope that this research would also benefit all applications

of DF recovery, including that used for personal and commercial use.

1.2 Problem

The growth of data storage available on modern storage devices has raised significant

concern within the DF community, as current generation DF tools already encounter

difficulty in processing modest-sized corpora of digital evidence within a reasonable

timescale (Richard III and Roussev 2006, p. 76–91; Garfinkel 2010, p. S64–S73). This is

mainly due to current techniques employed by DF tools to inspect each segment of

forensic data held on storage devices seized in a DF investigation. Researchers have

suggested moving processing intensive tasks to powerful purpose-built Beowulf clusters

or super-computers (Ayers 2009, p. S34–S42) or distributing computationally intensive

tasks amongst a group of machines (Roussev and Richard III 2004, p. 1–16). However,

this research proposes to investigate the application of graphic processing units (GPUs)

paired with parallel-friendly algorithms to compute processing intensive tasks— a

 P a g e | 3

compelling alternative that may prove more efficient and cost-effective for DF

professionals.

 Modern GPUs can contain thousands of general purpose processing cores able

to compute large amounts of data in a short time due to effective parallel processing

design. Significant research has been conducted on utilising GPGPU programming on

GPUs to provide aid in the calculation of highly demanding processing tasks. However,

only some advances made in this research have been transferred into the field of DF, all

which are primarily focused utilising CUDA— a closed-source programming framework

presented by Nvidia exclusively for use on their line of discrete graphics cards (Marziale,

Richard and Roussev 2007, p. 73–81; Skrbina and Stojanovski 2012; Collange et al. 2009,

p. 1–10; Breß, Kiltz and Schäler 2013, p. 115–129; Chen and Wu 2013, p. 1–5; Zha and

Sahni 2011, p. 141–158).

 The introduction of central processing units (CPUs) with powerful integrated

graphics processors (IGPs) in recent years from Intel (Intel n.d.) and AMD (Advanced

Micro Devices n.d.) have opened up the possibility of powerful parallel processing

without the requirement of discrete graphics hardware. Consequently, as these modern

CPUs with IGPs are restricted from employing CUDA, utilising the cross-compatibility of

an open-standards GPGPU processing framework – such as OpenCL – would be a logical

step in tackling the processing demands of analysing extensive digital corpora on even

modest specification computers.

1.3 Thesis aim

As modern storage technologies continue to improve the speed that data can be read

from a storage device, the speed that DF tools can analyse data from storage devices

have not. This research presents a study into methods to speed up DF analysis on

modern storage devices. This aim of this research is to investigate whether the

application of GPGPU technologies and modern parallelisable string searching

 P a g e | 4

algorithms could speed up pattern matching—and by extension, reduce the time

required to perform file carving on forensic data in DF investigations. This thesis aim can

be broken down into the following research questions:

Q1: “Could an OpenCL GPGPU framework provide a reliable foundation to analyse

digital evidence and decrease the time required for processing forensic images

without affecting accuracy?”

Q2: “Is there any benefit of employing multiple GPGPU processing devices to

perform pattern matching on forensic data?”

Q3: “Are there any advantages of employing GPGPU processing over traditional

CPU processing methods for performing pattern matching on forensic data?”

Q4: “Could further performance be gained through employing a multi-string search

algorithm to perform string searching with the proposed processing

techniques?”

Q5: “Is the potential processing rate in performing data analysis within the context

of digital forensics limited by the speed of the storage device or the speed of the

processor?”

1.4 Thesis contribution

This thesis will present a comprehensive investigation into the possible benefits of

employing modern GPUs and IGPs to conduct string searching on forensic data. The

contribution of this research will build upon existing work around GPGPU processing

 P a g e | 5

within DF, conducting experiments where OpenCL, an open-standards GPGPU

programming framework, is used to analyse forensic data.

 This research also investigates currently used algorithms used within DF,

specifically analysing a well-established open-source file carving tool— Foremost

(Kendall, Kornblum and Mikus n.d.). This investigation will determine whether currently

employed algorithms used by Foremost are still suitable, or whether modern multi-

string algorithms would be better suited for the requirements of modern DF

investigation.

 The resulting investigation of the above areas of string searching will then be

used to measure whether the proposed methods could improve the overall

performance when employed to conduct file carving. File carving is a technique used in

DF where a forensic image is dissected for specific files that might be contained within

its data. It can often provide a thorough and accurate view of all files contained within

electronic evidence to DF investigators, including files which may have been deleted or

stored in unallocated space of a computer’s storage device.

 The thesis aims to refute any claims that GPGPU processing has limited, or no,

benefit to the problems faced by modern DF investigation. Results from this thesis aim

to outline any performance benefits of applying modern parallel technologies over

currently employed conventional CPU techniques. The advantages of introducing GPUs

to handle the processing and analysis of forensic data are expected to succeed existing

methods used in the field. The thesis makes an original contribution to DF research by

being the first to investigate and analyse the benefits of applying OpenCL and the PFAC

algorithm to the problems of DF investigation.

1.5 Thesis organisation

The remaining chapters of this thesis are organised as follows:

 P a g e | 6

 Chapter 2 explores the background required to grasp the topics presented in this

research. This chapter will start by presenting a historical perspective on the current

state of the field of DF. This will be followed by a technical walkthrough of; the concepts

of string searching and file carving, an examination of the differences between

traditional CPUs and modern GPUs, an introduction to OpenCL and GPGPU processing,

and finally, presenting characteristics of pattern matching algorithms. The chapter will

conclude with presenting related work in the field.

 Chapter 3 will describe the methodology used in this research. This chapter

presents the reasoning behind the chosen technologies and algorithms used to create

the proposed solution. This chapter also outlines the adopted testing strategy, including

how testing was conducted and what was measured. Finally, the hardware

specifications of the test platforms are presented, which were used to conduct testing.

 Chapter 4 presents the various case studies carried out during the length of this

research. These case studies are similarly structured, outlining; the methodology behind

each case study, the results that each case study produced and a discussion on what

each case study showed. Finally, this chapter will summarise the findings of each

presented case studies and analyse the significance of the results submitted by each.

 Chapter 5 concludes by answering the research questions and presents future

work intended on the expansion of this study.

 P a g e | 7

Chapter 2: BACKGROUND

2.1 A historic perspective on the current state of digital forensics

The recognition of DF as a profession and scientific discipline can be traced back to the

late 1980s and early 1990s when policing authorities set up specialist groups focused on

investigating the technical aspects of computer related crimes (Casey 2011). Similarly,

in the same era, multiple countries started introducing new laws that outlined clear

guidelines for computer-related crimes where existing laws failed to prosecute against,

these laws included dealing with issues such as; copyright, privacy and harassment, and

child pornography (Crown 2008, p. 16; Nugent 1995, p. 159–182).

 Since the field’s early conception, DF matured through the 1990s with research

and development of new tools and methods to facilitate the scientific acquisition of

digital evidence; however, proper standards outlining the best practices to train and

perform digital evidence seizure and investigation were not developed until the 2000s.

Most notably, in 2002, the Scientific Working Group for Digital Evidence (SWGDE)

published guidelines outlining best practices in the field (Scientific Working Group on

Digital Evidence 2002). Comparably, in 2005, there were efforts to develop the

examination of digital evidence into an accredited discipline under international

standards (International Organization for Standardization n.d.).

 While these international standards have been further interpreted by most

countries and shaped into localised practical models outlining procedures to conduct DF

investigations, such as the National Police Chiefs’ Council (NPCC) guidelines adopted by

the policing authorities within the United Kingdom, which replaces the Association of

Chief Police Officer (ACPO) guidelines (Chief Police Officers 2008, p. 72). All guidelines

on how to perform DF investigations arguably share the same core principles— that is

that all information must be authentic, reliably obtained, and admissible. These

 P a g e | 8

requirements also aid enforcements of strict requirements and standards which DF

software tools used by DF investigators must abide by, ensuring that any evidence

produced by these tools can be reconstructed using the same means to be admissible

as evidence in a DF investigation.

 Since its inception, DF tools have been known to keep ahead of the technological

curve as they were capable of analysing modest sized corpora of forensic data

associated with DF cases of that time; however, this opinion has changed in recent years,

as concerns have been raised within the community around the lack of innovation and

evolution of DF tools to cope with the increasing demand and volume of cases involving

digital evidence. Paired with the lack of an effective research direction, some

researchers are arguing that the “golden age [of digital forensics] is quickly coming to

an end” (Garfinkel 2010, p. S64–S73).

 A report was published on the conclusions of the Colloquium for Information

Systems Security Education (CISSE) summit in 2009. The summit gathered a group of DF

researchers, educators, and practitioners to discuss ideas for the developments of

research and education within the field of DF (Nance, Hay and Bishop 2009, p. 1–6). It

was identified that the current developments in the field have been largely a credit to

practitioners of the trade. As a result, the tools that were developed have been in

reaction to a particular niche set of scenarios or issues faced. This response-driven

development cycle was seen by the panel as a danger, with the risk that DF methodology

and associated tools eventually would lag behind the advancements of modern

technology without adequate research efforts focused on advancing key areas. It was

clear from the summit that this could have been drawn down to the absence of any

research or development plan, and a lack of guidance for academic students to focus on

in this ever evolving field.

 The systematic review from Raghavan (2013, p. 91–114) also highlighted the

need of DF triage tools to allow investigators to quickly analyse data corpora and present

a high-level overview of the contents of forensic data. It is suggested that the ability to

 P a g e | 9

conduct triage on large amounts of data will provide investigators with the ability to

prioritise analysis of data that could be of key importance to a case. A thesis by Hales

(2016) supports this claim, concluding that – in some scenarios – visualisation tools can

help the investigator draw more accurate conclusions than what is achievable with

traditional textual based tools. The ability to perform effective triage relies heavily on

two predominant research areas, the ability to analyse large amounts of data quickly,

and the ability to visualise data in an easy-to-decipher format for the DF investigator.

 “In the decade since the inception of first generation tools, the limitations of this

architecture have become apparent,” quotes Ayers (2009), who identifies the

constraints of the current generation of tools at processing large amounts of digital

corpora. The author offers criticism on the existing trend of incremental updates to

existing first generation of investigative tools, such as EnCase and FTK. Calling the tools

“Generation 1.5” due to their lack of addressing significant limitations, and further

failing to employ the necessary ingredients that the DF community desperately requires

to stay ahead of technological advancements.

 The problem of coping with the increasing volumes of digital evidence is not the

only challenge that is faced in modern DF investigation. Advances in full-disk encryption

have posed an insurmountable challenge to conduct any post-incident DF analysis

unless the key used to encrypt the drive is known. As full-disk encryption is becoming

commonplace in modern consumer operating systems – including Microsoft Windows,

Apple OSX, and many popular distributions of Linux – there has recently been a gradual

shift of research focus to investigate what evidence can be collected during, or prior to,

a crime being committed. Naturally, this has called for improving the capability of

network forensic techniques.

 An example of network forensics is deep-packet inspection (DPI). DPI was

originally conceptualised to allow internet service providers (ISPs) to analyse and

optimise the flow of data transferred on their network. However, modern applications

of DPI allow for data mining—revealing exactly what data is being requested over

 P a g e | 10

networks (Dharmapurikar et al. 2003, p. 52–61). DPI conducts data mining through

pattern matching, comparing live data sent over the network against a catalogue of

known patterns of illegal or unwanted data. In practice, ISPs typically utilise data mining

approaches with DPI to enforce policies on illegal material, however, state governments

have been accused of using DPI for surveillance and internet censorship (Wagner 2009).

 Intrusion detection systems (IDS) are another network devices employed to

perform network forensics. IDS systems are typically employed on a local network to

monitor live network traffic for the existence of any anomalies in the data transmitted

(Vasiliadis et al. 2008, p. 116–134). Whilst primarily used to detect the presence of

malware or unauthorised access on a network, the role of IDS systems could be

extended to analyse live data for events of forensic significance on the local network—

such as unusual usage patterns, or increased file sharing activities (Sommer 1999, p.

2477–2487).

 Undeniably, utilising network forensic tools and expanding their role for

proactive DF investigation could reap evidence that could be useful to an investigation,

however, both approaches are surrounded by privacy, legal and ethical challenges that

limit the amount of useful information that could be gathered by network forensic

techniques (Khan et al. 2016, p. 214–235). Asides from these nontechnical issues,

network forensics also share a mutual technical problem with traditional DF tools, as

monitoring network traffic is typically a processor-bound activity that requires efficient

processing frameworks to monitor live real-time traffic with minimal latency. As such, it

could be argued that the greatest challenge faced by modern DF is the lack of efficient

processing frameworks that can process the typical data associated with computing of

the modern era.

 P a g e | 11

2.2 An introduction to the concepts of file carving

File carving is the process of extracting a collection of data from a larger data set. File

carving techniques are often used to discover and reconstruct files from data contained

by storage devices, often when a file system’s directory is missing or corrupted. In

several DF cases, it was found that the recovery of deleted data or partial file data could

greatly aid an investigation, which gave rise to the necessity of file carving (Raghavan

2013, p. 91–114). Recognised as “a science and an art unto itself” (Altheide and Carvey

2011), file carving reconstructs files by attempting to recognise content or structure of

file types from an otherwise unstructured stream of data. The technique can be used to

search for files on any file system type or device, as the file system is not used during

the process; instead, data is interpreted in a raw form and searched sequentially for

residual data that match the characteristics of certain files. Providing that the data held

on the storage device not be encrypted, overwritten, or securely deleted, files can be

reliably reconstructed through file carving techniques (Merola 2008, p. 40).

 File carving is most effectively used in criminal investigations where files would

often be obscured through some means, such as within hidden partitions, or through

deletion. Through employing file carvers, DF investigators are often able to recover

greater amounts of evidence in cases than relying on logically searching the files

contained within a storage device’s file system.

 In its most basic form, file carving uses file headers and footers to identify files

from the stream of forensic data. File headers and footers used are certain patterns of

bytes which simply mark a location where a file begins and ends on the storage device.

This simplistic method of file carving can often reconstruct a copy of discovered files

from assembling the data between each header and footer found. However, it assumes

that the files searched for are not fragmented, that the beginning of the file is intact and

present, and that the file headers searched for are not a common pattern of bytes (Beek

2011). Files recovered that don’t possess all of these assumptions may be unusable or

 P a g e | 12

incomplete. Unusable and incomplete files are often referred to as false positives in file

carving results as they often cannot be interpreted by the investigator.

 Aside from the role that file carving plays in DF, file carving also has vital roles in

other computing fields, such as personal and commercial data recovery on damaged

hard drives. Several data recovery programs (WiseCleaner n.d.; File Recovery Ltd. n.d.;

Grenier n.d.; Piriform n.d.; EaseUS n.d.) include, and rely on, file carving methods to

restore files when a storage device’s file system is damaged beyond recovery. These

commercially available programs allow users to recover files from a storage device

which would otherwise be lost.

 File fragmentation is known to be one of the largest problems faced when

performing file carving, as tools fail to detect whether a file had been saved into more

than one location of the storage device. In recent years, file fragmentation has been one

of the prominent areas of DF research. The DFRWS File Carving Challenge (Carrier, Casey

and Venema 2006) challenged researchers to produce algorithms to detect fragmented

files with minimal false positive rates. In response, research from Garfinkel (2007, p. 2–

12) evidenced that files are rarely split into more than two fragmented pieces after

conducting extensive fragmentation research on more than 300 used hard drives.

Interestingly, Garfinkel also noted that most files of forensic interest are not typically

fragmented. Findings from this research raise a compelling argument on whether

developing smarter algorithms would benefit DF investigation when it may introduce

the risk of ignoring some valuable evidence.

 File carving performance relies heavily on string searching algorithms to

accelerate searching through forensic data for patterns— as searching data is arguably

the most computationally complex task involved when performing file carving. Although

we traditionally associate string searching as a method of searching for particular strings

in bodies of text, the concepts of string searching can also be applied to other areas of

search, such as the current problem of searching for bytes within data.

 P a g e | 13

2.3 Introduction to string searching algorithms

String searching could be considered to be one of the most important subjects in the

wider domain of text processing. String searching algorithms are one of the fundamental

components employed in lots of software and operating systems as a technique to

perform the searching of one – or more – patterns within a body of text. String searching

is used in a wide range of scientific fields where the processing and analysis of large

volumes of data is required. As the typical amounts of data handled by many

computational sciences arguably tend to double in size every eighteen months, research

around string searching algorithms continues to provide theoretical computer scientists

challenging problems to overcome (Charras and Lecroq 2004).

 There are two forms of string searching algorithms; approximate and exact. The

form of string searching algorithms that this research is interested in are exact string

searching algorithms. This type of algorithm deals with absolute, rather than

approximate, matching of patterns.

 The effectiveness of string searching algorithms is typically measured by using

computational complexity theory. Computational complexity theory is the study

measuring the scalability of algorithms, and allows representation of how the time

required to solve a problem grows as the input grows. The concept of growth is

represented through the use of big O (𝑂) notion. Through utilising this notion, the

scalability of an algorithm can be presented without the added considerations of

processor speed, programming language, machine architecture, and other factors

(Mohr n.d.). Use of computational complexity theory will be used in this research to

present the effectiveness of the algorithms discussed.

 There have been copious amounts of string matching algorithms over the years,

most which were developed in response to a particular problem. Alongside it, there have

been many attempts to categorise algorithms based upon their searching

 P a g e | 14

characteristics. This section will introduce three categories of string matching algorithms

which will sufficiently cover the topics presented later in this research.

 Brute force algorithms, also known as naïve search algorithms, presents a rather

straightforward approach in performing string searching for patterns within text. Brute

force algorithms typically operate by analysing each position within the text individually,

attempting to match the following sequential characters with the searched pattern for

a match. Arguably, brute force algorithms are the easiest to understand as it follows a

very humanistic approach to finding patterns in text; however, this form of algorithm

typically is found to perform slower than others as the time to analyse every position

within the text is arguably ineffective for many applications.

 Single string searching algorithms are a general classification of algorithms which

incorporate optimisations to accelerate searching for a single pattern. These

optimisations typically reduce the amount of text being analysed through employing a

variety of pre-processing techniques; for instance, the Rabin-Karp algorithm (Karp and

Rabin 1987, p. 249–260) utilises hashing to accelerate searching by hashing the searched

pattern and parts of the text and comparing the derived results. The Boyer-Moore (BM)

algorithm (Boyer and Moore 1977, p. 762–772), on the contrary, utilises what is known

about the pattern to skip positions within the text where the pattern cannot be

matched— accelerating searching performing and lessening the computational work

required to analyse text.

 Multi-string searching algorithms are defined by this research as an algorithm

which can find a finite set of patterns. Although most brute force and single string

searching algorithms could be modified to handle searching for multiple patterns, the

effectiveness of these algorithms could diminish. Finite-state automaton algorithms,

such as the Aho-Corasick (AC) algorithm (Aho and Corasick 1975, p. 333–340), employ

the use of state machine logic to instruct the computer on how to proceed with each

character read from text. Unlike other forms of string searching, finite-state automaton

 P a g e | 15

string searching algorithms can handle the searching of multiple patterns with little, or

no, performance degradation.

2.4 Differences between CPU and GPU architecture

This section will introduce both CPUs and GPUs and how the underlying architecture of

both of these processors vary. While both CPUs and GPUs are very complex in

architecture – consisting of a wide array of components which accelerate the processing

of data – this introduction will focus on the essential features relevant to this study—

arithmetic logic units (ALUs), cache, and computer bus. ALU cores – often referred to as

processing cores – are where instructions are processed. These cores vary in complexity

and can include various additional functions to aid the processing of complex tasks, such

as performing encryption and decryption on data. The cache is typically a small area of

memory embedded on the processor for storing data actively being processed and the

resulting processed data. Lastly, the computer bus – sometimes referred to as a bus – is

the communication channel that the processor has with the main system memory.

 Throughout technological evolution, the design and implementation of CPUs

have changed drastically, growing more complex in design and functionality; however,

the fundamental purpose of CPUs have remained largely the same. Modern mainstream

consumer CPUs typically range from two physical ALU cores (Intel n.d.) to eight physical

ALU cores from high-end offerings (Intel n.d.). Some CPUs produced by Intel also employ

Hyper-Threading; a proprietary technique belonging to Intel which allows each physical

ALU core to host two virtualised cores that allow multiple tasks to be performed at once

on one physical core— which Intel claim that enables the computer to make better use

of the available resources on the CPU (Intel n.d.). An IGP is a frequently seen integrated

feature of modern CPUs. IGPs are commonly a substantially large component on

modern CPU chips, which as can be seen in figure 1, and consist of similar features that

can be found on a discrete GPU.

 P a g e | 16

Figure 1: Intel Skylake CPU architecture

 The ALU cores possessed by the CPU typically host an extensive array of

arithmetic, bitwise and bit shift instruction operations, which can process a variety of

tasks with ease. It is common for CPUs also to possess a significant amount of specialised

operation instructions that can handle complex tasks with minimal effort. The additional

specialised operation instructions found on CPU ALU cores ensure that common

processing tasks requested by software and operating systems are done efficiently with

less computational effort from the processor. ALU cores on the CPU are typically found

 P a g e | 17

to be paired with a large shared cache for temporarily storing data from the main system

memory. The cache of the CPU is usually large to cater for processing of more

multifaceted data.

 Concluding, CPU architecture is optimised for perpendicular processing of

complex tasks with minimal latency; however, the architecture is not well equipped to

handle large sets of superficial calculations on data due to its small quantity of ALU

cores.

Figure 2: Nvidia Maxwell GPU architecture

 In comparison, discrete GPUs – such as the Nvidia GeForce GTX 980 (Nvidia n.d.)

depicted in figure 2 – possess thousands of general purpose ALU cores. Groups of ALU

 P a g e | 18

cores form stream processors that can perform high magnitudes of highly intensive

parallel calculations. ALU cores found on GPUs are far simpler in design to that typically

employed of CPUs, and possess a limited algorithmic instruction set designed for the

mathematical demands of graphical processing tasks; yet, due to the sheer volume of

ALU cores that discrete GPUs employ, they are significantly faster than CPUs when used

to compute simplistic arithmetic tasks.

 The underlying processing model is the defining characteristic difference

between CPUs and GPUs. GPUs employ a single instruction multiple data (SIMD)

processing model, where its many ALU cores are used to perform the same operation

on multiple data points simultaneously. While the SIMD processing model excels at

sequential processing – performing simultaneous parallel computation with a single

instruction – the model cannot process data concurrently with multiple instructions.

 The ALU cores of the GPU are typically found paired with a smaller cache than

CPU counterparts that hinders the ability to handle complex datasets. The small cache

is a characteristic by design as GPUs do not benefit from having a large cache for typical

graphics workloads. The disadvantage of having a relatively small cache on discrete

GPUs for compute purposes, however, is offset by the fast data transfer rate of the bus

from the system memory to the processor’s dedicated memory.

 Discrete GPUs possess a vast store of dedicated memory to hold data. The

memory found on discrete GPUs is characteristically optimised for transferring high

volumes of data at low latency between memory and the discrete GPU’s processing

units. However, to utilise discrete GPU memory, it requires the transferral of data from

the main system memory to discrete GPU memory. This data transfer required by

discrete GPUs is an additional step that is not needed by CPUs and IGPs, both of which

directly utilise the main system memory to read and store data. Nonetheless, the

transferal of data from main memory to discrete GPU memory is not a particularly timely

operation to do due to the high bandwidth bus typically found to exist between the two

memory locations.

 P a g e | 19

 The architecture employed by discrete GPUs – by design – is irrefutably better

suited for handling large quantities of simple but intensive calculative loads.

Respectively making discrete GPUs not only exceptional at fulfilling its primary role of

processing graphical and physics based instructions, but also arguably superior at

assisting in the scientific calculation of processor intensive numeric datasets than CPU.

2.5 Understanding OpenCL and GPGPU processing

OpenCL is a heterogeneous open-standards GPGPU programming framework that is

managed by Khronos Group (n.d.), a non-profit technology consortium. The GPGPU

framework is widely compatible across a variety of devices offered by various vendors,

including GPGPU devices from leading hardware vendors such as Intel, AMD, and Nvidia.

OpenCL allows applications to perform multiple levels of parallelised processing across

one, or more, processing devices— allowing programs that employ OpenCL the ability

to utilise the full range of processing power available on the computer.

 GPGPU processing adopts elements above traditional programming languages

which normally operate through executing each command in a perpendicular or limited

threaded parallel fashion. As GPGPU processing languages employ the use of a system’s

GPGPU device – such as the GPU or IGP – to perform processing on a massively parallel

basis, additional code in the form of a kernel is required. In principle, a kernel is a set of

instructions which direct the GPU on how to process data. The instructions that form

GPGPU kernels tend to be far more restricted in functionality— only offering logical and

arithmetic functions.

 P a g e | 20

Figure 3: OpenCL processing methodology

 A brief overview of the processing methodology with OpenCL is outlined in figure

3. In this analogy, the program serves as the main program binary written in a

programming language; such as C#, Java, Python, etc. The host refers to the computer

that processes the instructions provided by the main program. The context refers to

OpenCL specific instructions which are provided by the host from the program. Inside

the context, kernels dictate the instructions sent by the host through the program that

instructs GPGPU processors on how to process data. Devices within the context refer to

the OpenCL compatible processors that the kernels are sent to.

 In a program, there may be multiple kernels required to execute a series of tasks

on GPGPU devices, a group of kernels are defined as a command queue. Likewise, a

context may have many GPGPU devices available to process the command queue of the

program. Each GPGPU device used can only have one command queue.

 To help explain the process and how each of the five elements work, a

walkthrough of a simple addition calculation program (𝑐 = 𝑎 + 𝑏) execution will be

described. When executed, the program initially sends a list of instructions for the host

to carry out. Within the program instructions, it outlines two integer arrays of numbers

that require to be processed (arrays 𝑎 and 𝑏). Firstly, the program assigns a context to

process the arrays of numbers – in this example – a singular GPGPU device. The program

then instructs the host to copy both integer arrays 𝑎 and 𝑏 from the host’s main memory

to the GPGPU device memory. Following this, the program also allocates space on the

 P a g e | 21

GPGPU device memory to store the results (array 𝑐). After all the relevant data is loaded

onto the GPGPU device, the program then instructs the host to load and run a kernel on

the device. The kernel loaded onto the GPGPU device simply instructs the processor to

add each entry of arrays 𝑎 and 𝑏 and store the result in array 𝑐 within GPGPU device

memory. When the GPGPU device has finished executing the kernel, the host copies the

results contained within array 𝑐 from GPGPU device memory to the host’s main

memory. Once retrieved, the program has finished processing and should have an array

of calculated integers.

Figure 4: OpenCL kernel memory model

 To achieve a full basic understanding of GPGPU processing, this research will

outline the key memory components specified within an OpenCL kernel. Figure 4

illustrates the OpenCL kernel memory model that can be translated to compatible

parallel processing devices. Within this diagram, there are a few memory areas of

importance in the kernel for processing large quantities of data. The biggest memory

location available on the GPGPU device is the global and constant memory – these

 P a g e | 22

memory locations can be read by all the GPGPU device’s computation units. The global

and constant memory location shares similarities with the main memory of a computer

and the relationship it has with the CPU.

 Global memory signifies the memory which can be directly accessed by the host,

and can be used to send and receive data from GPGPU devices. Constant memory shares

the same function as global memory, with the exception that it is only used to store

static variables. In the previous simple addition program example, the integer arrays

would have been stored in global memory, so that all processing units could access the

required data to compute and store. Additionally, once the integer arrays were

processed, it allowed the host to read the GPGPU device’s global memory to retrieve

the results.

 Within each workgroup resides two forms of memory. The first is called local

memory. The local memory on each processing unit tends to be notably small in size.

The primary purpose of the local memory is to serve as a scratchpad for the processing

unit, such as temporary storing intermediate calculations related to processing. All work

items can make use of this memory to store variables.

 Storing a counter could be an obvious example of where utilising local memory

is vital; as if different workgroups are trying to change the same counter held in global

memory, the counter could be accessed and changed at the same time by several

processing units— potentially causing inconsistent and unreliable results. However, if

each workgroup counted within their local memory, the values would only be accessed

and changed by their belonging stream processor. This allows an accurate count record,

which can then be combined with other stream processor counts once processing ends

to provide an accumulated value on completion.

 Private memory is the second form of workgroup memory that serves as unique

storage dedicated for each work item. Typically, this memory cannot be accessed by

default and serves as the storage space for processing each work item.

 P a g e | 23

Figure 5: OpenCL kernel to GPGPU translation

 Figure 5 shows how the OpenCL kernel memory model translates seamlessly to

GPGPU hardware. Global memory and constant memory reside on the GPGPU’s primary

memory, which could be the dedicated memory on a discrete GPU, or if using an IGP, a

dedicated area of main memory. The local memory records to the stream processor’s

local data share. Lastly, private memory maps to the stream processor’s register file.

However, if the work item requires to work with a private array or an oversized register,

it should be assigned to the GPGPU’s primary memory instead due to memory capacity

constraints.

 This concludes the basic concepts of GPGPU processing and the underlying

processes. Additional recommended reading on OpenCL and processor architectures

can be found within the pages of Heterogeneous Computing with OpenCL (Gaster et al.,

2012).

2.6 Related work

Whilst there have been many studies of the benefits of utilising GPU and parallel

processing in research areas where the processing of significant amounts of data is

 P a g e | 24

paramount (Pungila and Negru 2012, p. 354–369; Wu 2013; Bellekens et al. 2014, p.

295–301; Vasiliadis et al. 2008, p. 116–134; Bellekens et al. 2013, p. 5; Haseeb 2013, p.

9–14; Bhamare and Banait 2014, p. 24–28; Kouzinopoulos et al. 2015), there has been

little research that investigates what benefits DF could reap by employing such methods.

The majority of existing research in DF is implemented using CUDA to accelerate DF

searching. While the research incorporating CUDA shows clear performance advantages

(Karimi, Dickson and Hamze 2010, p. 12; Fang, Varbanescu and Sips 2011, p. 216–225),

CUDA suffers greatly from being incompatible with GPUs from vendors other than

Nvidia. This may have been insignificant at the time of the research, but as it has become

commonplace for modern computers to have access to both a discrete GPU as well as

powerful IGPs onboard the CPU, there is little reason now to choose CUDA over an open-

standard alternative like OpenCL which would make full use of the computer’s full

computational power.

 The papers reviewed in this section are the most complete in investigating the

application of GPU processing within the field of DF. The studies highlighted here argue

both for and against the application of GPUs to tackle the processing issues of modern

DF investigation; however, most papers suffer a common inadequacy in failing to

provide enough information to reproduce experiments for validation. More importantly,

the lack of detail from the papers renders it difficult to transition their research to create

beneficial tools that could be used by the DF community.

 A theoretical insight was presented by Skrbina and Stojanovski (2012) which

discussed the preparation and processes involved in creating a GPGPU solution to

accelerate file carving. The authors explored how CUDA could be utilised within the

context of DF investigations, examining how the different characteristics of string and

pattern matching algorithms are suitable for GPGPU parallelisation. The authors

conclude that the most appropriate algorithms for parallel applications are the BM

(Boyer and Moore 1977, p. 762–772) and AC (Aho and Corasick 1975, p. 333–340)

algorithms for handling single- and multi-string searches, respectively. However, the

 P a g e | 25

study failed to mention modern algorithms, including recent adaptations of the AC

algorithm, which were specifically designed for parallel execution.

 Richard and Roussev (2005, p. 1–10) were amongst the first to apply parallelism

to DF investigation by presenting a paper outlining the requirements needed to

reproduce high-performance file carving. As part of the author’s research, they present

an open-source tool called Scalpel, a parallel file carver based largely upon modifying

Foremost— a well-established Linux file carver. Where Foremost only utilises a single

core of the CPU to perform file-carving, Scalpel utilises parallel processing on all

available cores to accelerate performing file carving on forensic data. The author’s

results prove that parallelism undeniably – yet unsurprisingly – yields much faster

results.

 A further empirical study conducted by Marziale, Richard and Roussev (2007, p.

73–81) expanded upon Richard and Roussev’s earlier research by investigating how the

use of CUDA GPGPU processing could accelerate Scalpel. The study compares the time

taken to complete various searches through different sized forensic images using the

unmodified and modified GPU versions of Scalpel. Results from the study show

significant improvement with GPGPU acceleration, which clearly demonstrated that

incorporating GPU technology is a practical option for significantly increasing processing

performance in existing DF tools. At the time of the research, however, the CUDA

framework was still in its early stages of development. The authors acknowledge that

the beta release that was used for the study may have possessed some bugs, and further

suspected that the compiler did not fully optimise the code; these factors may have

limited the proposed solution’s potential achievable performance compared to that

which could be derived today.

 Contrasting research from Zha and Sahni (Zha and Sahni 2011, p. 141–158) states

that when incorporating a fast multi-pattern matching algorithm, the performance gain

achievable from file carving is limited by the time required to read data from the disk

(“disk-bound”), as opposed to the time needed to conduct string searching on the data.

 P a g e | 26

The authors similarly conducted experiments through modifying Scalpel, where they

incorporated a series of BM and AC algorithms to aid string matching on the CPU. The

authors’ experiments indicate that multi-threaded acceleration using a dual-core CPU

did not improve the required processing time, concluding with an arguable assumption

that there are no advantages of using other accelerators such as GPUs, despite

presenting no actual experiments involving GPGPU processing. Later research from the

same authors (Zha and Sahni 2011, p. 277–282, 2013, p. 1156–1169) shows that

incorporating similar algorithmic techniques using GPGPU processing produced notable

improvements over single-threaded CPU approaches, surpassing multithreaded CPU

processing in some scenarios. Results of these later studies from the authors form the

argument that Zha and Sahni’s earlier research on processing techniques to improve file

carving had not been thoroughly explored.

 Another interesting method of utilising GPGPU processing in file identification

was adopted in a thesis by Mohan (2010), who utilised an MD6 file hashing method on

a CUDA GPGPU framework to identify similar files individually and contained within an

archive. His results demonstrate a significant performance increase over traditional CPU

processing, which led to conclude that the parallel nature of GPUs is well suited for the

large-scale processing of MD6 file hashing. Despite the author’s findings, this method of

discovery requires a list of known file hash signatures to search for, limiting its

usefulness when performing an exploratory examination for unknown incriminating

files.

 Collange et al. (Collange et al. 2009, p. 1–10) demonstrated a similar but novel

method of utilising GPU processing to aid file identification in DF investigation. The

authors use a CUDA GPGPU implementation to calculate and compare hashes of data to

identify potential image file identifiers located on storage devices. The authors

concluded in their study that, with the computational power of the hardware, GPUs

make an ideal platform on which to perform parallel hash calculations, potentially

delivering a powerful and usable file identification technique for DF investigation.

 P a g e | 27

 Although Collange et al. eliminate the requirement of knowing complete file

hashes by searching for file identifiers, the proposed approach still requires and is

heavily dependent on the CPU to verify the matches found as valid image files; this

potentially slows the overall performance when faced with forensic images containing

significant amounts of data.

2.7 Chapter summary

This chapter has presented a background of the current state of digital forensics and the

problem of DF tools failing to innovate. It was reported that current tools are failing to

address significant limitations in processing large amounts of forensic data, suggesting

the need for tools to incorporate more capable processing techniques. Also presented

in this chapter is the basic knowledge required to comprehend the themes presented in

the context of this research, including an introduction to the concepts of; file carving,

string search algorithms, CPU and GPU architecture, and OpenCL GPGPU processing.

 The chapter concludes by critically evaluating previous attempts of investigating

the benefits of applying GPGPU programming to the field of DF. Existing research shows

that there are significant areas of the field’s current GPGPU research that would benefit

from further investigation. It is hypothesised that further performance enhancement

could be achievable through the careful application of GPGPU processing techniques

and modern multi-string searching algorithms to the problem of file carving.

 In the following chapter, this thesis will present how this research approached

the problem. This section will include how a GPGPU solution was devised and the testing

strategy used to evaluate the performance enhancements over current DF file carving

tools at performing string searching and file carving.

 P a g e | 28

Chapter 3: SOLUTION CONSTRUCTION AND TESTING METHODOLOGY

3.1 Research platform development

A software platform was created to test different methodologies in performing string

searching and file carving of forensic data. While previous studies in this field used one

of the freely available open-source file carving tools as a software platform to perform

performance related research; it is anticipated that clearer data could be obtained from

starting with a bespoke platform built specifically to measure performance. The

developed software platform would ensure that both the CPU and GPU processes

inherently follow the same chain of processing operations without the need to modify

existing file carving software. Additionally, the software created could ensure that any

processing undertaken was relevant to the task of performing string searching or file

carving.

 While the decision to build new software over modifying an existing file carving

tool may seem to be far greater of an undertaking, there were clear advantages of

building a new platform. Building a new platform provided complete control of

measuring performance metrics and debugging, and allowed a modular design to be

adapted— allowing the platform to be easily modified to trial different processing

approaches as this research progressed. The software platform built to perform testing

within this research will be referred to within the rest of this thesis as OpenForensics.

 This section will outline some of the development choices made when creating

the OpenForensics research platform. The source code of OpenForensics is readily

available on GitHub at: https://github.com/ethanbayne/OpenForensics. The source

code available on GitHub outlines the latest build of OpenForensics, which may have

changed significantly since the time of writing this thesis.

 P a g e | 29

 As the research took a rather exploratory approach in each case study,

OpenForensics was developed with an iterative software development cycle, producing

several prototypes for analysis and performance comparisons at regular points during

the research. Through prototyping, known and unknown performance factors were

easier to identify, which overall aided – and developed – further research goals. The rest

of this section will outline the development cycle that OpenForensics followed— design,

implementation, and testing.

3.1.1 Technologies used

C# .NET (Microsoft n.d.) was used to build OpenForensics. The decision to choose C#

was simply due to the language’s ability to be easily used as a rapid application

development platform with a wealth of analytical and performance metric tools. This

enabled easy monitoring of currently running processes and allowed for painless

debugging— factors that greatly aided development. It is recognised that C# admittedly

falls short of the possible performance and cross-platform compatibility that could be

achieved with other programming languages, such as C++. However, it is envisioned that

the margin of performance gain measured by the final solution would not differ

substantially from the choice of the programming language used. By building with the

.NET framework, it was also easy to incorporate a simple GUI to help drive the research

and allowed for more visual feedback during testing. This proved later to be invaluable

during the testing of larger datasets utilising multi-threaded approaches as it provided

effective feedback of what was happening on each processing thread as data was being

processed. There were other advantages of choosing C# as a development environment,

as it also benefits by adopting the .NET framework’s memory management feature—

garbage collection (GC). GC manages the allocation and release of memory used by the

application; for string processing, amortised GC is more efficient than manual memory

management.

 P a g e | 30

 To handle GPU instructions, CUDAfy.NET (Hybrid DSP n.d.) was utilised.

CUDAfy.NET provides the necessary libraries that allowed the easy management of

GPUs from within the C# software platform. Cudafy .NET provides a comprehensive set

of libraries and methods to allow C# applications to interface with GPUs. The framework

also hosts a wealth of emulation features, which simulate the processing of GPU kernels

on the CPU, providing excellent simulation and debugging functionality. The most

significant advantage of using Cudafy .NET within this research arises with kernel

creation. Cudafy .NET comes with the ability to translate a kernel written in C# into

OpenCL. Generated code from CUDAfy .NET for OpenCL kernels was manually validated

in each case study for optimisation.

3.1.2 Research platform design

This section aims to provide a general overview of design choices taken with the

OpenForensics framework, providing an insight into what features remained largely

static across case studies. As each case study presented within this research varies in

the method used to search through data, the various implementations will not be

discussed here. Information about the processing framework implemented by each case

study can be found in the methodology section of the respected case study.

 Designing a new framework to carry out testing was done to isolate and control

the identified processing tasks that GPGPU processing aimed to improve. Early in the

research, it was decided that it would be appropriate for the research to develop and

maintain a simplistic application that measured the performance metrics related to

string searching, rather than refactor an existing file carving application. It was believed

that this approach allowed the researcher to fully dissect other related processes that

support string searching – such as file reading – and investigate methods of improving

them.

 P a g e | 31

 As the research was focused on how GPGPU processing could aid DF

investigation, identifying processing intensive operations was paramount to satisfy the

design goals of OpenForensics. The initial design stages of OpenForensics revolved

around analysing current open-source file carving tools – Foremost and Scalpel – and

dissecting how they performed file carving. When investigating these open-source tools,

there was an assumption that string-searching operations would be the most processor

intensive task that file carving carried out. This assumption was later confirmed by

conducting profiling against the open-source tools and analysing what processing loops

within the code took the longest to process. It was found that string-searching was the

most processor intensive task carried out.

 Identifying processor intensive processes enabled the research to focus its

development cycles around these aspects. Thus, string searching and file reading

components followed a constant design, implementation and testing development cycle

between case studies—much more so than any other component of OpenForensics.

Case studies were often completed when significant improvements were obtained

through newly implemented string searching and file reading features. The results of

testing newly implemented features also fed design decisions for the next cycle of

development.

 During development, a front-end GUI was developed to aid the testing of the

application. The front-end GUI went through only two iterations, from being a largely

simplistic and unpolished interface that had largely hard-coded test options, to later

being a more customisable interface that linked many of the variables for conducting

string searching and file carving experiments. The latter changes to the interface being

implemented for the purpose of external testing, providing investigators more control

and customisability over the tests performed. The options for the interface were

designed to incorporate the commonly used command line options of Foremost into the

GUI interface.

 P a g e | 32

 The latest OpenForensics interface is illustrated in figure 6. The interface is split

into a few sections. The topmost section containing inputs for any case and evidence

references, which are used only to uniquely label each test. Below this, a hard drive or

file selector to select what data should be analysed. This is followed by a search target

selection, where file types or keywords to be searched for can be selected from a drop-

down list. Lastly, there is a hardware platform selection, where it is possible to select

what processor present on the system should be employed to conduct the string

searching or file carving.

Figure 6: OpenForensics GUI interface

 Developing a new framework allowed for processing monitoring tools easier to

implement, such as the core activity monitor illustrated in figure 7. The core monitoring

tool allowed for visual analysis of what each CPU, or GPU, core was doing at any given

moment during testing. Having passive visual monitoring allowed identification of any

 P a g e | 33

processing bottlenecks more apparent during testing. This was used in conjunction with

profiling to aid the development of the processing frameworks.

Figure 7: OpenForensics processing interface

3.1.3 Research platform implementation

In the implementation section, the author outlines the initial implementation of

OpenForensics. This section was written as a supplement to the source-code available

on OpenForensics repository. The research took an iterative approach to development

and refactored various areas on response to the previous case study. As such, the

implementation of OpenForensics focused on developing three classes; interface,

analysis, and engine. The interface class contains methods relevant to the main GUI of

the application, including test parameters and general program implementation

functions. The analysis class comprises of procedures relevant to string searching or file

carving operation and reading forensic data from disk. Lastly, the engine class has

functions related to algorithms used to search, pre-processing, and interfacing with

processors. Figure 8 presents an abstract class diagram to show the relationships that

these classes have with each other. A more detailed class diagram of the final case study

solution can be seen in appendix A.

 The interface class, as the name suggests, is responsible for the OpenForensics

front-end interface. The primary role of this class is to deal with the configuration of the

 P a g e | 34

test parameters. Asides from the visual elements of the interface, the interface class

deals with loading file-type settings from the XML configuration file. The class also

populates information about the system and, if available, sets up multi-GPU processing

parameters. The multi-GPU parameters identifies, and filters, all available discrete GPU

and IGP devices on the system and allow these devices to be passed to the analysis class

as a variable. The last responsibility of the interface class is to sanity check the selected

options for the operation, ensuring that all inputs selected are valid before the analysis

class is invoked.

Figure 8: OpenForensics class diagram

 The analysis class is responsible for a large proportion of the string searching and

file carving tasks carried out by OpenForensics, including; file reading, processor thread

initialisation, and allocation of data segments to the aforementioned processing threads

for analysis. The analysis class also incorporated a very basic file carving operation. The

ability to perform file carving was considered to be a low priority, as the primary goal of

this research was to ascertain whether GPGPU processing would accelerate string

searching in a DF context. As such, the file carving method used by OpenForensics – at

the time of writing – is very basic when compared to the file-specific carving operations

carried out by Foremost. OpenForensics adopts a rather naïve method of extracting files

from data, by simply reconstructing the data found between a file header and a

matching file footer.

 The engine class instructed the processors how to process the data. This class

contained three components. The first is the processor object initialisation that handles

requests from the analysis class for a new processing threads to be set up. When

 P a g e | 35

invoked, the processing thread initialisation will set up space in memory for the

processing thread to load volatile data, such as the buffer for data read and counters for

the results. The second primary role that the engine class had was the ability to do any

pre-processing required for algorithms—such as the lookup table generation for the

Boyer-Moore algorithm. The third, and most important, role that the engine class is

responsible for is searching data. The engine searches data by utilising the algorithm

declared by the analysis class.

Figure 9: OpenForensics operation activity diagram

 P a g e | 36

 The XML configuration file loaded by OpenForensics on launch contains the

necessary parameters needed for OpenForensics to conduct analysis with file types. The

configuration file contains a list of file types, each with four properties. The first of the

properties is the file type extension. The file type extension is used by OpenForensics

for the file type interface menu and, if reconstructing found files, to set the file

extension. The second property classifies what type of file it is—whether an image,

video, audio document or miscellaneous file. The classification information is used to

define groups of file types to allow easier batch analysis, e.g. to search for all image file

types. The third property is the file header value, the byte sequence that marks the start

of that file type. There may be multiple header values defined for each file type to cope

with variations of file type headers. The fourth – and optional – property is the file footer

value (“EOF”), a sequence of bytes that marks the end of that file type.

Figure 10: Case study 4 file carving

process activity diagram

Figure 11: Case study 4 string searching

process activity diagram

 P a g e | 37

 The operation of OpenForensics is as outlined in the activity diagram in figure 9.

In this operation diagram, the results stipulate the output of the processing. Performing

a string searching analysis will output what file types – or keywords – were detected in

the forensic data. Whereas performing a file carve operation will report back the

aforementioned and present files that were reconstructed from the forensic data—

assuming that the file types specified have a valid header and footer in the XML

configuration file. A processing activity diagram, based on case study 4, is outlined in

figures 10 and 11—outlining an example of both string searching and file carving

processes respectfully.

3.1.4 Research platform testing

The initial CPU implementation aimed to mimic Foremost in its approach by

implementing the same modified Boyer-Moore algorithm. By doing so, early builds of

OpenForensics focused on accuracy over functionality, ensuring that the developed

string searching method would correctly identify file headers and footers. To ensure the

compliance of this, the developed framework was tested against three forensic

images—the 20GiB image used in this research, a 5.36GiB Windows XP image, and a

120GiB Windows 7 image. The latter two of the three images were artificially created by

digital forensic educators to mimic realistic usage and used as forensic cases to teach DF

investigation. Results from these tests with OpenForensics were compared with the

results gathered by Foremost. It was assumed, and later confirmed, that results from

the initial algorithm and Foremost would be the same as they utilised the same

algorithm.

 As development adopted an iterative development cycle, test cases were

developed alongside OpenForensics, often in response to errors and inconsistencies

found during development. Algorithm and pre-processing tests were validated through

automation utilising a pre-set configuration file and comparison against expected results

 P a g e | 38

from earlier trials, but also manually by the researcher by inspecting the forensic data

with a hex editor. Testing was reinforced with frequent code reviews and refactoring

exercises during development.

 Before each case study, the accuracy tests above were rigorously followed to

ensure the integrity of any changes made to the processing approach or algorithm used.

On the occasions where there was a mismatch between the results obtained and

Foremost, case studies were delayed until the problem could be identified, and rectified

accordingly. As DF is a science, scientific standards were maintained as a paramount

objective of the research. As such, case studies could only proceed when the parameters

presented reported accurate findings.

 P a g e | 39

3.2 Algorithm choices for data analysis

Careful consideration had to be done around what algorithms would be best suited to

accelerate processing of forensic data. There have been plentiful amounts of research

that aims to compare the efficiency of algorithms in processing large data within

different fields (Gharaee 2014, p. 946–953; Lin et al. 2013, p. 1906–1916; Rasool and

Khare 2013, p. 6–16; Arudchutha, Nishanthy and Ragel 2013, p. 231–236; Mokaram

2015; Soroushnia et al. 2014, p. 253–264), the problems and comparisons presented by

this research are relatable to the problem faced within DF.

 As GPGPU devices have powerful parallel capabilities, a brute force algorithm

was adopted in early research to measure baseline performance of GPGPU solutions.

The brute force algorithm – being the simplest of the algorithms presented within this

research – operates by searching each byte of data sequentially looking for any potential

pattern match. The time that the brute force algorithm will take to search for a pattern

of length 𝑚 within a data stream of length 𝑛 is 𝑂(𝑛) in its best case where the first byte

of searched patterns are not found, and 𝑂(𝑛𝑚) in its worst case where each byte

requires validation against the longest pattern.

 As this research aimed to improve upon current DF tools, an investigation was

done on how current open-source DF tools processed data. It was found that two

popular Linux-based tools – Foremost and Scalpel – favoured the use of a modified BM

algorithm for performing string searches. This research decided to replicate the BM

processing method employed by these tools for CPU processing. This allowed the study

to produce baseline performance metrics of the modified BM algorithm employed by

the tools above, which could be used to compare against the performance gain of any

proposed GPU implementations or alternative algorithms.

 P a g e | 40

Figure 12: Boyer-Moore algorithm example

 The BM algorithm operates by searching through a stream of data for the last

byte of a pattern. When the algorithm discovers the last byte, the rest of the pattern is

validated byte by byte. If the algorithm validates the complete pattern, the program will

record an index on where that pattern was found within the stream of data before

continuing to search through the rest of the data. Searching through the data stream is

accelerated using a skip table. The skip table is created before the search begins, and

acts as a reference on how far to move in the data stream depending on the value read,

significantly reducing the search time required looking for a potential match.

Theoretically, the time for the BM algorithm to find a pattern of length 𝑚 inside data

stream of length 𝑛 is 𝑂(𝑛/𝑚) time in its best case where the last byte of the pattern

does not occur and the skip table is used to minimise the data analysed, and 𝑂(𝑛𝑚) in

its worst case where the pattern begins and ends with the same byte and each byte read

matches the last byte of the pattern.

 P a g e | 41

 Despite its popularity in current DF tools, this research also investigates whether

the BM algorithm remains an optimal choice for string searching within DF. The BM

algorithm has been recognised as being efficient when searching for a single pattern

(Skrbina and Stojanovski 2012), however, as DF investigations quite commonly require

the ability to search for multiple patterns simultaneously, its effectiveness is degraded—

even when modified to handle multiple pattern searches. In this regard, it is envisioned

that an algorithm built specifically to find multiple patterns would be better suited for

the requirements of DF investigations, such as the AC algorithm.

 The AC algorithm searches with the aid of a tree topology state machine, which

can search for multiple strings with a single read of the data. This state machine has two

transition states. The first being a successful transition upon the next character read

being part of a pattern being searched for. The second transition is a failure transition,

which, depending on the character sequence read, will look for another pattern with the

data processed so far. The state machine will continue to search through data until a

pattern has been completely matched and location recorded, or until it reads a

character which has no state. In these instances, it will reset the state machine back to

its initial state and continue to read through the data stream for further patterns. The

AC algorithm can match all searched patterns in 𝑂(𝑛) time for processing a data stream

of length 𝑛. The AC algorithm is not dependent of pattern length 𝑚 as it uses a state

transition table to find all possible patterns within a single read of the data.

Figure 13: AC algorithm state machine example

 P a g e | 42

 An example of an AC state machine is outlined in figure 13 where the patterns

being searched for are “team”, “telephone”, and “elephant”. If, for example, the state

machine has processed up to state 9 – indicating that it has found “teleph” so far – and

the next character read is an “a”, the algorithm will do a failure transition turning the

active search from “telephone” to “elephant”, recognising that the data read thus far

could still form part of a pattern. The advantage of the AC algorithm is its ability to search

for multiple patterns in a single read of data. However, in its unaltered form, the

algorithm is best suited for linear operation as the state machine cannot distribute

search operations easily to multiple processing threads.

 Modern parallel algorithms have flourished in the last 5 years, in which many

studies have presented modified parallel algorithms that have demonstrated significant

improvements over parallelising earlier algorithms (Tran et al. 2013, p. 1143–1152;

Jeong et al. 2014, p. 265–272; Tran et al. 2012, p. 432–438). One of which, the PFAC

algorithm (Lin et al. 2010, p. 1–5; Lin, Liu and Chang 2011, p. 1–5; Takahashi and Inoue

2012, p. 242–246) makes two fundamental changes to the way that the AC algorithm

operates; firstly, by removing the use of a failure table that checks for other matches in

processed data, and secondly, by requiring each byte of data to be processed

individually by a separate processing thread. Whilst creating a thread for each byte of

data read may seem a computationally expensive operation, if the first byte does not

match what it expects, it terminates immediately, freeing the thread at an early stage

(Lin et al. 2013, p. 1906–1916; Tran et al. 2012, p. 432–438). Each thread of the PFAC

algorithm can search through data in the best time of 𝑂(1) where the byte read does

not match first byte of the searched patterns, and the worst time of 𝑂(𝑚) when the

longest pattern 𝑚 is matched.

 Research presents the benefits of employing the PFAC algorithm, showing that

the algorithm is effective at processing significant amounts of data on GPGPU devices,

however, for smaller data sets, employing CPU processing may still prove more efficient

(Thambawita, Ragel and Elkaduwe 2014, p. 1–4). Since its inception, the PFAC algorithm

 P a g e | 43

has had many proposed changes from later research, research have suggested changes

to the way data structures are allocated to better fit GPU architecture (Soroushnia et al.

2014, p. 153–160; Acharya 2014, p. 21–24) and also proposing segmented approaches

to the PFAC algorithm (Agarwal, Rasool and Khare 2013, p. 52–58).

Figure 14: Parallel Failureless Aho-Corasick algorithm state machine example

 The PFAC algorithm operates in a relatively similar fashion to the AC algorithm

by relying on a tree-topology state machine. It differs by removing the failure transition

operation from the algorithm and by introducing the requirement to process each byte

of data from the tree’s initial state. These changes make the AC algorithm far more

usable for parallel operation as each thread processes data asynchronously, and does

not require data from other processing threads. Although it is envisioned that the PFAC

algorithm was designed with GPUs in mind, due to its broad array of independent

processing cores, it is anticipated that multi-cored processors could also benefit from

the application of PFAC algorithm.

 This research has applied the PFAC algorithm to DF investigation, investigating

whether this algorithm would offer substantial performance gains compared to the

modified BM algorithm that is employed in Foremost. The author predicted that

performance would be enhanced due to the PFAC algorithm being purposely designed

for multi-pattern searching; however, it is also recognised that running a parallel

algorithm in a linear fashion on a single-threaded CPU may not be as efficient as other

string searching algorithms available.

 P a g e | 44

3.3 Testing strategy

The following section focuses on outlining what testing strategy was used for the

presented case studies. This section presents the test parameters, system setup

strategy, and finally outlines the specifications of the test platforms used. Test

parameters outline the purpose of the test performed and presents, and discusses, a list

of controlled and free variables. System setup strategy specifies the environment set up

on each test platform and what controls were put in place to minimise interference to

conducted tests from external processes.

3.3.1 Test parameters

The objective of each case study was to measure what possible performance

enhancements that could be achieved by introducing various processing techniques and

technologies to perform string searching. A standardised test was designed for this

research to gather unbiased data for each solution trialled. This standardised test

involved performing string searching or file carving on forensic data – using either CPU

or GPU processing – for a range of different file types by file headers.

 At the end of each test, totals of how many file types were detected on the

forensic data were presented. As it is known that string searching is the most

computationally intensive task involved in performing file carving, no files were

reproduced in string searching case studies. This allowed the tests to measure

performance derived from each string searching method used. To test for scalability,

each test of the case study would be tasked with finding increasing amounts of file

headers; which, in turn, increased the amount of processing involved for each test. The

file headers that were searched for in each test are presented in Table 1.

 P a g e | 45

Table 1: File type headers

File Type File Header (bytes)

Patterns used

5 19 40

jpg FF D8 FF E0 00 10 ● ● ●

jpg FF D8 FF E1 35 FE ● ● ●

gif 47 49 46 38 39 61 ● ● ●

gif 47 49 46 38 37 61 ● ● ●

png 89 50 4E 47 0D 0A 1A 0A ● ● ●

tiff 49 49 2A 00 ● ●

tiff 4D 4D 00 2A ● ●

wim 4D 53 57 49 4D ●

mpg 00 00 01 BA ● ●

mpg 00 00 01 B3 ● ●

mp4 00 00 00 14 66 74 79 70 69 73 6F 6D ●

mp4 00 00 00 18 66 74 79 70 33 67 70 35 ●

mp4 00 00 00 1C 66 74 79 70 4D 53 4E 56 01 29 00 46 4D 53 4E 56 6D 70 34 32 ●

mov 00 00 00 14 66 74 79 70 71 74 20 20 ●

m4v 00 00 00 18 66 74 79 70 6D 70 34 32 ●

wmv 30 26 B2 75 8E 66 CF 11 A6 D9 00 AA 00 62 CE 6C ● ●

mkv 1A 45 DF A3 93 42 82 88 6D 61 74 72 6F 73 6B 61 ●

wma 30 26 B2 75 ● ●

m4a 00 00 00 20 66 74 79 70 4D 34 41 20 ●

doc D0 CF 11 E0 A1 B1 ● ●

docx 50 4B 03 04 14 00 06 00 ● ●

pdf 25 50 44 46 ● ●

zip 50 4B 03 04 ● ●

zip 50 4B 05 06 ● ●

zip 50 4B 07 08 ● ●

zip 50 4B 03 04 14 00 01 00 63 00 00 00 00 00 ●

rar 52 61 72 21 1A 07 00 ● ●

rar 52 61 72 21 1A 07 01 00 ● ●

xar 78 61 72 21 ●

xz FD 37 7A 58 5A 00 ●

jar 4A 41 52 43 53 00 ●

jar 5F 27 A8 89 ●

iso 43 44 30 30 31 ●

cso 43 49 53 4F ●

img 50 49 43 54 00 08 ●

img 51 46 49 FB ●

img 53 43 4D 49 ●

cas 5F 43 41 53 45 5F ●

rpm ED AB EE DB ●

mof FF FE 23 00 6C 00 69 00 6E 00 65 00 20 00 31 00 ●

 During the design of these tests, controlled and free variables were identified to

aid comparison between case studies. Controlled variables of each of the case studies

were; the size and content of the forensic data used for analysis, the specified patterns

searched in each test, and the test platforms used for analysis. These variables were

 P a g e | 46

deemed important to remain constant across tests to compare performance between

the different case studies.

 Free variables were identified as possible areas where searching performance

could be improved. Those include; the processing technique used, the algorithm

employed to perform string searching, and the method that data is read from the

storage device. These identified variables were changed in each of the OpenForensics

case studies presented. Each case study discusses changes to the free variables and

presents reasoning behind the changes as part of the methodology.

 Revisiting the research questions, two key elements required consideration

during the testing phase to determine how successful the hypothesis is. The first, and

most prominent, is the factor of false-negative result accuracy. As DF is a scientific

discipline, results are required to be accurate and reproducible. To facilitate this, this

research used a forensic data image of an external hard drive where a number of files

present in the image were already known. This was further validated through analysing

the results gathered by Foremost. As Foremost is a recognised and established tool

within DF, the forensic soundness of the results derived from the tool is assumed to be

accurate, serving as an additional benchmark of forensic soundness.

 The testing was conducted against a 20GB forensic data file that was produced

from an external storage device. The external storage device was securely wiped to

erase any previous traces of data on the drive and reset the contents to zero bytes. The

external storage device was then loaded with a wealth of various file formats— including

images, videos, audio, documents and compressed files. Each file-type consisted of the

same data. The external storage device was cloned using the dd command in Linux to

produce a forensically sound image. The forensic image was verified with the original

storage device through comparing the MD5 checksum of the original drive and the

produced image.

 The methodology behind creating the forensic image for testing was not to

simulate a realistic scenario, but rather to know the ground truth of how many files of

 P a g e | 47

each format were contained in the image used. The files loaded on the 20GB drive also

exhausted the space available, leaving little unused space on the drive. Whilst the data

on the storage device is not deemed to be a realistic case, the tests performed within

this research was interested in the comparative performance between the proposed

and existing processing methods. It is assumed that the observed performance

differences when performing string searching or file carving operations on the simulated

forensic data would not vary significantly when tasked with different data.

 To aid testing, baseline performance data was gathered by string searching with

Foremost on the 20GB forensic image. Generated reports from Foremost produces two

key values— the time that Foremost started analysis and the time that the analysis

completed. From the two times produced by Foremost, the overall time in seconds

analyse took and the data processing rate can be calculated, which will be later used for

comparison against the proposed solutions in this research.

 The OpenForensics platform which this research used reported back on all the

performance metrics needed after each test. This included the time started, time

concluded, the total time taken in seconds, average processing rate, total bytes analysed

and patterns found. Each of the 3 series of patterns was searched for 5 times each, in

which it was observed that each of the 5 times produced shown a minimal variation of

less than 5%. Due to the consistency of times produced, the mean average time was

used for analysis with 95% confidence levels. Result data produced from all the tests

were then compiled into spreadsheets, and raw logs kept for reference. Performance

speedup (𝑆) will be calculated by 𝑆 =
𝑎

𝑏
, where a is the first sample time recorded, and

b is the time achieved by the second sample.

3.3.2 System setup strategy

Procedures throughout followed strict guidelines to ensure that each case study was

undertaken with the same environmental variables on each test system. This ensured

 P a g e | 48

that the data gathered was a fair representation of the possible performance with each

test case, but that each evaluated solution could be cross-analysed for performance

gain.

 Except gathering the base performance metrics with Foremost (version 1.5.7) –

which used Ubuntu Linux 15.10 – each system tested ran Windows 10 to test the various

solutions, which had the latest updates and same up-to-date drivers installed at the time

of testing— mid-January 2016. The operating system (OS) were limited to run only

essential services to ensure no other third-party programs or services could interfere

with the achievable performance of the solution.

 The effects of caching were eliminated by rebooting the system prior to running

each test case. When performing string searching with a small 5.36 GiB forensic image

in earlier experiments, it was found that clearing Windows cache and performing a

system memory clean was not sufficient enough to ensure repeatable times between

tests. This was due to other hardware, from the storage devices used to the GPUs,

caching the test’s forensic data in other areas of volatile memory. When forensic data is

read from cache, the tests performed would complete significantly quicker than when

reading data from a storage device. It was found that caching effects were minimised by

rebooting the system in-between running the same test case.

3.4 Test platforms

This main corpus of this research was benchmarked on equipment which was available

to the experimenter— two desktops and a laptop of mid- to high-end specification.

Table 2 shows system specifications of the computers which served as test platforms

along with their allocated platform identifier. It was predicted that, despite the varying

specifications of hardware, correlations would be seen between each system when

comparing performance gain of the tested solutions. However, by including three

 P a g e | 49

separate systems of varying hardware, we could analyse any performance bottleneck

imposed by the storage device during testing.

 In previous research, Zha and Sahni (2011b, p. 141–158) concluded that DF

processing was disk-bound. This research anticipated that by equipping two computers

with storage devices with a relatively high data transfer speed would allow far greater

opportunity to analyse to what extent the storage devices limit performance. Sequential

read speeds were measured for each test system using CrystalBenchMark (CrystalMark

n.d.), freeware software which has a good reputation amongst technological editorial

sites to accurately measure storage drive performance. The author hypothesises that

the sequential read speeds of a storage device will be the theoretical maximum that

forensic data can be processed at.

Table 2: Test platform specifications

Test Platform A B C

Computer Type Desktop Desktop Laptop

Operating System Windows 10 Windows 10 Windows 10

Processor Intel Core i7-5820K Intel Core i5-4690K Intel Core i7-4700HQ

Processor

Specifications
6 Core @ 3.8GHz, 12 Threads

4 Cores @ 3.9GHz, 4

Threads
4 Cores @ 3.5GHz, 8 Threads

Processor IGP ---
Intel HD4600 (20 Core @

350MHz)

Intel HD4600 (20 Core @

400MHz)

Memory 16GB DDR4 2400MHz 16GB DDR3 1600MHz 16GB DDR3 1866MHz

GPU
Nvidia 980Ti (6GB), Nvidia 750Ti

(2GB)

Nvidia 980 GTX (3GB

GDDR5)
Nvidia 970M GTX (6GB GDDR5)

GPU Specifications
2816 @ 1279MHz,

640 @ 1255MHz
2048 @ 1304MHz 1280 @ 924MHz

Storage Device
2x 250GB Samsung Evo 850 SATA3

SSD (RAID0)

120GB Corsair Force 3

SATA3 SSD

3x 256GB Plextor M5M mSATA

SSD (RAID0)

Sequential Read

Performance
947 MiB/s 254 MiB/s 1305 MiB/s

3.5 Chapter summary

In this chapter, the research presents the approach taken to address the processing

problems faced in DF investigation. The study developed a software platform –

 P a g e | 50

OpenForensics – where different processing methods were trialled. The technologies

used to create OpenForensics are stated alongside their role in processing forensic data.

Consideration of the algorithms used in this research was presented. It was decided to

employ a; brute-force, Boyer-Moore and PFAC algorithm to undertake string searching,

and measure how quickly the selected algorithms would perform searching in the

context of DF. This section further defined how testing was conducted, including details

of how testing was performed on CPU and GPU implementations in the following case

studies. The chapter also outlined the forensic data and the searched patterns that each

test used to measure performance. Concluding, details of the three test platforms were

described, including the hardware configuration, operating system, and drivers were

presented.

 The following chapter presents the case studies undertaken as part of this

research. The case studies are presented uniformly, with an evaluation of the processing

method, results from testing, and concluding with a discussion analysing the results.

 P a g e | 51

Chapter 4: EVALUATION

4.1 Evaluation introduction

The aim of the evaluation presented in this thesis attempts to answer the research aim

posed— to establish whether the application of GPGPU technologies and modern

parallelisable algorithms could aid the problem of file carving in DF. The evaluation

presents the initial base performance metric results gathered using Foremost, followed

by 4 case studies with OpenForensics that introduce changes to processing approach

adopted by Foremost. The final case study, case study 5, presents the developed string

searching processing model to the problem of conducting file carving. Times to conduct

file carving with OpenForensics will be compared to the performance derived from

Foremost to measure how successful the developed processing framework is.

 The evaluation will attempt to present evidence that would support or refute the

research questions presented as part of the research aim. OpenForensics case study 1

to 5 presents data relevant to answer whether an OpenCL GPGPU framework provides

a reliable foundation to analyse digital evidence and decrease the time required for

processing forensic images without affecting accuracy. OpenForensics case studies 3 to

5 investigate whether further performance could be gained through employing a multi-

string search algorithm to perform string searching with the proposed processing

techniques. Finally, evidence to answer whether the potential processing rate in

performing data analysis within the context of digital forensics limited by the speed of

the storage device or the speed of the processor can be demonstrated from

OpenForensics case study 3 to 5.

 Each case study will be structured alike, presenting an introduction, aim,

method, results, and conclusions of the experiment. At the end of the evaluation

section, a discussion will summarise the significant findings from each case study.

 P a g e | 52

4.2 Foremost: gathering base performance metrics

4.2.1 Introduction

Foremost was chosen to gather base performance metrics due to the software being

open-source and widely used. As the code for Foremost is freely available to review, it

was possible for this research to tune OpenForensics to closely mimic the same

processing methods that Foremost employs to search through forensic data.

 Base performance metrics were firstly gathered by running the file searches

through Foremost, an open-source file carver still currently used today by DF

professionals to perform file carving. The time Foremost takes to analyse forensic data

is intended to be a fair representation of the current state of DF tools, and will later be

used to base any perceived performance increases produced by the research.

 Whilst it is acknowledged that baseline comparisons could have been done with

Scalpel, another established file carving tool based from Foremost, earlier trials

performing string searching with both tools resulted in similar times being produced

with little or no significance. At the time of this research, Scalpel’s GPU extension

developed by Marzielle, Richard and Roussev (2007, p. 73–81) was not openly available

for comparison. A more thorough comparison of how OpenForensics compares with

Scalpel to conduct file carving is planned as part of future work.

4.2.2 Aim

The aim of this case study is to gather a baseline performance from Foremost to perform

string searching. It is projected that the baseline performance results could be used to

draw comparisons to the single-threaded CPU approaches of OpenForensics. It is

anticipated that an insight can be gained on how optimised the OpenForensics

 P a g e | 53

processing approach is by comparing the base performance metrics supplied by

Foremost to the single-threaded CPU approaches of OpenForensics in each case study.

4.2.3 Method

As the previous chapter lightly touched upon, Foremost ran within a fresh Ubuntu 15.10

OS. The OS was live booted from an external USB 3.0 USB flash drive, where OS files are

loaded and ran directly from system memory. The system memory available in each of

our test systems used was deemed more than sufficient to handle both the OS and any

forensic data loaded into memory. The forensic data for this test was read from the

same drive as what would later be used for testing each case study presented in this

research. Foremost was configured for testing for varying amounts of search patterns

which were stated in a custom configuration file, and instructed only to write the audit

file back to the storage drive used to read the forensic data from.

 The command carried out is presented in figure 15, whilst the full configuration

files used for each test can be found in appendices B1, B2, and B3. The “-w” flag of the

command specifies that only a log file of results should be produced and that Foremost

should not reconstruct files found within forensic data. It is acknowledged that, whilst

albeit no files are reproduced, Foremost may still opt to conduct a second pass through

data to verify file integrity. If so, the second pass may affect times produced to conduct

string searching with Foremost.

foremost -i TestImage.dd -c /cdrom/foremost/foremost.conf -o ./foremost -w

Figure 15: Foremost command used with launch options

 Foremost analyses forensic data in 100 MiB segments in a linear fashion and by

using only a single processing thread. Although the results produced are deemed

 P a g e | 54

precise, Foremost does not scale well with processor resources. It is expected that

Foremost would produce modest search times in our tests. It is also envisioned that

times taken to search forensic data may scale significantly with the addition of more

search targets due to Foremost’s algorithm choice.

4.2.4 Results

Results from Foremost of the time required to search for varying amounts of file headers

are presented in table 3. Search times produced by Foremost confirm the earlier

prediction that Foremost struggles to handle the additional search targets as we see

each test system’s search slowing significantly between the 5, 19 and 40 search target

trials.

Table 3: Foremost search time results

5 defined patterns — Time (secs.) 19 defined patterns — Time (secs.) 40 defined patterns — Time (secs.)

Test Platform Single CPU Test Platform Single CPU Test Platform Single CPU

A 114 A 415 A 741

B 160 B 453 B 761

C 104 C 440 C 792

 From the results, it can be observed that all three test systems produced

somewhat similar results between one another; surprisingly, however, while test

platform C performed the best for searching for 5 targets, it produced the slowest times

when tasked with 40 search targets. The variance in result could have been caused by

Intel CPU’s dynamic overclocking ability as well as performance throttling occurring due

to the laptop’s thermals levels during heavy processing, both of which are outside of the

control of the experimenter.

 Similarly, further analysing the processing rate drawn from the three test

systems in figure 16 help visualise Foremost’s performance obtained from the test

platforms. Analysing the processing rate which each system processed the forensic data

produced yet more surprising results, as none of the systems tested could process

 P a g e | 55

forensic data particularly fast. Excluding test platform B’s result when searching for 5

targets, all the systems produced comparable processing rates. The theoretical

maximum processing rate, based upon the sequential read performance of the storage

devices used, were in all cases much faster than the processing rate achieved with

Foremost.

Figure 16: Foremost processing rate analysis with 95% confidence intervals

4.2.5 Conclusions

The base performance gathered from performing string searching with Foremost has

confirmed a lot of known factors and limitations of the file carving tool. However, the

results have also presented an unknown. The unknown being the large variance

 P a g e | 56

between test platform B’s weaker ability to search for 5 search targets, producing times

that are significantly slower than both test platforms A and C. This specific test was rerun

to validate the result in this case, which came back with the identical time of 160 seconds

to perform string searching. Although test platform B has the slower storage device, it

was theorised that the storage device of the system possessed enough data throughput

to not become a factor in producing this slowdown and that the slowdown may have

been a factor from elsewhere. However, at this stage of the research, the reason for the

slowdown remained unclear as analysing the two other results obtained from test

platform B shown comparable times that collated with results gathered from the other

two test platforms.

Figure 17: Foremost patterns searched and time relationship

 Figure 17 analyses the time variance between searching for 5 and 19 file headers,

and 19 and 40 file headers for all test platforms. It can be observed from these graphs

that a clear linear trend occurs between the amount of targets searched for and the

time required to complete the search. This trend signifies not only the inability of

performing string searching on a single threaded CPU, but also highlights probable

 P a g e | 57

inadequacies searching for multiple patterns with the modified BM algorithm employed

by Foremost.

 To digress, the first proposed solution that this research presents to improve

upon Foremost introduces how a multi-threaded GPGPU device would tackle the

problem. The research will achieve this while keeping data processing methods as close

as possible to the methods that Foremost employs.

 P a g e | 58

4.3 Case study 1: Using GPUs to conduct string searching

4.3.1 Introduction

The first solution presented introduces two deviations to the Foremost formula. This

case study investigates the possible benefits that these changes will make to the overall

string searching performance. The first change introduces GPU processing to undertake

the processing associated with string searching. The GPU, in this case study, will adopt

a naïve algorithm for searching through the data for patterns. The second change

introduces a change to the processing cycle adopted. Currently, Foremost employs a

proactive approach for checking for partial patterns split between two sections by

overlapping data read by the maximum file size. We propose, as part of this case study,

a reactive processing method that rewinds data only when a partial match is detected.

4.3.2 Aim

It was hypothesised that introducing GPGPUs will somewhat improve the performance

of string searching through forensic data when compared to CPU processing. Even with

an unsophisticated algorithm, the GPU processing technique was envisioned to surpass

the performance achievable with CPU processing, a novel prediction based upon the

greater processing capacities of GPUs when applying simple operations to big data. It

was also predicted that the relationship between the patterns searched for and the time

required to search would be less on the GPU than the CPU, due to the GPU being able

to handle more simultaneous processes on its massively parallel architecture.

4.3.3 Method

The first implementation – being the focus of this case study – is how performance

would be affected by introducing a GPU to perform string searching of forensic data.

 P a g e | 59

The GPU algorithm adopted varies considerably from the modified BM algorithm

employed by Foremost, as the modified BM algorithm is not well optimised for parallel

processors working from the same forensic data. With multiple processors working on

the same data, each byte of the data is distributed in turn to an available processor to

process and return the result. The problem with assigning an algorithm with unique

byte-skipping operations, such as the skip table of the BM algorithm, means that the

processors would have to synchronise after each process to find out how far forward

the next possible match lies. Synchronising a GPU is a somewhat timely operation and

would likely waste valuable processing time, whereas processors held by a

synchronisation request could have continued to process more data.

Declare int for GPU position in data
Declare int for GPU stride in data

Allocate temporary GPU memory to store results

For each byte in data segment

If the byte is equal to the first character of the pattern
Set the pattern is found

 If first header byte is within the last (header length -1) bytes of data
Set rewind flag

For each byte next to found header

 Check byte against expected pattern byte
 If byte doesn’t match
 Set the pattern is not found

 If pattern is found
 Record location of first header byte

Go to next byte

Synchronise GPU threads
Count headers found

Figure 18: Case study 1 GPU brute force algorithm pseudocode

 Ultimately, when taking into these points, applying Foremost’s modified BM

algorithm for GPU processing would not make much sense and would hold back the

potential processing power that GPUs have on offer. Pseudocode of the algorithm

 P a g e | 60

designed to process data on the GPU can be seen in figure 18. The algorithm itself is a

brute force searching algorithm that searches data sequentially start to finish. When

data is loaded to the GPU, the program launches an examination on the GPU for each

pattern searched for. The algorithm instructs to inspect each byte of data in a forward

direction, recording the locations of found patterns within the forensic data in an empty

array with a unique file type indicator. When finished with a segment, the GPU transfers

the array with all the locations of found files and a found match count back to the host

computer. When this data has been transferred, the CPU first checks if the beginning of

a pattern was found at the end of the segment – rewinding the data back if necessary –

then proceeds to process the results whilst the GPU is tasked with analysing the next

segment. Checking for a partial match at the end of a segment is an operation which is

not required when processing with backwards searching BM algorithm.

 In contrast to the algorithm devised for GPU processing, the CPU algorithm

employed the same processing steps used by the modified BM algorithm seen in

Foremost. The CPU algorithm pseudocode used to process forensic data is presented in

figure 19. In early experiments before conducting the first case study, the research

experimented both with creating a skip table from a combination of the patterns

searched for and creating a skip table for each pattern searched for. Results from these

earlier experiments revealed that searching was conducted faster when each pattern

was searched for individually rather than in combination. The concluding reason for this

result was that with so many different patterns being searched for, the skip table

became less and less effective. When searching for multiple strings, the skip table

became more-or-less as efficient as a byte-by-byte brute-force search. Searching each

pattern individually in memory, however, took full advantage of BM’s skip table to

search for each target byte, proving surprisingly more efficient for the CPU workload in

trials.

 P a g e | 61

For each pattern being searched for
Create a counter for position in data initialising at (pattern length -1)

For each byte in data segment
If the current byte is equal to the last byte of the pattern

Set the pattern is found

For each byte before the found byte
 Check byte against expected pattern byte
 If byte doesn’t match
 Set the pattern is not found

 If pattern is found
 Record location of first header byte

Go to next byte

Else

Go to next byte using skip table

Figure 19: Case study 1 CPU modified Boyer-Moore algorithm pseudocode

 The second proposed variation introduced a change on processing cycle and how

data is searched. Early research from this case study examined how Foremost processed

data, and a different approach was adopted in this study to attempt to create a more

efficient way of searching for files that may occur at the end of sections. This check is

used to ensure that when a file header is found near an end of a section without

matching file footer, the program will react and rewind its position in the forensic data

to ensure a file has not been split into two data sections. While this is done in Foremost

with the use of a windowed technique, by overlapping all segments of data by the

maximum file size being searched for, the research proposes only to rewind the position

in the forensic data when a partial match has been found— creating a reactive rather

than a proactive response.

 While the tests in our case study are only interested in the search for the headers

of files and not complete files, this change is only used in the tests by the forward

searching GPU algorithm in ensuring file header itself is not split between two data

sections. The reverse searching modified BM algorithm employed in this study uses a

 P a g e | 62

reverse search method, signifying that any file header matches cannot be split between

two sections. If the program detected the start of a pattern which was searched for, the

program would flag for the program to rewind the data back a number of bytes to

account for any patterns which may exist between the two sections. A diagram that

outlines the full revised processing cycle is presented in figure 20, which both the CPU

and GPGPU processes adhere to. The dotted arrow lines of the diagram signify the check

which the GPGPU algorithm uses to check for an incomplete file header.

Figure 20: Case study 1 processing cycle

 The final proposed variation is the size of the segments that are processed,

increasing the size from 100 MiB to 300 MiB. This change was made to test the theory

on whether the benefit of reducing the number of times required to check for patterns

or files which may be split over two segments would outweigh the timely operation of

pre-loading greater amounts of data from storage device to memory.

4.3.4 Results

The times taken to search the forensic data are presented in table 4. The results

presented some intriguing findings. The times taken to search the forensic data using

the proposed modified BM algorithm on the single CPU in this case study are far greater

than times produced by Foremost. This indicates that the changes made to the

algorithm, primarily instructing the CPU to search for each pattern separately rather

than in combination, slowed searching down significantly despite earlier

experimentation. Despite the disappointing performance from the single CPU

 P a g e | 63

implementation derived from this study, comparisons can still be made between the

GPU and IGP times and the base performance results gathered with Foremost.

Table 4: Case study 1 search time results

5 defined patterns — Time (secs.)
19 defined patterns — Time (secs.)

40 defined patterns — Time (secs.)

Test

Platform

Single

CPU

Single

GPU

Single

IGP

Test

Platform

Single

CPU

Single

GPU

Single

IGP

Test

Platform

Single

CPU

Single

GPU

Single

IGP

A 222 44 48* A 1198 50 64* A 2461 58 88*

B 274 98 109 B 1237 104 158 B 2471 113 232

C 253 49 56 C 1384 61 114 C 2850 80 199

* - Secondary discrete GPU, no IGP present on system

 From the time results, the GPUs and IGPs from all test platforms managed to

achieve respectable performances. All significantly besting times derived from the CPU

implementation as well as the previous Foremost tests. Nonetheless, this was an

expected novel finding, as the processors were processing data much faster on a

massively parallel scale. Furthermore, the CPU implementation is limited to run only one

thread, not utilising the full computational power of the processor. The fastest time to

search all 40 search targets, achieved from test platform A’s GPU, took only 58

seconds— a phenomenal result which surpassed initial expectations from applying a

minimalistic algorithm to conduct string searching through forensic data.

 When comparing the result from test platform A’s GPU to the time Foremost

took to search for 40 patterns (741 seconds), the GPU algorithm performed searching

for 40 search patterns 12.78x faster. This result was not unusual when comparing test

platforms B and C’s GPU results, both which delivered 6.56x and 9.26x faster

performance respectively. Slight differences in deliverable performance enhancements

in these tests can be explained by the variation in processor hardware between the

different test platforms, some which have more powerful processors than others.

 Test platform’s B and C’s IGP also delivered impressive results from the time

results, with the initial unexpected observation that the laptop’s Intel HD4600

outperformed its desktop counterpart of the same model. With further inspection,

 P a g e | 64

however, this result is explained by referring to the precise specifications of the two

IGPs. The Intel HD4600 of test platform C is clocked 14.3% higher (50 MHz) than the Intel

HD4600 of test platform B— resulting in faster speed in processing forensic data.

 Test platform A’s secondary GPU, the Nvidia 750Ti, performed commendably

too, producing only marginally slower results than the high-end discrete laptop GPU

found on test platform C. Nevertheless, it is also observed from the results of this case

study that test platform A’s secondary GPU seemed to show the most deterioration out

of all discrete GPUs when tasked to search for increasing amounts of patterns.

Figure 21: Case study 1 processing rate analysis with 95% confidence intervals

 One of the fascinating results from this first case study is seen from the

processing rate analysis as shown in figure 21. As anticipated, the quicker processing

times achieved from the GPUs and IGPs on the test platforms have translated to

significantly higher processing rates. However, the proposed solutions of this case study

 P a g e | 65

have failed to achieve the theoretical maximum speed that the storage devices can read

forensic data. The test platform with the slowest storage device on trial, test platform

B, demonstrates that even by conducting searching on a GPU with a naïve algorithm,

searching may not be limited by storage device transfer rates, but rather by the

technique employed to search for evidence.

 Also from analysing the processing rate and times gathered, it is also hinted that

the GPU and IGP times seem to depreciate less when searching for larger amounts of

patterns. Analysing this further, figure 22 visualises and confirms this hypothesis to be

true, showing that both GPUs and IGPs demonstrate significantly less time deterioration

when more search patterns are defined. This observation is due in large part – once

more – to the GPU and IGP’s ability to parallelise searching of multiple targets better

than both the single threaded CPU implementation in this study as well as Foremost’s

method of searching.

Figure 22: Case study 1 patterns searched and time analysis

4.3.5 Conclusions

This case study presented two changes to Foremost’s formula to try and improve upon

string searching within DF. While Foremost is limited in design to only use only a single

 P a g e | 66

thread of a CPU to search through forensic data; it is found to run well despite this

limitation, significantly outperforming this case study’s single threaded CPU

implementation. Notwithstanding this case study’s CPU algorithm being designed

around Foremost’s algorithm, the study found that the changes made to the algorithm

and processes were not as optimised as anticipated. It is granted that other factors, such

as the different OSs each solution was ran within and languages each solution was

developed in may have had significant effects on the resulting times. Even so, this case

study highlights important lessons to take forward to optimise further the approach of

the GPU and IGP approaches in conducting string searching.

 Analysing the changes in this case study, the introduction of conducting string

searching on GPUs proved very successful and provided significant performance

increases over both the study’s CPU implementation and Foremost alike. While this was

expected in our initial predictions, the hypothesis was that the possible performance of

the GPU implementation may have been limited by storage device data transferal rates.

After further analyses of the results, however, it became apparent that processing on

the GPU did not utilise the full capability of the storage device— even with the test

platform with the slowest storage device on the test. IGPs found on the CPUs of test

platforms B and C also performed well during testing, while slower than the discrete

GPUs found on the test platforms, they proved viable processors to conducting string

searching. As most modern mainstream CPUs available now in consumer and

workstations are equipped with some form of IGP, it would be beneficial to utilise the

power behind these capable chips to provide additional processing power for the

discrete GPU— treating the IGP as a partnered asynchronous GPGPU processor. With

this change, it is anticipated that searching could be performed faster still.

 The result gained by test platform B’s GPU raises another further peculiar result

when comparing the performance shown by each platform’s discrete GPUs. Platforms A

and C’s discrete GPUs, the Nvidia 980Ti, 750Ti and 970M, all managed to process the

forensic data significantly better than test platform B’s Nvidia 980 GPU. With the

 P a g e | 67

specifications of the GPUs on test, it was expected that test platform B’s Nvidia 980

should have attained processing rates in between the Nvidia 970M of test platform C

and the Nvidia 980Ti of test platform A— signifying that the GPU on test platform B

should have been able to hit the theoretical maximum processing rate for this system.

 An explanation can be found when revisiting the processing cycle adopted to

process the forensic evidence in this case study. With the processing cycle used, the data

is not processed asynchronously by any of the processors within this case study. Instead,

data is handled in a rather synchronous way, where the storage device will only fetch

the next segment of forensic data when the processor has finished processing the

current data segment— meaning that between processing, the storage device sits idle

until instructed to serve the next segment of data. Within the results of this case study,

synchronous processing can be seen to have a negative effect on performance that

makes the theoretical maximum unachievable by any of the tests demonstrated— due

to the storage device idling during processing.

 Concluding on the introduction of GPUs, further experiments should be

extrapolated and further performance enhancements introduced, such as the

introduction of multiple GPU processing and more sophisticated GPGPU algorithms, to

discover whether the theorised maximum processing limit of the storage device could

be reached, or whether there are any other factors which may limit the speed analysing

forensic data.

 The second change introduced in this case study attempts to modify the

processing cycle employed by Foremost by only rewinding the position in the forensic

data back when an incomplete pattern is found at the end of the current section. This

change seemed logical at first. However, further iterations of this research would

deteriorate the possible performance with this technique, particularly when exploring

multi-threaded processing. This is because if one thread – or one processor – flags the

requirement to check data at the end of its current section, it may cause the storage

device to make significant jumps back and forth between locations on the storage device

 P a g e | 68

to serve data to processing threads. All the jumps back and forth through data would

inevitably cause delays to processing forensic data, with a greater impact on traditional

HDDs where a physical movement of the disk platters and read heads are required to

find the data requested.

 While the tests presented in this research are only interested in file headers and

the searching of forensic data without extracting files, the tests carried out are less

impacted by the problem above as the chance of finding patterns of a few bytes long

being split between data segments is unlikely. However, in the interest to present the

best possible way to explore forensic data for the purposes of reconstructing files, it is

deemed that future experiments should report back to a more multi-threaded friendly

way of employing a windowed technique. Akin to the technique employed by Foremost,

having an overlap of the maximum possible file size between sections to ensure files are

not split into two sections. By reporting to the windowed section technique, it is

anticipated that storage devices will be more efficiently used when conducting string

searching and file carving on forensic data on traditional HDDs.

 Part of this case study increased the file data segments that the forensic data is

split was into from 100 MiB to 300 MiB. It was anticipated that comparisons could have

been possible between Foremost and OpenForensics CPU results; however, due to the

OS, processing, and other unexpected differences, this case study supplies little

evidence that supports or refutes that larger segments enable faster searching through

forensic data. In the next case study, the file data segments will be reduced to 100 MiB

to see if it has any impact on the times produced by the test platforms on single threaded

CPU tests. It is also worth noting that when experimenting with parallel multi-threading

on CPUs and multiple GPGPU devices, it is envisioned that smaller data segments would

benefit systems with limited availability of main memory as the volatile memory

required to perform searching in parallel would grow exponentially with the number of

threads employed by the CPU, or, GPGPU devices used.

 P a g e | 69

4.4 Case study 2: Utilising asynchronous parallel techniques

4.4.1 Introduction

The previous case study showed some immediate advantages when employing GPUs to

conduct string searching within forensic data. With this said, there were some lessons

learnt about the execution of searching that this case study aims to address, as well as

obvious improvements which could have been made to further enhance searching

performance.

 This case study investigates how GPGPU processing compares with a fully utilised

CPU to conduct string searching. This is achieved by implementing the use of threaded

processing to both CPU and GPU processing. The second change introduced by this case

study reverts to a Foremost style of proactive searching with the “windowed” section

technique. This change, albeit reverting to a proactive search technique, was done to

optimise searching on traditional mechanical storage devices. This is deliberated in more

detail in the discussion.

4.4.2 Aim

The aim of this case study is to demonstrate further performance gains by performing

string searching through employing multiple processors, or multi-threading,

approaches. Results will be collated in the same way as presented in the last case study

to ensure consistency and make presentation of performance gains easier to analyse

between studies. It is also hoped that through employing a parallel multi-GPU approach,

evidence of a performance limit can be witnessed when analysing data processing rates,

confirming that theoretical data processing limits exist when processing forensic data.

 P a g e | 70

4.4.3 Method

The most significant change that this case study presents is the use of multi-threading

and multiple processors to perform searching for patterns within forensic data, using an

asynchronous model where each processing thread acts independently. It is envisioned

that the employment of such techniques would offer substantial benefits. However,

performance may be limited in some cases by the theoretical maximum data transferal

rate of storage devices that forensic data is read from. Experiments with multi-threading

and multi-GPUs would indicate whether the theoretical maximum data transferal rate

is bound solely by the storage device, or whether there are other confounding factors

which limit performance from performing string searching within the context of DF.

 To help analyse the extent of performance gains between this case study and the

previous case study, the same algorithms were employed in this case study to conduct

the string searching on the forensic data. The GPU algorithm utilising the same brute-

force algorithm, and the CPU implementation – albeit less efficient than Foremost’s

execution – still employed the modified BM algorithm, as outlined in the pseudocode of

figures 18 and 19 within the previous case study.

 As previously mentioned within the earlier study, there was little evidence of

performance gains from searching in larger sections. This case study read forensic data

in 100 MiB section blocks to gain more understanding on whether the change of section

size effected searching positively or not. Further, the previous case study changed the

method that the program handled checking for patterns which may have been split into

two sections. In the tests conducted, it was deemed highly improbable that a header

pattern of several bytes would be split between two sections, however, far more

probable that a whole file – which may be several MiB – may be divided between

sections when searching in smaller data sections of 100 MiB.

 When designing the multi-threaded approach to performing file carving within

the context of DF, it was deemed that the processing method adopted in the previous

 P a g e | 71

case study would have caused delays when used in a parallel scenario with multiple

running search threads. Particularly when reading data from traditional HDDs. HDDs

differ from modern SSDs by having mechanical parts that spin the disk platters where

the data is stored, and a head assembly mounted on actuator arms that are used to read

data. Reading data at different locations on the disk platters causes seek time, where

the storage device endures a time delay to move the head assembly on the actuator arm

to the place on the disk platters where the data is located.

Figure 23: Case study 1 section processing approach

 The first case study’s processing approach, as shown in figure 23, may have

caused HDDs a delay, as if multiple processing threads detected a partial match at the

end of a section, the HDD would be tasked with reading previously processed data as

well as fetching current data for other processing threads. The requirement to check

historic data may cause additional time to read forensic data stored in different areas of

the storage device. When searching in a parallel fashion, each additional processing

thread could potentially mark an end of section check on the segment of data the thread

has analysed, exponentially increasing the time required by the storage device to read

forensic data.

 The processing cycle adopted in this case study is presented in figure 24, where

each processor follows the same simplistic approach to process data. In multi-threaded

and multi-GPU approaches, the available processors on the system work asynchronously

in parallel to handle all of the forensic data in 100 MiB segments. Processing is carried

 P a g e | 72

out sequentially, where each segment only requires being processed once. In turn, each

segment of forensic data is dynamically assigned and processed independently by an

available processor until all of the segments of forensic data have been processed.

Within the context of the string searching tests performed in this case study, discovered

file header patterns are recorded in memory and presented back to the user when all

forensic data has been processed. If file carving, files are reproduced when the

processor finishes an analysis of a section.

Figure 24: Case study 2 processing cycle

 It was deemed logical to resort back to reading data in a windowed fashion,

where data is read in sequence with an overlap of the largest possible target size

specified in the configuration— for this case study, the window size was the length of

the longest file header. This was foreseen to be a more optimised approach, ensuring

that slower performing mechanical HDDs would not be disadvantaged when performing

file carving and ensuring that forensic data is only read and accessed once, which should

– in theory – have a positive effect on file carving performance.

 P a g e | 73

Figure 25: Case study 2 section processing approach

4.4.4 Results

The results produced from this case study are outlined in table 5. Presented are the

times which each technique took to conduct string searching on the forensic data with

the varying amount of search patterns defined. A few differences can be seen when

comparing the times achieved by the single CPU, GPU, and IGP to the previous case

study. Despite observing a few improved times, it is generally shown within the results

that performance has degraded slightly within this case study; indicating that, albeit an

insignificant variation, the changes to both the segment sizes that forensic data is split

into, and the changes to the processing cycle may have produced a negative effect on

the performance achievable with the algorithms and technology used.

 Aside from the minor time variations between the two case studies, this case

study presents exceptional results from applying multi-threading and multi-GPU

technologies to carry out string searching on forensic data. Most notable results are

provided by the most powerful system on test – test platform A – which manages to

reduce the time required to search for 40 defined search patterns from 2418 seconds to

341 seconds through using all 12 available logical CPU cores on the processor to search

through forensic data. Likewise, test platform A’s application of both GPGPU devices

reduced the time from 69 seconds from using the platform’s fastest GPU to only 47

seconds to process all 20 GB of forensic data.

 P a g e | 74

Table 5: Case study 2 search time results

5 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 220 33 43 27 48*

B 254 94 94 85 118

C 259 47 44 36 73

19 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 1182 168 53 34 67*

B 1234 306 104 87 170

C 1403 303 59 46 124

40 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 2418 341 69 47 96*

B 2444 613 120 102 245

C 2823 624 82 65 206

* - Secondary discrete GPU, no IGP present on system

 Unlike test platforms A and C, test platform B was already quite close to the

theoretical maximum performance limit of the storage device used to read the forensic

data within the previous case study, hindered by the synchronous processing cycle

adopted for single processor testing. Times produced from test platform B’s multi-GPU

tests suggest that that theoretical processing rate may have been met, as the time

produced by test platform B for the multi-GPU test does not show the same pattern of

performance gain as observed by the other two test system’s 5 pattern tests. This

observation is validated when we calculate the processing rates produced by each

platform in figure 26.

 The processing rates which each platform produces offers further insight on how

applying an asynchronous multi-GPU and multi-threaded approach affects the

performance achievable. As predicted at the beginning of this study, the results show

significant improvements. Multi-threading on the CPU show the most benefit over its

synchronous counterpart, as the CPUs employ all logical cores to process data instead

of using just a single core. The multi-GPU results also show noteworthy improvements

by employing all GPGPU devices available on the test system to perform string

 P a g e | 75

searching. In the case of test platform B’s 5 pattern search, the multi-GPU string

searching performance appears to be limited by the performance of the storage device.

Figure 26: Case study 2 processing rate analysis with 95% confidence intervals

 Multi-GPU results don’t initially appear as impressive as multi-threaded CPU

results mainly due to CPUs having more headroom for improvement when employed in

a multi-threaded approach; for example, test platform A can spur twelve asynchronous

threads – one for each logical CPU core – whilst only instructed to create two

synchronous threads for the two GPGPU devices— signifying a maximum potential

speedup of 12x for the CPU and 2x for the GPU. In consideration of this fact, while the

multi-threaded CPU does produce much better results over its single-threaded

counterpart, the performance is still relatively minor in the 40 pattern search when

compared to that gained from all the GPU, IGP and multi-GPU respectively.

 P a g e | 76

Figure 27: Case study 2 patterns searched and time analysis

 When analysing the relationship between the time taken and patterns searched

for in figure 27, it can be identified how each processing technique’s processing time is

affected when tasked to find more patterns. Within these graphs, it can be identified

that utilising multi-CPU processing has an overall favourable advantage when searching

for larger amounts of patterns within data, showing not only a significant reduction in

time required, but also less time deterioration when tasked with to search for more

patterns. Nonetheless, due to the limitations of the modified BM multiple string

searching algorithm as well as the underlying processor architecture, both CPU

techniques are significantly outperformed by GPU, IGP and the combination of multiple-

GPGPU devices when performing searching for 19 and 40 patterns— with the latter

multi-GPU solution demonstrating the best performance as predicted.

 The results can be further interpreted by investigating the speedup of each

technique over the single CPU technique, as shown in figure 28. Test platform A

demonstrates average 6.9x speedup over all tests utilising all 12 logical cores on the

CPU. Whereas test platform B that employs 4 processing threads shows an overall 3.6x

speedup, and test platform C that employs 8 threads demonstrates 4.9x speedup

 P a g e | 77

compared to their single-threaded counterparts. The 5 pattern result from the multi-

CPU method of test platform B is seen to show only a 2.7x speedup, skewing the average

result for this platform. The result from this test is seen to also perform similarly to the

single GPU test, which was found in the first case study to be limited by the storage

device idling when the single processor was processing forensic data, however, as the

multi-CPU processes data in an asynchronous fashion between the different processing

threads, it would be improbable that storage device idling would be the problem.

 Further, closer inspection of the multi-CPU processing of this test confirms that

the delay was due to the four processing threads employed by the CPU not being able

to process data quick enough, instigating the storage device to idle when all four threads

were actively processing and did require data from the storage device. It is assumed that

the storage device would have less time idling if test platform B had access to more

threads to process forensic data on, or alternatively if a more optimised algorithm was

employed to process forensic data on the CPU.

 Inspecting the speedup over the single CPU, GPGPU processing excelled over

CPU techniques when searching for increasing amounts of patterns. GPGPU processing

had a clear trend of the greater amount of patterns searched for, the larger the speedup

would be. This can be explained, like in the previous case study, by the GPU and IGP’s

ability to massively parallelize simplistic mathematical problems. Technology onboard

GPGPU devices possess far greater amounts of algorithmic units which make it capable

of processing data at a far greater rate than CPUs. Speedups reached a significant 51.5x

faster when using multi-GPUs to search for 40 patterns within forensic data on test

platform A. Test platforms B and C also reached impressive speedups of 24x and 43.4x

respectively when performing the same tests.

 P a g e | 78

Figure 28: Case study 2 technique speedup over single CPU solution

4.4.5 Conclusions

This case study’s goal was to improve upon the results produced by the last case study

by introducing some variables into the existing framework. The first – and most

significant – of implemented changes being the introduction of asynchronous multi-

threaded CPU and multi-GPU processing to conduct string searching on forensic data. It

was predicted that introducing parallelization to process forensic data could significantly

improve the performance achievable to that attained by the previous case study,

wherein only a single threaded, or single GPGPU, the approach was adapted to process

data.

 Results produced by this case study confirm this hypothesis, as adapting parallel

techniques on the CPU produced a speedup of 3.6-6.9x over its single threaded

operation. Likewise, applying multi-GPU techniques achieved an average speedup

between 1.2-1.5x over utilising just a single GPU. The largest of the observed speedups

was produced by test platform A, which employed two discrete GPUs to process data.

Even though utilising parallel processing provided the CPU with far more significant

speedups, CPU processing also had the greatest headroom to improve. Overall, it is

recognised within this case study that partnering all available GPGPU devices on a

system will produce the best performance when processing forensic data.

 P a g e | 79

 Processing performance limitations were observed only when performing string

searching for 5 patterns with multiple GPUs on test platform B. As the test platform with

the slowest storage device on trial and performance closest to the theoretical maximum

in the previous case study, it was anticipated with the introduction of asynchronous

processing that performance bottlenecking may have occurred for this test platform.

This result provides an early indication that the theoretical maximum indeed does exist,

however, one instance of this anomaly is deemed insignificant until further evidence of

the bottleneck is presented.

 In the case of test platform B’s multi-CPU result, storage device idling could still

be witnessed due to processor unavailability; this is due in large part to the lack of

processing threads and/or the suspected lack of an efficient multi-string searching

algorithm. While the same could be claimed by GPGPU approaches, GPGPU devices

using a simple brute force algorithm still possessed enough raw processing power to

process segments of forensic data in less time than it takes to read the next segment of

forensic data from the storage device. The GPGPU processor’s efficiency at processing

data significantly minimises the amount of time that the storage device is idle, and when

pairing GPGPU devices, more of the storage device’s performance can be utilised. In test

platform B’s case when using multi-GPU processing, we can see that the theoretical

maximum performance of the storage device is fully utilised.

 To improve these results further, an investigation on how a parallel multi-string

algorithm could reduce the time required to search for multiple patterns within forensic

data. As both the CPU and GPGPU both use algorithms which are seen to be ill-suited

for performing string searching for multiple patterns. It is hypothesised that significant

advantages could be reaped from employing a parallel friendly multi-string searching

algorithm. It is anticipated that the degradation of performance would be less in all tests

conducted. However, it is expected that, similar to this case study and the last, utilising

GPGPU processing will show the quickest results and greatest performance gain. It is

unknown, however, how the introduction of an improved multi-string algorithm would

 P a g e | 80

affect the performance gap seen between synchronous and asynchronous

implementations of the CPU and GPGPU methods— whether the performance

improvement gained through asynchronous parallel deployment would increase, or

otherwise diminish.

 Within this case study, the segments which the forensic data was separated into

was decreased from 300 MiB to 100 MiB to facilitate parallel processors having enough

independent memory space to process and record results asynchronously. This change

was applied globally to all processing techniques to measure how the reduction in

segment size affected the speed which data was processed. Results largely show a

negative effect when comparing single CPU, GPU, and IGP results of this case study to

that of the previous case study. Whilst the difference between the two sets of results is

arguably small, it remains enough of a difference to demonstrate that slightly enhanced

performance can be gained from splitting forensic data into larger 300 MiB segment

sizes for processing within a single threaded application.

 Within an asynchronous processing model, however, segment sizes which the

forensic data is separated into must be treated differently than synchronous processing.

In the asynchronous processing model adopted by this study, segment sizes are mostly

limited by the amount of RAM memory available on the system to store each processor’s

current data segment and results. Whilst the system memory available on all three of

the test platforms in this research are deemed plentiful and could entertain handling

300 MiB of data per processor, having larger data segments may also introduce

processor blocking— whereas available processing threads are held idle by the storage

device transferring data segments to other threads. It is predicted from these

observations that segment size may be best allocated dynamically, taking into

consideration the amount of processors and RAM available for the analysis and other

search parameters – such as maximum potential file sizes – to adopt an optimal file

segment size to separate the forensic data into without blocking either the storage

device nor asynchronous processors.

 P a g e | 81

 Another change made in this case study was altering the processing cycle that

the processors used to process forensic data, modifying how checking is done for results

that may be split between two sections. The reactive detection-based approach of the

previous case study was changed to a proactive approach of having a small overlap

between segments. The results of the reactive approach gained from the last case study

showed promising results, however, the tests performed searching for file headers likely

gave the reactive processing cycle an advantage, as the chance of discovering

fragmented headers of several bytes is significantly less than when searching for whole

files of several MiB. Nonetheless, tests performed with the proactive processing

approach shown little degradation to the overall time taken to search forensic data.

 With the advantages that proactive processing brings, especially considering the

benefit of reducing the seek time required from traditional HDDs when searching

forensic data, it is the belief of the author that a proactive processing cycle would

provide the overall quickest and most reliable file carving times when tasked with

reproducing files from forensic data.

 P a g e | 82

4.5 Case study 3: Employing the parallel failureless Aho-Corasick (PFAC)

algorithm

4.5.1 Introduction

Within the previous OpenForensics case studies, experiments have been completed

using a modified BM algorithm to perform CPU searching, and a brute-force algorithm

to perform GPU searching. Case study 2 has shown significant performance gains when

employing single- and multiple-GPUs to conduct string searching. This case study

investigates whether further performance could be gained through employing a multi-

string search algorithm to perform string searching with the proposed processing

techniques.

 It is anticipated that with the employment of a better multi-string algorithm that

CPU and GPGPU processing could both benefit with enhanced string searching

performance. With the introduction of a more optimised algorithm, however, it is

expected that performance advantages in some test cases may be limited by the

theoretical maximum sequential data transfer speed of each test platform’s storage

device.

4.5.2 Aim

This case study aims to demonstrate how each processing technique would perform

with a more optimised multi-string searching algorithm – the PFAC algorithm – to

perform string searching within the context of a DF investigation. This case study will

compare and interpret the attained results to those produced by case study 2.

 P a g e | 83

4.5.3 Method

The implementation of the PFAC algorithm into OpenForensics entailed modifying two

entities; the pre-processing of searched for patterns, and the processing steps that both

CPU and GPGPU devices followed. The PFAC lookup table generation is processor

agnostic, in which both CPU and GPGPU implementations can follow the state machine

table to look up their next instruction. The processing steps, on the other hand, are not

due to the requirement of GPGPU specific code. However, the steps carried out by both

implementations are widely identical as can be seen by comparing both figures 29 and

30 that outline the pseudocode used to construct both the GPGPU and CPU methods.

Declare int for GPU position in data
Declare int for GPU stride in data

For each byte in data segment
 Declare int for state, set as initial state
 Declare int for walk, set at current position in data

While walk is less than data segment length
Set state according to lookup table (using state & byte of data[walk])
If state is 0

Break
 If state is less than initial state

Record location as result and add to found results count

Go to next byte

Synchronise GPU threads

Figure 29: Case study 3 GPU PFAC algorithm pseudocode

 With the PFAC algorithm, processing is minimised with the use of the lookup

table that acts as a state machine, which simply instructs the processor to progress

searching depending on the byte read at the current position and the current state, as

described in section 3.2. As the state machine drives the search, the actual processing

steps are simplistic in nature when compared to the earlier algorithms adopted in this

 P a g e | 84

research. The main fundamental difference of this algorithm, compared to the modified

BM algorithm employed by the CPU in previous case studies, is that each and every byte

of forensic data is processed in turn by an available processing thread to search for all

patterns defined within the search parameters. This may sound expensive for the

processor to do, however, if the first byte of the searched patterns is not discovered,

the processing thread will be freed— only using a few instructions to reach that point.

Declare int array for found results

For each byte in data segment
 Declare int for state, set as initial state
 Declare int for walk, set at current position in data

While walk is less than data segment length
Set state according to lookup table (using state & byte of data[walk])
If state is 0

Break
 If state is less than initial state

Record location as result and add to found results count

Go to next byte

Return found results

Figure 30: Case study 3 CPU PFAC algorithm pseudocode

 It is envisioned that the PFAC algorithm employed in this case study would

benefit any processor that is tasked with searching for multiple patterns, as all defined

patterns are searched for in a single scan of the data read from the drive. The benefit of

the algorithm is imagined to significantly affect the times taken to complete in the 19

and the 40 pattern searches of the tests devised but would have less improvement on

the 5 pattern searches as a multi-string searching algorithm is predicted to lose

performance gain when tasked to search for fewer patterns.

 Aside from the change of algorithm employed to conduct searching, this case

study has no other changes to the method of searching adopted within case study 2. As

this algorithm is a fundamental change to how data is searched for, it was deemed

 P a g e | 85

necessary as part of this case study to keep other variables the same to obtain results

which could be fairly compared to that attained in case study 2. From the performance

comparison between the two studies, the difference in performance can lead to answer

whether a more optimised algorithm could benefit string searching for multiple targets

in the context of DF.

4.5.4 Results

Table 6 presents the results gathered from this case study. Performance improvements

are witnessed across all technologies used to search for patterns within forensic data

when comparing the results to that of case study 2. Indicating that all processing

techniques used to process data are notably quicker with the PFAC algorithm when

compared to both the brute force algorithm employed by GPGPU processing and the

modified BM algorithm on CPU technologies. Comparing the times derived to the

previous case study, the CPU gained the most benefit from applying the PFAC algorithm

to search through forensic data, achieving a speedup across all test platforms averaging

1.15x, 3.55x, and 5.96x for the 5, 19 and 40 pattern search tests respectively. GPGPU

technologies were also improved, showing speedups averaging 1.06x, 1.37x, and 1.86x,

for the 5, 19 and 40 pattern tests.

 What is interesting to note here is the performance growth between the 40 and

5 search pattern test from each processing technique, as the 40 search pattern tests

showing the possible optimisation that a multi-string algorithm like PFAC provides when

searching for larger amounts of patterns within data.

 P a g e | 86

Table 6: Case study 3 search time results

5 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 177.82 29.21 39.64 26.91 44.81*

B 234.78 84.66 98.37 85.04 115.01

C 195.37 45.12 41.65 32.48 60.35

19 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 309.18 46 40.09 26.86 46.51*

B 366.1 111.05 98.78 84.97 116.28

C 343.05 83.3 42.52 32.43 63.77

40 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 377.34 55.05 40.44 27.06 47.34*

B 431.92 126.3 99.13 84.68 118.28

C 444.72 99.47 42.55 34.38 66.43

* - Secondary discrete GPU, no IGP present on system

 Another observation within the results collected can be observed from the

improvements of the single CPU performance. All times recorded were significantly

faster than single CPU results from previous studies. The single CPU results of the 19 and

40 pattern searches now outperform the base performance metrics gathered using

Foremost with a speedup of 1.29x and 1.84x respectively. The 5 pattern search,

however, still performs best with Foremost (0.62x)— an expected result when

comparing algorithm characteristics.

 One more noteworthy inspection from the times gathered is the performance of

the multi-threaded CPU, which outperforms the single IGP or secondary discrete GPU in

some tests when searching data with the PFAC algorithm. This can be observed from

test platforms A and B in the 5 and 19 pattern searches. Within the 40 pattern searches,

however, it is observed that the IGP and secondary discrete GPU retain the lead over

the multi-threaded CPU as the multi-threaded CPU times are seen to depreciate with

more search patterns defined.

 When visualising the times gathered to analyse processing rate in figure 31, a

clear overview of each processing method’s performance can be seen. When comparing

 P a g e | 87

the processing rate to that of case study 2, there are notable improvements in the 19

and 40 string searches, with all processing techniques deteriorating significantly less

when searching for greater amounts of patterns—with discrete GPUs showing near no

deterioration at all in some instances. When analysing the performance benefit on test

platforms A and C, it can be seen that the 5 pattern test seems to reap less improvement

than the previously used algorithms than the 19 and 40 pattern searches.

Figure 31: Case study 3 processing rate analysis with 95% confidence intervals

 Processing rates derived from test platform B successfully manage to reach the

theoretical maximum data transferal rate of the storage device on four counts—from all

of the multi-GPU tests, and also the 5 pattern multithreaded CPU test. When analysing

the performance of string searching with multiple GPUs, the multi-GPU test on test

 P a g e | 88

platform B manages to employ an average 63% of the total performance of the

combined performance of the individual GPGPU devices, notably lower than the average

77% of the combined performance utilised on test platform C, which similarly pairs a

discrete GPU and IGP in its multi-GPU test. Test platform A, which utilises two discrete

GPUs within its multi-GPU test, uses an average 80% of the combined performance of

the two separate cards.

 When analysing the direct comparison between the patterns searched and time

is taken in figure 32, familiar patterns previously seen in the last case study reappear.

While the PFAC algorithm has significantly improved the overall times to search from

case study 2, the single CPU technique is seen to still require an increasing amount of

time when more patterns are defined. The single CPU still shows the worst deterioration

from all techniques trialled. The multi-threaded CPU showed improvements when

utilising the PFAC algorithm, however, similar to its single threaded counterpart, its

performance is still seen to depreciate when tasked with increasing amounts of search

patterns.

Figure 32: Case study 3 patterns searched and time analysis

 P a g e | 89

 The GPGPU technologies faired the best in this analysis once more. From the

graphs; the multi-GPU, single GPU, and single IGP, performed all tests showing little, or

no, depreciation in performance when tasked to search for increasing amount of search

patterns. Evidenced in the graph, once again, is the multi-GPU technique performing the

fastest of all processing techniques trialled in this case study.

 When comparing the processing technique speedup over the single CPU solution

in figure 33, we observe different results to that drawn by case study 2. While the multi-

threaded CPU technique manages to maintain its arguably overall linear speedup over

its single CPU equivalent, its speedup has notably increased with the employment of the

PFAC algorithm. The multi-threaded CPU technique overall fairs better with the other

GPGPU techniques on trial, managing to show larger speedups than the single GPGPU

devices on the 5 pattern test, and besting the speedup of the secondary discrete GPU

and IGP in the 19 pattern tests for test platforms A and B.

 Test platforms A and C show the greatest variation of observed speedups,

however, as mentioned earlier when analysing the processing rates of each platform, it

is clear that the multi-GPU tests on test platform B are limited by storage device

performance. In turn, this affects the potential speedup of the multi-GPU technique on

this test platform.

Figure 33: Case study 3 technique speedup over single CPU solution

 P a g e | 90

Figure 34: Average time taken for single-threaded CPU to conduct string searching

with modified BM and PFAC algorithm processing

The Boyer-Moore algorithm took the longest to process data (median = 1234,

min = 220 and max = 2823). The quickest processing algorithm was the PFAC algorithm

(median = 343.05, min = 177.82 and max = 444.72).

A Kruskal-Wallis H test showed that there was no significant difference in time

elapsed between the different processing techniques, χ2(1) = 3.604, p = 0.058.

 P a g e | 91

Figure 35: Average time taken for multi-threaded CPU to conduct string searching

with modified BM and PFAC algorithm processing

The Boyer-Moore algorithm took the longest to process data (median =

303, min = 33 and max = 624). The quickest processing algorithm was the PFAC

algorithm (median = 83.3, min = 29.21 and max = 126.30).

A Kruskal-Wallis H test showed that there was a significant difference in

time elapsed between the different processing techniques, χ2(1) = 4.306, p =

0.038.

 P a g e | 92

Figure 36: Average time taken for single GPU to conduct string searching with

modified BM and PFAC algorithm processing

 The Boyer-Moore algorithm took the longest to process data (median = 68, min

= 43 and max = 120). The quickest processing algorithm was the PFAC algorithm (median

= 43.68, min = 39.64 and max = 99.13).

A Kruskal-Wallis H test showed that there was a significant difference in time

elapsed between the different processing techniques, χ2(1) = 4.320, p = 0.038.

 P a g e | 93

Figure 37: Average time taken for multi-GPU to conduct string searching with

modified BM and PFAC algorithm processing

The Boyer-Moore algorithm took the longest to process data (median =

47, min = 27 and max = 102). The quickest processing algorithm was the PFAC

algorithm (median = 32.48, min = 26.86 and max = 85.04).

A Kruskal-Wallis H test showed that there was no significant difference in

time elapsed between the different processing techniques, χ2(1) = 2.123, p =

0.145.

 P a g e | 94

Figure 38: Average time taken for single IGP to conduct string searching with

modified BM and PFAC algorithm processing

The Boyer-Moore algorithm took the longest to process data (median = 147, min

= 73 and max = 245). The quickest processing algorithm was the PFAC algorithm (median

= 90.72, min = 60.35 and max = 118.28).

A Kruskal-Wallis H test showed that there was a significant difference in time

elapsed between the different processing techniques, χ2(1) = 5.026, p = 0.025.

4.5.5 Conclusions

Revisiting the predicted outcomes of this case study, it was predicted that both CPU and

GPGPU searching would process forensic data faster than previous case studies when a

more optimised multi-string searching algorithm was used. Overall, this prediction was

correct, as statistical analysis revealed that substituting the modified BM algorithm with

 P a g e | 95

the PFAC algorithm yielded significant performance improvements across most CPU and

GPGPU processing techniques. The results from this case study also demonstrate

relatively minor improvements over that achieved in case study 2 when searching for 5

patterns, however, more substantial improvements are attained when the algorithm

was employed to search for 19, and 40 patterns.

 Observations of how the PFAC algorithm affected each technology produced

some fascinating results. Analysis of the times produced revealed that both the single-

and multi-threaded CPU applications reaped the most benefit of the algorithm,

demonstrating that the algorithm lessened the processing burden of searching for

multiple strings with a more efficient state-machine driven algorithm. Likewise, GPGPU

methods all benefitted from the algorithm’s characteristics, allowing the processor to

optimise searching of larger amounts of patterns while showing little, or no, degradation

of the time required to perform searching through data.

 The improvements brought by employing the PFAC algorithm also produced

results which shown processing performance at the theoretical maximum transfer rate

of the storage device on test platform B— largely from employing multi-GPUs to process

data on this platform. Observing the single GPU and the single IGP performance of test

platform B, it would be novel to presume that – if both GPGPU processors were tasked

with processing forensic data from a faster storage device – the achievable processing

rate observed would have been faster.

 Analysing the processing rate from other platforms also pose some questions in

regards to the efficiency of reading forensic data from the storage device. The storage

devices on test platform A and C seemed to reduce the effectiveness of applying parallel

techniques to asynchronously analyse forensic data. When testing the PFAC algorithm

on all CPU and GPGPU tests, it was noted that the time that the processor took to

process had become significantly quicker than the time required to load the 100 MiB

segments of forensic data to the processor.

 P a g e | 96

 The result of this change in processing behaviour had shown that tests which

employed multiple threaded asynchronous processes had many processors idling,

bottlenecked by the transfer rate of the storage device serving data to other processors.

However, when comparing this observed behaviour to the results produced from

analysing processing rates, the witnessed delays do not coincide with the theoretical

maximum performance of the storage devices tested on platforms A and C, indicating

that the data transfer rate from the storage device to the processor was not reaching its

fullest potential.

 In order to fully investigate the delays on how forensic data was read from the

storage device, additional storage device benchmarking tests were undertaken with a

file reading tool developed in C#, where time was measured on how long it took to read

the forensic data used within this research. This benchmarking tool utilised the same

methods that OpenForensics used to read data from the storage device. Additionally,

the program did not perform any further processing on the data read— the forensic

data was simply read sequentially from the storage device in 100 MiB segments. After

the file had been read, a time was produced displaying how long the tool took to read

the data.

 Benchmarking tests were performed on test platform A to confirm the suspected

bottleneck, as this test platform possessed the most powerful processors of all platforms

tested, and therefore more likely to suffer from the bottlenecking from reading files.

Results from the benchmarking tool revealed that, by simply reading forensic data from

the storage device, it achieved file reading performance of around 760 MiB per second.

The measured result was lower than the measured sequential read performance

measured by CrystalDiskMark and akin to the performance achieved by searching for

patterns with multiple GPUs within this case study. The result recorded signifies a

further requirement to investigate how forensic data is read from the storage device, to

identify any other potential bottlenecks that may limit string searching performance.

 P a g e | 97

4.6 Case study 4: Investigation of data reading performance

4.6.1 Introduction

Applying a multi-string algorithm improved the speed of performing string searching on

forensic data significantly. Enhancements to the processing performance have raised a

further requirement to investigate precisely how data is read from storage devices, as

the recorded processing rate and the observed processing behaviours of case study 3

have raised uncertainties that the forensic data is not being read at an optimal rate that

the storage device is capable of.

 Processing behaviour witnessed during case study 3 shown that, during

asynchronous threaded processing tests, freed processing threads were seen to idle—

queued waiting for the storage device to pass segments to partnered threads. However,

results investigating the processing rate revealed that data was not being read at the

theoretical maximum transfer rate that the storage devices were capable of. The slow-

down was confirmed when performing a post-analysis of case study 3, where a tool was

created to simply read forensic data without performing any further processing. The test

performed confirmed that the storage device was loading forensic data at a slower rate

than the sequential read speed measured at the beginning of this research using

CrystalDiskMark.

4.6.2 Aim

This case study aims to explore faster techniques to read data from storage devices.

Through implementing a quicker method of reading from the storage device, it is

anticipated that the delay observed during testing to read data will be minimised, which

– in turn – will result in faster overall processing.

 P a g e | 98

4.6.3 Method

Research was done that analysed how the storage device benchmarking tool used –

CrystalDiskMark – measured the theoretical maximum sequential read speeds of each

storage device. Research into CrystalDiskMark’s operation revealed that the program

serves as a front-end GUI to Microsoft DiskSpd storage performance tool, which

measured the disk performance using options selected in CrystalDiskMark.

 By default, CrystalDiskMark benchmarks sequential read speeds by having a

queue depth of 32 on a single thread. The queue depth specifies how many dimensions

of parallelism that a thread has to deploy read instructions— e.g. a queue depth of 32

would indicate that any threads tasked to read the storage device can queue a maximum

of 32 read tasks at any one time. By having queued read tasks, the storage device could

theoretically manage read tasks better, increasing the input/output operations per

second (IOPs) and increasing performance reading and writing data.

 When performing a CrystalDiskMark benchmark with the queue depth set to 1

instead of 32 – replicating the levels of parallelism employed by OpenForensics in case

study 3 – test platform A records a sequential read performance of around 760 MiB per

second. This signifies that, whilst synthetic benchmarks do not necessarily reflect real-

world file reading performance, employing a thread without queuing read instructions

may be suppressing the potential performance reading data from storage devices used

in previous case studies.

 To take full advantage of the storage devices within this case study, it was

decided to allocate a single thread to read the data with a queue depth of 32 read

instructions – akin to the default settings of CrystalDiskMark that were used to produce

the benchmarks – as the settings produced data transfer rates similar to the sequential

read speeds stated by the storage device manufacturer. Only a single thread was used

so that it wouldn’t interfere with the performance of other asynchronous threads. For

multi-threaded CPU tests where all logical cores of the CPU were used to process data,

 P a g e | 99

if more threads were employed to read data, it may disadvantage active processing of

another processing thread. Allowing a queue depth of 32 read instructions, however,

provided that single thread plentiful resources to queue enough read instructions to

make full use of the IOPs of the storage devices on test.

Figure 39: Data transferal differences between case study 3 and 4

As part of investigating data handling, other variables which may impend the

performance of the storage device were also reviewed as part of this case study, such

as; the size of the stream buffer, and the length of data read by each read instruction

queued.

 The stream buffer is a setting which tells the system on the rate to read data

from the physical drive to memory. The stream buffer has a default rate of 4 KiB, as used

within the previous case studies. This size is also set as the default used by the Microsoft

DiskSpd utility. As the data from the storage device is transferred into memory by the

CPU, the size of the stream buffer defined is largely limited by the size of the internal

cache of the CPU. All of the CPUs tested in this research possessed fairly large internal

cache, so it was assumed that by increasing the stream buffer size may have had a

positive effect on data transfer speed. However, experimenting with the C#

benchmarking tool on the test platforms – expanding the stream buffer to 8, 16 and 32

 P a g e | 100

KiB – shown that larger stream buffer sizes did not produce faster transfer rates, as

increasing the stream buffer produced no significant effects in data transfer speeds from

the storage device to memory. In conclusion, it was found that maintaining a small

stream buffer size of 4 or 8 KiB remains effective while maintaining compatibility with a

wider range of processors. For this case study, the default rate of 4 KiB was maintained.

 When reviewing the length of data read by each read instruction queued by the

read thread to fill each 100 MiB segment. The sequential read tests used to measure

data in CrystalDiskMark set the size of 1024 KiB for read instructions. However, an

investigation conducted on how varying sizes affect the speed of data transfer on the

test systems involved in this research. The C# benchmarking tool was used once again

to measure the time taken to load forensic data in varying lengths. Data read by each

queued task was tested in sizes of; 32, 64, 128, 256, 512, 1024, and 2048 KiB segments

respectfully. Results from testing the various sizes of data read by each queued task

revealed that the sizes smaller than 256 KiB performed significantly slower than the

larger sizes when reading the forensic file from the storage device; additionally, larger

segment sizes of 1024 and 2048 KiB segments were found to produce the most

consistent results when tested on all three test platforms multiple times. From the

observations of the trial, a segment size of 1024 KiB was deemed to be the optimal

segment size of each queued read instruction.

Figure 40: Case study 4 data transfer method

 P a g e | 101

 Figure 40 outlines the finalised design of how forensic data will be read from

storage devices in this case study. The most significant difference employed by this case

study is the further split of the 100 MiB data segments in 1024 KiB – or 1 MiB – sections,

which are – in turn – read concurrently by queued read instructions. Illustrated by the

figure are how all of the components, as previously discussed in this section, all fit

together. The storage device – where forensic data is stored – is read by the CPU at a

rate of 4 KiB; all of the 4 KiB ‘blobs’ of data, read by the CPU, fill the read instruction

which is requested by the read thread; which lastly builds up the 100 MiB data segment

requested by the method invoked to fetch the next segment of forensic data.

Table 7: Storage device benchmark results

Storage Device Performance (MiB/s)

Test Platform CrystalDiskMark C# Benchmark

A 903 974

B 242 254

C 1244 1050

 Final measurements using the C# storage device benchmarking tool using the

variables set produce performance results which are arguably different to that recorded

by CrystalDiskMark, as shown in table 7. Despite this, as the C# storage device

benchmark follows the same methods to read data as what OpenForensics employs to

conduct the tests, it provides a more accurate insight of the possible data transfer

speeds achievable with any processing method conducted with OpenForensics. It is

reasonable, in this case, to assume that the theoretical maximum data transfer speed

for each processing method trialled in this case study would be that recorded by the C#

storage device benchmarking tool and not that recorded by CrystalDiskMark.

 It is anticipated that the changes made to how OpenForensics reads forensic

data from storage devices would reduce processing limitations imposed by utilising a

 P a g e | 102

single read instruction that previous case studies used. While asynchronous search

methods employed by the multi-threaded CPU and multi-GPU tests should theoretically

take full advantage of the possible data transfer speeds of the storage device. It is also

anticipated that the single threaded technologies will also benefit from faster data

transfer speeds as less time should be required to read data. Aside from the way that

forensic data is read, this case study employs no further changes to the way that

OpenForensics operates within case study 3. This will allow this case study to achieve an

accurate representation of how changing file reading affects the overall performance to

perform string searching on forensic data.

4.6.4 Results

Results produced by applying a different file reading technique to read forensic data can

be seen in table 8. In all test cases on all platforms, times were significantly improved.

Comparing the differences in recorded times between this case study and results

gathered by case study 3, the single CPU method of searching obtained the most benefit

of the new method of reading data, as test platforms showed an average speedup of

3.1-3.5x over the single CPU results gathered by case study 3. Likewise, multi-threaded

CPU tests gained a noteworthy speedup of between 1.53-2.46x over the multi-threaded

CPU tests of the previous case study.

 P a g e | 103

Table 8: Case study 4 search time results

5 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 50.27 21.17 30.21 21.07 33.37*

B 115.27 80.67 90.61 80.38 100.94

C 53.96 20.89 30.25 22.89 33.31

19 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 81.82 21.63 30.67 21.11 35.34*

B 144.05 81.34 94.22 80.65 108.39

C 88.82 24.49 31.46 22.92 37.88

40 defined patterns — Time (secs.)

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 101.18 22.43 30.86 21.1 35.84*

B 156.11 81.42 95.09 80.15 111.29

C 108.56 29.38 32.51 22.91 40.54

* - Secondary discrete GPU, no IGP present on system

 Comparing the results gathered by GPGPU technologies, the observed speedups

achieved with the new method of searching did not reach the same levels that CPU

technologies demonstrated. Nonetheless, GPGPU technologies produced results which

were – on average – 1.3x better than the previous case study, which remains a

noteworthy improvement over the results of the last case study.

 Looking at platform B, which managed to reach the theoretical data transfer limit

recorded by CrystalDiskMark in the last case study, we can see the times achieved with

the multi-GPU being improved again. This signifies that further performance was gained

from incorporating a different file reading method in this case study. This is further

evidenced when looking at the performance analysis of the results, as shown in figure

41, which reveals that all multi-GPU tests and multi-threaded CPU tests of test platform

B reached the theoretical maximum data transfer rate recorded by the C# storage device

benchmarking tool.

 P a g e | 104

Figure 41: Case study 4 processing rate analysis with 95% confidence intervals

 Further evidenced from test platform B is the growth in performance seen from

the single-threaded CPU tests, showing a processing rate when searching for 5 patterns

of 177.67 MiB/s, an impressive result when considering running the tests on the single

IGP and single GPU achieved 202.89 MiB/s and 226.02 MiB/s respectively. However,

platforms A and C found that employing a single GPU, or IGP, produced processing rates

that were 200 MiB/s greater than the capabilities of the single CPU. The single-threaded

processing methods performing arguably similar to each other on test platform B is likely

due to the limitations of the storage device, and the synchronous nature of the single

threaded tests undertaken.

 Test platform A’s results show that on four counts – all of the multi-GPU tests,

and the 5 pattern search of the multi-threaded CPU test – seem to achieve performance

 P a g e | 105

alike to the measured theoretical maximum performance of the storage device. The test

platform showed that multi-threaded CPU processing performance of the 19 and 40

pattern searches deteriorated slightly, showing that the multi-GPU processing method

handles searches for a greater amount of pattern better on this test platform.

 From the processing rate analysis, test platform C saw the most improvement all

round from the implemented changes, however, all tested processing methods fell short

of the theoretical maximum processing rate which was measured by the C#

benchmarking tool. The best performance of the 5 search pattern test was achieved by

the multi-threaded CPU test, however, when tasked with more search patterns, the

multi-threaded CPU’s performance started to diminish. In comparison, the multi-GPU

performance – which was the second best performing processing method on this test

platform – produced similar processing performance through all pattern tests.

Figure 42: Case study 4 patterns searched and time analysis

 Analysing the relationship between the patterns searched and time taken to

search, as shown in figure 42, shows that the single CPU has produced a trend line in

closer proximity to that produced by other processing methods, due to its search times

 P a g e | 106

being significantly reduced with new file reading method. The single CPU still shows the

most deterioration in time when tasked with increasing amounts of search patterns.

 Interestingly, the new method introduced to read files has had a great impact on

the time variation of the multi-threaded CPU tests, as there is less deterioration

between trials than what is observed in previous case studies. The only test platform

which produces any debatable growing trend line is test platform C, which is equipped

with a laptop grade CPU that is susceptible to performance throttling due to thermal

overheating. Nonetheless, the trend lines between multi-threaded CPU tests signifies

notable improvements of the performance obtained, as the multi-CPU method is

observed to perform consistently better than both the single GPU and single IGP in all

trials performed.

 Trends between search time and patterns searched within this case study

otherwise show largely the same pattern as the previous case study, with the multi-GPU

tests performing quickest in the majority of tests undertaken by all test platforms.

Likewise, the multi-GPU processing method also performed the best out of all

processing methods when tasked with increasing amount of defined search patterns.

Figure 43: Case study 4 technique speedup over single CPU solution

 Figure 43 illustrates the speedups observed comparing each technology’s

performance improvement over the results gained from the single CPU test. From this

 P a g e | 107

analysis, it can be seen how significantly the performance of the multi-threaded CPU

tests has been improved from the new file reading method, presenting speedups very

close to that achieved by multi-GPU tests. The only oddity in the multi-threaded CPU

trends is the trend line produced by test platform C, which shows the trend unusually

dropping significantly within the 40 pattern search test.

 Important to note within this illustration is the change of scale with the

speedups, where the largest observed speedup over the single-CPU is 4.8x, which is

significantly less than the maximum possible speedup observed in case study 3. This

reduction in observed speedups is due to the stronger performance achieved by the

single CPU in this case study.

 P a g e | 108

Figure 44: Average time taken to conduct string searching with each processing

technique

The single-threaded CPU took the longest to process data (median = 101.18, min

= 50.27 and max = 156.11), followed by the single-IGP (median = 37.88, min = 33.31 and

max = 111.29), the single-GPU (median = 31.46, min = 30.21 and max = 95.09), the multi-

threaded CPU (median = 24.49, min = 20.89 and max = 81.42). The quickest processing

technique was the multi-GPU (median = 22.91, min = 21.07 and max = 80.65).

A Kruskal-Wallis H test showed that there was a significant difference in time

elapsed between the different processing techniques, χ2(4) = 19.119, p = 0.001.

 P a g e | 109

Follow-up tests revealed there to be a significant difference between the

multi-GPU and single-threaded CPU processing techniques on time elapsed, p =

0.002. There was a significant difference between the multi-threaded CPU and

single-threaded CPU on time elapsed, p = 0.005. There were no other significant

comparisons.

4.6.5 Conclusions

This case study was created out of necessity after the observation of data transfer

limitations within case study 3; however, this case study which investigates an

alternative method of reading forensic data from storage devices has arguably produced

the most unexpected results of this research. The experiments that were undertaken in

this case study, which only modified the method of reading data from the storage device

from case study 3, aimed to answer whether modifying how forensic data was read

would have a positive effect on the time required to perform string searching. Results

from all processing techniques show that the new method of reading forensic data

employed in this case study achieved significantly improved performance when

compared to the previous method used in case study 3.

 Through employing a single thread, 32 queue depth method of reading files, the

overall single- and multi-threaded CPU improvements demonstrated by this case study

gained an average 2.7x speedup over the results gathered by case study 3. Likewise,

single and paired GPUs took less time to search when compared to case study 3, showing

an overall average speedup of 1.29x over the previous case study. This demonstrates

how the technique employed to read data could significantly contribute to the overall

performance obtainable when performing string searching against forensic data, as the

results exemplify that the time required by the test platforms to transfer data to the

processor was notably reduced.

 P a g e | 110

 Exploring the overall processing results further, there are no apparent

relationships between the levels of parallelism between the synchronous and

asynchronous tests and the level of performance speedup observed over the previous

case study. However, when comparing the asynchronous multi-threaded CPU results,

the speedup between this case study and the previous is seen to be quicker as fewer

processing threads are observed waiting for the storage device to assign data to a

partnered processor.

 Overall, all processing techniques tested – in the large majority of cases – shown

a greater speedup over the previous case study when tasked with more search patterns.

This increased speedup when searching for larger amounts of patterns is higher on CPU

tests than it is on GPGPU tests. This finding presents evidence suggests that, although

all processing techniques have benefitted from the improved method to read data, the

time to conduct searching is still largely influenced by the processor’s processing power.

 The theoretical maximum data transfer speed for this case study was recorded

by using the C# storage device benchmark tool, which recorded how long it took to read

data using the same methods employed in OpenForensics. The maximum data transfer

speed was achieved through performing string searching on multi-threaded CPU, and

multi-GPU, techniques on the two desktop computers tested— test platforms A and B.

The multi-GPU on both platforms showed no deterioration in search time when tasked

with greater amounts of patterns; however, performing searches for increasing

amounts of search patterns using a multi-threaded CPU on test platform A did show

performance waning. This indicates that whilst the multi-threaded CPU method could

effectively handle lower amounts of search patterns, performing searches for greater

amounts of strings may still more efficiently processed with a multi-GPU method.

 Through applying a new file reading method using a concurrent queue system

for data reads, OpenForensics was also able to perform string searching faster on two

test platforms than the theoretical maximum storage device transfer speeds recorded

by CrystalDiskMark. This was unforeseen as the parameters used to read data from the

 P a g e | 111

storage device are largely comparable to the parameters used by CrystalDiskMark to

perform benchmarking.

 There could be many factors behind this observation. However, it is

acknowledged that the variances in performance may potentially be due to differences

in the underlying methods that OpenForensics and Microsoft DiskSpd – used by

CrystalDiskMark – use to handle data transfers. Microsoft DiskSpd is a tool developed in

C++ and possesses no .NET platform dependency to perform file reading, as all read

operations are performed by methods defined within the tool’s source code using direct

IO to access the storage device. OpenForensics, however, employs .NET 4.0’s FileStream

class to perform file reading operations and benefits from using a buffer to read data

from the drive.

 The single CPU performance was also seen to surpass the performance

measured using Foremost within this case study, whereas before, the single CPU

performance was observed to be notably worse— even within case study 3, where a

better multi-string searching algorithm was employed to conduct searching. This would

suggest that performance was being restricted in all previous case studies by the

method used to transfer data from the storage device into memory. It is reasonable to

assume that, if the same file reading technique were to be applied to earlier studies,

similar performance gains observed between this case study and case study 3 may also

be gained.

 Applying the file reading technique to earlier case studies remains a frivolous

task, as performance between algorithms – shown in case studies 2 and 3 –

demonstrated that the PFAC algorithm was better suited than both the modified BM

algorithm and a brute force GPGPU algorithm in performing string searching. These

findings remain relevant, and conducting further tests with the improved file reading

method would likely demonstrate the same findings.

 While it was anticipated to see performance enhancements across all processing

methods trialled, the substantial improvements produced over the previous case study

 P a g e | 112

suggest that processing power and efficient algorithms are not sole factors in achieving

the best performance out of a storage device. This case study produces results which

suggest that the technique employed to read files from the storage device remains

equally important as the other factors mentioned.

Table 9: Case study 4 speedup over base performance metrics gathered by Foremost

5 defined patterns — Speedup over Foremost

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 2.27 5.38 3.77 5.41 3.42*

B 1.39 1.98 1.77 1.99 1.59

C 1.93 4.98 3.44 4.54 3.12

19 defined patterns — Speedup over Foremost

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 5.07 19.19 13.53 19.66 11.74*

B 3.14 5.57 4.81 5.62 4.18

C 4.95 17.97 13.99 19.20 11.62

40 defined patterns — Speedup over Foremost

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 7.32 33.04 24.01 35.12 20.68*

B 4.87 9.35 8.00 9.49 6.84

C 7.30 26.96 24.36 34.57 19.54

* - Secondary discrete GPU, no IGP present on system

 As it could be argued that performing string searching against forensic data is

not entirely grounded in the academic field of DF, but rather computer science in

general. This series of case studies presented in this research has so far aimed to dissect,

improve and measure string searching performance in a bid to improve upon the overall

processing rate in which DF tasks could be performed. To this end, this has been

accomplished, as comparing string searching times gathered from this case study to the

base performance metrics gathered using Foremost show performance speedups as

presented in table 9. Statistical analysis also shows that employing asynchronous multi-

CPU or multi-GPU techniques are significantly faster than employing a single CPU to

 P a g e | 113

conduct string searching. Within the next case study, this research aims to present how

the proposed improvements to how string searching is conducted affect the overall

performance of performing file carving.

 P a g e | 114

4.7 Case study 5: Applying proposed string searching methods to conduct file

carving

4.7.1 Introduction

This research presents significant improvements to how string searching is conducted

that also caters to the scientific accuracy necessitated by DF investigation. The changes

presented are the outcome of investigating; the process which drives searching through

forensic evidence, the application of a multi-string searching algorithm to conduct

searching, and the method which forensic data is transferred from the storage device to

memory. The results produced from applying revisions in the areas above have shown

substantial growth in performance between each case study. When conducting string

searching, the latter of the case studies – case study 4 – demonstrates performance

speedups of up to 35.12x when compared to results gathered using an existing DF file

carving tool— Foremost.

4.7.2 Aim

This final case study aims to investigate how improvements to string searching will

impact the time required to perform file carving on the forensic data used in previous

case studies. The processing framework used in case study 4 will be used to accelerate

the string searching operations.

4.7.3 Method

In this test, file headers and footers will both be searched, then found files will be

reconstructed from the forensic data and saved back to the storage device used to read

forensic data. This case study varies from past case studies by introducing the

 P a g e | 115

requirement to search for matching footers for each header searched for. Due to this, it

requires this case study to undertake a different set of patterns to search for.

Table 10: Case study 5 patterns searched

File Type File Header (bytes) File Footer (bytes)

jpg FF D8 FF E0 00 10 FF D9

jpg FF D8 FF E1 35 FE FF D9

gif 47 49 46 38 39 61 00 3B

gif 47 49 46 38 37 61 00 3B

png 89 50 4E 47 0D 0A 1A 0A 49 45 4E 44 AE 42 60 82

mpg 00 00 01 BA 00 00 01 B7

mpg 00 00 01 B3 00 00 01 B7

docx 50 4B 03 04 14 00 06 00 50 4B 05 06

pdf 25 50 44 46 0A 25 25 45 4F 46

 The tests conducted in this case study will search for and reconstruct 9 file types.

A file type is defined by this case study as a file which possesses a unique file header. All

the file types searched for are presented in table 10. As some of the file types searched

for share the same file footer – which indicates an end of a file – the overall amount of

patterns searched for within this case study is 15. Duplicate strings do not require to be

searched for individually.

 Alongside the change in the defined search patterns, this case study modifies the

processing cycle utilised by OpenForensics, introducing a check to see if there are any

found patterns within the file segment before retrieving the next segment of data from

the storage device. The revised processing cycle used for OpenForensics in this case

study is presented in figure 45. If there are any found patterns in the processed segment,

that segment is handed to a CPU thread which extracts all files within the data segment

by using the array of file headers and footers found. Once the extraction thread finishes,

the processing thread will request another segment of data. The maximum possible file

size set for all searched file types was set to 10 MiB, indicating that if a footer were not

 P a g e | 116

found in the first 10 MiB after the header position, the program would extract the 10

MiB of data from the header location and label the file as incomplete.

Figure 45: Case study 5 processing cycle

 For Foremost, testing was done by using the command stated in figure 46, which

is identical to the previous command used to gather base performance metrics in

Foremost, however, omits the use of the -w flag. This instructs Foremost to reconstruct

all found files within forensic data analysed and produce an audit file outlining the

results of the file carving. The configuration file used – documented in appendix B.4 –

specifies all file types and headers outlined within table 10, and specified a maximum

file length of 10 MiB for all file types defined, identical to that set by OpenForensics.

Foremost behaves in the same fashion as OpenForensics when a matching footer is not

found for the header in forensic data. For this case study, Foremost is set to extract 10

MiB of data from the found header and marking it as an incomplete file if a matching

footer is not found.

foremost -i TestImage.dd -c /cdrom/foremost/foremost.conf -o ./foremost

Figure 46: Case study 5 Foremost command

 P a g e | 117

 Results from testing file carving on forensic data are predicted to produce similar

findings from the previous string searching tests of case study 4, as the possible

processing performance in conducting file carving is highly dependent on the ability to

efficiently perform string searching. Nonetheless, it is noted that the time required to

extract found files will give processing techniques with higher degrees of asynchronous

parallelism an advantage in this test, as it is envisioned that file reconstruction will

potentially stall threads from processing other segments of data. By employing more

processing threads, it is theorised that the stall in extracting files will be less noticeable

due to other processing threads being able to occupy data transfers from the storage

device more efficiently.

4.7.4 Results

Times recorded to perform file carving for the 9 defined file types are presented in table

11. Expectedly, the time required to perform file carving – which performs more

processing operations than string searching – took between a 5 and 19 pattern string

search in Foremost testing. However, contrasting performance was observed from all

processing techniques tested on the OpenForensics software platform, whereas the

time required to complete file carving was observed to be slower than the performance

of a 40 pattern string search.

Table 11: Case study 5 file carving time results

9 File Types (15 patterns) — Time (secs.)

Test Platform Foremost Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 244 145.53 28.5 51.6 35.77 61.17*

B 282 206.41 83.02 117.27 87.38 146.59

C 217 154.87 40.51 59.26 44.2 74.29

* - Secondary discrete GPU, no IGP present on system

 P a g e | 118

 Regardless of the performance differences between performing string searching

and file carving on the respective platforms, it was found that the time required for all

processing techniques trialled on OpenForensics were significantly faster than the time

taken with Foremost. Analysing the different processing techniques tested with the

OpenForensics platform, it was also found that the multi-threaded CPU technique

performed the best on all three test platforms, outperforming the result of the

asynchronous multi-GPU method.

Figure 47: Case study 5 processing rate analysis with 95% confidence intervals

 When performing processing rate analysis in figure 47, we get a clearer picture

of how the times took affect the performance of each platform. It is found that the

performance delivered by Foremost is the worst on all test platforms, performing

 P a g e | 119

between 72-94 MiB/s. OpenForensics results for the single-threaded CPU test achieved

between 99-140 MiB/s in comparison. When comparing the best performing

techniques, performance varies between 246-719 and 234-573 MiB/s for the multi-

threaded CPU and multi-GPU respectively.

 Test platform B came closest to achieving the theoretical maximum performance

of the storage devices on test when performing file carving. However, other platforms

which possessed much faster-performing storage devices did not.

 Table 12 presents how much speedup over Foremost that each processing

technique utilised by OpenForensics achieved. The greatest speedups observed were

attained by the multi-threaded CPU tests, which showed speedups over Foremost by up

to 8.56x. Multi-GPU tests likewise shown notable improvements over Foremost’s file

carving performance, demonstrating speedups of up to 6.82x.

Table 12: Case study 5 speedup over Foremost results

9 File Types (15 patterns) — Speedup over Foremost

Test Platform Single CPU Multi-CPU Single GPU Multi-GPU Single IGP

A 1.68 8.56 4.73 6.82 3.99

B 1.37 3.40 2.40 3.23 1.92

C 1.40 5.36 3.66 4.91 2.92

* - Secondary discrete GPU, no IGP present on system

 P a g e | 120

Figure 48: Average time taken to perform file carving with each processing technique

Foremost took the longest to process data (median = 244, min = 217 and max =

282), followed by the single-threaded CPU (median = 154.87, min = 145.53 and max =

206.41), the single-IGP (median = 74.29, min = 61.17 and max = 146.59), the single-GPU

(median = 59.26, min = 51.6 and max = 65.67), the multi-GPU (median = 44.2, min =

35.77 and max = 87.38). The quickest processing technique was the multi-threaded CPU

(median = 40.51, min = 28.5 and max = 83.02).

A Kruskal-Wallis H test showed that there was a significant difference in time

elapsed between the different processing techniques, χ2(5) = 12.883, p = 0.024.

 P a g e | 121

4.7.5 Conclusions

The aim of this case study was to establish how much of an affect the improvements to

string searching would have on the performance of completing file carving against

forensic data. Results from this case study have shown significant improvements when

file carving 9 different file types. The largest of the speedups were attained from the

multi-threaded CPU method of file carving, which demonstrated up to 8.52x speedups

over the results derived from Foremost. All of the processing techniques tested with

OpenForensics managed to surpass the performance of Foremost, indicating that better

performance can be achieved by applying a combination of; asynchronous parallelism,

multi-string searching algorithms, and an enhanced file reading technique.

 The file carve test involved in this study searched for 15 unique patterns, placing

this test between the 5 and 19 string tests of the previous string searching case studies.

While it is true that the multi-threaded CPU performance exhibited the best

performance conducting file carving in this test, results from case study 4 demonstrate

that the performance of a multi-threaded CPU solution would deteriorate when asked

to carve greater amounts of files. Therefore, it is determined that, although performing

slower than multi-threaded CPU in this test, multi-GPUs will have the greatest benefit

within performing processor intensive DF operations with greater amounts of file types.

 It was observed during testing with OpenForensics that the levels of

asynchronous parallelism had a positive effect on the ability to better use the data

transfer performance of the storage device. The introduction of recreating files from

data segments presented further delay for the processing thread as it waited for the file

reconstruction operation to finish before moving to analyse a new segment of data.

When more processing threads were applied to perform file carving, the effect of this

delay was less noticeable, as there were sufficient processors available to queue to read

file segments from the storage device. The multi-GPU tests of the test platforms, which

only employed two asynchronous processing threads, were at a disadvantage when

 P a g e | 122

compared to the multi-threaded CPU tests, which employed one asynchronous thread

for each of the 4 to 12 logical CPU cores.

 It is recognised that if more asynchronous threads were created for the multi-

GPU method, whether through the employment of more GPU hardware or allowing the

GPU to process more than one segment at a time, further performance could have been

achieved. This has been identified by the author for future work within the area.

 While it may also be true that the delay of reconstructing files from the current

data segment could have been mitigated by allowing the processor to load another

segment into a new location of memory, it may have introduced the danger of causing

the memory stack to overflow due to the stockpiling of segments requiring file carving.

It is predicted that better method of performing file carving would have been to produce

a map of where all of the discovered files were, then conduct a second pass through the

data to reconstruct files. Testing another method of file carving, however, was deemed

to be outside of the scope of this research. It is envisioned that through utilising this

approach, it may have produced results closer to that demonstrated within the string

searching case studies.

 In closing remarks, this case study successfully showed that applying an

asynchronous parallelised model using a PFAC algorithm and enhanced file reading

technique improved performance over Foremost when tasked to perform file carving of

9 different file types. It is envisioned that, within future work, investigating better file

carving strategies may further enhance the performance seen through applying these

methods.

 P a g e | 123

4.8 Case study conclusions

4.8.1 Summary of case study results

To answer the research questions presented, a software platform – OpenForensics –

was created to conduct string searching and file carving similarly to a currently available

open-source file carving tool— Foremost. Four case studies were designed and

presented showing the effects of introducing varying changes to the methods that

Foremost utilised to perform string searching of forensic data, with the fifth case study

measuring and presenting how these improved string searching methods affected file

carving performance.

 The first case study, which introduced GPGPU processing with a basic brute-force

algorithm, showed significant improvements that exceeded the single threaded CPU

performance presented by OpenForensics as well as Foremost. This remained true even

when utilising the less powerful IGP processor onboard the CPU. Changes were also

made to the program’s processing operation, which introduced a reactive rather than

proactive approach for checking for pattern matches which may be split between data

segments. However, this was later deemed to be an inefficient approach when

introducing asynchronous parallelization, as the proactive approach may have caused

delays searching for historic data on traditional HDDs. Lastly, this case study introduced

another change by increasing the data segment size, but it was later found that there

were no significant benefits observed when comparing comparative results from the

single threaded processing techniques to that achieved with case study 2. Like the

deduction of the reactive processing approach, the increase of segment sizes may have

posed memory issues or delays reading data when massively parallelised.

 Comparable to the performance gained from the first case study, the second

case study demonstrated significant improvements in processing performance once

more through the incorporation of asynchronous threaded processing methods. This

 P a g e | 124

case study also reverted to using the same segment size and processing method used

by Foremost. While the results of the single threaded processing techniques were

largely like the comparative results of case study 1, the second case study showed

noticeable improvements when running both CPU and GPU technologies

asynchronously, employing all available logical processors as separate independent

processing threads. When employing an asynchronous multi-GPU approach with 5

search patterns, slower storage devices on test were seen to limit the achievable

performance of the device, providing early evidence that an insurmountable bottleneck

may limit the achievable processing rate.

 The third case study shows the effect of applying an optimised multi-string

algorithm, PFAC, to conduct string searching on digital evidence. While in most instances

the general performance was improved across all test platforms, the most noticeable

improvements could be seen when searching for larger amounts of search patterns.

When searching for more patterns, the performance searching with the PFAC algorithm

deteriorated significantly less than the CPU’s modified BM algorithm and the GPGPU’s

brute force algorithm used in the previous study. The asynchronous multi-threaded CPU

tests of this case study were seen to beat that of a single synchronous GPU when

searching for 5 patterns. However, the single GPU was quicker than the multi-threaded

CPU when tasked to search for 19 and 40 search patterns. The multi-GPU on the slower

storage device was observed to fully utilise the storage device performance on all

pattern tests, strongly suggesting that the sequential read speed of the storage device

is the maximum processing rate achievable by any processing technique.

 The results of case study 3 showed inconsistencies between the recorded results

and the observed behaviour during testing. The storage device during multi-threaded

asynchronous tests was seen to be constantly transferring data on test platforms A and

B, however, the achieved performance from the asynchronous tests on these platforms

did not reflect upon the observed behaviour, indicating that the data was not being

transferred efficiently from these storage devices.

 P a g e | 125

 Case study 4 aimed to address these concerns by introducing a different method

to load data from storage devices. The method used in this case study reflected and

applied techniques used by benchmarking software to read data from the storage

device. The resulting times derived from testing showed significant improvements

across all test platforms on all tests. This was due to the storage device being able to

read data at a faster rate than before, causing processors to idle less than previously

seen in case study 3. All processing rates achieved, once again, did not exceed the

theoretical maximum transfer speed of the storage device, however, on some

occurrences, both the multi-threaded CPU and multi-GPU met the theoretical maximum

processing rate when conducting string searching.

 The final case study aimed to measure how the proposed changes to conducting

string searching affected the speed of performing file carving of forensic data. For this

case study, the techniques used in case study 4 were benchmarked against Foremost to

perform file carving, where found files within the forensic data were reconstructed and

saved back to the storage device. It was found that the processing techniques produced

in case study 4 performed significantly better than Foremost when performing file

carving 9 file types consisting of 15 unique patterns.

 P a g e | 126

Figure 49: Test Platform C performance progression

4.8.2 Validation of research in a real-world digital forensics scenario

Testing conducted with a prototype tool based on the solution of case study 2 was

trialled by the digital forensics division of Police Scotland in November 2015. The test

carried out by Police Scotland involved analysis of a 120GB storage device connected to

a workstation PC. The storage device was analysed by software used by the forensics

division as well as a prototype file carving version of OpenForensics. Both the software

 P a g e | 127

used by Police Scotland and OpenForensics were reported to have the same search

criteria used to perform file carving.

 Feedback received from Police Scotland stated that the OpenForensics tool was,

on average, 160% faster than an equivalent product used by the forensics division.

Feedback also further commenting that the equivalent product used for comparison

only selectively searched around 50% of the forensic data on the drive, whereas

OpenForensics searched the full volume of forensic data (appendix C).

 Unfortunately, after reaching out for more information, Police Scotland was not

very forthcoming with any other information regarding the tests performed or the

equivalent tool used. Regardless, the feedback received by Police Scotland validates the

methods and approach proposed by this research surpass equivalent tools used by

Police Scotland for performing file carving. It is envisioned that the developments and

improvements adopted and evidenced by later case studies would significantly improve

upon the reported performance.

 At the time of writing this thesis, no further trials have been conducted with

Police Scotland, however, it is planned that a further prototype tool would be

distributed freely to Police Scotland and other digital forensic institutions for further

trials. It is also envisioned that further in-depth case studies will be completed to

compare the developed OpenForensics processing framework with commercially

available digital forensic tools.

 P a g e | 128

Chapter 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

This conclusion will revisit the research aim of whether the application of GPGPU

technologies and modern parallelisable string searching algorithms could reduce the

time required to perform file carving in DF investigations. This will be answered by

addressing the research questions on; whether the OpenCL GPGPU framework was

reliable and quick in analysing forensic evidence, if there were advantages of employing

GPGPU processing over CPU processing methods, and whether there were any benefits

of applying multiple GPGPU devices to perform pattern matching. The conclusion will

also answer whether modern parallelisable algorithms are better suited for the

requirements of DF investigation, and whether the potential performance file carving is

limited by storage device performance.

5.1.1 Research question Q1

This research has attempted to answer whether OpenCL GPGPU framework provides a

reliable foundation to analyse digital evidence and decrease the time required for

processing forensic images without affecting accuracy. From the evidence presented in

all case studies (1-5), this research can confidently claim that it does, further adding that

it is well-suited to the exploratory nature of DF investigation due to its ability to search

for large amounts of patterns with less time detrition than multi-threaded CPU options.

 Throughout all case studies (1-5), utilising OpenCL and GPGPU devices shown

perfect reliability and accuracy throughout all tests, returning results identical to

OpenForensics CPU driven techniques, and matching the results derived from Foremost.

Therefore, the research presents that there are no disadvantages to reliability and

accuracy when employing OpenCL in DF tools.

 P a g e | 129

5.1.2 Research question Q2

The decision of choosing the OpenCL programming language to operate GPGPU devices

was to increase compatibility beyond only one device vendor, albeit, at a small cost to

performance. This was done so that all available GPGPU devices available on that system

would be able to aid the processing of digital evidence— making full use of the

computational power available. The ability to share processing workload across the

available GPGPU devices on a system has proven very beneficial when adopted in case

studies 2-5, showing substantial improvements over employing a single GPGPU device.

 In case study 4, asynchronous multi-GPU processing was found to fully utilise the

available theoretical processing rate from test platforms A and B, whilst also achieving

~85% utilisation on test platform C. Compared to singular GPGPU operation, multi-GPU

string searching was seen to similarly depreciate significantly less than CPU counterparts

when searching for larger amounts of patterns. Whilst it is acknowledged within this

research that further research into the asynchronicity of the GPGPU approaches would

benefit performance, multi-GPU processing would arguably allow for more processing

capacity—future proofing pattern matching techniques within DF tools.

5.1.3 Research question Q3

The results from all case studies (1-5) show that utilising GPGPU devices show less time

depreciation when searching for larger amounts of search patterns than using CPUs. It

is demonstrated through case study 5 that, if using a file carving technique as an

exploratory tool to find many file types from forensic data, utilising OpenCL and all

available GPGPU devices would be the best option to employ due to its ability to handle

greater amounts of search targets with little loss of performance. However, if file carving

for a few specific file types, a multi-threaded CPU technique would be arguably better

suited to perform the file carving.

 P a g e | 130

 Nonetheless, future work planned to evolve the GPGPU solution presented in

the case studies may yield greater processing power from GPGPU devices.

Improvements such as hosting more than one processing thread on each available

GPGPU device – increasing the level of asynchronous processing – may result in further

performance enhancements.

5.1.4 Research question Q4

The introduction of the PFAC multi-string search algorithm in case study 3 demonstrated

the best performance improvements across all case studies when conducting string

searching for 19 and 40 patterns. When compared to the CPU’s modified BM algorithm

– the same algorithm as employed by Foremost – and the GPGPU’s brute force

algorithm, all processing techniques tested demonstrated less depreciation of the time

required to conduct searching on larger amounts of search patterns when employing

the PFAC algorithm. While PFAC was chosen due to its optimisation for highly-

parallelized application; it was seen that the single CPU processing technique also

benefitted from notable performance improvements through utilising this algorithm.

 This performance enhancement was likewise seen in case study 5, where the

PFAC algorithm was used to conduct string searching as part of a file carving operation.

Comparing the single CPU processing performance of OpenForensics to that of

Foremost, it was observed that the PFAC algorithm employed by OpenForensics could

conduct the file carving quicker than the modified BM algorithm used by Foremost. The

significance of this comparison indicating that the delivered framework searches data

more efficiently than the methods used by Foremost.

 While the employment of a GPU paired with a naïve search algorithm showed

improvements over current search methods in case study 1, it was found in case study

3 that the employment of modern parallel-friendly algorithms notably contributed to

the final performance enhancements achieved. This observation presents compelling

 P a g e | 131

evidence that suggests that the modified BM algorithm could no longer fulfil the

requirement of DF investigation due to its inefficient speed when searching for multiple

patterns. In its place, this research supports the adoption of parallel optimised multi-

string searching algorithms – such as the PFAC algorithm – as a modern standard for

future DF tools which rely on string searching to perform analysis.

5.1.5 Research question Q5

Whilst employing multi-threaded CPU and multi-GPU processing with the PFAC

algorithm has shown remarkable processing improvements, the performance of

conducting file carving has been suggested to be limited by the data transfer speed of

the storage device. Case study 4 demonstrated that the method used to read the

forensic data from the storage device remains a vital factor which needs to be

considered to achieve the best performance from a storage device. The method used to

read data was evidenced in this case study to be as important a factor as what

processing technique or algorithm was used.

 The case studies included in this thesis conducted tests on an SSD and SSD arrays.

While SSD and SSD arrays are considerably quicker than traditional HDDs, technological

trends have evidenced that SSDs will continue to become much more prevalent in

consumer computers (Pal and Memon 2009, p. 59–71). Alongside this technological

evolution, it is reasonable to expect that the corpora of digital storage devices seized as

part of a DF investigation will evolve alongside it.

 Results produced by Foremost to conduct file carving on test platform B, which

employed the slowest SSD device on test, showed that Foremost utilised only 29% of

the available data transfer performance of the storage device. Contrastingly, utilising a

multi-threaded PFAC CPU method in OpenForensics, which was based on the solution

presented in case study 4, achieved 97% of the available storage device performance

performing file carving.

 P a g e | 132

 This suggests that performance conducting file carving in modern DF

investigation is no longer bound by storage device performance, but rather a

combination of processing performance and storage device performance combined.

Foremost evidence that, without modern processing techniques or algorithms, DF tools

can struggle to utilise the full performance of a storage device to conduct string

searching. Nonetheless, it is important to note that the sequential read performance of

the storage device remains to be an insurmountable processing rate limit regardless of

the available processing technique used.

5.1.6 Answering the research aim

The results from case study 5 demonstrate that the proposed string searching

framework used in case study 4 had notable improvements in speeding up file carving

performance— one of the fundamental DF techniques used to analyse forensic

evidence. Evidencing that the application of GPGPU technologies and modern

parallelisable string searching algorithms reduced the time required to perform file

carving in DF investigations.

 Fundamentally, as DF operations such as file carving rarely deal with searching

for single strings when conducting a search, employing a multi-string algorithm is seen

by the author as a necessity for all investigatory tools of this field. While this study

utilised the PFAC algorithm to conduct string searching, mainly due to its massively-

parallel optimisations, it is assumed that other parallelable multi-string search

algorithms would reap similar performance benefits over modified single-string

searching algorithms when employed to conduct string searching in DF.

 The commonplace belief in the DF community stipulates that the speed of data

analysis within DF investigation is solely limited by the storage device that forensic data

is read from, however, currently used tools such as Foremost were found to use only a

fraction of the available performance of the storage device in the tests performed. The

 P a g e | 133

findings of this research present the argument that the speed of data analysis is not

limited solely by the storage device transfer rate, but rather a combination of the

aforementioned and processing performance— comprising of processing hardware,

string searching algorithms used, and the methods employed to read forensic data from

the storage device.

 This conclusion was further evidenced in trials conducted by Police Scotland with

an early prototype tool. Where there was noteworthy evidence that the methods and

techniques proposed by case study 2 of this research significantly improve performance

over currently employed tools. Suggesting that later developments of this research

would again produce more notable improvements.

 In concluding remarks, to mitigate the diminishing ability to analyse the

increasing amounts of data seized as part of a DF investigation, it is deemed vital to

modernising processing methods used by DF tools. It is evidenced from this research

that processing improvements could be achieved through many avenues; whether

through employing more optimised algorithms or utilising the processing power of

GPGPU hardware. It is believed that only through proper tool optimisation and

modernisation of processing techniques will we return to the golden age the DF

community once enjoyed.

 P a g e | 134

5.2 Future work

5.2.1 OpenForensics future work

This thesis has presented an embodiment of research which largely covers some aspects

relating to string searching within DF techniques. Short term aims beyond this thesis are

to develop GPGPU processing to include the further application of asynchronous

processing. It is envisioned to investigate the benefits of applying the methods and

techniques contained within this research to other research areas, such as aiding live

network and malware analysis.

 With the current trends in technology improving IGP architecture in CPUs, it is

intended to continue research into whether the use of these GPGPU processors could

lessen the computational strain of other processing tasks associated with DF

investigation. As part of this further research, an investigation is planned to measure the

possible benefits of applying different algorithms to DF. Utilising hashing algorithms has

been evidenced in existing research as being a natural fit for GPGPU processing.

Therefore, it seems a logical step to investigate the benefits of applying Bloom filters to

identify the presence of file structures within data. Measuring any resulting

performance and accuracy differences to the string searching algorithms predominately

used in DF tools today.

 OpenForensics, the software created as part of this research, will be continued

to be developed further with the intent to release to the public. It is planned to continue

research into further improving upon the levels of parallelism employed by each GPU in

a bid to increase performance file carving for fewer file types. It is also intended to

review and integrate advanced file detection methods and fragmented file detection

utilising OpenCL and GPU hardware to validate and verify the integrity of the file before

reconstruction. Research is also planned to integrate smarter analysis based on the file

 P a g e | 135

system structure detected on the storage device, allowing investigators to target unused

space on the file system instead of performing analysis on the full drive.

 A comparative file carving review of OpenForensics and a wide selection of

commercial and freeware file carving tools is planned to fully explore the benefits of the

presented processing framework. It is anticipated that a study from this will be

published alongside a paper outlining the processing framework implemented. It is

anticipated that the comparative review will highlight other areas where GPGPU

processing could aid the DF analysis process.

 It is anticipated that with further involvement of forensic divisions and

academics will ensure that OpenForensics, and associated researched processing

techniques alike, will continue to evolve and benefit the DF community. It is hoped that

the content of this research would ignite further investigation and inspiration to evolve

a new generation of forensic tools.

5.2.2 Broader applications

An investigation will be done investigating how the OpenForensics processing

framework could benefit other fields when employed in other similar applications.

Applying the existing processing framework to perform network analysis and live

network forensics is believed to be a good fit, as the data analysed and methods used

to analyse network traffic share a lot of similarities with DF forensic data analysis.

Research is already underway by the author in analysing how the same techniques could

be applied to analyse data within live network traffic. It is hoped to further expand this

research to include filtering data of forensic importance in network monitoring systems.

 This author will also investigate other applications of the processing framework

outside of computer forensic fields, as it is apparent that the framework developed

could be applied to computational problems of other fields. Initially, an investigation

would aim to seek possibilities of applying the processing model to; machine learning,

 P a g e | 136

AI, malware analysis, and health sciences. It is strongly believed that exploring and

applying the processing framework to the computational problems of these fields would

aid develop and broaden the capabilities of the processing framework.

 The author further plans an investigation into visualisation techniques to aid the

rapid analysis of live data drawn from DF and network analysis. Whilst this research has

proposed a framework to accelerate the acquisition of evidence from unstructured

streams of data, the author proposes that powerful visualisation tools could further aid

the interpretation of the obtained evidence. Effective visualisation techniques paired

with the processing framework would serve as a powerful triage tool in DF investigation.

For live network analysis, effective visualisation tools would enhance the ability to

quickly identify anomalies in live network traffic.

 P a g e | 137

REFERENCES

Acharya, R 2014, Platform Independent PFAC Implementations using OpenCL on Heterogeneous Parallel

Computing, International Journal of Computer Applications, 106, (10), pp. 21–24.

Advanced Micro Devices n.d., AMD A-Series Desktop APUs, viewed 19 May, 2016,

<http://www.amd.com/en-gb/products/processors/desktop/a-series-apu>.

Agarwal, C, Rasool, A and Khare, N 2013, PFAC Implementation Issues and their Solutions on GPGPU ’ s

using OpenCL, International Journal of Computer Applications, 72, (7), pp. 52–58.

Aho, A V and Corasick, MJ 1975, Efficient String Matching : An Aid to Bibliographic Search,

Communications of the ACM, 18, (6), pp. 333–340.

Altheide, C and Carvey, H 2011, Digital Forensics with Open Source Tools, 1st ed, Syngress, Waltham.

Arudchutha, S, Nishanthy, T and Ragel, RG 2013, String matching with multicore CPUs: Performing better

with the Aho-Corasick algorithm, 2013 IEEE 8th International Conference on Industrial and

Information Systems, ICIIS 2013 - Conference Proceedings, pp. 231–236.

Ayers, D 2009, A second generation computer forensic analysis system, Digital Investigation, 6, Elsevier

Ltd, pp. S34–S42.

Beek, C 2011, Introduction to File Carving, McAfee White Paper.

Bellekens, X, Atkinson, RC, Renfrew, C and Kirkham, T 2013, Investigation of GPU-based Pattern Matching,

The 14th Annual Post Graduate Symposium on the Convergence of Telecommunications, Networking

and Broadcasting (PGNet2013) (PGNet2013), p. 5.

Bellekens, X, Tachtatzis, C, Atkinson, RC, Renfrew, C and Kirkham, T 2014, GLoP: Enabling massively

parallel incident response through GPU log processing, Proceedings of the 7th International

Conference on Security of Information and Networks - SIN ’14, (SEPTEMBER 2014), pp. 295–301.

Bhamare, GK and Banait, PSS 2014, Parallelization of Multipattern Matching on GPU, International Journal

of Electronics, Communication & Soft Computing Science and Engineering, 3, (3), pp. 24–28.

Boyer, RS and Moore, JS 1977, A Fast String Searching Algorithm, Communications of the ACM, 20, (10),

pp. 762–772.

Breß, S, Kiltz, S and Schäler, M 2013, Forensics on GPU Coprocessing in Databases -- Research Challenges,

First Experiments, and Countermeasures, Proceedings of the 1st Workshop on Databases in

Biometrics, Forensics and Security Applications, pp. 115–129, viewed 17 May, 2013,

<http://www.btw-2013.de/proceedings/Forensics on GPU Coprocessing in Databases Research

Challenges First Experiments and Countermeasures.pdf>.

Carrier, B, Casey, E and Venema, W 2006, DFRWS 2006 File Carving Challenge, viewed 5 August, 2013,

 P a g e | 138

<http://www.dfrws.org/2006/challenge/>.

Casey, E 2011, Digital Investigation and Computer Crime, 3rd ed, Academic Press.

Charras, C and and Lecroq, T 2004, Handbook of Exact String Matching Algorithms, Kings College

Publications.

Chen, C and Wu, F 2013, An Efficient Acceleration of Digital Fonensics Search Using GPGPU, International

Conference on Security and Management, pp. 1–5.

Chief Police Officers 2008, Good Practice Guide for Computer-Based Electronic Evidence, Director, 67, (5),

p. 72.

Collange, S, Daumas, M, Dandass, YS and Defour, D 2009, Using graphics processors for parallelizing hash-

based data carving, Proceedings of the 42nd Annual Hawaii International Conference on System

Sciences, HICSS, pp. 1–10.

Crown 2008, Computer Misuse Act 1990, Computer Misuse Act 1990, p. 16.

CrystalMark n.d., CrystalDiskMark, viewed 2 June, 2016,

<http://crystalmark.info/software/CrystalDiskMark/index-e.html>.

Dharmapurikar, S, Krishnamurthy, P, Sproull, T and Lockwood, J 2003, Deep packet inspection using

parallel Bloom filters, IEEE Micro, pp. 52–61.

EaseUS n.d., EaseUS Data Recovery Wizard, viewed 23 May, 2016,

<http://www.easeus.com/datarecoverywizard/free-data-recovery-software.htm>.

Fang, J, Varbanescu, AL and Sips, H 2011, A Comprehensive Performance Comparison of CUDA and

OpenCL, 2011 International Conference on Parallel Processing, Ieee, pp. 216–225.

File Recovery Ltd. n.d., Undelete 360, viewed 23 May, 2016, <http://www.undelete360.com/>.

Garfinkel, SL 2007, Carving contiguous and fragmented files with fast object validation, Digital

Investigation, 4, (SUPPL.), pp. 2–12.

Garfinkel, SL 2010, Digital forensics research: The next 10 years, Digital Investigation, 7, pp. S64–S73.

Gharaee, H 2014, A Survey of Pattern Matching Algorithm in Intrusion Detection System, International

Symposium on Telecommunications, Tehran, pp. 946–953.

Grenier, C n.d., PhotoRec, viewed 23 May, 2016, <http://www.cgsecurity.org/wiki/PhotoRec>.

Hales, G 2016, Assisting Digital Forensic Analysis via Exploratory Information Visualisation, Abertay

University.

Haseeb, S 2013, Serial and Parallel Bayesian Spam Filtering using Aho- Corasick and PFAC, International

Journal of Computer Applications, 74, (17), pp. 9–14.

Hybrid DSP n.d., CUDAfy .NET, viewed 9 August, 2013,

<http://www.hybriddsp.com/Products/CUDAfyNET.aspx>.

 P a g e | 139

Intel n.d., Intel® CoreTM i3-6300 Processor Specifications, viewed 26 May, 2016a,

<http://ark.intel.com/products/90731/Intel-Core-i3-6300-Processor-4M-Cache-3_80-GHz>.

Intel n.d., Intel® CoreTM i7-5960X Processor Extreme Edition Specifications, viewed 26 May, 2016b,

<http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-

Cache-up-to-3_50-GHz>.

Intel n.d., Intel® Hyper-Threading Technology, viewed 26 May, 2016c,

<http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-

threading/hyper-threading-technology.html>.

Intel n.d., IrisTM Graphics and Intel® HD Graphics Technology, viewed 19 May, 2016d, <https://www-

ssl.intel.com/content/www/us/en/architecture-and-technology/hd-graphics/hd-graphics-

developer.html>.

International Organization for Standardization n.d., ISO/IEC 17025:2005 - General requirements for the

competence of testing and calibration laboratories, viewed 19 May, 2016,

<http://www.iso.org/iso/catalogue_detail.htm?csnumber=39883>.

Jeong, Y, Lee, M, Nam, D, Kim, J-S and Hwang, S 2014, High Performance Parallelization of Boyer-Moore

Algorithm on Many-Core Accelerators, 2014 International Conference on Cloud and Autonomic

Computing, pp. 265–272.

Karimi, K, Dickson, NG and Hamze, F 2010, A Performance Comparison of CUDA and OpenCL, ArXiv e-

prints, 1005.2581, p. 12.

Karp, RM and Rabin, MO 1987, Efficient randomized pattern-matching algorithms, IBM Journal of

Research and Development, 31, (2), pp. 249–260.

Kendall, K, Kornblum, J and Mikus, N n.d., Foremost, viewed 19 May, 2016,

<http://foremost.sourceforge.net/>.

Khan, S, Gani, A, Wahab, AWA, Shiraz, M and Ahmad, I 2016, Network forensics: Review, taxonomy, and

open challenges, Journal of Network and Computer Applications, 66, (March), Elsevier, pp. 214–235.

Khronos Group n.d., OpenCL, viewed 6 August, 2013, <http://www.khronos.org/opencl/>.

Kouzinopoulos, CS, Assael, J-AM, Pyrgiotis, TK and Margaritis, KG 2015, A Hybrid Parallel Implementation

of the Aho-Corasick and Wu-Manber Algorithms Using NVIDIA CUDA and MPI Evaluated on a

Biological Sequence Database, International Journal on Artificial Intelligence Tools, 24, (1).

Lin, C-H, Liu, C-H, Chien, L-S and Chang, S-C 2013, Accelerating Pattern Matching Using a Novel Parallel

Algorithm on GPUs, IEEE Transactions on Computers, 62, (10), pp. 1906–1916.

Lin, C, Liu, C and Chang, S 2011, Accelerating Regular Expression Matching Using Hierarchical Parallel

Machines on GPU, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, pp. 1–5.

 P a g e | 140

Lin, CH, Tsai, SY, Liu, CH, Chang, SC and Shyu, JM 2010, Accelerating string matching using multi-threaded

algorithm on GPU, GLOBECOM - IEEE Global Telecommunications Conference, pp. 1–5.

Marziale, L, Richard, GG and Roussev, V 2007, Massive threading: Using GPUs to increase the performance

of digital forensics tools, Digital Investigation, 4, pp. 73–81.

Merola, A 2008, Data Carving Concepts, Sans Institute, 11, p. 40.

Microsoft n.d., Introduction to the C# Language and the .NET Framework, viewed 24 May, 2016,

<https://msdn.microsoft.com/en-gb/library/z1zx9t92.aspx>.

Mohan, D 2010, Faster file matching using GPGPUs, University of Delaware.

Mohr, A n.d., Quantum Computing in Complexity Theory and Theory of Computation.

Mokaram, NE 2015, New Pattern Matching Approaches Comparison.

Nance, K, Hay, B and Bishop, M 2009, Digital forensics: defining a research agenda, System Sciences, 2009.

HICSS’09., pp. 1–6.

Nugent, H 1995, Prosecuting computer crimes, International Review of Law, Computers, pp. 159–182,

viewed 19 May, 2016, <https://www.justice.gov/sites/default/files/criminal-

ccips/legacy/2015/01/14/ccmanual.pdf>.

Nvidia n.d., GeForce GTX 980 Specifications, viewed 26 May, 2016,

<http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-980/specifications>.

Pal, A and Memon, N 2009, The evolution of file carving, IEEE Signal Processing Magazine, 26, (2), pp. 59–

71.

Piriform n.d., Recuva, viewed 23 May, 2016, <http://www.piriform.com/recuva>.

Pungila, C and Negru, V 2012, A highly-efficient memory-compression approach for GPU-accelerated virus

signature matching, Information Security - ISC 2012, Springer, LNCS, 7483, pp. 354–369.

Raghavan, S 2013, Digital forensic research: current state of the art, CSI Transactions on ICT, 1, (1), pp.

91–114.

Rasool, A and Khare, N 2013, Generalized Parallelization of String Matching Algorithms on SIMD

Architecture, International Journal of Computer Science and Information Security, 11, (5), pp. 6–16.

Richard III, GG and Roussev, V 2006, Digital Forensic Tools: The Next Generation, Digital crime and forensic

science in cyberspace, pp. 76–91.

Richard III, GG and Roussev, V 2005, Scalpel: A Frugal, High Performance File Carver, Proceedings of the

2005 Digital Forensics Research Workshop (DFRWS ’05), pp. 1–10.

Roussev, V and Richard III, GG 2004, Breaking the Performance Wall: The Case for Distributed Digital

Forensics, Digital Forensics Research Workshop, (September), pp. 1–16.

Scientific Working Group on Digital Evidence 2002, Best Practices for Computer Forensics, viewed 19 May,

 P a g e | 141

2016, <https://www.swgde.org/documents/Archived Documents/2004-11-15 SWGDE Best

Practices for Computer Forensics v1.0>.

Skrbina, N and Stojanovski, T 2012, Using parallel processing for file carving, ArXiv e-prints, 1205.0103,

(March).

Sommer, P 1999, Intrusion detection systems as evidence, Computer Networks, 31, (23–24), pp. 2477–

2487.

Soroushnia, S, Daneshtalab, M, Plosila, J and Liljeberg, P 2014, Heterogeneous Parallelization of Aho-

Corasick Algorithm, Practical Applications of Computational Biology & Bioinformatics, pp. 153–160.

Soroushnia, S, Daneshtalab, M, Plosila, J and Pahikkala, T 2014, High Performance Pattern Matching on

Heterogeneous Platform Related works, Journal of Integrative Bioinformatics, 11, (3), pp. 253–264.

Takahashi, R and Inoue, U 2012, Parallel Text Matching Using GPGPU, 2012 13th ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing, pp. 242–246.

Thambawita, DRVLB, Ragel, R and Elkaduwe, D 2014, To use or not to use: Graphics processing units

(GPUs) for pattern matching algorithms, Information and Automation for Sustainability, pp. 1–4.

Tran, N-P, Lee, M, Hong, S and Bae, J 2013, Performance Optimization of Aho-Corasick Algorithm on a

GPU, 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and

Communications, pp. 1143–1152.

Tran, N-P, Lee, M, Hong, S and Shin, M 2012, Memory efficient parallelization for Aho-Corasick algorithm

on a GPU, Proceedings of the 14th IEEE International Conference on High Performance Computing

and Communications, HPCC-2012 - 9th IEEE International Conference on Embedded Software and

Systems, ICESS-2012, Ieee, pp. 432–438.

Vasiliadis, G, Antonatos, S, Polychronakis, M, Markatos, E and Ioannidis, S 2008, Gnort: High performance

network intrusion detection using graphics processors, Recent Advances in Intrusion Detection, pp.

116–134.

Wagner, B 2009, Deep Packet Inspection and Internet Censorship: International Convergence on an

‘Integrated Technology of Control’, Global Voices.

WiseCleaner n.d., Wise Data Recovery, viewed 23 May, 2016, <http://www.wisecleaner.com/wise-data-

recovery.html>.

Wu, P 2013, CLgrep: A Parallel String Matching Tool.

Zha, X and Sahni, S 2011, Fast in-Place File Carving for Digital Forensics, Forensics in Telecommunications,

Information, and Multimedia, pp. 141–158.

Zha, X and Sahni, S 2013, GPU-to-GPU and Host-to-Host Multipattern String Matching on a GPU, IEEE

 P a g e | 142

Transactions on Computers, 62, (6), pp. 1156–1169.

Zha, X and Sahni, S 2011, Multipattern String Matching On A GPU, IEEE Symposium on Computers and

Communications, pp. 277–282.

 P a g e | 143

Appendices

Appendix A

OPENFORENSICS CLASS DIAGRAM

1 1..* 1 1

 P a g e | 144

Appendix B

FOREMOST CONFIGURATION FILES

B.1 Foremost String Searching Configuration File Settings – 5 String Search

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE

gif y 1000 \x47\x49\x46\x38\x39\x61

gif y 1000 \x47\x49\x46\x38\x37\x61

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A

E. Bayne Advanced File Carving Techniques with GPGPU Processing P a g e | 145

B.2 Foremost String Searching Configuration File Settings – 19 String Search

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE

gif y 1000 \x47\x49\x46\x38\x39\x61

gif y 1000 \x47\x49\x46\x38\x37\x61

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A

tiff y 1000 \x49\x49\x2A\x00

tiff y 1000 \x4D\x4D\x00\x2A

mpg y 1000 \x00\x00\x01\xBA

mpg y 1000 \x00\x00\x01\xB3

wmv y 1000 \x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C

wma y 1000 \x30\x26\xB2\x75

doc y 1000 \xD0\xCF\x11\xE0\xA1\xB1

docx y 1000 \x50\x4B\x03\x04\x14\x00\x06\x00

pdf y 1000 \x25\x50\x44\x46

zip y 1000 \x50\x4B\x03\x04

zip y 1000 \x50\x4B\x05\x06

zip y 1000 \x50\x4B\x07\x08

rar y 1000 \x52\x61\x72\x21\x1A\x07\x00

rar y 1000 \x52\x61\x72\x21\x1A\x07\x01\x00

E. Bayne Advanced File Carving Techniques with GPGPU Processing P a g e | 146

B.3 Foremost String Searching Configuration File Settings – 40 String Search

jpg y 1000 \xFF\xD8\xFF\xE0\x00\x10

jpg y 1000 \xFF\xD8\xFF\xE1\x35\xFE

gif y 1000 \x47\x49\x46\x38\x39\x61

gif y 1000 \x47\x49\x46\x38\x37\x61

png y 1000 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A

tiff y 1000 \x49\x49\x2A\x00

tiff y 1000 \x4D\x4D\x00\x2A

wim y 1000 \x4D\x53\x57\x49\x4D

mpg y 1000 \x00\x00\x01\xBA

mpg y 1000 \x00\x00\x01\xB3

mp4 y 1000 \x00\x00\x00\x14\x66\x74\x79\x70\x69\x73\x6F\x6D

mp4 y 1000 \x00\x00\x00\x18\x66\x74\x79\x70\x33\x67\x70\x35

mp4 y 1000

 \x00\x00\x00\x1C\x66\x74\x79\x70\x4D\x53\x4E\x56\x01\x29\x00\x46\x4D\x53\x4E\x56\x6D\x70\x34\x32

mov y 1000 \x00\x00\x00\x14\x66\x74\x79\x70\x71\x74\x20\x20

m4v y 1000 \x00\x00\x00\x18\x66\x74\x79\x70\x6D\x70\x34\x32

wmv y 1000 \x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C

mkv y 1000 \x1A\x45\xDF\xA3\x93\x42\x82\x88\x6D\x61\x74\x72\x6F\x73\x6B\x61

wma y 1000 \x30\x26\xB2\x75

m4a y 1000 \x00\x00\x00\x20\x66\x74\x79\x70\x4D\x34\x41\x20

doc y 1000 \xD0\xCF\x11\xE0\xA1\xB1

docx y 1000 \x50\x4B\x03\x04\x14\x00\x06\x00

pdf y 1000 \x25\x50\x44\x46

zip y 1000 \x50\x4B\x03\x04

zip y 1000 \x50\x4B\x05\x06

zip y 1000 \x50\x4B\x07\x08

zip y 1000 \x50\x4B\x03\x04\x14\x00\x01\x00\x63\x00\x00\x00\x00\x00

rar y 1000 \x52\x61\x72\x21\x1A\x07\x00

rar y 1000 \x52\x61\x72\x21\x1A\x07\x01\x00

xar y 1000 \x78\x61\x72\x21

xz y 1000 \xFD\x37\x7A\x58\x5A\x00

jar y 1000 \x4A\x41\x52\x43\x53\x00

jar y 1000 \x5F\x27\xA8\x89

iso y 1000 \x43\x44\x30\x30\x31

cso y 1000 \x43\x49\x53\x4F

img y 1000 \x50\x49\x43\x54\x00\x08

img y 1000 \x51\x46\x49\xFB

img y 1000 \x53\x43\x4D\x49

cas y 1000 \x5F\x43\x41\x53\x45\x5F

E. Bayne Advanced File Carving Techniques with GPGPU Processing P a g e | 147

rpm y 1000 \xED\xAB\xEE\xDB

mof y 1000 \xFF\xFE\x23\x00\x6C\x00\x69\x00\x6E\x00\x65\x00\x20\x00\x31\x00

E. Bayne Advanced File Carving Techniques with GPGPU Processing P a g e | 148

B.4 Foremost File Carving Configuration File Settings – 9 File Types

jpg y 10485760 \xFF\xD8\xFF\xE0\x00\x10 \xFF\xD9

jpg y 10485760 \xFF\xD8\xFF\xE1\x35\xFE \xFF\xD9

gif y 10485760 \x47\x49\x46\x38\x39\x61 \x00\x3B

gif y 10485760 \x47\x49\x46\x38\x37\x61 \x00\x3B

png y 10485760 \x89\x50\x4E\x47\x0D\x0A\x1A\x0A \x49\x45\x4E\x44\xAE\x42\x60\x82

mpg y 10485760 \x00\x00\x01\xBA \x00\x00\x01\xB7

mpg y 10485760 \x00\x00\x01\xB3 \x00\x00\x01\xB7

docx y 10485760 \x50\x4B\x03\x04\x14\x00\x06\x00 \x50\x4B\x05\x06

pdf y 10485760 \x25\x50\x44\x46 \x0A\x25\x25\x45\x4F\x46

E. Bayne Advanced File Carving Techniques with GPGPU Processing P a g e | 149

Appendix C

POLICE SCOTLAND CORRESPONDANCE

From: aaaaaaaaaaaa

Sent: 08 November 2015 21:46

To: Bayne, Ethan

Cc: Ferguson, Ian

Subject: Re: File Carving

Hi Ethan -

Sorry I didn't get a chance to get back to you sooner, but I am barely ever in the office these days (or so it seems) and haven't

therefore been working on too many cases.

Having said that, I made sure I unleashed your file carver on a couple of test cases (ie, rigged drives!) to see what it revealed. I was

pleased to find that it managed to recover files from a 'live' drive very quickly indeed and found absolutely everything I was after,

all of which is of course positive and what I hope you were after. On average I found it worked about 160% faster than an equivalent

product, which is all the more remarkable given the obvious shortcoming to the product.

The tool I compared it with is smart enough to know what is an unallocated cluster and what is not, and searched only those sectors,

whereas your product seemed to search the entire drive content from one end to the other. That it managed to do this faster than

a different tool which was far more selective (and in doing so searched only about 50% of the 120Gb drive's storage area). The

drawback really is that your program assumes that everything is a drive 'artefact' and not a live file, which means that we cannot

differentiate between one and the other. Finding deleted and unallocated files is a substantial - and slow - part of what we do, and

anything that can speed that up would be of benefit. Unfortunately we would have to have some way of saying that what a program

recovers definitely comes from only that unallocated region, and not from the actual filing system. Am I making sense?

Having said that - it's really good!

kind regards

aaaaaaaa

