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Abstract 

Soil is a complex heterogeneous system comprising of highly variable and 

dynamic micro-habitats that have significant impacts on the growth and activity 

of resident microbiota. A question addressed in this research is how soil 

structure affects the temporal dynamics and spatial distribution of bacteria. 

Using repacked microcosms, the effect of bulk-density, aggregate sizes and 

water content on growth and distribution of introduced Pseudomonas 

fluorescens and Bacillus subtilis bacteria was determined. Soil bulk-density and 

aggregate sizes were altered to manipulate the characteristics of the pore 

volume where bacteria reside and through which distribution of solutes and 

nutrients is controlled. X-ray CT was used to characterise the pore geometry of 

repacked soil microcosms. Soil porosity, connectivity and soil-pore interface 

area declined with increasing bulk-density. In samples that differ in pore 

geometry, its effect on growth and extent of spread of introduced bacteria was 

investigated. The growth rate of bacteria reduced with increasing bulk-density, 

consistent with a significant difference in pore geometry. To measure the ability 

of bacteria to spread thorough soil, placement experiments were developed. 

Bacteria were capable of spreading several cm’s through soil. The extent of 

spread of bacteria was faster and further in soil with larger and better connected 

pore volumes. To study the spatial distribution in detail, a methodology was 

developed where a combination of X-ray microtopography, to characterize the 

soil structure, and fluorescence microscopy, to visualize and quantify bacteria in 

soil sections was used. The influence of pore characteristics on distribution of 

bacteria was analysed at macro- and microscales. Soil porosity, connectivity 

and soil-pore interface influenced bacterial distribution only at the macroscale. 

The method developed was applied to investigate the effect of soil pore 

characteristics on the extent of spread of bacteria introduced locally towards a 

C source in soil. Soil-pore interface influenced spread of bacteria and 

colonization, therefore higher bacterial densities were found in soil with higher 

pore volumes. Therefore the results in this showed that pore geometry affects 

the growth and spread of bacteria in soil. The method developed showed 

showed how thin sectioning technique can be combined with 3D X-ray CT to 

visualize bacterial colonization of a 3D pore volume. This novel combination of 

methods is a significant step towards a full mechanistic understanding of 

microbial dynamics in structured soils. 
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1.1 Soil 

Soil forms a thin layer at the Earth’s surface and acts as an interface between 

the atmosphere and lithosphere. It is a growth medium for plants and 

microorganisms and consists of minerals, water, gases and organic matter. Soil 

provides both a habitat and a source of energy for life, including plant roots, 

animals and microorganisms. In return, these contribute to soil formation and 

influence the soil’s physical and chemical properties and the vegetation that 

grows in it (Young et al., 2005; Voroney & Heck, 2015). Soils are formed by the 

physical and chemical weathering of the rocks and minerals. The weathering 

processes convert the minerals and rocks into secondary minerals and fine 

particles with a large surface area and also provides nutrient for plants and 

animals (Young et al., 2005).  

 

Soils contribute to all four different dimensions of ecosystem services classified 

by millennium ecosystem assessment into those associated with the provision 

of goods (e.g., food, fibre, fuel, fresh water), those that support life on the planet 

(e.g., soil formation, nutrient cycling, flood control, pollination), those derived 

from benefits of regulation of ecosystem processes (e.g., climate regulation, 

disease control, detoxification) and those cultural services that are not 

associated with material benefits (e.g., recreation, aesthetic and cultural uses) 

(Barrios, 2007). 

 Soil structure 1.1.1

The mineral component of soil is composed of particles of sand, silt and clay. 

Based on the proportion of these particles the soil is classified into textural 
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classes such as sandy loam, silt clay and clay loam (Lavelle, 2012). These 

mineral particles are bound together with organic matter and inorganic cements 

to form aggregates arranged spatially in various sizes and shapes. This 

arrangement of particles into aggregates and the distribution of pore spaces 

both within and between these aggregates are referred to as soil structure 

(Rowell, 1994). Microaggregates are formed by binding of organic molecules 

(OM) attached to clay (Cl) particles and polyvalent (P) cations (Al3+,Fe3+,Ca2+ 

and Mg2+) to form compound particles (Cl-P-OM) (Edwards and Bremner, 

1967). Macroaggregates are formed by physically binding of microaggregates 

together by fungal hyphae, networks of plants roots and roots hairs or 

chemically with fibrous organic matter (Bossuyt et al., 2001).  

 

The importance of binding agents to maintain the stability of soil structure was 

highlighted by Tisdall and Oades (1982). They classified organic binding agents 

into three broad classes; persistent, transient and temporary. Persistent binding 

agents include the humic materials associated with polyvalent cations; transient 

binding agents are polysaccharides derived from plant and microbes and the 

temporary binding agents include roots, root hairs and fungal hyphae (Tisdall 

and Oades, 1982; Cambardella, 2006). Therefore, all these three binding 

agents act together to form stable aggregates in soil. Aggregates of different 

sizes have different stability and resistance to various environmental stress i.e. 

micro and mesoaggregates are more stable than macroaggregates. For 

example, macroaggregates are readily disrupted by rewetting of dry soil, 

freezing or thawing or from the gentle agitation whereas micro- and 

mesoaggregates are more resistant unless intense agitation is enforced 

(Bronick & Lal, 2005).  
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The aggregation process defines a network of pores of different sizes and 

shapes which affects the distribution of air, water and nutrients in soil. It is 

important to note here that aggregates are formed after soil is broken into 

smaller pieces due to a force. This can be a mechanical force, by which we 

measure the aggregate size distribution, but it is to some extent arguably an 

arbitrary measure. More recently methods have become available that assess 

soil structure without the requirement of such a disruption. This non-invasive 

method includes X-ray CT and is described in more detail later in this chapter. 

 

The pore space is defined as the percentage of the total soil volume occupied 

by pores.  

𝑃𝑜𝑟𝑒 𝑠𝑝𝑎𝑐𝑒 (%) =  
𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
 ×  100                                 Equation 1.1 

Often it is also described as porosity, in which case reference is often made to 

the volume fraction rather than the percentage. The porosity of soil and the 

density at which soil particles are packed are inversely related. Soil bulk-density 

(g of soil per volume) and soil particle density (g of solid particles per volume) 

are used to determine the pore volume of soil according to the following 

formulas  

𝜀 =  1 – (𝜌𝑏 / 𝛾𝑠 )                                                                            Equation 1.2 

Where, ρb = bulk-density of sample (g cm-3), γs = soil particle density (g cm-3),  

ε = porosity 

Total pore space can be categorized into classes according to the sizes and 

shape of pores as macropores (>100 µm), mesopores (30-100 µm) or 

micropores (<30 µm) (Koorevaar, Menelik and Dirksen 1983). However, 

Voroney & Heck, 2015 classified the pores into macropores (>10 µm), and 

micropores (<10-µm) showing that a uniformly accepted definition is lacking. 
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The pores are classified according to their sizes, their ability to retain water and 

the forces applied to extract water molecules held by surface tension forces. 

The classification of pores is arbitrary and the actual pore sizes range from 

nanoscale to cm’s. In macropores rapid diffusion of air and infiltration of water 

occurs. Macropores are created by physical processes like wetting and drying 

or freeze-thaw cycles which can lead to formation of cracks, or by biological 

processes like root growth and burrowing activities of earthworms, termites and 

ants (Bronick & Lal, 2005; Lavelle, 2012; Voroney & Heck, 2015). Micropores 

retain water for plants and provide aqueous habitats where microorganisms live. 

The complex geometry of macropore pathways determines the distribution of 

water, gas, solutes and microbes in soil (Young and Crawford, 2004). Pore 

network characteristics such as porosity, number of pores, pore length, pores 

size distribution, connectivity and tortuosity are considered as factors that 

influence the transport of solute and water flow through soil (Luo et al., 2010).  

 

The pore network provides various habitats for microbes that vary in their 

physical, chemical and biological characteristics, resulting in heterogeneous 

distribution of microbes in soil. Depending on the moisture content, 45-60 % of 

the total soil volume consists of pores that are either air or water filled. The 

heterogeneity of pore networks affects the relative proportion of air- versus 

water-filled pores, thus regulating water and nutrient availability, gas diffusion 

and biotic interactions (Frey, 2015).  

 

In soil, water acts physically as an agent for transport by mass flow and as a 

solvent and reactant in chemical and biological reactions. Soil water influences 

the soil aeration, osmotic pressure, pH of the solution and the moisture 
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available to microbes in soil (Frey, 2015). In soil, water content can be 

measured as the mass of water in soil (gravimetric water content) or water per 

unit volume in soil (volumetric water content). Soil water is also described in 

terms of its potential energy. The water potential is defined as the potential 

energy of water per unit mass of water in the system relative to free water and 

can be described by the sum of gravitational, matric, osmotic and pressure 

potentials. The adhesion force of water to the surface of soil matrix is attributed 

as the matric potential (matric forces). When soil is thoroughly saturated by 

heavy rainfall or irrigation and after a period drainage, the water held by soil 

available for plant use is in equilibrium with gravitational suction, the soil is said 

to be at its field capacity where no more water drains from soil (Cassel and 

Nielsen, 1986). At field capacity, the gravitational forces that drags the water 

downward is counterbalanced by osmotic and matric forces that hold water 

(Voroney & Heck, 2015). When the water is being absorbed by plants and not 

replenished a point is reached where plants can no longer extract water 

adhered to soil particles and the soil is said to be at its permanent wilting point. 

Soil is said to be at its water holding capacity when the amount water held is 

between the field capacity and the permanent wilting point and hence an 

indication of the amount potentially available to plants (Bardgett, 2005). The 

water retention curve is used to determine the volume and distribution of water 

in soil as it describes the hydraulic and gaseous pathway in soil. This curve 

describes the relationship between the moisture content and the matric potential 

energy. An impact of this curve on various soil functions is summarized in 

Figure 1.1 (Young and Ritz, 2005). In Figure 1.1 it can be seen that a higher 

level of aerobic microbial activity occurs when pores are air and water filled.  
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Figure 1.1: Summary of water retention curve on different soil functions (from, 
Young & Ritz 2005).  

 

 Methods to quantify soil structure  1.1.2

To assess soil structure, various direct and indirect methods have been used 

over the years. A review article by Dıaz-Zorita et al.(2002) describes various 

destructive procedures to assess the structure of soil. Measurements such as 

soil bulk-density, aggregate stability, water repellency, water retention and 

hydraulic conductivity are used to assess the structure or used as indirect 

measures of how structure affects functioning of soil. The methods, however, 

are all indirect and either requires assumption relating pore size to water 

retention, or require soil to be destructively sampled (aggregate size 

distribution). Image analysis of soil thin sections prepared form resin 

impregnated soil samples is another method that has been used to measure 

size, shape, and distribution of pores and aggregates and allows these 

measurements to be made without destroying the distribution of solid and 

pores. Various studies have used thin sections to determine soil structure 

(FitzPatrick et al., 1986); pore architecture (Moran et al., 1988; Drees et al., 
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1994, Harris et al., 2003, Pagliai, Vignozzi and Pellegrini, 2004); pore size 

distributions (Tippkotter et al., 2009); soil organic matter distribution (Faldme et 

al. 2014) and root-soil contacts (Kooistra et al., 1992). This method is, however, 

limited to 2D and to assess the pore architecture in 3D this method requires 

stacking up of images acquired at high resolution which is very time consuming. 

Blair et al. (2007) developed a methodology to simulate three-dimensional 

structure from the two-dimensional sections of soil. But this did not work well for 

soils with large cracks. Recent development in technology allows the use of 

techniques like X-ray computed tomography to attain the third dimension. X-ray 

CT allows for visualisation and quantification of soil structure in three 

dimensions without disrupting the samples. Thus it also allows repeated 

measurements of the same samples overtime which is very helpful in research 

work related to studying for example the response of biotic characteristics to 

changing conditions in soil (Helliwell et al., 2013).  

 

Nuclear Magnetic Resonance (NMR) or Magnetic Resonance Imaging (MRI) is 

another potential non-destructive technique to analyse the soil environment. 

Pohlmeier et al. (2010) used MRI to investigate root water uptake in natural 

sand. Nakashima et al. (2011) used time-domain low-field NMR to detect heavy 

oil contaminated portion in undisturbed sandy soil samples from a real site 

contaminated with heavy oil. These techniques are, however, somewhat limited 

as equipment is not readily available and Fe content in soil can interfere with 

the imaging. In this study X-ray tomography was used to quantify soil structure, 

therefore a brief description of this technique is given in the following section.  
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1.2 X-ray Computed Tomography  

X-ray Computed Tomography (CT) is a non-destructive and non-invasive 

technique which applies the principal of attenuation of an electromagnetic wave 

to visualise and quantify the internal structure of an object in 2D and 3D. The 

application of X-ray CT began in the early 80’s; Petrovic et al. (1982) were the 

first to use this technique in a geological study. They demonstrated the potential 

for studies of the physical soil environment by observing the relationship 

between soil bulk-density and X-ray attenuation.  

 

 Principle of X-ray tomography 1.2.1

The theory of X-ray CT has been covered in detail in numerous reviews 

(Ketchman & Carlson, 2001; Mees et al., 2003; Cnudde et al., 2006; Taina et 

al., 2008; Piers et al., 2010; Mooney et al., 2012; Helliwell et al., 2013). Briefly, 

X-ray are emitted that intersect the sample and produce a series of radiograph 

images of samples acquired at incremental angular positions (Taina et al., 

2008; Helliwell et al., 2013). A laboratory based X-ray CT scanner in general is 

typically made of three parts, a X-ray source, a rotating sample stage and a 

detector (Figure 1.2). The X-ray source is a highly evacuated tube that consists 

of two electrodes: an anode and a cathode. A high voltage is applied across the 

electrodes; the cathode then accelerates electrons and produce X-rays as they 

strike the anode (Wildenschild et al., 2002). The X-rays emitted from the source 

pass through the sample and a portion of the X-ray beam is either absorbed or 

scattered because the sample itself becomes a secondary source of X-rays and 

electrons through atomic interactions (Mooney et al., 2012). This process of 

reduction in intensity of X-rays as they are absorbed or scattered while passing 
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through the object is called attenuation The attenuation coefficient characterises 

how easily a material can be penetrated by an X-ray beam, and is related to the 

density of the sample, the energy of radiation and the electron density of the 

voxel of interest (Helliwell et al., 2013). The X-ray passing through an object is 

projected onto a detector where a radiograph image is generated. For 

reconstruction, the values of linear integration of the X-ray attenuation 

coefficient of the radiographic images are used. The most common technique 

for reconstruction is the filter back-projection algorithm through which cross-

sectional 2D image slices are generated from the radiograph images. Each 

image (slice) describes the X-ray attenuation coefficient of the voxel (volume 

elements) in 3D expressed in Hounsfield unit (HU) or greyscale value (i.e. 0 to 

255 for an 8-bit image). In general, pore spaces are associated with low 

densities, whereas mineral materials are of higher density and would have a 

higher value (Taina et al., 2008; Mooney et al., 2012). The greyscale values 

captured by the detector (X-ray CT used in this thesis) can be converted to HU, 

where a value of 0 HU would represent distilled water and -1000 HU represents 

air (at standard temperature and pressure), by calibrating with a flask of water 

before scanning each sample (Mooney et al., 2012; Houston et al., 2013). Over 

the years three different types of scanners have been used for environmental 

research, namely benchtop, medical and synchrotron (Figure 1.2). In principle, 

the methodology used for scanning is the same in both benchtop and medical 

systems. However in medical CT scanners the sample is static and both the 

source and detector rotate around the object (Figure 1.2b), whereas in 

benchtop CT scanners it is the sample that rotates between a fixed X-ray 

energy source and a detector (Figure 1.2a) (Mooney et al., 2012). The 
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advantage of industrial scanner over medical ones is that smaller objects can 

be scanned as the object can be moved closer to the X-ray source due to the 

reduced focal spot size. This allows the object to be moved closer to the 

narrower section of the X-ray beam, generating primary magnification and 

higher resolution through improved detection; therefore a wider range of scales 

can be covered (Ketcham & Carlson, 2001). In the case of a medical scanner 

the resolution image quality is limited, so from a soil perspective to classify 

microscopic pore characteristics and finer root systems an industrial X-ray CT 

or synchrotron scanner is more preferred (Mooney et al., 2012). Compared to 

industrial scanners, synchrotron scanners use a monochromatic beam instead 

of a polychromatic beam (used in industrial scanners) (Figure 1.2c). This 

enables better distinction of materials, enabling for example K-edge scanning. 

K-edge is the binding energy of the electrons of atoms in the K shell with a 

sudden increase in attenuation of photons just above the binding energy of the 

K shell electron. Such techniques can be used to identify specific compounds in 

composite materials. Another advantage of synchrotron over industrial scanners 

is the speed of scan (typical scan <15 minutes) and the acquisition of low-noise 

data with fewer artefacts. But access to synchrotron scanners is restricted and 

the size of sample is usually small (Wildenschild et al., 2002).  
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Figure 1.2: Example of different types of CT systems a) industrial system, b) 
medical system and c) synchrotron system (Helliwell et al., 2013). 

 

 Image segmentation  1.2.2

X-ray CT produces grey scale images whose grey scale values area ordered 

relate to the attenuation coefficient. The X-ray CT images of soil samples 

comprise of three phase’s i.e. mineral grains, water and air filled pore space 

and the organic materials. Among these three phases, the soil minerals have 

the highest attenuation and in grey scales this corresponds to bright voxels and 

the pore space have darker voxels (Helliwell et al., 2013). To quantify specific 

features in soil samples, image segmentation techniques are used to convert 
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the greyscale CT image into a binary image for quantitative analysis. Over the 

years, different segmentation methods have been applied on soil images to 

identify the solid and pore phases. However no standard thresholding method 

has been adopted due to substantial challenges faced in segmenting soil data 

related to the heterogeneity of soil material (Iassonov et al., 2009; Baveye et al., 

2010, Wang et al., 2011, Hapca et al., 2013). Iassonov et al. (2009) reviewed 

fourteen different segmentation methods ranging from global methods to locally 

adaptive methods that have been applied to porous media. The local 

thresholding methods showed more stable results compare to global ones. 

Among all the methods, the best segmentation results were shown by Oh and 

Lindquist’s (1999) indicator kriging method and Bayesian segmentation 

algorithm (Berthod et al.1996). However, the limitation of these two methods 

was that they required supervision by knowledgeable operators and they were 

computationally demanding (Iassonov et al., 2009). In another study by Wang et 

al. (2011), indicator kriging method showed better performance on simulated 

soil images compared to four other thresholding methods. However, a study by 

Baveye et al. (2010) showed how operators bias the selection of thresholding 

methods, yielding variable results from the same soil images using the same 

thresholding method. To overcome the computational demand and the required 

expert knowledge, Houston et al. (2013) developed an improved version of an 

indicator-kriging algorithm. The improved method allowed varying the size of the 

kriging window according to the conditions within the soil image. The advantage 

of this method was that it allowed better segmentation for images containing 

imbalanced proportion of material phases or higher degree of spatial 

heterogeneity (Houston et al., 2013). In addition, the method is fully automated 
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and does not require the operator defined parameters of the previous kriging 

methods needed. 

 

After image segmentation various characteristics of soil such as porosity, pore 

connectivity, pore size distribution and surface area are obtained. Various 

software packages (proprietary + bespoke) are available to quantify some of 

these pore characteristics e.g. Volume Graphic studio Max (Schmidt et al., 

2012; Tracy et al., 2012), ImgTools (Falconer et al., 2012); SCAMP (Crawford 

et al., 2011) and 3DMA-Rock-software (Kravchenko et al., 2011; Wang et al., 

2013; Negassa et al., 2015). 

 

 Limitation of X-ray tomography 1.2.3

The industrial X-ray CT scanner also has certain limitations, like beam 

hardening and ring artefacts which cause problems in phase identification 

during image analysis. Beam hardening is caused due to absorption of low 

energy photons as they are emitted faster than the higher energy photons. As 

the beam of the industrial systems is polychromatic, comprising of low and 

higher energy levels the X-rays change as they go through a sample. This 

causes higher attenuation at the boundaries of samples. Therefore, the edges 

appear brighter than the centre of the sample. This effect is more prevalent in 

higher density materials. Beam hardening can be minimized by using thin 

sheets of filters (aluminium, copper, tin) in the path of X-ray beam to remove 

lower-energy photons. Ring artefacts are caused by defects in the detector 

which cause recording of incorrect or high beam intensities, appearing as rings 

in the reconstructed images (Wildenschild et al., 2002). Nowadays, most of the 
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CT scanners have inbuilt image processing tools that can minimize beam 

hardening and ring artefacts both pre and post scanning (Mooney et al., 2012).  

 

 Applications in soil science 1.2.4

Over the years X-ray tomography has been applied in soil science to 

characterize soil properties like minerals (Kalukin et al., 2000; Ketcham et al., 

2005), organic matter (Sleutel et al., 2008, Quinton et al., 2009), pore-space 

geometry (Heijs et al., 1995; Perret et al., 1999; Anderson et al., 2003; Elliot et 

al., 2010), water content (Heijis et al., 1995; Rogasik et al., 1999; Mooney, 

2002) and roots (Gregory et al., 2003, Perret et al., 2007; Tracey et al., 2012; 

Schmidt et al., 2012). X-ray CT has allowed determination of various properties 

of the soil pore network non-destructively, including pore diameter, pore 

connectivity, tortuosity, pore circularity and pore size distribution (Helliwell et al., 

2013). For example, Perret et al. (1999) determined pore tortuosity, numerical 

density, and hydraulic radius in undisturbed cores. The role of macropore 

networks in determining preferential flow patterns was reported by Heijes, 

Ritsema and Dekker (1996). (Baveye et al. 2002) examined dependence of 

macroscopic soil parameters including soil bulk-density, volumetric water 

content, volumetric air content and gravimetric water content on size, shape and 

positioning of soil samples. They reported that some measurements in small 

size samples exhibited erratic fluctuations which stabilized with increasing 

sample volume (Baveye et al., 2002). X-ray CT has been used to determine the 

effect of soil compaction on soil macropore geometry. For example, Kim et al. 

(2010) characterized the effect of compaction on macropore geometry in field 

cores. The studies revealed a decrease in CT-measured porosity, 
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macroporosity, number of macro- (69 %) and mesopore (75 %). X-ray CT has 

also been used to examine the effect of different management practices on soil 

structure and stability. Papadopoulos et al. (2009) used X-ray CT to examine 

the effect of different management practices on aggregate structure and 

stability. They compared soil stability in stable and unstable aggregate fractions 

from organically and conventional managed soils and showed that intra-

aggregate porosity did not affect soil stability (Papadopoulos et al., 2009). Some 

recent studies have shown differences in intra-aggregate pore structures in soil 

with contrasting land use and management practices (Kravchenko et al., 2011; 

Wang et al., 2012). For example, Kravchenko et al. (2011) characterized the 

pore structure of soil aggregates with different land use and management 

practices, namely, conventional tillage (chisel plow) (CT), no-till (NT), and native 

succession vegetation (NS). They observed a heterogeneous distribution of 

pores with a greater number of large pores in CT management soil aggregates 

than NT and NS (Kravchenko et al., 2011). 

 

Other applications of X-ray CT involve characterization of the root system 

(Gregory et al., 2003; Heeraman et al., 1997; Kaestner et al., 2006; Lontoc–Roy 

et al., 2006; Perret et al., 2007, Tracy et al., 2012). For example, Gregory et al. 

(2003) measured the length and diameter of wheat and rapeseed roots. The 

current state of the art in relation to X-ray CT to visualise roots in soil was 

recently documented in a review by Mooney et al. 2012. 

 

Studies have also been undertaken to quantify invertebrate burrows in soil 

(Joschko et al., 1993; Capoweiz et al., 1998). Capoweiz et al. (1998) reported 

how the burrowing behaviour of earthworms varied with seasons. The effect of 
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soil compaction on earthworm burrowing was reported in a study by Jegou et al. 

(2002); Langmaack et al. (2002) & Schrader et al. (2007). The use of X-ray CT 

in studies of earthworm behaviour in soil is well documented in a review by 

Taina et al. (2008). For example, Langmaack et al. (2002) measured soil pore 

volume, length, tortuosity and connectivity of burrowing systems in soil with 

different tillage treatments and concluded that intrinsic soil processes had a 

bigger impact on soil rehabilitation than tillage operations.  

 

To date, bacteria cannot be visualised using X-ray systems due to low 

attenuation of X-rays and similarities with the soil-water complex (O’Donnell et 

al., 2007). However, X-ray CT allows assessment of the habitat in which these 

microorganisms live. In the past 3-4 years, X-ray tomography has been used in 

combination with other culture based or molecular techniques to study the 

distribution and function of microbial populations in their habitat (Kravchenko et 

al., 2013; Kravchenko et al., 2014). These studies are described in detail in 

section 1.6 of this chapter.  

 

1.3 Life in soil  

A large proportion of Earth’s biodiversity resides in soil (Ettema & Wardle, 

2002). This large biodiversity contributes to the majority of ecosystem services. 

According to Pimentel et al. (1997) the estimated economic profit from soil 

biodiversity is 1546 billon dollars annually. A vast range of microbes and 

animals can reside in soil because of its high physical and chemical 

heterogeneity which develops and maintains a large number of niches (Barrios, 

2007). As shown in Figure 1.3 soil organisms can be classified into groups 

according to their body size such as microflora (1–100 μm, e.g. bacteria and 
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fungi), microfauna (5–120 μm, e.g. protozoa and nematodes), mesofauna (80 

μm–2 mm, e.g. microarthopods and enchytraeids) and macrofauna (500 μm–50 

mm, e.g. earthworms, termites and millipedes) (Swift et al., 1979). Among this 

soil community the most diverse and numerous members are the microbes, 

dominating with literally thousands of species present in soil. The microflora 

group includes bacteria, fungi, actinomyctes and algae, with bacteria and fungi 

the most abundant ones. In terms of biomass, fungi dominate by representing a 

significant portion of the ecosystem nutrient pool. however in terms of total 

numbers and diversity, bacteria form the largest proportion of the soil microbial 

community (Young et al., 2005). It is evident that a single gram of soil may 

harbour from 108 (bulk soil) up to 1011 (rhizosphere) prokaryotic cells (Torsvik et 

al., 1990,Portillo et al., 2013) and an estimated species diversity of 4 x 103 

(Torsvik et al., 1990) to 8 x 106 species (Gans et al., 2005). The soil microbial 

community has immense metabolic and physiological heterogeneity which 

enables them to live, adapt and proliferate in a broad range and changes of 

environmental conditions (Madigan et al., 2010). With such high bacterial 

diversity within the soil environment, the importance of the functions these 

organisms perform within the soil ecosystems such as plant growth, nutrient 

cycling, soil structure and maintenance of soil productivity is well established. 

The functioning of these organisms is controlled by interactions such as 

mutualism, commensalism, antagonism, competition, parasitism/predation and 

neutralism with each other (Van Veen et al., 1997).The diversity of soil biota is 

important for sustaining soils and particularly within the agricultural system, 

since microorganisms perform diverse ecological services including supplying 

nutrients to plant, stimulate plant growth through production of growth 
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hormones, control or inhibit the activity of plant pathogens, maintenance of soil 

structure, microbial leaching of inorganics and mineralization of organic 

pollutants (Burd et al., 2000; Zhuang et al., 2007; Zaidi et al., 2008; Hayat et al., 

2010). Microbial diversity and biomass are highest in the top 10 cm of soil and it 

declines with depth. For example, in a montane forest in Colorado bacterial 

diversity decreased by 20-40% in deeper horizons compared to surface soil 

(Eilers et al., 2012).  

 

 

Figure 1.3: Classification of soil organisms according to the width of their body 
size (from Swift et al., 1979).  
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 Bacteria used in this thesis  1.3.1

Plant growth promoting bacteria (PGPB) are being used for enhanced crop 

production due to their adaptability in a wide variety of environments, faster 

growth rate and biochemical versatility to metabolize a wide range of natural 

and xenobiotic compounds (Bhattacharyya & Jha 2012). A variety of bacteria 

belonging to genera Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, 

Bacillus, Burkholderia, Caulobacter, Chromobacterium, Erwinia, 

Flavobacterium, Micrococcous, Pseudomonas and Serratia are used as 

inoculants in soil to enhance nutrient availability (Gray and Smith, 2005). These 

bacteria may exist in the rhizosphere, on the rhizoplane or in the spaces 

between the cells of root cortex (Hayat et al., 2010). In this study bacteria 

belonging to genera Pseudomonas fluorescens and Bacillus subtilis are used. 

Both this strains are capable of controlling plant diseases. Pseudomonas 

fluorescens are gram-negative, motile, rod shaped bacteria that are found in 

soil, water and on plant surfaces (http://www.ncbi.nlm.nih.gov/genome/150). 

The average length of P. fluorescens SBW25 is 3.1± 0.8 µm and the diameter is 

0.9± 0.1 µm (Ping et al., 2013). Bacillus subtilis are gram-positive, motile, rod 

shaped bacteria that inhabit soil (http://www.ncbi.nlm.nih.gov/genome/665). 

Bacillus subtilis are 3-5 µm long with a width of about 1 µm. Pseudomonas 

belongs to the proteobacteria genera and Bacillus belongs to the firmicutes. 

Pseudomonas fluorescens produces growth regulators like siderophores, and 

indole-3-acetic acid whilst Bacillus subitlis produces indole-3-acetic acid. There 

are numerous studies reviewed in Hayat et al. (2010) and Sivashakthi et al. 

(2014) which have used Pseudomonas and Bacillus species as model 

organisms to either promote plant growth or control diseases. Both these 
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bacterial groups are selected as they are equally abundant in the rhizosphere 

and in the bulk soil environment (Kravchenko et al., 2013). Despite this, still 

very little knowledge is available on how the growth or spread (movement) is 

affected by soil physical conditions, such as pore geometry or moisture content. 

Therefore, factors affecting survival spread and root-colonising ability of these 

species in soil environment needs to be understood. 

 

1.4 Distribution of bacteria in soil 

Bacteria depend on water filled pore networks or pore spaces that are covered 

with water films for their growth and activity (Vos et al., 2013). Bacteria are 

located in both small and large pores, but the bacterial population is found more 

consistently in smaller pores. This is because, small pores retain water longer in 

drying soil condition and also bacteria are protected from predators which 

cannot enter such pores. Therefore the bacterial population distribution is highly 

variable in large pores where they are more prone to predators consumption 

(Foster, 1988; Frey, 2015). Direct observation of microbial cells in situ has 

revealed the uneven distribution of microbes in soil. Bacteria are mostly found 

as isolated cells or in form of microcolonies and biofilms in soil. The number of 

cells per microcolony observed in microscopic studies was very low (Kilbertus, 

1980; Foster, 1988; Nunan et al., 2001). The oligotrophic status of the soil 

habitat and the limited number of hydrated microsites in unsaturated soil are 

some of the factors that were thought to restrict the development of large 

microcolonies (Or et al., 2007). The small microbial colonies tend to aggregate 

and form microbial hotspots in zones where nutrient availability is high such as 

areas with accumulated particulate organic matter, animal manure and the 
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rhizosphere (Nannipieri et al. 2003). The colonization of bacteria in such areas 

occur either due to active movement of the bacteria towards them or due to 

passive transport by water flow or large burrowing animals. In air-filled pores 

bacteria migrates through the fungal hyphae networks (Young et al., 2008). 

According to Time et al. (1988) the mechanism of bacterial movement in soil 

can be categorised into physical, geochemical and biological processes. In 

physical processes, bacteria movement is through the water flow in soil pore 

networks whereas in geochemical processes like filtration, 

adsorption/desorption and sedimentation delays their movement through pores 

in soil. In biological processes, the intrinsic characteristics like the size of 

bacteria, growth or death rate and the motility mechanisms influence their 

transport through soil (Abu-ashour et al., 1994). Therefore, the movement of 

bacteria through various mechanisms leads to their heterogeneous distribution 

in soil.  

 

Bacteria have a range of motility mechanisms broadly categorised into: 

swimming, swarming, gliding, twitching and sliding (Figure 1.4). Bacteria require 

flagella for swimming and swarming motility, type IV pili for twitching motility or 

they do some form of gliding or sliding as a form of passive translocation 

(Harshey, 2003). In swimming, individual bacterial cells moves through liquid 

environments by rotating flagella whereas in swarming bacteria spread through 

the surface in groups by flagella motion (Kearns, 2010). Gliding is the active 

surface movement that occurs along the long axis of cell. Gliding is defined as a 

smooth movement of cells, generally along the long axis of the cell. Twitching 

motility is the movement of bacteria by the extension and retraction of type IV 

pili.  And lastly, sliding is a passive form that relies on growing culture in 
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combination with reduced surface tension between cell and surface. Sliding 

relies on production of surfactants to reduce surface tension between bacteria 

and surface and enable a bacterial colony to spread away from the origin driven 

by the outward pressure of cell growth (Harshey, 2003; Kearns, 2010). The 

most common motility mechanism is the swimming motility, where flagella 

propelled bacteria follow chemical gradients by chemotaxis (Young et al., 2008). 

Chemotaxis is the movement of bacteria towards or away from a higher 

chemical concentration (Abu-ashour et al., 1994). The non-motile cells rely on 

passive mechanisms like diffusion or transport with water flow through soil. 

Thus the movement of motile or non-motile bacteria through the water-filled 

pore network results in non-random distribution in soil. The motility mechanism 

of the bacteria used in this thesis was swimming, swarming and twitching in the 

case of Pseudomonas sp. and swimming, swarming, gliding and spreading in 

the case of Bacillus sp. (Harshey, 2003).  
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Figure 1.4: Diagrammatic representation of different bacteria motility 
mechanism. The grey arrows indicate the direction of bacterial cell movement 
and the coloured circles indicated the type of motors that power the movement 
of bacteria (Kearns 2010). 

 

The habitat of microbes depends on the size of the organisms, which ranges 

from a µm for bacteria to larger than 100 µm for fungi (Coleman et al., 2001). 

Due to the complexity of aggregate matrix the localization of bacteria is 

restricted to very small microhabitats which means the majority of the soil 

surface area is devoid of bacteria (Vos et al., 2013). According to Young and 

Crawford (2004), microbes cover only 10-6% of the total soil surface area. This 

demonstrates that the spatial arrangement of microorganisms in soil has a huge 

impact on their access to C and on the way they compete and interact 

(Nannipieri et al., 2003). Parkin (1933) categorized the spatial patterns of 

microbes into four scales: microscale, plot scale, landscape scale, and regional 

scale. Few studies have researched spatial patterns at all these scales (Lauber 

et al., 2008; Wu et al., 2009; Fierer et al., 2009, Nunan et al., 2003).  
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1.5 Methods to quantify microscale distribution of bacteria in soil 

Over the years different experimental and modelling approaches have been 

used to investigate and quantify the distribution and activity of microbes in soil. 

The approaches can be categorized broadly into a) Imaging techniques b) Non-

imaging techniques and c) Modelling techniques. 

 

 Imaging techniques  1.5.1

Microscopy techniques are used to observe bacteria in their natural 

environment. Since soil is a complex medium, studying the distribution of 

bacteria has been challenging owing to visualization and sampling difficulties 

caused by the complex structure and opacity of soil. Early studies using 

microscopic techniques indicated that bacteria are unevenly distributed in soil. 

Resin embedding techniques were used to study in situ spatial distribution of 

bacteria in soil. In 1955, Alexander and Jackson were the first to introduce the 

soil thin sectioning technique to study the micro-organisms in natural soil. 

Nunan et al. (2007) has described the history of how the technique has 

emerged and modified from a qualitative to a quantitative analysis. Briefly, 

Jones and Griffiths (1964) modified this method to map spatial distribution of 

bacterial colonies in soil aggregates. Then in 1973, Foster et al. (1973) 

produced images of soil bacteria and fungi at the ultra-structural scales 

(nanometre and kilometre scales). Thin sectioning techniques involve four main 

steps which are fixation, staining, dehydration and resin impregnation (Li et al., 

2003). In this method the samples are taken from undisturbed soil cores and 

fixation is done to preserve the soil structure and the spatial pattern of the 

microbes with the soil matrix. The samples are then impregnated in resin and 
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thin sections approximately 25 m are prepared from the block after 

polymerization of resin and used to observe bacteria under a microscope. 

Tippkotter (1996) performed an experiment where different types of resins were 

tested for soil thin sections and concluded that a polyester resin crystic and 

palatal resin were the most suitable ones. A couple of studies have used 

polyester resin to embedding soil samples to examine the in situ spatial 

distribution of archaea and bacteria in soil (Li et al., 2004; Eickhorst & 

Tippkötter, 2008). Thin sections have been used to visualize inoculated bacteria 

and rhizobia in soil at high cell densities (White et al., 1994; Li et al., 2004). 

These techniques, however, have several limitations; it is hard to assign a 

particular function to a specific group of bacteria as no distinction can be made 

between the active and non-active cells. Autofluorescence produced by the 

resin and soil particles interferes with the visualization of stained cells. However 

the fluorescence caused by resin was reported to decrease if thin sections were 

thinner. Hence the ideal thin sections are reported to be of thickness  15 m. 

The measurements made by this technique were two dimensional whereas soil 

is a 3-D medium. This limitation can be overcome to some degree by using 

confocal laser scanning microscopy which produces 3-D images of samples by 

using the graph processing software (Li et al., 2003; Nunan et al., 2007). 

 

To visualise bacteria in soil thin sections, different types of fluorochromes like 

acridine orange, ethidium bromide, 4',6-diamidino-2-phenylindole 

(DAPI),magnesium salt of 8-anilino-1-napthalene, Thiazine red R have been 

used (Li et al., 2003). These fluorochromes stain specific components of the 

organism like nucleic acids, proteins, lipids, cell membranes (Li et al., 2004; 

Nunan et al., 2007). Reporter gene like GFP markers are widely used to study 
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plant- microbe interactions (Tombolini & Jansson, 1998; Zhang et al. 2010; 

Zhang et al. 2011). The major advantages of GFP is it can be analysed in living 

cells without any need for exogenous substrate and its stability (Zhang & Xing, 

2010). Tombolini et al. (1998) used GFP markers for spatial localization of 

bacteria (Rhizobium meliloti) on roots in soil .They concluded that the GFP 

protein was stable for more than 150 hours under starved conditions similar to 

the soil environment. Zhang et al. (2011) used GFP as a marker to study 

colonization of the natural biocontrol agent Bacillus subtilis N11 on banana 

roots.  

 

In situ hybridization technique like FISH (Fluorescent in situ hybridization) is 

another upcoming technique which is used to quantify bacteria in soil. FISH is a 

nucleic acid technique that uses 16S rRNA specific oligonucleotide probes 

which are fluorescently labelled to target cells in a complex environment 

(Eickhorst & Tippkötter, 2008). This technique is useful in detecting bacteria 

belonging to a specific group or determine a particular functional gene 

(Dechesne et al., 2007). FISH methods have been used to study soil-plant-

microbes interactions in rhizosphere and rhizoplane (O’Donnell et al., 2007). In 

context to the localization of bacterial colonies in a complex 3-dimensional 

structure of soil, FISH techniques were combined with the thin section method 

to detect organisms in undisturbed soil samples (Eickhorst & Tippkötter 2008). 

This technique, however, had limitations like the autofluorescence of soil 

minerals and organic materials which interfered with the signal intensities. Also 

accessibility of the probes to some areas of inner aggregate pores was 

problematic. This limitation was overcome by using a CARD-FISH (Catalyzed 

reporter deposition-fluorescent in situ hybridization) technique which used 
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oligonucleotides probes labelled with horseradish peroxidase enzyme that 

produce high signal intensity of tyramides (Eickhorst & Tippkötter, 2008). By 

combining this CARD-FISH technique with the experimental technique and 

modelling methods investigation of a particular species and its interactions with 

other species can be determined in the soil microhabitats. 

 

 Non-Imaging techniques  1.5.2

Since microbes reside in soil pores, the distribution of microbes is related to the 

structure and composition of aggregates. Hattori (1988) proposed a 

fractionation method in which microbial analysis was conducted on washed 

fractions of soil aggregates. The extracted microbes from soil were then 

quantified either by direct plate counting or by molecular method for which DNA 

was extracted from soil.  

 

Microsampling is another technique which is used to measure the spatial 

distribution of specific bacteria present and its volume at different scales. The 

strategy is to randomly sample large numbers of soil microsamples with defined 

volumes and then detect the presence or absence of a particular targeted 

bacterial group. These data were then compared with the theoretical spatial 

distribution results (Grundmann et al., 2001). NH+
4 oxidisers were the first to be 

analysed at microhabitat scales using these methods. NO-
2 oxidisers were 

found to more evenly spread as compared to oxidisers of NH+
4. The theoretical 

distribution investigated by computer simulations was limited owing to the time 

requirement to run the simulation. Dechense et al. (2003) developed a statistical 

data analytical method to replace the former one. This method was used to 

study the spatial distribution of two different bacterial types, NH+
4 oxidizers and 
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2, 4 -D degraders, in soil columns. Pallud et al. (2004) analysed the spatial 

distribution of 2, 4-degrader which remained unaffected as compare to addition 

of 2, 4-D substrate. An increase in colonized patches of size more than 0.5 mm 

in diameter at higher densities was observed after 2, 4-D addition (Pallud et al., 

2004). Since the results obtained from this method on the relationship between 

spatial patterns of microbes and the soil structure is not quantifiable, it is difficult 

to study the effect of structure on spatial pattern of microbes (Nunan et al., 

2007).  

 

 Modelling technique 1.5.3

Mathematical models are used to study the impact of microbial distribution on 

the ecological function. These models help in designing experiments which will 

provide more information about a specific aspect to be measured at a given 

scale.  

 

Some models like fractal-based or network models have been used for many 

years to simulate the complex structure of soil. In 2001 a fractal-based model 

was used to link the soil function with the geometry of soil structure (Young et 

al., 2001). The effect of soil structure on the activities of soil biota was also 

analysed. However, these models used a simplified version of soil structure, 

and hence were incapable of representing variation in microhabitat 

heterogeneity (Nunan et al., 2007). In the early 1990's the knowledge of specific 

location of bacterial population in relation to the physiochemical 

microenvironment was limited. The models were developed based on the 

assumption that bacteria were randomly or uniformly distributed. For e.g. 
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random distribution of microbes and substrates were assumed to examine the 

effect of extracellular enzyme use on soil microbe’s habitat. Later in 2004, a 

Markov chain model was introduced to simulate the three-dimensional soil 

structure at microhabitat scale. In this model the voxels can take either the pore 

or solid state. It can be used to study the microbial cells in soil by increasing the 

number of states that can be assigned to a pixel. Crawford et al. (2006) 

developed the same kind of model (i.e. using voxels to define a particular state) 

using the 2-dimensional images obtained from X-ray tomography to predict the 

three dimensional soil structures (Feeney et al., 2006). Individual based 

modelling is another method which can be used to study the effect of microbial 

communities on soil function. In this model individual elements are considered 

to analyse it effect on the whole system. Ginovart et al. (2005) was the first one 

to use this model to study the mineralization of C, N and nitrification process in 

soil. The Lattice Boltzmann method is another model which can be used to 

study the microbial function in soil. This method basically tracks the movement 

of individual particles and in the complex porous media (O’Donnell et al., 2007). 

However, a methodology needs to be developed where the images obtained 

from the biological thin sections of soil can be integrated with modelling 

methods to study the distribution and activity of microbes in soil system.  

 

1.6 Current state: what do we know about the effect of soil structure on 

microbial distribution and activity at microscale 

The distribution of microbes and their activity in soil is spatially correlated at 

scales ranging from microns to centimetres (Nunan et al., 2002; Dechesne et 

al., 2003; Dechesne et al., 2007). It has been recognized that the spatial pattern 
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of microbial distribution is related to the location and characteristics of soil pores 

(Grundmann et al., 2001; Nunan et al., 2003; Pallud et al., 2004; Ruamps et al., 

2011). This is because soil pores at the microscale control the water, air and 

nutrient fluxes which then influence the micro-environmental conditions for 

microbial growth and functioning (Negassa et al., 2015). In recent years, 

advancements in technology have permitted analyses of the factors that 

promote diversity and activity of microbes in soil. In particular, the use of X-ray 

tomography has permitted obtaining the exact information of the pore structure 

of the soil matrix at micron resolutions (Nunan et al., 2006; Kravchenko et al., 

2011; Mooney et al., 2012; Wang et al., 2012; Helliwell et al., 2013). This has 

opened opportunities to assess the effect of different characteristics of soil 

pores on microbial processes at microscale. In the last 3-4 years there have 

been studies that have used combinations of methods to quantify the pore 

characteristics with simultaneous assessment of microbial distribution and 

activity at microscale (Ruamps et al., 2011; Ruamps et al., 2013; Bouckaert et 

al., 2013; Negassa et al., 2015; Kravchenko et al., 2014; Wang et al., 2013; 

Kravchenko et al., 2013; Juarez et al., 2013). As per my knowledge, the 

combination of methods to quantify bacterial distribution in soil was first 

evaluated by Kravchenko et al. (2013) who studied the effect of intra-aggregate 

pore structure on the distribution of introduced bacteria (E.coli) in soil 

aggregates from contrasting managements. In their study, they used X-ray CT 

to quantify the pore structure of aggregates and a membrane filter method to 

evaluate the number of CFU of E.coli in aggregates. Their results showed that 

E.coli were abundantly distributed in medium sized pores (30-60 um) of the 

aggregates exteriors. They also showed a difference in E.coli distribution in 
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aggregates from different management practices. E.coli was more 

homogenously distributed in aggregates of highly disturbed soil and 

heterogeneously distributed in undisturbed soils. This difference was observed 

because in aggregates of disturbed soils, medium size pores were more 

abundant and uniformly spread throughout the aggregates compared to 

aggregates of undisturbed soils which had more larger pores (> 100 µm) and 

fewer medium sized pores (Kravchenko et al., 2013). The influence of pore 

characteristics on the composition of microbial community has been noted in 

some recent studies (Ruamps et al., 2011; Kravchenko et al., 2014). For 

example, Kravchenko et al. (2014) demonstrated that the composition of 

bacterial community was influenced by the intra-aggregate pore characteristics 

in macroaggregates. In this study, the relationship between intra-aggregate 

pore characteristics and composition of bacterial community in macro-

aggregates from two contrasting agricultural management practices was 

assessed. A pyro-sequencing method was used to analyse the bacterial 

community and the intra-aggregate pore characteristics were obtained from X-

ray CT. The results showed that the bacterial community composition was 

different between aggregates from contrasting agricultural management 

practices. Actinobacteria, Proteobacteria, Firmicutes and Gemmatimonadetes 

were the common bacterial communities present in aggregates from long-term 

organic management with cover crops (OF) and Acidobacteria in aggregates 

from the conventional management (CF). This difference in the community 

composition was related to the difference in the pore-size distribution and intra-

aggregate pore variability in aggregates from contrasting management. The 

greater presence of large size pores (>100 µm) was positively related to the 
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relative abundance of Actinobacteria, Proteobacteria and Firmicutes in the OF 

aggregates. This is because in large pores the availability of nutrients would 

have been high due to nutrient influx via water flow in large pores or from root 

exudates. However, in aggregates from both treatments, the relative abundance 

of large number of different bacteria groups were found in medium size pores 

(32-84 µm).  

 

Fewer studies have recognized the relationship between soil pores and soil C 

process (Bouckaert et al., 2013; Juarez et al., 2013; Ruamps et al., 2013; 

Negassa et al. 2015). For example, Bouckaert et al. (2013) used a combination 

of X-ray tomography and a kinetic model to study the relationship between C 

(carbon) mineralisation and the pore volumes in the undisturbed soil cores.  

 

A combination of research methods is a first step towards a full mechanistic 

understanding of microbial dynamics in structured soils. However, there is still a 

lack of understanding of specific bacterial community distributions and 

functioning in soil. Since the bacterial community is so vast in soil may be useful 

to study the spatial distribution of introduced bacterial communities in soil to 

generate empirical data on which to base predictive models for better soil 

management. So far, only a few studies have looked at the spatial distribution of 

specific bacteria (White et al., 1994; Dechesne et al., 2005; Enwall et al., 2010; 

Kravchenko et al., 2013; Wang et al., 2013) at microscale and the information 

about the effect of pore structure on this distribution is rare.  
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1.7 Aim and objectives 

From above it is clear that soil structure influences all processes in soil including 

microbial activity yet how this regulation precisely occurs is still unclear. The 

overall aim of this thesis is therefore to quantify the effect of soil structure on the 

growth and distribution of bacteria in microcosm systems of varying complexity. 

The objectives to achieve this aim are  

1)  To quantify pore characteristics of soil in microcosm packed with 

different aggregate sizes and bulk-densities to determine how the pore 

geometry can be manipulated in experimental systems (Chapter 3). 

2) To quantify growth of selected bacterial strains in soil packed with 

different aggregate size and bulk-densities to investigate how geometry 

of pores in different structure affects the growth of bacteria soil (Chapter 

3). 

3) To quantify the extent of spread of selected bacterial strains in soil 

microcosms packed with different aggregate sizes, bulk-densities and 

water content (Chapter 4). 

4) Develop a method to quantify the spatial distribution of bacteria in soil by 

combining for the first time the physical technique to quantify pore 

geometry in soil in 3D (X-ray CT) , with biological techniques for in situ 

visualisation of bacteria (thin sections) (Chapter 5). 

5) To use this novel combination of techniques to quantify the spatial 

distribution of selected bacterial strains towards a carbon source in soil 

(Chapter 6). 
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2 Development of materials and methods 
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2.1 Introduction  

This chapter describes the protocols developed to build soil microcosms for 

enumeration of bacteria in soil. This is followed by the different staining 

methods used to visualise bacteria to enable counting in disturbed and 

undisturbed soil samples. Lastly, the method used to quantify soil structure 

throughout this study is outlined. All the chemicals and reagents used in this 

study were purchased from Sigma Aldrich UK unless otherwise stated. 

2.2 Bacterial strains and general inoculum preparation 

 Bacterial strains used in this work 2.2.1

The bacterial strains used in this work were Pseudomonas fluorescens and 

Bacillus subtilis strains. As discussed in chapter 1 both these strains occur 

naturally in soil and are known to promote plant growth and control plant 

diseases (Krid et al., 2011). Some of the morphological and physiological 

characteristics of Pseudomonas and Bacillus bacteria that could affect their 

growth and functioning in soil are listed in Table 2.1. The two strains differ in 

their ability to grow under anaerobic conditions and motility which may affect 

their response to wetness in soil. Their difference in ability to form spores will 

affect survival and mobility with water flow, but these are not considered in this 

thesis. 
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Table 2.1: Some morphological and physiological characteristics of 
Pseudomonas fluorescens and Bacillus subtilis strains used in this study that 
may impact on the way they respond to soil physical conditions (Harshey, 2003; 
Ping et al., 2013; Sivasakthi et al., 2014).  

 

Characteristics Pseudomonas fluorescens Bacillus subtilis 

Size of bacteria 3-4 µm x0.1 µm 3-5 µm x 0.1 µm 

Respiration Obligate aerobe 
Aerobic and facultative 

anaerobe 

Motility 
Swimming, swarming and 

twitching 

Swimming, gliding and 

spreading 

Spore formation - Endospores 

 

The wild and mutant types of these strains and their sources are listed in Table 

2.2. Mutants of both bacterial strains were tagged with GFP marker (details in 

table 2.2).  

The strains were maintained on specific culture media plates. Pseudomonas 

were grown on King’s media (KB) (10 g Glycerol, 1.5 g K2HPO4, 1.5 g 

MgSO4.7H2O, 20 g Proteose peptone No.3 (Becton, Dickinson & company, UK), 

15 g technical agar (1.5 %) per litre) (Kings et al., 1954) and Bacillus were 

grown on Luria- Bertani medium (LB) (10 g NaCl, 10 g Tryptone, 10 g Yeast 

extract 15 g technical agar (1.5 %) per litre) (Sambrook et al., 1989). Antibiotics 

were added to the culture media for GFP-tagged strains. They were added in 

the following concentration: Kanamycin-50 µg ml-1 for Pseudomonas and 

Gentamycin-50 µg ml-1 for the Bacillus strain. The antibiotics were sterilised by 

filtering with 0.2 µm GD/Xfilter (Whatman, UK). For long term use and storage, 

strains were maintained at -80°C in KB and LB with 50 % (v/v) glycerol solution. 
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When needed, the strains were recovered from the -80°C stocks by streaking 

them onto appropriate selective media plates before use. 

Table 2.2: Bacterial strains used in this study. Type and source of 
Pseudomonas and Bacillus strains are listed here. 

 

Table footnotes: DSMZ, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell 

Cultures; Gm
R
, Gentamycin resistance; Km

R
, Kanamycin resistance; NCBI, National Collection 

of Industrial Bacteria, UK (now the NCIMB). 

 

The growth rate of both bacterial strains was studied in pure media using 

spectrophotometry. Briefly, 1 ml of overnight culture was transferred into 50 ml 

liquid broth in a conical flask. The culture was incubated in a rotating shaker 

(200 rpm) at 28°C. Every 30 minutes 1 ml of the culture was transferred into 

plastic cuvettes (10 mm size) for OD600 reading using a spectrophotometer 

(Thermo Fisher Scientific, UK). The OD reading was first adjusted to zero by 

taking the pure liquid medium as a blank before a reading of the sample was 

taken. Results showed an increase in cell numbers overtime for both strains as 

Type of 
bacteria 

Type of 
strain 

Genotype/Description Source 

Pseudomonas 

fluorescens 

SBW25 
Isolated from the phyllosphere of 

sugar beet (Rainey & Bailey, 1996). 

A. Spiers, 

Abertay 

University 

SBW25-

GFP 

SBW25::mini-Tn7(Gm)PrrnB P 

GFPASVa, GmR(unpublished, A. 

Spiers; mini-Tn7 cassette from  

Lambersten et al., 2004) 

A. Spiers, 

Abertay 

University 

Bacillus subtilis 

NRS1473-

GFP 

(NRS1473) NCIB3610 sacA::Phy-

spank-GFPmut2,KmR (Hobley et al., 

2013) 

N. Stanley-

Wall, University 

of Dundee 

NCIB3610 

also known as DSM10, probably 

derived from a soil isolate 

(Nakamura et al., 1999; Zeigler et 

al., 2008) 

DSMZ,  

Germany 
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shown in Figure 2.1. Doubling time for Pseudomonas cells was estimated to be 

110 minutes and 50 minutes for Bacillus strain in pure media from the 

exponential phase of the growth curve shown in Figure 2.1. Among the two 

strains, Bacillus showed a faster growth rate compare to Pseudomonas in pure 

media. 

 

 

Figure 2.1: Growth curve of Pseudomonas (a) and Bacillus (b) grown in pure 
media at 28°C. Data are means ±SE (n=2). 

b) 

a) 
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 Cell harvesting for inoculation in soil 2.2.2

 

For inoculation in soil, an overnight culture was prepared by transferring one 

colony grown on a media plate into 10 ml of sterile broth and incubated at 28°C 

on a shaker at 200 rpm 24 hr. The cells were harvested by centrifugation (4000 

x g) for 5 minutes at 4°C. After washing the cells twice in a sterile phosphate 

buffer saline (PBS) solution, they were again suspended in small volume of 

PBS solution. The cell density of the cell suspension was measured using a 

spectrophotometer (Thermo Fisher Scientific, UK) reading at 600 nm. The cell 

density of Pseudomonas was 6.46E+07 cells ml-1 and 7.85E+07cells ml-1 for 

Bacillus strain.  

 

2.3 Collection of soil and preparation of soil microcosms 

 Soil collection and processing 2.3.1

The soil used in this project was a sandy loam soil (Pajor et al., 2010; Schmidt 

et al., 2012). It was collected from the Bullion field of the James Hutton Institute 

in 2011. Upon collection, the soil was air-dried in the greenhouse, sieved down 

to different size aggregates (0.5-1 mm, 1-2 mm, 2-4 mm) and stored at room 

temperature. The soil characteristics, quantified for the 1-2 mm aggregate size 

fraction are as follows: Sand, 55.7 %; Silt 31.0 %; Clay, 13.3 %; Ctotal, 3.2 %; 

Ntotal, 0.19 %; C/N ratio, 17.1; Organic matter, 5.5 %. In all experiments in this 

thesis sterilised soil was used. The sieved soil was sterilized by autoclaving 

(moist heat) in glass bottles at 121°C at 100 kPa for 20-30 minutes. The 

sterilization procedure was repeated again with a 24hr interval time to ensure 

the autoclaving procedure was successful (Trevors, 1996).  
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 Soil microcosms preparation 2.3.2

Throughout this project, repacked soil microcosms were used as it is possible to 

exert control over physical and chemical properties of soil in laboratory based 

studies. This helps in obtaining representative samples that can be replicated to 

compare different treatments. In this study, factors such as bulk-density, 

aggregate size and water content were controlled. 

 

2.3.2.1 Packing of soil microcosms 

The procedure of packing microcosms was adapted from the research work 

done by Pajor (2012). In all experiments, sterilised sieved soil was packed in 

polyethylene (PE) cylinders of size 3.40 cm3 (1.7 cm diameter and 1.5 cm 

height) unless otherwise stated. After sterilisation, the moisture content 

equivalent to a desired water filled pore volume was adjusted. To adjust the 

water filled pore volume, firstly the amount of water already present in soil was 

determined by a gravimetric method using the following equation (Page et al., 

1982).  

 

            𝑨𝒎𝒐𝒖𝒏𝒕 𝒐𝒇 𝒘𝒂𝒕𝒆𝒓 𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒊𝒏 𝒔𝒐𝒊𝒍 =  
𝑾𝒘−𝑾𝒅

𝑾𝒅
                        Equation 2.1 

Where, Ww = Wet weight of soil, Wd = Oven dried weight of soil  

 

Using the equation, the amount of water present per gram of air-dried soil 

obtained was 0.0277 g/g. Then, the amount of water required in addition to that 

already present in soil was calculated by volumetric method using the 

calculation steps shown below (Equation 2.2-2.7): 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =  𝜋𝑟2ℎ                                                                                 Equation 2.2 
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𝜌𝑠 =
𝑀𝑠𝑜𝑙𝑖𝑑𝑠

𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 = 𝑀𝑠𝑜𝑙𝑖𝑑𝑠 =  𝜌𝑠 × 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑠                                                            Equation 2.3 

𝛾 =
𝑀𝑠𝑜𝑙𝑖𝑑𝑠

𝑉𝑠𝑜𝑙𝑖𝑑𝑠
 = Vsolids = 

𝑀𝑠𝑜𝑙𝑖𝑑𝑠

𝛾
                                                                                   Equation 2.4 

Vpores = Vsample - Vsolids                                                                                              Equation 2.5 

𝑊𝑎𝑡𝑒𝑟 𝑝𝑒𝑟 𝑔𝑟𝑎𝑚 𝑜𝑓𝑠𝑜𝑖𝑙 =
𝑉𝑤𝑎𝑡𝑒𝑟

𝑀𝑠𝑜𝑙𝑖𝑑𝑠
                                                                       Equation 2.6 

𝑉𝑎 = 𝑉𝑏 −  𝑉𝑐                                                                                       Equation 2.7 

Where, ρs = soil bulk-density(g cm-3); Vsamples = volume of PE ring (cm3); r = radius of 

ring (cm), h = height of ring (cm); Msolids = weight of soil (g); γ = soil particle density; 

Vsolids = volume of solids (cm3), Vpores = volume of pores (cm3), Va = amount of water 

need to be added in soil (cm3 g); Vb = amount of water present per gram of soil (cm3 g); 

Vc = amount of water already present in soil (cm3). 

 

To adjust the water filled pore volume, sterilised distilled water (dH20) was 

added to air-dry soil and left for 48 hrs to equilibrate (Kieft et al., 1987; Harris et 

al., 2003). Thus the water content of air-dried soil was adjusted according to the 

desired bulk-density (Table 2.2). The amount of soil required to pack at a 

specific bulk-density per cylinder was weighed and poured in two halves into the 

cylinder. The first halve was added into the cylinder and compressed with a 

piston. The top surface was loosened a bit with a scalpel before the other half 

was added and compressed with a steel piston. Scraping of the soil surface was 

done to roughen the surface as it prevented a layering effect as observed in the 

research performed by Pajor (2012). This piston passed through the ring easily 

thus reducing the differences in the compaction near the edges of the cylinders. 
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2.3.2.2 Soil microcosm inoculation 

Bacteria were introduced in soil either as suspension (chapter 3 & 5) or as point 

source (chapter 4 & 6) based on the research question. For inoculation as 

suspension, 500 µl of the cell suspension (sterile PBS solution for control 

samples) per cylinder was added to the soil in a weighing boat. The suspension 

was mixed well with a sterile pipette tip. The mixture was then divided into 

halves and packed in similar way as described above (Figure 2.2).  

 

Figure 2.2: Inoculation and packing of soil microcosms. Steps involved are a) 
addition of bacteria inoculum in soil, b) Mixing of soil with bacteria inoculum, c) 
packing of soil in ring with a steel piston and d) packed soil microcosms  

 

In case of inoculation with a pellet, the cell suspension was mixed with low point 

melting agarose (Fisher bio-reagents, UK) to prepare an inoculation bead 

(henceforth referred as agarose pellet). A low melting point agarose (Fisher 

bioregaents, UK) was selected as it can remain in a melted state at 35°C, which 

a) 

d) 

b) 

c) 
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serves as an advantage as bacterial cells can survive at this temperature. To 

prepare an agarose pellet, 1000 µl inoculum of cell suspension prepared above 

was mixed with 30 ml of LMP agarose solution in a centrifuge tube. The mixture 

was poured into a petridish which was left under the laminar flow at room 

temperature to cool down and solidify. The solidified agarose was then cut 

down into small circular pellets using the circular end of a 1000 µl pipette tip. A 

single agarose pellet was of size 2.5 mm in diameter and 5 mm in height. One 

inoculum pellet per sample was taken. For control samples all the above 

treatments were prepared in a similar way except for agarose beads where 

1000 µl of sterile dH20 was used instead of bacteria inoculum. The method of 

introducing the agarose pellet in the soil is described in the respective chapters 

as it was different for each experiment.  

 

2.3.2.3 Optimization of water content and bacteria inoculum volume in 

soil 

Moisture content influences the growth and activity of bacteria as they live in 

water filled pore space or water films in soil (Uhlířová et al., 2005; Wolf et al., 

2013). Microbial activity is reported to be maximal when water-filled pores 

space is between 30 % - 70 % depending on the soil type and organic matter 

content (Haney & Haney 2010). At lower moisture content the diffusion of 

substrate decreases whereas at higher moisture content, the rate of oxygen 

supply decreases (Stres et al., 2008; Carson et al., 2010). Therefore in this 

thesis, water content of soil was adjusted to promote growth of introduced 

bacteria in soil.  
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As bacteria were introduced in soil in liquid form (as cell suspension) in some 

chapters, its addition could increase the total water content of soil by 20-40 %. 

As most of the soil pores are water filled at higher water content, the diffusion of 

oxygen declines into micropores causing the development of anaerobic 

conditions in soil. Therefore, a preliminary experiment was carried out to 

optimize the total water content, including the inoculum volume to enhance 

growth conditions for introduced bacteria in soil. In this experiment, four 

treatments with different volumes of water filled pores including the bacteria 

inoculum volume were tested for promoting growth of bacteria. The water 

content including the inoculum volume of each treatment ranges between 57 % 

- 84 % as detailed in Table 2.2. The soil was wetted to the desired water 

content for each treatment and packed at a bulk-density of 1.3 g cm-3 in PE 

rings as described in section 2.3.2.1. Three replicates per treatment were 

prepared. The soil was incubated for 7 days. On sampling day, the soil rings 

were emptied in 10 ml sterile PBS solution. The tubes were shaken for 15 

minutes on a shaker at room temperature. Bacteria were enumerated by plate 

counting method (Page et al., 1982). Briefly, the soil suspension was serially 

diluted up to 10-7 in PBS solution, and 0.1 ml of aliquots of last three dilutions 

was spread on selective agar media plates. Plates were incubated at 28°C for 

48 hrs. Plates of dilution 10-6 were selected for counting colonies as it had an 

appropriate number of colonies for all treatments (Page et al., 1982). The plates 

were counted under UV excitation light as GFP signal illuminated green colour 

under UV light (Figure 2.3). Using the CFU formula (equation 2.8), the colonies 

were then extrapolated to CFU per gram of soil. 

𝐶𝑜𝑙𝑜𝑛𝑦 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑔 𝑜𝑓 𝑠𝑜𝑖𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝐹𝑖𝑛𝑎𝑙 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑒𝑑 𝑋 𝑑𝑖𝑙𝑡𝑢𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
          Equation 2.8 
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In samples with the same percentage of water filled pores but different inoculum 

volume, bacteria CFU counts were higher in samples inoculated with 500 µl of 

bacterial suspension compare to samples inoculated with 250 µl of bacterial 

suspension. Whereas, in case of samples with the same inoculum volume but 

different percentage of water filled pores bacteria CFU counts were higher in 

samples with 40 % water filled pores. Among all the treatments highest number 

[1.24E+08 (s.e 5.81E+06) CFU/g soil] of CFU counts was observed in treatment 

with 75 % of water filled pores (Figure 2.4). Therefore, for all further 

experiments the total water content was adjusted to 75 % pores filled with 

water. 

 

Table 2.3: Treatments set up with different total water content packed at bulk-
density1.3 g cm-3 in PE rings of size 3.40 cm3. Water filled pores and inoculum 
volume used in each treatment is detailed.  

 

Treatments 
Water filled pores 

[%] 
Inoculum volume 

[µl] 

Total water-filled 
pore space 

[%] 

1 50 500 84 

2 50 250 67 

3 40 500 75 

4 40 250 57 
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Figure 2.3: Visualization of GFP-tagged cell colonies a) under white/visible light 
b) UV light in agar plates isolated from soil samples by serial dilution method 

 

Figure 2.4: Average CFU counts of Pseudomonas bacteria inoculated in soil with 
different water content. Treatments were 1) 50 % water filled pores with 500 µl 
inoculum volume 2) 50 % water filled pores with 250 µl inoculum volume 3) 40 % 
water filled pores with 500 µl inoculum volume and 4) 40 % water filled pores with 
250 µl inoculum volume. Data are means ±SE (n=3) 
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 Growth pattern of Pseudomonas and Bacillus in soil 2.3.3

After optimizing the total water content a growth study of GFP-tagged 

Pseudomonas and Bacillus cells was undertaken to monitor the survival and 

growth rate of both selected strains in soil. For this experiment, both GFP-

tagged bacterial strains were inoculated in soil and packed in PE rings as 

described in above sections. Three replicates per strain per sampling day were 

prepared. The rings were sealed in the plastic bags and incubated at 23°C for 

15 days. Soil rings were sampled every alternate day. Both bacterial strains 

were enumerated by plate counting method as described in the above section. 

For counting cells, plates of dilution 10-5 for Pseudomonas and 10-3 for Bacillus 

were selected. A fluctuation in the growth pattern of both bacterial strains was 

observed as shown in Figure 2.5. Both strains showed a decrease in CFU 

counts on day 1 compare to day 0. For example, Pseudomonas CFU counts 

were 5.17E+07 (s.e 7.51E+06) CFU/g soil on day 0 and 2.33E+06 (s.e 

3.33E+05) CFU/g soil on day 1. The reason could be a sudden shock of nutrient 

starved conditions in soil compared to that of the nutrient rich media. Overall the 

growth pattern of both Pseudomonas and Bacillus did not show much increase 

in cell counts. This might have been due to lack of nutrients as no external 

nutrient source was added to soil. Among the two strains, Pseudomonas 

showed higher growth rate compare to Bacillus in soil which is opposite to that 

seen in pure media (section 2.2.1). For example on day 5, Pseudomonas 

counts was 3.70E+07 (s.e 1.44E+07) CFU g-1 soil and Bacillus counts was 

9.67E+05 (s.e 1.17E+05) CFU g-1 soil. Therefore, from this experiment it was 

concluded that both introduced bacterial strains survived but doesn’t necessarily 

grow in soil. 
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Figure 2.5: Growth curve of Pseudomonas (a) and Bacillus (b) grown in soil at 
23°C. Data are means ±SE (n=3). 

  

b)

Days

0 2 4 6 8 10 12 14 16

C
F

U
/g

 s
o

il

0.0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

3.0e+6

a)

Days

0 2 4 6 8 10 12 14 16

C
F

U
/g

 s
o

il

0.0

2.0e+7

4.0e+7

6.0e+7

8.0e+7

1.0e+8



Development of materials and methods   

   50 

2.4 Analysis of soil structure using X-ray tomography  

Throughout this project, X-ray computed tomography was used to quantify soil 

structure non-destructively. The Metris X–Tek HMX 225 scanner (Nikon 

Metrology) at the SIMBIOS centre in Abertay University was used to scan soil 

microcosms. The highest achievable resolution of this scanner is 5 µm and it 

can generate X-rays up to 225 KEV, with a current between 0-2000 µA.  

 

 Image acquisition  2.4.1

A standard protocol was used to set up the scan. The energy settings scan 

resolution and scanning time varied between experiments but the procedure to 

set up a scan was as described here. To set up scanning, X-Tek InspectX v2.2 

software (Nikon Metrology X-Tek Systems Ltd, Tring, UK) was used. There 

were several steps in this software to set up a scan. The first one was to adjust 

the position of sample to ensure that the sample is in the field of view 

throughout scanning. The resolution of the scan is related to the position of 

sample. The closer the sample was to the X-ray gun (source) the higher was 

the scan resolution. Throughout this project the resolution of the scan varied 

between 10 µm and 24 µm depending on the size of the soil microcosms. The 

second step was to optimize the X-ray settings by changing the current and 

voltage settings. The X-ray setting was optimized by observing the changes in 

the histogram of the samples during live imaging, with the optimal set up 

maximising separation of peaks corresponding to pore and solid phase. A 

molybdenum target (except for Chapter 6 where Tungsten was used) with a 

0.25 mm aluminium filter was applied to minimize beam hardening. A Metris 

software CT Pro v2.1 (Nikon Metrology X-Tek Systems Ltd, Tring, UK) was 
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used to reconstruct the radiographs produced by X-ray CT of samples into a 

three dimensional volume.  

 

Volume Graphics Studiomax (VGStudio MAX) v2.2 software (Volume graphics, 

Heidelberg, Germany) was used to check the quality of scan and then convert 

the 3D volumes of the scanned samples into voxel thick image stacks for further 

processing. To convert the images from 32-bit to unsigned 8-bit format the 

image contrast of scan images was changed. This was done by defining upper 

and lower interval in the histogram of the scan image. The images stacks were 

then exported as unsigned 8-bit size BMP file format for further processing.  

 

 Image analysis  2.4.2

To analyse the soil pore characteristics, a region of interest was selected from 

the image stacks. To select a region of interest, Image J software was used. 

Grey scale image stacks (*bmp format) were imported in Image J v1.47 

(http://rsbweb.nih.gov/ij/) and a region of interest was cropped for quantification 

of samples. The size of the region of interest (ROI) varied in each chapter 

depending on the area analysed in the samples but the largest ROI possible 

was always selected. The selected ROI was then segmented using, Indicator 

kriging thresholding method (Houston et al., 2013; Hapca et al., 2011). This 

method produces binary images where solid material was represented as white 

and the pores were classified as black as shown in Figure 2.6. The segmented 

images were then evaluated by in house developed software (Houston et al., 

2013). The software was used to quantify the pore volume (porosity), fraction of 

visible pore space (limited to the resolution of scan), connectivity of pore volume 

and soil-pore interface of the pore volume (surface area) as shown in Figure 
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2.7. The figure illustrates the pore characteristics like porosity, highest 

connected pores and the soil-pore interface that can be analysed from 3D 

segmented images of selected region of interest using the in house developed 

software. These characteristics of pore geometry were chosen as size of pores 

defines the habitat for bacteria, connectivity of pores influences distribution of 

nutrient sources and movement of bacteria and the soil-pore interface is the 

surface where bacteria are usually attached. An alteration in these 

characteristics of pores can influence the function of microorganisms in soil, 

which is the topic of investigation in this thesis 

 

 

Figure 2.6: Stages of image analysis for quantification of soil pore 
characteristics. a) Original CT scan volume, b) selection of region of interest (red 
frame), c) 3D view of selected region of interest and d) 3D segmented volume of 
selected region of interest.  

c) d) 

a) 

1.6 cm diameter 

512 voxels 512 voxels 

b) 

1.6 cm diameter 
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Figure 2.7: Extracted segmented volume for soil pore analysis. a) Pore volume 
for porosity analysis, b) Connectivity of pores (yellow signifies largest connected 
pore) and c) soil-pore interface area of pore analysis 

 

2.5 Enumeration of bacteria in soil 

Direct counting using fluorescent dyes and epifluorescent microscopy was used 

to enumerate bacteria in soil. Green fluorescent protein (GFP) marker was used 

to visualise and quantify bacteria in soil. A VectaShield H-1200 medium 

containing DAPI (4’, 6-diamino-2-phenylindole) was used as a counterstain to 

test the consistency of the GFP signal. A ZEISS Axioskop 2 microscope 

equipped with a HBO 100 W Hg vapour lamp was used for evaluating the 

bacteria in soil samples. The GFP signals were examined under double 

excitation filter (no. 24, Carl Zeiss, Oberkochen, Germany) and total cells were 

enumerated under UV excitation (F46-000, AHF, Tübingen, Germany) set. 

Bacterial cells were observed under 63x (except for chapter 6 where 100x) 

objective lens and enumerated using a counting grid (10 x 10, 1.25 mm2, Carl 

Zeiss) integrated in the ocular (eyepiece) of the microscope. The cells were 

counted at random or fixed (as described in individual chapters) microscopic 

fields of views on the filter sections and extrapolated to 1 g of soil using 

following equation (Page et al., 1982)  

Largest connected 

pores 
Soil-pore interface 

area  
Pore volume 

a) b) c) 

512 voxels 512 voxels 
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𝑁𝑔 =  
𝑁𝑓 × 𝐴 × 𝐷

𝑊𝑠  × 𝑎𝑚 × 𝑉𝑓× 𝑣𝑠 
                                                         Equation 2.9 

Where, Ng = number of bacteria per g of soil; Nf = average number of bacteria per grid; 
A = area of filter (314 mm2); D = dilution factor (102), Ws = weight of soil; am = area of 
counting grid; Vf = volume used for filtration. 

 
 

2.6 Summary 

In this chapter the common materials and methods used in this thesis plus 

some short experiments to establish growth conditions were presented. The 

method of harvesting bacterial cells for inoculating in soil is described. Methods 

used to introduce bacteria in soil and the procedures of preparing soil 

microcosms are also presented. The water content of soil microcosm inoculated 

with bacteria was set to 75 % water-filled pore space, as this optimizes growth 

of bacteria. Growth rate of both Pseudomonas and Bacillus strain was 

quantified in pure media and in soil. The results showed how the growth rate of 

these strain differs between nutrient medium. Also, the standard protocol used 

throughout this thesis to quantify soils structure by X-ray tomography is also 

described. 
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3 Effect of soil structure on growth of bacteria
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3.1  Introduction 

Bacteria have been introduced in soil to enhance crop productivity by providing 

nutrients to plants and controlling plant pathogens (Elsas et al., 1986; Heijnen, 

1991; van Veen et al., 1997; Adesemoye et al., 2009; Bhattacharyya & Jha, 

2012; Pereg & McMillan, 2015). A large number of bacteria are used as 

commercialised plant growth promoting bacteria (PGPB) strains for agricultural 

practice (Lucy et al., 2005; Banerjee et al., 2006). Some of the commercialized 

PGPB strains are Pseudomonas spp., Bacillus spp., Streptomyces spp. and 

various Rhizobia spp. (Glick, 2012). Among these strains, Pseudomonas and 

Bacillus are the most frequently studied for plant grow promotion and disease 

control (Krid et al., 2011; Sivasakthi et al., 2014). For example, Pseudomonas 

fluorescens has been used to suppress plant pathogens and stimulate plant 

growth hormones for enhanced crop production (Santoyo et al., 2012). Both 

these species are also well known for their capability to promote plant growth 

activity by colonizing the plant root area (Hayat et al., 2010). Glick (2012) and 

Ahemad & Kibret (2014) have reviewed several studies that have been 

successful in introducing bacteria into soil. The survival of introduced bacteria 

was affected by the biotic and abiotic factors in soil. Soil texture, structure, 

temperature, moisture level, pH, nutrient availability, grazing by predators and 

antagonism are some of the factors which alter the properties of soil which in 

turn affect the functionality of the microbial activity in soil (Trevors et al., 1994; 

van Veen et al., 1997). Li et al. (2002) investigated the effect of increasing bulk-

density on soil microbial populations and enzyme activities in sandy loam soil. 

They found a decline in the microbial population by 26-39 % with increasing 

bulk-density from 1.0 to 1.6 g cm-3. For forest soils, microbial biomass and the 
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total amount of carbon mineralization and net nitrification rates all declined with 

increasing bulk-density (Tan & Chang 2007).  

 

Soil aggregation is another property of soil that might affect the growth and 

activity of bacteria as the aggregate composition determines the intra and inter 

aggregate porosity, which controls movement of water and gas in soil. Fernazed 

et al. (2010) reported that the accumulation of carbon differs according to the 

size of the soil aggregates. This can result in different rates of emission of CO2 

from soil varying in aggregate sizes (Strong et al., 2004; Drury et al., 2004; Sey 

et al., 2008). For example, soils with aggregates of size <0.25 mm showed 

increased CO2 emission compared to soils packed with macro aggregates of a 

size >0.25 mm (Sey et al., 2008). The reasons could be due to (i) differences in 

organic matter quantity and quality; (ii) differences in microbial populations and 

distributions inside aggregates; and (iii) different physical conditions, such as 

diffusion and pore size distribution for different aggregate sizes. Therefore, it is 

important to investigate the effect of different aggregate sizes on growth of 

bacteria in combination with more data on physical properties. 

 

To investigate the impact of soil properties on bacterial communities, an 

experiment was designed where soil parameters can be manipulated. 

Repacked microcosms are an experimental method, which allow for some 

control over soil structural parameters that are replicable at macroscopic scales. 

It allows the study of different factors by manipulating parameters such as pore 

characteristics, moisture content and soil texture (Vos et al., 2013). Different 

types of microcosms, such as sieved soil (sterilised or unsterilized), artificial 

soil, intact soil cores and transparent soil are being used to study activity of 



Effect of soil structure on growth of bacteria   

   58 

indigenous or introduced bacteria (Vos et al., 2013, Downie et al., 2012, Otten 

et al., 2012). However one drawback of such systems is that they do not 

represent the exact field situation, which is far more complex in nature. But in 

order to predict the behaviour of microorganisms with changing environmental 

conditions it is essential to first understand the behaviour in a simple system. 

 

To date no systematic study of the impact of soil bulk-density and aggregate 

sizes on soil pore network characteristics and their effect on subsequent growth 

of bacteria has been done. In fact, the majority of studies have a limited 

description of soil physical conditions e.g. texture. An alteration in the geometry 

of soil pores like porosity, connectivity and tortuosity affects functions like water 

infiltration, hydraulic conductivity, air permeability and mobility of nutrients. This 

in turn affects the activity of microorganisms, which influences the bioavailability 

of nutrients needed for plant growth (Beylich et al., 2010; Mangalassery et al.,  

2013). X-ray tomography is the rapidly advancing technique in soil science that 

is been successfully used to study pore characteristics of soil at finer resolution 

(see section 1.4 for detailed application).  

 

Thus the aim of this chapter is to construct different microcosms with different 

soil bulk-density and aggregate sizes and quantify the effect on pore geometry 

and its influence on the growth rate of Pseudomonas and Bacillus bacteria in 

soil.  
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 Hypotheses 3.1.1

1) Increasing bulk-density decreases total porosity, connectivity and soil-

pore interface area of pores. 

2) An increase in the soil aggregate sizes does not affect porosity but 

          decreases the soil-pore interface of pores. 

3) Increasing bulk-density decreases the growth rate of Pseudomonas and  

 Bacillus in soil. 

4) Increasing aggregate size classes influence the growth rate of  

 Pseudomonas and Bacillus in soil.  

5) The growth rate of Pseudomonas and Bacillus will respond differently to  

 the pore geometry of soil.  

 

3.2 Materials and methods  

 Bacteria inoculum preparation 3.2.1

GFP-tagged Pseudomonas fluorescens SBW25 and Bacillus subtilis NRS1473 

cell were used as bacterial inoculum. Growth and harvesting conditions of both 

strains are described in detail in section 2.2.1. Briefly, Pseudomonas and 

Bacillus cells were grown overnight in their respective liquid cultures on a rotary 

shaker (200 rpm) at 28°C. Cells were harvested by centrifugation (5000 x g) 

and washed with and resuspended in sterile PBS solution. The initial cell 

density of Pseudomonas was 6.46E+08 cells ml-1 of soil and Bacillus was 

7.85E+08 cells ml-1. 
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 Preparation of soil microcosms  3.2.2

Sterilised sieved soil was used. Details of the soil type and sterilization are 

given in 2.3.1. Soil microcosms were prepared in PE rings of size 3.40 cm3 

(diameter 1.5 cm and height 1.7 cm). The moisture content of sterilised soil was 

bought to 40 % water filled pores using sterile distilled water. Two experiments 

were conducted, one looking at the effect of bulk-density, and the second one 

looking at the effect of aggregate size. In the first experiment, sterilised sieved 

soil of 1-2 mm size aggregates was used. The amount of water added to 

acquire 40 % water filled pores for each bulk-density is detailed in table 3.1. The 

amount of soil required to obtain each bulk-density was then inoculated with 

500 µl of the bacterial suspension, mixed well and packed in PE rings using a 

push rod. Soil was packed to different bulk-densities (1.2, 1.3, 1.4, 1.5 and 1.6 g 

cm-3). Control samples were packed in a similar manner except that 500 µl 

sterile dH20 was used instead of a cell suspension. Soil microcosms were 

sampled at four times. Three replicates per treatment for each sampling day 

were prepared. Therefore in total 120 microcosms were prepared. In the second 

experiment, sieved soil of aggregate sizes 1-2 mm and 2-4 mm was used. Soil 

was wetted to same moisture content as above and packed in a similar way in 

PE rings at a bulk-density of 1.3 g cm-3. Here in total 48 microcosms were 

prepared. All the microcosms were sealed in plastic bags to avoid drying and 

incubated at 23°C in the dark to allow bacteria to grow in soil. The plastic bags 

were opened and closed every day to allow for air exchange under a sterile 

bench. Soil microcosms were sampled on days 1, 5, 9 and 13. 
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To quantify the effect of different bulk-densities and aggregate sizes on soil 

structure, separate soil samples were used. For the different bulk-densities 

experiment, soil was packed in PE rings (4 cm height and 3.7 cm diameter). For 

different aggregate sizes experiment, samples preparation is described (details 

in section 5.2.1).   

 

Table 3.1: The amount of water added in dry soil per ring to attain moisture 
content with 40 % water filled pores and the amount of soil added per ring to 
pack at a particular density is listed.  

 

 Preparation of soil samples for CARD-FISH 3.2.3

On each sampling day the soil microcosm were emptied into 50 ml centrifuge 

tubes containing 10 ml of a sterile PBS solution. The tubes were then shaken 

for 15 minutes at room temperature. The preparation of soil samples for CARD-

FISH was carried out according to the protocol by Eickhorst & Tippkötter(2008) 

Briefly, 500 μl of soil suspension prepared above was fixed in 4 % 

formaldehyde solution (216 µl of 37 % formaldehyde and 2 x 642 µl 1 X PBS). 

Samples were shaken in the incubator at 4°C for 2.5 hr. The fixed samples were 

then washed thrice with 1 X PBS solution and centrifuged at 10,000 g for 5 min 

at 4°C between each washing step. 100 µl of these fixed samples were diluted 

in 900 µl PBS/EtOH solution in 2ml eppendorf tubes. These samples were then 

Bulk-density 
(g cm-3) 

Water added/ring  
(ml) 

Soil added/ring 
(g) 

1.2 0.62 4.81 

1.3 0.55 5.09 

1.4 0.49 5.38 

1.5 0.42 5.66 

1.6 0.36 5.95 
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sonicated (Sonopuls HD2200, Bandelin, Berlin, Germany) twice at 10% power 

for 30 s with a pause of 30 s in between.  

 

For filtration, 50 μl of the sonicated sample was diluted in 10 ml MQ water. The 

mixture was filtered on a polycarbonate filter (0.2 μm pores, 25 mm diameter; 

Sartorious, Germany). The filters were placed on a glass holder (Sartorius, 

Germany) for filtration and a vacuum of 800 mbar was applied. The filters were 

then dipped in 0.2% low melting point agarose (Invitrogen Life Technologies) 

and dried at 46°C.  

 

For permeabilization of cells, filters were incubated with 85 µl of lysozyme 

solution at 37°C for 60 min in a sealed petri dish. The filters were then washed 

in H2OMQ and EtOH and air dried. Three small filters sections of every sample 

were cut from the whole filter and used for different staining. The remaining filter 

was stored at -20°C until further use. 

 

 In-situ hybridization and catalysed reporter deposition 3.2.4

For CARD-FISH staining, one of the filter sections was placed in 0.5 ml 

Eppendorf tube for the hybridization procedure. In the tubes containing filter 

sections, 400 µl of Hybridization buffer [100 mg ml-1 dextran sulfate (Sigma-

Aldrich), 5M NaCl, 1M Tris-HCl (v/v), 35 % Formamide (Fluka), 10 % (v/v) SDS, 

blocking reagent (Roche, Germany) and H2OMQ] and 1.5 µl of 50 ng µl-1 

horseradish peroxidase-labelled oligonucleotide probe working solution was 

added. The tube was incubated for 2 h in a rotating incubator at 35°C. 

 

After the hybridization step, the filter sections were successively washed in 

three steps. Firstly in a pre-warmed washing buffer (1M Tris-HCl, 0.5M EDTA, 
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10 % SDS, 5M NaCl and H2OMQ) for 5 min at 37°C followed H2OMQ for 2 min at 

RT. Lastly, with TXP [Triton-X 100 (Bio-Rad) , 1 X PBS) for 5 min at RT. The 

next step was to amplify the tyramide signal. For this the filter sections were 

incubated with the amplification buffer [100 mg ml-1 dextran sulfate (Sigma-

Aldrich), blocking reagent , 5M NaCl , 1 X PBS] along with 0.15 % H2O2 solution 

and 1 µl of fluorescein- labelled tyramide solution for 20 min in a rotating 

incubator at 35°C. After incubation the samples were then washed in TXP and 

H20 for 5 min each at RT. The filter sections were then left at RT to dry.  

 

 Enumeration of bacteria 3.2.5

Filter sections treated with CARD-FISH were then placed on a glass slide and 

mounted with VectaShield H-1200 containing DAPI (4’, 6-diamino-2-

phenylindole) stain. The filter sections were then covered with coverslips size 

24 × 32 mm (Menzel Glaser, Germany). A ZEISS Axioskop 2 microscope 

equipped with a HBO 100 W Hg vapour lamp was used for evaluating the filter 

sections. The tyramide signal was examined under a double excitation filter (no. 

24, Carl Zeiss, Oberkochen, Germany) and total cells were enumerated under a 

DAPI filter set (F46-000, AHF, Tübingen, Germany). Bacterial cells were 

counted under a 63× objective lens using a counting grid (10 × 10, 1.25 mm2 

Carl Zeiss, Germany) integrated in the ocular (eyepiece) of the microscope. The 

cells were counted at 15 selected microscopic fields of views on the filter 

sections. Cell counts were converted to cells per gram of soil.  
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 X-ray computed tomography (CT) 3.2.6

Soil samples were scanned using a Metris X–Tek HMX CT scanner. Soil 

samples packed with different bulk-densities were scanned at 24 µm resolution 

with energy settings of 105 keV and 96 µA and 2000 angular projections. Soil 

samples packed with different aggregate size were scanned at 13 µm resolution 

with energy settings of 145 keV and 35 µA and 2000 angular projections. To 

minimize beam hardening a molybdenum target with a 0.50 mm aluminium filter 

was applied. Reconstruction of radiographs into three dimensional volumes was 

done using Metris X-Tek software CT Pro v2.1 (NIKON metrology, Tring, UK). 

VGStudioMAX V2.2 (Volume graphics, Heidelberg, Germany) was used to 

enhance the contrast of the reconstructed volumes and export it into 8- bit grey 

scale image stacks (*bmp format) for further processing. For structural analysis 

of different aggregate size treatment, the image stacks of soil samples used in 

chapter 5 were taken (details in section 5.3).  

 

Image stacks were imported in ImageJ and a region of interest (ROI) of size 

12.28 x 12.28 x 12.28 mm (512 x 512 x 512 voxels) was cropped. The ROI 

were cropped from the centre of the image stacks to exclude pores close to the 

edges of the ring core to avoid beam hardening and soil ring effects. The 

selected ROI was then segmented using Indicator kriging software to obtain 

binary images. In-house developed software ImgTools was used to quantify soil 

porosity, connectivity and soil-pore interface (Houston et al. 2013). 
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 Statistical analysis  3.2.7

Statistical analysis was performed using SPSS software version 21. An 

independent t–test with 95 % confidence interval was used to investigate 

structural difference in mean porosity, connectivity and surface area across 

different bulk-density and aggregate size treatments. A generalised mixed effect 

Poisson model with log link function was used to investigate significant 

difference in cell numbers between sampling days with day as fixed factor. In 

different treatments, the significant difference between sampling days was 

investigated with treatments and days as fixed factor. 

3.3 Results  

 Effect of bulk-density and aggregate size on the pore geometry of 3.3.1

soil 

Only pores larger than 13.4 µm for the experiment considering the impact of 

aggregate size and 24 µm for the experiment considering the impact of bulk-

density could be seen with the resolution used in this experiment.  

 

For pores larger than this resolution, a significant impact of bulk-density on the 

geometry of soil pores was detected. With increasing bulk-density the overall 

porosity and connectivity of pores was significantly reduced (P<0.05). Soil 

packed at a bulk-density of 1.2 g cm-3 had the highest porosity of 20 (s.e 1.6) % 

and this declined with the increasing bulk-density to a porosity of 9 (s.e 0.9) % 

for soil packed with a bulk-density of 1.6 g cm-3 (Table 3.2). The 2-D slices 

obtained from 3D volumetric images also showed a decline in the pores of soil 

with increasing bulk-density (Figure 3.1). The 3D-connectivity of pores also 
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reduced from 98 (s.e 0.5) % for loosely packed soil (1.2 g cm-3) to 58 (s.e 6.1) 

% for densely packed soil (1.6 g cm-3). Although, the mean surface area of soil 

pores declined with increasing bulk-density from 43 (s.e 1.7) cm2 for 1.2 g cm-3 

to 35 (s.e 5.1) cm2 for 1.6 g cm-3 bulk-density this effect was not significant 

(Figure 3.2). 

Table 3.2: Mean porosity, connectivity and surface area of pores packed at bulk-
densities of 1.2 g cm-3, 1.3 g cm-3, 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3. Mean cell 
counts ±SE are presented (n=3).  

 

 

 

 

 

 

 

 

 

Figure 3.1: Selected two dimensional segmented (a) grey scale images (b) and 
their binary images (512 x 512 x 512 voxels) of soil packed at different bulk-
densities. In binary images black area represents pores and white area 
represents the solid structure of soil. 

  

Pore characteristics of soil 

Bulk-density 
(g cm-3) 

 

Porosity 
 (%) 

 

Connectivity 
 (%) 

 

Surface area  
(cm2/ cm3) 

 

1.2 20.0 ±1.6 98.2 ±0.5 43.2 ±1.7 

1.3 17.3 ±0.9 96.5 ±0.5 43.8±1.5 

1.4 12.5 ±0.6 83.6 ±3.0 41.1±1.6 

1.5 9.4 ±1.0 66.8 ±4.0 34.3±3.9 

1.6 8.7 ±0.9 57.5±6.1 35.0±5.1 

1.3 g cm
-3

 1.2 g cm
-3

 

b) 

a) 

1.4 g cm
-3

 1.5 g cm
-3

 1.6 g cm
-3
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Figure 3.2: Mean porosity (a), connectivity (b) and surface area (c) of samples 
packed at different bulk-density as measured by X-ray tomography. Data shown 
are mean ±SE (n=3). 
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For soil packed with different aggregate sizes a clearly distinguishable 

difference in soil pores was evident by visual inspection of the 2D sliced images 

derived from microcosms (Figure 3.3). An increase in the size of pores with 

increasing diameter of aggregates was clearly visible. The visual difference 

was, however, not apparent in the quantitative measure we use to summarise 

the pore geometry. As expected, there was no significant (P>0.05) difference in 

porosity with an average porosity of 24 (s.e 1.3) % for larger size (2-4 mm) 

aggregates and 23 (s.e 1.1) % for smaller size aggregates (1-2 mm) (Figure 

3.4). The connectivity of pores was also not significantly (P>0.05) different for 

both aggregate sizes. As the aggregate size decreased, the surface area of 

pores slightly increased from 11 (s.e 0.7) cm2 for 2-4 mm size aggregates to 12 

(s.e 0.2) cm2 for 1-2 mm size aggregates (Table 3.3) but the difference was not 

significant. 

 

Table 3.3: Mean porosity, connectivity and surface area of pores in soil of 
aggregate sizes 1-2 mm and 2-4 mm. Mean cell counts ±SE are presented (n=3) 

 

 

Pore characteristics of soil 

Aggregate size 
(mm) 

Porosity 
(%) 

Connectivity 
(%) 

Surface area 
(cm2/ cm3) 

1-2 22.5 ±1.1 97.5 ±0.5 11.6 ±0.2 

2-4 24.2 ±1.3 96.9 ±0.4 11.1 ±0.7 
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Figure 3.3: Selected two dimensional segmented (a) grey scale images and their 
corresponding (b) binary images (512 x 512 x 512 voxels) of soil packed with 
aggregate sizes 1-2 mm and 2-4 mm. 

1-2 mm 

a) 

b) 

2-4 mm 
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Figure 3.4: Mean porosity (a), connectivity (b) and surface area (c) of samples 
packed with different aggregate size classes as measured by X-ray tomography. 
Data shown are mean ±SE (n=3). 
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 Visualization and enumeration of bacteria in soil 3.3.2

The expression of GFP signals was first tested to ensure whether the signals 

were high enough to count cells on filter sections. GFP signals were detected 

against brown colour soil background under double excitation filter (465-505 

and 564-892 nm). However, the intensity of signals was much weaker and on 

counterstaining with DAPI it showed that not all GFP-tagged cells were 

detected.  

 

Another polycarbonate filter section of the same samples used for GFP cell 

counting was taken and CARD-FISH was applied on them. The intensity of 

CARD-FISH signals was much greater than the GFP-signals under double 

excitation (Figure 3.5).To determine the growth of cell counts overtime, selected 

soil samples containing Bacillus cells were taken and counted for both GFP and 

CARD-FISH signals. In GFP cell counts, no increase in number of cell counts 

overtime was observed whereas from CARD-FISH counts an increase in 

number cell counts overtime was observed. Also, CARD-FISH treated bacteria 

showed a higher number of cell counts per gram of soil for all selected bulk-

densities compared to the GFP-tagged cells counts (Figure 3.6).  

Therefore, hereafter CARD-FISH was used as a staining and counting method 

for all samples.  
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Figure 3.5: GFP-tagged (a) and CARD-FISH stained (b) Bacillus subtilis cells in 
soil filter sections under double excitation filter (465-505 and 564-892 nm). Scale 
bar 20 µm. 

 

 

Figure 3.6: Average number of GFP-tagged (blank) and CARD-FISH stained 
(stripes) Bacillus cells per gram of soil at different sampling times in soil 
samples packed at bulk-densities 1.2 g cm-3 (white), 1.4 g cm-3(grey) and 1.6 g cm-

3(dark grey). Data are means ±SE (n=3). 
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 Effect of bulk-density and aggregate size on the growth rate of 3.3.3

bacteria in soil microcosms 

Different bulk-densities of soil significantly affected the growth rates of 

Pseudomonas and Bacillus in soil (Table 3.4), with cell counts increasing for 

both types of bacteria over time (Figure 3.7). For example, from day 1 to day 13 

at a bulk-density of 1.3 g cm-3 cell counts increased 3.56 times for 

Pseudomonas and 5 times for Bacillus with cell densities of 9.37E+08 (s.e 

2.80E+07) cells g-1 soil, and 5.12E+08 (s.e 2.61E+07) cells g-1 soil for 

Pseudomonas and Bacillus at day 13 and 2.66E+08 (s.e 1.42E+07) cells g-

1(Pseudomonas), and 1.01E+08 (s.e 5.65E+06) cells g-1 soil (Bacillus) at day 1. 

This trend was expected due to the growth of bacteria in soil. For all bulk-

densities and at all sampling times, the number of cell counts for Pseudomonas 

cells was significantly higher than Bacillus cells (P<0.05, Figure 3.6). As the 

bulk-density increased, the number of cell counts decreased for both bacterial 

species (P<0.05) at all sampling times, except for soil packed at bulk-density of 

1.2 g cm-3 where the average cell counts was lower than for soil packed at 1.3 g 

cm-3. For example, at a bulk-density 1.6 g cm-3 the average numbers of 

Pseudomonas cells was 63 % lower compared to those at bulk-density 1.3 g 

cm-3. A similar trend was observed for Bacillus cells where the number of cell 

counts was 66 % lower at bulk-density 1.6 g cm-3 (P<0.05, Table 3.3). Note that 

as all cell densities are expressed per gram that these are reductions beyond 

those one might expect (81 %) form an increase in bulk-density alone. 
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Table 3.4: Average cell counts per sampling day of CARD-FISH stained Bacillus 
and Pseudomonas strains in soil packed at bulk-densities of 1.2 g cm-3, 1.3 g cm-

3, 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3. Averaged cell counts ±SE are presented (n=3). 

 

  

Average number of Bacillus subtilis cell counts in soil (cells g
-1

 dry soil)) 

Days 1.2 g cm
-3

 1.3 g cm
-3

 1.4 g cm
-3

 1.5 g cm
-3

 1.6 g cm
-3

 

1 
1.34E+08 

±1.06E+07 

1.01E+08 

±5.65E+06 

1.07E+08 

±3.10E+06 

9.62E+07 

±2.16E+06 

9.48E+07 

±7.74E+06 

5 
1.74E+08 

±9.31E+06 

3.41E+08 

±5.61E+06 

1.46E+08 

±6.68E+06 

1.14E+08 

±3.25E+06 

1.02E+08 

±1.80E+06 

9 
2.23E+08 

±2.81E+06 

4.44E+08 

±1.36E+07 

1.70E+08 

±1.06E+07 

1.48E+08 

±2.35E+05 

1.34E+08 

±7.31E+06 

13 
3.22E+08 

±1.06E+07 

5.12E+08 

±2.61E+07 

1.87E+08 

±2.26E+07 

1.79E+08 

±3.29E+06 

1.40E+08 

±2.74E+06 

Average number of Pseudomonas fluorescens cell counts in soil (cells g
-1

 dry soil) 

Days 1.2 g cm
-3

 1.3 g cm
-3

 1.4 g cm
-3

 1.5 g cm
-3

 1.6 g cm
-3

 

1 
2.65E+08 

±1.74E+07 

2.66E+08 

±1.42E+07 

2.77E+08 

±2.25E+07 

1.07E+08 

±2.19E+06 

1.69E+08 

±7.54E+06 

5 
4.90E+08 

±1.65E+07 

5.66E+08 

±4.51E+07 

3.46E+08 

±1.61E+07 

2.36E+08 

±7.68E+06 

2.31E+08 

±9.13E+06 

9 
6.67E+08 

±2.02E+07 

8.20E+08 

±3.64E+07 

5.92E+08 

±8.96E+06 

3.23E+08 

±1.14E+07 

2.52E+08 

±1.34E+07 

13 
8.14E+08 

±2.07E+07 

9.37E+08 

±2.80E+07 

5.66E+08 

±1.60E+07 

3.87E+08 

±1.18E+07 

2.96E+08 

±1.68E+07 
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Figure 3.7: Average number of (a) Pseudomonas and (b) Bacillus cell counts per 
gram of soil detected at different sampling times in soil packed at bulk-densities 
1.2 g cm-3, 1.3 g cm-3, 1.4 g cm-3, 1.5 g cm-3 and 1.6 g cm-3. Data are means ±SE 
(n=3). 
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Growth rate of both species was also found to be significantly affected by 

aggregate sizes of soil (Figure 3.8). The number of Pseudomonas and Bacillus 

cell counts significantly increased (P<0.05) in both aggregate size classes 

(Table 3.5). For example, from day 1 to day 13 in aggregate size 2-4 mm cell 

counts increased 3.3 times for Pseudomonas and 3.0 times for Bacillus with cell 

densities of 9.17E+08 (s.e 4.77E+07) cells g-1 soil and 3.71E+08 (s.e 9.55E+06) 

cells g-1 soil for Pseudomonas and Bacillus at day 13 and 2.73E+08 (s.e 

2.32E+07) cells g-1 soil (Pseudomonas), and 1.23E+08 (s.e 1.98E+07) cells g-1 

soil (Bacillus) at day 1. Overall in both aggregate sizes, the number of cell 

counts of Pseudomonas was significantly higher than of Bacillus on all sampling 

days (Figure 3.8).  

 

Table 3.5: Average cell counts per sampling day of CARD-FISH-stained      
B.subtilis and P. fluorescens strains in soil aggregate sizes 1-2 mm and 2-4 mm. 
Averaged cell values ±SE are presented (n=3). 

Average number of  Bacillus subtilis cell counts in  soil (cells g
-1

 dry soil) 

Days 1-2 mm 2-4 mm 

1 1.01E+08 ±5.65E+06 1.23E+08 ±1.98E+07 

5 3.41E+08 ±5.61E+06 2.10E+08 ±1.21E+07 

9 4.44E+08 ±1.36E+07 3.07E+08 ±2.11E+07 

13 5.12E+08 ±2.61E+07 3.71E+08 ±9.55E+06 

 

Average number of  Pseudomonas fluorescens cell counts in soil (cells g
-1

 dry soil) 

Days 1-2 mm 2-4 mm 

1 2.66E+08 ±1.42E+07 2.73E+08 ±2.32E+07 

5 5.66E+08±4.51E+07 4.54E+08 ±1.62E+07 

9 8.20E+08 ±3.64E+07 8.74E+08 ±5.24E+06 

13 9.37E+08 ±2.80E+07 9.17E+08 ±4.77E+07 
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Figure 3.8: Average number of (a) Pseudomonas and (b) Bacillus cell counts per 
gram of soil detected at different sampling times in soil of aggregate size classes 
1-2 mm and 2-4 mm. Data are means ±SE (n=3). 
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compared to 2-4 mm size aggregates (Table 3.5). For example, on day 13  cell 

counts in smaller aggregates (1-2 mm) was 1.0 times (Pseudomonas) and 1.4 
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a)

Days

0 2 4 6 8 10 12 14

M
e
a

n
 c

e
ll 

c
o

u
n

ts
/g

 o
f 
d
ry

 s
o

il

2.0e+8

4.0e+8

6.0e+8

8.0e+8

1.0e+9

1.2e+9

1-2 mm

2-4 mm

b)

Days

0 2 4 6 8 10 12 14

M
e

a
n

 c
e

ll 
c
o

u
n

ts
/g

 o
f 
d

ry
 s

o
il

0

1e+8

2e+8

3e+8

4e+8

5e+8

6e+8

1-2 mm

2-4 mm



Effect of soil structure on growth of bacteria   

   78 

Pseudomonas 9.37E+08 (s.e 2.80E+07) cells g-1 soil and 5.12E+08 (s.e 

2.61E+07) cells g-1 soil for Pseudomonas and Bacillus in smaller aggregates (1-

2 mm), and 9.17E+08 (s.e 4.77E+07) cells g-1 soil (P. fluorescens), and 

3.71E+08 (s.e 9.55E+06) cells g-1 soil (Bacillus) in larger aggregates (2-4 mm). 

 

3.4 Discussion 

 Effect of bulk-density and aggregate size on the pore geometry of 3.4.1

soil  

The effect of bulk-density and aggregate size on pore geometry was 

investigated as alteration in structure (Pupin et al., 2009; Nawaz et al., 2012). It 

is difficult to study the effect on activities of microorganisms in undisturbed 

samples as each replicate would be different and introduce more variability in 

the results. Therefore, repacked soil microcosms were used in this study. Here, 

the pore geometry was manipulated by altering some of the soil physical 

characteristics such as bulk-density and aggregate size which can be 

experimentally controlled. The effect of this preparation was subsequently 

quantified using X-ray CT.  

 

Image analysis of 3D volumetric images of soil packed with different bulk-

density confirmed and quantified the variation in the pores characteristics of the 

soil microcosms. A reduction in the total porosity and connectivity of pores with 

increasing bulk-density was observed. This can reduce soil functions like water 

infiltration, hydraulic conductivity, air permeability and mobility of nutrients, thus, 

influencing the micro-environmental conditions for microbial activity (Beylich et 

al., 2010; Wolf et al., 2013). These results are consistent with some previous 
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reports that showed influence of bulk-density on geometry of soil pores (Frey et 

al., 2009; Kim et al., 2010; Nawaz et al., 2012). Frey et al. (2009) reported a 17 

% reduction in total porosity in severely compacted soil. Kim et al. (2010) 

studied the effect of compaction on 3D macropore geometry in undisturbed soil 

cores. The X-ray CT data indicated that the CT measured number of pores 

decreased by 71 % in compacted soil. The study also revealed a decrease in 

number of macro- (69 %) and mesopore (75 %).  

 

For soil with different aggregate size classes packed at the same bulk-density, it 

was speculated that the total porosity and connectivity of pores would be the 

same and the soil-pore interface of pores would reduce with increasing 

aggregate size classes. This hypothesis is however formulated assuming the 

total pore volume is observed, yet in X-ray CT only the larger pores are 

observed. The percent of pores >13 µm was found to be not significantly 

different between different aggregate size classes. However, out of the total 

porosity (48 %), the percent of large pores observed in X-ray CT was 24 %. In 

case of surface area of pores the difference was also not significant. A plausible 

explanation for this is either the difference between the two selected aggregate 

size classes was not sufficient enough to show a difference or it could be the 

scan resolution (13.4 µm) where small pores (<13.4 µm) could not be detected. 

This result is opposite to the findings of Mangalassery et al (2013) who found a 

significant increase in porosity and surface area of pores with increasing 

aggregate size in sandy loam soil. They used aggregates sizes ranging from 

<0.5 mm to 2-4 mm and packed them at bulk-density 1.2 g cm-3. They scanned 

soil cores at a resolution of 28.75 µm. Another reason for the difference may be 
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the scan resolution (pores >28.75 µm) and the size of the region of interest 

analysed for soil pore characteristics. They used a region of interest of size 

27.92 mm x 27.92 mm whereas in this study the region of interest was 6.86 mm 

x 6.86 mm and, therefore, less representatives for the soil sample given the size 

of the aggregates we used. The size was, however, computationally 

constrained. 

 

 Effect of bulk-density and aggregate size on growth of bacteria in 3.4.2

soil  

The hypothesis that increasing bulk-density affects the growth of bacteria was 

validated; with the number of bacteria decreasing with increasing bulk-density. 

The results obtained in this study are consistent with several other studies 

which reported a reduction in the microbial community and its activity at higher 

bulk-density compared to the soil packed at lower bulk-density (Li et al., 2002; 

Frey et al., 2009; Pupin et al., 2009; Dick et al., 1988; Smeltzer et al., 1986; Tan 

and Chang, 2007, Tan et al., 2008). For example, Pupin et al. (2009) reported a 

reduction of 22-30 % in the number of bacteria at 1.7 g cm-3 bulk-density 

compared to the control (1.3 g cm-3). Li et al. (2001) also reported a negative 

relationship of microbial numbers with the bulk-density of soil. A reduction in the 

microbial biomass carbon and nitrogen was reported due to 13-36 % decrease 

in air filled porosity caused by compaction of soil. The most probable 

justification for these results is that due to increased compaction of soil there 

are alterations in some of the soil factors which determine the living condition of 

microorganisms in soil. Mainly, an increase in the bulk-density of soil reduces 

the number of large pores and also the connectivity between the pores. This 
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results in reduced accessibility of organic substances, water movement and gas 

exchange. A reduction in O2 diffusion through soil changes the soil environment 

into an anaerobic state, thus inhibiting the growth of aerobic microorganisms 

and its activity (Beylich et al., 2010, Torbet et al., 1992). In this study, both 

Pseudomonas and Bacillus sp. are aerobic microorganisms and they were both 

shown to be negatively affected by the increase in bulk-density of soil. We tried 

to mitigate this effect by choosing a wetness equivalent to 75 % of the pore 

space filled with water (and hence 25 % with air). Other factors, however, are 

also altered. For example, as more soil is packed in a microcosm at a higher 

bulk-density, and the number of cells at inoculation is constant per volume, it 

means that the cell count expressed per g soil is lower in soil with a higher 

density. We noted, however, that the differences we found were larger than this 

simply dilution effect. On the other hand, soil with a higher bulk-density will have 

larger organic matter content per volume soil. So each microcosm contained 

more organic matter at a higher bulk-density. This may also have affected the 

growth. This highlights the complex web of interactions that take place between 

physical space and other conditions. It is critical therefore that we do not just 

consider the growth but also the spread of bacteria, which is addressed in the 

next chapter. 

 

In the second part of the experiment, an effect of aggregate size on growth of 

bacteria was investigated. A significant effect of aggregate size on the growth 

rate was observed only for Bacillus inoculated samples. The numbers of 

Bacillus cells counts were higher in smaller aggregates of 1-2 mm in size. The 

possibility of active growth in smaller size aggregates could be due to the 
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availability of more nutrients in smaller size aggregates. A non-significant effect 

of aggregate size on Pseudomonas cells counts was observed. This result 

agrees with the finding of Drazkiewuz, (1994) who found that soil type had more 

influence on the number of Pseudomonas than the aggregate size.  

 

3.5 Conclusion 

In this chapter physical properties of soil were manipulated by changing bulk-

density and aggregate sizes to investigate the factors of soil structure that affect 

bacterial dynamics in soil. Cell counts of both the bacterial strains selected for 

this study showed a significant influence of bulk-density and aggregate sizes on 

their growth rate in soil. The characterization of soil pore geometry helped in 

understanding this effect. Higher number of bacterial cells was found in loosely 

packed soil where the porosity of soil was higher and well connected. The 

aggregate size was also found to influence the growth of bacteria with higher 

number found in small size aggregates. This study thus suggests that field 

management practices, such as compaction of soil through the use of heavy 

machinery and tillage practice can affect the growth of bacteria and thus on 

their activity. Future work could also investigate the effect of different range of 

aggregate size classes on growth rate of bacteria in soil. Also, further research 

is required to study the complete effect of compaction on the microbial 

processes in soil for good crop productivity and better soil management. 
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4 Effect of soil structure on spread of bacteria
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4.1 Introduction  

Bioremediation is a technique of introducing bacteria to the site of 

contamination to degrade harmful chemicals or pollutants. To stimulate 

bioremediation process wild-type or genetically modified bacteria are introduced 

in soil (Natsch et al., 1996). For a successful remediation process, bacteria 

have to reach the contaminant site from the point of inoculation. Therefore, it is 

essential to understand the factors that are involved in transport (spread) of 

bacteria in porous media (Natsch et al., 1996; Tan et al., 1991; Gannon et al., 

1991). Soil is a complex porous media where several physical, chemical and 

biological factors affect transport of bacteria in soil (Abu-ashour et al., 1994; 

Shein & Devin, 2007; Wang et al., 2013). Some of these factors which are 

known to influence movement of bacteria are summarised in Table 4.1. 

Influence of some of these factors on transport of microorganisms have been 

investigated on intact and repacked soil columns (Abu-ashour et al., 1994; 

Bradford et al., 2006; Mailloux et al., 2003).  
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Table 4.1: Summary of the studies that investigated the effect of different soil 
factors affecting movement of bacteria through soil. 

 

 

 

Factors 
Reference  

(Author and year) 

Soil physical 

factors 

Bulk-density 
Elsas et al. ,1991 

Huysman et al.,1992 

Water content 
Trevors et al., 1990 

Elsas et al., 1991 

Pore size distribution 
Natsch et al., 1996 

Abu-Ashour et al., 1998 

Particle size distribution Tan et al., 1991 

Texture 

Smith et al., 1985 

Hekman et al., 2005 

Guimaraes et al., 1997 

Lahlou et al., 2000 

Singh et al., 2002 

Banks et al., 2003 

Soil water and water flow Elsas et al., 1991 

Soil chemical 

factors 

pH Kinoshtia et al., 1993 

Ionic strength 
Redman et al., 2004 

Kim et al., 2009 

Microbial factors 

Cell size and shape 

Gannon et al., 1991 

Fontes et al., 1991 

Weiss et al., 1995 

Devin et al., 2003 

Motility 

Gannon et al., 1991 

Singh et al., 2002 

Turnbull et al., 2002 
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Among the physical factors, water flow (a process called advection where 

bacteria move along with the water flow) is one of the main factor which 

influences transport of bacteria in soil. Influence of preferential flow channels on 

transport of introduced bacteria in deeper soil layer was reported by Natsch et 

al. (1996). Another study by Trevors et al. (1990) showed the influence of water 

movement on transport of genetically engineered Pseudomonas fluorescens 

C5t strain in vertical soil microcosms. The results showed that transport of cells 

was dependant on the rate of water flow and number of times the microcosms 

were flushed with groundwater. Pore shape and size is another factor that 

highly influences movement of bacteria, as pore sizes smaller than the average 

size of bacteria would prevent the passage of bacteria which would eventually 

result in blockage of pores (Shein & Devin, 2007). Presence of soil cracks and 

macropores could on the other hand lead to faster movement of bacteria. This 

might be the reason why in some studies which used intact and undisturbed  

soil columns there was a higher rate of  translocation of bacteria compared to 

repacked soil columns; it was concluded that the presence of macropores 

resulted in more translocation of bacteria (Wang et al., 2013; Abu-ashour et al., 

1994; Natsch et al., 1996).  

 

In addition to the physical factors outlined above, alteration in some chemical 

properties like ionic strength and pH can also affect the movement of bacteria in 

soil. For example, an increase in ionic strength of the soil solution enhances 

sorption of bacteria to soil particles resulting in less movement of bacteria 

through soil (Gannon et al., 1991; Redman et al., 2004). This has been 

investigated by Redman et al (2004) who showed that an increase in ionic 

strength of the pore fluid resulted in increased attachment of E.coli strain to 
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quartz grains. Bacterial cell characteristics like size, shape and mode of motility 

were also reported as important factors influencing transport of bacteria through 

a soil column (Gannon et al., 1991, Fontes et al., 1991, Davis et al., 2003). For 

example, Gannon et al. (1991) reported a relationship between cell surface 

hydrophobicity, cell size and surface charge of 19 bacterial strains and their 

transport through soil. The results showed that transport of these strains was 

related to cell size, with bacteria less than 1 µm transported further through soil 

than bacteria that were >1 µm in size (Gannon et al., 1991) The combined 

influence of physico-chemical properties on movement of bacteria in porous 

media has also been studied in the past (Lahlou et al. 2000; Singh et al. 2002). 

For example, Singh et al (2002) investigated the role of bacterial motility and 

cell hydrophobicity on the horizontal and vertical movement of bacteria under 

different soil conditions. The results indicated that physical properties such as 

texture and pore size of different soil types influenced vertical transport of 

Pseudomonas fluorescens strains in soil whereas motility of bacteria influenced 

horizontal and vertical transport only in the presence of certain chemical 

stimulus (Singh et al., 2002). Since a combination of more than one factor is 

shown to affect movement of bacteria through soil it is necessary to study the 

movement of specific bacterial strains in soil, as different effects of 

environmental conditions may be expected between bacterial strains.  

 

In the studies referred to in table 4.1 that studied the transport of bacteria 

through soil, bacterial inoculum was added on top of the soil surface and the 

columns were then percolated with a defined amount of water depending on the 

experiment. To quantify the amount of bacteria transported through the soil 

columns under different conditions, effluent water passed through the column 
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was collected and the cell density of bacteria was determined by serial dilution 

plating. As a result of this method of study the transport of bacteria is expected 

to be dominated by water flow (advection process). In order to understand the 

effect of soil structure on movement of bacteria in soil, introduction of an 

external water flow has to be excluded and there is limited literature available 

for this context, where bacteria is added as a point source. Therefore in this 

chapter preliminary experiments were carried out to refine and optimize the 

experimental setup by minimising water flow and decreasing the amount of 

liquid bacterial suspension that will be introduced into soil. In the absence of 

water movement, the spread can be quantified using baiting methods as, for 

example, used by Otten et al. (2001; 2004) for the spread of fungal growth 

through soil. They studied the effect of soil structure on the colonization 

efficiency of Rhizoctonia solani in sandy loam soil samples as a measure of 

spread. To obtain the rate, as well as the extent of spread, they quantified the 

efficiency of R. solani to colonize new nutrient sources from a local source of 

inoculum. In this method inoculum is introduced on one side of a soil sample of 

pre-defined thickness and a bait is placed on the other side and observed daily 

for colonisation. By doing this for replicated samples they were able to construct 

a profile that characterised the probability of spread through a layer of soil in a 

similar way as dispersal kernels are used to characterise spread in ecology. For 

a thin layer of soil, the probability to colonise a bait is close to 100 %, and they 

showed that the probability declines sigmoidally with distance. Vice versa, for a 

given thickness of soil, the probability that a bait becomes colonised increased 

from 0 for short times to a maximum, again following a sigmoidal increase with 

time. This kind of experimental setup is an efficient way to investigate the 
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spread of microbes through heterogeneous soil environments. To date, this kind 

of set up has not been used in studying the effect of soil physical conditions on 

the transport of bacteria though soil.  

 

In the previous chapter (chapter 3), it was shown that soil structure affected the 

temporal dynamics of bacteria. It is however possible that factors affecting 

growth do not necessarily affect spread. For example, for fungi Otten and 

Gilligan (1998) showed that some soil physical conditions had no effect on 

growth, but a substantial effect on spread of fungi. Such studies have not been 

undertaken for bacteria in soil. In this chapter, therefore, the influence of soil 

structure on the spatial dynamics i.e. spread of bacteria was determined. 

Pseudomonas and Bacillus strains were used to investigate spread of bacteria 

under different physical properties of soil. It is expected that the extent of 

spread will differ between the two selected strains in microcosms with the same 

soil properties due to intrinsic variation in cell characteristics between the 

strains. In addition to the properties investigated in Chapter 3 (bulk-density and 

aggregates sizes) moisture content was also manipulated as this is a key 

property governing spread of bacteria.  

 Hypotheses  4.1.1

1) Bacteria are able to spread several centimetres though soil in a 2-week  

time frame. 

2) Extent of spread of bacteria will be faster in soil with higher moisture  

content. 

3) Increasing bulk-density will decrease the extent of spread of bacteria in  

soil. 
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4) Increasing aggregate size will increase the spread of bacteria in soil. 

5) The probability that bacteria spread a specified distance decreases  

sigmoidally with increasing distance. 

 

4.2 Materials and methods 

The spread of bacteria is quantified by the likelihood of colonisation of bait in 

relation to the site of inoculation. To optimize experimental design to quantify 

the spread of bacteria as affected by soil structure different combinations of soil 

moisture content and inoculum volume were first tested. As bacteria are 

introduced within a liquid volume, the size of the volume and the wetness of the 

soil can result in passive movement due to water flow, an effect I try to 

minimize. Also, different types of baits were tested. This led to an optimised set-

up where movement due to active transport and attraction by a bait were 

minimised whilst maintaining an experimental design that would allow for 

processing of large number of replicated samples. Details of evolvement to get 

to this optimized experimental setup are summarized in appendix I.  

 

 Bacterial strains  4.2.1

Wild type Pseudomonas fluorescens SBW25 and Bacillus subtilis NCIB3610 

subtilis bacterial strains were used in this experiment. Both strains were 

cultivated in their respective selective media (details in chapter 2.1). For 

addition in soil, an overnight culture of both strains was prepared in their 

respective media broth at 28°C. Both the cells were harvested by centrifugation 

at 4000 x g for 5 minutes at 4°C, washed twice in 10 ml sterile PBS solution. 

Washed cells were suspended in sterile PBS solution for inoculation in soil. An 
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agarose pellet was used to provide a reproducible source of inoculum to 

inoculate soil. An agarose pellet was prepared as described in appendix I. 

Briefly, 1000 µl inoculum of washed cells prepared as above was mixed with 30 

ml of LMP agarose solution in a centrifuge tube. The mixture was poured into a 

petridish, which was left in a laminar flow cabinet at room temperature to cool 

down and solidify. The solidified agarose was then cut down into small circular 

pellets by using the circular end of a 1000 µl pipette tip. A single pellet 

(henceforth referred to as inoculum pellet) was of size 2.5 mm in diameter and 5 

mm in height. One inoculum pellet per sample was taken. Control samples were 

prepared in a similar way except for the agarose pellet bead where 1000 µl of 

sterile dH20 was used instead of bacteria inoculum. 

 

 Soil 4.2.2

Sterilised soil (sandy loam) was used in this study. Soil was sterilised by 

autoclaving twice at 121°C for 15 min with 48hr interval (details in section 2.2). 

Autoclaved distilled water was added to sieved soil to obtain desired moisture 

content. The details of this differed per experiment and are given below. After 

adding water the soil was left for 48hr at 23°C to equilibrate.  

 

In this study, four individual experiments were conducted to investigate the 

influence of soil factors (water content, bulk-density and aggregate sizes) on the 

spread of bacteria in soil and test the hypotheses outlined above. In each 

experiment, soil was packed in PE rings of size 3.40 cm3 and a height of 1.5 cm 

(except for experiment 4 where rings with various heights were considered). 

The height of the rings is critical as it equals the distance over which spread of 

bacteria is measured. 
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To test the effect of moisture content (exp 1) sterilised soil of 1-2 mm size 

aggregates was prepared with moisture content equivalent to 40 % or 60 % 

water filled pores and packed at a bulk-density of 1.3 g cm-3. The amount of soil 

and water used in each treatment is described in Table 4.2. 

 

To test the effect of bulk-density (exp 2), sterilised soil of 1-2 mm size 

aggregates with moisture content equivalent to 60% water filled pores was 

packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. The amount of soil and 

water used in each treatment is described in table 4.3.  

 

To test the effect of aggregate size (exp 3) sterilised soil of 0.5-1, 1-2 and 2-4 

mm sized aggregates with a 60% water filled pores, were packed at a bulk-

density of 1.3 g cm-3. The amount of soil and water used in each treatment is 

described in table 4.4.  

 

To quantify how distance affects the probability of colonisation of a bait (exp. 4)  

sterilised soil of 1-2 mm sized aggregates with a 60% water filled pores was 

packed at a bulk-density1.3 g cm-3 in PE rings of diameter 1.7 cm and a height 

of 1.5, 2.0, 2.5, 3.0 and 4.0 cm. The amount of soil and water required in each 

soil ring is described in table 4.5. 
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Table 4.2: Physical characteristics of repacked soil microcosm prepared to 
quantify effect of moisture content on spread of Pseudomonas and Bacillus 
bacteria through soil. 

 

 

 

Table 4.3: Physical characteristics of repacked soil microcosm prepared to 
quantify effect of bulk-density on spread of Pseudomonas and Bacillus bacteria 
through soil 

 

 

 

Table 4.4: Physical characteristics of repacked soil microcosm prepared to 
quantify effect of aggregate size on spread of Pseudomonas and Bacillus 
bacteria through soil 

 

 

 
 

 

 

Treatment 

Water 
filled 
pores 

(%) 

Bulk-
density 
(g cm-3) 

Aggregate 
size 

(mm) 

Height 
of the 
ring 
(cm) 

Water 
added/ring 

(ml) 

Soil 
added/ring 

(g) 

1 40 1.3 1-2 1.5 0.55 5.09 

2 60 1.3 1-2 1.5 0.89 5.43 

Treatment 

Water 
filled 
pores 

(%) 

Bulk-
density 
(g cm-3) 

Aggregate 
size 
(mm) 

Height 
of the 
ring 
(cm) 

Water 
added/ring  

(ml) 

Soil 
added/ring 

(g) 

1 60 1.3 1-2 1.5 0.89 5.43 

2 60 1.5 1-2 1.5 0.59 5.83 

Treatment 

Water 
filled 
pores 

(%) 

Bulk-
density 
(g cm-3) 

Aggregate 
sizes 
(mm) 

Height 
of the 
ring 
(cm) 

Water 
added/ring 

(ml) 

Soil 
added/ring 

(g) 

1 60 1.3 0.5-1 1.5 0.89 5.43 

2 60 1.3 1-2 1.5 0.89 5.43 

3 60 1.3 2-4 1.5 0.89 5.43 
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Table 4.5: Physical characteristics of repacked soil microcosm prepared to 
quantify effect of distance on spread of Pseudomonas and Bacillus bacteria 
through soil 

 

 

 

 Preparation of soil microcosms 4.2.3

In each experiment, the soil (prepared as described above) was placed in the 

ring and a push rod was used to compress soil to reach a particular density. 

The inoculum pellet was placed in a dish (in this case a cap of a centrifuge 

tube) and a soil ring was placed on top of the pellet. One autoclaved 2-4 mm 

size aggregate was placed on top surface of the sample as the bait for 

colonisation of bacteria. Samples were then sealed by closing the centrifuge 

tube in upright position to prevent drying of soil and incubated at 23°C (Figure 

4.1). For the control treatment, the samples were prepared in similar way except 

that an agarose pellet without inoculum was used. Ten replicates per treatment 

were prepared. Each day the bait was removed from the surface and tested for 

colonisation by the bacteria. Daily sampling was done until all the samples for 

each treatment showed positive results. On each sampling day, the bait was 

replaced with a fresh aggregate (bait). 

 

Treatment 

Water 
filled 
pores 
(%) 

Bulk-
density 
(g cm-3) 

Aggregate 
sizes 
(mm) 

Height 
of the 
ring 
(cm) 

Water 
added/ring 
(ml) 

Soil 
added/ring 
(g) 

1 60 1.3 1-2 1.5 0.89 5.49 

2 60 1.3 1-2 2.0 1.20 7.32 

3 60 1.3 1-2 2.5 1.50 9.16 

4 60 1.3 1-2 3.0 1.80 10.99 

5 60 1.3 1-2 4.0 2.40 14.65 
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Figure 4.1: Experiment setup to quantify bacterial spread in soil. An agarose 
bead prepared with bacterial inoculum and agarose solution was used as a 
source. It was placed at the bottom of the soil sample. A single 2-4 mm 
aggregate was used as a bait to quantify successful colonisation of the soil. The 
bait was placed on the top of the sample.  

 

 Detection of bacteria on the baits 4.2.4

The 2-4 mm size aggregate which was kept on top of the soil core as a bait was 

used to quantify the spread of bacteria in soil. If the aggregates had become 

colonised it means that bacteria had spread over a distance equal to the 

thickness of the sample. The aggregates were removed and placed on KB 

media plates for detection of Pseudomonas and LB media plates for Bacillus. 

The plates were incubated at 28°C for 48hrs. After 48hrs the plates were 

checked for the presence of bacteria around the baits (Figure 4.2) which was 

taken as evidence that the bacteria had spread the distance. 

 

 

a) b) c) 
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Figure 4.2: Examples of baits plated on selective media. Colonised baits showed 
growth of Pseudomonas (a) and Bacillus (b) on media plates after 48 hr of 
incubation at 28ºC. Baits from control samples showed no colonisation (c) of 
bacteria.  

 

 Analyses 4.2.5

Sigmoidal curves were fitted to the experimental data and used to characterise 

the spread of bacteria through soil similar to Otten et al. (2001), in order to 

study the effect of soil physical properties on the spread of bacteria through soil. 

Sigmoidal curves with 4 parameters were fitted to the experimental data 

collected for each treatment using Sigmaplot 11th Edition software. The sigmoid 

equation is  

𝑦 = 𝑦𝑜 + 
𝑎

1+ 𝑒
− (

𝑥−𝑥0
𝑏

)
 
                                     Equation 4.1 

Where, 𝑎 is the maximum fraction of replicates with successful colonisation in all 

replicates (1.0) – measure of colonisation efficiency and hence successful spread 

through the microcosm, x0 is the point of inflection (when the fraction of replicates with 

positive colonisation (and thus indicates spread through the microcosm) equals 0.5) 

and  𝑏 is the steepness of curve and reflects the variation in the rate of spread.  

 

For example, if spread occurs as a homogeneous sphere from the source of 

inoculation, then a steep colonisation front can be expected. If the spread is 

more heterogeneous, with areas within a colony of more rapid spread than 

a) b) c) 
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other areas, then a smoother progression towards the asymptote would be 

expected. During the fitting procedure the lower asymptote y0 was fixed at 0 

leaving 3 parameters to be estimated with the upper asymptote constrained to 

≤1. For experiments 1-3 (details in section 4.2.2) the equation determines the 

number of days with successful spread in soil with different treatments. For 

experiment 4 the equation determines the distance covered by Pseudomonas 

cells overtime with successful spread in soil. The above means that the rate and 

efficiency of spread can be characterised by a small set of parameters and 

effects of soil treatments can be compared. 

 

4.3 Results  

For all treatments described below, the fraction of replicates with successful 

spread was plotted against sampling days. The parameters of the sigmoidal 

curves fitted are shown in Tables 4.6 - 4.8 for different experiments.  

 

 Influence of soil moisture content on spread of Pseudomonas and 4.3.1

Bacillus in soil  

Within 12 days, both bacteria species had spread at least 1.5 cm showing that 

bacteria spread substantial distances through soil even in the absence of flow. 

Increasing moisture content influenced the spread of both Pseudomonas and 

Bacillus bacteria in soil (Figure 4.3; Table 4.6). The value of the inflection point 

(X0, equivalent to days at which the fraction of replicates with positive spread 

equals to 0.5) was used to compare the effect of different treatments on the 

extent of spread of bacteria in soil. This is hereafter referred to as colonization 

day. The spread of bacteria was faster in wetter soil (moisture content with 60 
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% water filled pores) compared to drier soil (moisture content with 40 % water 

filled pores). In samples inoculated with Bacillus, colonization day (Xo) was 6.94 

(s.e 0.18) for soil with 40 % water filled pores and 1.62 (s.e 0.09) for soil with 60 

% water filled pores space. The colonization day (Xo) of Pseudomonas 

inoculated samples was 9.37 (s.e 0.20) in soil with 40 % moisture content and 

3.00 (s.e 0.03) in soil with 60 % moisture content. From the steepness 

parameter it is evident that the number of replicates with successful colonization 

increased rapidly in soil with 60 % water filled pores [0.15 (s.e 0.07) for Bacillus; 

0.25 (s.e 0.11) for Pseudomonas] compare to soil with 40 % water filled pores 

[0.60 (s.e 0.16) for Bacillus; 0.45 (s.e 0.15) for Pseudomonas] (Figure 4.3). 

Comparing the speed of spread between Pseudomonas and Bacillus strain for 

the given soil type, Bacillus moved faster than Pseudomonas in both 

treatments. For example, the colonization day was 1.62 (s.e 0.09) for Bacillus 

3.00 (s.e 0.03) for Pseudomonas in soil with 60 % water filled pores space 

(Table 4.6). In both treatments no colonization was observed in any of the 

replicates of control samples. 

 

Table 4.6: Estimated parameters of a sigmoidal curve fitted to data describing 
the relationship between the fraction of replicates with successful spread and 
sampling days for Pseudomonas and Bacillus inoculated in soil with 40 % or 60 
% water filled pores space and packed to bulk-density of 1.3 g cm-3.  

 

  

Strains 
Water filled 

pores 
 

r2 
Parameter 

a 
Parameter 

b 
Parameter 

X0 

Bacillus 
40% 0.988 1.0 0.60 6.94 

60% 0.991 1.0 0.15 1.62 

Pseudomonas 
40% 0.978 1.0 0.45 9.37 

60% 0.996 1.0 0.25 3.00 
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Figure 4.3: Number of positive replicates with successful spread of a distance of 
1.5 cm through soil with 40 % (●) and 60 % (○) water filled pores packed at 1.3 g 
cm-3 for Bacillus (a) and Pseudomonas (b). The lines are sigmoidal curves. For 
both treatments successful colonisation was quantified as the number of 
successful colonisations of a bait placed at a distance from a source of 
inoculum. 
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 Influence of bulk-density on spread of Pseudomonas and Bacillus 4.3.2

in soil 

In all replicates, all baits eventually became colonised irrespective of the bulk-

density. However, the time it took for replicates to become colonised was 

affected by the bulk-density for both bacterial strains. Increasing bulk-density 

decreased the rate of spread of Pseudomonas and Bacillus in soil (Figure 4.4; 

Table 4.7). In Bacillus inoculated samples, the colonization day (Xo) was 1.62 

for soil packed at lower bulk-density and 8.70 for soil packed at higher bulk-

density. The colonization day (Xo) of Pseudomonas inoculated samples was 

3.00 in soil packed at lower bulk-density, compare to soil packed at higher bulk-

density where it was 9.22. The number of replicates with successful colonization 

declined with increasing bulk-density, as evident from the difference in the 

steepness parameter. The number of replicates with successful colonization at 

higher bulk-density was 0.33 (s.e 0.01) for Bacillus and 0.50 (s.e 0.27) for 

Pseudomonas inoculated samples. Whereas, at lower bulk-density the number 

of replicates with successful colonization was 1.62 for Bacillus and 0.25 (s.e 

0.11) for Pseudomonas inoculated samples (Table 4.7). In both bulk-density 

treatments, the spread of Bacillus was slightly faster than Pseudomonas 

bacteria (Figure 4.4). In both treatments no colonization was observed in any of 

the replicates of control samples. 
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Table 4.7: Estimated parameters of a sigmoidal curve fitted to the data 
describing the relationship between the fraction of replicates with successful 
spread and sampling days for Pseudomonas and Bacillus inoculated in soil with 
60 % water filled pores packed to bulk-densities 1.3 and 1.5 g cm-3.  

 

Strains 
Bulk-

density 
(g cm-3) 

 
r2 

Parameter 
a 

Parameter 
b 

Parameter 
X0 

Bacillus 

1.3 0.991 1.0 0.15 1.62 

1.5 0.999 1.0 0.33 8.70 

Pseudomonas 

1.3 0.999 1.0 0.25 3.0 

1.5 0.9436 1.0 0.50 9.22 
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Figure 4.4: Figure 4.4: Number of positive replicates with successful spread of a 
distance of 1.5 cm through soil with 60% water filled pores wetness packed at 1.3 
g cm-3 (●) and 1.5 g cm-3 (○) for Bacillus (a) and Pseudomonas (b). The lines are 
sigmoidal curves. For both treatments successful colonisation was quantified as 
the number of successful colonisations of a bait placed at a distance from a 
source of inoculum. 
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 Influence of aggregate size on spread of Pseudomonas and Bacillus 4.3.3

in soil 

Irrespective of the aggregate size, all replicates became colonised within 5 days 

showing rapid spread for all treatments. There was however an effect of 

aggregate size with a different response to aggregate size for the two bacterial 

strains (Figure 4.5; Table 4.8). In samples inoculated with Bacillus, colonization 

day was 2.00 days for soil with 0.5-1 mm, 2.55 (se 0.32) days for soil with 1-2 

mm and 2.50 (se 0.45) days for soil with 2-4 mm aggregate sizes. The 

colonization day of Pseudomonas inoculated samples was 2.83 (se 0.14) days 

for soil with 0.5-1 mm, 2.55 days for soil with 1-2 mm and 2.62 (se 0.52) days 

for soil with 2-4 mm aggregate sizes (Table 4.8). The spread of Pseudomonas 

and Bacillus was faster in soil with 1-2 mm compared to 0.5-1 mm aggregate-

sizes. The colonization day of Bacillus was shorter than Pseudomonas in soil 

with different aggregate size treatment (Figure 4.5). In both treatments no 

colonization was observed in any of the replicates of control samples. 
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Table 4.8: Estimated parameters of a sigmoidal curve fitted to the data 
describing the relationship between the fraction of replicates with successful 
spread and sampling days for Pseudomonas and Bacillus inoculated in soil with 
aggregate sizes 0.5-1 mm; 1-2 mm and 2-4 mm with packed to bulk-density1.3 g 
cm-3. 

 

 

  

Strains 
Aggregate 

size (mm) 

 

r2 

Parameter 

a 

Parameter 

b 

Parameter 

X0 

Bacillus 

0.5-1 0.999 1..0 0.25 2.00 

1-2 0.991 1.0 0.15 1.62 

2-4 0.999 1.0 0.12 2.50 

Pseudomonas 

 

0.5-1 0.996 1.0 0.23 2.83 

1-2 0.998 1.0 0.13 2.55 

2-4 0.992 1.0 0.15 2.62 
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Figure 4.5: Number of positive replicates with successful spread of a distance of 
1.5 cm through soil packed at 1.3 g cm-3 with aggregate sizes 0.5-1 (●);1-2 (○);2-4 
(▼) mm and 60 % water filled pores for Bacillus (a) and Pseudomonas (b) 
inoculated treatment. The lines are sigmoidal curves. For both treatments 
successful colonisation was quantified as the number of successful 
colonisations of a bait placed at a distance from a source of inoculum. 
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 Influence of distance on spread of Pseudomonas in soil 4.3.4

For all distances tested <3 cm, all samples were colonised by day 11. However, 

none of the samples at greater distances showed any signs of colonisation. For 

each day the probability of successful colonisation of the target in relation to the 

distance followed a sigmoidal decline. The value of the inflection point (X0, 

equivalent to distance at which the fraction of replicates with positive spread 

equals to 0.5) was used to compare the rate of colonisation at different 

distances. This is hereafter referred to as colonization distance. Figure 4.6 

shows the fraction of replicates with successful spread through soil samples of 

varying thickness at different samplings days. Spread rate of Pseudomonas 

decreased with increasing thickness of soil samples (Figure 4.6; Table 4.8). As 

the thickness of samples increased, it took more days for Pseudomonas to 

colonize the bait from the inoculation point (table 4.8). For example, the 

colonization distance of Pseudomonas covered by day 3 was 1.75 cm (se 

164.4) and by day 11 was 2.75 cm (se 0.08). In samples with a thickness 3.0 

cm and 4.0 cm no colonization of Pseudomonas was observed till sampling day 

15 (data not shown). The steepness parameter showed that the fraction of 

replicates with successful spread declined with increasing thickness of samples 
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Table 4.9: Estimated parameters of a sigmoidal curve fitted to the data 
describing the relationship between the fraction of replicates with successful 
spread and thickness of samples for Pseudomonas inoculated in soil with 60 % 
water filled pores packed at bulk-density1.3 g cm-3. 

 

 

 

Figure 4.6: Fraction of Pseudomonas positive replicates with successful spread 
through soil in relation to the distance for soil packed at 1.3 g cm-3 after 3 (●), 
5(○), 7(▼), 9 (Δ) 11(■).The lines are sigmoidal curves. Successful colonisation 
was quantified as the number of successful colonisations of a bait placed at 
specified distances from a source of inoculum. 
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4.4 Discussion 

In this chapter, the influence of soil structure on transport of bacteria was 

studied in repacked soil microcosms. The effect of different soil factors like 

moisture content, bulk-density and aggregate sizes on bacterial transport was 

investigated. 

 

In this study the experimental set up was adapted from Otten et al. (2001) and 

had several advantages for examining the spread of bacteria under different soil 

conditions. Firstly, use of liquid inoculum (bacterial cell suspension) would have 

resulted in bacteria moving through the interface between the walls of the 

column and the soil. This was eliminated by introducing bacteria in the form of a 

point source inoculum. Secondly, natural soil macropores, formed by burrowing 

organisms and plant roots through which bacteria would have moved easily, 

were eliminated by using sieved soil. Lastly, the effect of biological factors like 

predation or parasitism, which is found in undisturbed soil columns, was 

eliminated by using autoclaved soil. 

 

The effect of soil moisture content showed a positive effect on the spread of 

bacteria through soil columns. The spread of Pseudomonas and Bacillus was 

faster in higher moisture content soil. This could be due to presence of more 

water filled pores which facilitates passive and/or active motility of bacteria as 

they are dependent on water for functioning in soil (Wolf et al., 2013). This 

results are in agreement with the previous studies that reported that vertical 

movement of genetically modified Pseudomonas fluorescens strains was higher 

in wetter soil compare to dry soil (van Elsas et al., 1991). 
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The effect of increasing bulk-density on the movement of bacteria in soil was 

studied by some researchers (Huysman & Verstraete, 1993; van Elsas et al., 

1991; Singh et al., 2002; Trevors et al., 1990). In most of these studies the soil 

bulk-density ranged between 1.0 -1.3 g cm-3. In this study therefore bulk-density 

1.3 and 1.5 g cm-3 was taken to investigate spread of bacteria in two very 

different range of bulk-density. From chapter 3, it was evident that porosity and 

connectivity of pores is significantly reduced with increasing bulk-density. This 

suggests that movement of bacteria is reduced due to alteration in the pore 

geometry of soil. 

 

The results of different aggregate sizes treatment showed no effect on spread 

of Pseudomonas and Bacillus in soil. A study by Tan et al. (1991) contradicts 

the finding of this experiment. In the results reported by that study, movement of 

bacteria was more in 0.5-1.0 mm aggregate size compared to fine fraction 0-0.5 

mm. The reason for the delay in movement of bacteria in fine soil could be due 

to adsorption or adhesion of bacteria onto the surface of aggregates. Since the 

0.5-1 mm aggregate size soil had more surface area this would have led to 

adsorption of bacteria onto soil surfaces (Tan et al., 1991).  

 

In all the above three treatments between the two bacterial strains, spread of 

Bacillus was faster than Pseudomonas in soil. The plausible explanation for this 

could be difference in size and shape of microorganisms. In a study by Gannon 

et al. (1991) effect of cell size was observed between 10 different bacterial 

strains in soil. Bacteria cells of size less than 1 µm showed higher percentage of 

transport in soil. Also, in my preliminary experiments of growth study rate of 
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both strains in pure medium showed higher growth rate of Bacillus cells was 

faster than Pseudomonas cells bacteria (see section 2.2).  

 

The movement of Pseudomonas bacteria was studied in soil packed in different 

size rings ranged from 1.5 - 4.0 cm height in order to study the transport of 

bacteria in soil. The hypothesis that movement of bacteria will be slower with 

increasing distance was supported by Pseudomonas movement results. No 

positive sign of bacterial movement in microcosms of height 3.0 and 4.0 cm was 

observed. This can be either due to starvation and death of bacteria or due to 

drying up of soil microcosms. Another reason could be the adsorption of 

Pseudomonas cells on the soil surfaces or the organic matter present in soil. 

Previous investigations on transport of introduced strains in soil have revealed 

the effect of organic matter or organic-clay complexes (Guimaraes et al., 1997). 

Also, since no water was added to the soil column in addition the Pseudomonas 

cells might have mostly desorbed in water and moved. Hence, further work is 

required to optimize the experimental setup to prevent drying up of soil 

microcosms and using other types of bacteria as the time taken to reach a 

particular site can differ between different strains.  
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4.5 Conclusion 

Spread of introduced bacteria in soil was influenced by the soil bulk-density and 

moisture content of soil. Spread of bacteria was observed to be faster in wetter 

soil with lower bulk-densities. These findings can be translated into practical 

applications by managing and possibly altering the soil properties of the target 

soil (bulk-density and wetness) so that they are favourable for spread of 

introduced bacteria for bioremediation purposes. One limitation of the findings is 

how generalizable the results to undisturbed soils which reflect the natural 

conditions and this needs to further investigated. However, there is no reason 

why additional heterogeneity cannot be introduced into these microcosm 

systems (e.g. Otten and Gilligan, 2006), or indeed be conducted with natural 

undisturbed sample, although these treatments would be expected to 

substantially enhance variability between replicated samples.  
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5 Combining techniques to visualise bacteria in 

relation to their micro-habitat 
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5.1 Introduction 

The capability of soil bacteria to execute a wide range of activities, like 

promoting plant growth and degrading pollutants have drawn researcher’s 

interest in studying the patterns of bacterial activity and distribution in soil 

(Dechesne et al., 2005). Soil is heterogeneous at a phenomenal range of spatial 

scales, and microbes live in small microhabitats where the physical, biological 

and chemical properties differ in time and space over distances from 

nanometres to kilometres (Dechesne et al., 2007). Bacteria are located in their 

habitat as small colonies and biofilms that tend to aggregate to form microbial 

hotspots. Hotspots are zones in which the biological activity is much faster and 

intensive compared to average soil conditions (Kuzyakov & Blagodatskaya, 

2015). There is, however, little known on what controls the spatial distribution of 

bacteria in soil. Studying the spatial patterns at microscale could help to 

determine the factors controlling microbial community and activity. 

Subsequently this data and knowledge of factors could help in the development 

of predictive models to further the understanding of bacterial contributions to 

soil functions. Over the years the spatial distribution of indigenous and 

introduced bacteria has been studied in undistributed or repacked soil columns 

(Nunan et al., 2001; Kizungu et al., 2001; Nunan et al., 2003; Dechesne et al., 

2003; Pallud et al., 2004; Dechesne et al., 2005). White et al. (1994), introduced 

pre stained (calcofluor white M2R) Pseudomonas fluorescens in soil at specific 

matric potentials to study their spatial distribution. P. fluorescens cells were 

observed in different pore size classes depending on the matric potential used 

(White et al., 1994). A review by Li et al. (2004) describes the different type of 

fluorescent stains that have been used in soil thin sections. The review explains 
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how different solutions in the impregnation process can have an effect on the 

external stain used and how the use of general staining makes it difficult to 

distinguish between bacterial cells and other stained particles with same size 

distribution (Li et al., 2004). Fluorescent in situ hybridisation (FISH) is another 

alternative to general stains. FISH technique uses 16S rRNA targeted 

oligonucleotide probes that are labelled with fluorescent dye to detect microbes 

in soil. Eickhorst et al. (2008) have applied FISH method to undisturbed 

polished soil sections. Green fluorescent protein (GFP) is another marker which 

has been used to visualise distribution of bacterial cells in the rhizosphere and 

on the root surfaces (Jansson et al., 2000; Cao et al., 2011). The major 

advantages of using this method are it is stable in presence of proteases; does 

not require any substrates and it can withstand the paraformaldehyde treatment 

(Errampalli et al., 1999; Zhang & Xing, 2010).  

 

Nunan et al. (2001) developed an image processing and analysis procedure to 

quantify the number and location of indigenous bacteria by using composite 

images of soil thin sections. They also applied a combination of image analysis 

and geostatistical tools to investigate the distribution of bacteria in relation to 

pores. They observed a difference in the spatial distribution of bacteria in 

relation to pores at different depths in soil, with bacteria in colonising patches 

close to pores in subsoil but randomly distributed in the topsoil (Nunan et al., 

2003). This technique however was limited to two dimensions, which does not, 

therefore, provide information of the 3D-physical habitat in which 

microorganisms operate. Another limitation of this technique was the 

fluorochromes stain used to visualise bacteria in soil thin sections. With this 

stain it was not possible to distinguish between different types of bacterial cells 
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and archaeal cells in soil. To overcome the 2D limitation, a micro-sampling 

method was developed by Grundmann et al. (2001). They analysed the spatial 

distribution of nitrifiers (NH4
+ and NO2

- oxidizers) at submillimetre scale in 

undisturbed soil samples. A large number of defined volumes of soil 

microsamples were randomly sampled and the presence or absence of nitrifiers 

in each microsample was tested. This experimental data was compared with the 

theoretical spatial distribution data. The number of theoretical distributions 

investigated was limited owing to the time requirement to run the simulation 

(Dechesne et al., 2003). Therefore, Dechense et al. (2003) developed the 

method by combining a microsampling method with a statistical analysis. The 

microsampling strategy consisted of simultaneous testing of several different 

unit volumes for the presence or absence of the targeted microorganisms and 

the statistical analysis is based on the comparison of experimental sampling 

data with data from the limited sampling of numerous theoretical spatial 

distributions. They analysed spatial patterns of NH4
+ oxidisers and 2, 4-D 

degraders in repacked soil columns (Dechesne et al., 2003). The analysis 

showed that the spatial distribution of NH4
+ oxidisers was significantly (P≤0.025) 

different from 2,4-D degraders. In all the studies above, the relationship 

between the bacterial spatial distribution and 3D soil structure was not 

considered. Spatial isolation, offered by the complexity of soil air-solid interface, 

is believed to be one of the factors accounting for the diverse microbial 

communities in soil. The pore space of soil, which is one of the most important 

characteristics of soil structure, creates environmental niches for micro-

organisms (Crawford and Young, 2004). The properties of pore networks such 

as the volume available, shape, connectivity of the pore volume, size 
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distribution of pores, and the tortuosity of pathways within this volume are 

crucial factors. Such properties of pore networks have a major impact on 

microbial composition and activity in soil as it regulates the accessibility of 

organic matter, the diffusion of oxygen through the gaseous phase and the 

diffusion of dissolved compounds through the water phase, as well as 

movement of microorganisms in soil. These aforementioned pore 

characteristics can be measured experimentally or via non-destructive imaging. 

 

Advancements in the application of X-ray micro-tomography has made it 

possible to visualise and quantify the internal structure of soil in three 

dimensions at µm resolution without destroying the sample (details in section 

1.3). Some recent studies (Kravchenko et al., 2013; Juarez et al., 2013; Wang 

et al., 2013; Kravchenko et al., 2014; Negassa et al., 2015) have combined X-

ray tomography with other analytical methods to investigate the influence of 

pore structure on distribution (Kravchenko et al., 2013; Wang et al., 2013) 

composition (Ruamps et al., 2011; Kravchenko et al., 2014) and activity 

(Ruamps et al., 2013; Juarez et al., 2013) of bacterial communities in soil. For 

example, Kravchenko et al. (2013) studied the spatial distribution of E.coli in 

intact soil aggregates obtained from soils under different management regimes, 

and showed that the distribution of E.coli in soil was influenced by the intra-

aggregates pore size. Another study by Negassa et al. (2015) showed how pore 

characteristics can influence the structure of microbial communities on the 

decomposing plant residue in soil. They observed that in samples with both 

large and small pores a number of bacterial groups known as cellulose 

decomposers were present on the plant residue, whereas oligotrophic 

Acidobacteria groups were more abundant on plant residue in samples with 
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small pores. Thus, the recent study shows how the combination of advanced 

techniques can help in obtaining experimental evidences on relationships 

between microbes and physical microscale environment.  

 

Therefore, the aim of this chapter is to develop a protocol that links 2D and 3D 

techniques to quantify the influence of pore structure on the spatial distribution 

of bacteria in soil. This will be achieved through the following objectives 1) to 

test if GFP tagged bacteria and microscopy can be used to visualize and 

quantify bacterial distribution in 2D thin sections of resin impregnated soil; 2) to 

use X-ray tomography to quantify in 3D the pore geometry of resin impregnated 

soil microcosms, packed with different aggregate sizes, and 3) to integrate 2D 

microscopy with 3D X-ray tomography to determine the effect of soil structure 

on the spatial distribution of bacteria. Specifically I will quantify how the spatial 

scale at which we quantify bacterial distribution in 2D affects its association with 

the pore geometry. This has important implications for developing predictive 

models, for example those considering biophysical processes to drive C 

dynamics (e.g. Falconer et al., 2015) 

 Hypotheses 5.1.1

1)  GFP-tagged Pseudomonas and Bacillus can be used to visualize and 

quantify bacteria in impregnated samples. 

2)  Cell density of Pseudomonas and Bacillus observed in biological thin 

sections of soil increases with time. 

3)  Pore characteristics are more variable when characterised at smaller 

spatial scales relevant to bacteria, showing that aggregate sizes may not 

be relevant. 
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4)  Pore characteristics influence the distribution of Pseudomonas and 

Bacillus distribution in soil.  

 

5.2 Materials and Methods  

 Preparation of soil microcosms  5.2.1

GFP tagged Pseudomonas fluorescens SBW25 and Bacillus subtilis NRS1473 

(for details see chapter 2) were used in this experiment. As described in section 

2.2.2, a cell suspension was prepared of each strain. The cell density of B. 

subtilis was 1.5E+07 cells ml-1 and of P. fluorescens were 3.6E+07 cells ml-1. 

 

In this experiment, 1-2 mm and 2-4 mm aggregate sizes of a sterilised sandy 

loam soil were used. The moisture content of soil was adjusted by adding 0.12 

cm3 g-1 of sterilised dH20MQ to acquire 40 % water filled pores for soil packed at 

a bulk-density of 1.3 g cm-3. The amount of soil required to pack in each steel 

ring (3.40 cm3) to attain 1.3 g cm-3 bulk-density was weighed out (5.09 g). After 

weighing the soil was inoculated with 500 µl of the bacterial suspension 

according to the treatments (Table 5.1). The soil was mixed well to ensure the 

bacterial inoculum is distributed evenly. The soil was poured in small amounts 

into the ring and compacted at bulk-density 1.3 g cm-3. Control samples were 

prepared in a similar way except that sterilised dH20MQ was used instead of 

bacteria inoculum. Three replicates per treatment were prepared. In total 24 soil 

microcosms were prepared and sealed in plastic bags to avoid drying of 

samples. The samples were incubated at 23°C to allow for bacteria to grow and 

spread through the soil. The soil microcosms were sampled on day 1 and 5 for 

resin impregnation. 
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Table 5.1: A list of treatments used in this chapter where microcosms were 
packed with aggregates of different size fraction and inoculated without or with a 
bacterial strain. 

 

 Resin impregnation of soil microcosms 5.2.2

For resin impregnation soil microcosms were placed in an upright position onto 

a wooden plank with holes that are slightly larger than the diameter of rings. 

Three layers of cotton bandage mesh were laid on the wooden plank to prevent 

loss of soil during the embedding processes and the soil microcosms were 

pushed into these holes. The wooden plank was then placed on top of the 

aluminium gauze stand (Figure 5.1) in a plastic container to enable the various 

stages required for resin impregnation as described below.  

 

 

 

 

 

 

 

 

 

Figure 5.1: Set-up of soil microcosms for resin impregnation. The soil 
microcosms are kept on top of the cotton mesh layer to prevent loss of soil 
during exchange of solutions in the impregnation process.  

 

Aggregate size (mm) Bacterial strain 

1-2 P. fluorescens 
1-2 B. subtilis 
2-4 P. fluorescens 
1-2 dH20 
2-4 dH20 
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5.2.2.1 Fixation 

To preserve the distribution of bacteria within the soil matrix, the samples were 

fixed using a 2 % formaldehyde (37 % stock solution, Sigma Aldrich) solution 

(v/v in H20), the solution was poured down the sides of the container to avoid 

disturbance of samples and allow exchange of liquids from the bottom to the 

top. All the samples were completely submerged in the solution and kept 

overnight for fixation at 4°C. The next day samples were removed from the 

solution and subsequently transferred to another container. The samples were 

washed with MQ distilled water by adding it from the side of the container and 

kept submerged for two hours. Afterwards, water was removed. 

 

5.2.2.2 Dehydration 

After washing, the samples were dehydrated with a graded series of acetone 

(VMR) to remove water from samples, which would otherwise have interfered 

with the polymerization of resin. Samples were submerged overnight in 50 % 

(v/v) acetone- water solution at room temperature. The next day a graded series 

of acetone (70 %, 90 % and 100 % [v/v]) was used for dehydration. Each 

dehydration step lasted for 2 hours after which the solution was replaced and 

directly followed by the next acetone concentration. As a last step, the samples 

were dehydrated three times with 100 % acetone. During the last two 100 % 

acetone dehydration steps samples were kept under low pressure vacuum (280 

mbar) to facilitate dehydration of the pores. Samples were then kept in 100 % 

acetone solution until resin impregnation. 
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5.2.2.3 Impregnation 

Polyester resin (Oldopol P50-01, Büfa, Germany) was used for impregnation. 

Two litre volume of impregnation mixture was prepared by mixing 1400 ml of 

polyester resin with 600 ml of acetone as a thinner. 1300 µl of 1 % Co- 

accelerator (Oldopal, Büfa, Germany; 0.95 ‰ [v/v] related to resin) and 2600 µl 

of CHP Catalyst (cyclohexanonperoxide, Akzo Nobel, Germany, 1.9 ‰ [v/v] 

related to resin) were added to the resin one after the other. The concentration 

of catalyst and accelerator was set according to the curing time required for a 

particular resin (Eickhorst and Tippkötter 2008). The resin mixture was kept 

under low pressure (230-240 mbar) vacuum to remove gas bubbles before 

adding it onto the samples. The acetone was removed from the container with 

samples which were then placed into a desiccator. The resin mixture was then 

added drop-wise from the top of the desiccators into the container to allow the 

resin to enter the sample from the bottom in order to ensure that the pores of 

the soil were filled with resin mixture as completely as possible. This step lasted 

for approximately 30-40 min. Once the resin reached the top surface of samples 

a controlled low pressure vacuum was applied to ensure most of the pores were 

filled with resin. Finally the remaining mixture was added to cover the sample 

completely with resin. Samples were left at room temperature for polymerization 

of the resin (Figure 5.2). 
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Figure 5.2: Impregnation of soil microcosms with soil samples immersed in resin 
solution (a), and soil samples after resin polymerization (b). 

 

5.2.2.4 Polymerization  

The samples were kept under a fume hood to allow acetone and styrene to 

evaporate from the samples. After a few days a small steel wire was used to 

check whether polymerization has begun from the bottom of the sample 

container. Complete polymerization of samples took 7 weeks. After 

polymerization, the steel rings were removed from the impregnated samples 

and excess resin was cut from top and the bottom (Figure 5.2b). Impregnated 

blocks were then scanned using X-ray tomography.  

 

 X-ray CT of resin impregnated samples.  5.2.3

The samples were scanned using a Metris X–Tek HMX CT scanner (details in 

section 2.5). Samples were scanned at 13.4 µm resolution under energy 

settings 145 keV and 35 µA and 2000 angular projections. To minimize beam 

hardening a molybdenum target with a 0.25 mm aluminium filter was used. CT 

Pro v2.1 software (NIKON metrology, Tring, UK) was used to reconstruct the 

radiographs into a three dimensional volume. VG Studiomax version 2.2 
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(Volume graphics, Heidelberg, Germany) software was used to adjust the 

contrast of reconstructed volumes, which were then exported as image stacks 

(*bmp format) for further processing.  

 

 Preparation of impregnated blocks for cell counting 5.2.4

Bacterial cells were enumerated at three different depths for each impregnated 

blocks (Figure 5.3). The height of each block was measured using a micrometre 

(accuracy 2 µm). Then the height for each layer in which bacteria will be  

quantified was estimated by considering the height 2.5 mm above and below 

from the centre of the sample. Impregnated blocks were first cut with a diamond 

saw and then ground down to the estimated height using a grinding machine 

(MPS 2 120, G & N, Nurnberg, Germany). Paraffin was used as a coolant in the 

grinding machine. The surface was then hand polished using a grinding paper 

(silicon carbide, size P1200) to remove the grinding material and make the 

surface smooth. The blocks were then cleaned with a benzene solution.  

 

Figure 5.3: Schematic representation of the area quantified for counting bacteria 
at different layers in a soil sample. The distance between each layer was 2.5 mm. 
Green frames in the diagram represent the counting area (e.g. 5.2 x 5.2 mm).  
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 Enumeration of bacteria on impregnated blocks  5.2.5

To enumerate bacteria, a drop of approximately 1.5 µg mL-1 of Vectashield 

containing DAPI stain (Vector Laboratories, Burlingame, CA, USA ) was applied 

on top of the polished surface of the block and covered with a cover slip of size 

24 × 32 mm (Menzel Glaser, Germany). Bacterial cells were evaluated using a 

ZEISS Axioscop 2 fluorescence microscope (Carl Zeiss, Jena, Germany) 

equipped with an HBO 103 W/2 Hg vapour lamp (Osram, Munich, Germany), 

under 63X objective lens (Plan-Neoflaur, Carl Zeiss, Jena, Germany). GFP 

signals were detected with double excitation filter (Filter set 24, Carl Zeiss) and 

total cells were enumerated using a DAPI filter set (F46-000, AHF, Tübingen, 

Germany). The cells were counted using an ocular with an integrated counting 

grid (10 × 10, 1.25 mm2 Carl Zeiss, Germany). The location of starting point for 

counting in each analysed layer was chosen randomly on the top edge of 

sample. An area of size 5.2 × 5.2 mm (red frame in Figure 5.4) was selected to 

counts cells in each layer. In this area, 6 x 6 fields of view (counting spot) were 

evaluated for cell counting (small green frames in Figure 5.4). The distance 

between each field of view was set to 1 mm using the xy coordinates on the 

scale of microscope stage (Figure 5.4). Cell counts were extrapolated to cell 

density i.e. cell counts/area of field of view.  
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Figure 5.4: Diagrammatic representation of spots where bacteria were counted in 
the given area of interest (red frame) under microscope. The green frame in the 
diagram represents each counting spot of size 0.2 x 0.2 mm. The distance 
between each spot was set to 1 mm.  

 

 Alignment of each analysed layer and image processing 5.2.6

A stereomicroscopic image of each layer in which bacteria were counted was 

taken to help to find the same layer from the stack of CT scanned images. The 

selection of each layer from the CT image stacks was done by eye matching 

with the stereomicroscopic image (Figure 5.5). The selected image was then 

imported in ImageJ to crop the region of interest (area where bacteria was 

counted). The cropped region of interest was then thresholded using indicator 

kriging segmentation method (Houston et al., 2013). 

 

 

Figure 5.5: Alignment of stereomicroscope image (a) with CT scanned image (b). 
Red frame represents the area of interest where bacteria were counted. 

1.6 cm diameter 1.6 cm diameter 
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The pore structure was analysed at two scales: the larger scale representing 

the region of interest of size 5.2 x 5.2 mm and the smaller scale representing 

each field of view of size 0.2 x 0.2 mm. For this experiment, the large scale was 

termed as macroscale and the smaller scale was termed as microscale. In each 

scale, the pore structure was measured in 2D and 3D. 

 

For the 3D analysis, information pertaining to the third dimension was 

considered by including information above and below the place a larger area to 

get broader analysis of relationship between pores and bacteria. For this, the 

neighbouring 36 slices, above and below the plane, were used to determine the 

measure of pore structure in 3D. The size of the area analysed at each scale is 

described in table 5.2. A macro was recorded in ImageJ v1.47 

(hhtp://rsbweb.nih.giv/ij/) to crop images at the different scales. For 2D, each 

slice was 1 voxel thick. In each volume the pore geometry characteristics were 

quantified. The quantitative measures included porosity, pore connectivity and 

soil-pore interface.  

 

Table 5.2: Physical dimensions of the region of interest (ROI) analysed for pore 
structure at macroscale and microscale in at different in 2D and 3D. 

 

 

Scales Dimensions Physical dimension of ROI (mm) 

Macroscale 
2D 5.2 ×5.2 

3D 6.2 × 6.2 × 6.2 

Microscale 
2D 0.2 × 0.2 

3D 1 × 1 × 1 
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 Statistical analysis 5.2.7

Statistical analysis was performed using SPSS software version 21. A mixed 

effect linear model (assuming normal distribution) was applied to investigate 

differences in soil structure properties for different treatment. To comply with the 

normality assumption the porosity and connectivity measures were transformed 

using the probit function. The soil-pore interface area met the normality 

assumption and therefore they did not require any preliminary transformation. 

 

A generalised mixed effect Poisson model with log link function was used to 

investigate significant difference in cell numbers between sampling days with 

day as fixed factor and across different treatments with treatments and days as 

fixed factors. The effect of soil structure properties such as porosity, 

connectivity and surface area, on the distribution of bacteria was also 

determined by Poisson model with day as a fixed factor. The size of the 

counting spot was introduced as an offset variable in the Poisson model. 

 

5.3 Results  

 Visualisation and quantification of bacterial distribution in soil 5.3.1

5.3.1.1 Detection of GFP-tagged and DAPI stained bacteria in impregnated 

soil.  

When impregnated samples are observed under a double excitation filter, the 

black quartz particles were surrounded by clay particles and organic matter. 

The pore spaces surrounding the soil aggregates were filled with resin and 

appeared reddish in colour (Figure 5.6). In inoculated samples, GFP tagged 
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Pseudomonas and Bacillus cells were analysed in each layer but no GFP 

signals were detected (Figure 5.6). However on checking the counterstain 

(DAPI) on the same layer under UV excitation filter, both Pseudomonas and 

Bacillus cells appeared bright blue from which it was concluded that bacteria 

were present in impregnated samples. Henceforth, DAPI stain was used to 

quantify both bacterial cells in impregnated soil blocks.  

  

 

Figure 5.6: Microscopic images of a polished soil section showing that GFP 
signals of Pseudomonas cells were not detectable under double excitation filter 
(a), but are detectable under a UV excitation filter(b), scale bar: 20 µm 

Under UV excitation the soil particles and resin fluoresced blue but both types 

of bacterial cells were easily distinguishable against the background (Figure 

5.7). Both types of bacterial cell appeared on the surface of the clay-humus 

complex or at soil-pore interfaces. Very few (1-3) cells were observed in a resin 

filled pore area surrounding the soil particles. No DAPI signals were detected in 

control samples. Overall the distribution of Pseudomonas cells was different 

from the Bacillus cells in soil. DAPI stained Pseudomonas cells were observed 

to be more evenly spread in soil, whereas Bacillus cells were observed in small 

clusters of 8-10 cells throughout the soil (Figure 5.7). In general, the cell 

a) b) 
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numbers of both bacterial strains differed between different field of view on each 

analysed layer.  

 

Figure 5.7: DAPI stained inoculated samples in soil polished sections showing 
the distribution of Pseudomonas (a) and Bacillus (b) cells, scale bar: 20 µm.  

 

Visual comparison of cell counts in each analysed layer of a treatment was 

carried out to determine treatment effects (Figure 5.8). In soil with aggregates of 

a size of 1-2 mm, Pseudomonas cell counts ranged from 0 to 30 per field of 

view on day 1 and 0 to 60 per field of view on day 5. In the case of Bacillus 

inoculated soil with aggregate sizes 1-2 mm, cell counts ranged from 0 to 28 per 

field of view on day 1 and 0 to 52 per field of view on day 5. For soil with 

aggregates sized 2-4 mm, Pseudomonas cell counts ranged from 0 to 20 per 

field of view on day 1 and 0 to 35 per field of view on day 5. Therefore, the 

result showed a variation in the number of cell counts between different 

treatments.  

 

a) b) 
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Figure 5.8: Visual comparison of cell counts in each analysed layer in different 
treatments, with two-dimensional stereomicroscope images (left) and cell counts 
(right). Treatments are Pseudomonas inoculated in 1-2 mm aggregate soil (a), 
Bacillus inoculated in 1-2 mm aggregate soil (b), and Pseudomonas inoculated in 
2-4 mm aggregate soil (c). 
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5.3.1.2 Quantification of cell counts in whole microcosm amongst 

treatments 

Mean cell densities (cells mm-2) were calculated on sampling time 1 and 5 for 

each treatment (Figure 5.9). In Pseudomonas inoculated soil with aggregates 

sized 1-2 mm, no significant difference (p=0.377) in cell density was observed 

between sampling time, with 252.0 (s.e=10.5) cells mm-2 for day 1 and 291.0 

(s.e=12.0) cells mm-2 for day 5 (Figure 5.8a). Cell density significantly increased 

(p=0.004) between sampling days in Bacillus inoculated soil, with 252.0 

(s.e=12.0) cells mm-2 counts on day 1 and 308.0 (s.e=13.6) cells mm-2 on day 5 

(Figure 5.8b). Although the cell density was higher on day 5 than day 1 for 

Pseudomonas inoculated soil with aggregate of size 2-4 mm with 304.0 

(s.e=12.7) cells mm-2 and 291.0 (s.e=13.2) cells mm-2 respectively, the 

difference was not significant (p=0.757) (Figure 5.9c).  

 

There was no significant difference (p=0.633) between cell densities for Bacillus 

and Pseudomonas, with a cell density of 280.0 (s.e=28.2) cells mm-2 for Bacillus 

and 271.0 (s.e=19.6) cells mm-2 for Pseudomonas, (Figure 5.10). 

Amongst Pseudomonas inoculated in soil with aggregate of sizes 1-2 mm and 

2-4 mm, a significant (p= 0.00) difference in the mean cell density was 

observed, with 271.0 (s.e=19.6) cells mm-2 in 1-2 mm and 297.0 (s.e=6.2) cells 

mm-2 in 2-4 mm aggregate soil, (Figure 5.11).  
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Figure 5.9: Comparison of mean cell density in different treatments between 
sampling day 1 and 5. Treatments were Pseudomonas inoculated soil with 
aggregate sizes 1-2 mm (a), Bacillus inoculated in soil with aggregate sizes 1-2 
mm (b) and Pseudomonas inoculated in soil with aggregate sizes 2-4 mm (c), 
Data are means ± SE (n=9).  
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Figure 5.10: Comparison of mean cell density between soils inoculated with 
different bacterial strain. Treatments were Pseudomonas (1) and Bacillus (2) 
inoculated in soil with aggregate sizes 1-2 mm, Data are means ± SE (n=18).  

 

 

Figure 5.11: Comparison of mean cell density between soils with different size 
aggregate treatments. Treatments were Pseudomonas inoculated in soil with 
aggregate sizes 1-2 mm (1), and 2-4 mm (2), Data are means ± SE (n=18).  
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 Pore geometry of impregnated soil  5.3.2

Below, the characteristics of the pore geometry are described at 2 spatial 

scales, the macroscale and the microscale. 

5.3.2.1 Macroscale (Image scale/CT scanning scale) 

Pore geometry was analysed at macroscale in 2D and 3D. A histogram was 

plotted to analyse the distribution of porosity, connectivity and soil-pore 

interface of soil (Figure 5.12-5.13).  

 

In samples analysed at 2D, the porosity of the analysed area ranged from 10-35 

% and the soil-pore interface ranged from 2-5 mm2 for soil with aggregates 

sized 1-2 mm and 1.5 - 4.5 mm2 for soil with aggregates sized 2-4 mm (Figure 

5.12). Among different aggregate size treatments, soil porosity (p=0.608) was 

not significantly different, with average porosity of 21.6 (s.e=0.86) % in 1-2 mm 

and 22.7 (s.e=2.04) % in 2-4 mm aggregates sized soil. Also between 

treatments the average soil-pore interface was not significantly different 

(p=0.687), with 2.77 (s.e=0.05) mm2 in 1-2 mm and 2.80 (s.e 0.15) mm2 in 2-4 

mm aggregates sized soil.  

 

In samples analysed at the macroscale in 3D, the porosity of the analysed area 

ranged from 10-40 %, soil connectivity ranged from 88-100 % and the soil-pore 

interface ranged from 3-4.5 mm2 for soil with aggregates sized 1-2 mm and 2.5-

5.5 mm2 for soil with aggregates sized 2-4 mm (Figure 5.13). Among different 

aggregate size treatments, soil porosity (p=0.412) was not significantly different, 

with average porosity of 21.8 (s.e=0.73) % in 1-2 mm and 23.5 (s.e=0.02) % in 

2-4 mm aggregates sized soil. Connectivity was also not significantly different 
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(p=0.604) between treatments, with an average connectivity of 95.8 (s.e=0.45) 

% in 1-2 mm and 95.1 (s.e=0.01) % in 2-4 mm aggregate sized soil. Also, 

between different aggregate size treatments the soil-pore interface was not 

significantly different (p=0.216), with 3.70 (s.e=0.05) mm2 in 1-2 mm and 3.90 

(s.e 0.18) mm2 in 2-4 mm aggregates sized soil.  

 

 

 

 

Figure 5.12: Distribution of soil porosity (a, b) and soil-pore interface (c, d) 
analysed at macroscale in 2D in soil with aggregate sizes 1-2 mm (a, c), and 2-4 
mm (b, d) treatment.  
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Figure 5.13: Distribution of soil porosity (a, b), connectivity (c, d) and soil-pore 
interface (e, f) analysed at macroscale in 3D in soil with aggregate sizes 1-2 mm 
(a, c, e), and 2-4 mm (b, d, f) treatment. 
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5.3.2.2 Microscale  

Pore geometry was analysed at macroscale in 2D and 3D. A histogram was 

plotted to analyse the distribution of porosity, connectivity and soil-pore 

interface of soil (Figure 5.14-5.15). There is a substantial difference for all 

characteristics between the macroscale (Figure 5.12-5.13) and the microscale 

(Figure 5.14-5.15). In particular, the value range is much broader at the 

microscale, reflecting greater heterogeneity between replicated fields of view.  

 

In samples analysed in 2D, the porosity of the analysed area ranged from 0-100 

% and the soil-pore interface ranged from 0-15 mm2 in both 1-2 mm and 2-4 

mm aggregate sized soil (Figure 5.14). Among different aggregate size 

treatments, soil porosity (p=0.750) was not significantly different, with average 

porosity of 20.8 (s.e=0.88) % in 1-2 mm and 21.6 (s.e=1.32) % in 2-4 mm 

aggregates sized soil. Also, the average soil-pore interface between treatments 

was not significant (p=0.763), with 2.79 (s.e=0.10) mm2 in 1-2 mm and 2.80 

(s.e=0.15) mm2 in 2-4 mm aggregates sized soil.  

 

In samples analysed at microscale in 3D, the porosity of the analysed area 

ranged from 0-90 %, soil connectivity ranged from 0-100 % and the soil-pore 

interface ranged from 0-10 mm2 for soil with aggregates sized 1-2 mm and 0-11 

mm2 for soil with aggregates sized 2-4 mm (Figure 5.15). Among different 

aggregate size treatments, soil porosity (p=0.387) was not significantly different, 

with average porosity of 21.8 (s.e=0.73) % in 1-2 mm and 23.5 (s.e=0.02) % in 

2-4 mm aggregates sized soil. Connectivity of pores between treatments was 

not significant (p=0.114) between treatments, with average connectivity of 95.8 

(s.e=0.45) % in 1-2 mm and 95.1 (s.e=0.01) % in 2-4 mm aggregates sized soil. 
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The difference in soil-pore interface was also not significant (p=0.433), with 

average soil-pore interface of 2.79 (s.e=0.10) mm2 in 1-2 mm and 2.87 

(s.e=0.16) mm2 in 2-4 mm aggregates sized soil.  

 

 

 

Figure 5.14: Distribution of soil porosity (a, b) and soil-pore interface (c, d) 
analysed at microscale in 2D in soil with aggregate sizes 1-2 mm (a, c), and 2-4 
mm (b, d) treatment. 
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Figure 5.15: Distribution of soil porosity (a, b), connectivity (c, d) and soil-pore 
interface (e, f) analysed at microscale in 3D in soil with aggregate sizes 1-2 mm 
(a, c, e), and 2-4 mm (b, d, f) treatment. 
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 Influence of soil pore geometry on bacteria distribution 5.3.3

5.3.3.1 Macroscale  

Mean cell densities (no. of cells mm-2) of Pseudomonas and Bacillus in different 

treatments were plotted against soil porosity, connectivity and soil-pore 

interface analysed in 2D and 3D (Figure 5.16- 5.21). Mean cell density here 

refers to the average of cell counts over 36 counting spots in each analysed 

layer. In samples analysed at 2D, the porosity of the analysed area ranged from 

10-46 % with the majority having porosity between 15-25 % (Figure 5.16a-

5.18a). The soil-pore interface ranged from 2-5 mm2 with the majority of the 

analysed area having a soil-pore interface between 2-3 mm2 (Figure 5.16-

5.18b). The mean cell density ranged between 200-700 cell mm-2 (Figure 5.16-

5.18). Soil porosity and soil-pore interface significantly (P<0.05) related to the 

distribution of Pseudomonas and Bacillus in soil with different treatments. The 

p-value of each treatment is listed in table 5.3. 

 

Figure 5.16: Relationship between mean Pseudomonas cell density and soil 
porosity (a) and soil-pore interface (b) analysed at macroscale in 2D in soil with 
aggregate of sizes 1-2 mm. Data points in the graph represents individual 
analysed layer of each replicate per treatment.  
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Figure 5.17: Relationship between mean Bacillus cell density and soil porosity 
(a) and soil-pore interface (b) analysed at macroscale in 2D in soil with aggregate 
of sizes 1-2 mm. Data points in the graph represents individual analysed layer of 
each replicate per treatment. 

 

 

 

 

Figure 5.18: Relationship between mean Pseudomonas cell density and soil 
porosity (a) and soil-pore interface (b) analysed at macroscale in 2D in soil with 
aggregate of sizes 2-4 mm. Data points in the graph represents individual 
analysed layer of each replicate per treatment. 
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Table 5.3: Results of the Poisson model analysis on influence of pore structure 
on distribution of bacteria in different soil at macroscale in 2D and 3D. Numbers 
reported in the table are the p-values of the analysis. 

 

 

 

In samples analysed at macroscale in 3D, the porosity of the analysed area 

ranged from 10-46 % with majority having porosity between 15-25 %, (Figure 

5.19a-5.21a). Connectivity of pores ranged between 95-100 % with the majority 

having connectivity of between 98-100 % (Figure 5.19b-5.21b). The soil-pore 

interface ranged from 2.5-6 mm2 with the majority of the analysed area having a 

soil-pore interface between 3-4 mm2 (Figure 5.19c-5.21c). The mean cell 

density ranged between 200-700 cell mm-2 (Figure 5.19-5.21). The influence of 

soil porosity, connectivity and soil-pore interface on distribution of 

Pseudomonas and Bacillus cells varied between treatments (table 5.3). In 

Pseudomonas inoculated soil with aggregates of size 1-2 mm, the distribution of 

Scales Treatments 
Porosity 

(%) 

Soil-pore 

interface 

(mm
2
) 

Connectivity 

(%) 

Macroscale

2D 

Pseudomonas inoculated in 

soil with aggregate sizes 1-2 

mm 

0.000 0.001 - 

Bacillus inoculated in soil with 

aggregate sizes 1-2 mm 
0.001 0.007 - 

Pseudomonas inoculated in 

soil with aggregate sizes 2.4 

mm 

0.000 0.000 - 

 

Macroscale

3D 

Pseudomonas inoculated in 1-

2 mm aggregate soil 
0.000 0.004 0.000 

Bacillus inoculated in 1-2 mm 

aggregate soil 
0.370 0.182 0.707 

Pseudomonas inoculated in 2-

4 mm aggregate soil 
0.000 0.000 0.000 
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Pseudomonas cells was significantly influenced by porosity (p=0.000), 

connectivity (p=0.000) and soil-pore interface (p=0.004) of soil. The distribution 

of Bacillus inoculated in soil with aggregate size 1-2 mm was not significantly 

influenced by porosity (p=0.370), connectivity (p=0.707) and soil-pore interface 

(p=0.182) of soil. In the case of Pseudomonas inoculated in soil with aggregate 

sizes 2-4 mm, distribution of Pseudomonas cells was significantly influenced by 

porosity (p=0.000), connectivity (p=0.000) and soil-pore interface (p=0.000) of 

soil. 
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Figure 5.19: Relationship between mean Pseudomonas cell density and porosity 
(a), connectivity (b) and soil-pore interface (c) analysed at macroscale in 3D in 
soil with aggregate of sizes 1-2 mm. Data points in the graph represents 
individual analysed layer in each replicate per treatment. 
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Figure 5.20: Relationship between mean Bacillus cell density and porosity (a), 
connectivity (b) and soil-pore interface (c) analysed at macroscale in 3D in soil 
with aggregate of sizes 1-2 mm. Data points in the graph represents individual 
analysed layer in each replicate per treatment. 
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Figure 5.21: Relationship between mean Pseudomonas cell density and porosity 
(a), connectivity (b) and soil-pore interface (c) analysed at macroscale in 3D in 
soil with aggregate of sizes 2-4 mm. Data points in the graph represents 
individual analysed layer in each replicate per treatment. 
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5.3.3.2 Microscale  

Cell density (no. of cells mm-2) of Pseudomonas and Bacillus in different 

treatments were plotted against soil porosity, connectivity and soil-pore 

interface analysed at 2D and 3D (Figure 5.22- 5.27).There are more data points 

in these graph compared to the macroscale graphs (Figure 5.16-5.21) as each 

data point in the graphs represents analysis of a microscopic field of individual 

layer in each replicate of a respective treatment and there is a noticeable wider 

spread in the cell density values.  

 

In samples analysed at the microscale and in 2D, the porosity of the analysed 

area ranged from 0-100 % with the majority having porosity between 0- 30 %, 

(Figure 5.22a-5.24a). The soil-pore interface ranged from 0-20 mm2 with the 

majority of the analysed area having a soil-pore interface between 0-10 mm2 

(Figure 5.22b-5.24b). The mean cell density ranged between 0-1600 cell mm-2 

(Figure 5.22-5.24). Again we note the much wider spread of data. The influence 

of soil porosity and soil-pore interface on distribution of Pseudomonas and 

Bacillus cells varied between treatments (table 5.4). In Pseudomonas 

inoculated soil with aggregates of size 1-2 mm, soil porosity (p=0.736) and soil-

pore interface (p=0.134) had no significant influence on the distribution of 

Pseudomonas cells in soil. The distribution of Bacillus inoculated in soil with 

aggregate size 1-2 mm was significantly influenced by porosity (p=0.000). Soil-

pore interface had no significant influence on Bacillus distribution in soil. In 

Pseudomonas inoculated in soil with aggregates sized 2-4 mm treatment, the 

distribution of Pseudomonas cells was significantly influenced only by porosity 

(p=0.000). Soil-pore interface area had no significant (p=0.270) influence on the 

distribution of Pseudomonas in soil.   
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Figure 5.22: Relationship between Pseudomonas cell density and soil porosity 
(a) and soil-pore interface (b) analysed at microscale in 2D in soil with aggregate 
of sizes 1-2 mm. Data points in the graph represents individual analysed layer of 
each replicate per treatment. 

 

  

Figure 5.23: Relationship between Bacillus cell density and soil porosity (a) and 
soil-pore interface (b) analysed at microscale in 2D in soil with aggregate of sizes 
1-2 mm. Data points in the graph represents individual analysed layer of each 
replicate per treatment. 
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Figure 5.24: Relationship between Pseudomonas cell density and soil porosity 
(a) and soil-pore interface (b) analysed at microscale in 2D in soil with aggregate 
of sizes 2-4 mm. Data points in the graph represents individual analysed layer of 
each replicate per treatment.  

 

Table 5.4: Results of the Poisson model analysis on influence of pore structure 
on distribution of bacteria in different soil at microscale in 2D and 3D. Numbers 
reported in the table are the p-values of the analysis. 

 

Scales Treatments 

Porosity Soil-pore interface Connectivity 

(%) (mm
2
) (%) 

Microscale

2D 

Pseudomonas inoculated in soil 

with aggregate sizes 1-2 mm 
0.736 0.134 - 

Bacillus inoculated in soil with 

aggregate sizes 1-2 mm 
0.000 0.167 - 

Pseudomonas inoculated in soil 

with aggregate sizes 2.4 mm 
0.000 0.270 - 

 

Microscale

3D 

Pseudomonas inoculated in 1-2 

mm aggregate soil 
0.274 0.165 0.933 

Bacillus inoculated in 1-2 mm 

aggregate soil 
0.968 0.004 0.605 

Pseudomonas inoculated in 2-4 

mm aggregate soil 
0.000 0.014 0.000 
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In samples analysed at the microscale in 3D, the porosity of the analysed area 

ranged from 0-100 % with the majority having porosity between 0-40 % (Figure 

5.25a-5.27a). Connectivity of pores ranged between 95-100 % with majority 

having connectivity either at 0 % or between 95-100 % (Figure 5.25b-5.27b). 

The soil-pore interface ranged from 0-11 mm2 with the majority of the analysed 

area having a soil-pore interface between 2-5 mm2, (Figure 5.25c-5.27c). As 

with the 2D analysis, the mean cell density ranged between 0-1600 cell mm-2 

(Figure 5.25, 5.26, 5.27). The influence of soil porosity, connectivity and soil-

pore interface on distribution of Pseudomonas and Bacillus cells varied between 

treatments (table 5.4). In Pseudomonas inoculated soil with aggregates of size 

1-2 mm, soil porosity (p=0.274), connectivity (p=0.933) and soil-pore interface 

(p=0.165) had no significant influence on distribution of Pseudomonas in soil. 

Soil porosity (p=0.968) and connectivity (p=0.605) had no significant influence 

on the distribution of Bacillus inoculated soil with aggregates sized 1-2 mm. 

However, soil-pore interface had a significant (p=0.004) influence on Bacillus 

distribution in soil. In case of Pseudomonas inoculated in soil with aggregate 

sizes 2-4 mm, distribution of Pseudomonas cells was significantly influenced by 

porosity (p=0.000), connectivity (p=0.000) and soil-pore interface (p=0.014) of 

soil. Therefore, compare to the results at the macroscale it is noted that fewer 

significant relationships are found between pore characteristics and bacterial 

distribution at microscale (Table 5.3 versus 5.4). 
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Figure 5.25: Relationship between Pseudomonas cell density and porosity (a), 
connectivity (b) and soil-pore interface (c) analysed at microscale in 3D in soil 
with aggregate of sizes 1-2 mm. Data points in the graph represents individual 
analysed layer in each replicate per treatment. 
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Figure 5.26: Relationship between Bacillus cell density and porosity (a), 
connectivity (b) and soil-pore interface (c) analysed at microscale in 3D in soil 
with aggregate of sizes 1-2 mm. Data points in the graph represents individual 
analysed layer in each replicate per treatment. 
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Figure 5.27: Relationship between Pseudomonas cell density and porosity (a), 
connectivity (b) and soil-pore interface (c) analysed at microscale in 3D in soil 
with aggregate of sizes 2-4 mm. Data points in the graph represents individual 
analysed layer in each replicate per treatment. 
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5.4 Discussion 

 Bacteria distribution in soil 5.4.1

One of the goals of this chapter was to use green fluorescence protein (GFP) 

marker to visualise bacteria insitu in soil. GFP marker was chosen as it 

possesses excellent features as a reporter protein and has been used 

previously in plant-microbes interaction studies in soil (Elväng et al., 2001; 

Zhang et al., 2011). In this study, GFP signals were not detected in the 

impregnated soil for all treatments. The acetone solution used during the 

dehydration process is not the reason for the loss of GFP signal as a 

preliminary test was carried to check the stability of GFP signals in a pure 

acetone solution. The test showed that GFP was not affected by the solution. 

The likely reason for a loss of the GFP signal could either be the long 

polymerization period of the resin or the signal was too weak in the presence of 

relatively high auto fluorescence of the resin and soil matrix. Similar kind of 

results were observed by Postma and Altemuller (1990) who examined the 

different steps of impregnation for successful staining of bacteria Rhizobium 

leguminosarm biovartrofolli in soil thin sections. Combinations of different 

fluorochromes were tested to see if they withstand mounting in polyester resin 

and rinsing in acetone. Most of the combinations failed due to adsorption of 

stain by resin or due to negative influence of acetone on staining effect. The 

best result was obtained with fluorescent brightener calcoflour white M2R 

applied before embedding in polyester resin and counterstaining the soil matrix 

with acridine orange in thin sections (Postma and Altemuller, 1990). An 

alternative DAPI stain was therefore used for staining bacteria in this study. 
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DAPI stain has been used before to visualise indigenous bacteria in resin 

impregnated soil samples (Li et al., 2003; Eickhorst & Tippkötter, 2008). For 

example, Eickhorst et al. (2008) used DAPI as a counter-stain to visualise 

indigenous bacteria in undisturbed soil samples.  

 

No DAPI signals were detected in control samples, which confirms that the 

autoclaving procedure successfully sterilised the soils and that the bacteria 

which are visualised in inoculated samples are only introduced bacteria in the 

soil. Both Pseudomonas and Bacillus cells were observed on the surface of the 

soil particles or at soil-pore interface. No cells were observed in the pore space. 

This is no surprise and inherent to the method because if there had been 

bacterial cells in pores these will have got removed during the exchange of 

liquids for dehydration procedure. In other studies, however, it was found that 

only limited cell numbers are washed away during impregnation (Eickhorst, 

pers. communication) so it is likely that the majority of bacteria are attached to 

the surfaces. In polished sections, Pseudomonas cells were observed to be 

more evenly spread through the soil matrix. White et al (1994) also observed 

similar distribution of Pseudomonas fluorescens stained cells throughout the 

soil pore network. Bacillus cells on the other hand were observed in small 

clusters. This kind of pattern was observed in indigenous bacteria in the form of 

small clusters or microcolonies constituted by cells of identical or different 

morphologies (Nunan et al., 2001; Li et al., 2004; Eickhorst & Tippkotter, 2008), 

but is shown here to also occur in soil. The difference in the spatial pattern 

between two different species in soil was a novel finding. Differences in the 

distribution pattern can be related to how bacteria spread and access nutrient 

sources in soil. It suggests that a different response between species can be 
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expected in their relationship with the soil structure. On visual comparison, a 

heterogeneous distribution in cell counts between different fields of view in each 

analysed layer was observed. Previous studies have shown a non-random 

distribution of microorganisms in soil (Nunan et al., 2003; O’Donnell et al., 2007; 

Young et al., 2008) For example, Nunan et al. (2003) found variation in bacterial 

numbers per quadrant in different depths of soil samples. They suggested that 

spatial variability in bacterial numbers was related to nutrients status of soil 

(Nunan et al., 2003). There will be a complex number of factors influencing the 

bacterial distribution ranging from physical (pore geometry), to nutritional and 

biological (differences in motility and attachment). The dominant processes 

remain to be identified, but the technique developed here offers real 

opportunities to disentangle these processes. 

 

Both time and physical properties affected the spatial distribution or numbers 

with differential effects for the two species. Pseudomonas inoculated samples 

showed no significant difference in cell density between sampling irrelevant of 

the aggregate size of soil. On the other hand, Bacillus showed a significant 

difference between two days. This difference in between two species can be 

related either to growth rate or spread rate of bacteria in soil. Among different 

aggregate size treatments, a significant difference in Pseudomonas cell density 

was observed. Soil with 2-4 mm aggregate size had higher cell density compare 

to soil with 1-2 mm aggregate size. This result is consistent with chapter 3 

experiment where effect of aggregate size on growth rate of Pseudomonas in 

soil was determined. Similar kinds of difference in numbers of bacterial 

populations have been reported by past studies related to different soil particle 

sizes or aggregate factions (Ranjard and Richaume, 2001; Sessitsch et al., 



Combining techniques to visualise bacteria in relation to their micro-habitat  

   157 

2001). Therefore the hypothesis that bacterial cell density increases overtime in 

biological sections applied only for Bacillus strain.  

 

 Influence of soil pore geometry on bacteria distribution 5.4.2

The other goal of this chapter was to develop a methodological approach to 

analyse the effect of pore characteristics on spatial patterns of bacteria at 

microhabitat scales. The approach was to combine 2D and 3D methods to gain 

quantitative information on the relationship between pore characteristics and 

introduced bacteria in soil as it known from previous works that the spatial 

distribution of bacteria is not random at fine scales and their location in soil is 

dependent on factors like substrate availability, soil water and pore size 

distribution (Nunan et al., 2003; Ruamps et al., 2011). A recent study by Hapca 

et al. (2015) used a similar approach and developed a method combining 2D 

SEM-EDX data with 3D X-ray tomography images to generate the 3D spatial 

distribution of chemicals in soil. Progress has been made combining techniques 

to analyse the relationship between soil pore characteristics and microbial 

community distribution and their activity in soil (Kravchenko et al., 2013; Wang 

et al., 2013; Kravchenko et al., 2014; Negassa et al., 2015). For example, 

Kravchenko et al. (2013) studied the effect of intra-aggregate pore structure on 

the distribution of E.coli in macro-aggregates. They used culture based methods 

(Colony forming unit method) to enumerate E.coli distribution in aggregates and 

X-ray tomography to quantify pore structure of intact aggregates from different 

managements. Another study, done by Wang et al. (2013), which was a further 

development of the Kravchenko et al. (2013) study, used qPCR method instead 

of CFU method to enumerate E.coli in the scanned aggregate sections. They 
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used qPCR as it generated more reproducible and less variable results (Wang 

et al., 2013). In our study, microscopy examination of polished sections was 

used to quantify bacteria in soil. The advantage of the method used in this 

chapter over the culture and non-culture based method was that impregnated 

soil samples were used which allowed to characterise the insitu relationship 

between bacteria and soil features without destroying the samples. A study by 

Nunan et al. (2003) that used soil thin sections was able to show how bacterial 

density values differed between topsoil and subsoil in relation to distance from 

pores. Another advantage of this methodology was the use of X-ray CT to 

quantify pore structure in the same layer. The relationship between pore 

structure and bacterial cell density was analysed at different scales. This was 

done in order to understand the effect of pore structure at the scale at which 

microbes actually live and interact with their surrounding environment and also 

if the effect is specific to that scale or variable at large scales. This kind of 

analysis at different scale has been done by others to study spatial pattern of 

either indigenous bacterial population (Nunan et al. 2002) or microbial activity 

(Gonod, 2006) from metre to micrometre scales. Nunan et al. (2002) found a 

large variation in the distribution of bacteria in topsoil and subsoil at different 

scales. They identified spatial structure of bacterial population at microscale in 

topsoil and at large and microscale in subsoil. They related this difference in 

spatial pattern at different depths to transport of nutrients through soil (Nunan et 

al., 2002). Therefore, it is noted that different significant effects are found 

depending on the spatial scale of the analysis. This confirms that this is an 

important aspect to be considered when doing this type of analysis, but it also 

raises the question what might be causing this and how do we proceed. 
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Therefore, we need to fully understand the spatial variability of soil microbes at 

different scales.  

 

In this study, the analysis at each scale was done in 2D and 3D because of two 

reasons. Firstly in 2D, the connectivity of pores which is an important parameter 

in relation to transport of nutrients and bacteria cannot be determined in 2D and 

secondly the degree of tortuosity of the pore space is different in 2D compared 

to 3D. In this study no significant difference in the pore characteristics in 2D and 

3D between different aggregate size treatments was observed, but it should be 

noted that a part of pore volume was not detected by the X-ray scanner due to 

limitation of scan resolution. Therefore, the conclusion made here are based on 

the percent of pores observed (i.e. >13.4 µm resolution). Despite this, the 

hypothesis that pore characteristics influence Pseudomonas and Bacillus 

distribution at different spatial scales (macro- and microscale in this case) was 

supported by the data. But the effect was quite variable across macro- and 

microscales analysed over different dimensions in each treatment.  

 

Samples analysed in two dimensions (2D) at macroscale showed a significant 

effect of porosity and soil-pore interface on Pseudomonas and Bacillus cell 

distributions in all treatments but at microscale this was not the case as the soil-

pore interface showed no significant effect on the distribution of Pseudomonas 

and Bacillus bacteria in all treatments. This difference between the two scales 

could be due to the size of the sample as the information is constrained at this 

scale. Therefore, to avoid this constraint of sample size used for pore structure 

determination, the analysis was done in 3D where a bit of the surrounding area 

of the 3D soil environment was considered. The results showed that at 
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macroscale, all three pore characteristics showed a significant effect on the 

Pseudomonas inoculated treatment, but was different in case of Bacillus 

inoculated samples. The reason of this observed difference between two 

samples with same aggregate size and bulk-density but inoculated with different 

bacterial strain is unknown. However, at microscale in 3D, the effect of pore 

characteristics was different compare to microscale in 2D. This difference in 

analysis between two dimensions could be that in 2D the information of pore 

characteristics information is constrained to the 2D-single plane from 3-D pore 

structure. The results show that there was no general relationship/link between 

pore structure and bacterial counts and this varied  with the spatial scale and 

dimension, therefore measuring and identifying whether a relationship exists is 

tightly linked to identifying the ‘appropriate spatial scale’.  

 

The effort made in this chapter to show the effect of pore characteristics at 

different scales did not show much noticeable differences in all treatments. But 

it should be noted this difference is relevant only to the visible pores , so 

conclusion are made only on pores greater than the scan detection limit. Also, 

there are other parameters like pore-size distribution and tortuosity of the pore 

space which need to be considered as it is known from some recent works that 

the composition of bacterial community differs in large and medium size pores 

(Negassa et al., 2015).  
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5.5 Conclusion 

In this chapter a methodology was presented to determine the relationship 

between the effect of pore structure and the distribution of bacteria at a range of 

spatial scales. The data presented in this chapter suggested that porosity, 

connectivity and soil-pore interface influences the distribution of bacteria in soil 

at microscales. The information obtained from this combination of method can 

be used for developing modelling frameworks to understand the distribution of 

bacteria in a 3D soil environment. The issue of the scale at which to undertake 

analysis is a central one and in the absence of any general trends the scale 

containing the most information, within practical limits, should be selected for 

further analysis.
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6 Effect of C distribution and soil structure on spread 

of bacteria 
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6.1 Introduction  

In a heterogeneous environment like soil, bacteria can exhibit chemotactic 

responses towards components. Bacterial chemotaxis is the migration of 

bacteria under the influence of a chemical gradient (Pandey & Jain, 2002). For 

example, bacteria colonize the rhizosphere of different types of plants by 

exhibiting chemotactic response towards components of the root exudates 

(Bacilio-Jimenez & Aguilar-Flores, 2003; Oku et al., 2012). To enhance plant 

growth or to degrade organic pollutants in soil, bacteria have been introduced in 

soil and chemotaxis was reported to be one of the major factors enhancing 

these processes (Lacal, 2011) by affecting the movement and distribution of 

bacteria. Neal et al. (2012) demonstrated the colonisation of Pseudomonas 

fluorescens towards a specific benzoxanoids produced by maize roots in soil 

(Neal et al., 2012). Other studies have also reported chemotactic responses of 

introduced bacteria towards specific organic compounds in soil (Bacilio-Jimenez 

& Aguilar-Flores, 2003; Oku et al., 2012; Gupta Sood, 2003). In all these cases 

this can lead to non-uniform distributions of bacteria in soil and contribute to the 

formation of so called hot-spots. 

 

Mostly, the emphasis has been on the colonization of the introduced bacteria 

near the target, and the study of spatial patterning of these bacteria at 

microscales is still limited. In chapter 5 it was shown that it is essential to study 

spatial patterns at appropriate scales as different conclusions can be drawn 

about factors influencing the distribution of bacteria based on the spatial scale 

of analysis. Some previous studies have shown spatial patterns in the 

distribution of bacteria at a microhabitat scale (Kizungu et al., 2001; Nunan et 
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al., 2003; Gonod, 2006). For example, Gonod et al. (2006) reported a 

heterogeneous pattern in mineralization of 2,4-D (2,4 Dichlorophenoxyacetic 

acid) with an increase in variability of mineralization from field to microhabitat 

scale. An explanation is that bacteria are not randomly distributed and are 

located in different microenvironments (i.e. mainly located in pores of different 

size and shapes) of soil. However, knowledge about the relationship between 

bacterial distribution and soil structure is still limited and often based on 

simplified assumptions about sizes of bacteria and pores. Specifically, the 

influence of pore geometry (which includes connectivity and pore-solid interface 

surface areas) on the distribution of bacteria in soil is largely unknown.  

 

In chapter 4, an influence of soil structure on the spread of bacteria towards a 

target source was studied. The results showed the effect of soil structure on the 

spread of bacteria in the same type of soil. In chapter 5, an analysis method 

was developed to study the spatial distribution of bacteria in soil at microscales. 

In that study, the bacteria were randomly mixed through the soil as part of the 

method development. This will have had an impact on the spatial distribution 

that was found and can differ from more natural situations that require bacteria 

to move either from or towards a source. 

 

In this chapter, the experimental procedures developed in chapters 4 & 5 are 

used to investigate the spread and patterning of bacteria moving away from or 

moving towards a nutrient source in soil. The main objectives of this chapter 

are:  
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1) To analyse the influence of soil structure on the extent of spread of 

bacteria in soil from a single source of inoculum at microscale 

(henceforth referred to as agarose experiment).  

2) To analyse the influence of soil structure on the extent of spread of 

bacteria towards a nutrient source in soil at microscale (henceforth 

referred to as compost experiment). 

 

This was investigated by quantifying the spatial distribution of Pseudomonas 

and Bacillus following introduction into microcosms with a local C source and 

controlled structural properties by examining biological thin sections and 

applying the analyses methods developed in Chapter 5. In the microcosms a 

localised source of C and bacteria from which spread is initiated into the soil or 

introduced as a layer of compost (as a C source), which was expected to 

stimulate colonisation from soil, were introduced. 

 

 Hypotheses 6.1.1

1. Agarose experiment: colonising soil from a local source 

 An increase in soil bulk-density decreases the spread and colonization of 

soil by Pseudomonas.  

 Soil porosity, connectivity and soil-pore interface influence the spread 

and colonization of soil by Pseudomonas.  

2 Compost experiment: colonising a local C layer from soil 

 Higher cell densities of Pseudomonas and Bacillus bacteria will develop 

in close proximity to the compost layer.  
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 Soil porosity, connectivity and soil-pore interface influence the extent of 

colonization of soil by Pseudomonas and Bacillus towards in the 

proximity of the compost layer.  

 

6.2 Material and methods  

This study is divided into two experiments based on the objectives set above. 

Experiment 1 is the agarose experiment, where bacteria were introduced in the 

centre of the soil sample and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. 

After 14 days of incubation, thin sections of samples were prepared to analyse 

the spread of bacteria in the soil. Experiment 2 is referred to as the compost 

experiment, where bacteria were mixed with autoclaved soil. A layer of fresh 

sterilised compost was added in the centre of the soil sample. After 14 days of 

incubation, thin sections of soil samples were prepared to analyse the gradient 

of bacteria towards the compost layer. Details of the experimental design are 

given below. 

 

 Agarose experiment: colonising soil from a local source 6.2.1

6.2.1.1 Inoculum preparation 

The bacterial strain Pseudomonas fluorescens (SBW25) was used in this 

experiment. Agarose pellet was used as a source of inoculum (details in section 

4.2.1). Briefly, 1000 µl of Pseudomonas cell suspension was mixed with 30 ml 

of 1.5% LMP agarose solution in a 50 ml centrifuge tube. For control samples, 

1000 µl of dH20 was mixed with the agarose solution (henceforth referred as 

blank agarose pellet). The mixture was shaken gently to avoid formation of 

bubbles and 15 ml of the solution was poured onto a petridish. The petridish 
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was swirled gently for even distribution of agarose solution. Glass beads of size 

2.0 mm diameter were placed on the semi-solidified agarose and the remaining 

agarose solution was then poured on top. The petridish was left under the 

laminar flow to let the agarose cool down at room temperature and solidify. The 

solidified agarose was then cut down into small cylindrical shaped pellets using 

the wide end of a pipette tip. The bead pellets were 3.5 mm in diameter and 5 

mm in height (Figure 6.1). Each pellet contained a glass bead in its centre. The 

glass beads were used to ensure that the location of inoculation could be 

identified in thin sections as described in sections below. 

 

 

Figure 6.1: Preparation of agarose pellet for inoculation in soil. (a) Glass beads 
are placed in the agarose and a bacterial suspension mixture poured in the 
petridish. After cooling the mixture, individual agarose pellets are prepared. (b) 
Each inoculum pellet  contains one glass bead. The size of each pellet is 3.5 mm. 

 

6.2.1.2 Preparation of soil microcosms 

The soil used in this experiment is described in Chapter 2 (General material and 

methods). Sterilised 1-2 mm sieved soil was used for both experiments. The soil 

was sterilised by autoclaving twice at 121°C and 100 kPa for 20 minutes with a 

24hr interval time. Polyethylene rings of size 3.40 cm3 (diameter 1.70 cm and 

height 1.5 cm). The bottom sides of the rings were covered with three layers of 
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cotton gauze to prevent loss of soil during the impregnation procedure. The 

gauze was fixed with cable ties in different colours indicating the different 

treatments (Figure 6.2).  

 

 

Figure 6.2: Arrangements of soil samples for resin imprengation.The soil rings 
were tied with different color bands in order to easily distinguish between 
treatment samples after impregnation,here shown for an experiment where red 
color stands for soil packed at 1.3 g cm-3, black stands for soil packed at 1.5 g 
cm-3 and white color stands for control samples.  

 

Soil was packed at two bulk-densities, 1.3 and 1.5 g cm-3 with a moisture 

content equivalent to 60% of water filled pores. The amount of water added to 

soil to acquire 60 % water filled pores was 0.224 cm3 g for bulk-density1.3 g cm-

3 and 0.1569 cm3 g for bulk-density 1.5 g cm-3. The amount of soil required to 

pack in PE rings size 3.40 cm3 (diameter 1.70 cm and height 1.5 cm) to attain 

each bulk-density was 5.25 g for 1.3 g cm-3 and 5.71 g for 1.5 g cm-3. Soil was 

poured in rings in two layers, covering half the height each. After packing the 

first half of soil an agarose pellet was placed on top of the soil layer in its centre 

and then covered with the second half of soil. Control samples were packed in a 

similar way but with the blank agarose pellet. Three replicates per treatment 
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were prepared, producing 12 soil microcosms in total. The microcosms were 

sealed in plastic bags to avoid drying of the samples and incubated at 23°C in 

the dark to allow bacteria to grow in soil. The plastic bags were opened and 

closed every alternate day under a sterile bench to enable air exchange. The 

soil microcosms were sampled after an incubation period of 14 days. 

 

6.2.1.3 Impregnation of samples 

The soil microcosms were impregnated with resin as described in chapter 5 

(section 5.3), except for the polymerization time that was reduced to 3 weeks. 

After polymerization, excess resin and the PE rings of samples were removed to 

produce a cylindrically shaped resin impregnated soil sample. The bottom part 

of each sample was removed along with the aluminium gauze and a parallel cut 

was applied to the top using a diamond saw (Woco 50, Conrad, Germany). The 

individual samples were labelled afterwards and a straight vertical cut was made 

to ensure the starting point is the same for all samples while scanning under X-

ray CT.  

 

6.2.1.4 Scanning of impregnated microcosms 

The impregnated samples were scanned using a Metris X–Tek HMX CT 

scanner. Samples were scanned at 10.87 µm resolution with energy settings of 

200 keV and 56 µA and 2000 angular projections. The straight vertical cut was 

used as a reference side facing the gun of the CT scanner for each scan to 

facilitate alignment for image processing described in detail in the following 

sections. To minimize beam hardening a tungsten target with a 0.25 mm 
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aluminium filter was applied. CT Pro v2.1 (NIKON metrology, Tring, UK) was 

used to reconstruct the radiographs into a three dimensional volume. 

 

Reconstruction of radiographs into three dimensional volumes was done using 

Metris X-Tek software CT Pro v2.1 (NIKON metrology, Tring, UK). 

VGStudioMAX V2.2 (Volume graphics, Heidelberg, Germany) was used to 

change contrast in reconstructed volumes and exported into image stacks 

(*bmp format) for further processing. 

  

6.2.1.5 Preparation of thin sections 

To prepare samples for thin sections, the reference side of the soil block was 

glued onto a petrographic slide of size 27 x 46 mm and thickness 0.15 mm 

(Beta diamonds Inc, CA, USA) with epoxy resin (Epofix resin, Struers, 

Denmark). This slide was henceforth referred as reference side (RS).  

 

Two thin sections were prepared parallel to the reference side, one through the 

centre of the glass bead and other 2.5 mm away from the bead (Figure 6.3). An 

estimated distance of each thin section from the reference slide was calculated 

by measuring the distance between the reference side and the glass bead in X-

ray CT grey scale images. A cut was made with a diamond saw (Discoplan TS, 

Struers A/S, Denmark) on the side opposite to the RS to produce a flat plane. 

This plane cut was made in order to glue the sample on a slide for producing 

thin sections. After cutting the block was ground using a diamond coated cup-

wheel grinder (Discoplan TS, Struers A/S, Denmark) to make the surface of the 

sample parallel and subsequently hand polished with a wet abrasive paper 

(P1200, Silicon carbide) on a glass plate in order to remove the grinding 
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material and make the surface smooth. The thickness of the block was 

measured with a micrometer 0-25 mm (accuracy 2 µm; Mitutoyo, Japan) and 

referred to as d3 (i.e. the first section approximately 2.5 mm away from the 

bead) in Figure 6.3. The distance measurement of the selected section from the 

reference side was done for later alignment with the CT scan data. A frosted 

petrographic slide of size 27 × 46 mm (Beta diamonds Inc, CA, USA) was then 

glued (Eukitt, Struers A/S, Denmark) onto the polished surface of the sample 

side and then the block was cut with a diamond saw according to the estimated 

distances to get the first thin section referred to as dIII (Figure 6.3). The dIII slide 

was further ground to approximately 200 µm and subsequently polished. The 

thickness of the sections varied a bit after polishing as some sections had to be 

re-polished to get rid of the grinding material (after checking it under 

microscope).  

 

 

 

Figure 6.3: Schematic of the thin sections selected in samples of the agarose 
experiment. Each thin section was at a distance 2.5 mm from the centre of the 
bead. The green lines represent the area where thin sections were selected. 
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The final thickness of the thin section was measured considering the thickness 

of the slide and the amount of glue added. After removing the first thin section 

(dIII) by cutting, the remaining block was ground again with the cup-wheel 

grinder and subsequently polished as described above. A new frosted slide was 

then glued onto the polished block and the same steps were repeated to make 

another two thin sections. These new thin sections are referred to as dII 

(through centre of bead) and dI (approximately 2.5 mm away from the bead 

towards the reference side); the corresponding distance to the reference side 

was referred to as d2 and d1. The distances d1 and d2 were used to calculate 

the final distances between the surface on the reference side and the surface of 

the sample referred to as d1’ and d2’ respectively (Table 6.1). Due to time 

constraints only thin section dI and dII were used for further analysis; the third 

section was kept as a back-up and to test other staining techniques. 
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Table 6.1: Thickness of thin sections dI and dII per replicate in soil packed at 
bulk-density of 1.3 or 1.5 g cm-3 of agarose experiment: colonising soil from a 
local source. 

 

6.2.1.6 Enumeration of bacteria on thin sections 

A drop of vectashield mounting medium containing approximately 1.5 µg ml-1 of 

DAPI stain (Vectashield H-1200, Vector Laboratories, CA, USA ) was added on 

top of the thin sections and covered with a cover slip of size 27 × 46 mm (Beta 

diamonds Inc, CA, USA). Bacterial cells were counted using an Olympus B×61 

fluorescence microscope (Olympus, Japan) equipped with an 100 W Hg vapour 

lamp (HBO 102 W/2, Osram, Germany), using a 100 × objective (UPlanSApo, 

Olympus, Japan) under UV excitation (filter set U-MWU2, Olympus, Japan). The 

cells were counted using a 10 × 10 reticule grid (12.5 mm; Spectra Services, 

NY, USA) in a 10 × eyepiece (WHN 10×, Olympus, Japan). 

 

Treatments Replicates 
Thickness of thin sections 

(µm) 
dI dII 

Inoculated soil packed at bulk-

density1.3 g cm
-3 

1 109 150 

2 163 155 

3 149 148 

Inoculated soil packed at bulk-

density1.5 g cm
-3

 

1 118 195 

2 160 195 

3 130 119 

Soil without inoculum packed at 

bulk-density1.3 g cm
-3

 

1 112 59 

2 134 90 

3 122 180 

Soil without inoculum packed at 

bulk-density1.5 g cm
-3

 

1 118 184 

2 79 99 

3 71 175 
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Thin section slides were placed in a horizontal position on the microscope stage 

with the bottom side of the sample facing the scale of the microscope stage. The 

scale of the microscope stage was used to note down the X and Y coordinates 

(1 & 2 in Figure 6.4) from the bottom of the sample. This was done in order to be 

able to start, and revisit, from the same spot in each parallel thin section and 

also be able to align it with the other parallel thin sections and the CT scan 

images. In each thin section five lines at a distance of 1 mm were counted. The 

first counting line was based on the centre of the bead and then two lines above 

and below the first line was counted at a distance of 1mm respectively (Figure 

6.4). The first counting spot (i.e. the starting point in Figure 6.4) was 2 mm away 

from the bottom of the sample. Four fields of view (henceforth referred as a 

quadrant) of size 250 µm × 250 µm were counted per spot. The distance 

between each quadrant was 1 mm (Figure 6.5). In total 9 counting spots per line 

in each thin section were counted. The cell counts were extrapolated to cell 

density i.e. cell counts / area of the counting spot.  

 

 

Figure 6.4: Diagrammatic representation of the counting procedure  for the 
agarose experiment. Reference cordinates 1 and 2 were used to estimate the first 
countling line. The blue lines in the diagrams represents the counting line and 
yellow boxes in the represents each quadrant (counting spot). 



Effect of C distribution and soil structure on spread of bacteria 

   175 

 

Figure 6.5: Diagrammatic representation of counting spots (250 µm × 250 µm) 
under the microscope  for the agarose or the compost samples. The blue frame 
represents the microscopic field of view. The number in the box denotes the 
order in which bacteria was counted under each microscopic field of view. 

 

6.2.1.7 Alignment of thin sections and image processing 

To retrieve the same layer from the CT image stacks (thin section) that was 

used for quantifying bacteria, stereomicroscopic images of each thin section 

analysed for bacteria were taken. Also, the distance of each thin section from 

reference side measured earlier (in section 6.2.1.3) was used. The selection of 

each layer (thin section) from the CT image stacks was done by matching it by 

eye with the stereomicroscopic image (Figure 6.6). 

 

  

Figure 6.6: An example of alignment of a stereomicroscope images (a) and a CT 
images (b). The circle in the middle is the glass bead represnting the point of 
inoculation. 
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The selected image was then imported into ImageJ to crop the region of 

interest. The cropped region of interest resembles the same area where 

counting of bacteria was done in each thin section. Region of interest of each 

thin section was then thresholded using an in-house developed indicator kriging 

method (Houston et al.,2013)  

 

To analyse the pore structure in 3D, the surrounding area from all ends for each 

quadrant (counting spot) was considered. Therefore, each counting spot for 

structural analysis was 1 mm in size. Since 1 voxel was 10.87 µm, each 

quadrant was 92 voxels in size. A macro was recorded in ImageJ to crop all the 

quadrants in each thin section. In-house developed software was used to 

quantify porosity, connectivity and surface area of the pores (Houston et al., 

2013).  

 Compost experiment: colonising a local nutrient source from soil 6.2.2

6.2.2.1 Bacteria inoculum preparation 

The strains used in this experiment were the wild type Pseudomonas 

fluorescens (SBW25) and Bacillus subtilis (DSM10). An overnight culture of both 

strains (details in section 2.3.1) was suspended in 10 ml of sterile PBS solution. 

This suspension was inoculated in soil as described below. Compost 

(Kompostierung Nord GmbH, Bremen, Germany) was used as a nutrient source 

in this experiment. The compost was "fine compost" with 0.90 % N, 0.25 % P, 

0.50 % K, pH 6.9, organic matter 24.0 %, total carbon content 14.0 % and total 

nitrogen 1.05 %. The compost was sterilised twice by autoclaving at 121°C and 

100 kPa for 20 minutes with a 24hr interval time. 
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6.2.2.2 Preparation of soil microcosms 

The soil and PE rings used in this experiment were the same as those 

described for the Agarose experiment (section 6.2.1.2). Soil was packed at a 

bulk-density1.3 g cm-3 with moisture content equivalent to 50 % water filled 

pores. To obtain 50 % water filled pores, 0.1587 cm3 of water was added per 

gram soil. The amount of soil required to pack in PE rings at bulk-density 1.3 g 

cm-3 was 4.22 g. The soil was then inoculated with 500 µl of bacterial 

suspension, mixed well and divided into two halves for packing. For control 

samples, soil was inoculated with 500 µl of sterile dH20 instead of bacteria 

inoculum. Soil was poured in PE rings in two halves. After packing the first half 

of soil, 1 g of autoclaved compost layer was added and then remaining soil was 

added and packed at the desired bulk-density. Control samples were packed 

the same way. Three replicates per treatment were prepared, producing 9 soil 

microcosms in total. Microcosms were sealed in plastic bags to avoid drying of 

samples and incubated at 23°C in the dark. The plastic bags were opened and 

closed every alternate day for air exchange under a sterile bench. The soil 

microcosms were sampled after an incubation period of 14 days.  

 

6.2.2.3 Impregnation of samples 

Impregnation of samples was done in similar way as for the agarose samples 

(details in section 6.2.1.3). 

 

6.2.2.4 Scanning of impregnated microcosms 

Compost samples were scanned with the same settings as for the agarose 

samples (details in section 6.2.1.4). 
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6.2.2.5 Preparation of thin sections 

The reference side of the block was glued onto a petrographic slide with epoxy 

resin as done for agarose samples. The blocks on the reference slides were cut 

down to 8 mm thickness with a diamond saw (Discoplan TS, Struers A/S, 

Denmark). The block on the reference slide was ground using a diamond coated 

cup-wheel grinder (Discoplan TS, Struers A/S, Denmark) to make the surface of 

the sample parallel and subsequently hand polished with a wet abrasive paper 

(P1200, Silicon carbide) on a glass plate in order to remove the grinding 

material and make the surface smooth. The thickness of the block was 

measured with a micrometer 0-25 mm (accuracy 2 µm; Mitutoyo, Japan) and 

referred to as d2 (i.e. the first section towards the centre of the block) in the 

figure 6.7. The distance measurement of the selected section from the reference 

side was done for later alignment with the CT scan data. A frosted petrographic 

slide of size 27 × 46 mm (Beta diamonds Inc, CA, USA) was then glued (Eukitt, 

Struers A/S, Denmark) onto the polished surface of the sample side and then 

the block was cut as close to the frosted slide as possible to get the first thin 

section referred to as dII (Figure 6.7). The dII slide was further ground to 

approximately 200 µm and subsequently polished. The thickness of the sections 

varied a bit after polishing as some sections had to be re-polished to get rid of 

the grinding material (after checking it under microscope). 
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Figure 6.7: Schematic representation of the thin sections selected in samples of 
the compost experiment. The distance between two thin sections was kept 2.5 
mm. The green lines represent the area where thin sections were selected. 

 

The final thickness of the thin section was measured considering the thickness 

of slide and amount of glue added. After removing the first thin section (dII) by 

cutting, the remaining block was ground again with the cup-wheel grinder and 

subsequently polished as describes above. A new frosted slide was then glued 

onto the polished block and the same steps were repeated to make another thin 

section. This new thin section was referred to as dI; the corresponding distance 

to the reference side was referred to as d1. The distances d1 and d2 were used 

to calculate the final distances between the surface on the reference side and 

the surface of the sample referred to as d1’ and d2’, respectively. The thickness 

of each thin section was measured (table 6.2). 
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Table 6.2: Thickness of thin sections dI and dII per replicate in soil inoculated 
with Pseudomonas or Bacillus in soil packed at a bulk-density1.3 g cm-3 the of 
compost experiment. 

 

6.2.2.6 Enumeration of bacteria on thin sections 

The quantification of bacteria in compost samples was done in the same way as 

the agarose samples except for the selection of first counting line. For compost 

samples, the first counting line was always from the centre of the section based 

on the coordinates 1 & 2 (Figure 6.8), perpendicular to the layer of compost. 

Also, the first counting spot (starting point in Figure 6.4b) was 1 mm away from 

the bottom of the sample. 

Treatments Replicates 
Thickness of thin sections (µm) 

dI dII 

Soil inoculated with 

Pseudomonas fluorescens 

1 112 146 

2 126 167 

3 144 243 

Soil inoculated with Bacillus 

subtilis  

1 54 141 

2 169 156 

3 147 157 

Soil inoculated with dH20 

(Control) 

1 160 182 

2 108 191 

3 174 113 
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Figure 6.8: Diagrammatic representation of counting procedure  for the compost 
experiment. Reference cordinates 1 and 2 in the diagrams are used to estimate 
the first countling line. The blue lines in the diagrams represents the counting 
line and yellow boxes  represent the  quadrants (counting spots). 

 

6.2.2.7 Alignment of thin sections and image processing 

The alignment of thin sections and selection of region of interest was done in a 

similar manner as for the agarose samples (section 6.2.2.7) (Figure 6.9).  

 

 

Figure 6.9: An example of alignment of stereomicroscope images (a) and a  CT 
image (b). The dark material in the centre (white arrrow) is the layer of compost.  

 

For the compost experiment, voxels containing compost were excluded from 

analysis of soil structure, as the grey-scales of compost were distinct from other 



Effect of C distribution and soil structure on spread of bacteria 

   182 

solids and inclusion of compost led to wrong identification of solid and pores as 

the analyses methods have been developed only for 2-phase systems. Since 

the compost layer was irregularly distributed, some quadrants had a mixture of 

soil and compost. Spots where the proportion of compost was higher than soil 

were excluded from the analysis as these would lead to erroneous estimates 

(Figure 6.10). Each of the remaining quadrants was then cropped to a size 93 x 

93 x 93 voxels as for agarose samples. 

 

Figure 6.10: An example of how the compost layer is defined in thin sections for 
pore characteristics analysis. The compost layer was exculded from the pore 
characteristics analysis.  
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 Statistical analysis 6.2.3

Statistical analysis was performed using SPPS version 22. A mixed effect linear 

model (assuming normal distribution) was used to investigate differences in soil 

structure properties for different treatments. To comply with the normality 

assumption the porosity and connectivity measures were transformed using the 

probit function. The soil-pore interface measures met the normality assumption; 

hence they did not require any preliminary transformation. A generalised mixed 

effect Poisson model with log link function was used to investigate significant 

difference in bacterial cell density between different treatments with thin 

sections and treatments as fixed factor. The effect of soil structure properties 

such as porosity, connectivity and soil-pore interface on the extent of spread of 

bacteria was also analysed by a Poisson model with thin sections as a fixed 

factor. The size of each quadrant was introduced as an offset variable in the 

Poisson model. 

 

6.3 Results 

 Agarose experiment: colonising soil from a local source 6.3.1

6.3.1.1 Effect of bulk-density on bacterial cell densities in thin sections 

6.3.1.1.1 Visualization of Pseudomonas cells in soil thin sections 

 

Under UV excitation with the DAPI filter set, black quartz particles were 

surrounded with clay and organic particles. Pseudomonas cells stained with 

DAPI appeared bright blue in colour against a brown coloured soil background. 

The black quartz particles surrounded the organic matter and clay particles. The 
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pore area filled with resin appeared blue in colour under UV excitation. 

Inoculated Pseudomonas cells appeared bright blue in colour and were 

scattered either on the soil matrix or at soil-pore interface. It was easy to 

distinguish Pseudomonas cells from some of the autofluorescent soil 

components as they appeared yellowish in colour. Pseudomonas was observed 

as single cell or in small colonies on soil aggregates (Figure 6.11). 

 

 

Figure 6.11: DAPI stained Pseduomonads cells in lower (a) and higher (b) bulk-
density soil thin sections of the agarose experiment. Bacterial cells are bright 
blue in colour, Scale bar 20 µm. 

 

For a visual comparison of the extent of Pseudomonas spread in soil packed at 

different bulk-densities, spatial maps (definition in M&M) of cells counted at 

each quadrant of a thin section were prepared (Figure 6.12).The spatial maps 

showed an effect of bulk-density on the spread of Pseudomonas cells. Both soil 

densities showed a substantial variability at the micro-scale with wide ranging 

bacterial densities. Pseudomonas cells ranged from 0 to 33 cells per quadrant 

in soil with low bulk-density and from 0 to 23 cells per quadrant in soil with high 

bulk-density. In control samples, bacterial cells ranged from 0 to 11 in soil with a 

low bulk-density and 0 to 6 in soil with a high bulk-density. It was evident from 

Clay-humus 

complex 

Bacteria Quartz 

Pore 

Bacteria 
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spatial maps that Pseudomonas cells spread further from the from the source of 

inoculum in soil packed at 1.3 g cm-3 compare to soil packed at 1.5 g cm-3, as is 

evidenced by the higher numbers at distances away from the inoculum. Some 

quadrants were observed to be completely devoid of cells. The proportion of 

quadrants with empty cells was greater in soil packed at 1.5 g cm-3 compare to 

soil packed at 1.3 g cm-3 (Figure 6.12a).  
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Figure 6.12: Spatial maps of Pseudomonas cell counts in soil packed at lower (a, 
c) and higher (b, d) bulk-density. Examples of cell counts in thin sections dI (a, b) 
and dII (c, d) of one replicate are presented. Each box represents one quadrant. 
The grey scale bar represents the range of bacterial cell counts. Scale bar 10-13 
mm.  
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6.3.1.1.2 Quantification of Pseudomonas cells in soil thin sections 
 

On average, bacterial cell density was 42 % higher in soil with the lower bulk-

density (P<0.001) with 174 (s.e 6.3) cells mm-2, compared to soil packed at the 

higher bulk-density which had a bacterial density of 99 (s.e 4.3) cells mm-2 

(Figure 6.13). In control samples, bacterial cell density was 26 (s.e 4.3) cells 

mm-2 for soil packed at bulk-density 1.3 g cm-3 and 14 (s.e 1.1) cells mm-2 for 

soil packed at bulk-density 1.5 g cm-3. In both treatments, bacterial cell density 

in control samples was significantly (P<0.001) lower than for samples 

inoculated with Pseudomonas bacteria.  

                 

Figure 6.13: Mean bacterial cell density at different distance from the source of 
inouclum in lower 1.3 g cm-3 (a) and higher 1.5 g cm-3 (b) bulk-density soil. Data 
are mean ± SE (n=3). 

 

Mean cell density was significantly (P<0.001) higher in thin sections closer to 

the inoculation point source compared to the other thin sections that were at a 

further distance (Figure 6.14). On average, bacterial cell density in thin section 

dII were 212 (s.e 10.0) cells mm-2 for soil packed at 1.3 g cm-3 and 107 (s.e 5.7) 
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cells mm-2 for soil packed at 1.5 g cm-3 compare to thin section dI where it was 

136 (s.e 6.2) cells mm-2 for soil packed at 1.3 g cm-3 and 92 (se 6.3) cells mm-2 

for soil packed at 1.5 g cm-3. The difference in mean cell density between two 

thin sections was 36 % in lower bulk-density soil and 14 % for soil packed at 

bulk-density 1.5 g cm-3. The most likely explanation for this is that section dI is 

further removed from the inoculum than section dII. Therefore, these results 

confirm that Pseudomonas cells dispersed further from the inoculation point 

source in soils packed at 1.3 g cm-3 compare to soil packed at 1.5 g cm-3.  
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Figure 6.14: Mean bacterial cell density at different distances from the source of 
inouclum in lower (a) and higher (b) bulk-density soil. Data are mean ± SE (n=3). 
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6.3.1.2 Effect of bulk-density on pore geometry of soil  

Pore geometry of soil packed with different bulk-densities was analysed at the 

microscale (i.e. each quadrant) in 3D. Porosity of the analysed area ranged 

from 0-100 %, soil connectivity ranged from 0-100 % and the soil-pore interface 

ranged from 0-10 mm2 for soil packed at bulk-density1.3 g cm-3 and 0- 7 mm2 

for soil packed at bulk-density 1.5 g cm-3 (Figure 6.14 & 6.15). Between different 

bulk-density treatments, the average porosity of soil packed at bulk-density 1.3 

g cm-3 was higher with 24 (s.e 0.01) % compare to soil packed at higher bulk-

density 1.5 g cm-3 with 22 (s.e 0.01) %, the difference was not significant (p= 

0.389). The connectivity of pores also showed no significant (p= 0.456) 

difference between the two treatments, with an average connectivity of 84 (s.e 

0.01) % for soil packed at a lower bulk-density and 83 (s.e 0.01) % for soil 

packed at higher bulk-density. Average soil-pore interface significantly (p= 

0.000) declined with increasing bulk-density from 4.86 (s.e 0.09) % in soil 

packed at lower bulk-density to 3.68 (s.e 0.06) % in soil packed at higher bulk-

density.  

 

6.3.1.3 Influence of soil pore geometry on the extent of Pseudomonas 

spread in soil  

Cell density of Pseudomonas was plotted against soil porosity, connectivity and 

soil-pore interface of each quadrant for each bulk-density treatment (Figure 6.14 

& 6.15). The porosity of the quadrants ranged from 0-100 % with the majority 

having porosity between 0-40 %. The pore connectivity value ranged from 0-

100 % with the majority of the quadrants having a connectivity of either 0 % or a 

connectivity between >85 %.The soil-pore interface ranged from 0-10 mm2 with 
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the majority of the quadrants having a soil-pore interface between 2-7 mm2 for 

soil packed at 1.3 g cm-3 and 2- 5 mm2 for soil packed at 1.3 g cm-3 (Figure 6.14 

&6.15). 

 

Some of the soil pore geometry characteristics showed an effect on the extent 

of Pseudomonas spread in both bulk-density treatments. The p-value of each 

treatment is listed appendix III. Soil porosity (p=0.001) and soil-pore interface 

(p= 0.000) significantly affected the spread of Pseudomonas in soil packed at 

the lower bulk-density. Where soil was packed at a higher bulk-density, soil-

pore interface (p= 0.001) significantly affected the spread of Pseudomonas in 

soil, but soil porosity didn’t (p= 0.264). In both bulk-density treatments, 

connectivity of pores showed no significant effect (p= 0.565 for 1.3 g cm-3 and 

p= 0.165 for 1.5 g cm -3) on the spread of Pseudomonas in soil. 
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Figure 6.15: Relationship of Pseudomonas cell density with soil porosity, 
connectivity and soil-pore interface in soil thin sections packed at bulk-
density1.3 g cm-3. Each data point in the graph represents one quadrant 
(counting spot) analysed in each replicate of a thin section. 
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Figure 6.16: Relationship of Pseudomonas cell density with soil porosity, 
connectivity and soil-pore interface in soil thin sections packed at bulk-
density1.5 g cm-3. Each data point in the graph represents one quadrant 
(counting spot) analysed in each replicate of a thin section. 
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 Compost experiment 6.3.2

6.3.2.1 Bacteria cell density gradient in thin sections 

6.3.2.1.1 Visualization of bacteria in soil thin sections 

 

Both Pseudomonas and Bacillus cells in inoculated samples appeared bright 

blue in colour against the soil and compost background under a UV excitation 

filter. Figure 6.17 shows an example of the distribution of Pseudomonas cells in 

different regions of compost layer. The compost layer appeared brownish black 

in colour and some materials in compost exhibited very high autofluorescence 

(Figure 6.17a). Due to this high autofluorescence it was difficult in some areas 

to detect bacterial cells in compost layer. 

 

 

Figure 6.17: DAPI stained Pseudomonas cells in compost layer of soil thin 
sections. Examples of very few (a) to high (b) colonisation of cells in compost 
layer of soil, scale bar 20 µm. The bright stripes (a) are some materials in the 
compost layer that exhibit very high autofluorescence. 
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Figure 6.18 shows spatial maps of Pseudomonas and Bacillus cells counted at 

each quadrant for visual comparison of the cell density distribution with respect 

to the compost layer. In compost layer, cell counts ranged between 0-48 cells 

per quadrant for Pseudomonas and 0-41 cell per quadrant for Bacillus bacteria. 

Some of the quadrants were devoid of cells. From the spatial maps it can be 

seen that Pseudomonas inoculated samples showed more colonization in the 

compost layer (Figure 6.18a) as compared to Bacillus inoculated samples 

(Figure 6.18b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Spatial maps of Pseudomonas (a) and Bacillus cell counts (b) in 
compost experiment. Examples of cell counts in thin sections dII of one replicate 
are presented. Each box represents one quadrant. The brace indicates the 
compost layer in each thin section. The grey scale bar represents the range of 
bacterial cell counts. Scale bar 14 mm   

Compost layer 

Compost layer 



Effect of C distribution and soil structure on spread of bacteria 

   196 

6.3.2.1.2 Quantification of bacterial cells in soil thin sections 
 

Figure 6.19 shows the mean cell density in the compost and soil layer of 

Pseudomonas or Bacillus inoculated samples. Mean cell density of 

Pseudomonas was 71.6 (s.e 9.5) cells mm-2 and Bacillus was 56.9 (s.e 9.3) 

cells mm-2 in the compost layer. Whereas in soil layer mean cell density of 

Pseudomonas was 194 (s.e 13.5) cells mm-2 and Bacillus was 85 (s.e 5.4) cells 

mm-2 in soil layer. Although the mean cell density in the compost layer was 

lower compared to the soil layer in both inoculated treatments, the difference 

was significant (p= 0.001) only in Pseudomonas inoculated samples. In control 

samples, cell density was 17 (s.e 1.9) cells mm-2 in the soil layer and 13 (s.e 

1.3) cells mm-2 in compost layer. The mean cell density was significantly lower 

(p= 0.00) in control samples in compost layer compare to the inoculated 

samples. 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Mean bacterial cell density in compost (light grey) and soil (dark 
grey) inoculated with Pseudomonas(1) , Bacillus (2) and control soil samples (3). 
Data are mean ± SE (n=3). 
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Figure 6.20 shows the cell density gradient of Pseudomonas and Bacillus at 

different distances from soil towards the compost layer. The cell density of both 

inoculated treatments was quite variable at different distances towards the 

compost layer. For example, at 0 mm Pseudomonas cell density was 220 (s.e 

41.7) cells mm-2 at 0 mm, 194 (s.e 25.0) cells mm-2 at 1 mm, 239 (s.e 35.2) cells 

mm-2 at 2 mm and 215 (s.e 36.2) cells mm-2 at 3 mm distance from the compost 

layer. In case of Bacillus inoculated treatment , cell density was 95.5 (s.e 14.2) 

cells mm-2 at 0 mm, 113 (s.e 14.7) cells mm-2 at 1 mm, 91 (s.e 14.2) cells mm-2 

at 2 mm, 91 (s.e 12.2) cells mm-2 at 3 mm and 103 (s.e 24.4) cells mm-2 at 4 

mm distance from the compost layer. This difference in the gradient of cell 

density, however, was not significant in either inoculated treatment. Therefore, 

within the range of distances investigated no evidence of bacterial cell gradient 

towards the compost layer was observed.   
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Figure 6.20: Mean bacterial cell density in soil at different distances from the 
compost layer for Pseudomonas (a) or Bacillus (b) inoculated soil samples. Data 
are mean ± SE (n=3).  
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6.3.2.2 Influence of soil pore geometry on the spread of bacteria compost 

in soil 

Cell density was plotted against soil porosity, connectivity and soil-pore 

interface of each quadrant for Pseudomonas and Bacillus inoculated treatment 

(Figure 6.21 & 6.22). The porosity of the quadrants ranged from 0-90 % with the 

majority having porosity between 0-30 %. The pore connectivity value ranged 

from 0-100 % with the majority of the quadrants having a connectivity either at 0 

% or between 95-100 % .The soil-pore interface ranged from 0-10 mm2 with the 

majority of the quadrants having a soil-pore interface between 1-5 mm2. Pore 

characteristics showed significant (p<0.05) effect on the spread of towards 

compost in soil. The p-value of each treatment is listed in appendix III. Soil 

porosity and connectivity were observed to influence the distribution of 

Pseudomonas (p= 0.000 for porosity, p= 0.000 for connectivity) and Bacillus (p= 

0.000 for porosity, p= 0.003 for connectivity) in soil. Soil-pore interface 

significantly influenced the distribution of Pseudomonas (p= 0.000) inoculated 

samples.  
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Figure 6.21: Relationship of Pseudomonas cell density with porosity, 
connectivity and soil-pore interface. Each data point in the graph represents one 
quadrant (counting spot) analysed in each replicate of a thin section. 
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Figure 6.22: Relationship of Bacillus cell density with porosity, connectivity and 
soil-pore interface. Each data point in the graph represents one quadrant 
(counting spot) analysed in each replicate of a thin section. 
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6.4 Discussion 

In this chapter the influence of soil pore geometry on the spatial spread of 

bacteria towards and away from localised nutrients in soil was investigated. The 

experimental set up was different in both the cases but the incubation time and 

analysis method was the same. Significant colonisation of Pseudomonas from a 

local source into soil was observed. However, no significant colonisation of 

Pseudomonas and Bacillus from soil into a compost layer was observed.  

 

 Agarose experiment: colonising soil from a local source 6.4.1

In this experiment, the introduction of bacteria in the form of agarose pellet into 

soil has been proposed as way to introduce bacteria in solid form. Because 

some amount of water is already present in soil, additional liquid suspension of 

bacteria inoculum would influence spread of introduced bacteria in soil, as water 

movement would occur and lead to redistribution of bacteria immediately after 

introduction. The effect of this was discussed in Chapter 4. The introduction of a 

localised source of inoculum and nutrients resulted into dispersion of bacteria 

into the soil. From the spatial maps of both treatments (Figure 6.10) it was 

evident that Pseudomonas cells had colonized the surrounding soil area. A 

plausible explanation for this is that Pseudomonas exhibited chemotactic 

responses towards the nutrient present in the soil, as the source of inoculation 

was nutrient poor compared to the soil. The spatial map showed variability in 

cell counts range at different distances from the inoculation point. This could be 

due to the concentration of nutrients available in different region of soil, e.g. 

nutritional heterogeneity at microscopic scales, but it may also reflect different 

pathways for spread. Sood (2003) showed higher numbers of Pseudomonas 
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fluorescens cells attracted towards substances exuded by vesicular-arbuscular 

mycorrhizal roots compared to non-vesicular arbuscular mycrorrhizal roots. 

Higher response of Pseudomonas fluorescens WCS365 towards substances 

from root exudates of tomato was also observed by Weert et al. (2002). They 

showed P. fluorescens was attracted towards some organic acids and amino 

acids in root exudates of tomato. Another study by Neal et al. (2012) showed 

similar high chemotactic response of Pseudomonas putida towards metabolites 

from roots exudates of maize roots. A difference in the spread rate of bacteria 

between two treatments was also observed. This could be due to the pore 

geometry distribution as the amount of bacteria added in both treatments was 

the same. A difference in average cell counts between two treatments was also 

observed in dispersed samples. Pseudomonas numbers were also estimated in 

dispersed samples to determine the proportion being analysed in thin sections 

(appendix II). The cell counts in the dispersed samples were more than that 

analysed in thin sections. In soil packed at lower bulk-density cell counts was 

7.90E+07 (s.e 9.58E+06) cells per g of soil in dispersed samples and 3.35E+06 

(s.e 1.21E+05) cells per g of soil in thin sections and, in soil packed at higher 

bulk-density cell counts was 4.53E+07 (s.e 5.03E+06) cells per g of soil in 

dispersed samples and 2.21E+06 (s.e 9.45E+04) cells per g of soil in thin 

sections. This difference in cell counts in thin sections could be either due to 

insufficient staining of Pseudomonas cells in thin sections or detection of cells 

would have been harder due to high autofluorescence in soil. Another reason 

could be that the cells were in highly clustered which made it difficult to 

differentiate how many cells were present in that region. 
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Bacterial numbers showed high variability in the distribution of bacteria at 

different distances from the inoculation point. The number of bacteria was 

higher in the thin section closer to the inoculation point compared to the other 

one in both treatments. This may be because the distance to access nutrients in 

soil was shorter in thin section dII compared to thin section dI. A study by 

(Nunan et al, 2002) also showed a high degree of aggregation of bacterial cells 

in surface soil compared to subsoil. Another study by (Dechesne et al., 2005) 

also found a high variability in distribution of introduced bacteria Pseudomonas 

putida in soil columns. Another reason may also be that by the sampling time, 

bacteria might have grown and colonised this section more than the other 

section. Bacterial numbers were estimated (by CARD-FISH) in dispersed 

samples of both treatments showed an increase in cell counts on day 14 

compare to day 1. For example, Pseudomonas cell counts increased from 

7.33E+07 (s.e 5.11E+06) on day 1 to 1.37E+08 (s.e 2.04E+08) on day 14.  

Among the two treatments, the hypothesis that increasing bulk-density would 

affect the spread rate of bacteria in soil did apply, and a decrease in the spread 

of bacteria with increasing bulk-density was observed. This result confirms the 

findings in chapter 3 where a decrease in growth rate of bacteria overtime with 

increasing bulk-density was observed. As mentioned in chapter 3, this 

difference could be due to alterations in soil pore geometry which limited the 

access of bacteria to nutrients in soil. The pore geometry of each quadrant 

where bacteria were counted was also analysed. Results showed that only 

connectivity and soil pore interface area of pores was affected with increasing 

bulk-density. Soil porosity of both bulk-densities was quite similar. This may be 
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because the pores analysed here were limited to the scanning resolution (i.e. 

only pores greater than 10.87 µm were analysed here).  

 

To investigate if the pore geometry did influence the spread rate of bacteria in 

soil, pore characteristics of each quadrant (where bacteria was enumerated) 

were analysed at microscale (for definition see chapter 5 2.3). Soil porosity 

showed a significant influence on the extent of Pseudomonas spread only in soil 

packed at lower bulk-density. The exact reason for this difference is unknown 

as no significant difference in porosity between these two treatments at 

microscale was observed. One reason could be that pores observed here are 

just the percent of pores >10.87 µm and there must be more volume of pores in 

soil packed at lower bulk-density compare to soil back at higher bulk-density. 

Another reason can be that the pores detected here are air-filled pores whereas 

majority of bacteria are located in water filled pores. No significant influence of 

pores connectivity with bacterial cell density was observed in both treatments. 

This could be explained by the fact that the majority of visible pores analysed 

here were highly connected. Some bacterial cell density was observed in 0 % 

connected pores This may appear counterintuitive, as connectivity is required 

for bacteria to move, but it is possible that these pores are connected through 

pores below the scanning resolution limitation, but large enough for bacteria to 

move through. A significant influence of soil-pore interface of pores on bacterial 

cell spread rate was observed in both lower and higher bulk-density treatment. 

A plausible explanation for this is that nutrients might have been readily 

available to bacteria as they are transported through soil and, therefore, 

bacteria might have colonised near the vicinity of these pores. Therefore, in the 

present study some of the soil pore characteristics like porosity and soil-pore 
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interface showed significant influence on the extent of bacteria spread in soil at 

microscale.  

 

 Compost experiment: colonising local nutrient spot from soil 6.4.2

In this experiment, the objective was to study the extent of spread of bacteria 

towards a higher nutrient (carbon) source in soil. Compost was chosen as a 

natural form of nutrient source as addition of compost to soil is known to 

stimulate microbial activity and enhance soil fertility (Pérez-Piqueres et al., 

2006; Ros et al., 2006; Bastida et al., 2008). Analysis of sterilised soil and 

compost used in the present study showed that the amount of total C and 

Organic matter in compost was 77 % higher than in the soil. This shows that the 

compost was higher in nutrient source compare to soil and theoretically bacteria 

should show a sharp gradient towards the higher nutrient source in soil. 

However, chemotactic response of bacteria could be either towards or away 

from the organic components present in the compost layer. In this study, two 

different type of bacterial strain was used to investigate the chemotactic 

response of individual bacteria towards compost and whether the pore 

characteristics influenced the spread of these bacteria towards compost in the 

soil microcosms.  

 

The spatial maps showed colonization of both Pseudomonas and Bacillus in 

compost layer. However, the mean cell density of both bacterial strains was 

higher in the soil layer compare to the compost layer. Also, there was no 

gradient in cell density of either bacteria towards the compost layer. This was 

most likely due to sampling time, as bacteria might have spread and colonized 

the compost layer from chapter 4 it was observed that Pseudomonasand 
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Bacillus spread further within 2-3 days and by the sampling time most of the 

bacterial cells were dead. This results is opposite to that observed by Gaillard & 

Chenu (1999), who found high abundance of microorganisms near the wheat 

straw in soil cores over several millimetres. Chenu et al. (2001) also showed 

that addition of substrate on surface of aggregate induced a large number of 

bacteria and fungi in soil aggregates. But the incubation time of their study was 

much shorter (2 days) compare to the present study where it was 14 days.  

 

Among the two strains, Bacillus strains showed no significant difference in cell 

density between compost and soil layer. The most plausible justification for this 

result is that there were some organic compounds in the compost layer which 

either attracted (as in case of Bacillus) or prevented the spread of bacteria (as 

in case of Pseudomonas) towards compost. There have been some studies 

who looked at response of bacterial communities on addition of different type of 

compost in soil and the results showed that not all type of compost favoured 

increase in bacterial abundance in soil (Perez-Piqueres et al. , 2006; Bastida et 

al., 2008).  

 

To see if the soil pore geometry influenced the spread of bacteria towards the 

compost layer, different pore characteristics like porosity, connectivity and 

surface area of pores of each counting spot was quantified. Soil porosity and 

connectivity of pores significantly influenced spread of Pseudomonas and 

Bacillus bacteria towards the compost layer. This was because soil was packed 

at a lower bulk-density; the sample was porous with highly connected pores 

which allowed further spread of bacteria towards compost layer. An influence of 

soil porosity and connectivity of pores on decomposition of added substrate was 
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observed by some studies (Haling et al. 2013; Negassa et al. 2015). For 

example, Hailing et al. (2013) observed that samples with higher bulk-density 

(lower porosity) showed slower decomposition of plant roots added to soil. 

Negassa et al. (2015) also showed that decomposition of added plant residue 

was affected by pore size distribution and connectivity of pores. One pore 

characteristic that significantly influenced the spread of Pseudomonas bacteria 

only was soil-pore interface area. Note that in both treatments, soil was packed 

at the same bulk-density, so there was no difference in the pore characteristics 

between the two samples. Therefore, this difference of soil-pore interface on 

spread of bacteria can be related to growth and spread rate difference between 

Pseudomonas and Bacillus bacteria.  

 

6.5 Conclusion  

In this study, the rate of spread of bacteria towards a nutrient source was 

determined. In the first part of the study a difference in spread of bacteria from a 

local source towards nutrient sources inherent in natural soil was revealed in 

soil packed at different bulk-densities. The rate of spread of bacteria was faster 

in soil packed at lower bulk-density compare to soil packed at higher bulk-

density. Analysis of X-ray images of thin sections of samples packed at lower 

and higher bulk-density revealed that the rate of spread of bacteria was 

influenced by the soil-pore interface of pores. The second part of the study 

revealed no significant difference in bacterial density gradient of Pseudomonas 

and Bacillus towards compost (high nutrient source) from soil (low nutrient 

source). This suggests that not all types of plant growth promoting bacteria are 

attracted towards compost added in soil.  
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7.1 Approaches and Key Findings 

The main objective of this thesis was to evaluate the influence of soil structure 

on growth and spatial distribution of introduced bacteria. Throughout this thesis 

techniques were integrated e.g. X-ray CT to characterize the 3D soil structure 

and Fluorescence microscopy to visualize and quantify bacteria in 2D thin 

sections of soil. Different experimental approaches were also used to inoculate 

bacteria in soil, either as inoculum suspension (chapter 3 & 5) or as inoculum 

bead (chapter 4 & 6) in order to assess bacterial growth and spread in soil. 

Bacteria inoculum was mixed with soil in the first experiment (Chapter 3) to 

assess the growth rate of Pseudomonas and Bacillus in soil with different 

structures. A method was developed (Chapter 5) to determine the spatial 

distribution of introduced bacteria in soil at different spatial scales. The method 

developed in chapter 5 was subsequently applied to investigate the effect of 

pore characteristics on the rate of bacterial spread towards nutrient source at 

microscale. The effect of different structures on the ability of bacteria to spread 

towards a nutrient source was then determined using this method.  

From the findings of this study I conclude that soil pore geometry is important 

growth and distribution of bacteria in soil. 

A summary of the key findings of this thesis are:  

 Increasing bulk-density significantly decreased the porosity, connectivity 

and soil-pore interface of pores. This means that the pore geometry can be 

experimentally controlled in soil microcosms.   

 Increasing bulk-density decreased the growth and spread of bacteria in soil. 

A higher rate of growth and spread of bacteria was found in soil that was 

highly porous with large connected pores volumes.  
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 Growth rate and spread of bacteria was influenced more by bulk-density 

than aggregate sizes as increasing bulk-density caused a decline in the 

number of connected pores and in pore volume. 

 The influence of bulk-density and aggregate sizes on growth rate and the 

extent of spread differed between Pseudomonas and Bacillus.  

 The influence of pore characteristics on the distribution of Pseudomonas 

and Bacillus varied between different analysed spatial scales (macroscale 

and microscale). This shows the need of analysing at an appropriate 

bacterial habitat scale as the effect of structure on distribution of bacteria is 

different at macro- and microscale.  

 The influence of soil porosity, pore connectivity and soil-pore interface of 

pores on the spatial on distribution varied between Pseudomonas and 

Bacillus. This is because the rate of growth and extent of spread was 

different between the two selected bacteria. This shows how the distribution 

can vary between individual bacteria at the pore scale. 

 Soil porosity, pore connectivity and soil-pore interface of pores influenced 

the extent of bacterial spread towards nutrient source in soil. The extent of 

spread and colonization was further in soil with highly connected pore 

volumes. 

Therefore, the thesis highlights the importance of soil physical conditions in 

microbial studies. Nevertheless these are hardly ever reported in the literature. 

Also, the thesis showed how different experimental techniques can be 

combined to understand microbial distribution in a 3D soil environment. This is 

the first time such a combination of techniques is used.  
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 Influence of soil structure on pore geometry 7.1.1

X-ray CT was used throughout all experimental work to determine the soil 

structure non-invasively within intact soil samples. In this thesis, this technique 

was used to visualize and quantify pores and its characteristics. The 

characteristics of pores like porosity, connectivity and soil-pore interface were 

considered to be of particular interest as they control the gas exchange, water 

and nutrient distribution in soil (Crawford et al. 2005). Chapter 3 investigated the 

effect of different bulk-density and aggregate size on pore geometry in soil 

microcosms. Bulk-density and aggregate sizes are used as experiment 

variables but the way they affect pore geometry was still unknown. The results 

showed that increasing bulk-density significantly decreased the porosity and 

connectivity of soil pores. Soil packed at a bulk-density of 1.6 g cm-3 had the 

lowest porosity with 40 % less connected pores compare to soil packed at lower 

bulk densities. This is because at higher bulk-density soil is more compact 

which causes reduction in void space by rearrangement of soil aggregates 

closer to each other. The present results confirm the findings of other 

researchers that have also shown the effect of compaction on soil pore 

geometry (Frey et al. 2009; Beylich et al. 2010; Kim et al. 2010). Nawaz et al. 

2013 in their review showed how the use of heavy machineries in conventional 

agricultural practices causes compaction of soil which modifies the structure of 

soil by increasing the bulk-density, altering the geometry of soil pores and 

increasing the soil strength. Effect of increasing aggregate size on the pore 

geometry system was also investigated (chapter 3). It was hypothesized that 

the soil-pore interface will decrease with increasing size of aggregates. The soil-

pore interface of aggregate size 2-4 mm was 8 % lower than that of aggregate 
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size 1-2 mm, but this difference was not significant. Also for soil packed at 

different bulk-density the soil-pore interface was not significantly different. This 

was probably due to the limitation of the scan resolution as the substantial 

range of pores is not covered (i.e. pores smaller than the resolution of scan are 

missing). For example, in the bulk-density treatment the total porosity of a 

sample packed at bulk-density of 1.3 g cm-3 is 49 % and of soil packed at bulk-

density of 1.6 g cm-3 it is 37 %. However, the porosity determined by X-ray CT 

scanned at a resolution of 24 µm gave only 17 % for soil packed at a bulk-

density of 1.3 g cm-3 and 8 % for soil packed at bulk-density 1.6 g cm-3. This 

means that the around 60-70 % of the pores are not detected by the scanner. 

Therefore, the conclusions made in this study on the pore characteristics are 

based on the pores greater than the detection limit. This shows that the 

samples need to be scanned at higher resolution to get the majority of the pores 

detected. Currently there are technical limitations which prevent this.  

 

 Effect of soil structure on growth and spread of bacteria 7.1.2

Chapter 3 highlighted that the growth rate of introduced bacteria was 

significantly affected by increasing bulk-density and aggregate sizes in soil 

microcosms, with the effect correlated to pore geometry over the time course of 

investigation. Both Pseudomonas and Bacillus showed higher number of cell 

counts in soil packed with lower bulk-density. With increasing bulk-density the 

number of cell counts declined by 36-68 % for Pseudomonas and 30-60 % for 

Bacillus. These results agree with the findings of Li et al. (2001) who also 

reported a decline by 26-39 % of total number of bacteria, fungi and 

actinomycetes in soil packed at bulk-density 1.0-1.6 g cm-3. This is probably 
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caused by the pore geometry as soil packed at lower bulk-density have 

relatively higher percentage of porosity and connected pores which allowed 

rapid transfer of air, water and substrates through soil compare to soil packed at 

higher percent bulk-density as shown in chapter 3 of this thesis. A significant 

correlation of all three pore characteristics with cell counts was observed, but 

connectivity of pores showed the highest impact on growth of Pseudomonas 

and Bacillus. However, between the two selected bacterial strains, the growth 

rate of Pseudomonas was 50 to 60 % faster than the Bacillus in soil packed at 

different bulk densities. As bacterial suspension was mixed in soil, this 

difference in cell counts between two species can be related to either doubling 

time of each strain or the spread mechanism of bacteria to access nutrients in 

soil. 

To investigate this, the effect of soil factors (moisture content, bulk-density and 

aggregate size) on the extent of spread of Pseudomonas and Bacillus was 

examined in chapter 4, where the bacterial inoculum was introduced as a point 

source rather than mixing the inoculum as done in chapter 3. The spread of 

Pseudomonas and Bacillus was faster in soil with higher moisture content 

compared to dry soil. This is because bacteria thrive only on part of the pore 

network that is either water filled or is covered by water films (Vos et al., 2013). 

This is also the reason why the spread was faster in soil packed at lower bulk-

density compared to higher bulk-density as the available pore space was higher 

in soil with a lower bulk-density. Bacteria can also spread through the air-filled 

pores by gliding on water films or on fungal hyphae (Nazir et al., 2010). The 

spread of bacteria would be different in the field to the repacked microcosms 
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with uniform soil conditions because there will be cracks and biopores present 

in the field which will provide rapid pathways when water filled.  

The bacterial counts measured here are counts per gram of soil, but with this 

data no information can be obtained whether cells are grouped at a single 

location or distributed throughout the soil. To estimate the likelihood of 

encounters among bacteria and between bacteria and substrates knowledge on 

the spatial distribution of bacteria is important.  

 

 Effect of sampling scale on observed impact of soil structure on the 7.1.3

distribution of bacteria at different spatial scale of analysis. 

Polished sections were used to evaluate the distribution of introduced bacterial 

cells in bulk soil at microscales. Bacterial cells were observed to be more 

heterogeneously distributed and the numbers of cell counts were variable 

between treatments (Chapter 5). Dechesne et al. (2005) also showed that the 

distribution of introduced bacteria was more heterogeneously distributed than 

the indigenous one. Some other studies also showed a non-random pattern in 

spatial distribution of the microbial community (Franklin and Mills, 2003; Nunan 

et al., 2003; O’Donnell et al., 2007; Young et al., 2008). The variation in 

bacterial distribution was related to a range of factors like the organic matter, 

soil water, aggregate size classes and their location within aggregate and pore 

size class (Franklin and Mills, 2009; Kravchenko et al., 2014; Or et al., 2007; 

Ruamps et al., 2011). 

A method was developed (Chapter 5) to determine the relationship between the 

pore space, connectivity and soil-pore interface, quantified at different spatial 

scales and cell densities of introduced bacteria in soil microcosms. The method 
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developed here was to bridge the gap between scales as bacteria are 

visualised at µm-scale under a microscope whereas pore geometry that controls 

diffusion and transport of nutrients in soil operates at –mm and cm- scales. The 

most appropriate scale to study the spatial distribution of microbes would be the 

microhabitat scale at which individual bacteria and microbial communities are 

actually living and interacting. However from the published works the opinion of 

the range of microscales depends either upon the individual micro-organism 

under study or the microbial process of interest and also to some extent on the 

tools available for the studies (Grundmann, 2004). Therefore, the analysis in 

this study was done at two different scales (macro- and microscale) to 

investigate the effect scale has on the analysis of the spatial distribution of 

bacteria. The influence of all three pore characteristics on the distribution of 

bacteria was found to be different between the two analysed scales. The 

porosity, connectivity and soil-pore interface showed significant influence on the 

distribution of Pseudomonas bacteria at macroscale; however the effect was 

insignificant at the microscale. Similar kind of results were obtained by the 

findings of Nunan et al. (2002) who also showed that the spatial structure (i.e. 

spatial correlations between bacteria) was only present at the micrometre scale 

in the topsoil, while in the subsoil there were two distinct spatial scales 

(micrometre scale and scales ranging over centimetres to metres).  

Among different aggregate size treatment, the porosity, connectivity and soil-

pore interface showed a significant effect on the distribution of introduced 

bacteria only in 2-4 mm size aggregate treatment. A plausible reason for this 

difference between aggregate sizes on distribution of bacteria could be because 

of pores not detected by the scanner (<13.4 µm) as there was no significant 
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difference in the pore geometry between the two treatments. But also there can 

be other pore characteristics that are not analysed here which would have 

influenced the distribution of bacteria in different aggregate size treatments like 

pore size distribution and tortuosity of pores. Wang et al. (2013) showed a 

positive correlation of E.coli distribution with porosity, presence of large and 

medium size pores and tortuosity of pores in aggregates of size 4-6.3 mm. 

Ruamps et al. (2011) also showed a significant difference in microbial 

community structure in different pore size classes. Therefore, the present 

results shows how the effect of pore geometry on microbial distribution can 

differ when analysed at different scale. From the techniques available so far, the 

microscale selected in this study is the closest scale one can use to quantify 

bacteria in their 3D soil environment. The method presented here is a significant 

step towards understanding how bacterial distribution is affected by the soil 

structure and raises issues regarding the ‘appropriate’ spatial scale for 

analyses. The appropriate scale is needed to help understand the development 

of the microbial spatial patterns and to determine the factors that regulates and 

maintains the soil biodiversity and microbial community function in soil.  

This method was used to quantify the effect of pore characteristics on the 

spread and colonization of bacteria towards a nutrient source in soil. At the 

microscale, soil-pore interface affected the spread and colonisation of bacteria 

towards nutrients in soil. The reason for this may be that in partially saturated 

soil, water is retained on the surfaces as thin films to accommodate introduced 

bacterial cells (Carminati et al., 2008). In addition bacteria tend to grow on 

surfaces of substrates as can be seen from the thin sections. The consequence 

of this result is that if pore geometry affects the spread and colonisation of 
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bacteria at microscale, it will also affect the activity of microbes in soil. This 

shows that the pore characteristics control the access of nutrients in soil. Strong 

et al. (2004) showed that the rate of decomposition of organic C depends on the 

location in the soil pore network. Ruamps et al. (2011) also showed that 

decomposition of organic C and microbial community structure varies at pores 

scale in soil.  

Thus the method developed in the present study can be used to study how 

introduced bacteria contact their target through soil to carry out activities like 

promoting plant growth or mineralization of soil pollutant. 

There are several factors which will affect repeatability of my experiments. 

These factors include soil type and unintended microscopic heterogeneity which 

cannot be controlled experimentally, as explained below. The growth and 

spread rate of bacteria will depend on soil type. For example if the sample is 

taken from a sandy clay soil or from a sandy loam soil, these two samples could 

have different bulk-densities, particle size distribution and water content. 

Moreover, if all physical conditions could be replicated, as described in this 

thesis, they would differ nutritionally which may impact on the results. If this will 

have an impact on the conclusions is a topic for further investigation.  

To understand the effect of soil structure on the temporal and spatial distribution 

of bacteria, bulk-density, aggregate sizes and water content were controlled. 

These factors, however, are characteristics of the bulk volume of soil. The 

advantage is that they can be experimentally controlled and repeated by other 

researchers. However, each sample will still differ at the microscopic scale. 

Conditions cannot be controlled experimentally at this scale. For that reason I 

used X-ray CT to quantify differences at that scale. However, it means that 
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variability can be expected between microcosms prepared this way at 

microscopic scales, whilst they are similar at macroscopic scales. 

 The experiments were performed using minimum three replicates per treatment 

to increase the reliability of the data produced. Mostly increasing the sample 

size is given more importance to get reliable data than the repetition of an 

experiment. But Mobley et al., (2012) in their survey on data reproducibility in 

cancer research have shown that ~ 50 % of researchers were unable to 

reproduce the published data, thus highlighting the impact data reproducibility 

can have on the general application of a technique in a specific field. This 

highlights the importance of repeating experiments to obtain more reliable 

conclusions and that unexpected outcomes can sometimes occur in repeated 

experiments. Therefore, in my thesis, the results of the growth was partially 

verified in Chapter 6 by confirming bacterial densities at two sampling times 

coinciding with the sampling times of the thin section preparation (the bacterial 

densities are given in Appendix II). 

 

7.2 Conclusion and future work 

The following key conclusions can be drawn from the research presented in this 

thesis:  

 The use of X-ray CT allowed determining the effect of bulk-density on the 

soil porosity, connectivity and soil-pore interface. A significant decline in 

the porosity, connectivity and soil-pore interface with increasing bulk-

density was observed. An effect of this on the growth rate of introduced 

bacteria was observed. Bacterial growth decreased with increasing bulk-

density as less amount of pores space with connected pores was 
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available at higher bulk-density. Increasing aggregate size also showed 

significant decrease in the number of Pseudomonas and Bacillus cells. 

The extent of bacterial spread was faster in soil packed at lower bulk-

density (1.3 g cm-3) and higher moisture content soil microcosms.  

 Between the two selected strains, the growth rate of Pseudomonas was 

faster than Bacillus but the extent of spread was faster for Bacillus 

compared to Pseudomonas in soil.  

 At microscale analysis, soil porosity, connectivity and soil-pore interface 

showed significant effect on the distribution of bacteria in samples with 

aggregate sizes 2-4 mm.  

 Application of the method (analysis of spatial distribution of bacteria) 

showed that the extent of spread of bacteria decreased with increasing 

bulk-density at the microscale. The extent of spread and colonisation of 

Pseudomonas was significantly further towards nutrient source in soil 

packed with lower bulk-density and the soil porosity and soil-pore 

interface significantly influenced the extent of this spread in soil thin 

sections 

 

7.3 Future Research  

In this thesis a combination of techniques was used to quantify the relation 

between soil structure and bacteria growth and distribution in soil.  

 In all the experiments bacteria were inoculated in repacked sieved soil. 

The next step would be assessment of growth and colonisation of 

introduced bacteria in different soil types and undisturbed soil cores from 

field under different management practices. 
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 In this study the effect of structure was studied for Pseudomonas and 

Bacillus sp. as they are known for their plant growth promoting activity. 

Quantifying the effect of structure on other benefice al bacteria and the 

interaction between bacteria would be the next step in understanding 

structural effect on introduced bacteria for successful bioremediation in 

soil.  

  A general stain was used in this study to visualise bacterial distribution 

in soil thin sections. To differentiate between bacterial strains and 

bacterial cells form other soil particles of same size distribution, specific 

stains like FISH technique needs to be applied on thin sections. During 

this study a preliminary experiment was carried out where TETRA-FISH 

protocol was optimized and applied on thin sections. The study showed 

successful application of TETRA-FISH on soil thin sections as it was 

easy to distinguish bacterial cells against the soil background (Figure 

7.1). However the signal intensity was not high enough. The future work 

could involve optimization of the protocol to improve the signal intensity 

against the soil background. 
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Figure 7.1: Tetra-FISH stained Pseudomonas fluorescens cells in soil thin 
sections under double excitation filter (465-505 and 564-892 nm). Scale bar 20 
µm. 
 

 For better understanding of the 3D soil environment, the future work 

could involve integration of methodologies developed in this thesis along 

with for e.g. techniques like SEM-EDX to map the biological distribution 

along with the chemical and physical properties of soil.  

 The pore characteristics analysed here were porosity, connectivity and 

soil-pore interface. But there are other pore characteristics which also 

affect the distribution and composition of microbial community structure 

and its function is soil like pores size distribution and tortuosity of pores. 

Future work could involve quantifying these pore characteristics of soil.  

 The method developed in this study could be applied to various 

problems. For example it could be applied to study the ability of bacteria 

to colonise Biochars in soil and determine the biochar and soil 

characteristics that determine the colonisation efficiency. Biochar is a 

porous, carbon rich material produced through heating of organic 

material under low oxygen condition, a process referred to as pyrolysis, it 

is added in soil to improve soil fertility. Specifically, this could quantify for 
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the first the micro-environments introduced by Biochar in soil are 

amenable to deliberate and targeted manipulation and modification of 

habitats suitable for microbial colonisation. This project is currently 

ongoing funded by DAAD (German Academic Exchange service).  
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9 Appendix 

9.1 Appendix I 

Experimental design: Optimization of inoculum volume and target for 

quantification of bacterial spread in soil.  

To get an optimized set up for the movement experiment different combinations 

of soil moisture content and inoculum volume were tested. Also, to quantify 

bacteria different targets were tested. For the set up trials, Pseudomonas 

bacteria was used and soil of aggregate size 1-2 mm with 40 % water filled 

pore space was packed at bulk density 1.3 g cm-3. Ten replicates per setup 

were prepared. For every setup, inoculum source was introduced in soil by 

placing the soil core on top of the inoculum source. The samples were then 

incubated at 23°C. To assess the vertical movement of bacteria in soil from 

bottom to top a target was placed on top of the soil core. On sampling day, the 

target was removed from the top of soil core and replaced with a fresh target. 

The target was placed on media plates and incubated at 28°C for 48hrs. After 

48hrs the plates were checked for the presence/colonization of bacteria around 

the targets. The sampling of soil microcosms was done every day until the all 

the replicates showed positive results. 

Trail 1: 

In first set up, 500 µl of washed cells was used as inoculum source and a pellet 

of agar media as target. All replicates showed positive colonization on day 1. 

The reason for such fast movement of bacteria was thought to be either due to 

high concentration of bacteria inoculum or due to inclination of bacteria towards 

high nutrient agar pellet and also inoculum was sucked up the sides of the 

cylinder – so not a natural movement. Therefore this set up was not considered.  

 

Figure I.a: Diagrammatic representation of the trial experiment setup to quantify 

bacterial spread in soil. Bacterial suspension was used as a source. It was placed at 
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the bottom of the soil sample. A single nutrient agar pellet was used as a bait to 

quantify successful colonisation of the soil. The bait was placed on the top of the 

sample. 

Trail 2: 

In this setup three different concentrations (500 µl 250 µl 125 µl) and two 

different targets (agar pellet and a 2-4 mm aggregate) were tested. In 500 µl 

inoculum concentration, on day 1 all replicates showed 100% positive 

colonization on both the targets. With 250µl inoculum concentration, samples 

showed 100 % colonization of agar pellets and 10 % colonization of aggregate 

target on day 1. The remaining samples with aggregate target showed 100 % 

positive on day 2. Soil inoculated with 125 µl on day 1 showed 20 % positive 

colonization on agar pellet and 0 % positive on aggregate target. By day 2 

samples showed 100 % positive colonization on both targets. Since a difference 

in two targets were observed at lower inoculum volumes and also aggregate 

was less in nutrients compare to agar pellet henceforth , one aggregate of size 

2-4 mm was chosen. 

 

 

 

 

 

 

 

Figure I.b: Diagrammatic representation of the trial experiment setup to quantify 

bacterial spread in soil. Bacterial suspension was used as a source. It was placed at 

the bottom of the soil sample. A single 2-4 mm aggregate size pellet was used as a 

bait to quantify successful colonisation of the soil. The bait was placed on the top of the 

sample 

Trail 3: 

To optimise the inoculum volume, another experiment was carried out where 

the total amount of water (including the inoculum volume) added in soil was 

kept 1.50 ml. This volume of was chosen at it has been used in experiment of 

previous chapters. So at 500 µl (i.e. 0.5 ml) inoculum concentration only 1.00 ml 

of water was added in soil. Similarly, at 250 µl (i.e. 0.25 ml) inoculum 1.25 ml 

and at 125 µl (i.e. 0.125 ml) inoculum 1.38 ml of water was added in soil. At 500 

µl concentrations samples showed 100 % positive colonization on day 1. But 
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samples inoculated with 250 µl and 125 µl inoculum concentrations showed no 

positive results until day 5. Samples started drying up because of which 

experiment was discarded. 

From the above trails it was concluded that the high concentration of inoculum 

volume was increasing the moisture content which influenced faster movement 

of bacteria towards soil. 

Therefore, a solid inoculum source was considered which does not increase the 

moisture content of soil and has less concentration of nutrients. Also the source 

structure is porous so that bacteria can move in soil. 

Trail 4: 

A low melting point agarose (Fisher bioreagents, UK) was selected as it can 

remain in melting state at 35°C which serves as an advantage as bacterial cells 

can survive at this temperature. To optimize the amount of inoculum introduce 

in agarose, three different concentrations of inoculum 500 µl, 750 µl, 1000 µl 

was tested. To prepare an agarose bead, selected inoculum volume of washed 

cells were mixed with 30 ml of 1.5 % LMP agarose solution. The mixture was 

shaken gently to avoid any bubbles formation and poured into a petri dish. The 

petri dish was left under the laminar flow to let the agarose cool down and 

solidify. The solidify agarose was then cut down into small circular beads using 

the circular end of a pipette tip. The beads were of size 2.5 mm in diameter and 

5 mm in height. One agarose pellet per soil core was taken. The soil core was 

placed on top of the agarose pellet as shown in figure 4.2. The target was one 

aggregate of size 2-4 mm as optimized from earlier trials. Sampling was done in 

similar ways as the previous trials (for setup see figure 4.1). All three 

concentrations showed similar positive colonization of targets on day 4. Since 

no difference between different concentrations was observed 1000 µl inoculum 

was selected to prepare agarose pellet for further experiments. 
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9.2 Appendix II 

 
 
Figure II.a: Average number of CARD-FISH stained Pseudomonas cells per 
gram of soil at different sampling times in agarose samples packed at bulk-
densities 1.3 g cm-3 (dark grey and 1.5 g cm-3(grey). Data are means ±SE (n=3). 
 

 
 
Figure II.b: Average number of CARD-FISH stained Pseudomonas (grey) and 
Bacillus (light grey) cells per gram of soil at different sampling times in compost 
samples packed at bulk-densities 1.3 g cm-3. Data are means ±SE (n=3). 
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9.3 Appendix III 

Table III.a: Results of the Poisson model analysis on influence of pore structure on 
spread of bacteria in agarose and compost experiment. 

 

 

 

 

 

 

 

Scales Treatments 

Porosity 
Soil-pore 
interface 

Connectivity 

(%) (mm2) (%) 

Agarose 

experiment 

Pseudomonas inoculated in 

soil packed at bulk-density 

1.3 g cm-3 

0.000 0.565 0.000 

Pseudomonas inoculated in 

soil packed at bulk-density 

1.5 g cm-3 

0.264 0.165 0.001 

 

Compost 

experiment 

Pseudomonas inoculated in 

soil packed at bulk-density 

1.3 g cm-3 

0.000 0.000 0.000 

Bacillus inoculated in soil 

packed at bulk-density 1.3 g 

cm-3 

0.000 0.003 0.327 


