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Abstract  

 

Human African Trypanosomiasis (HAT) is a vector-borne disease transmitted 

by the bite of the tsetse fly that results in high human morbidity and mortality. 

The propagation of the disease has been linked to environmental factors, 

and understanding the vector’s habitat is vital to its control. There is no 

HAT vaccine, but biological control of the vector has been successful in 

reducing HAT incidence. However, in recent years the disease has re-emerged 

and spread. Due to insufficient knowledge of HAT endemic foci, the disease 

management remains challenging. To achieve effective deployment of 

control strategies, accurate knowledge of the spatial distribution of the 

HAT vector is vital. 

The current study is based in Nigeria, and looks at part of Delta State, 

and a part of Jigawa State, in which HAT has been identified.  The work 

utilizes remote sensing satellite imaging and fuzzy logic to develop a HAT 

vector habitat classification scheme, to explore the dynamics of HAT 

propagation. The goal was to develop a surveillance methodology to identify 

factors that influence HAT epidemiology.  Land cover and ancillary data were 

integrated to classify HAT vector habitat using geospatial-fuzzy multicriteria 

analysis.   

The work highlights the significance of geospatial techniques where 

epidemiological data are limited, for improving understanding of HAT.  This 

study helped distinguish HAT vector habitat into different zones (breed, feed 

and rest), which allowed the direction and magnitude of HAT, a n d  factors 

influencing propagation to be determined.  This helped identify ‘HAT priority 

intervention areas’.  

The study findings suggested propagation of HAT resulted from 

suitability of water bodies, shrub and less-dense forest for the HAT vector, and 

continued exposure of human populations to these land cover classes. 

Overlapping of HAT vector habitat zones within built-up areas was also a 

cause.  The study also found that HAT propagation was multidirectional, and 

that this may have been influenced by landscape characteristics.  
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This novel approach can also be used in other part of Nigeria as well as 

adapted to investigate other diseases.  In conclusion, the HAT vector habitat 

classification scheme is a transparent tool f o r  p o l i c y  m a k e r s  for 

identifying vulnerable and at risk areas. 
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Chapter 1:  Introduction 

 

1.1 Overview 

Human African Trypanosomiasis (HAT) or ‘sleeping sickness’ is a fatal disease 

caused by infection by protozoan parasites of the species Trypanosoma brucei.  

HAT is amongst the top thirteen neglected tropical diseases (NTD) in the 

world (Hoskins 2009) and is most common in the countries of sub-Saharan Africa 

(SSA), such as Nigeria and the Democratic Republic of Congo; it currently has 

limited treatment options.  NTDs are often called poverty diseases, as they 

affect almost exclusively very poor remote populations beyond the reach of 

health services and are responsible for more than half a million deaths annually 

(Hoskins 2009; Boutayeb 2007).  The HAT parasite is endemic and free-living in 

the environment, and infection of the human population can be caused either 

through sexual transmission (Rocha et al. 2004), mother-to-child infection 

(Olowe 1975) or through insect vectors such as the tsetse fly (Steverding 2008).  

This study focuses on infection is caused by insect bite. 

NTDs are common amongst the poor in SSA, especially in Nigeria and 

the Democratic Republic of Congo (Hotez and Kamath 2009).  HAT affects 

thousands of people each year, primarily in areas of conflict, where they 

cause high mortality. There is dearth of information on Africa’s protozoan 

NTDs and the overall burden of African’s NTDs may be severely 

underestimated (Hotez and Kamath 2009).  Although numbers of cases 

voluntarily presenting for treatment each year have increased, in Nigeria the 

exact number of HAT cases is unclear (Abenga and Lawal 2005).  

Despite control efforts, HAT has become resurgent in some locations 

(e.g. Southern Nigeria) and resistance to available medication has been 

reported in sub-Sahara Africa (Hoskins 2009).  Finding a lasting cure for the 

disease will aid its eradication,  however, other approaches are also important 

as a cure alone will not prevent disease spread.  Examination of factors that 

make an environment conducive for HAT are essential for sustainable disease 

management and to understand HAT propagation.  These factors may vary 

significantly within indigenous clustered settlements, and it is important to 

characterise these variations and detect hazardous areas.   
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Technological innovations, such as Remote Sensing (RS) and 

Geographic Information Systems (GIS) have permitted epidemiologists to 

perform disease mapping and spatial analyses (Leonardo et al. 2005; Bavia et 

al. 2005; Mushinzimana et al. 2006; Symeonakis, Robinson and Drake 2007).  A 

better understanding of the dynamics of disease propagation in a population 

and the spatio-temporal variations in disease incidence provides a basis for 

effective disease control (Clements et al. 2009; Kelly-Hope and McKenzie 

2009; Noor et al. 2008).  However, spatial aspects of HAT are rarely addressed, 

and most HAT studies, particularly in the Delta State Nigeria – the main 

research area of this study, are based on medical diagnostics (Wang et al. 

2008; John, Kazwala and Mfinanga 2008).  In Nigeria, the existing HAT 

surveillance system and the establishment of precise demarcation of the disease 

magnitude is limited by unstable security (Simarro et al. 2010).   

Conscious of the constraints in managing HAT in sub-Sahara Africa, 

between 2000 and 2009, the World Health Organisation (WHO) granted 

exclusive support to some HAT endemic nations, including Nigeria, in order 

to improve epidemiological understanding and establish innovative disease 

management tools (Simarro et al. 2011).  Geospatial techniques such as RS, 

GIS and spatial statistics were implemented and have been shown previously to 

be effective in developing efficient disease management (Leonardo et al. 2005; 

Eisen and Lozano-Fuentes 2009; Mushinzimana et al. 2006; Hotez and Kamath 

2009).  These techniques have also been used previously for monitoring HAT 

(Berrang-Ford et al. 2006; Sindato, Kimbita and Kibona 2008; DeVisser and 

Messina 2009; Symeonakis, Robinson and Drake 2007;  Odiit et al. 2006). This 

approach will contribute to both t h e  local and international understanding of 

how best to manage HAT propagation in study area with poor security 

(Symeonakis, Robinson and Drake 2007) as well as provide insights into the 

underlying factors affecting the disease. 

Reversing the trend of HAT resurgence is a key challenge and v ector 

control will be necessary to disrupt propagation.  The present research work 

will carry out a detailed characterisation of the study areas environment using 

geospatial techniques to identify and classify potential HAT vector habitats into 

zones, to ease disease management.  Zoning the potential habitat could permit 

both quick preventative and diagnostic management of HAT. The rationale for 
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classifying the HAT vector habitat is based on studies that emphasised their 

significance to vector survival and HAT resurgence. (DeVisser and Messina 

2009; Green and Hay 2002; Roger, Hay and Packer 1996; Goetz et al. 2000; 

Rogers 1979; Lennon and Tunner 1995; Leak 1999).  

 

1.2 Human African Trypanosomiasis  

HAT is a form of vector-borne disease transmitted by the bite of an 

infected tsetse fly (Sterverding 2008). Female tsetse fly produce larva roughly 

every 9-10 days depending on favourable temperature, humidity and suitable 

site (Jordan 1986). Although attempts to control HAT have been successful, 

mainly though eradication programmes for the tsetse fly vector, resurgence 

of the disease in some foci has been reported.  The closure of most Nigerian 

Institute for Trypanosomiasis Research (NITR) epidemiological out-stations in 

1985 led to a drastic decline in active surveillance for HAT, making it difficult 

to assess the true numbers of infected individuals in Nigeria.  However, the 

number of HAT reported cases rose from 619 in 2002 to 7,104 in 2004 and 

although declining slightly to 5,548 in 2005, rose aga in  to 6,419 in 2006.  The 

numbers of reported cases of death from HAT from 2002 to 2007 are not 

available (National Bureau of Statistics (NBS) 2007).  In July, 2010, 6 out of 

2000 screens in 2 local government areas of Delta State were seropositive.  

Resurgence of the disease has been attributed to a number of factors ranging 

from political and civil insecurities, displacement of human population, 

changes in public health policy, pathogenic change, land use change, drug 

resistance and climate change (Berrang-Ford 2007). 

 

1.2.1 Epidemiology of HAT 

Trypanosomiasis or ‘sleeping sickness’ is an infectious disease of man and 

animals caused by infection with protozoan parasites of the species Trypanosoma 

brucei. Once infected, the disease has two distinct stages: an early 

haemolymphatic phase and a later neurological phase. The early phase is 

characterised by highly variable and non-specific symptoms such as fever, 

headaches, joint pain and itching, which are often mis-diagnosed as malaria 

or influenza.  During the late phase parasites are present in the cerebrospinal 

fluid, causing the classical symptoms of sleeping sickness which include 
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confusion, lethargy, weakness, progressive emaciation, slurred speech, 

disturbed sleep patterns and sensory disturbances. If untreated, the disease 

overcomes the host defences leading to coma and death (Steverding 2008; 

Berrang-Ford 2007; Jordan 1986). 

Two different species of the protozoan parasite can cause disease in 

humans.  T. brucei gambiense, found in Central and West-Africa, causes a 

chronic disease and typically follows a chronic clinical course progressing 

over several years (Steverding 2008; Berrang-Ford 2007).  Conversely, T. 

brucei rhodensiense, which is found in Southern and Eastern-Africa, causes an 

acute disease which progresses from non-specific symptoms to infection of the 

central nervous system and death within months (Steverding 2008; Berrang-

Ford 2007).   Figure 1.1 shows the life cycle of the T. brucei parasites.  

Although parasites are slow to reproduce, they have a very high survival rate as 

they reside and multiply in the blood and tissue fluids of their mammalian 

hosts until third- larval stage (Steverding 2008).  

 

 

 

 

 

   

  Figure 1.1:  Life cycle of T. brucei parasites (source: Centres for Disease    

  Control and Prevention 2012). 
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1.2.2 Geographical distribution of HAT 

An adult female tsetse fly can survive up to three months, reproducing up to ten 

times in that period (Jordan 1986), and the HAT vector Glosina palpalis can fly 

up to 4km (Jordan 1986) within a given zone depending on suitable conditions 

such as relative humidity, land surface temperature, etc.  The distribution of the 

disease in Africa corresponds to the range of tsetse flies and comprises 

currently an area of 8 million km
2 

between 14 degrees North and 20 degrees 

South latitude (Steverding 2008). The disease is endemic in certain regions of 

Sub-Saharan Africa, covering about 36 countries (WHO 2008). Figure 1.2 shows 

the distribution of HAT in Africa. 

 

1.2.3 HAT treatment and control 

There is no vaccine for HAT,  and its development faces significant economic 

challenges due to the limited market and lack of financial incentives for 

pharmaceutical companies to produce vaccines for low-income countries 

(Hoskins 2009).  Existing treatment of HAT is both expensive and 

complicated, and can be dangerous for the patient (Simarro et al. 2012).  The 

predominant treatment for late-stage sleeping sickness with neurological 

involvement is melarsoprol, an organoarsenic compound with high toxicity 

and rate of treatment failure (Berrang-Ford 2007). Melarsoprol is reported to 

kill 5% of patients who receive it (Kennedy 2008).  

Figure 1.2: Distribution of human African trypanosomiasis in Africa 

(adapted from Berrang-Ford  2007) 
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A disease thought to have been conquered during the 1960s in Nigeria 

through the use of biological control of t h e  tsetse fly (BICOT), is re-

emerging with areas becoming re-infested (Dede and Mamman 2011) and a 

shift from the north to the southern part of the country. The recurrence of HAT 

in both old and new foci prompted WHO at the 50
th 

World Health Assembly 

to adopt a resolution to increase the disease awareness and, Nigeria was 

reported as one of the highest ranked endemic countries for HAT (WHO, 

1997,  2007).  

Active surveillance and case treatment have been found to be very 

effective in reducing disease transmission, particularly for T. b. gambiense 

(Berrang-Ford 2007), which is generally confined to human-fly-human cycle.  

T.b. rhodensiense transmission to humans is influenced by prevalence of the 

parasite in animal reservoirs; such as cattle in East Africa and human-infective 

parasites have also been identified in animals in West Africa (Abenga and Lawal 

2005).  Control of livestock infection and tsetse populations are important for 

reducing transmission to humans (Batchelor 2010).  The recent history of 

sleeping sickness has shown that the disease can be controlled but probably 

cannot be eradicated and new anti-sleeping sickness drugs are urgently required 

(Steverding 2008). 

 

1.2.4 Economic and environmental impact of HAT 

HAT has restricted the cultural and economic development of the  people in 

Sub-Saharan regions (Steverding 2008), thus, there is the need for a concerted 

approach of systematic case- detection and treatment.  African trypanosomiasis 

always prevented the introduction of stock farming in endemic areas, which 

resulted in much of tropical Africa not being converted into grassland for cattle 

(Steverding 2008).  From an environmental angle, the presence of the HAT 

vector in the tropics has prevented vast portion of the rain-forest being 

depleted; thereby maintaining the natural ecosystem, and increased cattle 

number may result in less vegetal cover and eventually increase runoff and 

erosion as well as reduction in biodiversity (Symeonakis, Robinson and Drake 

2007). 
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1.2.5 HAT surveillance 

Resurgence of HAT in Nigeria has been blamed on a weak surveillance system, 

inappropriate government policies and poor funding as well as ignorance 

about the disease (Anagbogu I, personal communication 2010).  Surveillance can 

be regarded as the continuing methodical gathering, ordering, examination, 

and interpretation of data; and the dissemination of information to the relevant 

stakeholders for effective decision making (Garcia-Abreu, Halperin and Danel 

2002). Surveillance can help establish the need for public health intervention 

programmes, monitor their progress and help identify at- risk populations and 

locations for targeted intervention, whilst identifying factors that influence 

disease propagation. 

Disease surveillance in Nigeria has been impeded by poor 

communication equipment, absence of case management protocols, 

inadequate laboratory facilities and funding as well as inadequate medicine and 

vaccines (Nduka and Yennan 2007).  The Nigerian Federal Ministry of Health 

(FMOH) formally established the HAT elimination programme in 2006, 

building on work over the previous twenty years of disease surveillance (Nduka 

and Yennan 2007).  This included a regional pan African Integrated Disease 

Surveillance and Response (IDSR) plan, started in 2000 in Nigeria and 

organised at local, state and federal levels of government. The haphazard 

implementation of such programmes has resulted in duplication of efforts and 

materials.   

Repeated World Health Assembly calls for global elimination of HAT 

have led to establishment of the Pan African Tsetse and Trypanosomiasis 

Eradication Campaign (PATTEC).   PATTEC’s goal is for Africa to become 

tsetse fly free through creation, and subsequent expansion, of tsetse-free zones 

(Cecchi et al. 2008).  To achieve this goal, the knowledge of the disease vector 

ecology and detailed spatial distribution datasets integrated with existing disease 

surveillance schemes is vital.  It is therefore important that the present study 

support surveillance activities through the use of tools that have capability to 

gather data in remote or conflict areas.  

The Nigerian HAT elimination program is domiciled in the 

department of public health and was established to operate in line with the 

existing structures for the Nigerian Guinea worm Eradication Program 
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(NIGEP) and WHO guidelines. The program is expected to work in 

collaboration with PATTEC, WHO and other stakeholders such as the Federal 

Ministries of Environment, Agriculture and Water Resources, Science and 

Technology and the NITR, to eliminate HAT from Nigeria.  

Information is vital to effective disease management, but the level 

of underreporting of disease, most especially HAT in Nigeria, impedes 

progress. The information gap, such as comprehensive digital spatial 

epidemiological information/data, could be reduced with geo-referenced 

studies,  lacking in some previous work (Osue et al. 2008; Anere,  Fajinmi and 

Lawani  2006; Sterverding 2008; Berrang-Ford et al. 2006; Priotto et al. 2008; 

Reid et al. 2012). 

The present study attempts to remedy the lack of digital locational based 

information by combining spatial and non-spatial data to develop a digital HAT 

vector habitat classification scheme used to assess the propagation of HAT in 

the study area.  

 

1.3 Geographic Information Systems and Remote Sensing in 

Disease Study 

This section reviews the tools and technologies being used in the development 

of disease management and how these can be applied to HAT vector mapping. 

 

1.3.1 Geospatial technology 

Geospatial technology is pervasive in modern life, and is used in areas such as 

law enforcement, fire response, disaster management, land use identification, 

flood plain mapping and environmental protection.  It is also used in public 

health to track the spread of disease (Cimons 2011). Due to its exceptional 

precision, aerial coverage and cost effectiveness, geospatial technology tools 

have revolutionised disease mapping (Simarro et al. 2010).  Such systems allow 

health officials to rapidly identify areas experiencing distress; and have 

immediate access to the information required to address the underlying 

problem without leaving the office.  However, for this to function effectively 

there must be access to useful and near-real-time datasets in order to facilitate 

quick response.  Such datasets are usually gathered from various sources, such 

as remote sensing, reconnaissance survey, mapping, socio-economic datasets 
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and other sources. To derive maximum benefits from them, spatially 

referenced information or geo-referencing is required, and it is the integration 

of these geographically referenced datasets with other information that brings 

about geospatial technology. 

 

 

Geospatial technology is a discipline associated with technologies 

such as, Remote Sensing (RS), the Global Positioning System (GPS), 

Geographic Information Systems (GIS), Information Technologies (IT) and in-

situ field survey data that helps in the acquisition, storage, processing, 

management, integration, display and dissemination of geospatial data, and 

supports effective decision making.  Figure 1.3 summarises geospatial 

decision support.   

Geospatial data, on the other hand, identifies the geographical location 

and characteristics of entities on the earth’s surface.  Recently, geospatial 

techniques have been applied at varying geographical scales to determine the 

risk of vector-borne diseases and classify vector habitat using remotely-sensed 

derived variables (Mushinzimana et al. 2006; Odiit et al. 2006).  Geospatial 

techniques have the ability to identify factors that influence disease 

propagation within the endemic area. Thus, it is vital to our understanding 

of the link between geospatial techniques, RS and GIS and a vector-borne 

diseases physical environment. 

 

1.1.1.1 Figure 1.3: Diagram showing decision support system (adapted from  

1.1.1.2 Cimons 2011)  
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1.3.2 Geographic information systems  

GIS could be said to be acquisition, storing, processing/manipulation and 

presentation of geo-referenced data (Akiode 2008). GIS could also be defined 

as the use of hardware, software, people, procedures, and data (Murayama and 

Estoque 2010).  

According to James Madison University (2004), a successful GIS is a 

function of its combined components, which include: 

People: 

 The general public who are mainly searching geographic database for 

references. 

 People that apply GIS to businesses or professional services. 

 Specialists responsible for GIS database maintenance and  technical 

support for users. 

Data: Creation of a GIS database, which must take into account data quality 

and source, positional accuracy, attribute accuracy, logical consistency 

(compatibility of a datum with other data in a project) and  checks for 

completeness. 

Hardware: The technical materials for smooth GIS running, (e.g. desktop, 

laptop, digitiser, GPS, printers, scanners etc). 

Software: GIS packages and database software.  Different GIS software has 

different functionalities and the type chosen for a project must match the needs 

and the capability of the end user.  

Procedures: The methods used to input, store, manage, transform, 

analyse/query and present data. 

A GIS map contains layers or a collection of geographic objects that are 

alike. These layers contain features or surfaces (a surface is a continuous 

expanse).  While features, for example, settlements and rivers, have distinct 

shapes and are represented as polygons, lines or points depending on the scale, 

surfaces, (e.g. land surface temperature, relative humidity, elevation, etc), have 

no shape, but do have measurable values (Ormsby et al. 2004). In GIS, 

entities or features have locational values (x, y, coordinates), and these features 

can be displayed at different scales, depending on the size of the project under 

consideration. Also, features can be linked to their attributes (metadata of the 

feature or entity of interest).  The attributes provide greater in-depth detail that 
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helps better understand the entity. With the aid of coordinates, GIS can help in 

establishing spatial relationships among features, as well as help in 

transforming features from one form to another (Ormsby et al. 2004).  

 

1.3.3  Remote sensing 

RS could be regarded as the art and science of obtaining information about 

phenomena with little or no contact (Lillesand, Kiefer and Chipman 2004; Buiten 

and Clevers 1993).  This is achieved by sensing and recording reflected or 

emitted energy and processing, analysing, and applying the information 

(Sabins 1996 and Canada Centre for Remote Sensing 2012). Satellite 

imageries are example of RS data.  In RS, surfaces may be in form of a raster.  

A raster is a regularly spaced set of cells with associated values.  In reality, the 

world is not partitioned clearly into features and surfaces and objects can be 

represented both as features and/or surfaces.  When represented as feature, the 

boundary becomes discrete; but in reality most entities on earth surface, for 

example land cover types does not have discrete boundary. Thus, representation 

of such entity as surface is ideal.   

 

1.3.3.1 Mechanism of remote sensing  

RS depends on the measuring electromagnetic (EM) energy.  EM energy can 

be detected on the earth’s surface from the sun, in the form of visible and ultra 

violet light, and heat.  All substances emit EM energy as waves, resulting 

from their molecular movement.  An object that can absorb and re-emit all 

the thermal radiation (EM energy) it receives is called a blackbody and a 

blackbody’s emissivity and absorptivity are equal to 1 (Woldai 2004).  In 

reality no object radiates EM energy perfectly; rather, different objects reflect or 

absorb energy better at different wavelengths, based on their absolute 

temperature and emissivity.  Absorptivity is the ability of an object to absorb 

EM energy while emissivity is the ratio of radiant energy emitted by an 

object and blackbody radiation, expressed by Planck’s law.  Land surface 

emissivity (LSE) plays a major role in the derivation of land surface 

temperature (LST).  
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The total electromagnetic wave produced by an object during radiation is 

called the electromagnetic spectrum. This spectrum ranges from gamma rays 

to radio waves (Woldai 2004).  Several regions of the electromagnetic spectrum 

are useful for remote sensing.  The amount of energy detected by a RS sensor 

depends on the energy’s interaction with matter, both on the earth surface and 

in the atmosphere.  The source of RS data for disease study is mostly recorded 

images of portions of the Earth's surface.  There are seven elements involved in 

the RS process, shown in Figure 1.4. 

 

1.3.3.2   Characteristics of remote sensing images 

The RS image is a  measure of electromagnetic energy, which is recorded in 

regular square format called a  pixel; the elementary unit of image data 

(Janssen and Bakker 2004).  Each unit and reflectance is represented as a 

numeric value or digital number (DN; Canada Centre for Remote Sensing 

2012).  Pixel sizes adopted by varying RS sensor systems may range from 1, 

30 or 1000 square metres for high, medium and low spatial resolution images, 

respectively (Janssen and Bakker 2004). 

  Figure 1.4:  Elements of the remote sensing process A = source of 

energy providing EM energy to object on earth’s surface; B = emitted energy 

and the atmosphere (energy interacts with the atmosphere as it travels from the 

energy source to the object or sensor); C = energy interaction with the object or 

entity (the level of interaction is a function of the entity’s properties); D = 

sensor recording the emitted energy from ‘C’; E = receiving station where 

transmitted energies from the sensor are processed; F = processed images from 

receiving station are interpreted and analysed ; G = application of information 

extracted from the object of interest towards better understanding of the object 

(source: Canadian Centre for Remote Sensing). 
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The values of image data are associated with the features of the RS 

sensor.  The image features can be specified by coverage and resolution.   

The resolution is the least discernible distinction at which entities can be 

separated.  In t he  RS environment, resolution refers to spatial, spectral and 

radiometric resolution.  Spectral resolution describes the ability of a sensor to 

define fine wavelength intervals, while radiometric resolution describes its 

ability to distinguish minute differences in energy (Canada Centre for Remote 

Sensing 2012). 

The details detectable in recorded RS images are a function of the 

spatial resolution of the RS sensor.  Spatial resolution is the smallest possible 

object or entity that can be seen on an image (Janssen and Bakker 2004). The 

spatial resolution depends primarily on instantaneous field of view (IFOV), 

that is, the angle of the RS sensor that determines the swath width or resolution 

cell of an image from a known height per time (Janssen and Bakker 2004, 

Bakker 2004).  The RS sensor records the average reflectance of all objects 

within the swath width, thus an object that has uniform characteristics can 

only be detected if the dimensions are the same or outsized the swath width.  

Objects with smaller dimensions can nevertheless be detected, if they have a  

higher reflectance value than other objects within the swath width (Canada 

Centre for Remote Sensing 2012). 

 

1.3.4 GIS and remote sensing integration 

The integration of RS and GIS will produce useful result for effective disease 

management. The availability of high-resolution satellite imagery has 

revolutionized the process of thematic mapping and spatial database creation, 

and technologies such as GIS have emerged as powerful tools in integrating 

and analysing the various thematic layers along with attribute information to 

create various planning scenarios for decision making (Tiwari 2006). 

RS data provides reliable, timely, accurate and periodic data, while 

GIS provide various methods of integrating tools to create different planning 

scenarios for decision making.  Thus the adoption of these technologies in 

examining and managing HAT propagation in the study area is appropriate.  RS 

and GIS tools could be regarded as the catalyst needed to dissolve the 

regional-systematic and human-physical dichotomies that have long plagued 
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disciplines connected with spatial information (Akiode 2008). When 

investigating a phenomenon with an aim of progressing to efficient 

management, (e.g. disease control and prevention), some connection is vital to 

understanding and managing activities and resources that are often missing.  

With RS and GIS, it is possible to make connections between activities 

based on geographical proximity.  Currently, GIS and RS are crucial in many 

fields in assisting in the decision making process.  It was opined in ILWIS 2.1 

that, most decisions are influenced to some extent by geography.  What is at a 

location? Where are the most suitable sites? Where, when and which changes 

took place? ILWIS 2.1 further stated that, in order to be able to make the 

right decisions, access to different sorts of information is required.  Data should 

be maintained and updated and should be used in the analysis to obtain useful 

information.  In support of this opinion, the present study will make use of 

relevant RS and GIS software (ArcMap 10.0 and IDRISI Selva 17.0) to carry 

out analysis on which useful information was deduced.  IDRISI offers a set of 

support tools that are specifically appropriate for image processing and multi-

criteria decision making, for example, weighting of criteria, while ArcMap is 

GIS software used mainly to display, edit, create, and analyse/manipulate 

geospatial data. 

 

1.3.4.1 Integration of geospatial decisions in vector-borne disease 

management 

Integrated RS and GIS technologies have been utilised to improve our 

environmental knowledge. Images of earth phenomenon taken remotely 

provide opportunities to capture the interrelationship of environmental 

elements.  Integration of geospatial approaches with disease management 

decisions can permit efficient and effective prioritization and deployment of 

limited resources. Decision making processes are complex; involving the use of 

concepts and tools, some of which are discussed in more detail in this chapter. 

 

1.3.5 HAT distribution mapping: previous efforts 

The resurgence of Trypanosomiasis in some endemic foci continues to impact 

rural development in sub-Saharan Africa.  Efforts to control and free these foci 

from disease have led to introduction of targeted programs.  Achieving HAT 
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free foci depends largely on tsetse f l y  ecology and suitable vector spatial 

distribution datasets.  Thus, HAT vector habitat maps are indispensable, but, in 

some endemic regions, this spatial distribution and HAT vector prevalence 

information is still limited and inadequate for wider area planning and 

management.  To address this issue, requires examination of how land cover 

datasets may influence HAT vector habitat mapping. 

The significance of land cover was acknowledged in past research, in 

which vegetal and other environmental variables, such as climatic and 

elevation data, were used to assess the spatial distribution boundary of various 

types of HAT vector (Katondo 1984).  Lately, geospatial techniques such as, RS 

and GIS have been used in mapping tsetse distribution at continental and 

regional scales (Courtin et al. 2005; Rogers and Robinson 2004; Rogers and 

Williams 1994; Rogers and Randolph 1993). There is also an increasing 

numbers of studies in the literature on the usage of RS images for HAT vector 

habitat mapping at a higher spatial resolution (Bouyer et al. 2006; De Deken 

et al. 2005; Mahama et al. 2005). In spite of this progress, the level of detail 

and accuracy of some of the existing HAT vector spatial distribution 

maps/datasets, are still not sufficient for the difficult tasks posed by the 

scheduling and execution of wide area surveillance programmes. 

Other studies that acknowledge the importance of land cover in HAT 

mapping include DeVisser and Messina ( 2009), who used a broad method 

to evaluate the existing land cover products that performs best for habitat 

modelling.  Sutherst (2004) highlighted the impact of deforestation and 

irrigation on HAT, while Reid et al. (2012), pointed out that epidemiology of 

HAT cannot be analysed in the absence of precise environmental data.  In 

Berrang-Ford (2007), land cover change and proximity to certain land cover 

t ypes were listed among the factors responsible for HAT resurgence, while 

Courtin et al. (2005) carried out a landscape assessment of an area of Bonon, 

Côte d’Ivorie.   Land cover is generally considered in these studies, but (except 

for Courtin et al. 2005) was not actually examined as an indicator of habitats 

appropriate for the HAT vector.  Nevertheless, there is link between land 

cover and other major contributing factors, (e.g. climatic variables, in HAT 

vector habitat).  It is also obvious from the literature that the physical 

landscape is very important to HAT propagation; yet, few efforts have been 
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made to pinpoint the exact locations where HAT patients are infected.  

Emphasis was put on domestic units or settlements as a geographic unit to 

which disease datasets were linked, even though this type of landscape 

analysis will not permit the detection of highly HAT hazardous locations.  It is 

very important that the landscape within HAT endemic areas is well examined.  

A study by Courtin et al. 2005 highlighted the worth of GIS in gaining a 

perception of HAT distribution and spatial dynamics, as well as identified active 

transmission areas.  A disparity between HAT infection in the northern and 

southern part of the study area (Bonon, Côte d'Ivoire), was explained using 

spatial analysis. The authors, with the aid of GIS, spatially analysed the link 

between the human host, tsetse vector and trypanosomes in their landscape.  

These studies, irrespective of their level of details, accuracy, and 

original goals have served as basis for HAT control programmes across sub-

Sahara Africa.  However, due to the heterogeneous nature of the sub-Sahara 

Africa environment and the importance - economic or otherwise - of varying 

biotic and abiotic components, HAT management and controlling activities 

will benefit from detailed landscape characterisation studies. 

Underreporting is one of the factors affecting HAT (Osue et al. 2008).  

Underreporting of HAT cases, most especially T. b. gambiense, is an 

indication that supplementary data gathering approaches, other than the 

existing active and passive case surveillance, are required. The existing case 

surveillance methods are insufficient to fully describe the extent of HAT.  

While infected people may not access passive surveillance facilities for 

treatment until a  late stage, due to the asymptomatic nature of the West African 

form of HAT, the active surveillance team may not detect the case because of 

constraints such as limited resources and the nature of the terrain, etc.  This 

results in underreporting and eventually resurgence of the disease.  To 

overcome the limitations of the existing system as well as promote improved 

HAT management; the integration of geospatial techniques is very important. 

 

1.3.6 The link between RS/GIS and environ-climatic variables and 

disease management 

The principle behind the association of RS and the study of disease origin and 

propagation is the development of a logical chain that connects emitted energy 
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from a remote sensing sensor to disease measures and the disease transmitting 

organism (Kalluri et al. 2007).  For instance, RS sensors at different 

wavelengths records energy emitted by phenomena on the earth surface or 

within vector-bone diseased endemic areas.  The emitted energy is then pre-

processed to generate different land cover classes.  The land cover classes 

can be re-classified into vector habitat; the survival of disease vector and its 

propagation is associated to the vector habitat.  Thus, RS data can give 

insights into the factors influencing disease propagation using habitat 

information. Emitted energy recorded of phenomena on the earth’s surface 

could also be pre-processed to obtain data such as normalised difference 

vegetation index (NDVI), land surface temperature, digital terrain dataset, 

normalised difference water index (NDWI) etc.  All of these could be 

analysed singly or in combination with other datasets/information to examined 

and manage the disease in a given environment. 

The importance of land cover in the application of RS in the study of 

disease origin and propagation cannot be over emphasised; land cover can be 

used to link disease vectors to their habitat or to generate substitute 

environmental indicators.  The landscape is central to the study of disease 

origin and propagation; and in-depth knowledge of the landscape and factors 

that affect disease propagation retrieved using RS is, therefore, a function of the 

spatio-temporal interaction between the land cover classes.  The potential link 

between HAT and the RS factors or variables used in the present study for HAT 

habitat classification is summarised in Table 1.1. 
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   Table 1.1: Potential links between remotely sensed factors and HAT   

   Disease.  Source: Adapted from Beck et al. (2000). 

Factor  Mapping prospect 

 Vegetal cover (dense forest,   

 Less dense forest) 

 

 

 Vector habitat 

 NDVI  Vector Survival 

 Ecotones  Human/vector contact risk. 

 Deforestation (cultivated area,  

 shrub) 

 Unfavourable habitat/ human/vector contact  

 Risk 

 Water bodies  Breeding habitat / human/vector contact risk 

 Mangrove  Breeding/Resting habitat 

 Soil moisture / relative humidity  Vector survival / influenced vegetal  

 cover vigour 

 Human Settlements(built-up area)  Source of infected humans; populations at  

 risk for propagation 

 

 

 

 Land surface temperature  Vector survival 

     

 

1.3.7 Application of GIS and RS to disease management  

Remote Sensing and GIS have been used to successfully identify environmental 

factors that correlate with the distribution of malaria and schistosomiasis 

(Leonardo et al. 2005). Use of these technologies permits rapid assessments of 

disease situations and facilitates decision making regarding interventions and 

treatments.  GIS software are becoming more user-friendly and now are 

complemented by free mapping software that provide access to satellite imagery 

and basic feature-making tools, that have the capacity to generate static as well as 

dynamic time-series maps (Eisen and Lozano- Fuentes 2009).  Eisen and 

Lozano-Fuentes (2009) in their work on Dengue fever, discussed how mapping 

and spatial and space-time modelling approaches have been used in disease 

management and how these approaches can be included as routine activities in 

operational vector control programmes.  This, they said, will enable such 

programmes to, for example, generate risk maps of exposure to dengue virus, 

develop priority area classification for vector control, and explore socioeconomic 

association with dengue risk.  This present study will develop a classification 
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scheme for identifying HAT risk areas using RS images in a GIS environment. 

 

1.3.8 RS and GIS in disease control 

RS data has proved useful in disease prediction; not only because RS can  be 

accessed for near real-time data, but also its ability to provide archival data for 

predictions and has been used in several studies.  Williams and Peterson (2009) 

tested the hypothesis that spatial distributions of avian influenza (HPAI-

H5N1) cases are related consistently and predictably to coarse-scale 

environmental features in the Middle East and north eastern Africa. They 

combined RS data with other datasets (e.g. topographical data), and using 

ecological niche models, the authors documented a variable environmental 

“fingerprint” for areas suitable for HPAI-H5N1 transmission. 

Examining the association between aerosol air pollution as indicated by 

aerosol optical depth (AOD) and chronic ischemic heart disease (CIHD) in the 

eastern United State, Hu and Rao (2009), used satellite data to establish strong 

association between CIHD mortality risk and air pollution, in areas with elevated 

levels of outdoor aerosol air pollution, as indicated by satellite derived AOD.  

They concluded that RS could help fill pervasive data gaps that impede 

efforts to study air pollution and protect public health.  The use of RS data in 

the present study will greatly help in alleviating the problems of dearth of HAT 

related data.  

The integration of RS and GIS has been vital to development of 

disadvantaged regions towards sustainable health. According to Angeles et al. 

(2009), the concentration of poverty and adverse environmental circumstances 

within slums, particularly in developing countries, are an increasingly 

important concern for both public health policy initiatives and related 

programmes in other sectors.  Angeles et al. (2009) pointed out that GIS and 

RS integrated with traditional fieldwork methodologies was used to obtain up-

to-date information about slum life in major cities in Bangladesh including 

Dhaka.  According to the authors, the method allowed programmers and 

planners to precisely target their efforts towards areas of concentrated 

poverty and poor environmental conditions effectively. The methodologies 

employed were very efficient in terms of processing speed and access to 

information. 
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RS and GIS techniques have been vital in aiding planning strategies for 

reducing disease risk, by eliminating the vector population.  For example, in 

planning and implementing area-wide integrated pest management activities in 

northern Sudan, Ageep et al. (2009), used RS, GIS and GPS to select survey 

locations for malaria research.  They noted that the GIS-based survey 

strategies developed in their study provided key data on the population dynamics 

of the malaria-carrying Anopheles arabienses mosquito.  This, they said, 

provided a basis for planning a strategy for reducing malaria risk, through 

elimination of the vector population.  

RS/GIS integrated with statistical methods can facilitate an 

understanding of disease management.  According to Kelly-Hope and Mckenzie 

(2009), understanding the dynamics of disease transmission in a population is 

vital as it provides insight into the extent of the problem and helps define 

when and where the greatest risk occurs. This facilitates development of 

appropriate control strategies.  In order to identify key differences and 

similarities and highlight corresponding risk factors, Kelly-Hope and Mckenzie 

(2009), pointed out that it is important to determine how the level of risk within 

a population may compare with other or surrounding populations. 

Noor et al. (2008) stated that the use of geo-statistical methods can help 

focus surveillance efforts and define those areas where uncertainty exists, to 

better estimate disease burden.  For example, to enhance the understanding of 

the multiplicity of malaria transmission, Kelly-Hope and Mckenzie (2009) 

examined the distribution of transmission intensity across sub-Saharan Africa, 

and reviewed the range of methods used.  They explored ecological parameters 

in selected locations by building on an extensive geo-referenced database using 

GIS. Noor et al. (2008), on the other hand, in emphasising the importance of 

distribution maps in optimal allocation of resources in disease activities, 

pointed out that reliable contemporary malaria maps are lacking in endemic 

countries in sub-Saharan African. They used instead geo-statistical models to 

provide the best contemporary map on malaria prevalence in Somalia.  In the 

present study, RS/GIS will be integrated with spatial statistics to prioritise HAT 

diseased areas.  
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Other examples of studies emphasising the importance of geo-spatial and 

geo-statistical techniques in disease management include Osei and Duker 

(2008), whose study demonstrated the use of GIS based spatial analysis and 

statistical analysis, in mapping hotspots, and the spatial dependency of cholera 

distribution within the Ashanti region of Ghana.  Additionally, Ekpo et al. 

(2008) used GIS and RS data to develop predictive risk maps of the 

probability of occurrence of urinary schistosomiasis, and quantify the risk for 

infection in Ogun State, Nigeria to boost control programme. 

GIS application is not limited to vector-borne diseases management.  

Presenting their findings from a workshop held in June 16-17, 2005, Pickle 

et al. (2006) pointed out how cancer control researchers seek to reduce the 

burden of cancer by studying interventions, their impact in defined populations, 

and the means by which they can be better used.  According to the authors, 

identifying locations where interventions are needed is vital to cancer 

control. GIS and other spatial analytic methods provide such a solution, and 

thus can play a major role in cancer control (Pickle et al. 2006). 

 

1.3.9 Disease management 

The decision by policy makers across the globe to manage disease propagation 

is governed by varying spatial factors.  It is these factors that drive the balance 

between disease prevention and treatment.  Disease prevention involves 

education of the population as to how a disease is transmitted, and thus 

provides strategies that can help in reducing the disease propagation.  In some 

countries, access to effective and efficient health care is constrained by the cost 

of disease treatment, which is higher compared to preventive disease 

management (The British Geographer no date). Disease management, 

especially vector-borne disease management is very important. 

 

1.3.10 Integrated vector management 

Integrated Vector Management (IVM) is a decision-making process that 

supports the maximum benefits that can be derived from linking the 

management of a disease vector, to the physical landscape (WHO 2012).   The 

intent is to decrease or disrupt propagation of disease.  An IVM method makes 

judicious use of existing health infrastructure and resources; it supports 
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integration of different methods to effectively manage a  disease vector 

towards realisation of Millennium Development Goals (wellbeing content), such 

as: reduction of child mortality rates, improve maternal health and combating 

diseases (UNDP no date). 

 IVM emphasises (Robert Bos no date): 

 Adoption of strategies based on knowledge (evidence-based) of local 

vector ecology and disease propagation. 

 Use of multidisciplinary methods.  

 Multi-sectorial teamwork and involvement of the local communities. 

 Public health policy and functioning measures. 

 Sustainable chemical methods of vector control. 

 Cost-effectiveness. 

 

1.3.11 Decision support systems 

Large-scale information systems have become cheaper to build and run over the 

last fifty years, and have begun to be used to support healthcare decision- 

makings.  Improvements in computer technological sophistication have allowed 

GIS mapping programs, previously run on mainframe computers to be run on 

personal computers and laptops, enhancing mapping ability and flexibility.  In 

the 1960s very little detail other than locational coordinates were stored in 

databases using mainframe systems, but in 1981, Environmental Systems 

Research Institute (ESRI) introduced the ArcInfo GIS software package, that 

utilised a second generation geographic data model known as the coverage data 

model (Figure 1.5; Zeiler 1999).  
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The coverage data model allows storage of spatial information with 

secondary attributes such as address, time and demographic characteristics in a 

manner available to a range of computational approaches, using algorithms built 

into the software, or in complementary programs like Microsoft Excel.  Thus, 

GIS can be used as a medium for both graphic and statistical consideration of 

spatial problems, whose resolution can be reported immediately in charts, 

graphs, maps, and tables (Koch 2005). 

The advent of the internet has allowed multiple disparate studies 

pertinent to diseases to be retrieved and joined with locational attributes files 

(Koch 2005).  The result according to Koch (2005) has been an 

unprecedented availability of social and health-related data that can be 

downloaded to the desktop and independently manipulated using GIS 

systems, whose analytic and graphic capabilities are far beyond those that 

were available a generation ago. 

A Decision Support System (DSS) can be defined in many ways. The 

broad definition by USGS Upper Midwest Environmental Sciences Center 

(2013) is georeferenced computer applications or data that assists a researcher 

or manager in making decisions.  DSS according to Turban (1995) is an 

interactive computer based system that helps decision makers utilise data 

and models to solve unstructured problems.  DSS improve the performance 

of decision makers, while reducing the time and human resources required 

for analysing complex decisions. 

The development of a particular DSS depends on the type of 

problem that is being addressed, for example, ‘ what-if’ analysis can be used 

Figure 1.5: Elements of the coverage data model (Source: Zeiler 1999). 
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to examine how changes to selected variables will affect other variables, or 

carry out optimisation analysis to find the optimum solution given certain 

constraints.  GIS is a special type of DSS that deals with analysis of geo-spatial 

data.  There has been a lot of focus on the use of GIS as a DSS (Eastman 1999; 

Geneletti 2004), but the tool is limited in supporting decision making, most 

especially when regarding complex problems.  Thus, there is a need to 

integrate GIS and DSS in a flexible way towards effective decision making 

(Akinyemi 2004).  In order to improve the capabilities of GIS as a DSS, 

algorithms are developed within the GIS (Eastman et al. 1995), for example, 

multicriteria decision tool in IDRISI Selva software.  Alternatively, GIS is 

integrated with other statistical software packages,  and/ or with dedicated 

analytical or socio-economic models (Jankowski 1995). 

 

1.3.12 Geospatial multi-criteria decision analysis in vector-borne 

disease management 

The complexity of vector-borne disease epidemiology poses considerable 

challenges in the design of effective and efficient management methods. 

Disease risk prediction studies (Reisen 2010; Eisen and Eisen 2011; Ostfeld, 

Glass and Keesing 2005) based on geospatial models have been developed 

towards management and control programs.  Nevertheless, these methods 

usually provide technical information on geographic distribution of disease 

risk.  Spatially explicit information will help decision makers prioritise 

surveillance and prevention/control measures. Spatially explicit information 

varies, therefore, it is vital that thes e  are combined to aid decision making 

using a method that will facilitate quick and effective decision making. 

A Geospatial or Spatial Decision Support System (SDSS) is a 

computer aided information system that can help users generate optimal 

solutions to spatial puzzles.  SDSS users can influence decisions using spatial 

and non-spatial data, application models, software tools and expert knowledge, 

(Rayed 2012).  Decision making has been considered an art, because a variety 

of individual styles could be used in approaching and successfully solving 

the same types of managerial problems, which were based on creativity, 

judgement, and experience rather than on systematic quantitative methods 

grounded in scientific approach (Turban and Aronson 2001). However, 
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decision making is becoming increasingly complex and cannot rely solely on 

artistic talents acquired over long period of time through experience.  Precise 

and rapidly accessible information is very important for making correct 

decisions and in order to facilitate this, decision makers use modern 

technologies, such as databases, model bases, computer networks and the 

internet (Janakiraman and Sarukesi 2004). 

Using geospatial techniques, such as GIS and DSS for disease 

management, different data can be combined to generate useful information that 

will influence decision making.  There are policies/regulations as well as 

activities that can help in preventing or alleviating disease propagation.  Such 

activities include mapping and monitoring the time and location of the disease 

occurrence using spatial data.  GIS can facilitate the integration of such 

spatial data and its attributes with statistical data to generate thematic maps to 

help effective decision making.  One can easily model the relationship between 

diseases and the factors responsible for the disease using geo-statistical models.  

Such models, according to Mesgari and Masoomi (2008), can help decision 

makers to prioritise not only the affecting factors of disease, but also the 

actions and regulations required for fighting the disease.  Mesgari and 

Masoomi (2008) also stressed the fact that such models can help in carrying out 

the generation of different scenarios and evaluation of the results of terms of 

potential actions.  

It is very important to identify factors responsible for diseases or those 

that can ease infection rates, and to model disease propagation in a given 

environment.  Environmental and socio-cultural factors may affect disease 

propagation, thus, there is the need to identify the spatio-temporal distribution 

of such factors which will boost the modelling of disease direction and 

propagation speed.  This in turn impacts on prioritisation of disease locations 

and the human populations at risk. 

Integration of DSS and geospatial techniques also helps information 

dissemination, and early warnings are vital in disease management.  Geospatial 

techniques help stakeholders involved in health related matters to carry out 

spatial analysis on data derived from different sources, and publish the result 

in suitable formats, depending on the target audience through various media. 

The present study will utilise spatial data analysis with data derived from 
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various sources, (e.g. RS, or hospital records in a GIS environment), and to 

detect HAT risks areas and factors contributing to the disease propagation 

within the study area.  This will help the policy makers, health officials and 

even the human populations at risk to make quick decision that will benefit all. 

In the area of study for this work, spatial disease characteristics have not been 

clearly emphasised (e.g. hospital records lack geographic location of cases, 

residential address, date that patients contacted disease and year of cure or 

death missing from the database; data hoarding by organisations, etc).  In order to 

address the issue of dearth of information, multiple dataset need to be derived 

from RS imagery in a GIS environment.  GIS provides analytical capabilities; 

and GIS metadata can be processed and used as inputs to modelling, to aid 

decision making.  Spatial decision problems usually involve a large set of viable 

options and several evaluation criteria, which are often weighed by multiple 

stakeholders with conflicting interests (Tsiko and Haile 2011).  Thus, factors to 

be considered while developing efficient strategies to manage HAT or vector-

borne diseases are many, and the links between or among these factors a r e  

complex.  In order to facilitate scrupulous selection of optimal choices, in a 

situation where several criteria apply concurrently (Mendoza and Prabhu 2000) 

GIS can be integrated with multi-criteria decision analysis (MCDA).  In 

MCDA, problems are divided into sub-sets, analysed logically t hen  merged 

them to generate a n  optimal solution (Malczewski 1999). 

In MCDA a number of terms are used.  According to Eastman et al. 

(1995) these are: 

 Decision: This is a  choice between alternatives, which could be 

varying courses of action, hypothesis about an entity characteristic or varying 

groups of entities, etc. 

 Criterion: A rule or standard by which something may be judged or 

decided (Oxford dictionary). Criterion can be divided into factors and 

constraints. 

 Factor: A  criterion that influences the fitness of a particular 

alternative for the activity under consideration, thus, it is measured on a 

continuous scale. 

 Constraint: A criterion used to control the alternatives under 

consideration within certain limit. 
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 Decision Rule:  A method that allows decision makers to choose one or 

more alternatives using a given set of evaluation criteria as a guide (Malczewski 

1999).  The method involves the use of choice functions; sometimes called a 

performance index or objective function and choice heuristic processes. 

 Choice function: This provides a mathematical means for evaluating 

alternatives.  

 Choice heuristic: States a process to be followed rather than evaluating a 

function.  

 Objective:  The measure by which the decision rule operates. 

MCDA is now a favourite option for decision making, involving 

several stakeholders and key players with varying backgrounds (Tsiko and 

Haile 2011).  Apart from being open and explicit, MCDA has characteristics 

that make it appropriate for providing solutions to intricate problems given a 

set of criteria or indicators.  Though the procedure involved in evaluating 

multiple criteria may be risk prone and may impact the final decision reached, 

the involvement of a group of stakeholders and key players will greatly reduce 

the intrinsic risk.   

MCDA can accommodate the integration of qualitative and quantitative 

data/information; but data does not necessarily have to be intensive; specialist 

opinions can augment limited data.  The method of merging multiple criteria 

can be non-compensatory or compensatory.  Non-compensatory in the sense 

that alternatives are required to meet one, few, or all criteria based on cut-off 

values; here any addition or enhancement in the value of one criterion cannot 

be compensated for by the reduction or devaluation of another criterion. 

Compensatory methods aid criteria trade-offs; here reduction or loss in a 

criterion can be offset by an increase in another criterion (Greene et al. 2011). 

MCDA can be divided into multi-attribute decision analysis (MADA), 

sometimes referred to as a multi-criteria evaluation or multi-attribute evaluation 

and multi-objective decision analysis (MODA) or a multi-objective evaluation 

(Jankowski 1995).  In MADA, decisions are concerned with a discrete, usually 

limited number of feasible alternatives, while MODA is concerned with an 

infinite or large number of alternatives or objectives, to be determined in a 

continuous or integer domain (Jankowski 1995).  This means an optimal 

solution may be found in any location within the limit of feasible solution 
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(Malczewski 2006).  According to Malczewski (2004) and Eastman et al. 

(1995), with MODA, it is vital to ascertain whether the interaction of the 

objectives, when combined, will produce an effect greater than the sum of 

their individual objectives or conflict (e.g. assigning land cover classes to either 

HAT vector breeding habitat,  or to the area where there is human-vector 

contact, and to cluster the criteria by objectives).  In MCDA, the adoption of 

methods depends on the problem to be solved and the anticipated solution. 

For example, according to Greene et al. (2011), if multi-objectives are 

complementary or can be prioritised, then MADA methods can be used 

repeatedly in a two-level or stepwise way.  However, if the multi-objectives are 

not complimentary, MODA will be the appropriate methods to employ.  The 

present research will adopt the former approach because of the 

complementary nature of its multi-objectives.  

MCDA have been integrated with geospatial techniques, for example, 

GIS, to resolve spatial problems (Carver 1991).  In geo-spatial multi-criteria 

decisions, analysis of result is a function of not only spatial distribution of 

attributes, but also of the judgements involved in the decision making process 

(Ascough et al. 2002).  Thus, there are two important aspects of geospatial 

multi-criteria decision analysis (the GIS aspect and the MCDA aspect).  The 

spatial component involves analyses such as aggregation of locational data 

and decision makers’ choice into discrete decision alternatives (Jankowski 

1995). 

The GIS aspect can be divided into raster and vector data models. Data 

model is an abstraction of the real world which integrates only pertinent features 

in an application, distinguishes particular classes of entities, their attributes and 

the link between the entities.  A raster data model represents features as a 

matrix/lattice of cells in continuous space, while a  vector model represents 

discrete features as discrete points, lines, and polygons.  Subject to the type of 

criteria, raster and vector-based GISMCDA methods can be further grouped 

into: explicit criteria, whereby the decision problem involve spatial features 

such as size, shape, proximity, and density as criteria; and implicit criteria, 

whereby the decision problem involve the use of spatial data to calculate the 

performance level of the criterion.  Both or either explicit or implicit spatial 

criteria can be carried out in MCDA.  MCDA has been applied in many fields 



 

 

29  

(Guipponi 2007; Jankowski, Andrienko and Andrienko 2001).  GIS-MCDA is 

also well documented (Eastman et al. 1995; Jankowski 1995; Malczewski 1999; 

Chakhar and Martel 2003).  In GIS-MADA and GISMODA, decision rules are 

applied.  According to Malczewski (2006), in GIS-MCDA, integration of rules 

is restricted to methods such as weighted summation, ideal/reference point, and 

outranking. According to the author, some studies have successfully 

integrated weighted summation with other methods such as linear 

transformation method for normalizing criteria and the pairwise comparison 

method for deriving the criterion weights.  Other method such as ordered 

weighted averaging (OWA) is an expansion and simplification of the Boolean 

operations and the weighted summation methods.  The processes employed 

for carrying out MCDA can also be used for geospatial or GIS-based MCDA.   

Figure 1.6 shows the steps involved in the application of MCDA.  

 

 

1.3.12.1 The MCDA procedure 

The MCDA procedures (Figure 1.6) are described in this sub-section: 

 Establish the decision context:  At this step, the purpose and the 

expected result of the MCDA is clearly established along with the 

Establish the decision context 

 

 

 

 

Identify evaluation criteria 

Normalise/weighting of criterion 

Aggregate the criteria 

Check the result/validation 

                 Figure 1.6: Multi criteria decision analysis procedure 

  (Source: Crown copyright, London 2009) 
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identification and selection of major participants (Crown copyright, London 

2009). In the present research work, participants are responsible for criteria 

selection and weights assignment. The nature of the participants’ inputs and 

type of MCDA/implementation strategy are also established at this stage. 

 Identify evaluation criteria: Identifying suitable evaluation criteria is 

vital to the realisation of the objective in a decision analysis process.  This step 

involves identifying a broad set of relevant alternatives that will be needed for 

the MCDA, and the level of details required, proxies are also identified for some 

criteria when and if necessary. The format in which criteria are represented is 

very important; due to the link between the evaluation criteria and spatial 

features, the criteria can be presented as attribute maps. 

 Normalised/weighting of criterion: Weight is assigned to criteria by 

decision makers to reveal variations in the level of significance of each criterion 

in the decision set. One of the popular weighting methods is pairwise comparison 

(Malczewski 1999) whereby decision makers judge each single criterion against 

all other criterion in pairs (Yoe 2002).  In MCDA, the main focus is how to 

merge information from varying criteria to generate an index of evaluation 

(Eastman, 2001).  Due to the different units and scales of criteria, there is the 

need to adjust the values of the criterion to a common scale for fair 

comparisons among criteria before merging them, thus normalising using 

suitable method (Eastman (2001). The Analytic Hierarchy Process (AHP) is a 

pairwise comparison method.  AHP is the most popular MCDA tool and has been 

applied in varied area of decision support, including, health care management 

Rakotomanana et al. (2007).  In AHP, problems are structured into hierarchy 

(Suedel, Kim and Banks 2009). 

Elements in the hierarchical structure are compared in pairwise 

comparison using a relational scale (Table 1.2) to determine their relative 

significance. 
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          Table 1.2:  AHP significance scale (Source: Saaty 1980) 

Strength scale   Description 

1  Evenly significant 

2 Evenly to moderately significant  

3  Moderately significant  

4 Moderately to strongly significant 

5  Strongly  significant  

6 Strongly to very strongly significant 

7  Very strongly significant  

8 Very strongly to extremely significant 

9  Extremely significant  

 

 

In AHP, it is important that the opinion of the decision makers be 

consistence, thus, consistency test is required to authenticate their judgment.  The 

consistency ratio (CR) is the likelihood that the weights were randomly generated 

(Eastman 2001).  According to Saaty (1980), any CR (Equation 1.1) up to 0.10 is 

considered satisfactory.  

 

               CR = (CI) / (RI)    0.1                   1.1 

 

Where: CI = Consistency Index derived from Equation 1.2, RI = Random 

consistency index (Table 1.3). 

 

               CI = (λmax–n) / (n –1)                 1.2 

 

Where:  λmax (Lambda max) = the maximum eigenvalue of the AHP matrix,    

n = number of criteria. 

 

 Table 1.3:   Random consistency index (RI) Source: Saaty (1980) 

N 1 2  3  4  5  6  7  8  9  10  

RI  0.0 0.00  0.58  0.90 1.12 1.24 1.32 1.41 1.45 1.49  

 

Having accepted CR, the overall rating for the alternatives are established 
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by aggregating the relative weights of the decision elements.  Aggregation 

technique is needed to assess the performance of prioritization method used in 

AHP.  An example of this technique is weighted summation method (WSM) 

which is highly popular due to its simplicity and time effectiveness (Von 

Winterfeldt and Edwards 1986), thus, it is adopted in the present research work.  

AHP which was developed by Saaty (1980) has been criticized as weak, due to 

its inability to take into consideration the uncertainty inherent in the 

quantification of decision makers’ judgment (Yang and Chen 2004). 

 

1.3.13    Integration of fuzzy logic with geospatial-MCDA  

Fuzzy membership function has been used to improve the uncertainty associated 

with AHP decision (Chang 1996; Buckley 1985). Fuzzification, according to 

Erensal et al. 2006, can capture the uncertainty inherent in complex multi-

attribute decision analysis problems.  Fuzzy set theory, which was introduced by 

Zadeh (1965), has been applied in epidemiological studies (Wang and Wang, 

2010; Hongoh et al. 2011; Rajabi, Mansourian and Bazmani 2012). Fuzzy theory 

permits the membership functions to function over a range of real numbers [0, 1] 

to delineate the extent or strength of membership of element(s) in a fuzzy set 

(Nedeljkovic 2004).  

The membership functions differ in their equation and application; among 

the available membership functions are:  fuzzy small, fuzzy large.  Fuzzy small is 

used when the smaller input variable values have the highest possibility of being 

a fuzzy set while fuzzy large is the opposite of fuzzy small.  The functions 

algorithms are defined as Equations 1.3 and 1.4 (Tsoukalas and Uhri 1997).   

 

                    
 

   
 

  
 

  

 

                                                                        1.3 

                     
 

   
 

  
 

   

 

              1.4 

Where: Si = the spread of the change from a membership value of 1 to 0,  Sj = the 

mid point where the membership value is 0.5. 

 

In fuzzy logic analysis, if the rule upon which feature fuzzification was 

based is multifaceted, operators such as fuzzy union (fuzzy OR), intersection 
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(fuzzy AND) and gamma are used to assess the compound strength of the rule.  

Fuzzy OR and fuzzy AND are restricted to maximum and minimum fuzzy 

membership values respectively (details in Zadeh 1965) while fuzzy gamma 

yields values that ensure flexibility between fuzzy OR and fuzzy AND (details in 

Zimmermann 1985; Bonham-Carter 1994).  The steps involved in the integration 

of fuzzy logic with geospatial-MCDA, which, in the context of this research 

work, can be regarded as geospatial-fuzzy MCDA is similar to MCDA 

procedures.   

 

1.3.14   Validation Analysis 

Due to lack of validation and objectives, decisions made with multicriteria 

methods are connected with some form of uncertainty.  The uncertainty, 

according to Voogd (1983) could be reduced by sensitivity analysis and 

participation of experts in choosing appropriate criteria endorsed by all 

stakeholders.  Sensitivity analysis is a process whereby the input data are 

somewhat adapted so as to observe the effect on the outcomes.  

Geostatistical analysis such as ordinary kriging, local polynomial 

interpolation, empirical Bayesian kriging etc. can be carried out to assess the 

spatial variations in a model. The concept of spatial variability is based on the 

fact that entities within the same location range are more similar than the entities 

that are far apart (Alexander et al. 2003).   

Ordinary kriging which can be conducted using semivariogram has been 

used for measuring spatial variation of point data in space (Ibrahim 2011).  

ArcGIS Help 10.0 defined Ordinary kriging as Equation 1.5  

 

             Z(s) =   +  (s)                                                                                      1.5                                 

Where:   = unknown constant,  (s) = random fluctuations. 

  

When a model is fit through the measured sampled locations, the semivariogram 

function can be explained with terms such as the sill, nugget and range.  When 

the semivariogram levels off at a certain peak, this peak is the sill.  The sill has 

two components (nugget effect and partial sill). Nugget is the sum of 

observational and microscale variation.  In microscale, slight variations in 

location produce spatially independent residuals.  The range is the distance at 
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which the semivariogram levels out to the sill; if the distances between the 

sampled locations are shorter than the range, there is said to be spatial 

autocorrelation, otherwise no autocorrelation (ArcGIS help 10.0).  

The basis of local polynomial interpolation (LPI) is to fit smaller 

overlapping planes, and then predict each location in the area under 

consideration using the centre of the plane.  LPI provides spatial condition 

number surface which is a measure of stability and reliability of the outcome of 

a prediction equation for a given location.  The rules of thumb for critical values 

for spatial condition number surface are:  for 1
st
 order polynomial, the threshold 

is 10, 2
nd

 polynomial order threshold is 100 while 3
rd

 order polynomial has 1000 

critical threshold (ArcMap 10.0 help).   

Empirical Bayesian kriging (EBK) is used to assess the quality of fit of 

models and it produces more accurate results than the other kriging methods in 

that it measures the underlying semivariogram. Also, cross validation can be 

used to diagnose the reliability of a semivariogram model whereby smaller 

difference indicates a good quality model (ArcMap 10.0 Help).  

 

1.4  Vulnerability Assessment  

Vulnerability assessment is necessary as it will serve as early warning and 

response measures to manage economic cost effectively (Diop 2003).  The 

vulnerability of human population in a given region to a disease depends on a 

number of factors.  Rusty Binas [no date] defined vulnerability which he 

interpreted mathematically (Equation 1.6) as unsafe locations of element at risk. 

 

                 V = f (    
 )                                                         1.6

                                                         

Where:  V = vulnerability,     
  = the location of element at risk to hazard,   

 f = function of. 

                   

According to Rusty Binas no date, the gap between the secure conditions and the 

insecure conditions of the element at risk determine the degree of exposure to the 

impact of hazards. Thus:  

          

 DR =                
                                                                          1.7 

Where:  DR = disaster risk. 
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A risk can be assessed qualitatively using comparative risk groups as in 

Cecchi et al. 2008 tsetse fly suitability index, partly-quantitatively, based on 

comparative significance assignment by known criteria using numeric indices 

whereby relative indication rather than real expected impact are conveyed or 

quantitatively; using numeric terms to depict risks as chance or expected impact.  

Both qualitative and partly-quantitative are useful when risk is being evaluated at 

regional or national level and when there is limited numeric data and funding 

(Australian Geomechanics 2000). The present research work adopts the use of 

partly-quantitative method to assess risk of HAT in the study area.  This 

approach has been applied to generating landslide risk index (CastellanosAbella 

and VanWesten 2007). 

 

1.5 Computer Systems Components of Analysis  

In developing a classification scheme for managing HAT propagation there is the 

need to incorporate certain computer systems.  These include digital image 

processing and statistical analysis. In classifying an area for prioritization 

towards effective management, there is the need to have a synoptic view of the 

said area.  Satellite RS other than conventional method is the appropriate choice 

for this.  In selecting RS data for classification, it is very vital to understand the 

characteristics of the data. There are studies that have reviewed the basic 

characteristic of RS data (refer to section 1.3.3.2).  According to Lu and Weng 

2007, the users need to determine the nature of classification and the scale of the 

study area, thus affecting the selection of suitable spatial resolution of remotely 

sensed data.  For example, for the present study, the stakeholders/researcher 

agreed to adopt 1 hectare minimum mapping unit (MMU) and scale of between 

1:50,000 – 1:100,000.  Thus, Landsat 7 ETM+ with 30m x 30m spatial resolution 

can comfortably be used to identify and map the tsetse fly habitat.  The RS image 

(Landsat 7 ETM) was chosen to carry out this study for the reasons specify 

below: 

 The successful use of RS images at regional scale, in mapping or 

classifying vector habitat has long history (e.g. Cecchi et al. 2008b; Zeilhofer et 

al. 2007; Cross et al. 1984; Pope et al. 1992).  RS data have also been used in 

predicting vector presence and disease propagation risks (Haley et al. 2011; 

Courtin et al. 2005; Barnes and Higuera 1975; Linthicum et al. 1987), 
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nevertheless, from the perspective of developing a functioning/transferable 

surveillance or management program, continuing availability of RS data beyond 

the initial application is very essential.  Thus the adoption of Landsat RS data for 

the present study; Landsat data (archived and recent) is readily available free of 

charge globally.  

It is necessary that raw image be processed before being used for any 

application.  The four major processing function categories are: pre-processing, 

image enhancement, image transformation and image classification and 

analysis. 

 

1.5.1   Digital image processing 

Digital image processing involves procedure that is required before accurate 

quantitative data/information can be extracted from an image. This process can 

be classified into geometric and radiometric corrections. 

 

1.5.1.1 Geometric Correction 

Raw image may be distorted as a result of rotation of the earth during scanning, 

thus the need for pre-processing before using such image (Lillesand, Kiefer and 

Chipman 2004).  Geometric correction will enable the visualization of image as 

well as combining data from different sources in a GIS environment for further 

analysis. Image visualization and image combining in a GIS environment 

requires georeferencing (Janssen et al. 2004).  To determine how accurately an 

uncorrected image registers over the georeferenced image, the root mean squared 

error (RMSE) must be within acceptable limit. 

 

1.5.1.1.1 Digital elevation model void filling  

Digital elevation model (DEM) datasets is an important determinant of tsetse fly 

distribution within a region. The DEM of Shuttle Radar Topography Mission 

(SRTM) is available at 3 arc-second (approximately 90-meter) medium spatial 

resolutions. The SRTM DEM have been applied in many image analysis (vanZyl 

2001) and a validation of its accuracy revealed that the datasets are indeed very 

good (Berry, Garlick and Smith 2007). Nonetheless, some areas of the SRTM 

datasets are without values otherwise known as voids (Grohmann, Kroenung and 

Strebeck 2006).   
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Many techniques have been developed to fill the no-data areas in SRTM 

DEM.  According to Fisher and Tate (2006), none of the interpolation technique 

can be said to be most accurate following their review on the source and nature 

of errors in digital elevation models. However, some techniques perform better in 

certain terrain (Chaplot et al. 2006), for example, inverse distance weighted 

(IDW) interpolation or kriging may perform better to fill voids in relatively flat 

terrain (Jarvis et al. 2008). 

 

1.5.1.2 Radiometric Correction 

Atmospheric components affect the electromagnetic signal reaching the sensor in 

diverse ways, thus the need to remove noise caused by the atmospheric 

components so as to obtain clean radiances from entity on earth surface. The 

removal or reduction of noise is vital to allow normalization, most especially 

when multispectral and different epochs images are used.  

According to Parodi and Prakash (2004), radiometric correction can be 

grouped into:  

Cosmetic rectification; this is mainly for reducing data errors such as line striping 

and random noise. 

Atmospheric correction (AC); this correction helps in rescaling raw radiance data 

provided by the sensor to reflectance. The methods can be grouped into relative 

and absolute methods (Parodi and Prakash, 2004).  Popular radiative transfer 

models (RTM) for absolute AC include image-based dark object subtraction 

(Image-based DOS).  Image-based DOS method compensates for differences in 

solar output base on the time of year and the solar elevation angle. The 

requirements for DOS include the estimation of parameters such as: image 

date/time, wavelength of the image band centre, sun elevation, haze value, 

radiance conversion and solar irradiance.  Solar irradiance can be obtained using 

Equation 1.8 (Hussein 2012). 

 

                                    =                  
  

   
        1                               1.8                                                   

  

Where:     = spectral irradiance of electromagnetic energy at the top-of-the-

earth-atmosphere (TOA),      = solar constant 1353W/m
2
, JD = Julian day of 

the year.  According to Jefferys (1996), JD can be calculated as Equation 1.9: 
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               JD = C+D+E+F-1524.5                            1.9  

 

Where: C = Y/100 + (Y/100)/4, Y= year, D = day of month,  

E = 365.25x(Y+4716), F = 30.6001x (M+1), M = month of year. 

 

Atmospheric correction is also very vital towards creating image mosaics 

as well as a very important requirement for the measurable use of RS data such 

as: retrieving land surface temperature (LST) using Equation 1.10 (Weng, Lu 

and Schubring 2004), normalized difference vegetation index (NDVI) from 

near-infrared and red bands of Landsat images, normalized difference water 

index (NDWI) from near-infrared and mid-infrared bands, relative humidity 

(RH) (Equation 1.11; Lawrence 2005), tasseled cap transformation, etc.    

 

                 LST = 
 

     
 

 
          

                                                                      1.10             

                                                                                  

Where: LST = corrected land surface emissivity temperature (land surface 

temperature) in degree Kelvin, T = at-satellite brightness temperature,   = 

emitted radiance wavelength = (11.5  ),   = h * c/  (1.438 * 10
- 2

 m K); h = 

Planck’s constant (6.626 * 10
-34

 Js),   = Boltzmann constant (1.38 * 10
-23

 J/K), 

c = velocity of light (2.998 *10
8
 m/s),   = land surface emissivity (LSE)  

 

                    RH = (e/es) x 100                                                                       1.11            

                                                                                              

Where:  RH = relative humidity, es = saturated water vapour pressure in units of 

milibar at the dry bulb temperature, e = actual water vapour pressure in units of 

milibar. 

 

1.5.2 Remote Sensing data Classification  

Classification of remote sensing imagery is one of the methods used to identify 

the spatial distribution of land-cover classes. The general objective of RS data 

classification processes is to group all pixels in an image to particular classes 

according to their similarities (Aitkenhead, Flaherty and Cutler 2008). 

Essentially, classification involves three steps (Foody 1999), namely, training, 

classification and accuracy assessment. There are generally two traditional 
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classification techniques: unsupervised classification and supervised 

classification.  

Unsupervised classification often requires comparison with other 

reference data in order to deduce relevant information from it.  In unsupervised 

classification, grouping parameters, according to Yang and Lo (2002), is 

determined by the number of classes.  Supervised classification is an empirical 

modelling tool in that the process derives statistical relationships between the 

input variables and the ground-truth habitats. This algorithm uses a set of user-

defined spectral signatures to classify an image.  An adequate number of training 

samples and their representativeness are vital for supervised image classifications 

(Chen and Stow 2002; Mather 2004).  Depending on the algorithm used, the 

statistical description of the classes such as; number of samples, the means and 

covariance matrices derived from the samples are computed.    Groundtruth data, 

previous knowledge of the study area and the result of the unsupervised 

classification can aid the training set samples.  

In order to improve the quality of classifications (Harris and Ventura 

1995), post-classification is necessary. Also, the quality of information contained 

in a classified map is very vital towards a beneficial application, thus the need to 

assess the maps accuracy prior to its use.  To evaluate the result of the 

classification, the spectral characteristics of the classes represented by the 

training samples are compared with referenced data usually from various sources, 

for example, ground control points (GCPs), higher resolution image, etc.  

Though it has been criticized due to the problem of mixed pixels (Foody 2002), 

the error matrix is the most popular accuracy assessment technique.  Kappa 

(Equation 1.12) is also used to estimate the coefficient of agreement (Khat) 

between classified outcome and reference data  

 

         K   = 
                                    

                   
                                    1.12 

                                          

Kappa value that is over 80% shows that there is strong agreement between the 

classified pixels and the reference data,  values between 40%  and 80%  stands 

for moderate agreement while less than 40%  kappa value means poor agreement 

(Landis and Koch 1977).  Confidence level can be used to assess unsupervised 

classification with the least values indicating the highest reliability. Some context 
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taking from this section has resulted in a publication (Akiode and Badaru 2014). 

 

1.5.3 Change Detection Algorithm  

Change detection using RS techniques involves the analysis of spatio-temporal as 

well as spectral characteristics of RS dataset so as to derive information about 

changes or no changes of a given landscape.  Observing difference in the 

landscape characteristics could be based on different time (Singh 1989) or 

seasonal scale using two or more images epochs.   

The theory of change detection is that the spectral value of cells from 

datasets covering the same landscape but of different epochs will differ if the 

physical characteristics have changed overtime (Jensen 1986).  Change detection 

techniques are many, for example, image algebraic technique which includes 

tasseled cap transformation.  There is also the multi-date composite technique 

(Morisette 1997) change detection technique.  Some techniques are mainly used 

to detect the presence or absence of change (Currit 2005).   The algebraic 

technique can be combined with the multidate technique because of its 

simplicity, especially with the use of Landsat images; several studies (Skakun, 

Wulder and Franklin 2003; Collins and Woodcock 1996; Cohen and Spies 1992) 

have employed and attested to its value. This research applies the algebraic 

technique and the multidate technique to simply detect the presence or absence of 

change. 

 

1.5.4 Spatial Data Analysis  

Spatial analysis helps in getting answers to questions towards efficient decisions 

by predicting unknown values from known samples values (Mitchell 2005).  In 

GIS, varying spatial data operations can be carried out. These operations rely on 

statistics (spatial statistics and geostatistics) to answer questions such as: how 

features are distributed in space, what are the patterns formed by the features and 

where are the locations of the clusters, for example, the mean centre.  Also, 

questions such as, what are the types of association between or among features 

are answered by spatial statistics. To find answers to questions such as the centre 

of a disease, the underlying factors affecting the disease and to identify areas at 

risk of the disease, spatial analysis, for example overlay analysis, could be 

carried out.  Overlay analysis which is a method for applying a common scale of 
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values to multiple input data to create an integrated analysis (ArcGIS Help 10.0) 

sometimes entails the analysis of varying factors.  These factors may not be of 

the same relevance in answering the question under consideration, thus the need 

to prioritize. 

 Other relevant statistical analyses are factor analysis (FA) and principal 

component analysis (PCA).  FA is a statistical approach used to examine the 

interrelationships among variables.  There are two types of factor analysis: 

exploratory and confirmatory (DeCoster 1998). Principal component analysis 

(PCA) on the other hand is a linear transformation statistical method similar to 

factor analysis; it allows superfluous data to be compressed into fewer more 

interpretable or uncorrelated bands (Jensen 1996) without significant loss of 

information (Gibson and Power 2000).  Only few components (two or three) of 

multispectral RS image band set are able to describe almost all of the unique 

variability in reflectance image values.  The remaining components (bands) thus 

tend to be influenced by noise effects (Eastman 2003).  Exploratory FA was used 

in the present study to assess and explain the underlying factors that affect the 

variables in a data structure while PCA was used to ascertain the degree of 

correlation between multispectral images.  

 

1.6 The Study Region: The Niger Delta 

1.6.1 Nigeria 

Nigeria is a large country in West Africa, of over 900 000 square kilometres and 

is the most densely populated country in Africa (140,431,790; National 

Population Commission 2006).  The Niger delta region is one of the five 

geopolitical zones in Nigeria (Ojo 2011; Figure 1.7).  Geographically, Nigeria is 

characterised by uplands, such as the Jos and Udi plateaus and coastal areas 

which include Niger Delta (Udo 1970).  

The Nigerian climate is influenced by two trade winds known as the 

south-west monsoon and north-east trades (Udo 1970) and is characterised by 

two distinct seasons; rainy and dry. The south of the country enjoys longer 

rainy season than the north and mean temperature and rainfall increase from 

the coast to the hinterland.  Mean monthly humidity values vary from 90% in 

the coastal area to between 20 and 25% in the north. 
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1.6.2 Description of the Niger Delta Region 

The Niger Delta is one of the world’s largest wetlands and is in the south-

central and south- eastern part of the country, between latitudes 4
o
15’ and 

9
o
21’N and longitude 4

o
21’ and 9

o
29’E. It comprises the flood plain of the 

Niger and Benue rivers, which discharge into the Atlantic Ocean (Ophori 2007), 

and is mainly vegetated by mangrove forests, the largest in Africa, which extend 

for several kilometres inland (Rim-Rukeh, Ikhifa and Okokoyo 2007; Salami and 

Balogun 2006; Ibe 1998).  The area is composed of various ecological zones: 

mountain region, derived savannah, lowland rainforest, freshwater swamp 

forest and mangrove and coastal vegetation (Niger Delta Regional Development 

Master-plan (NDRDMP) 2006). These ecological characteristics favour the 

vector responsible for spreading HAT in West Africa (Jordan 1986). The 

Delta State is one of the states that makes up the Niger Delta Region, and is 

the main area of study for this research work (Figure 1.8).  It is bounded in the 

north by Edo State, in the east by Anambra State, and  in  the south-east by 

the Bayelsa and River states. In the south lies the Bight of Benin. 

The region experiences the prevalence of tropical maritime air mass 

almost all year round, with little seasonal change in wind directions (Olaniran 

1986).  The climate is characterised by high humidity and heavy rain falls.  

Humidity rarely dips below 60% and fluctuates between 90% and 100% for 

most of the year, while average annual rainfall is between 2500-3550 mm.  The 

Figure 1.7: Nigeria geopolitical zones (from:  

www.naijanedu.com/the-19-new-proposed-states-to-be-created-in-

nigeria/) 

 
 
 
 
 

 

http://www.naijanedu.com/the-19-new-proposed-states-to-be-created-in-nigeria/
http://www.naijanedu.com/the-19-new-proposed-states-to-be-created-in-nigeria/
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annual mean temperature is 26
o
C, but fluctuates seasonally between 21-33

 o
C, 

with maximum temperatures recorded between January and March and 

minimum temperatures in July and December (Leroux 2001).  These humid and 

hot conditions are favourable for HAT vector survival ( Courtin et al. 2005; 

Rogers and Randolph 1986). During the rainy season (March-October), cloud 

cover is nearly continuous (World Wildlife Fund 2008) making it difficult to 

acquire clear optical satellite data for the region for regular monitoring. 

 

1.6.3  Hydrocarbon resources 

The Niger Delta is one of the most hydrocarbon-rich regions in the world 

(Doust and Omatsola 1990; Chukwu 1991; Ophori 2007), with an estimated 25 

billion barrels and 130 trillion cubic feet of crude oil and gas reserves, 

respectively (Chokor 2004).  Exploration of these resources is central to the 

Nigerian economy. The flourishing petrochemical industries have however, been 

shown to be causing severe environmental damage, as well as potentially 

reducing the human population’s ability to resist vector-borne diseases (Sutherst 

2004).  Degradation of the region’s biodiversity by gas and oil exploration is 

also a  highly sensitive issue globally (Tolulope 2004) and these changes 

could alter the human-HAT vector relationship (Sutherst 2004).  
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Figure 1.8: A Landsat 7 ETM+ true colour image of Delta State with local 

government areas (inset Niger Delta region in red) 

 

 

1.6.4 The social environment 

Though the Niger Delta region of Nigeria is rich in natural resources, basic 

amenities are lacking in some areas and a large portion of the region is 

inaccessible to the health service workers due to geography and frequent civil 

unrest (NDRDMP 2006).  The predominant occupations include farming, fishing 

and hunting (NDRDMP 2006; Niger Delta Environmental Survey 1997).  These 

activities exacerbate HAT propagation as the population is exposed to the 

disease vector on daily basis.  Water-related diseases are a critical health problem 

for these people, representing around 80% of all reported illnesses in the region 

(NDRDMP 2006).  Communities also suffer from weak infrastructure including 

water supply and sewerage.  Only 5.4% households in Delta State have access 

to treated pipe- borne water, with the majority dependent on sources such as 

rivers and wells (National Bureau of Statistics (NBS) 2008a). Only 11.2% of 

households have toilets with septic tanks (NDRDMP 2006), with most utilising 
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bush latrines (NBS 2008b).  These socio-economic characteristics show the 

importance of the physical environment to the livelihood of the human 

population, as well as its contribution to exposure to vector-borne HAT.   

 

1.6.5 Choice of main study area  

The main study area selected for this research work comprises two local 

government areas (Ethiope-east and Ukwuani) within Delta state, which were 

chosen as they have been identified as active HAT foci, and records indicated 

continuous HAT positive cases (Osue et al. 2008; Abenga and Lawal 2005).  

The region is remote and rural, and HAT has been linked to populations living 

in areas beyond the reach of health services (Boutayeb 2007), a situation 

compounded by the terrain and continuous conflicts within the region, which 

pose difficulties to health care delivery (NDRDMP 2006).  The area is, however, 

economically important to the state, both in term of resources and human capital.  

The 2008 WHO initiative to map all reported HAT cases at village 

level (Simarro et al. 2011), is difficult due to restricted disease surveillance and 

access to diagnoses.  No model to acquire detailed and comprehensive spatial 

or epidemiological data exists for the study area, meaning many of those most in 

need, especially those  residing in remotest parts of the region, may not be 

benefitting from good health care due to lack of information about them. It is 

thus imperative to develop a HAT habitat classification scheme to identify 

high-priority areas where surveillance and health care delivery should be 

directed.  

The present study intends to examine HAT propagation in all the 

settlements and land cover types within the study area. That is, the research is 

intended for community level intervention that can be applied to monitor 

magnitude and trends of HAT, or other vector borne diseases or adapted for 

other diseases at national level.  

Mapping of habitat suitability for the trypanosomiasis vector has a long 

history, and the advent of geospatial techniques provides unique platform to 

forecast the vector distribution at continental and regional levels using low 

resolution images (Cecchi et al. 2008).  HAT vector habitats have previously 

been mapped both at local level and in larger areas using high spatial 

resolution images (Cecchi et al. 2008).  However, the use of high- resolution 
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spatial images for wide-spread trypanosomiasis control programmes in most 

endemic countries is often not feasible due to the high cost.  Previous studies on 

wide area community level HAT mapping have used low and medium spatial 

resolution images to map and identify disease-influencing factors (Courtin et al. 

2005; Cecchi, et al. 2008).  

Considering the scope of this research, the availability of medium spatial 

resolution satellite images, the present study will uniquely develop HAT vector 

habitat classification schemes at a regional scale for the study area. The 

scheme was developed by classifying land cover classes and other environ-

climatic variables into different zones. The detailed HAT vector habitat 

classification scheme will assist in HAT vector habitat mapping nationwide, and 

will enhance efficiency of the existing surveillance and HAT case detection 

exercises in the country. 

 

1.7 Summary 

This chapter has reviewed HAT, previous studies related to HAT, as well as 

highlighted some of the tools applied in the development and application of 

decision/management systems. HAT disease management in the Niger Delta 

region is hampered by difficult terrain, poor infrastructure, inadequate 

surveillance, ineffective health policies and an underfunded human and 

laboratory research capacity.  Those resources that are available are also 

often poorly focussed. Fresh, innovative thinking (e.g. geospatial 

techniques) relevant to local circumstances is required to examine HAT 

propagation,  enhance surveillance and coordinate an effective disease response.       

Due to the gaps observed in the previous studies, illustrate a need to 

develop a geospatial methodology towards effective decision making regarding 

HAT management.  

 

1.8 Research Aim and Objectives 

The aims of this research are to examine the potential habitats of the HAT 

vector in the Delta State Nigeria, to identify the processes that give rise to 

spatial distribution of HAT and to map the direction and magnitude of HAT in 

the study area.  This will involve using available datasets as well as deriving 

other spatial datasets from remotely sensed data in a GIS environment.  This will 
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be used to define areas that are at risk of HAT, an d  provide more  insights 

into HAT propagation to support existing surveillance strategies, towards 

robust surveillance and management of HAT. 

 

Objectives: 

To achieve the aims of this research, the objectives are: 

  To review past studies and identify gaps in knowledge inhibiting 

effective management of HAT. 

 Examine geospatial decision support concepts and tools, with a goal of 

developing a classification scheme for HAT management in the study area. 

 Investigate the spatial distribution of HAT, and examine the significance of 

HAT in the study area.  

 Identify and weigh criteria for development of HAT management 

classification scheme.  

 Derive remotely sensed datasets for the development of the classification 

scheme.  

 Develop a classification scheme for identifying HAT and its various types 

from remotely-sensed images. 

 Apply the developed classification scheme to the study area, to identify 

HAT vulnerable regions and establish a  ‘ HAT risk’ to prioritise aid for 

settlements  

 Investigate the factors that encourage the distribution of HAT in the study 

area using the developed classification scheme. 

 Assess land cover suitability for t he  HAT vector in the study area, 

using the developed classification scheme. 
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Chapter 2:  Data Collection and Methodology 

 

This chapter describes the data and methods used in the development and 

evaluation of the HAT management classification scheme.  Both spatial and 

non-spatial data were integrated with statistical analyses towards the realisation 

of the study aim.  All of the data used were projected to the World Geodetic 

System (WGS) 84 datum Universal Transverse Mercator (UTM) Zone 32N. 

 

2.1   The Main and Minor Study Areas 

The main study area is the Ethiope-east and Ukwuani local government areas 

(LGAs) of Delta State in Nigeria. The two LGAs were chosen as the main 

study area because past studies confirmed evidence of HAT cases in the 

area.  Within the State (Delta), two other LGAs (Oshimili North/South and 

Patani) were also randomly chosen to establish if there is HAT risk in other 

areas. This was necessary because, the literature only revealed HAT incidence 

in the main study area (Ethiope-east and Ukwuani LGAs).  To examine HAT 

propagation in a different region of Nigeria, two LGAs (Dutse and Birnin-Kudu, 

Jigawa State; Figure 2.1) were chosen as minor study area. 

 

Figure 2.1: Administrative map of Nigeria showing Jigawa state in 

pink and Delta state in red.  
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Jigawa State is in the north-western part of Nigeria (latitude: 11.00
o
N -

13.00
o
N; longitude: 8.00

o
E-10.15

o
E), and is in a different ecological zone to the 

main study area (Figure 2.2).  The topography of the state consists mostly of 

plains covered by wooded savannah in the south and shrub vegetation in the 

north.  The main occupations of the people are farming and rearing cattle, goat 

and sheep.  The population of the state as at 2006 was 4,348,649 (NBS 

2008c). Dutse and Birnin-Kudu population as at 2006 are 246,143 and 313,373 

respectively (NBS 2008d).  The climate of Jigawa state is semi-arid, 

characterised by a long dry season and a short wet season, with a mean annual 

temperature of about 25°C, and relative humidity ranging from 80% in August 

to 23% between January and March.  The total annual rainfall ranges from 

600mm in the north to 1000mm in the southern parts of the state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delta state ecological zone 

Jigawa ecological zone 

Figure 2.2: Ecological map of Nigeria, highlighting the main 

and minor study areas. 
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There has been evidence of trypanosomiasis in the control area as far 

back as the 1970 (Figure 2.3), and evidence of cattle herding/trading (Figure 

2.4) between the state and other parts of Nigeria.  Domestic animals are 

important host to HAT vector most especially T.b. rhodesience.  

 

 

The existing administrative map of the Delta and Jigawa States, Nigeria 

were obtained from Mapmakerdata as shapefiles.  The shape files were 

imported into ArcMap to extract the main study area (Ethiope East and 

Ukwuani LGAs) and the other LGAs (Oshimili South/North and Patani) as 

well as the minor study area polygon boundaries.  The boundaries which 

served as base maps were subsequently used to subset the RS images used in this 

research.  The Oshimili South/North and Patani LGAs as well as the result 

1.1.1.3 Figure 2.3:  1971 Glossina distributions in Nigeria (source: NITR). 
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obtained from the analysis of the Jigawa State foci were used to validate the 

result of the application of the classification scheme in identifying HAT risk 

areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Global Positioning Systems (GPS), ground control points (GCPs) 

for settlements in the main study area and the other local government areas 

were collected.  The GCPs and HAT case records were stored in Microsoft 

Excel and later exported into ArcMap and converted into shape files using the 

same coordinate systems as the other spatial data.  The GCP shape files were 

merged with the base map for further analysis.   Hospital records o f  HAT 

patients identified in each settlement were geo-referenced using their GCPs, 

and linked with the base map of the main study area.   Geo-spatial-fuzzy MCDA 

was applied at every stage of the research work particularly in delineating 

Figure 2.4: 1971 Cattle trade routes in Nigeria with Jigawa State 

insert (source: NITR). 
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HAT vector habitat (Chapter 5) and in querying the GIS database created for 

this research work (Chapter 6), to obtain factors influencing HAT in the 

study areas among other analyses carried out.  The computer systems analysis 

component was vital to the derivation of the required datasets for this research 

work (Chapter 3).  Since success depended on correct understanding and use of 

tools, it was necessary to review some of the tools algorithms. 

 

2.2  Data Collection Process  

The main steps in collecting the data highlighted in Table 2.1, existing HAT 

case records and other relevant data to address the study’s working objectives 

are grouped into two: preliminary and field surveys. 

 

2.2.1  Preliminary data collection 

The researcher travelled to Nigeria to collect existing data relevant to the 

study, which included both spatial and non-spatial data as summarised below: 

 Administrative map of Delta State Nigeria (Appendix A-1a) acquired 

from the directorate of lands and surveys, showing all local government areas 

at the scale of 1: 300,000.  This data was used to map points where ground 

control points were obtained during field survey. 

 Administrative map of Jigawa State and Delta State, Nigeria acquired 

from the Mapmakerdata (Appendix A-1b, c). 

 Socio-economic data such as occupational, demographic and 

infrastructural characteristics, as well as conflict level were obtained from 

various sources in Nigeria, including: National Population Commission, 

National Bureau of Statistics, Federal Ministry of Health Nigeria (FMOH), 

Nigerian Institute for Trypanosomiasis Research (NITR) and relevant literature. 

 HAT data; including: GCPs of HAT case settlements obtained from 

the field during ground thruthing; anonymised HAT hospital case records 

(1994, 1998, 2000, 2002, 2005 and 2006; Appendix A-4c). The hospital 

record was obtained from the Eku Baptist Hospital in Ethiope East, Local 

Government Area of Delta State. The hospital is the main sentinel centre for 

HAT in the region. Also, a tsetse trap site record was used. The record 

showed the GCPs where traps were set to harvest tsetse flies in Jigawa State. 

Other data acquired are listed in Table 2.1.  The RS images used in this 
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research are shown in Appendix A-2 while examples of their metadata file is 

shown in Appendix A-3a. 

 
 

     Table 2.1: Remotely sensed data used in this research 

Data 

Type 

Acquisition 

Date 

Path/Row Bands 

used 

Spatial 

Resolution 

(m) 

Source 

Landsat1  

MSS 

29/12/1972 202/52 4, 5, 6 82 LP DAAC 

(USGSEROS) 

Landsat4 

TM 

21/12/1987 189/056 1, 2, 3, 4, 

5 & 7 

30 LP DAAC 

(USGSEROS) 

Landsat5 

TM 

17/11/1986 188/52 1, 2, 3, 4, 

5 & 7 

30 LP DAAC 

(USGSEROS) 

Landsat7 

ETM+ 

30/12/2002 189/56 1, 2, 3, 4, 

5 ,6 & 7 

30 LP DAAC 

(USGSEROS) 

Landsat7 

ETM+ 

9/02/2003 188/52 1, 2, 3, 4, 

5, 6 & 7 

30 LP DAAC 

(USGSEROS) 

Landsat7 

ETM 

21/01/2011 189/52 2, 3, 4, 5, 

& 7 

30 LP DAAC 

(USGSEROS) 

Landsat7 

ETM 

17/01/2012 188/52 2,3,4,5,6, 

& 7 

30 LP DAAC 

(USGSEROS) 

SRTM 

(DEM) 

February 

2002 

SRTM3N0

5E006V1 

 3-ARC LP DAAC 

(USGSEROS) 

SRTM 

(DTM) 

February 

2002 

SRTM3N1

1E009V1 

 3-ARC LP DAAC 

(USGSEROS) 

 

 

  2.2.1.1   Environ-climatic data 

The environ-climatic datasets (Table 2.2) were mainly derived from Landsat 

images; these include: NDVI, NDWI, NDDI DEM, land surface temperature 

(LST) and land cover data.  Also relative humidity (RH) data acquired from 

the Nigerian Meteorological Agency (NIMET) (Appendix A-4d) was 

combined with other Landsat image- derived data to calculate relative 

humidity for the entire study area.  Land cover types (Appendix A-5) 

identified by the researcher and stakeholders as appropriate for this 

research were also extracted from RS images.   
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 Table 2.2: Environ-climatic data and sources 

Data Unit Source 

Land surface temperature 

Relative humidity  

Digital terrain model 

 NDVI 

NDWI  

NDDI 

Land cover types 

Kelvin/Celsius 

% 

Meters 

RS image  

NIMET/RS image 

USGS 

RS image  

RS image  

RS image  

RS image 

 

 

2.2.2   Field survey 

For the field survey phase of this research, three trips were made to Nigeria.  

The first trip was made in 2009 to meet with relevant stakeholders to discuss 

and agree on appropriate datasets and other related details.  During the field 

survey, GCP data that served as test samples for the land cover classification and 

accuracy assessment were obtained from different land cover types.  The GCPs 

were obtained using Trimble Global Positioning System (GPS). 

The GCP collection exercise involved in-situ data collection from 

different land cover classes at different locations.  Some of the land cover 

classes were easy to identify and sample, (e.g. water bodies and built-up areas), 

while due to the nature of the terrain, accessibility to other land cover types 

such as mangroves and dense forest were very difficult. Thus, to obtain 

samples of the classes that could not easily be sampled, samples were taken 

from roads very close to them.  The sampling exercise was jointly carried out 

by the researcher, a registered surveyor and a  representative from local 

government councils. 

The second trip was to meet experts/stakeholders to administer a 

questionnaire (Appendix B) on the significance of the environ-climatic 

variables to HAT habitat.  Experts/ stakeholders from the ministry of health, 

epidemiologists, other academics/scientists, and some member of the local 

government councils participated in the questionnaire survey.  
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2.2.2.1   Collection of data using GPS 

The satellite images used for this research work were obtained as 

geometrically corrected, but, in order to be able to use the images for change 

detection, it was necessary to geo-reference images to each other.  Geo-

referencing aligns two or more images of the same scene taken at different 

times.  GCPs used for geo-referencing were obtained at road intersections 

within the study and control areas.  A total of 51 and 47 control points were 

obtained from the main and minor study areas, respectively. 

 

2.2.2.2   Questionnaire survey 

In order to delineate the study areas into different HAT vector habitat zones, it 

is very important that information regarding the HAT vector habitat 

characteristics is obtained.  To obtain these information, pairwise questionnaires 

(Appendix B), designed with contributions from experts (Appendix, C-1) were 

administered.  Instructions were given regarding how participants are expected to 

answer the survey questions (Appendix B- Sections A & B).  The questionnaire 

survey included optional participants’ profile from which the characteristics and 

the factual information each expert has relating to AHP questionnaire and their 

ability to deduce information from landscape attributes to manage HAT was 

obtained.   

 Contact was initially made in the form of cover letter through email/direct 

approach to build rapport and to motivate the experts. The researcher credential, 

the goal of the research and why the expert was selected was explained to the 

experts in the cover letter.  The cover letter also included a consent form, how 

long it will take to complete the questionnaire survey and what the result will be 

used for.  The experts’ privacy, right to decline to participate and answer certain 

question(s) is stated in the consent form (see Appendix B- Section A). 

 

2.2.2.2.1   Sampling frame 

Designing a sampling frame for the questionnaire was difficult because of lack 

of population characteristic data to determine a representative survey sample 

and problem of obtaining consents of potential participants in order to elicit 

weights. To obtain weights for the selected criteria, the stakeholders/experts 

were purposively selected from the potential users of the classification 
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scheme. The selection of the experts are based on known common characteristics 

(all have basic knowledge of AHP and have background in landscape/vector 

borne diseases research). These included the main regulatory and coordinating 

government organisations, epidemiologists, academics from higher institutions 

and other organisations were also included.  Table 2.3 shows a brief 

description of the participants selected for expert judgement while an expanded 

list of participants and their details: address, nature of expertise, and type of 

questionnaire survey response (interview or by email) are presented in Appendix 

C-1.  Due to research ethics and the privacy clause in the information for 

participant’s letter (Appendix B- Section A) sent to all participants, the name and 

full contact details of participants are excluded from the expanded list (Appendix 

C-1)  

 

  Table 2.3: Participants for assignment of weights to criteria 

Participants Organisation No. 

Regulator/ Research Nigerian Institute for Trypanosomiasis 4 

Regulator Epidemiology Control Unit 2 

Regulator National Cereal and Disease Institute 1 

Coordinator Federal Ministry of Health 3 

Coordinator State Ministry of Health 1 

Coordinator Health Services Unit, State House 1 

Coordinator Niger Delta Development Council 4 

Evaluator Monitoring and Evaluation of Diseases Control 1 

Lecturer /Epidemiologist University/Others 9 

Lecturer (Geographer) University 8 

Medical Geography Private 1 

 

 

Total  35 

 

Thirty-five participants (thirty-one by interview and four by email) were involved 

in the pairwise comparison method.  The questionnaires were designed to be of 

average, manageable length, as long questionnaires discourage interviewees.  

The questionnaires were divided into two and disseminated using pairwise 

comparison, to discern relative importance of land cover criteria and environ-
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climatic variables for classification of HAT vector habitat. 

 

2.3   Spatial and Non-spatial Database 

To store and manage spatial and non-spatial data/information in this research, 

two types of database were used (GIS and worksheet).  ArcMap was used to 

develop the spatial database.  The software was used with permission from 

the Environmental Systems Research Institute (ESRI).  Other software used 

included, IDRISI Selva 17.0 and Erdas Imagine 9.1, to carry out image 

processing before further analysis in ArcMap.  Ortho-rectified images (Table 

2.1) were obtained from USGSEROS.  The spatial information required for 

creation of land cover classes and other environ-climatic datasets were 

derived from the Landsat images.  The land cover classes were created by 

means of unsupervised and supervised classification, while the ancillary 

datasets (environ-climatic) were derived from the Landsat images through 

image processing.  Other spatial data used were the administrative maps of the 

study areas for the sub-setting of the main and minor study areas boundaries.  

The administrative boundaries were obtained as an ESRI shape file, and were 

subjected to logical query to subset the required area from the main maps.  

The subsets were later used to extract the study areas from the Landsat images. 

Microsoft Excel was used for the non-spatial database. The hospital 

record and GCPs were stored in Microsoft Excel and exported into ArcMap 

as shape files to link the datasets with the other datasets obtained from the 

Landsat images.  The information obtained from the questionnaire survey was 

managed using IDRISI software. 

 

2.4   Methodology 

The classification scheme developed in this research has been developed such 

that it will be applicable in areas other than the study areas and for other 

vector- borne diseases. 

 

2.4.1   Stakeholders/experts involvement 

After the identification of participants/stakeholders, participants (Appendix C-1) 

were drawn mainly from prospective classification scheme users and made 

up of government and intellectuals in the field of epidemiology, to provide 
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expert judgement for assigning weights to the criteria.  The experts have basic 

knowledge of MCDA and most especially AHP method; nevertheless, further 

explanation was provided during the survey exercise.  To test the robustness of 

the pairwise comparison output, it was very important to carry out sensitivity 

analysis as discussed in sections 5.3.1.1 and 5.4.1. 

 

2.4.2   Questionnaire survey method  

Survey can be carried out through varying means such as e-mail, telephone, mail 

and interview. The researcher opted for both e-mail and interview 

questionnaire survey.  For the direct interview and questionnaire sent by mail, 

the participants (Appendix C-1) were asked to rank the relative significance of 

each criterion against the others in terms of its impact on realising the overall 

goal.  They were instructed to carry out the ranking based on Saaty’s (1980) 

significance scale (Table 1.2), i.e. to compare the row representing each criterion 

to each column in terms of significance (Appendix B).  

 The option for e-mail was to get across to the experts that were not 

available at the time of the interview. The interview method helped to clarify 

some interpretation problems. The e-mail method took some time because some 

experts required clarifications on certain issues related to the questionnaire; this 

involved/required several correspondences (e.g. Appendix C-2) 

. 

2.4.3   The structure of the HAT habitat classification scheme 

The need to develop a classification scheme that will be widely accepted 

informed the use of widely applied structure.  One of such structure is the 

MCDA procedure.  The following subsections provided the details of how the 

MCDA was restructured to make it applicable to the present research work: 

 

Intelligence phase: This phase starts with problem identification. The overall 

goal was to examine the landscape towards the management of HAT 

propagation, which required classification of HAT vector habitat into 

different zones  and application of the classification scheme, to examined and 

prioritise vulnerable and at risk areas within the study area for efficient HAT 

management.  Other issue considered at this stage are the scale/spatial 

resolution of the classification scheme, which informed the type of datasets 
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needed (see section 1.5). Once the problem had been identified, the adapted 

database structure was used to structure the research work.  In order to achieve 

the research goal, criteria were selected (by researcher/stakeholders) using 

AHP hierarchical structuring process (Figure 2.5; details in section 1.3.12.1).  

 
 
 

 

 

 

 

                  

                        

           Figure 2.5:  AHP hierarchy structure (Suedel et al. 2009) 

 

The Design/Decision Phase: The design phase dealt with the identification 

and selection of appropriate relevant evaluation criteria and how the criteria 

will be represented in a database to realise the research goal, while the decision 

phase involved sensitivity analysis and decision making. 

 

2.4.4   Habitat classification scheme modules 

The main modules of the classification scheme developed in this research 

work are summarised in Figure 2.6.  It comprises three units: personal 

geodatabase, geospatial-fuzzy multicriteria analysis and computer systems usage. 

 

 

 

 

 

 

 

 

 

 

 

 

                  
 Figure 2.6:  Main modules of the habitat classification scheme  
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2.4.4.1   Personal geodatabase 

Creation of a database that contains all the data/information for the research 

work is vital.  Among the requirements are quick access to data and easy 

querying for further analysis.  In this study, GIS was the major database used, 

because of its ability to link both non-spatial and spatial datasets.   

 

2.4.4.2   Geospatial-fuzzy multi criteria analysis 

The main tools used for geospatial-fuzzy MCA in the present study are 

Microsoft Excel, IDRISI Selva 17.0 and ArcMap software.   Questionnaire 

survey arranged as AHP pairwise matrices were presented to experts for 

individual judgment using AHP significance scale (Table 1.2).  The AHP 

incorporated as a decision support tool in the IDRISI software was used to 

manage the questionnaire responses.  In IDRISI, the AHP module (Weight) is in 

form of n by n grid, each row and column of the grid was filled up from the 

experts’ responses (the reciprocal value of the AHP significance scale assigned to 

the row by experts were entered into the column for each criterion). The AHP 

matrices were evaluated for consistency in order to ascertain the reliability of 

judgment from individual expert, as recommended by Saaty (1980). The 

consistency ratio must be up to 0.10 (10%) for the matrix to be considered 

consistent.  Inconsistent matrices were re-evaluated (the IDRISI module was 

used to analyze the inconsistent matrices to establish where the inconsistencies 

arose), after which each pairwise matrix was analyzed to obtain the local 

priorities (weights) for each criterion using Saatys’ eigenvalue method 

implement in the IDRISI software (example in Appendix D2-d).  To obtain group 

weight for each variable, geometric mean was estimated from the local weights. 

 The zonal classifications of the HAT vector habitat were based on 

weights assigned by the experts,  who used the AHP technique to assign 

weights to the criteria.  The assigned weights were aggregated and normalized 

into 0 – 1 scale, using ArcMap software fuzzy membership function tool,   

before the classification (detail in chapter 5), but before the optimal selection of 

the potential HAT vector habitats, the assigned weights were altered for 

sensitivity analysis. This was to investigate the appropriate value that will not 

change considerably the original weights obtained from the experts. 

 



 

 

61  

2.4.4.3   Usage of computer systems  

Computer system usage has already been discussed in chapter 1. The processes 

employed in this research work included digital image processing.  Due to the 

lack of existing digital spatial data, it was necessary to extract land cover 

classes and other ancillary datasets from remotely sensed images. The 

methodology used for this is discussed in detail in Chapter 3. 

 

2.4.4.4   Worksheets and GIS 

The personal geo-database is housed in a GIS. Microsoft Excel, IDRISI and 

ArcGIS software were used to calculate, normalize and aggregate the criteria 

weights obtained from experts.  Spatial statistics were carried out to assess 

hazards and vulnerabilities to HAT in the study area.  Statistical analysis was 

also applied to obtain the suitability of land cover for HAT vector in the study 

area.  This is discussed in detail in Chapters 5 and 6. 

 

2.5   Sensitivity Analysis 

In the present research, the use of analytic hierarchy processes and a weighted 

sum for evaluation, helped to address uncertainty related to the analysis 

technique.  In order to reduce uncertainty related to the criterion, experts 

participated in choosing appropriate criteria endorsed by all stakeholders for 

the HAT habitat classification scheme.  Sensitivity analyses (Chapter 5) were 

also performed to assess the fit and to validate the classification model. 

 

2.6   Summary 

The major datasets required for developing classification scheme towards HAT 

management have been enumerated.  Data obtained from groundthruth and other 

sources were used to supplement primary data.  The datasets were housed in the 

personal geodatabase.  Survey method was based on the information needed and 

the type of sample population. 

The classification scheme developed by the researcher requires 

contribution from experts in the field of epidemiology and other related fields.  

The integration of geospatial-fuzzy MCA methods into HAT vector habitat 

classification in a GIS environment enabled the decision makers to input 

significance opinions into the decision making processes. 



 

 

62  

Delineation of HAT habitat into zones can be realized using geospatial-

fuzzy MCA based on stakeholders choices, while further spatial and 

geostatistical analysis can be applied to prioritize the study area for intervention 

and resource allocations. 
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Chapter 3: Satellite Image Processing and Land Cover 

Classification 

 

3.1   Introduction  

This chapter deals with satellite image classification methods and image 

processing for land cover maps, and the derivation of other landscape data 

from RS images in a GIS environment.  All the procedures used are rapid, 

efficient and cost effective.  This chapter is vital to augment the dearth of 

spatial data in the study areas, as well as obtaining up-to-date data suitable for 

the HAT management classification scheme. To achieve this, supervised 

classification was used.  Non-supervised classification was also carried out, to 

aid selection of training samples for the supervised classification; this was 

necessary because of limited access to certain parts of the study areas.  Part of the 

work in this chapter has resulted in a publication (Akiode and Oduyemi 2014a). 

 

3.2   Land Cover Classification Systems 

Due to the dearth of spatial data for the study areas, varying environmental 

variables were derived from satellite imagery; these derived datasets were then 

combined with land cover classes, using supervised classification. The 

classification exercise was carried out at a regional scale using Landsat images 

(detail in section 1.5) by applying mathematical or logical expressions.  Seven 

and five land cover classes were chosen, representing the main distinct 

(though fuzzy) classes in the main and minor study areas respectively.  These 

included; water bodies, shrub, mangrove, less dense forest, dense forest, 

cultivated area and built-up areas for the main study area and water bodies, 

wetland/flood plain, light vegetation/shrub, savannah grass and cultivated area 

for the minor study area.  Apart from past studies (section 1.3.5, Table 1.1) that 

confirmed the importance of these land covers to HAT, the present study 

researcher and the major stakeholders involved (section 2.1.1.1) also identified the 

land cover types as appropriate for this research.   The methodology used for the 

land cover classification included, image pre-processing, image classification, 

and classification accuracy assessment. 
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3.2.1   Image pre-processing 

To derive maximum benefits from satellite imagery, there is the need to reduce 

or eliminate errors embedded in the data due to sensor effects, atmospheric 

and illumination effects as well as mis-registration.  The satellite images used 

were pre-processed in IDRISI Selva software before further analysis in ArcMap. 

IDRISI was adopted for the pre-processing because of its capability for image 

processing while ArcMap is mainly for GIS analysis (refer to section 1.3.4).  The 

procedures used in this research are described in the following subsections: 

 

3.2.1.1   Geometric transformation 

All the images (Table 2.1) used for the main study area were registered to the 

2002 Landsat 7 ETM+ image, while the images used for the minor study area 

were registered to the 2003 Landsat 7 ETM+ image.  Images were projected 

using Universal Transverse Mercator (UTM) Zone 32N, World Geodetic 

System (WGS) 1984 datum.  Because the study areas were somewhat plain 

and in order not to alter the images pixel values; thereby maintaining their 

spectral and radiometric contents, first order or affine transformation and 

nearest neighbour resampling methods were used.  The registration outcome 

root mean square error (RMSE) for both the main and minor study area were 

between 0.00003 and 0.05 pixels; (i.e. less than 1), and thus represents good 

quality registration (refer to section 1.5.1.1).    

The DEM data used for this research was obtained as 3-arc seconds; this 

is approximately 90 metres.  In order to be able to use it in combination with 

the other data derived from the Landsat 7 ETM+ image of 30 meters spatial 

resolution, the DEM data was re-sampled to 30 metres using the 2002 and 2003 

Landsat ETM+ for the main and minor areas, respectively.  The RMSE outputs 

for the DEM for both areas were about 0.42 and 0.4 pixels respectively.  The 

geometric restorations were carried out in IDRISI Selva 17.0 software.  An 

example of the image registration carried out in this research is presented in 

Figure 3.1.  
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The main study area DEM data used for this research consists of three 

scenes.  The scenes were mosaicked to form a one band image.  The SRTM 

data available for the main study area contained data voids.  To fill the voids 

after resampling to 30 metres, the following process was carried out:  A point 

map containing x, y coordinates and z value covering the entire study area and 

particularly the data void areas was created, using GCPs from groundthruth as 

well as coordinates obtained from the satellite image.  The point data was 

then used to interpolate a raster surface using inverse distance weighted (IDW) 

interpolation (see section 1.5.1.1.1).  The data void areas were then filled using 

the ArcMap spatial analyst zonal fill toolset, to assign minimum cell values 

from the interpolated output to the data void areas of the DEM data.  Figure 

Figure 3.1: Diagram showing satellite image registration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note: the RMSE within the red circle 
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3.2 shows the void filled data.   The minor study area DEM was acquired 

without voids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  Void-filled DEM derived for the main study area 

(source: derived from SRTM image acquired from USGS using IDW 

interpolation).   
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3.2.1.2   Radiometric restoration 

All the images used in this research were radiometrically corrected in IDRISI 

Selva 17.0 software.  The radiometric restoration was carried out using image-

based dark object subtraction (DOS). The parameters required for the DOS 

(section 1.5.1.2) were obtained from each image metadata file (e.g. Appendix A-

3a); these include: Lmax, Lmin, the year, month, date, GMT, wavelength of the 

band center, haze value, radiance, satellite viewing angle, sun elevation, etc.  

 The time was rounded to the nearest minute and divided by 60 to convert 

the minutes to a single decimal place because the Idrisi module (ATMOSC) used 

accepts time in decimals.  Wavelength of the band center was calculated by 

finding the average of the minimum and the maximum spectral resolution 

(Appendix A-3d) of each image band while the haze value was the lowest 

reflectance value identified on each image band.  To calibrate radiance, gain and 

bias (offset) values (Equation 3.1) were used.  The sun elevation for each image 

was also obtained from the image header file and the satellite viewing angle was 

set to zero.  

 For measurable use of the RS images, the bands digital number - DN 

(which has no unit and any physical connotation) were converted to at-satellite 

spectral radiance and converted from at-satellite spectral radiance to top-of-

atmosphere (TOA) reflectance (for consistency in images’ scene-scene).  The at-

satellite spectral radiance data (all image bands) was derived using Equation 3.1 

(Landsat 7 science data users handbook), while the TOA reflectance data was 

derived for all the images bands (excluding thermal bands) using Equation 3.2 

(Irish 2008; Chander et al. 2009). All the parameters used are contained in the 

image metadata file (an example is included in Appendix A-3a). 

 

                    Lλ=Grescale*QCAL+Brescale                                                   3.1                                                                                       

 

Where:                

Lλ = spectral radiance at the sensor's aperture in watts/ (metersquared 

*ster*µm), Grescale = rescaled gain in watts/(metersquared * ster * μm)/DN, 

Brescale = rescaled bias (offset)  in watts/(metersquared * ster*µm), QCAL = 

the quantized calibrated pixel value in DN. 
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                                                              3.2 

                                   

Where: 

   = TOA reflectance (no unit),    = Pi approximately equal to 3.14159 (no 

unit),    = Equation 3.34, d = Earth-Sun distance (astronomical units] 

(Appendix A-4a),       = mean exoatmospheric solar irradiance (watts/(meter 

squared *ster*µm) (Appendix A-4b i, ii, iii),       = solar zenith angle 

(degree).  Solar zenith angle = 90
0
 – solar elevation angle (solar elevation angle 

is in the accompany image metadata file). Figures 3.3 and 3.4 show examples 

of at-satellite spectral radiance and TOA reflectance data generated 

respectively.  
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Figure 3.3: Diagram showing Landsat 7 ETM+ band 6 at-satellite 

spectral radiance value (source: The main study area 2002 Landsat 7 

ETM+ band 6 raw DN). 
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      Figure 3.4:  Diagram showing Landsat 7 ETM+ band 4 TOA spectral   

      value (source: The main study area 2002 Landsat 7 ETM+ band 4 at satellite   

       spectral radiance value). 

 

3.2.1.3   Satellite image transformation 

To derive the ancillary datasets required for this research work, the at-satellite 

spectral radiance and TOA spectral reflectance data derived above were 

transformed using appropriate algorithms.   

The image transformations included: 

 

Conversion of satellite image thermal band to land surface temperature 

Land surface temperature (LST) is one of the ancillary variables used in 

classifying HAT vector habitat in this research work. To derive LST, the 

spectral radiance value of thermal band of the 2002 and 2003 Landsat 7 



 

 

71  

ETM+ images used for the main study area and minor study area respectively 

were converted to at-satellite brightness temperature using Equation 3.3 

(Chander et al. 2009). 

 

               T= K2 / ln(K1/ Lλ)+1                                                              3.3                                                                                           

 

Where: T = effective at-satellite temperature in Kelvin, K1 & K2 = Landsat 

calibration constants 1 & 2(Appendix A-3b),   Lλ = at-satellite spectral radiance, 

ln = natural log. 

 

          At-satellite brightness temperature only represents blackbody temperature, 

thus, it was corrected for spectral emissivity (land surface emissivity (LSE)).  

The LSE was estimated by combining the proportion of vegetation (soil and 

vegetation emissivity values) in the study areas with other parameters using 

Equation 3.4 (Sobrino et al. 2004). 

 

                            = 0.004 PV + 0.986       3.4                             

                           

Where:                   = satellite image thermal band soil and vegetation 

emissivity, PV = proportion of vegetation derived from Equation 3.5. 

 

             PV=  
                     

                             
 
  

                                                 3.5                                                                                       

 

Where:              and              = 0.2 and 0.5 respectively. 

           

 After estimation of LSE, the LST for the two areas were estimated in 

degrees Kelvin using Equation 1.10 and converted to degree Celsius (Equation 

3.6). The results (LST values) are presented in Figures 3.5 and 3.6. 

 

         LST ºC = LST (ºK) -273.15                                                              3.6    
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     Figure 3.5: The main study area land surface temperature (source: 2002   

     Landsat 7 ETM+ radiometrically corrected band 6).  
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    Figure 3.6:   The minor study area land surface temperature (source: 2003  

    Landsat 7 ETM+ radiometrically corrected band 6). 

 

 

Normalized difference vegetation index (NDVI) 

NDVI was obtained for both study areas using the near-infrared (band 4) and 

red (band 3) components of the 1987 Landsat TM 4, 2002/2011 Landsat 

ETM+ and 1986 Landsat TM5, 2003/2012 Landsat ETM+ images, for main and 

minor study areas respectively.  NDVI was also retrieved from bands 5 and 6 of 

the 1972 Landsat MSS1 for the minor study area. The NDVI was retrieved from 

the images using Equation 3.7 (Tucker 1979). 

 

          NDVI = (near-infrared−red) / (near-infrared + red)              3.7           
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The reason for deriving NDVI was to estimate the proportion of vegetation for 

the study areas, and because it’s one of the ancillary datasets required for 

classification of the HAT vector habitat zones, as well as for change detection 

analysis.  The results for the years 2002 and 2003 are presented in Figures 3.7 

and 3.8 for the main and minor study areas, respectively. 

 

 

        

      Figure 3.7: NDVI for the main study area (source: spectral reflectance   

      values of 2002 Landsat 7 ETM+ band 4 and band 3).  
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Normalized Difference Water Index (NDWI) & Normalized Difference Drought 

Index (NDDI) 

NDWI for the study areas were derived from the spectral reflectance values of 

all the images used for NDVI, except the 1972 MSS1 image.  The NDWI 

(Equation 3.8; Ji, Zhang and Wylie 2009) was extracted from the images 

because it is required to estimate NDDI and change detection analysis. 

 

        NIR –MIR / NIR + MIR (i.e. band4 – band5 / band4 + band5)                3.8                                    

Figure 3.8: NDVI for the minor study area (source: spectral reflectance 

values of 2003 Landsat 7 ETM+ band 4 and band 3). 
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NDDI was also estimated for its inclusion in the classification of HAT 

vector habitat in both areas using Equation 3.9 (Renza et al. 2010).  

  

            NDVI – NDWI / NDVI + NDWI                                                     3.9

                                                  

The NDDI was estimated using the derived 2003/2003 NDVI and NDWI 

values, and rescaled into 0 – 1 ranges.  The rescaling was necessary to 

conform to other datasets.  The NDDI results are presented in Figures 3.9 and 

3.10.  

 

 

     

    Figure 3.9: Normalized difference drought index for the main study area 

(Source: NDVI and NDWI derived from 2002 Landsat 7 ETM+ of the  

 main study area) 
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Relative humidity 

Relative humidity (RH) is one of the factors influencing HAT propagation. To 

derive RH as a map layer for its inclusion in the classification scheme, 

meteorological data (Appendix A-4d) obtained from NIMET was combined 

with the LST (Figures 3.5 and 3.6).  Estimation of the relative humidity (RH = 

(e/es) x 100; Equation 1.11) entailed the estimation of saturated water vapour 

Figure 3.10: Normalized difference drought index for the minor 

study area (Source: NDVI and NDWI derived from 2003 Landsat 7 

ETM+ of  the minor study area). 
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pressure (es) and actual water vapour pressure (e) using Equations 3.10 and 

3.11(Lawrence 2005). The RH results obtained are presented in Figures 3.11 

and 3.12. 

 

          es = 6.11 x 10.0 x (7.5 x Temp
0
C/(243.04

0
C+ Temp

0
C))                   3.10                                       

 

         e = (RH% x es)/100                                                                               3.11                                                                                          

 

Where:  Temp
0
C = LST derived, RH = relative humidity  

 

 

  Figure 3.11: Relative humidity for the main study area (source: Derived 

  using es and e).  
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Tasselled cap transformation 

A tasselled cap transformation based on image spectral reflectance for the 

Landsat 7 ETM+ and Landsat 4 and 5 TM images, which covers the period 

between 1987 and 2011, and 1986 to 2012 for both the main and minor study 

areas, respectively was performed using brightness coefficients (Appendix A-

3c).  The transformation was carried out using the radiometrically corrected 

(spectral reflectance) bands 1, 2, 3, 4, 5, and 7 of the images, to extract 

brightness components.  The tasselled transformation is an algebraic change 

 Figure 3.12: Relative humidity for the minor study area (source: derived 

 using es and e). 
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detection technique (section 1.5.3), that consist three components namely: 

brightness, greenness and wetness components.  The brightness component is a 

measure of overall reflectance of all image bands and it is associated with bare 

or partially covered soil, man-made and natural features.  The greenness 

component is associated with the biomass present, while the wetness component 

that is orthogonal to the brightness and greenness components is associated with 

soil moisture, water, and other moist features.  The brightness cap components 

were extracted to assess changes overtime in the study areas (details in section 

6.9) in order to crosscheck the outcome of the HAT vulnerability assessment 

carried out in this research. Figure 3.13 is an example of the tasselled cap 

transformation map layer obtained. 
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  Figure 3.13: Tasselled cap transformation brightness component   (source:        

  radiometrically corrected 1986 Landsat TM 5 of minor study area). 

 

 

 

3.2.2   Image classification 

This section outlines the steps involved in the image classification.  To select 

appropriate image bands for colour composites, principal component analysis 

(PCA) was carried out in ArcMap (Appendix D-1a, b).  This was to ensure 

that the satellite image bands used for colour composite have low correlation 

so as to reduce any issue related to linearity (details in section 1.5.4).  Principal 

components (PC) 7, 5 and 2 were selected for the land cover classification.  
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Some context taking from this section of the thesis has resulted in a publication 

(Akiode and Badaru 2014). 

 

  3.2.2.1   Unsupervised classification 

Interactive supervised classification otherwise, known as Iso cluster 

unsupervised classification, was performed using the ArcMap multivariate 

toolset.  This was done to identify the spectral clusters or natural statistical 

groupings present in the year 2002 and 2003 Landsat7 ETM+ images used 

for the main and minor study areas, respectively.  The toolset was used to 

group the images into 14 and 10 clusters, which were later merged into 

desired classes as shown in Figures 3.14 and 3.15. The merging of classes 

was based on prior knowledge of the study areas.  Parameters such as 

minimum class size and sample interval were specified.  In order to provide 

appropriate statistics to create a signature file for confidence level 

assessment, each cluster should contain enough cells to accurately represent 

the cluster. Therefore, the minimum class size must be approximately 10 

times larger than the input raster bands, and the sample interval should be 

small enough to accommodate the smallest desirable categories existing in the 

input data (ArcMap 10.0 Help). The Landsat7 ETM+ images used for the 

unsupervised classification consist of 3 bands (principal components); hence, 

30 and 10 were specified as the minimum number of cells in a valid class and 

sample interval respectively. 
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  Figure 3.14: Unsupervised classification of land cover classes in the main 

  study area (source: 2002 Landsat 7 ETM+ image). 
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3.2.2.2   Supervised classification 

An adequate number of representative training samples is vital for image 

classifications. Several training samples (Appendix D-2a, b) were collected from 

areas that appeared relatively similar on the 2002 and 2003 Landsat 7 ETM+ 

images used in the main and minor study areas, respectively.  Groundtruth 

data, previous knowledge of the study area and the result of the unsupervised 

  Figure 3.15: Unsupervised classification of land cover classes in 

  minor study area (source:  2003 Landsat 7 ETM+ image). 
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classification aid the training set samples.  The next step was the generation of 

signature file. This is the statistical description of the classes (e.g. number of 

samples, the means and covariance matrices derived from the samples 

identified on the images).  These statistics are required for the supervised 

classification. 

After the creation of signature file, the maximum likelihood 

classification (supervised classification) was carried out.  For the supervised 

classification, the colour composite image (PC 7, 5, 2) was used as input raster 

bands, and the signature file created for the training samples served as input 

signature file.  For every cell of the dataset to be classified, and for all 

classes sampled to have the same a priori probability, reject fraction 0.0 and 

equal a priori probability weighting was specified respectively. 

A total of 7 and 5 land cover classes, as shown in Figures 3.16 a, b, c, and 

3.17, were identified for both the main and minor study areas, respectively.  

Figures 3.16 b and c are for the other two local government areas selected for 

investigation in Delta State (see Chapter 1).  It is very difficult to identify 

built-up areas on the image used for the minor study area as sand has a similar 

reflectance value to some of the building materials. Also, the settlements are 

very small. 
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Figure 3.16a:  Supervised land cover classes in the main study area 

(source: 2002 Landsat 7 ETM+ and groundtruth). 
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 Figure 3.16b:  Supervised land cover classes in Oshimili North and 

  South LGA (source: 2002 Landsat 7 ETM+ and groundthruth). 
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Figure 3.16c: Supervised land cover classes in Patani LGA (source: 2002  

Landsat 7 ETM+ and groundthruth). 
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3.2.3   Post-classification processing 

The seven classes in the main study area supervised classified image were 

separated into separate layers, after which the built-up area layer was 

generalised.  This was done using the ArcMap region group tool set to 

reclassify the small isolated regions of the built-up area pixels to the nearest 

class.  This enables each settlement in the main study area to be identified as a 

separate entity, rather than a class in the domain type land cover.  Figure 

3.18 presents the region grouped settlements. 

 

Figure 3.17:  Supervised land cover classes in minor study area (source: 

2003 Landsat 7 ETM+ and ground truth).  

 



 

 

90  

     

    

 

 

 

3.2.4   Image classification accuracy assessment 

The classification output must resemble reality; therefore, to evaluate the 

result of the classification, the spectral characteristics of the classes 

represented by the training samples were assessed.  Also, to ascertain the 

accuracy of the classification, the error matrix was computed using GCPs 

obtained during ground thruthing.  The classified output was also compared with 

a high resolution spot image (Appendix A-2(h)) obtained from Google Earth.  

The Spot image shows more detail than the Landsat image used as the base data 

  Figure 3.18: Region grouped settlements in the main study area (source:     

 main study area supervised land cover built-up area class). 
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for the classification.  Though unsupervised classification was carried out mainly 

to aid the supervised classification training samples selection, its confidence 

level was assessed to show the reliability of the unsupervised classes. 

 

3.3   Results 

The result of the confidence level statistics conducted for the unsupervised 

classification showed 14 levels of confidence.  The first level of confidence 

with a value of 1 in the confidence level output indicates the cells that have 

highest certainty of being correctly classified, while the lowest level of 

confidence with value of 14 shows the image cells that would most likely be 

mis-classified.   

The confidence level results shown in Figures 3.19 and 3.20, when 

overlaid on the unsupervised classes revealed some cells of light 

vegetation/shrub and savannah grass as the classes that would most likely be 

mis-classified in the minor study area.  Also, in the main study area, shrub, 

less dense forest and water bodies were the classes that have cells with lowest 

level of confidence. It was not clear why water body had low level of 

confidence; while mangrove had the highest level of confidence in the main 

study area unsupervised classification. The researcher suspected it was 

dependent on the area o f  coverage of the water body; a s  the water body has 

the smallest coverage area.  Despite the confidence levels, the unsupervised 

classification helped towards selection of training samples for the supervised 

classification. 
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  Figure 3.19:  Confidence level for minor study area unsupervised     

  classification. 

    Figure 3.20: Confidence level for main study area unsupervised       

   classification. 
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The evaluation of the training samples shows that they were representative for 

both the main and minor study areas and are statistically separate.  The 

histograms (Appendix D-2 b, c) of the land cover classes did not overlap.  The 

overall accuracy of the 2003 supervised image classification (for minor study 

area) and 2002 supervised image classification (for main study area) are 98.0% 

and 9 9 . 2 %, respectively (Tables 3.1 and 3.2). For the minor study area 

supervised classification, the light vegetation/shrub and savannah grass have 

90.32% and 91.66% producer’s and user’s accuracy respectively, while others 

have 100% in each category.  Also, all the identified land cover class have 

100% producer and user’s accuracy, except for cultivated areas and shrub 

that have 94.59% and 94.29% producer’s and user’s accuracy, respectively, 

for the main study area classification.  This may be due to the spectral 

reflectance of shrub similar to less dense forest reflectance and some 

matured/tall plants within the cultivated class in some areas. 

To check the extent to which there is agreement other than that which 

is expected by chance, kappa statistics (Table 3.3) was also calculated for the 

main study area supervised classification. The overall kappa statistics was 

0.9907; this is an indication of strong agreement between the classified pixels 

and the reference data.   

 

 

              Table 3.1: Error matrix for minor study area supervised land cover 

           classification 

                                      Class         Reference   Classified Number   Producers         Users 

           Name     Totals     Totals   Correct      Accuracy         Accuracy 

     ---------- ---------- ---------- ------- --------- ----- 

   Unclassified          0          0      0       ---   --- 

 Savannah Grass         33         36     33    100.00%  91.66%  

Culti Area/Sand         30         30     30    100.00% 100.00% 

  Wetland/Flood         29         29     29    100.00% 100.00%     

Light Vege/Shru         31         28     28     90.32% 100.00% 

     Water Body         27         27     27    100.00% 100.00% 

                         

                                        Totals             150           150     147 

                  Overall Classification Accuracy =     98.00% 
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Table 3.2:  Error matrix for main study area supervised land cover 

classification 

      Class      Reference   Classified Number   Producers      Users 

           Name     Totals     Totals Correct  Accuracy            Accuracy 

     ---------- ---------- ---------- ------- --------- ----- 

   Unclassified          0          0      0       ---   --- 

   Dense Forest         37         37     37    100.00% 100.00% 

       Mangrove         35         35     35    100.00% 100.00% 

Less Dense Fore         37         37     37    100.00% 100.00% 

          Shrub         33         35     33    100.00%  94.29% 

  Built-up Area         36         36     36    100.00% 100.00%     

Cultivated Area         37         35     35     94.59% 100.00% 

     Water Body         35         35     35    100.00% 100.00% 

                         

                                       Totals              250           250     248 

Overall Classification Accuracy =   99.20% 

                

 

                 Table 3.3: Kappa statistics for main study area supervised   

                  classification 

--------------------- 

 

Overall Kappa Statistics = 0.9907 
 

Conditional Kappa for each Category. 

------------------------------------ 

 

                                              Class Name           Kappa 

                                              ----------           ----- 

                                            Unclassified          0.0000 

                                            Dense Forest          1.0000 

                                                Mangrove          1.0000 

                                       Less Dense Forest          1.0000 

                                                   Shrub          0.9342 

                                           Built-up Area          1.0000 

                                         Cultivated Area          1.0000 

                                              Water Body          1.0000 

                                                                   

                                                                                                  
 

3.4   Summary 

The main aim of this chapter was to derive datasets that will augment the 

dearth of spatial data in the study area as well as obtaining up-to-date 

information suitable for the classification scheme for managing HAT 

propagation. The data extraction process reduced expensive and time 

consuming field measurements.  The approach of using RS and GIS 
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techniques to derive the datasets is novel most especially for the study area as all 

the existing data are dated. 

Using RS and GIS techniques to produce supervised land cover map 

has proved to be cost effective, quick and efficient. The overall accuracy of 

99.2% and 98.0% (in the main and minor study areas, respectively) and the 

distinct identification of some of the land cover class attested to the fact that, 

with little data, much could be achieved.  Overall, this chapter has demonstrated 

the efficiency of geo-spatial techniques in generating useful datasets and in 

delineating features in a given environment. 
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Chapter 4:  Spatial Distribution Analysis of HAT in the 

Main Study Area  

 

Before developing the classification scheme, whether HAT is significantly 

present in the study areas must be established.  In order to do this, directional 

distribution and spatial cluster analyses were carried out.  Part of the work in this 

chapter has resulted in publications (Akiode and Oduyemi 2014 b, c). 

 

4.1   Directional Distribution Analysis 

In order to investigate the magnitude of some of the processes that impact HAT 

in the main study area in different directions, standard deviational ellipse 

(SDE) and weighted standard deviational ellipse (WSDE) were used to show 

the direction of HAT cases (Appendix A-4c), based on the settlement of each 

case around the mean centre (MC) for each year that the HAT case was 

detected. 

 

4.1.1   The mean centre  

To track changes in the distribution of HAT for the years 1994-2006,  and to 

identify the possible origin for HAT disease in the main study area, the ArcMap 

spatial statistics tool was used to create a point map that illustrates the mean 

centre for each year of HAT case occurrence.  The tool calculates the average 

geographical coordinates for HAT cases for specified years.  Figure 4.1 shows 

the average mean centre calculated over this period.   
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4.1.2    Standard deviational ellipse and weighted standard  

deviational ellipse 

The ArcMap standard deviational ellipse (SDE) tool was used to create ellipse 

polygon map that centred on the mean centre for all the year of HAT cases.  

The SDE (Figures 4.2-4.4) was computed to show two standard distances axes 

of the mean centre, the orientation of the ellipse, and the case field (Table 4.1) 

using standard deviation levels 1, 2, and 3.  When features have a spatially 

normal distribution, one standard deviation will encompass approximately 

68% of all input feature centroids.  Two standard deviations will encompass 

approximately 95% of all features, and three standard deviations will cover 

approximately 99% of all feature centroids (ArcGIS 10.0 desktop help). 

 

 Figure 4.1: Average mean centre of HAT distribution within the case 
positive settlements in the main study area (source: HAT record of cases 

acquired from HAT sentinel centre, Eku Baptist Hospital, Nigeria). 
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Figure 4.2: Standard deviational ellipse of HAT distribution in the main 

study area shown as standard deviation-1 
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Table 4.1: Attributes of standard deviational ellipse of HAT distribution in 

the main study area in standard deviation-1 

1.8.1.1 FID 1.8.1.2   Shape 1.8.1.3 CentreX 1.8.1.4 CentreY 1.8.1.5 XStdDist 1.8.1.6 YStdDist 1.8.1.7 Rotation 1.8.1.8 YEAR 

1.8.1.9 0 1.8.1.10 Polygon  1.8.1.11 177693.5 1.8.1.12 640207.8 1.8.1.13 2560.6 1.8.1.14 7943.6 1.8.1.15 59.5 1.8.1.16 1994 

1.8.1.17 1 1.8.1.18 Polygon  1.8.1.19 176563.6 638126.9 1.8.1.20 3665.9 1.8.1.21 9896.8 1.8.1.22 32.9 1.8.1.23 1998 

1.8.1.24 2 1.8.1.25 Polygon  1.8.1.26 180465.5 1.8.1.27 641048.6 1.8.1.28 1239.6 10176.6 1.8.1.29 29.5 1.8.1.30 2000 

1.8.1.31 3 1.8.1.32 Polygon  1.8.1.33 178992.2 1.8.1.34 639961.9 1.8.1.35 153.5 1.8.1.36 7820.4 1.8.1.37 21.2 1.8.1.38 2002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Standard deviational ellipse of HAT distribution in the main study 

area shown as standard deviation-2 
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To enhance the result of the SDE analysis, WSDE (Figure 4.5, 4.6) was 

computed for the sex and occupation of individuals affected by HAT, using 

case year as weight for sex and occupation, and age of patients as weight for 

year of individual cases.  The attributes of WSDE for gender are presented in 

Tables 4.2.   

 

 

      Table 4.2: Gender spatial characteristic attributes affected by HAT 

FID Shape CentreX CentreY XStdDist YStdDist Rotation SEX 

0 Polygon  178909.9 641101.6 8091.6 19419.0 50.4 F 

1 Polygon  179424.4 640864.9 4770.0 25180.0 32.9 M 

 

 

Figure: 4.4: Standard deviational ellipse of HAT distribution in the 

main study area shown as standard deviation-3. 
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    Figure 4.5: Weighted standard deviational ellipse summarising the 

 

    

 

 

  Figure 4.5: Weighted standard deviational ellipse summarizing the       

  distribution of gender affected by HAT from 1994 – 2006 in the main    

  study 

  area. 
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Figure 4.6: Weighted standard deviational ellipse summarising the spatial 

characteristic of occupation affected by HAT from 1994 – 2006 in the main 

study area 

 

 

4.2   Spatial Cluster Analysis of HAT Distribution in the  

Main Study Area 

The degree of clustering of HAT cases between 1994 and 2006 within the 

main study area was measured using the Getis-Ord General G statistic.  The 

ArcGIS high/low clustering (Getis-Ord General G) tool is an inferential 
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statistic, that is, it interprets analysis results within the context of the null 

hypothesis.  The null hypothesis for this section of the research states that, there 

is no spatial clustering of HAT in the study area. 

The Getis-Ord General G statistic was calculated using each HAT 

case settlement in the main study area, and based on the year of occurrence of 

the disease (Appendix A-4c). The HAT case settlements were extracted from 

the region grouped built-up area (section 3.2.3).  The attributes of each 

settlement, for example, local government area and x, y coordinates were added 

to the settlement database (Appendix A-4c).  The extraction of the settlements 

was based on the x, y coordinate of each settlement obtained during ground 

thruthing.  The parameters used in the calculation of the Getis-Ord General G 

statistic are shown in Figure 4.7.  Presently, there is no available record of HAT 

cases for the minor study area; thus, the directional analysis for this area could 

not be carried out. 

 

4.3   Results 

From tables 4.1 and 4.2, and Figures 4.2, and 4.6, the SDE and WSDE show the 

direction (north-eastern) of HAT cases in the main study area, based on the 

settlements of cases around the mean centre for each of the year, sex and 

occupational characteristics.  The HAT mean centre from 1994-2006 was 

identified to be in Abraka.  Abraka is the headquarters of t h e  Ethiope East 

local government council.  The WSDE reveals that HAT has a  relationship 

with socio-demographic characteristics of the main study area, for example, 

the broader shape of the female gender ellipse in Figure 4.5 suggested that 

females are more susceptible to HAT in the study area than males. Also, 

Figure 4.6 revealed that farmers and students are more exposed to HAT.  
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  Figure 4.7: Summary of the degree of cluster of HAT distribution in the  

  main study area using Gestis-Ord General G statistics. 

 

Observed General G: 

0.221862 

Z-Score:  1.797371 

P-Value: 0.072277 

 

Given the z-score of 1.80, there is less than 10% likelihood that this 

high-clustered pattern could be the result of random chance. 

 

General G Summary 

Observed General G: 0.221862 

Expected General G: 0.221637 

Variance: 0.000000 

z-score: 1.797371 

p-value: 0.072277 

Dataset Information 

Input Feature Class: Region group_HAT _+ve settlements 

Input Field: Year 

Conceptualisation: Inverse_distance 

Distance Method: Euclidean 

Row Standardisation: False 

Distance Threshold: 42233.899713 

Weights Matrix File: None 

1.1.1.4  
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The Getis-Ord General G statistic result shown in Figure 4.7 reveals that 

HAT distribution in the main study area is highly clustered, with less than 10% 

likelihood that the pattern could be the result of random chance.  Figure 4.7 

shows that the p-value (0.072) was small and statistically significant; 

therefore the null hypothesis is rejected.  There was an indication that 

settlements with higher frequencies of HAT were clustered.  This is because 

the Z-score has positive value (1.80) and the Observed General G index has 

higher value (0.2219) than the Expected General G index (0.2216).  Thus, the 

spatial distribution of high frequency of HAT cases in the main study area was 

more clustered than would be expected if underlying spatial processes were truly 

random. 

 

4.4   Summary 

The analysis carried out in this chapter gives an idea of the direction of HAT 

propagation in the main study area; this may be used to facilitate mitigating 

measures.  Since HAT has been significantly established, there is the need to 

investigate factors responsible for HAT propagation for efficient management 

and control.  Also, the control area needs to be investigated to ascertain the 

situation on  the ground.  The development of a classification scheme will help 

manage HAT, as well as other vector borne diseases. 
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Chapter 5: Development of a classification scheme for 

managing HAT  

 

5.1   Introduction 

This chapter focuses on combining the land cover classes and other derived 

environmental/climatic variables (see Chapter 3) to develop a classification 

scheme that will facilitate quick and efficient management of HAT. 

 The importance of criteria and how they were prioritised were determined 

by the judgments of experts’, the impact of the criteria on HAT propagation 

and previous studies.  Spatial distribution/habitat characteristics play an 

important role in HAT propagation. Therefore, locations which have all or 

most of these criteria present are vital for HAT propagation.  To achieve the 

goal of this section, geospatial-fuzzy MCDA was used (section 1.3.13).  

Boolean logic, when used for land cover classification, partitions the gradual 

variability of the Earth's surface into distinct non-intersecting groups.  This type 

of method is often unsuitable due to the continuous nature of some landscape 

attributes.  Besides, this type of approach often brings about loss of information 

as the continuous measurable spectral value of the landscape is reduced into a set 

of distinct groups, thus, uncertainty in the end product.  In order to quantify the 

associated uncertainties (section 1.3.13) and to account for the indistinctness of 

the study areas’ landscape, fuzzy logic was used to merge the identified 

landcover classes with the derived environ-climatic variables (see Chapter 3) 

towards HAT vector habitat classification.  MCDA and the procedures involved 

were discussed in Chapter 1.  The real procedures used to uniquely group the 

study areas into three HAT vector habitat zones; namely: breed, feed and 

rest using land cover, environmental and climatic data in this research are 

elaborated in this chapter.  The classification scheme outcome is expected to 

offer effective decision support to all stakeholders.  Part of the work in this 

chapter has resulted in a publication (Akiode and Oduyemi 2014a). 

 

5.2   Defining the Problem 

The overall goal is to identify and classify HAT vector habitat in the study areas 

into different zones, namely: breed, feed and rest zones to aid efficient 
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management of HAT.  As mentioned previously, there is need to create a 

hierarchical structure with the goal, criteria/sub-criteria and alternatives (Figure 

5.1).  The alternatives are the delineated habitat zones. 

 

 

 Figure 5.1:  Hierarchical structure of goal, criteria and alternatives 

 

The selection of criteria is a vital procedure in geospatial-fuzzy MCDA.  

Criteria used in the HAT vector habitat classification scheme were categorised 

into two: Land cover classes and ancillary datasets.  These two criteria were 

separated into sub-criteria for clarification purposes, as highlighted in Table 

5.1.  The criteria were jointly chosen by the researcher and experts to ensure 

suitability for the classification scheme.  Some decision rules were applied to 

manipulate the criteria to obtain the alternatives.  The criteria were derived 

mainly from RS image as processed in Chapter 3. 

 

 

 

 

 

 

 

 

 

Ancillary Datasets 

Classification of HAT Vector Habitat 

into Zones 

Land Cover 

Classes 

Breed Zone Feed Zone Rest Zone 

Goal:                                                                      

Criteria: 

Alternatives: 
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    Table 5.1: Criteria for classification of HAT vector habitat 

Major 

Criteria 

  Sub-Criteria      Unit     Source  

A
N

C
IL

L
A

R
Y

  

D
A

T
A

S
E

T
S

 

Land surface 

temperature  

Relative humidity 

 

Digital terrain model  

NDVI 

NDDI 

 

Degree Celsius 

% 

 

Meters 

Index 

Index 

 

Landsat 7 ETM+ 

Landsat 7ETM+/ 

NIMET  

USGS/ground thruth  

Landsat 7 ETM+ 

Landsat 7 ETM+ M
A

IN
/M

IN
O

R
 S

T
U

D
Y

 

A
R

E
A

S
 

L
A

N
D

 C
O

V
E

R
 C

L
A

S
S

E
S

 

Water body 

Mangrove 

Less dense forest  

Dense forest  

Cultivated area  

Shrub 

Built-up area 

% 

% 

% 

% 

% 

% 

% 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

M
A

IN
 S

T
U

D
Y

 
A

R
E

A
 

L
A

N
D

  
C

O
V

E
R

 

C
L

A
S

S
E

S
 

Water body  

Wetland/flood plain  

Light vegetation/shrub  

Savannah grass  

Cultivated area/sand 

% 

% 

% 

% 

% 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ 

Landsat 7 ETM+ M
IN

O
R

 S
T

U
D

Y
 

 A
R

E
A

 

 

 

5.3   Geospatial-fuzzy Multi Criteria Decision Analysis 

All the criteria obtained in Chapter 3 were stored in a personal geodatabase.  An 

AHP questionnaire survey was carried out to compare the relative importance 

of the criteria in relation to each HAT vector habitat zone. The selected 

participants are thirty-five in number.  Thirty-one of the participants responded 

by direct interview while four participants responded by email and a response 

rate of 100% was achieved.  

 In order to ascertain the likelihood that the weights obtained from the 

experts was randomly generated, the weights consistency ratios (CR) were 

calculated (detail in section 1.3.12.1). To view the differences in each respondent 

judgment, each expert’s AHP matrix was entered into IDRISI software to 

obtain a  range of priority vector (eigenvector of weights) and consistency ratio 

for each criterion (an example is shown in Appendix D2-d).  The consistency of 

the responses from each respondent was estimated so as to test for the transitivity 
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of opinions. The consistency test returns consistent for all the respondents’ 

matrices except one which returns not consistent.  To re-assess the inconsistent 

matrices, the respondent concerned was contacted via phone and agreed to settle 

the inconsistencies in his responses (this was eventually done).  After the 

correction of the inconsistent matrices by the respondent, the matrices local 

priorities were re-evaluated to obtain consistent results.  After ascertaining the 

consistency of each respondent matrix (consistency ratios were less than 1 

thus, consistent), the local priorities obtained from each respondent matrix were 

then aggregated using the geometric mean to obtain the overall priority weight 

for each criterion (detail in section 2.4.4.2). 

 

5.3.1   Grouping of main and minor study areas into HAT vector 

habitat zones 

Geospatial-fuzzy multi criteria decision analysis was carried out to group the 

main study area (Ethiope-East and Ukwuani Local Government Areas) as well 

as other two local government areas namely Oshimili North/South and Patani 

into HAT vector habitat zones.  The extra two local governments were chosen 

to investigate the presence of HAT in other parts of Delta State.  This was 

because all the existing literature on HAT only identified the main study area.  

The minor study area was also grouped into HAT vector habitat zones for 

comparison.   

The supervised land cover classes obtained in Chapter 3 were 

reclassified into three (breed, feed and rest) temporary HAT vector habitat 

zones.  Also, the ancillary datasets were grouped into each habitat zone using a 

weighted sum.  The reclassification of the land cover and grouping of the 

ancillary datasets were done using the weights obtained from the experts.  The 

temporary HAT habitat zones were fuzzified and combined with fuzzified 

weighted ancillary datasets to obtain the final HAT vector breed, feed and rest 

zones.  The fuzzification was carried out using fuzzy membership type ‘large’ 

whereby large values of the input map criteria layer have high membership 

in the fuzzy set.   The fuzzification was necessary partly to normalise the 

criteria into common scale and to obtain their fuzzy membership sets.  The 

process used is presented in Figure 5.2.  The fuzzified temporary HAT vector 

habitat zones for the main study area and their weight graphs are shown in 
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Figures 5.3 and 5.4, while Figure 5.5 shows the fuzzified minor study area 

temporary HAT vector habitat zones.  Temporary habitat zones were also 

generated for Oshimili N/S and Patani local government areas. 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

Weighted sum map 

Land cover classes NDVI, NDDI, LST, 

DEM, RH 

Reclass Landcover 
using weight 

 

using weight 
 

Weighted sum 

Temporary habitat zones 

(Breed, Feed, Rest) 

Reclass 

weighted sum 

Fuzzify 

Reclass Map 

Fuzzy Membership 

(Breed, Feed, Rest) 

Fuzzify
y 

Overlay Fuzzy Membership 

Habitat Zones (Breed, 

Feed, Rest) 

Figure 5.2: Habitat grouping procedure 
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  

     
 

     

 

 

 

 

 

 

 

 

 

 

  Figure 5.3a: Fuzzified temporary HAT vector breed zone in the main     

  study area 
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 Figure 5.3b:  Fuzzified temporary HAT vector feed zone in the main 

study area 
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  Figure 5.3c:  Fuzzified temporary HAT vector rest zone in the main   

  study area 
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    Figure 5.4a:  Percentage of weight assigned to main study area land cover 

    classes for breed zone classification 
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   Figure 5.4b:   Percentage of weight assigned to main study area land cover   

   classes for feed zone classification 
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      Figure 5.4c:  Percentage of weight assigned to main study area land   

      cover classes for rest zone classification 
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Figure 5.5a: Fuzzified temporary HAT vector breed zone in the minor 

study area 
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  Figure 5.5b:  Fuzzified temporary HAT vector feed zone in the minor   

  study area 
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    Figure 5.5c:  Fuzzified temporary HAT vector rest zone in the minor   

    study area 

 
 

5.3.1.1   Delineation of HAT vector habitat into zones using fuzzy overlay 

Fuzzy overlay analysis was performed to achieve the final HAT vector habitat 

zones.  Before choosing the final zones, sensitivity analysis was carried out.  The 

weights of the ancillary datasets obtained for each zone from experts, were 

changed as follows: 

 Equal weight: Each criterion was assigned 0.2 values before calculating  

their weighted sum. 
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 Five percent weight increase:  Each criterion’s weight was increased 

by 5% before calculating their weighted sum. 

 Ten percent weight increase: Each criterion’s weight was increased 

by 10% before calculating their weighted sum. 

After the weight change and the calculation of weighted sum, each outcome 

map layer (for each zone) was overlaid on the corresponding HAT vector 

habitat temporary zones.  The overlay analysis was done using fuzzy overlay 

operator ‘OR’ ‘AND’ and ‘GAMMA’ (details in section 1.3.13).  

 

5.3.1.1.1   Fuzzy overlay operator ‘OR’ 

The overlay type ‘OR ‘was carried out using fuzzy maximum operator to 

generate map layer that contained maximum fuzzy membership value for 

locations within each HAT vector habitat zone. Figure 5.6 shows the outcome 

of the overlay analysis with fuzzy overlay operator ‘OR’ in the main study 

area. 

 

     

 
 

                      

 

Figure 5.6a: HAT vector breed zone within main study area classified 

using fuzzy overlay operator ‘OR’ 
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Figure 5.6b: HAT vector feed zone within main study area classified using fuzzy 

overlay operator ‘OR’ 

 

 



 

 

122  

 

 

     

   

    

5.3.1.1.2   Fuzzy overlay operator ‘AND’ 

The fuzzy overlay operator ‘AND’ returns map layers showing minimum 

membership values for all location within each HAT vector habitat zone, thus the 

output map layer was a conservative approximation of the fuzzy 

membership sets that would likely generate small values.  The results of this 

overlay analysis for the each HAT vector habitat zone in main study area are 

shown in Figure 5.7. 

 

    Figure 5.6c: HAT vector rest zone within main study area classified     

   using fuzzy overlay operator ‘OR’ 
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  Figure 5.7a: HAT vector breed zone within main study area classified  

  Using fuzzy overlay operator ‘AND’ 
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 Figure 5.7b: HAT vector feed Zone main within study area classified 

using fuzzy overlay operator ‘AND’ 
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5.3.1.1.3   Fuzzy overlay operator ‘GAMMA’ 

For the final identification and classification of the HAT vector habitat zones, 

different fuzzy overlay operator gamma values were used. Though the AHP 

matrices by all the experts were consistent (section), the sensitivity analysis was 

necessary to investigate the appropriate value that will not change considerably 

the original ancillary weights obtained from the experts.  The area of fuzzy 

membership categories (low, moderate and high) did not change considerably 

Figure 5.7c: HAT vector rest zone within main study area classified using 

fuzzy overlay operator ‘AND’ 
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from the area estimated with the weights obtained from experts, when using 

fuzzy gamma operator values ranging from 0.1 to 0.8.   However, gamma value 

above 0.8 decreased the area estimates considerably.  Thus fuzzy values in the 0.1 

to 0.8 range, appear to be suitable gamma values for combining the fuzzy 

membership sets of the HAT vector temporary habitat zones and the ancillary 

datasets towards the final HAT vector habitat zones.  The final HAT vector 

habitat zones were generated using a value o f  0.8, as it was the most 

consistent value in that range. Table 5.2 shows the result obtained using a 

gamma value 0.8 and fuzzy overlays ‘OR’ and ‘AND’, while Figures 5.8 and 

5.9 shows the final HAT vector habitat zones.  

The final selection of locations for each zone was based on the 

gamma overlay operator outcome, because the fuzzy overlay operators OR 

and AND only utilised the maximum and minimum fuzzy membership 

values of the criteria.  Since, the essence of this research work is to identify all 

possible HAT vector habitats in the study areas; fuzzy overlay operator gamma 

was adopted.  The use of gamma overlay type produced output values that 

ensure a flexible compromise between the two extremes (minimum and 

maximum). 
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 Figure 5.8a: HAT vector breed zone within the main study area   

 classified using fuzzy overlay operator ‘GAMMA’ 
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Figure 5.8b:  HAT vector feed zone within the main study area classified 

using fuzzy overlay operator ‘GAMMA’  
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Figure 5.8c: HAT vector rest zone within the main study area classified 

using fuzzy overlay operator ‘GAMMA’ 
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      Table 5.2: Summary of sensitivity analysis used to verify the weights of  

     criteria assigned by experts   
        ___________________________________________________________________________ 
        Fuzzy Operator  Weight of Criteria                          Zone Category (Area %) 

 

   LFM      MFM    HFM       

 

Overlay OR Experts  - 65         35  

Overlay AND Experts  65 28           7  

 

 

    = fuzzy overlay operator Gamma, 0.8 = fuzzy gamma value 

 LFM = low fuzzy membership set,   MFM = moderate fuzzy membership set  

 HFM = highest fuzzy membership set 

 

 

 

_____________________________________________________________________________ 

BREED ZONE 

   = (0.8) Experts 38 27          35  

 Equal weights 31 32          37  

 5% increase weights 35 30          35  

 10% increase weights 38 27          35  

FEED ZONE 

Overlay AND Experts 69 11          22  

Overlay OR Experts   7 75          18  

   = (0.8) Experts 64 14          22  

 Equal weights 56 22          22  

 5% increase weights 62 16          22  

 10% increase weights 63 15          22  

REST ZONE 

Overlay AND Experts 71 28             1  

Overlay OR Experts - 19           81               

   = (0.8) Experts 30 36           34  

 Equal weights 30 55           15  

 5% increase weights 33 31           36  

 10% increase weights 30 34           36  
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The minor study area 

Four categories of fuzzy membership sets were generated for the minor study 

area; namely: least, low, moderate and highest.  The least category was added 

because cell values for some locations were very small, and since the analysis 

was based on fuzzy logic, it was deemed appropriate to classify the locations as 

a fuzzy set rather than referring to them as non-habitat locations.  Based on 

fuzzy overlay operator gamma with value 0.8 the following outcomes 

(Figure 5.9) were the final HAT vector habitat zones identified in the minor 

study area.  

 

 

      

 

     

     

 

Figure 5.9a: HAT vector breed zone within minor study area classified 

using fuzzy overlay operator ‘GAMMA’ 
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Figure 5.9b: HAT vector feed zone within minor study area classified 

using fuzzy overlay operator ‘GAMMA’ 
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5.3.2   Distance operation  

Apart from the main model (Figure 5.2), a sub-model utilising Euclidean 

distance, and Euclidean direction were generated.  The aim of this sub-model 

was to help in establishing spatial interactions between the criteria used for 

the main model. To do this, a  surface of distance based on straight-line 

distance was created from each land cover class.  The values obtain were 

fuzzified and later used in Chapter 6 as criteria for analysis of HAT vector 

habitat.   The operation carried out area described in the following sub-sections: 

 

Figure 5.9c: HAT vector rest zone within minor study area classified 

using fuzzy overlay operator ‘GAMMA’ 
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5.3.2.1   Euclidean distance  

Using the ArcMap spatial analyst tool, a spatial statistical analysis (refer to 

sections 1.3.12 and 1.5.4 for details) called Euclidean distance operation was 

performed on the land cover classes.  This gives the distance from each cell in 

the land cover classes to the closet HAT vector habitat. The Euclidean distance 

operation was necessary to identify areas where human population might be at 

risk if exposed to certain land cover class within a specified HAT vector habitat 

zone.  Based on past literature (Gueriini et al. 2008; Zoller et al. 2008), a 

distance of 400m was specified for the land cover classes.  Figure 5.10 and 

Table 5.3 show an example of the Euclidean distance map layer and its 

attributes, respectively. 

 

 

    

     

 

 

        Table 5.3: Attributes of Euclidean distance buffer around water   

Figure 5.10:  Euclidean distance buffer around water bodies within 

HAT vector rest zone in the main study area (Places within buffer with 

minimal distance values (0-95m) around a landcover class within a specified HAT 

vector habitat, are potential highest HAT risk areas) 

 

 



 

 

135  

        Table 5.3: Attributes of Euclidean distance buffer around water bodies       

        within the HAT vector rest zone in the main study area 

ROW ID VALUE COUNT DISTANCE 

(m) 

AREA AREA 

% 

0 1 4407 331-395 3753116 21 

1 2 4269 95-183 3635592 20 

2 3 4606 183-258 3922590 21 

3 4 4538 258-331 3864679 21 

4 5 3674 0-95 3128874 17 

 
  

5.3.2.2   Euclidean direction 

This gives the direction from each cell of the settlements in the main study area 

to the closest HAT habitat.  The Euclidean direction output contains directions 

calculated, with values ranging from 0 to 360 degrees.  The value increases 

clockwise with value 0 mainly for the HAT habitat zones. 

 

5.4   Validation of HAT Vector Habitat Classification Scheme 

Geo-statistical analysis was carried out to make decision as to whether the 

classification scheme values could be practical (detail in section 1.3.14).  

 

5.4.1   Semivariogram sensitivity analysis 

After obtaining the final HAT vector habitat zones, the output map layers were 

defuzzified.  This was necessary so as to be able to perform sensitivity 

analysis on the data.  Using the predicted values and standard errors of the 

defuzzified map layers obtained from kriging geo-statistical analysis, 

semivariogram sensitivity analysis was performed by changing the kriging 

model’s parameters; such as, partial sill and nugget (detail in section 1.3.14)  

within the percentage of the initial values. 

The initial nugget and partial sill for each HAT vector habitat zone 

were changed using 5%, 10%, 15% and 20% nuggets and partial sills.  The 

semivariogram analysis revealed very minute variation in the original data 

(habitat zones).  It was observed that with increased distance from a given 

location, the nugget for that location reduces while the partial sill for the same 

location increases (example in Appendix D-1c).  Though variations were 
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observed with the semivariogram sensitivity analysis, the variations were 

between 0.0 – 0.1%, thus, the researcher has high confidence in further 

application of the newly developed HAT vector habitat classification scheme.   

 

5.4.2   Local polynomial interpolation quality of fit analysis 

Local polynomial interpolation (LPI), which provides spatial condition number 

surface, was performed to measure the reliability of the model.  The LPI used 

for accuracy assessment of the HAT vector habitat model (classification 

scheme) was carried out using a  1
st 

order polynomial transformation.  The 

spatial condition number (detail in section 1.3.14) obtained for each habitat 

zone was below the critical threshold value o f  10, thus the model can be 

regarded as reliable and stable.  Apart from the spatial condition number, the 

LPI was also used to assess the uncertainty associated with the cell values of 

each habitat zone; this was done by measuring their predicted standard errors. 

The LPI surface was derived for each HAT habitat zone to form a 

geo-statistical layer for cross-validation.  The outcome of the cross validation 

for each habitat zone produced mean and standardised mean prediction errors 

(Figure 5.11) that was near zero, this was an indication of unbiased prediction 

that was centred on true values. 
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Figure 5.11a: Quality of fit assessment of HAT vector breed zone model 

in the main study area using local polynomial interpolation (source: 

Cross validation analysis) 
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     Figure 5.11b: Quality of fit assessment of HAT vector feed zone model in    

     the main study area using local polynomial interpolation (source: Cross   

     validation analysis) 
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Figure 5.11c: Quality of fit assessment of HAT vector rest zone model in the 

main study area using local polynomial interpolation (Source: Cross  

validation analysis) 

 

 

5.4.3   Empirical Bayesian kriging quality of fit analysis 

Empirical Bayesian kriging (EBK) was also carried out to assess the quality 

of fit of the classification models.  The main reason for this was to use a 

more accurate method (detail in section 1.3.14).  EBK standard errors of 

prediction are more accurate than LPI measurement.  The EBK produced mean 

and standardised mean prediction errors that were near zero as shown in 

Figures 5.12. 
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       Figure 5.12a: Quality of fit assessment of HAT vector breed zone in the 

    main study area using empirical Bayesian kriging (source: Cross 

        validation analysis (Note: simulated semivariogram insert)) 
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       Figure 5.12b: Quality of fit assessment of HAT vector feed zone model    

       in the main study area using empirical Bayesian kriging (source: Cross       

      validation analysis) 
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       Figure 5.12c: Quality of fit assessment of HAT vector rest zone model in   

       the main study area using empirical Bayesian kriging (source: Cross   

       validation analysis) 

 

  

The scatter plot of the cross-validation analysis for both LPI and EBK 

revealed three and one data locations that were set aside from all the other 

locations in the Breed and Rest zone, respectively. Ideally, this should have 

called for the autocorrelation models to be refit with misfit data removed.  

However, the data was retained to truthfully represent real world 

relationships and not an existing theory.  
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5.5   Summary 

The use of geospatial techniques in developing the classification scheme for 

managing HAT was successful.  The semivariogram analysis and the best fit 

analysis showed that the classification model was reliable and practical.  The 

integration of supervised classification and fuzzy logic have not been 

previously used with land cover classes and remotely derived continuous 

ancillary data to map out vector habitat zones, at the level of thematic detail 

shown here.  Therefore, the present research work is unique. 
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Chapter 6: Application of HAT Classification Scheme to 

Identify Diseased Areas 

 

6.1   Introduction 

This chapter partly-quantitatively examines how effective the risk with respect 

to HAT can be assessed using the fuzzy logic approach.  The dearth of 

quantitative data, for example, inadequate hospital records for HAT cases, lack 

of demographic data for individual settlement, etc. influenced the decision to 

opt for a partly-quantitative examination (refer to section 1.4).  The analysis 

made use of the results from Chapters 4 and 5.  The HAT vector habitat zones 

(breed, feed, and rest) were taken as hazard indicators while settlements within 

the main study area were taken as vulnerability indicators.  Based on these 

indicators, HAT risk was determined for the main study area. 

 Factors such as, closeness of human population to water bodies, shrub, 

cultivated area, less-dense forest, mangrove and, socio-economic activities are 

important, hence distance maps (section 5.3.2) are incorporated into the final 

selection of priority areas.  To investigate factors that influence HAT 

propagation in the study area, statistical analysis was carried out.  Part of the 

work in this chapter has resulted in publications (Akiode and Oduyemi 2014 b, 

c). 

 

6.2   HAT Hazard Assessment 

HAT hazard assessment is the estimation of overall adverse effects of HAT 

on the study area.  Spatial analysis; local and zonal statistics were performed 

to determine the hazard factor for t he  HAT membership set (fuzzy 

membership) of each habitat zone.  These analyses indicate the extent and 

percentage area exposed to hazard in each zone.  The parameters considered 

were the fuzzy membership of the breed, feed and rest zones and the percentage 

area that satisfy the criteria for being in each zone. 

The fuzzy membership was used to categorise the degree of hazard in 

the zones.  Since the human population are likely to be exposed to harm in an 

environment that is most suitable for the HAT vector, the level of risk was 

therefore categorised based on locations that have fuzzy membership values 
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approximately or close to 1, as locations where the hazard is highest and 

where fuzzy membership values are less than 0.5 as no hazard locations.  

Other locations with fuzzy membership values between 1 and 0.5 were regarded 

as moderate hazard locations.  Thus, three hazard categories were used and each 

category was represented by a hazard value.  To devise a value scale, the zones 

were divided into three categories based on three degrees of fuzzy membership.  

Based on these three values of fuzzy membership, hazards were classified as 

presented in Figure 6.1 and Table 6.1. 

 

 

    

   Figure 6.1a: Map showing hazard locations within the HAT vector breed 

   zone in the main study area 

 

 

 



 

 

146  

      Table 6.1a: Attributes of the hazard locations within the HAT vector    

         breed zone 
 

ROW 

ID 

COUNT AREA     CATEGORY HAZARD 

CAT. 

0 34251 291690564 38 no fuzzy  Non 

1 24307 207004768 27 mod fuzzy  Moderate 

2 31102 264872752 35 high fuzzy  High 

        ( no fuzzy = no fuzzy membership, mod fuzzy = moderate fuzzy     

          membership, high fuzzy = high fuzzy membership) 

 

 

      

 

 

   

 
 

Figure 6.1b: Map showing hazard locations within the HAT vector feed 

zone in t h e  main study area 
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   Table 6.1b: Attributes of the hazard locations within the HAT vector feed    

   zone 

ROW 

ID 

COUNT AREA AREA % CATEGORY HAZARD 

CAT. 

0 57613 490647360 64 no fuzzy  Non 

1 12402 105618672 14 mod fuzzy  Moderate 

2 19645 167301952 22 high fuzzy  High 

         (no fuzzy = no fuzzy membership, mod fuzzy = moderate fuzzy     

          membership, high fuzzy = high fuzzy membership) 

 

 

   

  Figure 6.1c: Map showing hazard locations within the HAT vector rest   

  zone in the main study area. 
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          Table 6.1c: Attributes of the hazard locations within the HAT vector   

           rest zone 

ROW 

ID 

COUNT AREA AREA 

% 

CATEGORY HAZARD 

CAT. 

0 27104 230824752 30 no fuzzy non 

1 32529 277025472 36 mod fuzzy moderate 

2 30027 255717776 34 high fuzzy high 

          (no fuzzy = no fuzzy membership, mod fuzzy = moderate fuzzy     

          membership, high fuzzy = high fuzzy membership) 

 

 

6.3   Vulnerability Assessment 

As in this context vulnerability is equal to the location of an element at risk to 

hazard (Equation 1.6 – section 1.4), a factor analysis was carried out to identify 

vulnerable areas within each HAT vector habitat zones. 

 

6.3.1   Factor analysis of HAT vector habitat zones 

A geo-processing model was made using the ArcMap model builder to identify 

vulnerable areas within each HAT vector habitat zone (i.e. areas where human 

population might be at risk if exposed to certain land cover class within a 

specified HAT vector habitat zone).  The datasets used were the fuzzified 

Euclidean distance built-up area, shrub, cultivated area, water bodies, mangrove 

and less-dense forest (e.g. Table 6.2).  These land cover classes were selected for 

the factor analysis based on their importance to HAT propagation and the fact 

that the human population activities in the study area are centred on the land 

cover classes on daily basis.  

 

     Table 6.2: Attributes of Euclidean distance of less dense forest   

     within 400m of feed zone    

ROW 

ID 

VALUE COUNT DIST_METER AREA AREA

% 

0 1 11074 192 - 395 94309080 13 

1 2 25598 57 - 192 217999248 29 

2 3 50396 0 - 67 429185504 58 
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6.3.2   HAT vulnerability assessment 

The distance map of shrub, water-body, mangrove, built-up area, less-dense 

forest and cultivated area were combined with the hazard map generated in 

section 6.2 to jointly calculate the sum of the values of each distance map 

locations and HAT vector habitat zones, on a cell-by-cell basis. The output was 

reclassified based on the 400m distance to the land cover classes into four 

vulnerability categories as summarised in Figure 6.2. 

 

 

     

     

 

 

 

Figure 6.2a: Vulnerable locations within HAT vector breed zone in the 

main study area 
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Figure 6.2b: Vulnerable locations within HAT vector feed zone in the 

main study area 



 

 

151  

 

     

 

 

 

6.3.2.1   Assessing vulnerability of HAT positive settlements 

The vulnerability of settlements that recorded one or more cases of HAT 

between 1994 and 2006 in the main study area was assessed by adapting 

Cecchi et al. 2008 tsetse fly (HAT vector) suitability threshold.  After 

calculating the average of the percentage of HAT vulnerability categories 

(Section 6.3.2) within each settlement, the outcome was categorised as Table 6.3.  

The settlement vulnerability assessment results are shown in Table 6.4. 

 

 

Figure 6.2c:  Vulnerable locations within HAT vector rest zone in the 

main study area 

 
 



 

 

152  

         Table: 6.3: Proposed threshold for determining vulnerability of    

       settlements within HAT vector habitat zones (source: proposed by   

       researcher, adapted from Cecchi et al. 2008)  
Predicted area of 

presence within 

settlement (%) 

Vulnerability category 

for HAT vector zone 

Vulnerability 

index 

Description 

> 50 High 3 Potential highest 

vulnerable 

locations 

> 25 and      50 Moderate 2 Potential fairly 

high vulnerable 

locations 

> 5 and      25 Low 1 Potential low 

vulnerable 

locations 

   5 Non 0 Vulnerability 

free locations 
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                 Table 6.4a: Vulnerability of HAT positive settlements within  

                 HAT vector  breed zone in the main study area  

Settlement 

Name 

Vulnerability 

Category 

Vulnerability 

Index 

Kokori Moderate 2 

Ugono Moderate 2 

Abraka Moderate 2 

Ekpan High 3 

Eku Moderate 2 

Obiaruku Moderate 2 

Oria Moderate 2 

Ugonao High 3 

Urhuoka/Umeghe Moderate 2 
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                Table 6.4b: Vulnerability of HAT positive settlements within  

                HAT vector  feed zone in the main study area  

Settlement 

Name 

Vulnerability 

Category 

Vulnerability 

Index 

Kokori Moderate 2 

Ugono Moderate 2 

Abraka Low 1 

Ekpan Moderate 2 

Eku Moderate 2 

Obiaruku Moderate 2 

Oria Moderate 2 

Ugonao High 3 

Urhuoka/Umeghe Moderate 2 

 

 

 

 

 

 

 

 

 

 

 



 

 

155  

                Table 6.4c: Vulnerability of HAT positive settlements within  

                HAT vector  rest zone in the main study area 

Settlement 

Name 

Vulnerability 

Category 

Vulnerability 

Index 

Kokori Low 1 

Ugono Moderate 2 

Abraka Low 1 

Ekpan Moderate 2 

Eku Moderate 2 

Obiaruku Moderate 2 

Oria Moderate 2 

Ugonao High 3 

Urhuoka/Umeghe Moderate 2 

 

 

 

6.4   HAT Risk Assessment 

To determine the magnitude of risk for the settlements in the main study 

area, HAT risk (Equation 1.7 – section 1.4) was calculated for all the 

settlements using a raster calculator.  

Settlements at risk of HAT were identified within each HAT vector 

habitat zone.  The risk maps presented in Figure 6.3 were categorised as very  

high, high, moderate and low. In addition, a geo-processing model was created 

to identify the direction (section 5.3.2.2) of each settlement at risk within each 

HAT vector habitat zone using the ArcMap model builder. The direction map 



 

 

156  

was reclassified into four equal interval directions (example in Figure 6.4). The 

direction of settlements at risk of HAT within the HAT vector zones (breed, feed 

and rest) is summarised in Table 6.5.  

 

 

    

    

 

 

 

 

 

 

 

 

 

Figure 6.3a: Settlements at risk of HAT within HAT vector breed zone in 

the main study area 
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Figure 6.3b: Settlements at risk of HAT within HAT vector feed zone in 

the main study area 
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Figure 6.3c: Settlements at risk of HAT within HAT vector rest zone in 

the main study area 
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     Table 6.5: Attributes of directional map of settlements at risk of   

     HAT within HAT vector zones in the main study area 

OBJECT 

ID 

Direction_Degree Direction Direction_Category 

1 0 – 90 North-East Very High  

2 90 – 180 East-South Moderate 

3 180 -270 South-West Low 

4 270 – 360 West-North High 

 

Figure 6.4: Directional map of settlements at risk of HAT within HAT 

vector breed zone in the main study area 
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6.5   Prioritisation of HAT Risk Settlements 

The three HAT vector habitat zones were overlaid using the fuzzy overlay 

function ‘AND’ (intersection; see section 1.3.13) to identify areas that need 

urgent attention in the main study area.  This result into priority map 

categorised as highest priority, high priority, moderate priority and lowest 

priority. 

The highest priority category area was extracted and subjected to a 

distance operation with a threshold of 400m.  The settlement map of the main 

study area was then overlaid on the priority distance map to identify the 

settlements that are within 400m of the highest priority area.  The identified 

settlements constitute the settlements that need urgent attention.  Figure 6.5 

presents the priority map for the main study area while all the settlements that 

need urgent attention are presented in Figure 6.6. 
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Figure 6.5: HAT priority areas within the main study area 
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6.6   Investigating Factors Responsible for HAT Propagation in 

the Study Areas 

Having established the significance and risk of HAT in sections 4.2 and 6.4, 

there is the need to investigate factors responsible for HAT propagation in the 

study areas.  A spatial analysis called zonal histogram was used to investigate  

 

Figure: 6.6: Highest HAT priority settlements within 400m of highest 

priority areas 
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the frequency distribution of values of land cover classes (Chapter 3) present 

within the vulnerable areas of each HAT vector habitat zone in both the main 

and minor study areas.  The vulnerable areas within the other selected two 

local government area in Delta State were also investigated.  The zones were 

earlier categorised (section 6.3.2) as “Very High”, “High”, “Moderate” and 

“Low”. Figure 6.7, presents the histogram of land cover classes within each 

HAT vector habitat zone in the main study area.  For the other two local 

government areas (Oshimili north/south and Patani), the histogram of their land 

cover are presented in Figures 6.8 and 6.9, respectively, while the minor study 

area results are shown in Figure 6.10. 
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Figure 6.7a:  Frequency distributions of land cover classes within HAT 

vector breed zone in main study area (VULNE_Low  = low vulnerability category; 

VULNE_ Moderate = moderate vulnerability category; VULNE_ High = high vulnerability 

category and VULNE_Very_High = very high vulnerability category). 
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   Figure 6.7b: Frequency distributions of land cover classes within HAT   

   vector feed zone in the main study area 
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Figure 6.7c: Frequency distributions of land cover classes within HAT 

vector rest zone in the main study area 
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    Figure 6.8a: Frequency distributions of land cover classes within HAT   

    vector breed zone in Oshimili North/South LGA 
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Figure 6.8b: Frequency distributions of land cover classes within HAT 

vector feed zone in Oshimili North/South LGA 
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Figure 6.8c: Frequency distributions of land cover classes within HAT 

vector rest zone in Oshimili North/South LGA 
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   Figure 6.9a: Frequency distributions of land cover classes within HAT   

   vector breed zone in Patani LGA 
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Figure 6.9b: Frequency distributions of land cover classes within HAT 

vector feed zone in Patani LGA 
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Figure 6.9c: Frequency distributions of land cover classes within HAT 

vector rest zone in Patani LGA 

     

 

 

 

 

     

 

 



 

 

173  

 

 

Figure 6.10a: Frequency distributions of land cover classes within HAT 

vector breed zone in minor study area 
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  Figure 6.10b: Frequency distributions of land cover classes within HAT    

  vector feed zone in minor study area 
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 Figure 6.10c: Frequency distributions of land cover classes within HAT   

 vector rest zone in minor study area 

       

 

6.7   Land Cover Suitability Assessment for HAT Vector 

within Habitat Zones 

In order to establish the suitability of the land cover classes for the HAT 

vector, the classes grouped within the very high and high vulnerability 

categories in each vector habitat zone (section 6.6 histograms), were 

investigated.  The researcher adapted the Cecchi et al. (2008) tsetse fly 
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suitability index for the suitability analysis.  Cecchi et al. (2008), determined 

land cover suitability for tsetse flies based on the percentage of the entire 

surface affected by the fly within a land cover class.  In the context of this 

research, the land cover suitability for the HAT vector was determined based on 

the percentage of each HAT vector habitat zones (breed, feed and rest), within 

a specified land cover class.  The land cover suitability analysis was carried 

out for both the main and minor study areas  and the results are presented in 

Tables 6.6 for the main study area and Tables 6.7 for the minor study area. 
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Table 6.6a: Suitability of land cover classes for HAT vector within HAT 

vector breed zone in the main study area 

Land 

cover class 

Area of 

land  

cover 

within 

Study area 

(m
2

) 

Area of 

breed zone 

within land 

cover class 

(m
2

) 

% of 

breed 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

Index 

Description 

 

Mangrove 65528100 6634167.5 10.1 Low 1 Potential 

low hazard 

locations 

Dense 

Forest 

260262900 248478954.5 95 High 3 Potential 

highest 

hazard 

locations 

Less-dense 

Forest 

165814200 147229124.5 89 High 3 Potential 

highest 

hazard 

locations 

Built-up 

Area 

105891300 15269656.4 14 Low 1 Potential 

low hazard 

locations 

Cultivated 

Area 

121106700 15763599.6 13 Low 1 Potential 

low hazard 

locations 

Shrub 42045300 34414211.7 82 High 3 Potential 

highest 

hazard 

locations 

Water 

Body 

4968900 3687541.1 74 High 3 Potential 

highest 

hazard 

locations 
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Table 6.6b: Suitability of land cover classes for HAT vector within HAT 

vector feed zone in the main study area 

Land 

cover class 

Area of 

land  

cover 

within 

Study  

area (m
2

) 

Area of 

feed zone 

within 

land cover 

(m
2

) 

% of 

feed 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

Index 

Description 

Mangrove 65528100 289552.9 0.4 Non 0 Potential 

Hazard free 

locations 

Dense 

Forest 

260262900 7017399.3 3 Non 0 Potential 

Hazard free 

locations 

Less-dense 

Forest 

165814200 20140957.9 12 Low 1 Potential 

low hazard 

locations 

Built-up 

Area 

105891300 98303203.6 92.8 High 3 Potential 

highest 

hazard 

locations 

Cultivated 

Area 

121106700 105048082.

5 

86.7 High 3 Potential 

highest 

hazard 

locations 

Shrub 42045300 37488582.0 89 High 3 Potential 

highest 

hazard 

locations 

Water 

Body 

4968900 4309228.2 86.7 High 3 Potential 

highest 

hazard 

locations 
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Table 6.6c: Suitability of land cover classes for HAT vector within HAT 

vector rest zone in the main study area 

Land 

cover class 

Area of 

land  cover 

within 

Study area 

(m
2

) 

Area of 

rest zone 

within 

land cover 

(m
2

) 

% of 

rest 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

Index 

Description 

 

Mangrove 65528100 58549296.1 

 

89.3 High 3 Potential 

highest 

hazard 

locations 

Dense 

Forest 

260262900 

 

28333601.2 

 

11 Low 1 Potential 

low hazard 

locations 

Less- 

Dense 

Forest 

165814200 128135666.

8 

 

49 Moderate 2 Potential 

fairly high 

hazard 

locations 

Built-up 

Area 

105891300 10756038 

 

10.2 Low 1 Potential 

low hazard 

locations 

Cultivated 

Area 

121106700 14383965.3 

 

12 Low 1 Potential 

low hazard 

locations 

Shrub 42045300 32710959.5 

 

78 High 3 Potential 

highest 

hazard 

locations 

Water 

Body 

4968900 3755671.2 

 

76 High 3 Potential 

highest 

hazard 

locations 
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Table 6.7a: Suitability of land cover classes for HAT vector within HAT 

vector breed zone in the minor study area 

Land 

cover class 

Area of 

land  cover 

within 

control 

area (m
2

) 

Area of 

breed zone 

within 

land cover 

(m
2

) 

% of 

breed 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

index 

Description 

Water 

Body 

151676100 147489662.8 

 

9 High 3 Potential 

highest 

hazard 

locations 

Wetland/ 

Flood 

Plain 

157037400 7613180. 

 

5 Low 1 Potential 

low  hazard 

locations 

Light 

Vegetation/ 

Shrub 

443632500 304552334.4 

 

67 High 3 Potential 

highest 

hazard 

locations 

Savannah 

Grass 

886448700 600578577 

 

 

68 

 

High 

 

3 

Potential 

highest 

hazard 

locations 

Cultivated 

Area/Sand 

681762600  

0 

 

0 

 

Non 

 

0 

Potential 

Hazard free 

locations 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

181  

Table 6.7b: Suitability of land cover classes for HAT vector within HAT 

vector feed zone in the minor study area  

Land   

cover class 

Area of 

land  cover 

within 

control 

area (m
2

) 

Area of 

Feed zone 

within land  

cover (m
2

) 

% of 

feed 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

index 

Description 

Water 

Body 

151676100 147338906.8 

 

97 High 3 Potential 

highest 

hazard 

locations 

Wetland/ 

Flood 

Plain 

157037400 8760601.2 

 

6 Low 1 Potential 

low hazard 

locations 

 
Light 

Vegetation/ 

Shrub 

443632500 69900552.3 

 

16 Low 1 Potential 

low hazard 

locations 

Savannah 

Grass 

886448700 301512.1 

 

0.03 Non 0 Hazard   

free location 

Cultivated 

Area/Sand 

681762600 558919656.9 

 

82 High 3 Potential 

highest 

hazard 

locations 
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Table 6.7c: Suitability of land cover classes for HAT vector within HAT 

vector rest zone in the minor study area 

Land   

cover class 

Area of 

land  cover 

within 

control 

area (m
2

) 

Area of 

rest zone 

within 

land cover 

(m
2

) 

% of 

rest 

zone 

within 

land 

cover 

Suitability 

category 

for tsetse 

Suitability 

index 

Description 

Water 

Body 

151676100 139005447.

7 

 

92 High 3 Potential 

highest 

hazard 

locations 

Wetland/ 

Flood 

Plain 

157037400 15184483.7 

 

10 Low 1 Potential low 

hazard 

locations 

Light 

Vegetation/ 

Shrub 

443632500 13124151.1 

 

3 Non 0 Hazard   free 

location 

Savannah 

Grass 

886448700 301512.1 

 

0.03 Non 0 Hazard   free 

location 

Cultivated 

Area/Sand 

681762600 0 0 Non 0 Hazard   free 

location 

 

    

6.8   Validation of the Classification Scheme Application 

Apart from the validation analysis carried out in section 5.4, the classification 

scheme was further validated by investigating its practicability.  To achieve this 

aim, two other local government areas in Delta State namely, Oshimili 

North/South and Patani were investigated to identify potential hazard areas 

and potential HAT propagation factors. 

A HAT surveillance exercise sponsored by the WHO in collaboration 

with FMOH, Nigeria and NITR took place in the last quarter of 2010 in some 

parts of Delta state.  Oshimili North/South and Patani local government areas 

were included to validate the practicability of the HAT classification scheme 

developed in this research.  The minor study area (Jigawa State) was also 

investigated using the developed classification scheme.  HAT surveillance 

sponsored by the WHO in collaboration with FMOH, Nigeria and NITR took 

place in the minor study area. This was done by dividing the Jigawa State study 

area into 10km by 10km grids; within each grid, traps (Appendix A-5k) baited 
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with cattle urine and acetone were deployed at 200 meters interval (Figure 

6.11).  Traps were set on the 22/11/2011 between the hour of 11am to 5pm at 

potential tsetse habitats; that is, vegetal and water body areas as well as open 

areas.  On the 23/11/2011, the sites were visited for harvest between the hours 

of 5-6.30pm.  Traps were then left until 24/11/2011, when they were removed 

between 3pm to 6pm. 

 

 

    

    Figure 6.11: Tsetse flies trap Sites within the minor study area 

 

 

6.9   Assessment of Landscape using Change Detection 

Due to none harvesting of tsetse fly in the minor study area (Jigawa State) 

during the field survey, it became necessary to investigate why the main study 

area is considered an active foci and the minor study area is no longer active. 

This was necessary, as there was previous evidence of HAT in the minor study 

area (section 2.1; Figure 2.3).  The land cover suitability analysis carried out also 

indicated the suitability of some land cover classes for HAT vector in the minor 

study area. 

 To investigate the landscape characteristics of both the main and 

minor study areas, change detection assessment was used.  The algebraic 

technique (details in section 1.5.3) w as  used to classify each image used 

separately, while the multi-date composite technique was used to assess and 
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detect the presence or absence of change.  The difference epoch images used 

to access change in the study areas are: 1987 Landsat TM 4, 2002/2011 

Landsat ETM+ for the main study area and 1972 Landsat MSS1, 1986 Landsat 

TM5, 2003/2012 Landsat ETM+ images for the minor study area.  The algebraic 

technique includes tasseled cap transformation (TCT). The TCT involved the 

brightness component only; this was because of the constraints associated with 

the RS images epochs available for the present research. For example, Landsat 

7 ETM+ acquired for years 2011 and 2012 has stripes and cloud cover.  In order 

to obtain enough evidence of the level of change in the study areas, NDVI and 

NDWI were calculated.   These indexes were very vital to HAT propagation.  Part 

of the work in this chapter has resulted in publications (Akiode, Oduyemi and 

Badaru 2014a, b). 

 

 

6.9.1 Change detection using brightness tasseled transformation 

The study areas were masked from the transformed image generated in section 

3.2.1.3, after which statistical threshold was assigned to the pixel values of 

the transformed images. This was done by calculating the z-score (Equation 6.1) 

of the transformed image pixel values. Based on the z-score, the brightness map 

for each year was grouped into four categories namely:  

 Least:  for areas with least brightness value 

 Low:  for areas with low brightness value 

 Moderate:  for areas that are moderately bright 

 High:  for areas that recorded the highest brightness value 

Example of the brightness tasseled cap transformation is presented in Figure 

6.12. 

 

        Z-score =   [Pixel Value] – μ / σ                                                                 6.1   

 

Where: μ = mean of the image pixel,   σ = standard deviation of the image pixel  

 

The brightness categorical map was overlaid on the land cover maps of both 

the main study area and the minor study area in a GIS environment using 

70% transparency. This was to view the land cover class that match each 

brightness category. 
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6.9.2 Change detection using NDVI and NDWI 

The main and minor study areas were masked from the NDVI and NDWI 

derived in section 3.2.1.3.  The NDVI and the NDWI were reclassified into two 

classes based on their pixel values. The pixels with negative values were 

classified as “NDVI/NDWI Negative” and pixels with positive value were 

classified as “NDVI/NDWI Positive”. To establish change, the differences 

between the resulting calculations were found. 

 

 

6.10 Courtin et al. (2005) Vis-a-Vis Present Research 

The study by Courtin et al. (2005) entitled “Towards understanding the 

presence/absence of human African trypanosomiasis in a focus of Cote d'Ivoire:  

Figure 6.12: 1987 Tasseled cap transformation brightness components for 

the main study area 
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a spatial analysis of the pathogenic system”, was carried out on a regional 

scale covering two different parts of Cote d'Ivoire.   The present research was 

also carried out at regional scale within two distinct regions of Nigeria (the 

main study area is in the south while the minor study area is in the northern part). 

Courtin et al. (2005) applied transect methodology to assess 

landscape, this was able to produce areas at risk of HAT within their study 

area.  However, their result was not detailed enough as their landscape analysis 

only provided a “summarised” or broad-risk assessment.  According to Tildesley 

and Ryan (2012), there was considerable model divergence from actual data 

when broadly grouped land cover data were applied to map locations within a 

landscape, but when more detailed land cover data were applied, moderate to 

highly precise spatiotemporal prediction of disease epidemic were achieved. 

The approach used in the present research provides detailed HAT vector 

habitat classification, with this approach, precise HAT vulnerable and 

hazardous locations were identified.  Also, the approach was able to identify 

the spatial direction of HAT propagation in the main study area. 

Courtin et al. (2005), pointed out that one of the reason for HAT 

propagation in the southern part of their study area is the suitability of patches 

of both relict forest and fallow lowland; however, the method used by the 

authors did not enable them to assess the real suitability of said land covers for 

the HAT vector. The presence of a patch of forest may not necessarily pose a  

HAT threat, for example, in the present research, the vegetal covers within 

and around the settlement that was considered to be the mean centre of HAT 

(section 4.1.1) was found to have low suitability for the HAT vector when 

used the classification scheme developed in this research to assess land cover 

suitability. 

The level of detail in the present research will offer more information 

toward precise and efficient HAT surveillance planning/execution and resource 

allocation, thus, promoting the general wellbeing of the human population in 

the study area.  Also, targeted control programmes can be planned and 

executed efficiently with the aid of the classification scheme developed in this 

research work due to the delineation of the HAT vector habitat into zones. 
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6.11 Discussion and Results 

Using the classification scheme developed for managing HAT, the areas prone to 

hazard were identified and categorised. From tables 6.1, only 38% of the 

breed zone was not prone to hazard while only 64% and 30% of the feed and 

rest zones are free from hazard, respectively. With 46% of the feed zone 

prone to hazard, the human population could be said to be at moderate risk of 

HAT.  Also, the entire main study area could be classified as highly 

hazardous, since a greater part of the entire HAT habitat zones (except for the 

feed zone) fall within the “very high” and ‘high’ hazard categories. 

The combination of the factorised distance maps with hazard maps 

revealed that all the land cover classes were highly concentrated within 0 – 

200 metres of each HAT habitat zone. Thus, the main study area is highly 

vulnerable. Also, all the HAT positive settlements were contained within 

each zone.  The overlapping of the three HAT zones within each settlement 

revealed the vulnerability of these settlements.  This suggests that, human 

population in each settlement could be at risk of HAT at any time of the day, if 

any of the HAT vector habitats is disturbed.  Overlapping of the HAT habitat 

zones within the built-up areas negates the assertion by Zoller et al. 2008 that 

localised transmission around a family home is less likely due to the ecology 

of the vector, which typically prefers bushes and thickets around wetlands or 

rivers, away from homesteads. 

The result of vulnerability assessment conducted for all the settlements 

with one or more cases of HAT between 1994 and 2006, revealed, as shown 

in Table 6.4a, that two out of the nine settlements were highly vulnerable to 

t h e  breed zone, while the others are moderately vulnerable. Table 6.4b 

showed that only one settlement is highly vulnerable to t he  feed zone and 

one settlement has low vulnerability, while others are moderately vulnerable.  For 

the rest zone (Table 6.4c), two of the settlements have low vulnerability. High 

vulnerability was recorded for one settlement while others are moderately 

vulnerable to rest zone. 

One important observation was the settlement Abraka, which has low 

vulnerability to both the feed and rest zones and is moderately vulnerable to 

the breed zone.  The analysis carried out in Chapter 4 revealed Abraka as the 

mean centre (Figure 4.1) for all the HAT case years except for 1998.  The 
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researcher concluded that there may be other factors apart from landscape 

characteristics contributing to propagation of HAT in the specified 

settlement.  Another settlement that caught the attention of the researcher is 

Ugonao, which has the highest vulnerability to all the zones. When the three 

habitat zones were overlaid on the settlement map, the three habitat zones 

overlapped and completely covered the settlement; this could be responsible for 

its high vulnerability status. 

Risk due to HAT was computed at settlement level.  The result of the 

hazard assessment and vulnerability assessment helps in generating a risk map 

for the 865 settlements (extracted from Landsat 7 ETM+ image) in the main 

study area. The risk settlements were categorised into four levels of risk (very 

high, high, moderate and low) based on the fuzzy membership of each group 

using natural break, with the highest fuzzy membership grouped as very high 

risk. Using a  logical query, each category of risk was extracted from the 

main risk map.  The output is presented in Table 6.8. 

 

 

                         Table 6.8: Number of Settlement at Risk of HAT within 

                   HAT Vector Habitat Zones in the study area 

 Number of Settlement at Risk of HAT 

Risk Category Breed Zone Feed Zone Rest Zone 

Very High 38 357 94 

High 266 427 341 

Moderate 553 212 515 

Low 270 89 191 

 

 

The total number of settlements at risk of HAT in each category exceeds 

the total number of settlements in the main study area because the categories 

overlapped.  Two or more categories may be present within a settlement.  The 

prioritisation analysis identified all the settlements in the main study area as 

settlements of the highest priority. 
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The directional analysis highlighted the areas that should be looked at 

closely. It showed that the human population residing at the north-eastern and 

north-western parts of the main study area are most at risk.  The directional 

analysis indicated that the disease is spreading north-east and north-west as well 

as south-east.  Thus, one can conclude that the magnitude of HAT in the main 

study area is multidirectional.  Therefore, there is need to allocate more 

resources to the identified areas to support the existing surveillance system.  

Though, the prioritisation analysis classified all settlements as very high priority, 

the settlements in the north-eastern and north-western parts need urgent 

attention. 

The vulnerability assessment revealed that, among the factors 

responsible for HAT propagation in the main study area was overlapping of the 

“breed”, “feed” and “rest” zones within built-up areas.  The histogram analysis 

for the main and minor study areas as well as the other two local government 

areas in Delta State revealed the land cover types that contributed or are 

contributing most to HAT propagation in the areas. 

The researcher observed that the histogram analysis did not reveal true 

information, it was noticed that the area coverage of the vulnerability category 

within specified locations influenced the result. Therefore, high frequency 

distribution of a land cover in a location may not necessarily mean high 

suitability.  As a result of this observation, a land cover suitability assessment 

was performed for both the main and minor study areas.  The results, shown in 

Table 6.6, revealed water bodies and shrub as potentially the highest 

contributing factors to HAT propagation in the main study area.  Another 

factor highlighted was less-dense forest, which can be categorised as a moderate 

potential contributing factor based on the analysis.  In the minor study area 

(this area is in different ecological zone to the main study area, thus different land 

cover combinations; section 2.1 and Figure 2.1 ), major potential contributing 

factors (Table 6.7) deduced from the suitability analysis were water bodies 

and to a lesser extent wetland/flood plain.   The researchers’ deduction was 

based on the fact that these land covers were prominent in all the three HAT 

vector habitat zones.  The continuous exposure of human population to these 

land cover classes (water bodies, shrub and less-dense forest) in the main study 

area could increase HAT propagation. 
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The main study area is a portion of Delta State, Nigeria. From the 

information obtained from the National Bureau of Statistics, Nigeria (2008 a, b, 

e), 76.6% of the total population of the state depends on fire wood for cooking, 

and only 7.3 % have access to pipe borne water, while 53.6% do not have 

access to high grade toilet facilities.  It should be noted that these figures are for 

the entire state, that is, both urban and rural areas.  There is no doubt that if these 

statistics are estimated for the rural areas alone, the lack of basic 

infrastructure would be higher. 

Majority of the human population in the main study area depends on 

the identified land cover classes (water bodies, shrub and less- dense forest) for 

survival.  For example, because of lack of good toilet facilities, people depend 

on the shrub in and around the settlement.  In addition, agriculture and fishing 

are the major occupations in the state; people are exposed to water bodies on a 

daily basis.  For fire wood collection, the less-dense forested and shrubs are the 

major sources.  As a result of the above, the risk of exposure of the human 

population to HAT in the main study area may continue to soar if other 

conditions such as climate are favourable. 

For the other two LGAs (Oshimili North/South and Patani), the 

result identified all the factors identified in the main study area as potential 

HAT propagation factors.  Also the three HAT habitat zones overlapped in and 

around their built-up areas.   

The surveillance exercise that took place in 2010 in Delta State, 

Nigeria yielded Card Agglutination Trypanosomiasis Test (CATT) positive 

results in selected settlements within the feed zone identified with the aid of 

the new HAT classification scheme.  CATT is a field and laboratory test for 

diagnosis of T.b.gambiense sleeping sickness; the test is conducted using the 

blood serum or other bodily fluid.  In the main study area, blood sample was 

taken from people in three existing foci settlements and two new settlements.  

All of the selected five settlements in the main  study area recorded CATT-

positive cases, with a total number of 25 CATT-positive cases recorded out 

of 672 sampled.  The other two LGA (Oshimili North/South and Patani) 

also recorded CATT-positive cases. Out of 473 human populations sampled at 

Oshimili North/South LGA, 5 CATT-positive cases were recorded and in 

Patani LGA, 1 CATT-positive case was recorded out of 115 sampled.   Figure 
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6.13 and Table 6.9 show the settlements that confirm the practicability of the 

developed HAT classification scheme and their attributes respectively. 

 

   

   

 

 
 
 
 
 
 
 
 

Figure 6.13:  Map showing CATT-positive case settlements identified 

using the newly developed HAT classification scheme 
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 Table 6.9: Attributes of CATT-positive case settlements                            

 

 

 

6.11.1   Change detection analysis results 

Tasseled Cap Transformation: 

The comparison of the brightness categorical map with the land cover maps 

revealed the land cover classes in each category as presented in Table 6.10, 

while the brightness index changes between 1987 to 2002 and 1986 to 2003 for 

the main and minor study areas are presented in Tables 6.11 and 6.12, 

respectively.  
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       Table 6.10: Land cover classes within the tasseled cap brightness   

     compartment 

 Main Study Area Minor Study Area 

Brightness 

Category 

Land Cover Class Land Cover Class 

Least  Water body, Mangrove Water body, Wetland/flood plain 

Low  Dense forest, Less-dense     

 forest 

Light vegetation/shrub 

Moderate   Mixture of Shrub,   

 Cultivated area, Less- 

  dense forest 

Mixture of Savannah grass, Cultivated 

area, Light vegetation/shrub 

High  Built-up area, Cultivated  

 area 

Cultivated area/sand 

 

 

 

        Table 6.11: 1987 – 2002 brightness tasseled cap transformation    

        for the main study area     

 1987 2002 Change Detected 

Brightness 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

Least 252.9 33 221.6 29 -31.3 -4 

Low 285.4 37 319.2 42 33.8 5 

Moderate 157 21 170.5 22 13.5 1 

High 72 9 56 7 -16 -2 

Total 767.3 100 767.3 100   
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        Table 6.12: 1986 – 2003 brightness tasseled cap transformation   

        for the minor study area 

 1986 2003 Change Detected 

Brightness 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

Least 240.6 10.37 120.0 5 -120.6 -5.37 

Low 693.6 29.9 443.04 19 -250.56 -10.9 

Moderate 867.2 37.36 1016.10 44 148.9 6.64 

High 519.2 22.37 741.41 32 222.21 9.63 

Total 2320.6 100 2320.6 100   

 

 

From Table 6.11, the least category result indicated that water bodies and 

mangrove area reduced by 4% between 1987 and 2002 in the main study area. 

This may be as a result of human activities; parts of the mangrove have been 

opened up for farming or cultivation and other activities.  Farming is an 

activity associated with the HAT vector feed zone (Table 6.6b). It may also be 

that the water depth has dropped.  The low category indicated a 5% increase in 

the forested area. The reason for this could be the transformation of parts of 

the dense forest. The vegetation in the transformed area has been opened up, 

thus, increasing the reflectance of the soil. Also, some farm produce such as 

cassava, which is one of the staple foods in the main study area, when fully 

grown could be classified as shrub. The spectral reflectance of this crop could 

be mistaken for less-dense forest spectral reflectance. 

The moderate category showed a 1% increase over the 15 years. The 

reason for the low change in the category may be because of a mixture of 

different land cover classes, which may affect the soil reflectance.  The high 

category revealed a 2% reduction in the area open to high soil reflectance within 

the built-up and cultivated areas. This may be due to the fact that open spaces 

within the built-up area are being converted to farm land, thereby reducing the 

reflectance value of the soil, thus, favouring active propagation of HAT within 

the feed zone. 

From Table 6.12, the least category indicated a 5.37% reduction in 

brightness of water bodies and flood plains in the minor study area.  Reasons 

for this may include: increased land surface temperature, fadama or wetland 
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farming and deforestation, which tends to open up the terrain leading to high 

evaporation. The low category showed a brightness reduction of 10.9% in the 

area covered by light vegetation (savannah forest) between 1986 and 2003. 

This could be because of grazing activities and deforestation as well as farming 

activities. 

The moderate and high categories revealed increases of 6.64% and 

9.63% i n  brightness, respectively. This increase may be attributed to socio 

climatic impact such as intense grazing, cultivation activities, desert 

encroachment as well as very high temperatures; apart from cultivation; these 

conditions, are not favourable for HAT propagation. 

 

NDVI 

The results on change detected in the main and minor study areas using NDVI are 

presented in Tables 6.13 and Table 6.14, respectively. 

 

  Table 6.13a: Percentage of NDVI change in the main study area  

  between 1987 and 2002 

 NDVI_1987 NDVI_2002 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

613.5 80 515.5 67 -98 -13 

NDVI 

Negative 

153.8 20 251.8 33 98 13 

Total 767.3 100 767.3 100   
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  Table 6.13b:  Percentage of NDVI change in the main study area  

  between 2002 and 2011 

 NDVI_2002 NDVI_2011 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

515.5 67 386.2 52.6 -129.3 -14.4 

NDVI 

Negative 

251.8 33 386.2 47.4 96.2 14.4 

Total 767.3 100 734.2 100   

                     

 

  Table 6.13c: Percentage of NDVI change in the main study area  

  between 1987 and 2011 

 NDVI_1987 NDVI_2011 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

613.5 80 386.2 52.6 -227.3 -27.4 

NDVI 

Negative 

153.8 20 386.2 47.4 232.4 27.4 

Total 767.3 100 734.2 100   

 

 

         Table 6.14a: Percentage of NDVI change in the minor study area    

         between 1972 and 1986      

 NDVI_1972 NDVI_1986 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2

) 

Change 

(%) 

NDVI 

Positive 

1350.3 58 993.1 43 -357.2 -15 

NDVI 

Negative 

970.3 42 1327.5 57 357.2 15 

Total 2320.6 100 2320.6 100   
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     Table 6.14b: Percentage of NDVI change in the minor study area   

     between 1986 and 2003   

 NDVI_1972 NDVI_1986 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

993.1 43 62.3 3 -930.8 -40 

NDVI 

Negative 

1327.5 57 2258.3 97 930.8 40 

Total 2320.6 100 2320.6 100   

 

 

     Table 6.14c:  Percentage of NDVI change in the minor study area  

     between 2003 and 2012 

 NDVI_2003 NDVI_2012 Change Detected 
NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

62.3 3 262.7 14.6 200.4 11.6 

NDVI 

Negative 

2258.3 97 1539.7 85.4 -718.6 -11.6 

Total 2320.6 100 1802.4 100   

    

 

     Table 6.14d: Percentage of NDVI change in the minor study area 

     between 1972 and 2012 

 NDVI_1972 NDVI_2012 Change Detected 

NDVI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDVI 

Positive 

1350.3 58 262.7 14.6 -1087.6 -43.4 

NDVI 

Negative 

970.3 42 1539.7 85.4 569.4 43.4 

Total 2320.6 100 1802.4 100   
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From Tables 6.13 and 6.14, there was decrease in NDVI in both the main and 

minor study areas, within the study period, except for the period between 2003 

and 2012 in the minor study area, which showed an increase.  This may be as a 

result of afforestation programme on-going in the area.  The overall result 

showed that between 1987 and 2011, the rate of NDVI change in the main 

study area was 27.4% while between 1972 and 2012 the rate of NDVI 

change in the minor study area was 43.4%.  The NDVI decrease indicated an 

increase in bare surface in both areas, which may affect the propagation of 

HAT as vegetation is vital to the survival of HAT vector. 

The NDVI analysis revealed that a total 33.1Km
2 

and 518.2Km
2 

area 

were not included in the NDVI calculation for 2011 and 2012 for the main and 

minor study areas, respectively. This was because of the presence of stripes in 

the Landsat7 ETM+ data used. The stripes return no data value, thus, the no 

data voids were not accommodated in the NDVI calculation. This might have 

affected the overall result. The higher rate of NDVI decreased in the minor study 

area despite the 11.6% increase between 2003 and 2012, is an indication of 

unfavourable environment for HAT vector survival. 

 

NDWI 

The results on change detected in the main and minor study areas using NDWI 

are presented in Tables 6.15 and Table 6.16. 

 

   Table 6.15a: Percentage of NDWI change in the main study area between   

   1987 and 2002 

 NDWI_1987 NDWI_2002 Change Detected 

NDWI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

101.5 13 90 12 -11.5 -1 

NDWI 

Negative 

665.8 87 677.3 88 11.5 1 

Total 767.3 100 767.3 100   
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  Table 6.15b:  Percentage of NDWI change in the main study area between  

  2002 and 2011  

 NDWI_2002 NDWI_2011 Change Detected 

NDWI 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

90 12 102.4 14 12.4 2 

NDWI 

Negative 

677.3 88 632.6 86 -44.7 -2 

Total 767.3 100 735 100   

 

 

    

   Table 6.15c:  Percentage of NDWI change in the main study area between  

   1987 and 2011 

 NDWI_1987 NDWI_2011 Change Detected 

NDWI_ 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

101.5 13 102.4 14 0.9 1 

NDWI 

Negative 

665.8 87 632.6 86 -33.2 -1 

Total 767.3 100 735 100   
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   Table 6.16a: Percentage of NDWI change in the minor study area  

   between 1986 and 2003 

 NDWI_1986 NDWI_2003 Change Detected 

NDWI_ 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

2.9 0.13 1.84 0.1 -1.06 -0.03 

NDWI 

Negative 

2317.7 99.87 2318.72 99.9 1.02 0.03 

Total 2320.6 100 2320.6 100   

 

 

    Table 6.16b:  Percentage of NDWI change in the minor study area  

   between 2003 and 2012 

 NDWI_2003 NDWI_2012 Change Detected 

NDWI_ 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

1.84 0.1 30.3 1.6 28.46 1.5 

NDWI 

Negative 

2318.72 99.9 1812.7 98.4 -2220.32 -1.5 

Total 2320.6 100 1843 100   

 

 

   Table 6.16c: Percentage of NDWI change in the minor study area  

   between 1986 and 2012 

 NDWI_1986 NDWI_2012 Change Detected 

NDWI_ 

Category 

Area 

(Km
2
) 

Area 

(%) 

Area 

(Km
2
) 

Area 

(%) 

Change 

(Km
2
) 

Change 

(%) 

NDWI 

Positive 

2.9 0.13 30.3 1.6 27.1 1.47 

NDWI 

Negative 

2317.7 99.87 1812.7 98.4 -505 -1.47 

Total 2320.6 100 1843 100   
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From Tables 6.15 and 6.16, the margin of NDWI change in both the main and 

minor study areas appeared almost the same. Between 1987 and 2011 the rate 

of change in the main study area was 1% while that of the minor study area 

between 1986 and 2012 was 1.5%.  The main study area assessment covers 24 

years, while the minor study area covers 26 years.  This rate of change might be 

as a result of a similar factor for both areas. 

 

 

6.12 Summary 

The classification scheme developed in this research has been applied for the 

prioritisation of vulnerable and at risk of HAT settlements. It emphasised 

the ability of the scheme to enhance decision making. Also, it has been 

demonstrated that geospatial techniques most especially fuzzy logic, which 

takes uncertainty into account yield accurate results. 

Given the asymptomatic nature of HAT at its early stage, and the 

possibility of underreporting of HAT, the risk assessment method employed in 

this research based on the developed HAT vector habitat classification scheme 

would help stakeholders in identifying all potential risk areas/population and 

thus, early diagnosis of HAT.  The SDE and WSDE analysis (section 4.1.2) 

based on the available record of HAT cases only revealed north-eastern 

direction of HAT propagation, while the directional analysis (section  6.4) 

carried out using the newly developed HAT vector habitat classification 

scheme revealed a multidirectional magnitude of HAT propagation in the main 

study area.  The method employed in this research will facilitate efficient 

decision making, planning for resource allocation as well as support active HAT 

surveillance. 

Assessing vulnerability of each settlement in the main study area 

using the newly developed classification scheme is novel as there are no such 

studies for the study area or other known areas in sub-Saharan Africa. 
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Chapter 7: Discussion and Conclusions 

 

7.1 General Discussion 

The aims of this research were to examine the potential habitats of the HAT 

vector, to identify the processes that give rise to spatial distribution of 

HAT and to map the direction and magnitude of HAT in the main study area. 

Chapter 1 gave insights into why this research is necessary and 

justifications for using geospatial techniques.  The main study area terrain 

characteristics, the inability of the existing health policies to achieve their goal 

towards efficient health/HAT management, under-reporting of disease and lack 

of digital spatial data/information were some of the problems revealed in the 

literature review.  Also, the link between RS and landscape features 

highlighted justifies its use to derive the criteria for the development of HAT 

vector habitat  classification.  

Using land cover and ancillary datasets derived from remotely sensed 

data (as discussed in Chapter 3), geospatial-fuzzy multi-criteria decision 

analysis was applied for the identification and classification of potential HAT 

vector habitats into three zones namely ‘Breed’, ‘Feed’ and ‘Rest’ (Chapter 

5).  The developed classification scheme was applied (Chapter 6) to examine 

and assess the degree of vulnerability and risk of the human population 

(using settlements as a  proxy) in the main study area to HAT, consequently, 

highest priority areas were identified.  Furthermore, the direction and 

magnitude of HAT was mapped using the developed HAT vector habitat 

classification scheme.  Also, the newly developed classification scheme was 

applied to identify the landscape factors influencing propagation of HAT as 

well as assessing the suitability of these factors for the HAT vector within 

each HAT vector habitat zone.  The landscape suitability assessment carried out 

using an adapted tsetse fly suitability-threshold, revealed the landscape features 

that contribute most to the propagation of HAT in the main study area.  Using 

non-spatial data, spatial distribution analysis (Chapter 4) was also applied to 

identify the direction of HAT propagation and to examine the spatial 

significance of HAT in the main study area.  
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7.2 HAT Propagation 

The spatial distribution analysis in chapter 4 suggested that HAT is highly 

clustered in the main study area, most especially in the north-eastern part.  It 

also revealed that females are more susceptible to the disease than the males.  

The mean centre of HAT in the main study area was highlighted based on the 

available record of HAT cases; the analysis also highlighted farming and 

studying as the most vulnerable occupations for HAT.   

Further assessment of the main study area in chapter 6 using the HAT 

vector classification scheme developed in this research not only confirmed the 

north-eastern direction of HAT propagation in the main study area, but also 

revealed additional directions.  This emphasised the significance of geospatial 

techniques in precise exploratory analysis.  The direction of the disease in the 

study area may have resulted from the land cover characteristics of the main 

study area.  The north-eastern part tends to have more shrub and pools of water 

and the less-dense forest is concentrated in this area.  The susceptibility of 

women compared to men to HAT can also be linked to land cover.  The land 

cover suitability analysis carried out in chapter 6 revealed water body, shrub 

and less dense forest as the landscape features that are influencing HAT 

propagation in the main study area the most.  The risk of HAT propagation is 

not, however, completely linked to land cover, but depends also on other 

factors not considered in this research.  Women seemed to be more exposed to 

these land cover classes than men due to, for example, washing of cloths or 

fetching of water from the stream, this being mainly the responsibility of women 

and young people (probably students).  Also, some of the local markets are 

surrounded by shrubs and less dense forest (Appendix A-5g).  Women are 

more prominent in these markets than men, and additionally, most women in 

the main study area are farmers, thus are more exposed to the disease vector.  

The propagation of HAT in the main study area is, therefore, likely to be due 

to the favourable landscape and probably the continuous exposure of the 

human population to water bodies, shrubs and less dense forest. 

Another important contributing factor to HAT propagation in the main 

study area is the overlapping of the HAT vector habitat zones (Breed, Feed 

and Rest) within the built-up areas.  This negates the assertion by Zoller et al. 

(2008) that localised transmission around a family home is less likely due to 
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the ecology of the vector, which typically prefers wetland bushes and thickets 

near rivers, away from homesteads.  The implication of this for the main study 

area or other places with similar characteristics is continuous human-vector 

contact at all times, day or night.  This may have serious consequences.  Apart 

from shrub, the identification of water bodies and less dense forest as the 

largest contributing factors to HAT propagation in the main study area supports 

previous studies in other parts of sub-Sahara Africa, which have associated 

the HAT vector with these land cover classes (Courtin et al. 2005; Batchelor 

2010; DeVisser and Messina 2009 ; Zoller et al. 2008).  Previous, studies 

generally highlight water bodies, and vegetation as contributing factors. 

However, the method applied in this research and the level of detail has revealed 

shrub as one of the most important contributing factors.  The implication of 

this for the main study area is that the majority of human populations may be 

vulnerable to HAT, because most places of residence are surrounded by shrub, 

and irrespective of the people’s occupation, age or gender, could be infected 

provided the shrub that is closest is suitable for the HAT vector. 

The one direction (north-east) of HAT revealed by the analysis carried 

out in Chapter 4 may be as a result of insufficient data, as data used was 

obtained from only one source;  the main HAT sentinel centre.  People living 

very far from the sentinel centre may not have been visiting the centre for 

treatment.  Thus, the result may have been underestimated. 

Water bodies and wetland/floodplain were identified as the most 

prominent potential land cover that may influence HAT propagation in the 

minor study area.  However, the disease seemed to have been phased out in the 

area, due to the absence of the HAT vector, as the survey exercise carried out 

to harvest HAT vector in the minor study area did not yield any results. This 

prompted the change detection analysis carried out in Chapter 6, in order to 

investigate the reason for this.  From the change detection analysis, it was 

deduced that the landscape has changed considerably over the years.  

Therefore, the absence of the HAT vector in the minor study area may be 

because the landscape is not for now favourable.  Presently, there is no 

evidence of the disease in the minor study area, but, there is an on-going 

afforestation and forestation program in the area (this may have influenced the 

land cover classification obtained for the minor study area).  Also, irrigation 
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farming and water reservoir projects are on-going in the area.  If these 

programs continue, the implication for the minor study area may be re-

introduction of favourable landscape, thus, re-invasion of the area by the HAT 

vector. 

To overcome the burden of HAT, policy was formulated to strengthen 

surveillance programmes in Nigeria as discussed in Chapter 1.  However, due 

to the asymptomatic nature of HAT and some constraints, active surveillance 

may not be sufficient or efficient to manage the disease in Nigeria.  There is no 

doubt that surveillance is important in providing a quantitative assessment of 

disease burden, and thus help in prioritising resources towards disease 

management and control, but are insufficient to wholly capture the effect a 

disease has on the human populations and the environment.  For HAT in the 

main study area, the hospital record of HAT cases failed to give 

comprehensive details of the disease.  Past research only revealed cases in 

few settlements.  This may be due to the fact that the symptoms of HAT are 

not easily detected in the early stages, or the inadequacy of diagnostic centre.  

Also, surveillance exercises always take place in selected settlements and thus, 

may be underreporting the situation. 

Based on past surveillance exercises, previous studies, for example, 

Osue et al. (2008), have suggested a particular settlement as the most vulnerable 

to HAT in the main study area.  In the present research, the said settlement was 

found to have low vulnerability to the HAT vector when vulnerability assessment 

was performed for all the settlements that had previous cases of HAT.  This 

suggests there may be other underlying factors responsible for high frequency 

of HAT in the settlement. 

 

7.3   Method for the Classification and Application of HAT 

Vector Habitat Scheme 

The application of geospatial-fuzzy MCDA to delineate HAT vector habitat 

has offered precise identification of the direction and magnitude of HAT, the 

areas at risk of HAT and the factors influencing HAT propagation in the main 

study area (the other two local government areas inclusive).   

 The geospatial-fuzzy MCDA used in this research considered the 

vagueness of the landscape and offered detailed knowledge and improved 
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understanding of the HAT ecology when compared with Courtin et al. 2005. 

Although not detailed enough, Courtin et al. (2005) achieved their goal and was 

able to produce results for management of HAT.  However, unlike the transect 

method used by Courtin et al. 2005 that might be difficult to replicate; the present 

research method is flexible and could be replicated easily (i.e. transferable).  The 

transferability quality and the approach of integrating RS/GIS and fuzzy-

multicriteria analysis with experts’ inputs make the present research method a 

transparent tool for policy makers for identifying vulnerable and at risk areas.  

The integration of ancillary data with land cover classes using geospatial-fuzzy 

MCDA in Chapter 5 offered a unique technique for the classification of 

HAT vector habitat into different zones.  The use of fuzzy logic to integrate 

ancillary datasets with land cover to improve classification had been attempted 

in the past (Gopal, Woodcock and Strahler 1999; Stathakis and Kanellopoulos 

2008), however, it had not been used to delineate HAT vector habitat into 

different zones.  The application of geospatial-fuzzy MCDA to disease 

epidemiology is also becoming popular, with past studies demonstrating its 

effectiveness (Wang and Wang 2010; Hongoh et al. 2011; Rajabi, Mansourian 

and Bazmani 2012). Obviously, future studies should focus on continuing 

usage of geospatial-fuzzy MCDA to ensure precise and reliable values.   

The cross validation (Chapter 5) of the vector habitat classification 

scheme using both local polynomial interpolation and Bayesian kriging, 

emphasised the ability of the classification scheme and geospatial techniques 

to enhance decision making.  Also, the use of both error matrix and kappa 

statistics to assess the accuracy of the supervised land cover classification 

carried out in this research produced highly accurate data.  However, the 

confidence level analysis used to assess the accuracy of the non-supervised 

classification seems less certain.  The confidence level revealed water bodies as 

the least confident, that is, the land cover class most likely to be misclassified.  

Water bodies being a very prominent feature should not have been judged as 

such; but it was observed that the area attributed to water bodies compared to 

other land covers is small.  This may have influenced the outcome, 

therefore in order to avoid biased result(s); it is not advisable to use confidence 

level analysis to assess the accuracy of non-supervised classification. 
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7.4 Research Limitations 

There are many factors influencing the propagation of HAT other than land 

cover.  The classification scheme developed in this research only used 

environ-climatic data, and other data such as socio-economic information, may 

influence considerably the delineation of the HAT vector habitat into zones.  

However, these data are not always readily available, socio-economic data 

regarding HAT are lacking, and the existing data are either insufficient or 

outdated.   The protocols used in obtaining even the dated data are too long, 

while access to Nigerian literature online is very limited.  The integration of 

socio-economic data in delineating the HAT vector habitat in future could 

enhance the classification scheme developed in this research.  Furthermore, 

seasonal variations could be investigated using radar image to classify the 

landscape.  The option for radar image is due to the peculiar nature of the 

study area discussed in Chapter 1, which has limited the availability of cloud 

free optical data for seasonal studies. 

The identification of one of the settlement (Abraka) as the mean centre 

(Chapter 4) of HAT in the main study area, which from the result of further 

analysis (Chapter 6) turned out to have low vulnerability to HAT, illustrated 

underlying factors contributing to the high frequency of HAT in the settlement, 

yet, this research has not considered all other potential factors.  The incorporation 

of socio-economic/cultural characteristic data (as in Courtin et al. 2005) of the 

settlement and/ or other settlements in the main study area may provide 

further knowledge of some of the underlying factors influencing HAT 

propagation in the settlement, and the main study area. 

The land cover suitability analysis carried out in this research (Chapter 

6) has not been validated; the suitability analysis was based on the area 

coverage of land cover class within the HAT vector habitat zones.  Sensitivity 

analysis using different thresholds or integration of other criteria such as 

HAT vector abundance with this analysis may have influenced the outcome 

considerably; the abundance of the HAT vector could be combined with environ-

climatic datasets for delineating the vector habitat into zones in future, and also 

incorporated into the suitability analysis. 
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7.5 Research Implications for HAT Management/Control 

Finding a lasting cure to HAT is one of the mechanisms for eradicating the 

disease.  However, there are other ways of approaching the problem that should 

be considered, as a cure will not prevent the disease from spreading.  Preventing 

the propagation of HAT in the main study area will involve limited or no 

contact between the HAT vector and humans. 

The results of the application of the HAT vector habitat classification 

scheme (Chapter 6) revealed water bodies, shrub and less dense forest as the 

largest contributing factors influencing HAT propagation in the main study 

area.  This suggests that strategies that will limit the exposure of human 

populations to these land cover should be a high priority for the Federal 

Government of Nigeria.  Limiting the exposure of the human population to these 

land covers is a challenge, more so that another potential factor influencing 

the propagation of HAT in the main study area is overlapping of the three 

HAT vector habitat zones within the built-up areas.  The Federal 

Government, State Government and most especially the Local Government, 

should embark on a public awareness programme, educating the people in 

the main study area about the dangers of exposure to the HAT vector and 

suggest some precautionary measures.  The government could ensure provision 

of basic amenities, such as constant pipe-borne water at an individual 

household level and provide affordable gas or electricity for cooking to 

reduce constant exposure to water bodies and less dense forest.  Also, provision 

of public toilets and encouraging/enforcing construction of toilet facilities in 

households to limit exposure to shrub/water body should be government 

priority. 

The overlapping of the HAT vector habitat zones within built-up areas 

is a threat to human population in the main study area.  Thus, control 

programmes targeting individual vector habitat zones should a l s o  be a 

priority for the Governments.  The use of insecticide to control the vector is 

one option, but this may not be healthy to the environment, thus, environmental 

friendly control measures such as biological control could be used.  However, 

this may be difficult to achieve due to constraints such as, the heterogeneous 

nature of the landscape, inadequate funding, low capacity buildings for health 
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workers and little or no technical know-how.  The continuous exposure of the 

human population to the HAT vector, most especially within the feed zone, 

may ensure continuous propagation of the HAT in the main study area. 

The settlements at the north-eastern and north-western part of the 

main study area (these were identified as the direction of HAT propagation in 

Chapter 6), should be targeted for timely intervention. Also, provision of 

adequate health care facility with HAT diagnostic capabilities/capacity in the 

north-eastern and north-western part of the main study area is essential. 

This research has been able to identify areas at risk of HAT and areas 

that require urgent attention.  Constant active surveillance in these areas can 

ensure the detection of the parasite in infected people early enough to allow 

timely treatment. 

There is no HAT vector in the minor study area at present.  However, 

the on-going afforestation/forestation and irrigation/water reservoir programmes 

in the area may lead to re-invasion of the area by the HAT vector.  Strategies 

that will maintain the present HAT- free status of the minor study area, without 

adverse effect on the environment should be a government priority. 

To effectively reduce or control HAT propagation, integrated prevention 

schemes should be developed and executed.  Adequate funding and 

stakeholder’s capacity building are required to develop and execute sustainable 

prevention programmes.  Health policy must also be amended to support 

multidisciplinary approaches to disease prevention. 

 

7.6 Conclusions 

The aims of this research were to examine the potential habitats of the HAT 

vector, to identify the processes that give rise to spatial distribution of 

HAT and to map the direction and magnitude of HAT in the study area using 

geospatial techniques.  To achieve the aims, specific objectives (all of which 

were met in this study) were set (section 1.8).  Gaps inhibiting effective 

management of HAT were identified in previous studies to inform the direction 

of the study, geospatial decision support concepts and tools were examined 

toward the development of the HAT vector classification scheme.  The 

significance of HAT in the study area was investigated, while the developed 

classification scheme which involved inputs (chosen of criteria and weight 
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assignment) from experts was used to prioritise vulnerable and at risk of HAT 

areas.  Furthermore, the factors influencing HAT propagation and land cover 

suitability for HAT in the study areas were investigated. 

Accurate mapping of the spatial distribution of HAT vector habitat is a 

vital step towards effective and efficient deployment of management/control 

strategies.  As with other studies, this research highlights the significance of 

geospatial techniques in attaining a better perceptive of the spatial 

characteristics of HAT, and the basic settings for effective management of the 

disease, particularly in the main study area and in sub-Sahara Africa.  Unlike 

previous studies, however, the approach used in this study has helped to 

distinguish (though containing fuzzy boundaries) the HAT vector habitat into 

three zones.  Delineating the vector habitat into zones helps to precisely 

identify the direction and magnitude of HAT, the factors influencing HAT 

propagation, and the priority areas in the main study area, as well as 

identifying the areas with least chance of HAT propagation.  This suggests that 

geospatial techniques may be valuable where epidemiological data/information 

are limited, to allow precise analyses to be carried out regarding the spatial 

propagation of a disease. The technique used in this research can be used for 

contingency planning in partnership with policy makers, to decide ideal 

management/control schemes in the case of unforeseen disease plagues.  The 

approach can also be used in other parts of Nigeria with similar landscape 

characteristics, to identify potential active and non-active HAT foci.  

  The major findings in this research are summarised as follows: 

 HAT is highly clustered in the main study area. 

 The propagation of HAT in the main study area (Ethiope 

East/Ukwuani LGAs), and the other two local government areas (Oshimili 

North/South and Patani), probably resulted from the suitability of water 

bodies, shrub and less dense forest for the HAT vector and probably because 

of the continued exposure of human population to these land cover classes. 

 Overlapping of the HAT vector habitat zones (‘breed’, ‘feed’ and 

‘rest’) within the built-up areas, may probably have contributed to HAT 

propagation in the main study area. 

 The direction and magnitude of HAT in the main study area were 

multidirectional (north - east and west - north), and this may have been 
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influenced by landscape characteristics. 

 There may be other reasons aside from environ-climatic factors, influencing 

HAT propagation in the HAT mean centre of the main study area. 

 The main study area can still be considered active HAT foci. 

 The minor study area is free of the HAT vector for now, thus can be 

regarded as non-active foci. 

 

 

7.7 Future Research Recommendations 

The integration of socio-economic/cultural datasets in the HAT vector habitat 

classification scheme would improve future research by providing a more all-

inclusive HAT vector habitat delineation, which can be used to strengthen 

the surveillance and control strategies by the Federal Ministry of 

Health/NITR. 

Due to the overlapping of the HAT vector habitat zones within 

human settlements, future studies focusing on the development of effective 

environmental friendly measures that will reduce the vulnerability of human 

population to HAT, as well as ensure sustainable environment, is essential. 

The existing surveillance system, rural health care institutions and 

facilities cannot adequately inform the extent of t h e  disease. The present 

research method due to its flexibility (see section 7.3) could be use to easily 

transform value added RS data (for example, already classified land cover 

data/information of any or a given landscape) into vector habitat (HAT or any 

other disease); thus, speed-up decision making most especially in the case of 

emergencies.  This researcher, therefore, finally recommends the application of 

the newly developed classification scheme on a nationwide scale, to ascertain the 

magnitude of not only HAT, but other vector borne diseases.  
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Appendix A: Spatial and Non-spatial Data used in this 

research  

 

A-1:  Thematic data 
 

 
A-1 (a): Administrative map of Delta State Nigeria (scanned copy) 

Source:  Delta State Survey Department 

            
A- 1(b): Jigawa State, administrative boundaries        A-1(c): Delta State, administrative. 

boundaries.   Source: Maplibrary.org      Source: Maplibrary.org 

                                  

 

 

 

 

 

 

 

 



 

 

229  

A-2: Remote sensing images composite bands (Source: LP DAAC 

USGSEROS) 

 

                       

 A-2(a): Study area 1987 image                          A-2(b): Study area 2002 image      

                         

                    

A-2(c): Study area 2011 image                       A-2(d): Control area 1972 image  

 

 

                       
   A-2(e): Control area 1986 image                  A-2(f): Control area 2003 image  
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      A-2(g): Control area 2012 image                  A-2(h): Spot 5 image used for  

                                                                                classification accuracy.    

                                                                                Source: Google maps  

                                   

 

                         

    A-2(i): Study area DEM image                      A-2(j):Control area DEM image 

 

 

 

A-3:  Remote image metadata, calibration constants data and  

Tasseled cap coefficients 
 
  A- 3(a):    2002 Landsat 7 ETM+ metadata 

 
    GROUP = L1_METADATA_FILE 

    GROUP = METADATA_FILE_INFO 

    ORIGIN = "Image courtesy of the U.S. Geological Survey" 

    REQUEST_ID = "0101011013707_00001" 

    PRODUCT_CREATION_TIME = 2010-11-04T03:53:22Z 

    STATION_ID = "EDC" 

    LANDSAT7_XBAND = "2" 

    GROUND_STATION = "EDC" 

    LPS_PROCESSOR_NUMBER = 1 

    DATEHOUR_CONTACT_PERIOD = "0236415" 

    SUBINTERVAL_NUMBER = "01" 

  END_GROUP = METADATA_FILE_INFO 

  GROUP = PRODUCT_METADATA 

    PRODUCT_TYPE = "L1T" 

    ELEVATION_SOURCE = "GLS2000" 
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    PROCESSING_SOFTWARE = "LPGS_11.2.1" 

    EPHEMERIS_TYPE = "DEFINITIVE" 

    SPACECRAFT_ID = "Landsat7" 

    SENSOR_ID = "ETM+" 

    SENSOR_MODE = "SAM" 

    ACQUISITION_DATE = 2002-12-30 

    SCENE_CENTER_SCAN_TIME = 09:39:19.3392220Z 

    WRS_PATH = 189 

    STARTING_ROW = 56 

    ENDING_ROW = 56 

    BAND_COMBINATION = "123456678" 

    PRODUCT_UL_CORNER_LAT = 6.7315488 

    PRODUCT_UL_CORNER_LON = 5.0948242 

    PRODUCT_UR_CORNER_LAT = 6.7441995 

    PRODUCT_UR_CORNER_LON = 7.2963289 

    PRODUCT_LL_CORNER_LAT = 4.8172790 

    PRODUCT_LL_CORNER_LON = 5.1079307 

    PRODUCT_LR_CORNER_LAT = 4.8263126 

    PRODUCT_LR_CORNER_LON = 7.3020610 

    PRODUCT_UL_CORNER_MAPX = 68100.000 

    PRODUCT_UL_CORNER_MAPY = 745800.000 

    PRODUCT_UR_CORNER_MAPX = 311700.000 

    PRODUCT_UR_CORNER_MAPY = 745800.000 

    PRODUCT_LL_CORNER_MAPX = 68100.000 

    PRODUCT_LL_CORNER_MAPY = 533700.000 

    PRODUCT_LR_CORNER_MAPX = 311700.000 

    PRODUCT_LR_CORNER_MAPY = 533700.000 

    PRODUCT_SAMPLES_PAN = 16241 

    PRODUCT_LINES_PAN = 14141 

    PRODUCT_SAMPLES_REF = 8121 

    PRODUCT_LINES_REF = 7071 

    PRODUCT_SAMPLES_THM = 8121 

    PRODUCT_LINES_THM = 7071 

    BAND1_FILE_NAME = "L71189056_05620021230_B10.TIF" 

    BAND2_FILE_NAME = "L71189056_05620021230_B20.TIF" 

    BAND3_FILE_NAME = "L71189056_05620021230_B30.TIF" 

    BAND4_FILE_NAME = "L71189056_05620021230_B40.TIF" 

    BAND5_FILE_NAME = "L71189056_05620021230_B50.TIF" 

    BAND61_FILE_NAME = "L71189056_05620021230_B61.TIF" 

    BAND62_FILE_NAME = "L72189056_05620021230_B62.TIF" 

    BAND7_FILE_NAME = "L72189056_05620021230_B70.TIF" 

    BAND8_FILE_NAME = "L72189056_05620021230_B80.TIF" 

    GCP_FILE_NAME = "L71189056_05620021230_GCP.txt" 

    METADATA_L1_FILE_NAME = "L71189056_05620021230_MTL.txt" 

    CPF_FILE_NAME = "L7CPF20021001_20021231_07" 

  END_GROUP = PRODUCT_METADATA 

  GROUP = MIN_MAX_RADIANCE 

    LMAX_BAND1 = 191.600 

    LMIN_BAND1 = -6.200 

    LMAX_BAND2 = 196.500 

    LMIN_BAND2 = -6.400 

    LMAX_BAND3 = 152.900 

    LMIN_BAND3 = -5.000 

    LMAX_BAND4 = 241.100 

    LMIN_BAND4 = -5.100 

    LMAX_BAND5 = 31.060 

    LMIN_BAND5 = -1.000 

    LMAX_BAND61 = 17.040 

    LMIN_BAND61 = 0.000 

    LMAX_BAND62 = 12.650 

    LMIN_BAND62 = 3.200 

    LMAX_BAND7 = 10.800 
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    LMIN_BAND7 = -0.350 

    LMAX_BAND8 = 243.100 

    LMIN_BAND8 = -4.700 

  END_GROUP = MIN_MAX_RADIANCE 

  GROUP = MIN_MAX_PIXEL_VALUE 

    QCALMAX_BAND1 = 255.0 

    QCALMIN_BAND1 = 1.0 

    QCALMAX_BAND2 = 255.0 

    QCALMIN_BAND2 = 1.0 

    QCALMAX_BAND3 = 255.0 

    QCALMIN_BAND3 = 1.0 

    QCALMAX_BAND4 = 255.0 

    QCALMIN_BAND4 = 1.0 

    QCALMAX_BAND5 = 255.0 

    QCALMIN_BAND5 = 1.0 

    QCALMAX_BAND61 = 255.0 

    QCALMIN_BAND61 = 1.0 

    QCALMAX_BAND62 = 255.0 

    QCALMIN_BAND62 = 1.0 

    QCALMAX_BAND7 = 255.0 

    QCALMIN_BAND7 = 1.0 

    QCALMAX_BAND8 = 255.0 

    QCALMIN_BAND8 = 1.0 

  END_GROUP = MIN_MAX_PIXEL_VALUE 

  GROUP = PRODUCT_PARAMETERS 

    CORRECTION_METHOD_GAIN_BAND1 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND2 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND3 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND4 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND5 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND61 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND62 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND7 = "CPF" 

    CORRECTION_METHOD_GAIN_BAND8 = "CPF" 

    CORRECTION_METHOD_BIAS = "IC" 

    BAND1_GAIN = "H" 

    BAND2_GAIN = "H" 

    BAND3_GAIN = "H" 

    BAND4_GAIN = "L" 

    BAND5_GAIN = "H" 

    BAND6_GAIN1 = "L" 

    BAND6_GAIN2 = "H" 

    BAND7_GAIN = "H" 

    BAND8_GAIN = "L" 

    BAND1_GAIN_CHANGE = "0" 

    BAND2_GAIN_CHANGE = "0" 

    BAND3_GAIN_CHANGE = "0" 

    BAND4_GAIN_CHANGE = "0" 

    BAND5_GAIN_CHANGE = "0" 

    BAND6_GAIN_CHANGE1 = "0" 

    BAND6_GAIN_CHANGE2 = "0" 

    BAND7_GAIN_CHANGE = "0" 

    BAND8_GAIN_CHANGE = "0" 

    BAND1_SL_GAIN_CHANGE = 0 

    BAND2_SL_GAIN_CHANGE = 0 

    BAND3_SL_GAIN_CHANGE = 0 

    BAND4_SL_GAIN_CHANGE = 0 

    BAND5_SL_GAIN_CHANGE = 0 

    BAND6_SL_GAIN_CHANGE1 = 0 

    BAND6_SL_GAIN_CHANGE2 = 0 

    BAND7_SL_GAIN_CHANGE = 0 

    BAND8_SL_GAIN_CHANGE = 0 
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    SUN_AZIMUTH = 136.0611476 

    SUN_ELEVATION = 49.0530921 

    OUTPUT_FORMAT = "GEOTIFF" 

  END_GROUP = PRODUCT_PARAMETERS 

  GROUP = CORRECTIONS_APPLIED 

    STRIPING_BAND1 = "NONE" 

    STRIPING_BAND2 = "NONE" 

    STRIPING_BAND3 = "NONE" 

    STRIPING_BAND4 = "NONE" 

    STRIPING_BAND5 = "NONE" 

    STRIPING_BAND61 = "NONE" 

    STRIPING_BAND62 = "NONE" 

    STRIPING_BAND7 = "NONE" 

    STRIPING_BAND8 = "NONE" 

    BANDING = "N" 

    COHERENT_NOISE = "Y" 

    MEMORY_EFFECT = "N" 

    SCAN_CORRELATED_SHIFT = "N" 

    INOPERABLE_DETECTORS = "N" 

    DROPPED_LINES = "N" 

  END_GROUP = CORRECTIONS_APPLIED 

  GROUP = PROJECTION_PARAMETERS 

    REFERENCE_DATUM = "WGS84" 

    REFERENCE_ELLIPSOID = "WGS84" 

    GRID_CELL_SIZE_PAN = 15.000 

    GRID_CELL_SIZE_THM = 30.000 

    GRID_CELL_SIZE_REF = 30.000 

    ORIENTATION = "NUP" 

    RESAMPLING_OPTION = "CC" 

    MAP_PROJECTION = "UTM" 

  END_GROUP = PROJECTION_PARAMETERS 

  GROUP = UTM_PARAMETERS 

    ZONE_NUMBER = 32 

  END_GROUP = UTM_PARAMETERS 

END_GROUP = L1_METADATA_FILE END 

 
 

  A-3 (b):   Landsat ETM+ and TM thermal band calibration constants 

   

 

 

 

                  

     Source:  Landsat 7 science data users hand book 

 

 

 

 

 

 

 

 

 

 Constant1-K 

watts/(metersquared *ster*µm) 

Constant 2 -K2 

Kelvin 

Landsat7 666.09 1282.71 

Landsat5 607.76 1260.56 
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Tasseled cap coefficients for Landsat 4 and 5 thematic mapper (TM) 

(User's Guide TASSELCP): 

    A-3 (c):  Brightness Tasseled cap coefficients 

 
 

    

 

     Brightness coefficients for: 

     Landsat 5 TM: (0.2909, 0.2493, 0.4806, 0.5568, 0.4438, 0.1706) 

 

     Landsat 4 TM: (0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863)  

 

     Tasseled cap coefficients for Landsat 7ETM+ (Huang et al., 2002): 

     Brightness coefficients:  (0.3561, 0.3972, 0.3904, 0.6966, 0.2286, 0.1596) 

 

 

 

 

             A-3 (d)   Landsat imagery radiometric characteristics 

Satellite Spectral 

Resolution (µm) 

Band Spatial 

Resolution 

Landsat 1-3      MSS 

Band 4: 0.50 - 0.60 
Band 5: 0.60 – 0.70 
Band 6: 0.70 – 0.80  
Band 7: 0.80 – 1.10 

 

Green 
Red 
Near IR 
Near IR 

(meters) 
79 
79 
79 
79 

Landsat 4-5        MSS 

Band 4: 0.50 - 0.60 
Band 5: 0.60 – 0.70 
Band 6: 0.70 – 0.80  
Band 7: 0.80 – 1.10 

 

Green 
Red 
Near IR 
Near IR 

 

82 
82 
82 
82 

       TM 

Band 1: 0.45 – 0.52 
Band 2: 0.52 – 0.60 
Band 3: 0.63 – 0.69 
Band 4: 0.76 – 0.90 
Band 5: 1.55 – 1.75 
Band 6: 10.4 – 12.5 
Band 7: 2.08 – 2.35 

 

Blue 
Green 
Red 
Near IR 
Mid IR 
Thermal 
Mid IR 

 

30 
30 
30 
30 
30 
120 
30 

Landsat 7 ETM+ 

Band1:0.450–0.515  
Band2:0.525–0.605  
Band 3: 0.630 – 0.69 
Band4:0.760–0.900       
Band 5: 1.550 -1.750 
Band6*:10.40–12.5    

Band 7: 2.080 – 2.35  

 

Blue 
Green  
Red 
Near IR 
Mid IR 
Thermal 
Mid IR 

 

30 
30 
30 
30 
30 
60 
30 

Band 8: 0.52 – 0.92 Pancromatic 15 

Source: University of Maryland, 2004 
* Band 6 on Landsat 7 is divided into two bands, high and low gain. 
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A-4: Astronomical data, HAT record of cases and meteorological 

data  
 

  A-4(a): Earth-sun distance (d) in astronomical units for day of the year (DOY) used  

  in this research 

Image Date DOY D 

17/01/2012 017 0.98378 

21/01/2011 021 0.98410 

9/02/2003 040 0.98662 

21/12/1987 355 0.98376 

17/11/198 321 1.01205 

30/12/2002 & 29/12/1972 364 0.98335 

  Source:  ‘DOY’ from Equation 1.9 and ‘d’ from Landsat 7 science data users  

  hand book. 

 

 

      A-4(b i): Landsat ETM+ exoatmospheric solar spectral irradiances 

Band watts/(meter squared * μm) 

1 1969.000 

2 1840.000 

3 1551.000 

4 1044.000 

5 225.700 

7 82.07 

8 1368.000 

       Source:  Landsat 7 science data users hand book 

 

 
       A-4(b ii): Landsat MSS 1 exoatmospheric solar spectral irradiances 

Band watts/(meter squared * μm) 

1 1823 

2 1559 

3 1276 

4 880.1 

      Source: Chander et al., 2009.  
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       A-4(b iii) Landsat TM 4 and Landsat TM 5 exoatmospheric solar  

       spectral irradiances 

 watts/(meter squared * μm) watts/(meter squared * μm) 

Band Landsat 4 TM Landsat 5 TM 

1 1957 1957 

2 1825 1826 

3 1557 1554 

4 1033 1036 

5 214.9 215.0 

7 80.72 80.67 

      Source:  Chander and Markham, 2003. 

 
 
 
  A-4 (c): HAT record of cases (Source: Eku Baptist hospital, Delta State, Nigeria) 
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A-4 (d): Monthly Mean Relative Humidity,% (Warri Station) (source: NIMET, Nigeria) 

 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1991 90 81 81 80 81 85 91 90 89 84 83 83 

1992 81 84 83 83 81 84 87 90 87 85 84 83 

1993 68 83 83 79 87 84 91 90 85 85 75 83 

1994 75 84 79 82 87 84 91 88 85 82 83 79 

1995 75 83 79 81 84 89 - 89 88 87 79 65 

1996 79 83 83 81 84 85 89 90 88 85 83 84 

1997 87 85 82 83 83 85 88 88 87 85 83 85 

1998 82 76 82 81 82 86 87 - 86 83 84 80 

1999 71 81 79 77 79 85 89 84 87 83 82 81 

2000 81 84 81 81 80 84 88 85 89 87 84 80 

2001 83 72 79 81 83 85 88 92 89 87 85 80 

2002 86 78 80 82 83 86 86 89 86 84 81 86 

2003 75 77 83 84 82 85 90 89 88 87 81 77 

2004 86 83 82 79 81 86 89 88 88 83 83 81 

2005 83 80 81 82 85 84 88 86 84 54 82 76 

2006 74 84 83 82 84 86 90 85 85 84 83 83 

2007 87 85 83 79 83 81 89 89 89 86 - 81 

 

 

 

            A-5: Land cover classes and material used for tsetse fly harvest 

 

 

          
A-5(a): Cultivated are-a                          A-5(b): Water body/mangrove 
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A-5(c): Cultivated area/shrub           A-5(d): Shrub 

 

 

       
A-5(e): Built-up area/shrub         A-5(f):Built-up area/less dense forest/shrub                                                        

            and Eku hospital (HAT sentinel center) 

 

 

 

 

 

 

 
A-5(g): Market proximity to less dense forest/shrub and dense forest at the background 
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 A-5(h): Savannah grass (control area)    A-5(i): Cultivated area/sand (control area) 

 

 

 

                 
A-5(j): Water body/wetland/flood plain (control area) 

 
 
 

 
A-5(k):  Traps used for tsetse fly harvest in control area 
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A-6:  Letter acknowledging this research by the Federal  

Ministry of Health, Nigeria   
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Appendix B:  Questionnaire survey for the derivation of relative 

importance (weights) using analytical hierarchy process (AHP) of 

criteria used for the classification of human African 

trypanosomiasis vector habitat 
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Questionnaire survey for the derivation of relative importance (weights) 

using analytical hierarchy process (AHP) of criteria used for the 

classification of human African trypanosomiasis vector habitat 

 
 
Dear Sir/Madam,  

 

We are presently undertaking a research project into examination and 

management of human African trypanosomiasis (HAT) propagation using 

geospatial techniques in a part of Nigeria. 

 As part of this research, we are carrying out a multicriteria analysis in 

order to elicit stakeholders’ judgment in providing relative significance of 

identified criteria with respect to HAT vector (glossina palpalis gambiense) 

habitat. 

The physical landscape is very important to HAT propagation, thus, it 

is very important that the landscape within HAT endemic areas is well 

examined.  To achieve this goal, we intend to use landscape datasets to develop a 

methodology towards effective/efficient management of the disease.  

 In the following pages we would like to obtain your judgment as an 

expert through an AHP survey questionnaire, in which you are requested to 

compare and provide relative significance of the identified criteria with respect to 

HAT vector breeding, feeding and resting habitats.  The information you give 

will be of immense value for this research,  

 

Thank you for participating in this questionnaire survey. 

 

 

Akiode, Olukemi Adejoke 

 

PhD Candidate 

Built & Natural Environment  

School of Contemporary Sciences 

University of Abertay Dundee  

Room ACE, Level 5  

Kydd Building  

Bell Street  

Dundee DD1 1HG  

Email 0805401@live.abertay.ac.uk  

Phone +44 (0) 755 2597 639  
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Questionnaire survey for the derivation of relative importance (weights) 

using analytical hierarchy process (AHP) of criteria used for the 

classification of human African trypanosomiasis vector habitat 

 

 

Investigator: Akiode, Olukemi Adejoke  - PhD candidate 

Chief Supervisor: Dr. Oduyemi, K.O.K.  

 

 

INFORMED CONSENT FORM: 

 

 

Dear participant,   

 

Please read the information provided in sections A and B carefully. For further 

clarification of any sections unclear to you, please ask the investigator (Akiode, 

Olukemi Adejoke), using the number and/or address given at the end of this 

form. 

 If you agree to take part in this research, please complete the survey and 

return it directly to the investigator via email, post or direct handling over to the 

investigator or her representative. Please keep a copy of this consent form for 

your records as it contains vital contact information you may wish to have in the 

future. 

 By carrying out and returning the attached survey, you are consenting to 

take part in this research. 

 

 

Section A: Information for Participants 

 

Participants 

Experts are identified as main participants of this study.  Experts include those 

identified as having broad knowledge of, or ability in vector borne disease 

management/research, landscape classification, natural resource planning, and 

basic knowledge and or AHP questionnaire survey competency.   Experts are 

expected to include epidemiologist, university academics, public health 

professional, vector borne disease researchers, etc.  

 

Right of participants to refuse 

Your participation is voluntary and you are free to withdraw from the survey 

after agreed to take part. You are not compelled to answer any question you do 

not want to provide information about. 

 

Survey completion time  

The survey will take approximately 20 - 25 minutes to complete. 

 

Survey method 

The survey will be carried out by: 

 Delivering the questionnaires in person to the experts, give details about 

the study, and then collect the answered questionnaires at a set date. 

 Email questionnaires directly to experts and asking the respondents to 

email the answered survey back. 
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For either method, each concerned expert will be sent a survey pack, including a 

cover letter, an informed consent form, a project description and an AHP 

questionnaire 

 

Privacy 

Participant personal data, if provided, will be removed from the questionnaire 

and not known to others.  Exact answer provided by individual expert will not be 

disclosed.  The answers provided by experts will only be used for research 

purposes and for writing a report. However, information will be reported with 

caution to reduce the research users/readers’ ability to deduce each experts 

judgment. 

 

Application of information: The information and outcomes obtain will be used 

for completing the requirements for the degree of PhD thesis.  Also, they may be 

used in research publications, seminars and conference presentations. 

 

Risk 

The known possible risk to the participants could be time loss while completing 

the questionnaire. The questionnaire is likely to take approximately 20-25 

minutes to complete. 

  

Accessibility to research results 

A summary of the results is likely to be available by September 2014.  Experts 

wanting a copy should forward their request directly to Akiode, Olukemi 

Adejoke at University of Abertay, through email to: 0805401@live.abertay.ac.uk 

or olukemiadejoke@yahoo.co.uk,   through mobile phone: + 44 (0)7552597639 

 

Ethical statement 

This research was scrutinised and approved by the University of Abertay 

research degree ethical committee.  Any concerns/complaints concerning the 

ethical conduct of this research by the participants (experts) should please, be 

directed to the:  

The Secretary,  

Research Degree Committee,  

University of Abertay, DD1 1HG, Bell Street, 

Dundee Scotland, United Kingdom. 

  

Contact numbers 

A. For answers to questions concerning the research or for concern/complaint 

about the research: 

 

Akiode, Olukemi Adejoke 

PhD Candidate 

School of Contemporary Sciences 

University of Abertay Dundee  

Dundee DD1 1HG  

Email 0805401@live.abertay.ac.uk, olukemiadejoke@yahoo.co.uk  

Mobile Phone +44 (0) 755 2597 639  
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B. For questions, problems, concerns/complaints about the research, or for 

information about your rights as a research participant: 

 

The Secretary,  

Research Degree Committee,  

University of Abertay, DD1 1HG, Bell Street, 

Dundee Scotland, United Kingdom. 

. 

Survey participant statement 

I have read this consent form.  I have been able to ask questions and my 

questions were answered satisfactorily. 

 I understand that I may decline to participate in this research and that if I 

decline to participate; my access to the research outcome will not be denied.  I 

consent to participate in this study.  I am also aware that if, for any reason, I wish 

to discontinue participating, I will be free to do so, and this will not affect my 

future services.  A copy of this consent form has been given to me for my 

records. 
 

Date:   

 
 
Questionnaire survey for the derivation of relative importance 

(weights) using analytical hierarchy process (AHP) of criteria 

used for the classification of human African trypanosomiasis 

vector habitat 

 

Section B: AHP Multicriteria Analysis to compare and provide relative 

significance of the identified criteria with respect to HAT vector breeding, 

feeding and resting habitats. 

 

   

Experts Profile (optional): 

 

Name (Mr., Mrs., Ms, Dr, Prof)  

Name of organization  

Are you familiar with AHP questionnaire 

survey or have you carried out AHP 

multicriteria analysis before?    

 

Do you think spatial distribution of HAT in endemic foci could be deduced from 

landcover information?  Please, indicate your answer on the scale below by marking one 

of the followings: 

1- no 2- a bit 3- fairly 4- very 5- extremely 
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  Table A:                               Scale for comparison 
Strength scale Description 

1 Evenly significant 

2 Evenly to moderately significant 

3 Moderately significant 

4 Moderately to strongly significant 

5 Strongly  significant 

6 Strongly to very strongly significant 

7 Very strongly significant 

8 Very strongly to extremely significant 

9 Extremely significant 

 

 Using the scale in Table A, make a pair-wise comparison of the criteria in    

Tables B – G according to their level of importance with respect to glossina 

palpalis gambiense habitat (i.e. breeding, feeding and resting sites).   
 
 

  Table B:    

 Relative importance with respect to glossina palpalis gambiense breeding 

sites 

Criteria Water 

Body 

Mangrove Dense 

Forest 

Less Dense 

Forest 

Culti-vated 

Area 

Shrub Built-

up 

 Area 

Water 

Body 

       

Mangrove         

Dense 

Forest 

       

Less Dense 

Forest 

       

Cultivated 

Area 

       

Shrub        

Built-up 

Area 
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  Table C:    

 Relative importance with respect to glossina palpalis gambiense feeding sites 

Criteria Water 

Body 

Mangrove Dense 

Forest 

Less Dense 

Forest 

Culti-vated 

Area 

Shrub Built-

up 

 Area 

Water 

Body 

       

Mangrove         

Dense 

Forest 

       

Less Dense 

Forest 

       

Cultivated 

Area 

       

Shrub        

Built-up 

Area 

       

 

 

   

   Table D:    

 Relative importance with respect to Glossina palpalis gambiense resting sites 

Criteria Water 

Body 

Mangrove Dense 

Forest 

Less Dense 

Forest 

Culti-vated 

Area 

Shrub Built-

up 

 Area 

Water 

Body 

       

Mangrove         

Dense 

Forest 

       

Less Dense 

Forest 

       

Cultivated 

Area 

       

Shrub        

Built-up 

Area 
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   Table E:    

Criteria Relative importance with respect to Glossina palpalis gambiense 

breeding sites 

 NDVI NDDI Relative 

Humidity 

Land 

Surface 

Temperature 

Elevation 

NDVI      

NDDI      

Relative 

Humidity 

     

Land 

Surface 

Temperature 

     

Elevation      

 

 

 

 

 

  Table F:    

Criteria Relative importance with respect to Glossina palpalis gambiense 

feeding sites 

 NDVI NDDI Relative 

Humidity 

Land 

Surface 

Temperature 

Elevation 

NDVI      

NDDI      

Relative 

Humidity 

     

Land 

Surface 

Temperature 

     

Elevation      
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   Table G:    

Criteria Relative importance with respect to Glossina palpalis gambiense 

resting sites 

 NDVI NDDI Relative 

Humidity 

Land 

Surface 

Temperature 

Elevation 

NDVI      

NDDI      

Relative 

Humidity 

     

Land 

Surface 

Temperature 

     

Elevation      

 
    Please note:   

    NDVI = Normalized Difference Vegetation Index 

    NDDI = Normalized Difference Drought Index 

 
 
     Thank you for taking time to complete this questionnaire survey. 

     Your contribution is highly appreciated. 
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Appendix C: List of experts involved in questionnaire 

survey and examples of questionnaire e-mails from 

experts 

 

C-1:  List of experts involved in questionnaire survey  

 

Participants S/NO Organisation Expertise Type of 

Respon

se Vector Borne 

Disease 

Regulator/ 

Researcher 

1 

 

 

2 

 

 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

7 

Nigerian Institute for Trypanosomiasis 

Research 

 

Nigerian Institute for Trypanosomiasis 

Research 

 

 

 

Nigerian Institute for Trypanosomiasis 

Research 

 

Nigerian Institute for Trypanosomiasis 

Research 

 

Epidemiology Control Unit, Nigeria 

 

 

Epidemiology Control Unit, Nigeria 

 

 

National Cereal and Disease Institute, 

Nigeria 

 

 

Epidemiology, 

MCDA 

 

Entomology/ 

Parasitology, 

Zoology, MCDA 

 

 

Biochemistry, 

MCDA 

 

Epidemiology, 

MCDA 

 

Epidemiology,  

MCDA 

 

Epidemiology, 

MCDA, 

 

Entomology, 

MCDA 

By 

interview 

 

By 

interview 

 

 

 

By 

interview 

 

By 

interview 

 

By 

interview 

 

By 

interview 

 

By 

interview 
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Vector Borne 

Disease 

Coordinator 

8 

 

 

 

 

 

9 

 

 

10 

 

 

 

11 

 

 

 

12 

 

 

 

13 

 

 

14 

 

 

 

15 

 

 

16 

 

 

 

 

Federal Ministry of Health, Nigeria  

 

 

 

 

 

Federal Ministry of Health, Nigeria 

 

 

Federal Ministry of Health, Nigeria 

 

 

 

Department of Primary Health care and 

Disease Control, Delta State Ministry of 

Health, Nigeria  

 

Health Services Unit, State House,  

Nigeria 

 

 

Niger Delta Development Council 

(NDDC), Health unit, Nigeria 

 

NDDC, Health unit, Nigeria 

 

 

 

Primary Health Programme Unit, NNDC, 

Nigeria 

  

NNDC, Health unit, Nigeria 

Vector Borne 

Disease 

Surveillance/ 

Management, 

MCDA 

 

Epidemiology, 

MCDA 

 

Zoology, 

Epidemiology, 

MCDA 

 

Disease 

Surveillance, 

MCDA 

 

Disease 

Management, 

MCDA  

 

Public Health, 

MCDA 

 

Public Health, 

Parasitology 

MCDA 

 

Public Health,  

MCDA 

 

Disease 

Surveillance, 

MCDA 

By 

interview 

 

 

 

 

By 

interview 

 

By 

interview 

 

 

By 

interview 

 

 

By 

interview 

 

 

By 

interview 

 

By 

interview 

 

 

By 

interview 

 

By 

interview 

Disease 

Evaluator 

17 Monitoring and Evaluation of Diseases 

Control, Nigeria 

Public Health, 

Vector Control, 

MCDA 

 

By 

interview 
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Epidemiologist 18 

 

 

 

 

19 

 

 

 

20 

 

 

 

21 

Tsetse Ecology & Control, CIRDES, 

Burkina Faso 

 

 

 

Equipe Inter Pays OMS pour l’Afrique 

Centrale, Gabon 

 

 

World Health Organization 

 

 

 

College of Health Sciences, Nnamdi 

Azikiwe University, Nigeria 

Epidemiology, 

Entomology/ 

vector control, 

MCDA 

 

Epidemiology, 

Spatial Data 

Analysis,  MCDA 

 

Epidemiology, 

Geo-spatial Data 

Analysis,  MCDA 

 

Epidemiology, 

Medical 

Research, 

Immunology, 

MCDA 

By email 

 

 

 

 

By email 

 

 

 

By email 

 

 

 

By email 

Lecturer 

(Geographer) 

 

 

 

 

 

22 

 

 

 

 

 

23 

 

 

 

 

24 

 

 

 

25 

Department of Geography,  University of 

Ilorin, Nigeria 

 

 

 

 

Faculty of Natural and Applied Sciences, 

Umaru Musa Yaradua University, 

Katsina, Nigeria 

 

 

School of Physical Sciences, Federal 

University of Technology, Mina, Nigeria 

 

 

School of Physical Sciences, Federal 

University of Technology, Mina, Nigeria 

 

 

Population 

Geography, 

MCDA,  Natural 

Resource 

Analysis 

 

RS/GIS Analysis, 

Geography/ 

Planning,  

MCDA 

 

Climatology, 

Natural Resource 

Analysis,  MCDA 

 

Geomorphology, 

Natural Resource 

Allocation/ 

Planning,  

MCDA 

By 

interview 

 

 

 

 

By 

interview 

 

 

 

By 

interview 

 

 

By 

interview 
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Lecturer 

(Geographer) 

26 

 

 

 

 

 

27 

 

 

 

 

28 

 

 

 

29 

 

 

30 

 

 

 

 

 

 

31 

 

 

 

 

 

32 

 

 

 

 

33 

 

 

 

34 

Department of Geography, University of 

Abuja, Nigeria 

 

 

 

 

Department of Geography, University of 

Abuja, Nigeria 

 

 

 

Department of Geography, University of 

Abuja, Nigeria 

 

 

Department of Geography, University of 

Abuja, Nigeria 

 

Department of Geography, University of 

Abuja, Nigeria 

 

 

 

 

 

Department of Geography, University of 

Abuja, Nigeria 

 

 

 

 

Federal University of Petroleum  

Resources , Delta State, Nigeria 

 

 

 

Department of Geography, Kogi State 

University, Nigeria 

 

 

Department of Geography, Benue State 

University, Nigeria 

Geography 

(Natural 

Resource 

Mapping/Plannin

g),  GIS,  MCDA 

 

Geography (Land 

use/cover 

Mapping),  

MCDA 

 

Geography 

(Climate 

Change), MCDA 

 

Geography, 

Ecology,  MCDA 

 

Geography 

(Natural 

Resource 

Planning), GIS 

Analysis,  

MCDA 

 

RS/GIS 

Analysis, 

Geography 

(Natural 

Resource 

Planning), 

MCDA 

  

RS/GIS Analysis, 

Spatial 

Multicriteria 

Analysis/ 

Decision, 

Vulnerability 

Analysis 

 

Geography 

(Landcover/use 

Mapping/Analysi

s),  MCDA 

 

 

Land cover/use 

Mapping/ 

Analysis,  

MCDA 

By 

interview 

 

 

 

 

By 

interview 

 

 

 

By 

interview 

 

 

By 

interview 

 

By 

interview 

 

 

 

 

 

By 

interview 

 

 

 

 

By 

interview 

 

 

 

By 

interview 

 

 

By 

interview 
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Remote 

Sensing/Medic

al Geographer 

35 Private Organisation GIS/RS Analysis, 

Epidemiology, 

Land cover/use 

Mapping,  

MCDA 

By 

interview 

 

* MCDA = Multi-criteria Decision Analysis 

 

 
C-2: Examples of questionnaire e-mails to and from experts 

 

 From: ....................................................... 

 Sent: 15 November 2013 12:45 

To: AKIODE, OLUKEMI 

Subject: RE: Human African Trypanosomiasis_question_help  

  

Dear Sir,  

Thanks for your mail. You can just send me your questions by email. I'm quite busy by these 

times but I think we could manage...if you are not in rush. 

Best regards 

 

From: 0805401@live.abertay.ac.uk 

To: ........................................ 

Subject: RE: Human African Trypanosomiasis_question_help 

Date: Mon, 18 Nov 2013 13:25:52 +0000 

Dear sir, 

  

Thank you for your response. 

  

Please, see the attached for the questionnaire survey. 

  

Regards, 

  

Olukemi A. Akiode 

 

Olukemi Adejoke Akiode  

BSc PGD MSc  (PhD-ongoing) 

  

Built & Natural Environment  

School of Contemporary Sciences 

University of Abertay Dundee  

Room ACE, Level 5  

Kydd Building  

Bell Street  

Dundee DD1 1HG  

Email 0805401@live.abertay.ac.uk  

Phone +44 (0) 755 2597 639  

 
Regards,  
 

Olukemi Akiode. 

Olukemi Adejoke Akiode  

BSc PGD MSc  (PhD-ongoing) 

 

From: ........................................................................... 
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Sent: 18 November 2013 13:44 

To: AKIODE, OLUKEMI 

Subject: RE: Human African Trypanosomiasis_question_help  

  

OK. Thanks.   

Please tell me the "realistic" deadline you would like to receive your survey. Do you think that 

one weak  is feasible? I'm abroad on duty mission. 

 

Best regards 

.......................... 

 

 

From: 0805401@live.abertay.ac.uk 

To: ............................................................... 

Subject: RE: Human African Trypanosomiasis_question_help 

Date: Tue, 19 Nov 2013 09:50:11 +0000 

Dear Dr ....................... 

 

Yes, one week is okay. 

  

Thanks for your help. 

  

Regards, 

  

Olukemi Akiode 

Olukemi Adejoke Akiode  

BSc PGD MSc  (PhD-ongoing) 

  

Built & Natural Environment  

School of Contemporary Sciences 

University of Abertay Dundee  

Room ACE, Level 5  

Kydd Building  

Bell Street  

Dundee DD1 1HG  

Email 0805401@live.abertay.ac.uk  

Phone +44 (0) 755 2597 639  

 

 From: ..................................................................... 

Sent: 30 November 2013 08:44 

To: AKIODE, OLUKEMI 

Subject: RE: Human African Trypanosomiasis_question_help  

  

Dear Olukemi,  

I'm trying to fill your questionnare but it seems I need some explanations: 

- Should the comparison always be done vs the "Water body" as in the table below? In this case, 

what about those factors whose importance is less than the Water Body's? For example, I suppose 

that Dense forest importance is lower than Water body for Gpg breeding. How to note it, since it 

is not equal? Please explain to me more how to proceed. 

- I would also suggest you to also send your questions to ............................................. if it not 

already done. 

Best regards  

.................................................. 

 

 From: ............................................................. 
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Sent: 02 December 2013 10:37 

To: AKIODE, OLUKEMI 

Subject: Re: Human African Trypanosomiasis_question_help  
  

Dear Akiode 

  

Sorry for the delay. Please see the attached for response. Please feel free to reach me if I can still 

be of any help  

  

Best Wishes  

 .......... 

 

 From: ............................................................ 

Sent: 18 November 2013 11:32 

To: AKIODE, OLUKEMI 

Subject: RE: Human African Trypanosomiasis_question_help  

  

Dear  

Thank you for your message and courage for your doctoral studies. No problem you can send the 

questionnaire via email as an attachment. 

Best wishes. 

  

…………………………………………… 

  

         

  
 From: AKIODE, OLUKEMI 

Sent: 18 November 2013 13:15 

To: ........................................ 

Subject: RE: Human African Trypanosomiasis_question_help  

  

Dear sir, 

  

Thank you for your response. 

  

Please, see the attached for the questionnaire survey. 

  

Regards, 

  

Olukemi A. Akiode 

  
 

 
 From: ............................................................................. 

Sent: 16 December 2013 12:29 

To: AKIODE, OLUKEMI; MERCADO, Raquel 

Subject: RE: Human African Trypanosomiasis_question_help  

  

Dear Ms Olukemi, 

  

You can send the questionnaire via email, but we would like to know the reference of your work. 

Please could you send the protocol of your study. 

  

Best regards 

  

............................  
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 On Dec 3, 2013, at 9:05 AM, "AKIODE, OLUKEMI" <0805401@live.abertay.ac.uk> wrote: 

 

Dear sir, 

  

I will like you to please help me forward the attached questionnaire to the DG, ..................... 

  

He requested that the questionnaire survey be sent officially to ......... through ............ 

   

Also, you can help me send the questionnaire to ................................................................. and any 

relevant stakeholder you know.  It is very difficult to get people from Nigeria; some of the 

stakeholder I sent it to in Nigeria said they were only familiar with the medical aspect 

of trypanosomiasis. 

  

Thank you for your immediate action. 

  

Regards, 

  

Joke 

  

Olukemi Adejoke Akiode  

BSc PGD MSc  (PhD-ongoing) 

  

 

From: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

Sent: 03 December 2013 10:48 

To: AKIODE, OLUKEMI; ................................ 

Subject: Re: Qeustionnaire_HAT survey Help  

  

Your above referred, 

Pls ask ............ or any of your colleagues to draft such letter for my onward communication. 

With best regards. 

 

...................................... 

National Space Research and Development Agency, 

Umar Musa Yar'Adua Road 

Pyakasa Abuja. 

2348037874003 

 

 

 

 From: AKIODE, OLUKEMI 

Sent: 05/12/2013 16:47 

To: .............................................. 

Subject: FW: Qeustionnaire_HAT survey Help 

 

Dear .............  

 

Dr. ............ said I should forward this mail to you. 

  

Please, read his response to my mail and act accordingly. 

  

Regards, 

  

Joke 

Olukemi Adejoke Akiode  

 

 

 

 From: ............................................................... 

Sent: 05 December 2013 16:25 



 

 

258  

To: AKIODE, OLUKEMI 

Subject: RE: Qeustionnaire_HAT survey Help  

  

Dear Mrs Akiode, 

 

Could you please make a draft of the letter and send it to me? Since I am not privy to previous 

correspondence between you and the DG, ........, it would be helpful to get the first draft from you. 

 

Best regards, ma. 

 

...................... 
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Appendix D: Tables and Figures from some analysis 

carried out in this research work  

 

D-1: Tables 

  

 

 D-1a:  Principal component analysis of Delta State study area 2002   

 Landsat7 ETM+ image   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

260  

  D-1b:  Principal component analysis of Jigawa State study area 2003       

  Landsat7 ETM+ image   
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D-1c:  Table showing example of semivariogram sensitivity analysis for 

HAT vector habitat (rest zone) classification in the main study area using 

15% increased nugget and partial sill  
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D-2: Figures 
 

 

 

D-2a: A cross section of training samples collected for the Delta State study 

area supervised classification with number of training samples cells 

collected insert. 
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D-2b: Samples collected for the supervised classification of the Jigawa Study 

area with number of training samples cells and histogram of training 

samples insert 

 

 

 
D-2c:  Histogram of Delta State study area supervised land cover classes 

training samples 
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D2-d:  Example of AHP consistency ratio test for questionnaire survey 

carried out in IDRISI software 
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