A New Proof of Watson's Theorem for the Series ${ }_{3} F_{2}(1)$

Arjun K. Rathie

Manda Institute of Technology
Raisar NH-11, Jaipur Road, Bikaner 334001, India
R. B. Paris

Division of Complex Systems
University of Abertay Dundee, Dundee DD1 1HG, UK
R.Paris@abertay.ac.uk

Abstract

We give a new proof of the classical Watson theorem for the summation of a ${ }_{3} F_{2}$ hypergeometric series of unit argument. The proof relies on the two well-known Gauss summation theorems for the ${ }_{2} F_{1}$ function.

Mathematics Subject Classification: 33C20

Keywords: Watson's theorem, hypergeometric series

1. Introduction

The classical Watson theorem for the summation of a ${ }_{3} F_{2}$ hypergeometric function of unit argument takes the form

$$
{ }_{3} F_{2}\left(\begin{array}{c}
a, b, c \tag{1.1}\\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}, 2 c
\end{array} ; 1\right)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c+\frac{1}{2}-\frac{1}{2} a-\frac{1}{2} b\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c+\frac{1}{2}-\frac{1}{2} a\right) \Gamma\left(c+\frac{1}{2}-\frac{1}{2} b\right)}
$$

provided $\operatorname{Re}(2 c-a-b)>-1$ and the parameters are such that the series on the left is defined. The proof of this result when one of the parameters a or b is a negative integer was given by Watson in [7], and subsequently was established more generally in the non-terminating case by Whipple in [8].

The standard proof of the general case given in [2, p. 149; 6, p. 54] relies on the following transformation due to Thomae

$$
{ }_{3} F_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; 1\right)=\frac{\Gamma(d) \Gamma(e) \Gamma(s)}{\Gamma(a) \Gamma(b+s) \Gamma(c+s)}{ }_{3} F_{2}\left(\begin{array}{c}
d-a, e-a, s \\
b+s, c+s
\end{array} ; 1\right),
$$

where $s=d+e-a-b-c$ is the parametric excess, combined with Dixon's theorem for the evaluation of the sum on the right when $d=\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}$ and $e=2 c$. An alternative and more involved proof [4, p. 363] exploits the quadratic transformations for the Gauss hypergeometric function. A third proof, due to Bhatt in [3], exploits a known relation between the F_{2} and F_{4} Appell functions combined with a comparison of the coefficients in their series expansions.

In this note, we give a simple proof of (1.1) that relies only on the wellknown Gauss summation theorems for the ${ }_{2} F_{1}$ function, namely [1, pp. 556, 557]

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}, \quad \operatorname{Re}(c-a-b)>0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}\left(a, b ; \frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} ; \frac{1}{2}\right)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)} . \tag{1.3}
\end{equation*}
$$

We shall also require the following elementary identities for the Pochhammer symbol, or ascending factorial, $(a)_{n}=\Gamma(a+n) / \Gamma(a)$ given by

$$
\begin{equation*}
(a)_{2 m}=2^{2 m}\left(\frac{1}{2} a\right)_{m}\left(\frac{1}{2} a+\frac{1}{2}\right)_{m}, \quad(a)_{k+2 m}=(a)_{2 m}(a+2 m)_{k} \tag{1.4}
\end{equation*}
$$

for nonnegative integers m and k, together with
Lemma 1 Let k be a nonnegative integer and c be (in general) a complex parameter satisfying $2 c \neq-1,-2, \ldots$. Then

$$
\begin{equation*}
\frac{(c)_{k}}{(2 c)_{k}}=\sum_{m=0}^{\lfloor k / 2\rfloor} \frac{2^{-k-2 m} k!}{\left(c+\frac{1}{2}\right)_{m} m!(k-2 m)!} \tag{1.5}
\end{equation*}
$$

where $\lfloor k / 2\rfloor$ is the integer part of $k / 2$.
The proof of this lemma uses (1.2) to express the ratio of Pochhammer symbols as a terminating Gauss hypergeometric function in the form

$$
\begin{aligned}
\frac{(c)_{k}}{(2 c)_{k}} & =2^{-k}{ }_{2} F_{1}\left(-\frac{1}{2} k, \frac{1}{2}-\frac{1}{2} k ; c+\frac{1}{2} ; 1\right) \\
& =2^{-k} \sum_{m=0}^{\lfloor k / 2\rfloor} \frac{\left(-\frac{1}{2} k\right)_{m}\left(\frac{1}{2}-\frac{1}{2} k\right)_{m}}{\left(c+\frac{1}{2}\right)_{m} m!} .
\end{aligned}
$$

The result (1.5) then follows upon making use of the identity

$$
\left(-\frac{1}{2} k\right)_{m}\left(\frac{1}{2}-\frac{1}{2} k\right)_{m}=\frac{2^{-2 m} k!}{(k-2 m)!}
$$

2. Proof of Watson's theorem (1.1)

We denote the left-hand side of (1.1) by F and express the ${ }_{3} F_{2}$ function as a series to find

$$
\begin{aligned}
F & =\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}(c)_{k}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{k}(2 c)_{k} k!} \\
& =\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{k} k!} \sum_{m=0}^{\lfloor k / 2\rfloor} \frac{2^{-k-2 m} k!}{\left(c+\frac{1}{2}\right)_{m} m!(k-2 m)!}
\end{aligned}
$$

by Lemma 1. Upon reversal of the order of summation, making use of the easily established result [5, p. 57]

$$
\sum_{k=0}^{\infty} \sum_{m=0}^{\lfloor k / 2\rfloor} A(m, k)=\sum_{m=0}^{\infty} \sum_{k=2 m}^{\infty} A(m, k)=\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} A(m, k+2 m),
$$

then

$$
\begin{align*}
F & =\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{(a)_{k+2 m}(b)_{k+2 m} 2^{-k-4 m}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{k+2 m}\left(c+\frac{1}{2}\right)_{m} m!k!} \\
& =\sum_{m=0}^{\infty} \frac{(a)_{2 m}(b)_{2 m} 2^{-4 m}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{2 m}\left(c+\frac{1}{2}\right)_{m} m!} \sum_{k=0}^{\infty} \frac{(a+2 m)_{k}(b+2 m)_{k} 2^{-k}}{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}+2 m\right)_{k} k!} \tag{2.1}
\end{align*}
$$

by the second equation in (1.4).
The inner sum in (2.1) can be expressed as a ${ }_{2} F_{1}$ function in the form

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a+2 m, b+2 m \\
\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}+2 m
\end{array} ; \frac{1}{2}\right)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)} \frac{\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{2 m}}{\left(\frac{1}{2} a+\frac{1}{2}\right)_{m}\left(\frac{1}{2} b+\frac{1}{2}\right)_{m}}
$$

which has been summed by Gauss' second theorem in (1.3). Substitution of this summation into (2.1), combined with use of the first equation in (1.4), then yields

$$
F=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{m}\left(\frac{1}{2} b\right)_{m}}{\left(c+\frac{1}{2}\right)_{m} m!} .
$$

This last sum can be summed by Gauss' first theorem in (1.2) when $\operatorname{Re}(2 c-$ $a-b)>-1$, and the desired result in (1.1) follows. This completes the proof of Watson's theorem.

References

[1] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions. Dover, New York, 1965.
[2] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge 1999.
[3] R. C. Bhatt, Another proof of Watson's theorem for summing ${ }_{3} F_{2}(1)$, J. London Math. Soc. 40 (1965), 47-48.
[4] T. M. MacRobert, Functions of a complex variable, 5th edition, Macmillan, London, 1962.
[5] E. D. Rainville, Special Functions, Macmillan, New York, 1960.
[6] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[7] G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. (2), 23 (1925), xiii-xv.
[8] F. J. W. Whipple, A group of generalized hypergeometric series: relations between 120 allied series of the type $F(a, b, c ; e, f)$, Proc. London Math. Soc. (2), 23 (1925), 104-114.

Received: October 3, 2008

