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1  Introduction
The “historical” 1953 Urey-Miller experiment1–3 may be 
misleading. The very idea of the emergence of life on Earth 
by organic synthesis could be traced back to Darwin’s 
“warm little pond”, expressed in a letter to Hooker, dated 
February 1, 1871,4,5 and Oparin6 referred to many ways to 
obtain organic matter in prebiotic conditions. After all, as 
Max Bernstein pointed out, “the spark discharge method of 
making organic molecules is not as important as it was orig-
inally thought to be”.7 Nearly two hundred organic com-
pounds were found in interstellar clouds8,9 and many more 
in meteorites (carbonaceous chondrites). There are literally 
millions of different organic compounds in the Murchison 
meteorite alone, of which 683 were positively identified.10 
Chyba and Sagan estimated an input 107–109 kg yr−1 of or-
ganic material from cometary and asteroidal interplanetary 
dust particles (IDPs) on early Earth.11

The next problem with the Urey-Miller experiment is that 
primordial Earth’s atmosphere was not Jupiter-like, com-
posed of hydrogen, methane, ammonia and water vapour, 
as Urey proposed.12 According to new insights13,14 it was 
very much Mars-like, containing mostly carbon dioxide 
but with traces of volcanic gases (hydrogen, water vapour, 
hydrogen sulphide, sulphur dioxide and carbon monox-
ide). Simple molecules (H2O, CO, NH3, CH4) along with 
complex ones were available on Earth from the early stages 
of its formation, but it seems that Earth’s collision with a 
Mars-sized body, about 4.5 billion years ago which formed 
the Moon, removed its pristine atmosphere.15 This kind of 

atmosphere did not easily yield amino acids after being 
exposed to ionizing agents, like UV radiation or electrical 
sparkling;16 however the synthesis could have been much 
improved by buffering reaction solution (CaCO3) and low-
ering of its oxidation potential (Fe2+).17 For the prebiotic 
synthesis and eventually emergence of life, it was also 
necessary to provide suitable geological habitat (increased 
concentration, temperature or pressure etc.) in the small 
environment we call Earth.18 In this respect, the develop-
ment of the atmosphere and hydrosphere on Earth and 
also its stratification (formation of core, mantle and crust) 
was essential, which resulted in the production of the mag-
netic field around the planet that protects it from danger-
ous radiation from outer space.19

We should also bear in mind that prebiotic synthesis of bi-
ologically important compounds (amino acids, sugars, nu-
cleobases, etc.) is not per se crucial for the emergence of 
life. It is also necessary to study the primordial organization 
of matter in self-sustainable and reproductive systems (pio-
neer organisms and protocells). However, to propose such 
systems, the persistence principle 20 firstly needs to be put 
into effect, i.e. make a plausible hypothesis of the mech-
anisms for the concentration of primordial matter and its 
orderly (persistent) transformation. In other words, it is 
necessary to propose a suitable catalysis or catalytic system 
in the primordial world to be developed into a “primal 
dynamic steady-state replicative system”, i.e. protolife, as it 
is defined thermodynamically.20 The obvious fact that the 
first catalysts were fuzzy and unspecific turned into their 
advantage because – as theoretical analysis of the develop-
ment of autocatalytic systems shows – only random novel 
molecular species enable Darwinian evolution.21
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2  Oparin’s solution: Homogeneous  
    catalysis in coacervate droplets
There are four basic requirements every plausible theo-
ry of the origin of life has to fulfil. It has to provide (i) a 
source of energy to drive molecular and macromolecular 
synthesis, (ii) a mechanism for the localized concentration 
of reactants to favour the required chemical reactions, (iii) 
suitable catalysis, and (iv) a suitable geochemical envi-
ronment for these reactions and their products. Oparin’s 
theory,6,22 the first modern and complete theory of life or-
igin, fulfils these requirements, but assuming geochemical 
environment and chemical processes that in the first half 
of the 20th century seemed much likely to have occurred 
than they seem now.23 Oparin, namely, assumed (i) that 
the source of energy was provided by organic compounds 
dispersed in the primordial ocean, (ii) that they were con-
centrated by forming coacervate droplets, (iii) that catalysis 
was provided by protein or protein-like molecules, and (iv) 
that the ocean as a whole provided a suitable geochemical 
environment for the origin and development of life.

This theory was quite in line with the current biochemi-
cal doctrine of biocolloidy that regarded life as a colloidal 
phenomenon based on proteins.24 Thus, the essence of 
Oparin’s theory is to explain how life as “a form of ex-
istence of protein bodies” (p. 136)6 emerged on Earth; 
however, this obsolete concept has been revived by the 
new concept of protoplasmic continuity and the models of 
organic films and microspheres.25 

Catalysed reactions inside coacervate droplets provided 
their stability and thus “only the dynamically most stable 
colloidal systems secured for themselves the possibility 
of continued existence and evolution” (p. 191).6 Further 
evolution of coacervate droplets was enabled by linking of 
catalytic, i.e., enzymatic reactions. Evolution pressure has 
been a gradual depletion of substrates from the environ-
ment. This means that the initial catalysed reaction A→B 
gradually evolved into C →A→B, D→C→A→B, etc. 

There are two critical flaws in Oparin’s theory. The first is 
the regulation of protoenzymatic reactions in his droplets, 
and the second is the abiotic synthesis of enzymes, i.e., 
proteinoid homogeneous catalysts. Oparin never solved 
the first problem; he succeeded in preparing coacervate 
droplets with enzymes (which, due to accumulation of 
products, even divided themselves), but never with more 
than one enzyme.26 Lately, much more elaborate enzymat-
ic systems have been devised; those based on phospho-
lipid vesicles were even able to synthesize proteins and 
nucleic acids,27,28 but the problem of regulation persisted. 
The second problem, the evolution of catalysis inside the 
droplets, has two aspects: (1) catalysis of protein synthesis, 
and (2) abiotic generation of catalytic peptides.

Catalysts for protein synthesis may be such simple sub-
stances as sodium and potassium ions, which were abun-
dant in the primordial ocean. It was namely demonstrated 
that in 1 M concentration, they catalyse polymerization of 
glutamic acid with 1,1’-carbonyldiimidazole into 9- (Na+) 
and 11-mer (K+) oligopeptides.29 More important, how-
ever, is that simple dipeptides Ser-His and Gly-Gly (less 
efficiently) catalyse polymerization of amino-acid esters, 

peptide fragments, and building blocks of peptide nucleic 
acids (PNA).30 Basic peptides, polymers of lysine, catalyse 
hydrolysis of phosphodiester bond, especially if their con-
formation is β-sheet rather than random coil.31

The second problem, abiotic generation of catalytic pro-
teins, could possibly be solved by directed peptide synthe-
sis.32,33 Firstly, two small families (A and B) of four decapep-
tides each were synthesized, and by their combinations 
(A∙B), 16 oligopeptides of length 20 were prepared. How-
ever, only four of them were soluble in water. By further 
combination, only one soluble oligopeptide of length 40 
was obtained. This scheme could possibly explain the syn-
thesis of long-chain peptides in the prebiotic environment, 
but it seems quite implausible, as P. G. Higgs pointed out, 
that selection of physical properties (i.e. water solubility) 
alone could generate many identical copies.33 There are, 
namely, 20L random sequences for 20-oligopeptides, L be-
ing the number of amino acids, and there is an enormous 
number of possible water-soluble peptides synthesized in 
this way to lead evolution to an autocatalytic mechanism. 

In line with this research is the [GADV]-protein world hy-
pothesis,34 stating that the first biological molecules were 
proteins composed of only four amino acids: glycine (G), 
alanine (A), aspartic acid (D), and valine (V). In the repeat-
ed heat-drying experiments (mimicking processes on prim-
itive Earth) of aqueous solutions of the respective amino 
acids in equimolar concentrations, a library of random 
peptides were synthesized, which showed catalytic abilities 
to hydrolyze β-galactoside and amide (peptide) bond.35,36 
The same was achieved by random [GADV]-octapeptides 
on BSA substrate.37 Random synthesis of [GADV]-peptides 
by microwave heating produced a library of 1–4 kDa pep-
tides,38 which showed hydrolase- and oxidoreductase-like 
catalytic activities.39 Against all odds of combinatorics, it is 
clear that catalytic peptides could have been easily formed 
on primordial Earth. 

3  Prebiotic synthesis by  
    homogeneous catalysis
Despite the fact that the scheme for the prebiotic synthesis 
of sugars (formose reaction) has been known since the 19th 
century,40 its catalysis by borates is a very new develop-
ment.41 It was found that in the uncatalysed reaction, the 
yield of pentoses was only 30  % (1  % ribose), less than 
the yield of hexoses (55 %), but more than that of tetroses 
(10  %) and higher sugars (5  %  >  C6).42 Moreover, “for-
mose” is not stable, but inclined to “browning” (asphalt 
problem),43 yielding insoluble organic matter (IOM) be-
sides amino acids (when ammonia was added) and other 
low-molecular compounds by simulated synthesis on car-
bonaceous chondrites and comets. 44,45 However, addition 
of borate in the form of artificially prepared mineral cole-
manite, Ca2B6O11∙5H2O, stabilizes formose solutions for 
months.46 The effect of borate was attributed mostly to the 
stabilization of pentoses, and to a lesser extent, of glycer-
aldehyde, the key autocatalytic reactant, keeping it in the 
enolate form (Fig. 1). Both substances form bis-complexes 
with borate anion, B(OH)4

−, B(OH)3 + OH− → B(OH)4
− 

(pK = 9.1) in basic solutions, as do many other geminal 
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diols.47 Systematic study of the stability of pentose com-
plexes with borate (borax) in concentration of 0–80 mM 
revealed that ribose is the most stable pentose (others are 
xylose, lyxose and arabinose) in 80  mM borate, but the 
least stable in the 0 mM solution.48 It was also found that 
boric acid increases the thermostability of monosaccha-
rides under acidic (ribose) and basic conditions (glucose).49 
Analogous catalytic activity was found for silicate ions (so-
dium silicate),50 but its relevance for prebiotic synthesis is 
dubious.51,52

However, the question is whether boron-catalysed synthe-
sis is possible in a prebiotic environment. Boron is among 
the rarest elements in the Universe (amount fraction 
1 ppb) because it was neither synthesized by nucleosyn-
thesis within stars nor during the Big Bang, but by nuclear 
fusion in cosmic-ray collisions.53,54 The catalytic role of bo-
ric acid is pointed out in discussions of possible reactions in 
seawater.55 The borate concentration in today’s seawater is 
only 4.45 ppm,56 but the finding of tourmaline in 3.8-bil-
lion-year-old rocks57 and boron minerals in carbonaceous 
chondrites58 speaks in favour of moderate borate concen-
trations in the waters of early Earth. Their abundance has 
to date increased following evolution of geological envi-
ronments.18,59–61

However, the occurrence of its soluble minerals (evapo-
rites, e.g. colemanite) demands a developed and rare en-
vironment like basic lakes, or boron-rich lakes. Benner et 
al.43 envisaged such a geochemical environment in subae-
rial intermountain desert valleys with borate-rich aquifers 
(pH = 10–11), which collect runoff from a watershed con-
taining serpentinizing olivines and igneous tourmallines, 
being also rich in formaldehyde, formamide, ammonium 
formate, and similar chemicals. Due to CO2 apsorption, 
the pH of aquifiers dropped to 6, which enabled further 
prebiotic synthesis and prevented formation of macromo-
lecular material (asphalt).

Boric ions also catalyse amino acid polymerization.55 This 
kind of catalytic activity was also found for sodium and 
potassium ions,29 but the systematic study of the influence 
of pH, temperature, and metal concentration on the po-
lymerization of glycine revealed a negative influence of 
other divalent metals.62 Namely, metal ions, which easily 
form complexes with glycine and its oligomers (Cu2+, Ni2+, 
Pb2+, Cd2+, Co2+, Hg2+), inhibit Gly polymerization in con-
trast to Fe2+ and Mg2+, which have virtually no influence. 

That led to the conclusion that these metals were immo-
bilized in the form of respective sulphides, supporting this 
way the chemoautrophic (or “iron-sulphur-world”) theory 
of life origin (see the fifth paragraph). Metallic cations like 
UO2−,63,64 Pb2+, Zn2+ and those of lanthanides65,66 catalyse 
nucleotide polymerization, and even non-enzymatic tem-
plate directed synthesis of RNA oligomers.67,68 However, 
because of the scarcity of these ions in modern as well as 
in early Earth’s geological habitat, their role in prebiotic 
synthesis could hardly be important. 

4   Heterogeneous catalysis:  
     Synthesis on clay minerals 
The hypothesis that clays played a decisive role in the or-
igin of life, expressed originally by J. D. Bernal in 194969 
and later elaborated by C. Ponnamperuma,70 is still very 
popular (Table 1). Clays were easily found on early Earth 
because they are produced by weathering of silicate rocks 
through different processes involving liquid water and va-
pours. Montmorillonite, the most interesting clay mineral 
in the context of the origin of life, is formed by weather-
ing of volcanic ash, and the first occurrence of kaolin in 
geological environment is connected to the activation of 
hydrothermal alteration of feldspar-containing rocks.

Except on Earth, clay minerals were found on Mars,71,72 
in meteorites, especially liquid-water-altered CI1 carbona-
ceous chondrites,73,74 as well as on asteroids.75 It was hy-
pothesized that clay minerals are present on comets, mak-
ing them allegedly places for prebiotic synthesis and even 
for the origin of life (interstellar panspermia).76 Clay min-
erals are characterized by very small particles or crystals 
that increase the active surface of the particles, and make 
clay mineral more efficient in processes of adsorption and 
exchanging ions. They have layered structures, sometimes 
expandable (like in smectite group minerals), with enough 
space between the layers to accommodate ions, and even 
organic molecules making them catalysts in organic synthe-
sis.77,78 Therefore, clay deposits, in combination with plate 
tectonics, might play an important role in the production 
and concentration of prebiotic organic molecules crucial 
for the emergence of life. 

As J.-F. Lambert pointed out, clay and similar minerals (sili-
cates, SiO2, Al2O3, TiO2) are not, strictly speaking, catalysts 
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(pseudo-enzymes) in peptide synthesis since the polymeri-
zation of amino acids is an endergonic process.79 The func-
tion of clays in prebiotic synthesis was to concentrate reac-
tants on mineral surfaces enabling thermal polymerization 
by the drying/wetting process. The adsorption of amino ac-
ids on mineral surfaces was not yet sufficiently explained, 
but three possible mechanisms were proposed (Fig. 2). The 
first was the “formation of an anhydride” with surface hy-
droxyl groups; that is, formation of Si−O−CO−R moieties 
on the surface of silicate minerals.80 The second mecha-
nism was the formation of complexes with Ti4+ (TiO2)81 or 
Al3+ and Cu2+.82 The third proposed mechanism was the 
formation of hydrogen bonds between –COOH groups of 
amino acids and Si−OH groups of silicate mineral.83,84 The 
study of the glycine intercalation into kaolinite silicate lay-
er found the drop of activation energy by heating, from 
21 kJ mol−1 (20–65 °C) to 5.8 kJ mol−1 (65–80 °C).85

Adsorption of an amino acid depends on its chemical 
form. Amino acids, as neutral molecules (H2N−CHR−
COOH) dominate in the adsorption from gas phase on 
dried surfaces, whereas they are adsorbed better as zwit-
terions (+H3N–CHR–COO–) from aqueous solutions. In ad-

dition, with charged groups in side chains, they are better 
adsorbed than those with uncharged side chains.86 That 
finding, however, speaks against the theory of prebiotic 
synthesis on clay minerals, because amino acids with neu-
tral side chains prevail in proteins. It also contradicts the 
[GADV]-theory, because it includes three amino acids, out 
of four, with neutral side chains (G, A, V).

The second problem with the clay theory is a very low 
yield of polymers. Performing the drying/wetting cycles 
(80 °C) on montmorillonite and hectorite, yields far below 
1 % were obtained for glycine and alanine87, and < 2 % 
alanine had converted to dialanine after 56 days of drying/
heating/wetting cycles (45/94 °C) on mono-ionic benton-
ites.88 Obviously, a higher temperature gives a better yield, 
but the decomposition of adsorbed material takes place at 
about 200 °C.89

It was hypothesized that clay minerals had been the key 
chiral agents for the preference of L-amino acids in pro-
teins. The hypothesis has been strongly supported by the 
finding that heating of aspartic acid on kaolin at 90  °C 
yielded 25 % polymerization of L- but only 3 % of D-iso-

Table 1 – Prebiotic reactions catalysed by clay minerals
Tablica 1 – Predbiološke reakcije katalizirane mineralima gline

Reaction
Reakcija 

Catalyst
Katalizator

References
Referencije

formose reaction kaolinite, illite 173, 174
polymerization of Gly kaolinite, bentonite 175
polymerization of Gly kaolinite 176

polymerization of Gly phyllosilicates (kaolinite 
montmorillonites, nontronites) 177

polymerization of Gla, Ala mono-ionic bentonites 88
polymerization of Gly and Gly2 Ca2+- and Cu2+-montmorillonite 178
polymerization of negatively charged amino acids (Glu, Asp, O-phospho-Ser) illite 179, 180
polymerization of pyroGlu kaolinite, montmorillonite 181
polymerization of Gly, Ala, (Ala+Gly), (Ala+Gly2), (Ala+DKP) montmorillonite, hectorite 87
polymerization of Gly, Tyr, (Gly+Tyr) Cu2+-hectorite, montmorillonite 182
polymerization of Gly, Ala, (Ala+Gly), Pro, (Pro+Gly), (Pro+Gly2), (Pro+Ala), Val, 
(Val+Gly), (Val+Gly2), (Val+Ala), Leu, (Leu+Gly), (Leu+Gly2), (Leu+Ala) hectorite 97

polymerization of AMP with EDAC Na+-montmorillonite 183
polymerization of ImpU montmorillonite 184, 185
polymerization of ImpC montmorillonite 186
polymerization of ImpA montmorillonite 179, 187
polymerization of ImpA Na+-montmorillonite 122
polymerization of ImpA, ImpU montmorillonite 115
polymerization of ImpA + ImpC montmorillonite 112, 187
polymerization of MeadpA, MeadpU montmorillonite 188, 189
polymerization of ImpX +XmP
(X = A, C, G, U, Im) montmorillonite 190 

polymerization of ImpA, ImpU, 
ImpA + ImpU Na+-montmorillonite 116, 117, 

191
polymerization of Imp(A, C, U, G) montmorillonite 119, 120



N. RAOS and V. BERMANEC: Catalysis in the Primordial World, Kem. Ind. 66 (11-12) (2017) 641−654  645

mer.90 However, the problem is far from simple. In 1971, 
better adsorption of L- than D-phenylalanine on kaolin was 
found,91 but this has not been confirmed.92 L-glutamic acid 
is better adsorbed on Na+-montmorillonite (pH  =  6.0) 
than its D-isomer, but quite opposite holds for aspar-
tic acid, and both amino acids proved more reactive to 
deamination in their L-forms.93 The problem is complex 
not only because of the different mechanisms of adsorp-
tion and polymerization of different amino acids, but also 
because different enantioselectivity could be observed 
even on different crystal faces of the same mineral.94 At 
any rate, enantioselective adsorption and polymerization 
of amino acids on mineral surfaces cannot be denied, and 
it was even explained by “occasional chirality” of clay crys-
tal lattice70 or by stacking of the optically active ions in 
the interlayer space,95,96 but the connection with biological 
homochirality remains obscure. 

Research on other non-clay minerals revealed that the 
most efficient catalyst for amino acid polymerization is 
alumina, showing a yield of even 13.06 % for glycine di-
merization,97 which is not at all surprising as alumina is a 
well-known industrial catalyst. In addition to silica, alumi-
na is a very common product of weathering and hydro-
thermal alteration of silicate rocks. A systematic study of 
the polymerization of glycine on mineral surfaces showed 
the order of catalytic efficiency: rutile > anatase > γ-alu-

mina > forsterite > α-alumina > magnetite > hematite 
> quartz > amorphous silica.98 Martra and coworkers 
prepared poly-Gly up to 16 units long by condensation 
of the amino acid vapour (130 °C) on TiO2 (anatase) and 
amorphous SiO2 surfaces.99 That line of research100 opens 
a number of possibilities for prebiotic synthesis, but it has 
to be taken into consideration that there is a quite signif-
icant difference in polymerization efficiency for different 
amino acids on different minerals, e.g. 0.07–13.06 % for 
dimerization on alumina.97 Also, many of the studied min-
erals were, and still are, rare. Forsterite, Mg2SiO4, was the 
most abundant; magnetite, rutile and anatase were not so 
plentiful, because they are accessory minerals. Amorphous 
silica was also present, but as a new, weathering and alter-
ation product.

The problem of nucleic acid synthesis on clay minerals101,102 
has gained importance since RNA-world hypothesis came 
to the fore. This hypothesis103–105 implies that RNAs were 
molecules on which all original biological functions of pro-
to-organisms were based; from them developed both DNA 
and proteins. Such a hypothesis put many requirements on 
the theory of prebiotic synthesis. In contrast to proteins, 
which were presumably synthesized by polymerization of 
amino acids, which were in turn produced by simple Mill-
er-like synthesis, prebiotic synthesis of RNA monomers is 
much more complex both chemically106–108 and geochem-
ically.109–111 However, it has to be pointed out that experi-
ments aimed at clay-catalysed synthesis seem much more 
convincing than those designed for the synthesis of pep-
tides. Polymerization reactions were exergonic because 
they were performed by using condensing agents (EDAC) 
or activated nucleotides, mostly ImpA. The second reason 
is that only one mineral has been successfully employed, 
i.e. montmorillonite, one of the most abundant clay min-
erals on Earth as well as Mars.71

The third reason is that a much better degree of polymeri-
zation has been achieved with nucleotides than with ami-
no acids, and even selectivity has been observed. In the ex-
periment of copolymerization of ImpA and ImpC112 8, 10, 
5 and 4 isomers with 2, 3, 4, and 5 mers, respectively, were 
detected, obviously much less than the number of isomers 
predicted in random synthesis (8, 32, 128 and 512). By 
binding of decameric primer on Na+-montmorillonite, oli-
gomers up to 50 monomer units were prepared.113 Enanti-
oselectivity was also observed because D-D and L-L dimers 
were preferentially formed starting from racemic (D,L) nu-
cleotides.114 However, it holds true only for purine nucle-
otides (ImpA), which gave 66.9 % homochiral dimers in 
contrast to 39.2 % homochiral dimers for ImpU;115 qua-
ternary reactions (ImpA + ImpU) gave 63.5 % homochiral 
dimers and 74.5  % homochiral trimers.116 Similar results 
were obtained for tetramers and pentamers.117

Molecular modelling revealed that the decisive factor in 
enantioselectivity are dipole interactions between nucleo-
tide anion and zwitterion (Fig. 3) on clay surface.115 Cou-
lombic interactions are also dominant for the montmoril-
lonite catalytic activity. It was shown that montmorillonites 
with smaller surface layer charges are better catalysts.118–120 
By studying the oligomerization reaction of ImpU and 
ImpA inhibited by N6,N6-dimethyladenine and dA5’ ppdA 
on montmorillonite, it was found that activated RNA mon-
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skupinama na površini te nastajanje kompleksa s Ti4+ ili 
s Al3+ i Cu2+



  N. RAOS and V. BERMANEC: Catalysis in the Primordial World, Kem. Ind. 66 (11-12) (2017) 641−654646

omers (ImpU and ImpA) bind only to the silicate surface 
of the clay interlayer, on catalytic sites about 1.5 nm apart 
(1–2 ∙ 1014 sites per milligram).121 On clay surfaces, purine 
nucleotides bind more strongly and are oriented differently 
than those of pyrimidine. This may account for the ob-
served regioselectivity (3’,5’ vs. 2’,5’ links), but the exact 
mechanism of selective binding and polymerization is not 
yet known. 
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Slika 3 – Mehanizam polimerizacije nukleotida na površinama 
glina (preuzeto iz ref. 115)

The catalytic properties of montmorillonite depend also on 
the background electrolyte, i.e., on its salt form. Catalytic 
activity is higher for smaller ions (Li+ > Na+ > K+ > Rb+ > 
Cs+, Mg2+ > Ca2+ > Sr2+ > Ba2+).120 The best catalytic ac-
tivity for Na+-montmorillonite was observed in 1 M NaCl 
solution,122 close to salt concentration (c = 0.9 – 1.2 M) of 
the primordial ocean.123

5  Reactions on sulphide surfaces
Chemoautotrophic (or iron-sulphur-world) theory of life 
origin124–127 rests on two assumptions. The first is that the 
first prebiotic catalytic reactions took place on Fe/Ni sul-
phide particles evolving gradually to autocatalytic systems, 
and ultimately to the first (pioneer) organisms. The second 
assumption is that the driving power for all prebiotic pro-
cesses has been the oxidative formation of pyrite, FeS2, by 
reaction of FeS with H2S.128 The hypothesis is supported by 
its correlation with iron-sulphur proteins,129 i.e., proteins 
with iron-sulphide and similar metal-sulphide catalytic 
centres,130–132 which constitute the group of phylogeneti-
cally oldest enzymes, e.g. nitrogenases.133 As early as 1974, 
R. Österberg hypothesized that the first electron carriers 
were in the form of FeS/FeS2 particles.134

This theory is also concordant with the hypothesis that all 
life forms evolved from hyperthermophilic organisms, be-
cause the oldest extant life forms (e.g. Crenarchaeota, Na-
noarchaeota) are chemoautotrophic hyperthermophiles.135 

Hyperthermophiles136 were in turn found near the un-
derwater hydrothermal vents at Midoceanic ridges rich in 
dissolved hydrogen sulfide,137,138 the possible geological 
habitat of pioneer organisms.126 (Other habitats might also 
be magnesium-rich komatiite lava deposits139 and hydro-
thermal systems developed as a consequence of asteroid 
impacts on early Earth,140 but in our opinion, such events 
were rare.) Hyperthermophiles had possibly evolved from 
pioneer organisms, and were later adapted to “milder” sur-
face conditions.141,142* 

Catalytic particles were formed by reaction of hydrogen 
sulphide with metal ions (Fe2+, Ni2+, W4+) dissolved in 
ocean water. They very probably formed protocell-like 
“monosulphide bubbles”,143,144 by “chemical-garden” (che-
mobrionics) reactions.145 This provided the first (inorganic) 
membranes, as well as catalytic surfaces (mineral substruc-
ture). Simple molecules from volcanic liquid water phase 
(CO, CO2, COS, NH3, H2S, N2, H2, HCN) were adsorbed 
on a mineral substructure making an organic superstruc-
ture126 prone to all kinds of chemical transformations. This 
hypothesis is supported by the finding that iron and cop-
per sulphide minerals (pyrrhotite, pyrite, covellite, bornite, 
chalcopyrite, tetrahedrite) proved to be efficient catalysts 
in converting formamide (H2NCHO) into purine, adenine, 
and other heterocyclic bases under simulated prebiotic 
conditions.146 It was also shown that pyrite and greigite 
(Fe3S4) catalyse CO2 reduction, converting it respectively 
into formate147 and methanol, formic, acetic and pyruvic 
acid.148 FeS also appears to be a suitable agent for reducing 
nitrates and nitrites to ammonia under primordial acidic 
conditions.149

The basic idea of the iron-sulphur-world theory is that the 
electrons released by oxidation of iron(II) sulphide were 
used for reduction of simple molecules from liquid water 
phase and synthesis of complex organic compounds on 
(Fe,Ni)S surfaces. Many such reactions were proven exper-
imentally,124,126 like reduction of nitrogen into ammonia at 
1 bar, 80 °C, and pH = 3–4:150

N2 + 3 FeS + 3 H2S → 3 FeS2 + 2 NH3, (1)

synthesis of methanethiol (along with other sulphur com-
pounds, CS2, Me2S, R−SH) from carbon dioxide at 1 bar 
and 75 °C:151 

CO2 + 3 FeS + 4 H2S → CH3SH + 3 FeS2 + 2 H2O (2)

and the synthesis of pyruvic acid from carbon monoxide at 
2000 bar and 250 °C:152

3 CO + 2 FeS + 2 H2S → 2 FeS2 + CH3COCOOH. (3)

Other reactions, not directly involving the formation of py-
rite, could also be catalysed by such a mineral substruc-
ture. Using FeS and/or Fe(OH)2 as a catalyst,153,154 amino 
acids (Ala, Glu, Phe, Tyr) were synthesized in the maxi-

* There is, however, an alternative explanation for the evolution from 
hyperthermophilic organisms, namely that these organisms were 
the only survivors after large asteroid impacts in early Earth’s history,  
Ref. 129,171,172.
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mum 35–58 % yield from corresponding keto acids (1 bar, 
75–100 °C, pH = 9–11):

RCOCOOH + 2 Fe2+ + NH3 + 2 H+ →  
→ RCH(NH2)COOH + 2 Fe3+ + H2O. (4)

Even more complex schemes were devised, like oligopep-
tide and purine synthesis from carbon monoxide,155 and 
– quite speculative – anaerobic citric acid cycle on (Fe,Ni)S 
catalyst.156 The hypothesis of the evolution of bacterial 
(acetogens) and archaea (metanogens) metabolisms by 
carbon (CO2) fixation on catalytic (Fe,Ni)S minerals in alka-
line hydrothermal vents is also based on such a speculative 
scheme.157

Wächtershäuser also proposed a theory of evolution on 
the surface of (Fe,Ni)S catalyst126 from the assumption 
that some ligands may dramatically increase the activity of 
(metal) catalyst.158 This led to the development of autocat-
alytic systems, which in turn led to coevolution of proteins 
and nucleic acid synthesis by autocatalytic feedback. The 
theory also explains the formation of the first protocells, 
by the process of surface lipophilization and the establish-
ment of pH gradient across membrane (chemiosmosis). 
The hypothesis is experimentally supported by studying 
vesicle formation in the presence of various minerals, e.g., 
pyrite and montmorillonite.159,160 However, experiments 
aimed at synthesis of amino acids and nucleic bases from 
CO2 using FeS/H2S system failed,161 and it was shown that 
sulphide minerals stimulate degradation of RNA by catalys-
ing the hydrolysis of phosphodiester bonds.146

6  Conclusion
The troubles with the theories of life origin stem from the 
very nature of the scientific research: the problem of higher 
complexity has to be divided into a set of less complex ones. 
Thus, the riddle of the emergence of life on Earth should 
be solved by answering questions concerning the potential 
catalytic substances available on early Earth, composition 
of its primordial hydrosphere, lithosphere and atmosphere, 
efficiency of mineral catalysts in synthesizing biopolymers, 
evolution of autocatalytic systems, self-assembly of mole-
cules in nanostructures, e.g. nanovesicles,162–164 evolution 
of the protocells and the first anaerobic metabolism165, and 
so forth. Despite much effort in solving these problems, it is 
not yet possible to comprise all the experimental data in a 
consistent theory; however, the general shape of the evo-
lution leading to the first protoorganisms can be envisaged.

Evolution of organic matter is dependent on the evolution 
of inorganic matter; the diversification of minerals opened 
new possibilities for catalysed reactions, and consequently 
for greater diversity of prebiotic forms (Table 2). The ori-
gin of life, viewed as the result of the development of ca-
talysis, is intimately connected with clays and sulphides, 
so the emergence of life as we know it, was impossible 
before these minerals had appeared, i.e. before Earth dif-
ferentiation and plate tectonics.19 This opens a possibility 
that some kind of prebiotic forms existed before the condi-
tions for the iron-sulphur world had been met, suggesting 
the gradual evolution from biopolymers into autocatalytic 
(metabolic) systems. At any rate, the emergence of life on 
Earth before 3.8 Ga166 was not caused by long-term evolu-

Table 2 – Early history of Earth (adapted after Ref. 18)
Tablica 2 – Rana povijest Zemlje (sastavljeno prema ref. 18)

Years from 
present ⁄ Ga
Godina od 
sadašnjosti ⁄ Ga

Mineral species
Mineralne vrste

Kinds of rocks and 
minerals
Vrste stijena i minerala

Examples
Primjeri

Geological events and  
possible prebiotic processes
Geološki događaji i  
mogući predbiološki procesi 

> 4.56 60 chondrules
pre-solar grains

olivine
forsterite
troilite
magnetite

formation of the Solar System

4.56–4.55 250

chondrites
achondrites
iron
clay minerals  
carbonates

smectites
feldspars
zeolites

accretion and alternation of planetesimals 
formation of Earth
Earth differentiation (core, mantle, crust)
clay-mineral catalysis

4.55–4.0 350 igneous rocks
evaporites

amphiboles
micas
halite

plate tectonics 
hydrothermal vents
Miller-like synthesis
evaporite catalysis
sulphide catalysis

4.0–3.2 1000 granitoids quartz the first life

3.2–2.8 1500
granite
pegmatite
sulphates

quartz
alkali feldspars

development of 
photoautotrophic and anaerobic 
metabolism 

2.5–1.9 4000
secondary oxides
oxysalts
gypsum

great oxidation
development of aerobic metabolism 
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tion of organic matter in the “primordial soup”, as Oparin 
viewed it, but has been rather a natural consequence of 
geochemical evolution.

It is notorious that theories of the evolution of autocatalytic 
systems are not based on any real chemical system, much 
less on real geological habitats. Despite a huge number of 
works on polymerization of amino acids on clay and ox-
ide minerals, it is still unclear how they would have been 
employed in prebiotic synthesis; this presumes them to be 
good catalysts for all protein amino acids, which obvious-
ly not the case. Most of the prebiotic reactions, such as 
amino acid synthesis,167 formose, and iron-sulphur-world 
reactions need basic conditions, but it is hard to imagine 
such reactions on early Earth with CO2-rich atmosphere 
and rainwater with pH = 3.7, and temperature of 70 °C.13 
It is, however, highly probable that many different catalyst 
systems were contemporarily active, because, as S. A. Kau-
ffman put it, “the more complex web of coupled reactions, 
together with the chance that molecules in the web are 
catalysts for the same reactions, the easier it is to form col-
lectively autocatalytic sets”, i.e. protocells.168 This leads to 
an obvious conclusion that the development of a geolog-
ical habitat, i.e., the rising number of mineral species, led 
to the emergence of life on Earth.169 

The idea that it is possible to reconstruct Darwin’s “warm 
little pond”, i.e., that it should be possible to design an ex-
periment from which some kind of proto-organism would 
emerge by mixing of chemicals, proved unsuccessful;6,145,170 
it is naïve to expect to be able to reproduce processes that 
took place on thousands of square kilometres and lasted 
a few hundred million years by a test-tube experiment. 
However, from another point, it does not seem impossible 
to find mineral catalysts that would be capable of directing 
the key prebiotic reactions needed for the emergence of 
life on this planet. 

List of abbreviations and symbols
Popis kratica i simbola

BSA – bovine serum albumin
– albumin goveđeg seruma

DKP – diketopyranozide (cyclic dimer of amino acids)
– diketopiranozid (ciklički dimer aminokiselina)

EDAC – 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 
(condensing agent)

– 1-etil-3-(3-dimetilaminopropil)karbodiimid  
(agens za kondenzaciju)

Ga – gigaannum, 109 years
– gigagodina, 109 godina

IDP – interplanetary dust particle
– međuplanetarna čestica prašine

Imp – imidazole-5’-phosphate
– imidazol-5’-fosfat

IOM – insoluble organic matter
– netopljiva organska tvar

Meadp – 1-methyladenine-5’-phosphate
– 1-metiladenin-5’-fosfat

PNA – peptide nucleic acid 
– peptidna nukleinska kiselina
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Kataliza omogućuje uređenu sintezu te njezinu evoluciju do autokatalitičkih (samoreproduktiv-
nih) sustava. Istraživanje homogene katalize bavi se većinom nasumičnom sintezom peptida i 
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