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Vol. 52(72)(2017), 295 – 329

OMEGA LIMITS, PROLONGATIONAL LIMITS AND
ALMOST PERIODIC POINTS OF A CONTINUOUS FLOW

VIA EXTERIOR SPACES
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Abstract. In this paper we analyse some applications of the cat-
egory of exterior spaces to the study of dynamical systems (flows). The
limit space and end space of an exterior space are used to construct dif-
ferent types of limit spaces and end spaces of a dynamical system. In this
work we analyse the relationships between the notions and constructions
given by the exterior structures of a continuous flow and the more usual
notions of omega-limits, first prolongational limits and several types of al-
most periodic points (Poisson-stable points, non-wandering points) of a
flow.

1. Introduction

Recently the use of the category of exterior spaces has been applied to give
a new approach to the study of continuous and discrete dynamical systems, see
[19,20]. This paper contains new results about the relations and applications
of the category of exterior spaces to the study of continuous flows.

The category of exterior spaces has been provided with a well developed
homotopy theory ([12,16–18,21]). The study of the exterior and proper homo-
topy invariants has proved to be useful in the study of non-compact manifolds
([8,30]), the study of the shape of some compact spaces ([22]), the L-S proper
category ([14, 15]), et cetera.
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On the one hand, this category of exterior spaces has its own notions and
constructions and others inherited from the category of topological spaces and
from categories of pro-spaces ([10]). For example, for categories of pro-spaces
one can consider the inverse limit of a prospace and homotopy invariants such
as homotopy pro-groups and Steenrod, Čech and Brown-Grossmann groups
(we note that the zero-dimensional Čech invariant is the set of Freudenthal
ends when we consider the inverse system of cocompact subsets in a topolog-
ical space).

Let us recall the definition of exterior space and some basic constructions
(in this paper the exterior concepts and constructions are typed in boldface):
Let (X, tX) be a topological space, where tX denotes the topology of X . An
externology on (X, tX) is a non-empty collection ε(X) of open subsets which
is closed under finite intersections and such that if E ∈ ε(X), U ∈ tX and
E ⊂ U , then U ∈ ε(X). The members of ε(X) are called exterior open
subsets. An exterior space X = (X, ε(X), tX) consists of a topological
space (X, tX) together with an externology ε(X). The limit space of an
exterior space X is the topological subspace L(X) = ∩E∈ε(X)E and the bar-

limit space of X is the topological subspace L̄(X) = ∩E∈ε(X)E, where E
denotes the closure of E.

On the other hand, we have common dynamical notions (which are typed
in italics) as the following: A flow on a topological space X = (X, tX) is a
continuous map ϕ : R×X → X , ϕ(t, x) = t · x, such that 0 · x = x, ∀x ∈ X

and t · (s · x) = (t + s) · x, ∀x ∈ X, ∀t, s ∈ R. A point x ∈ X is said
to be periodic if there is t ∈ R, t 6= 0 such that t · x = x. We denote by
P (X) the invariant subset of periodic points of X. For a flow X = (X,ϕ),
the Λ+-limit set (or omega-limit set) of a point x ∈ X is given as follows:
Λ+(x) = {y ∈ X | ∃ a net tδ → +∞ such that tδ · x → y}. The Λ+-limit set
of a flow X is the following invariant subset: Λ+(X) =

⋃
x∈X Λ+(x).

The main goal of this paper is to find the most important relationships
between the exterior notions and constructions and dynamic concepts.

To find the connections between exterior and dynamic concepts we con-
struct a hybrid one containing both notions. We proceed as follows: Let
(X, tX) be a topological space endowed with an additional topology τ sat-
isfying that tX ⊂ τ ⊂ dX , where dX is the discrete topology. Denote by
τx = {U ∈ τ |x ∈ U}, where x ∈ X . On R with the usual topology we con-
sider three externologies {r, l, c} which are induced by the neighbourhoods at
+∞, −∞, ∞ (the Alexandroff infinity), respectively. Now given a pair (ǫ, τ)
with ǫ ∈ {r, l, c} and tX ⊂ τ ⊂ dX and a flow ϕ : R×X → X , an openN ∈ tX
is said to be (ǫ, τ)-exterior if for any x ∈ X there are T x ∈ ǫ and Ux ∈ τx
such that ϕ(T x×Ux) ⊂ N . It is easy to check that the family of (ǫ, τ)-exterior
subsets is an externology, that will be denoted by ε(ǫ,τ)(X). Therefore, we
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have the exterior flow X(ǫ,τ) = (X, ε(ǫ,τ)(X), ϕ). For concepts related to
an exterior flow we will use bold italics.

In this paper we show the existence of many relationships between exterior
and dynamic theories. For instance, taking τ = dX , for a T1 flow X , we have
proved (Theorem 6.3) that the limit space is the subflow of periodic points :

L(X(ǫ,dX)) = P (X),

and Corollary 7.6 (see also Definition 4.1) shows that under some topological
conditions the bar-limit space is the topological closure of the Λ+-limit set
of X :

L̄(X(r,dX)) = Λ+(X).

We note that the limit and bar-limit constructions developed for ex-
terior spaces, which appear on the left side of the equalities above, can be
interpreted as relevant subflows of a dynamical system.

In our study we also analyse these types of relationships between other
exterior concepts and the more usual notions of omega-limits, first prolonga-
tional limits and several types of almost periodic points (Poisson-stable points,
non-wandering points) of a flow.

It is worth pointing out that when we take τ = tX the corresponding
exterior notions are related to dynamical notions which depend on the local
behavior of the dynamical system. In this paper we analyse six externologies
which correspond to the six pairs (ǫ, τ) ∈ {r, l, c} × {tX ,dX}. Given a point
x in a flow X and an open neighbourhood U at x, the forward behavior of
the trajectory at x ((t0,+∞) · x) is related to the externology ε(r,dX)(X)
and, in order to study the forward behavior of an open neighbourhood U

at x ((t0,+∞) · U , U ∈ tXx
), we consider the externology ε(r,tX )(X). The

backward behavior of a point x or an open neighbourhood U is connected
with the properties of the externologies ε(l,dX)(X), ε(l,tX)(X), respectively.
In order to simultaneously analyse the past and the future of a trajectory
of a point ((−∞,−t0) · x ∪ (t0,+∞) · x, t0 > 0) or an open neighbourhood
((−∞,−t0)·U∪(t0,+∞)·U , t0 > 0), we respectively consider the externologies
ε(c,dX)(X), ε(c,tX )(X).

For the dynamical notions we use the definitions and notations given in
the Bhatia and Szego book [4], taking into account that we are working on
topological spaces instead of metric spaces and, in some cases, one has to re-
place sequences by nets. For the notion of attractor used in our study we do
not assume the compactness condition considered in [4]. In this paper we have
also introduced the dynamic notion of (ǫ, τ)-agglomerative point (see Defini-
tion 6.5) and a notion of basin (see Definition 5.3) which are not contained in
[4].

The final section “Conclusions and further work” contains a list with the
main relationships (analized in this paper) between exterior and dynamic no-
tions. We also suggest some future research lines: (1) the higher homotopy
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invariant of exterior spaces (Steenrod, Čech and Brown-Grossmann
groups) could be very useful tools in the analysis of local and global stability
properties of continuous flows and in the study of chaotic dynamical systems ;
(2) we think that the externologies ε(ǫ,τint)(X) will play an important role
in the study of repellers and atractors of a dynamical system, where τint is
the intrinsic topology of a flow X .

2. Preliminaries on exterior spaces and dynamical systems

2.1. Exterior spaces: End Spaces and Limit Spaces. A continuous map
f : X → Y is said to be proper if for every closed compact subset K of Y ,
f−1(K) is a compact subset of X . The category of topological spaces and
the subcategory of spaces and proper maps will be denoted by Top and P,
respectively. This last category and its corresponding proper homotopy cate-
gory are very useful for the study of non-compact spaces and manifolds (see
[30]). Nevertheless, one has the problem that P does not have enough limits
and colimits and therefore it is not possible to develop the usual homotopy
constructions such as loops, homotopy limits and colimits, et cetera. An an-
swer to this problem is given by the notion of exterior space. The new category
of exterior spaces and maps is complete and cocomplete and contains as a full
subcategory the category of spaces and proper maps, see [16,17]. We refer to
[9, 11, 12, 21, 22] for further properties and applications of exterior homotopy,
and to [26] for a survey of proper homotopy.

Definition 2.1. Let (X, tX) be a topological space, where X is the un-
derlying set and tX its topology. An externology on (X, tX) is a non-empty
collection ε(X) of open subsets which is closed under finite intersections and
such that if E ∈ ε(X), U ∈ tX and E ⊂ U then U ∈ ε(X). The members of
ε(X) are called exterior open subsets. An exterior space (X, ε(X), tX)
consists of a space (X, tX) together with an externology ε(X). Given an ex-
terior space (X, ε(X), tX) it is useful to work with an exterior basis (or
just a basis of the externology), which is nothing else than a subcollection
β ⊂ ε(X) such that for every E ∈ ε(X) there exists F ∈ β with F ⊂ E. A
map f : (X, ε(X), tX) → (X ′, ε(X ′), tX′) is said to be an exterior map if it
is continuous and f−1(E) ∈ ε(X), for all E ∈ ε(X ′).

The category of exterior spaces and maps will be denoted by E. Given
a space (X, tX), we can always consider the trivial exterior space taking
ε = {X} or the total exterior space if one takes ε = tX . An important
example of externology on a given topological space X is the one constituted
by the complements of all closed-compact subsets of X . It will be called
the cocompact externology and usually written as εc(X). The category of
spaces and proper maps can be considered as a full subcategory of the cate-
gory of exterior spaces via the full embedding (·)c : P →֒ E. The functor (·)c

carries a space X to the exterior space Xc which is endowed with the topology



OMEGA LIMITS, PROLONGATIONAL LIMITS AND . . . 299

of X and the externology εc(X). A map f : X → Y is carried to the exterior
map fc : Xc → Y c given by fc = f . It is easy to check that a continuous
map f : X → Y is proper if and only if f = fc : Xc → Y c is exterior.

An important role in this paper will be played by the following construc-
tion: Let (X, ε(X), tX) be an exterior space, and let (Y, tY , τ) be a set Y
endowed with two topologies tY , τ such that tY ⊂ τ . For y ∈ Y we denote
by τy the family of open neighbourhoods of (Y, τ) at y. Given the topological
spaces (X, tX), (Y, tY ), we consider on X × Y the product topology which is
denoted by tX×Y and the externology ε(X×̄τY ) given by those E ∈ tX×Y

such that for each y ∈ Y there exists Uy ∈ τy and T y ∈ ε(X) such that
T y × Uy ⊂ E. The resulting exterior space (X × Y, ε(X×̄τY ), tX×Y ) will be
denoted by X×̄τY .

In some contexts, for instance working with exterior homotopies, it is
frequent to take τ = tY . For these cases, we will use the shorter notation

X×̄Y = (X × Y, ε(X×̄tY Y ), tX×Y ) = X×̄tY Y.

Therefore, for these cases we have an induced functor:

(·)×̄(·) : E×Top → E, (X,Y ) → X×̄Y.

When Y is a compact space, we have that E is an exterior open subset of
X×̄Y if and only if it is an open subset and there exists G ∈ ε(X) such that
G × Y ⊂ E. Furthermore, if Y is a compact space and ε(X) = εc(X), then
ε(X×̄Y ) coincides with εc(X × Y ) the externology of the complements of
closed-compact subsets of X × Y. We also note that if Y is a discrete space,
then E is an exterior open subset of X×̄Y if and only if it is open and for
each y ∈ Y there is T y ∈ ε(X) such that T y × {y} ⊂ E.

This bar construction (×̄) provides a natural way to define exterior ho-
motopy in E. Indeed, if I denotes the usual closed unit interval [0, 1], given
exterior maps f, g : X → Y, it is said that f is exterior homotopic to g

if there exists an exterior map H : X×̄I → Y (called exterior homotopy)
such that H(x, 0) = f(x) and H(x, 1) = g(x), for all x ∈ X. The correspond-
ing homotopy category of exterior spaces will be denoted by πE. Similarly,
the usual homotopy category of topological spaces will be denoted by πTop.

In this subsection we also deal with special limit constructions associated
to any exterior space. In particular we recall the functors L, L̄, π̌0, ˇ̄π0 : E →
Top introduced in [19].

Given an exterior space X = (X, ε(X)), its externology ε(X) can be
considered as an inverse system of spaces {E}E∈ε(X). Recall that an inverse
system of topological spaces is a functor Z : I → Top, where I is a directed
set. The functor Z carries i ≥ j, i, j ∈ I, to Zi

j : Zi → Zj . The inverse limit
of Z = {Zi} is denoted by limi∈I Zi (or just by limZi). An element of the
inverse limit can be represented by an element (zi)i∈I of the product

∏
i∈I Zi
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satisfying that Zi
j(zi) = zj , i ≥ j. For more results and properties about

inverse systems, we refer the reader to [10].
For a topological space Y , π0(Y ) denotes the set of path-components of Y

and we have a canonical map Y → π0(Y ) which induces a quotient topology
on π0(Y ). We remark that if Y is locally path-connected, then π0(Y ) is a
discrete space. We also recall that given a subset A of a topological space Y
the closure of A is denoted by A.

Given an exterior space X = (X, ε(X)), for the inverse systems

ε(X) = {E}E∈ε(X), π0ε(X) = {π0(E)}E∈ε(X), π̄0ε(X) = {π0(E)}E∈ε(X),

we can take inverse limits to obtain the following notions:

Definition 2.2. Let X = (X, ε(X)) be an exterior space. The limit
space of X is the topological subspace:

L(X) = lim ε(X) = ∩E∈ε(X)E.

The end space of X is the inverse limit:

π̌0(X) = limπ0ε(X) = lim
E∈ε(X)

π0(E)

endowed with the inverse limit topology of the spaces π0(E).
The bar-limit space of X is the topological subspace:

L̄(X) = lim({E}E∈ε(X)) = ∩E∈ε(X)E.

The bar-end space of X is the inverse limit:

ˇ̄π0(X) = lim π̄0ε(X) = lim
E∈ε(X)

π0(E)

endowed with the inverse limit topology of the spaces π0(E).

It is interesting to observe that if X is an exterior space and X is locally
path-connected, then π̌0(X) is a prodiscrete space.

We note that π̌0(X) and ˇ̄π0(X) are generalizations to exterior spaces
of the space of Freudenthal end points of a topological space. Indeed, if
for a topological space X we consider the externology εc(X), then one has
that π̌0(X) is precisely the space of Freudenthal ends of the space X , see
[13,23]. This is the reason why, sometimes, the elements of π̌0(X), ˇ̄π0(X) are
also called Freudenthal end points (or Freudenthal ends) of the exterior
spaceX . We also mention that the set of Freudenthal end points of an exterior
space is a zero dimensional analogue of the Čech invariant of a pro-space (see
[10]) or of the Borsuk invariant (see [6, 7]) given in shape theory.

For every E ∈ ε(X), we have a commutative diagram:
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E E

π0(E) π0(E).

Then, one has the natural transformations of the following commutative
diagram:

L(X)

e

L̄(X)

ē

π̌0(X) ˇ̄π0(X).

Definition 2.3. Given an exterior space X = (X, ε(X)), an end point
a ∈ π̌0(X) is said to be e-representable if there is x ∈ L(X) such that
e(x) = a. Similarly, a point b ∈ ˇ̄π0(X) is ē-representable if there is x ∈ L̄(X)
such that ē(x) = b.

Notice that the maps e : L(X) → π̌0(X), ē : L(X) → ˇ̄π0(X) induce an
e-decomposition and an ē-decomposition

L(X) =
⊔

a∈π̌0(X)

La(X), L̄(X) =
⊔

b∈ˇ̄π0(X)

L̄b(X)

where La(X) = e−1(a) and L̄b(X) = ē−1(b).

It is not difficult to check that the functors L, L̄ preserve homotopies and
the functors π̌0, ˇ̄π0 are invariant by exterior homotopy. As a consequence of
these facts one has:

Proposition 2.4. The functors L, L̄, π̌0, ˇ̄π0 : E → Top induce functors

L, L̄ : πE → πTop, π̌0, ˇ̄π0 : πE → Top.

Remark 2.5. A more exhaustive study of these functors and their prop-
erties can be seen at [19, 20]. We can also consider other type of functors:

• Taking the set c(E) (c(E)) of connected components, for every E ∈
ε(X), instead of path-connected components, one has some analogous
functors: č ˇ̄c : πE → Top, see [19].

• Some flow-completion functors, related to the Freudenthal compactifi-
cation of a space (see [13]), are constructed in [20].

2.2. Dynamical Systems, omega limits and prolongational omega limits.
Next we recall some elementary concepts about dynamical systems.

Definition 2.6. A dynamical system (or flow) on a topological space X
is a continuous map ϕ : R×X → X , ϕ(t, x) = t · x, such that
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(i) 0 · x = x, ∀x ∈ X ;
(ii) t · (s · x) = (t+ s) · x, ∀x ∈ X, ∀t, s ∈ R.

A flow on X will be denoted by (X,ϕ) and, when no confusion is possible, we
use X for short.

For a subset A ⊂ X , we denote inv(A) = {x ∈ A |R · x ⊂ A}.

Definition 2.7. A subset S of a flowX is said to be invariant if inv(S) =
S.

Given a flow (X,ϕ) one has a subgroup {ϕt : X → X | t ∈ R} of home-
omorphisms, ϕt(x) = ϕ(t, x), and a family of trajectories (motions, orbits)
{ϕx : R → X | x ∈ X}, ϕx(t) = ϕ(t, x).

Definition 2.8. Given two flows (X,ϕ), (Y, ψ), a flow morphism
f : (X,ϕ) → (Y, ψ) is a continuous map f : X → Y such that f(t ·x) = t ·f(x)
for every t ∈ R and for every x ∈ X .

We note that if S ⊂ X is invariant, S has a flow structure and the
inclusion is a flow morphism. We denote by F the category of flows and flow
morphisms.

Definition 2.9. For a flow X , the omega-limit set (in the literature one
can find the alternative terminology: Λ+-limit, right-limit set or positive limit
set) of a point x ∈ X is given as follows:

Λ+(x) = {y ∈ X | ∃ a net tδ → +∞ such that tδ · x→ y}.

Note that the subset Λ+(x) admits the alternative definition

Λ+(x) =
⋂

t≥0

[t,+∞) · x

which has the advantage of showing that Λ+(x) is closed.

Definition 2.10. The Λ+-limit set of a flow X is the following invariant
subset:

Λ+(X) =
⋃

x∈X

Λ+(x).

Definition 2.11. For a flow X , the prolongational omega-limit set (or
prolongational right limit set, or prolongational positive limit set) of a point
x ∈ X is given as follows:

J+(x) = {y ∈ X | ∃ a net xδ → x and a net tδ → +∞ such that tδ · xδ → y}.

Note that the prolongational omega-limit set admits the alternative defi-
nition

J+(x) =
⋂

t≥0,U∈tXx

[t,+∞) · U

which has the advantage of showing that J+(x) is closed.
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Definition 2.12. The J+-limit set of a flow X is the following invariant
subset:

J+(X) =
⋃

x∈X

J+(x).

Remark 2.13. We note that for the set J+(x) Bhatia and Szego ([4]) use
the longer expression “first positive prolongational limit set” of x.

Now we introduce the basic notions of critical, periodic and Poisson stable
points.

Let X be a flow. A point x ∈ X is said to be a critical point (or fixed
point) if for every t ∈ R, t · x = x. We denote by C(X) the invariant subset
of critical points of X. A point x ∈ X is said to be periodic if there is t ∈ R,
t 6= 0 such that t · x = x. We denote by P (X) the invariant subset of periodic
points of X.

It is clear that any critical point is a periodic point. Then

C(X) ⊂ P (X).

If x ∈ X is a periodic point but not critical, then there is a real number
t 6= 0 such that t · x = x and t is called a period of x. The smallest positive
period t0 of x is called the fundamental period of x.

A point x ∈ X is said to be positively Poisson-stable if there is a net
tδ → +∞ such that tδ · x → x; that is, x ∈ Λ+(x). We will denote by
Poisson+(X) the invariant subset of positively Poisson-stable points of X.

The reader can easily check that

P (X) ⊂ Poisson+(X) ⊂ Λ+(X).

The notions above can be dualized by considering the ones of alpha-limit
sets Λ−(x), J−(x) of a point x, negatively Poisson-stable points , et cetera.
A point x is said to be Poisson-stable if x is positively Poisson-stable and
negatively Poisson-stable. To have a more coherent notation, in some cases,
we also use r-Poisson-stable instead of positively Poisson-stable and l-Poisson-
stable instead of negatively Poisson-stable. For a study of the properties of
omega-limits, alpha-limits, et cetera, we refer the reader to [4].

Remark 2.14. Observe that when X satisfies the first axiom of count-
ability (for instance, when X is metrizable) we can consider sequences instead
of nets in the definitions above.

Definition 2.15. A point x ∈ X is said to be a wandering point if there is
U ∈ tXx

and there is r0 ∈ R such that for every r ≥ r0, ϕr(U)∩U = ∅. Denote
byW (X) the open subset of wandering points ofX and by N(X) = X\W (X)
the closed invariant subset of non-wandering points. Hence a point x is non-
wandering if for every open neigbourhood U at x and for every r0 ∈ R, there
is r1 ≥ r0 such that ϕr1(U) ∩ U 6= ∅.
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Remark 2.16. The original definition of wandering point was given by
G.D. Birkhoff ([5]).

It is easy to check that x is non-wandering if and only if x ∈ J+(x) if and
only if x ∈ J−(x), see [4]. Therefore, we have:

Proposition 2.17. Let X be a flow, then

N(X) ⊂ J−(X) ∩ J+(X).

We use the notion of region of weak attraction and attraction given in [4],
but we remove the compactness condition:

Definition 2.18. Let X be a flow and let S ⊂ X . The region PA(S) of
pseudo-attraction of S is defined by

PA(S) = {x ∈ X | Λ+(x) ⊂ S}.

The region WA(S) of weak-attraction of S is defined by

WA(S) = {x ∈ X | Λ+(x) ∩ S 6= ∅}.

The region A(S) of attraction of S is defined by

A(S) = {x ∈ X | Λ+(x) ⊂ S,Λ+(x) 6= ∅}.

Obviously, A(S) ⊂ PA(S) ∩WA(S).

Definition 2.19. Let X be a flow and let S ⊂ T ⊂ X . It is said that S
is an attractor of T if T is a neighbourhood of S and T ⊂ A(S) and S is said
to be an attractor if A(S) is a neighbourhood of S.

In a dual way, using Λ−(x) one has the corresponding repelling notions.

3. Exterior Dynamical Systems

Given a flow (X,ϕ), a point x ∈ X and an open neighbourhood U ∈ tXx
,

we want to analyse the following questions: On the one hand, the study of
the limits Λ−(x),Λ+(x) and the prolongational limits J−(x), J+(x) gives an
‘end panoramic’ of the trajectories of x and neighbourhood points y ∈ U

looking backwards or forwards. On the other hand, the relative position of
the points ϕt(x) and ϕt(y) when t → −∞ or t → +∞ with respect to some
criterion (distance in a metric space, convergence to the same Freudenthal
end, et cetera) induces different stability or sensitivity notions with respect
to the initial position (t = 0) of the trajectories. All these properties can be
analysed by using the constructions and results that have been developed for
exterior spaces. The idea is quite simple: A flow is given by a continuous map
ϕ : R×X → X , and we can consider appropriate externologies on R×X and
on X such that ϕ : R × X → X becomes an exterior map. Using different
externologies on R × X we can study different dynamical properties related
to recurrence and omega limits of a dynamical system. In order to consider
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externologies on R ×X , we take an externology ǫ on R and a topology τ in
X such that τ is finer that the topology tX . In this work, we consider three
externologies on R, taking open neighbourhoods at−∞, open neighbourhoods
at +∞ and the cocompact externology. Regarding τ , we take τ the discrete
topology dX or τ = tX . However, many of the properties developed in this
work remain for more general externologies ǫ on R and topologies τ on X .

3.1. The category of (ǫ, τ)-exterior flows. In order to compare exterior
spaces with flows we introduce the notion of exterior flow , which is a hybrid
containing both the notions of an exterior space and of a flow. We use the
convention that the first time that a concept related to an exterior flow is
introduced is typed in bold italics.

We consider three externologies on R which are determined by the follow-
ing exterior basis (see Definition 2.1):

A basis for l is

B(l) = {(−∞,−n)|n ∈ N}.

l = {U |U is open and there is n ∈ N such that (−∞,−n) ⊂ U}.

A basis for r is

B(r) = {(n,+∞)|n ∈ N}.

r = {U |U is open and there is n ∈ N such that (n,+∞) ⊂ U}.

A basis for c = εc is

B(c) = {R \ [−n, n]|n ∈ N}.

c = {U |U is open and there is n ∈ N such that R \ [−n, n] ⊂ U}.

We denote the corresponding exterior spaces by R
l,Rr,Rc, respectively.

We note that in these three cases all the canonical translations (t → t + t0)
on R are exterior maps.

Let ǫ be an externology on R such that ǫ ∈ {l, r, c} and for a topological
spaceX = (X, tX) consider a topology τ ∈ {dX , tX}, where dX is the discrete
topology on X . Recall that using the procedure given in subsection 2.1,
the pair (ǫ, τ) induces a canonical externology ε(ǫ,τ)(R ×X) on the product
topological space R×X as follows:

N ∈ ε(ǫ,τ)(R×X) if N is an open subset of the product space R×X and
for every x ∈ X there is T x ∈ ǫ and Ux ∈ τx such that T x × Ux ⊂ N .

We note that

ε(c,τ)(R×X) = ε(l,τ)(R×X) ∩ ε(r,τ)(R×X)

and ε(ǫ,t)(R×X) ⊂ ε(ǫ,d)(R×X).
Recall that Rǫ×̄τX denotes the exterior space (R×X, ε(ǫ,τ)(R×X)) and

in case that τ = tX the notation can be reduced to R
ǫ×̄X (see subsection

2.1).
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Definition 3.1. Let X = (X, ε(X), tX) be an exterior space and suppose
that (ǫ, τ) ∈ {l, r, c}×{dX, tX}. An (ǫ, τ)-exterior flow is a continuous flow
ϕ : R×X → X such that

(i) ϕ : Rǫ×̄τX → X is exterior and,
(ii) for any t ∈ R, Ft : X×̄I → X , Ft(x, s) = ϕ(ts, x), s ∈ I, x ∈ X , is also

exterior.

An (ǫ, τ)-exterior flow morphism of (ǫ, τ)-exterior flows f : M → N

is a flow morphism such that f is exterior.

Denote by E(ǫ,τ)F the category of (ǫ, τ)-exterior flows and (ǫ, τ)-exterior
flow morphisms. When τ = tX or τ = dX we have the categories E(ǫ,t)F or
E(ǫ,d)F, respectively.

Remark 3.2. Observe that the second statement of the definition above
establishes that Ft is an exterior homotopy between idX and ϕt : X → X .

The following six cases will be analysed: (ǫ, τ) ∈ {l, r, c}× {dX , tX}. We
note that these six exterior spaces are related by the following diagram

R
l×̄dX R

c×̄dX R
r×̄dX

R
l×̄tX R

c×̄tX R
r×̄tX.

It is worth remarking that this diagram induces the following commutative
diagram of forgetful functors:

E(l,d)F E(c,d)F E(r,d)F

E(l,t)F E(c,t)F E(r,t)F.

We will use the following notation: if X = (X, ε(X), tX) is an exterior
space, then the underlying topological space (X, tX) will be denoted by Xt.

Since we are working with a new notion mixing the notions of a flow and
an exterior space, we always have the following canonical forgetful functors:

Given an (ǫ, τ)-exterior flow X = (X,φ) ∈ E(ǫ,τ)F, one also has a flow
Xt = (Xt, φ) ∈ F. This gives a forgetful functor:

(·)t : E
(ǫ,τ)F → F , X → Xt.

For a given (ǫ, τ)-exterior flow X = (X,φ) ∈ E(ǫ,τ)F, we also have that
X has the structure of an exterior space with externology ε(X), then there is
a canonical forgetful functor:

(·)ε : E(ǫ,τ)F → E , (X,φ) → Xε = (X, ε(X)).
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This allows us to apply many constructions and properties of exterior spaces
to (ǫ, τ)-exterior flows.

3.2. Exterior flows associated with a flow. The forgetful functor

(·)t : E
(ǫ,τ)F → F

has a left adjoint that can be constructed as follows:
Given a flow ϕ : R×X → X , an open N ∈ tX is said to be (ǫ, τ)-exterior

if for any x ∈ X there are T x ∈ ǫ and Ux ∈ τx such that ϕ(T x × Ux) ⊂ N .
It is easy to check that the family of (ǫ, τ)-exterior subsets is an externol-

ogy, that will be denoted by ε(ǫ,τ)(X), and ϕ is an (ǫ, τ)-exterior flow for the
exterior space X(ǫ,τ) = (X, ε(ǫ,τ)(X)).

We also note that, given a flow X , one has that ε(ǫ,t)(X) ⊂ ε(ǫ,d)(X) and
ε(c,τ)(X) = ε(l,τ)(X) ∩ ε(r,τ)(X).

Definition 3.3. Given a flow (X,ϕ) and (ǫ, τ) ∈ {l, r, c}×{dX, tX}, the
pair (X(ǫ,τ), ϕ) is said to be the (ǫ, τ)-exterior flow induced by (X,ϕ).

When there is no possibility of confusion, (X(ǫ,τ), ϕ) will be briefly de-
noted by X(ǫ,τ). It is easy to check that ε(ǫ,τ)(X) is the finest externology on
X that makes exterior the continuous map ϕ : Rǫ×̄τX → X . We also note
that if (X, ε(X), ϕ) is an (ǫ, τ)-exterior flow, one has that ε(X) ⊂ ε(ǫ,τ)(X).

The functor
(·)(ǫ,τ) : F → E(ǫ,τ)F,

which carries a flow X to the (ǫ, τ)-exterior flow X(ǫ,τ), permits us to apply
to any flow all the constructions developed for exterior flows.

Theorem 3.4. The functor (·)(ǫ,τ) : F → E(ǫ,τ)F is left adjoint to the
functor (·)t : E

(ǫ,τ)F → F. Moreover (·)t (·)
(ǫ,τ) = id and F can be considered

as a full subcategory of E(ǫ,τ)F via (·)(ǫ,τ).

Proof. Let X be in F and Y be in E(ǫ,τ)F. If f : X(ǫ,τ) → Y is a
morphism in E(ǫ,τ)F, then it is clear that f = ft : X = (X(ǫ,τ))t → Yt is
a morphism in F. Now if g : X → Yt is a morphism in F, suppose that
E ∈ ε(Y ). Given x ∈ X , since Y is an (ǫ, τ)-exterior flow, there are T g(x) ∈ ǫ

and Vg(x) ∈ τYg(x)
such that T g(x) ·Vg(x) ⊂ E. Since g : X → Yt is continuous,

it follows that g−1(Vg(x)) ∈ τXx
and T g(x) · g−1(Vg(x)) ⊂ g−1(E). Therefore

g−1(E) ∈ ε(ǫ,τ)(X). So g : X(ǫ,τ) → Y is (ǫ, τ)-exterior and gt = g.

4. Omega-limits of exterior flows

We consider the following notion of omega-limit for exterior flows:
Given a net tδ in R, if ǫ ∈ {l, c, r} we say that tδ is ǫ-divergent if for

every T ∈ ǫ there is δT such that tδ ∈ T for every δ ≥ δT . Note that tδ is
l-divergent if and only if tδ → −∞, tδ is c-divergent if and only if tδ → ∞ (in
the Alexandroff compactification) and tδ is r-divergent if and only if tδ → +∞.
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Definition 4.1. Let X be an (ǫ, τ)-exterior flow. Given x ∈ X , the
(ǫ, τ)-omega limit of x is the invariant subspace

Ω(ǫ,τ)(x) =
⋂

T∈ǫ,U∈τx

T · U.

Notice that y ∈ Ω(ǫ,τ)(x) if and only if there are nets tδ in R and xδ in X

such that tδ is ǫ-divergent, xδ → x in Xτ and tδ · xδ → y in Xt.
The (ǫ, τ)-omega limit of a subspace S ⊂ X is the following invariant

subset:

Ω(ǫ,τ)(S) =
⋃

x∈S

Ω(ǫ,τ)(x).

Notice that we have the following particular cases of omega-limits:

• Ω(l,d)(x) = Λ−(x), Ω(l,t)(x) = J−(x);
• Ω(r,d)(x) = Λ+(x), Ω(r,t)(x) = J+(x);
• Ω(c,d)(x) = Λ−(x) ∪ Λ+(x), Ω(c,t)(x) = J−(x) ∪ J+(x).

It is interesting to note that if we change Λ+(x) by Ω(ǫ,τ)(x) in Definition
2.18 of region of (pseudo, weak) attraction, we can introduce the notion of

region of (ǫ, τ)-(pseudo, weak) attraction A(ǫ,τ)(S) of S ⊂ X , (PA(ǫ,τ)(S),

WA(ǫ,τ)(S)).
The use of the notation Ω(ǫ,τ)(x) permits us to unify some common prop-

erties of omega-limits, prolongational limits, attractors and repellers (see sub-
section 2.2). For example, for S ⊂ X , the region of (ǫ, τ)-attraction of S is
given by

A(ǫ,τ)(S) = {x ∈ X | ∅ 6= Ω(ǫ,τ)(x) ⊂ S}.

In this case, one has that A(r,d)(S) = A(S) and A(l,d)(S) is the region of
repulsion of S.

5. Limit spaces, end spaces and basins of an exterior flow

5.1. Limit spaces and end spaces of an exterior flow. Using the forgetful
functor

(·)ε : E(ǫ,τ)F → E

and the functors L, L̄, π̌0, ˇ̄π0 : E → Top we have the corresponding composites
that will be equipped with the same notation:

L, L̄, π̌0, ˇ̄π0 : E
(ǫ,τ)F → Top.

Proposition 5.1. If X is an (ǫ, τ)-exterior flow, then:

(i) The spaces L(X), L̄(X) are invariant;
(ii) There are trivial induced flows on π̌0(X) and ˇ̄π0(X).
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Proof. (i) We have that L(X) = ∩E∈ε(X)E and L̄(X) = ∩E∈ε(X)E. It
is easy to check that for any r ∈ R, ϕr(E) ∈ ε(X) if and only if E ∈ ε(X).
Therefore

ϕr(L(X)) = ϕr(∩E∈ε(X)E) = ∩E∈ε(X)ϕr(E) = ∩E∈ε(X)E = L(X).

Now taking into account that ϕr(E) = ϕr(E), a similar result is obtained for
L̄(X).

(ii) For each r ∈ R, consider the exterior homotopy Fr : X×̄I → X ,
Fr(x, t) = ϕ(rt, x), from idX to ϕr. By Proposition 2.4, it follows that id =
π̌0(ϕr) and similarly id = ˇ̄π0(ϕr). Therefore the induced actions are trivial.

As a consequence of Proposition 5.1, one also has the corresponding
canonical functors

L, L̄, π̌0, ˇ̄π0 : E
(ǫ,τ)F → F.

5.2. The beginning and end of a trajectory. This subsection is devoted
to the functor π̌0. However similar notions and results are obtained for the
functor ˇ̄π0. We leave the formulation of the corresponding results to the
reader.

Let X be an (ǫ, τ)-exterior flow and suppose that X is τ -locally path-
connected (that is, (X, τ) is locally path-connected). Then, given p ∈ X

and E ∈ ε(X), there are T p ∈ ǫ and Up ∈ τ such that p ∈ Up, Up is path-
connected and T p ·Up ⊂ E. If ǫ ∈ {l, r} we can also suppose that T p is path-
connected, so T p · Up is path-connected and there is a unique ωǫ(p,E) path-
component of E such that T p · Up ⊂ ωǫ(p,E) ⊂ E. This gives τ -continuous
maps ωǫ(·, E) : X → π0(E), E ∈ ε(X). Note that if E1 ⊂ E2, we have a
commutative diagram:

X

ωǫ(·,E1) ωǫ(·,E2)

π0(E1) π0(E2).

Therefore, by the universal property of the inverse limit, there is an induced
map ωǫ : X → π̌0(X) making commutative the following diagram:

L(X)

e

X
ωǫ

π̌0(X).

If ǫ = c, then we can suppose that T p = T
p
l
∪ T p

r
has two path-connected

components, so that T p · Up = T
p
l
· Up ∪ T p

r · Up has two path-connected
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components and there are two unique path-components ωl(p,E), ωr(p,E) of
E such that

T
p
l
· Up ⊂ ωl(p,E) ⊂ E, T p

r
· Up ⊂ ωr(p,E) ⊂ E.

This gives τ -continuous maps ωl(·, E), ωr(·, E) : X → π0(E), E ∈ ε(X) and
induced maps ωl, ωr : X → π̌0(X) such that the following diagram commutes:

L(X)

(e,e)

X
(ωl,ωr)

π̌0(X)× π̌0(X).

Proposition 5.2. Let X be an (ǫ, τ)-exterior flow and suppose that X is
τ-locally path-connected.

(i) If ǫ = l, then ωl : X → π̌0(X) is τ-continuous.
(ii) If ǫ = r, then ωr : X → π̌0(X) is τ-continuous.
(iii) If ǫ = c, then (ωl, ωr) : X → π̌0(X)× π̌0(X) is τ-continuous.

5.3. Basins of an exterior flow.

Definition 5.3. Let X be an (ǫ, τ)-exterior flow and suppose that X is
τ -locally path-connected:

If ǫ ∈ {l, c}, denote

X(l,b) = ω−1
l

(b), b ∈ π̌0(X).

If ǫ ∈ {c, r} denote

X(r,b) = ω−1
r

(b), b ∈ π̌0(X)

and if ǫ = c denote

X(a,b) = (ωl, ωr)
−1((a, b)), (a, b) ∈ π̌0(X)× π̌0(X).

The invariant space X(l,b) will be called the l-basin at b, X(r,b) the r-
basin at b and X(a,b) the (l, r)-basin at (a, b).

The induced partitions of X in simpler flows

X =
⊔

b∈π̌0(X)

X(l,b), X =
⊔

b∈π̌0(X)

X(r,b), X =
⊔

(a,b)∈π̌0(X)×π̌0(X)

X(a,b)

will be called ωl-decomposition , ωr-decomposition and (ωl, ωr)-decompo-
sition of the exterior flow X , respectively.

Remark 5.4. Since the category of flows can be considered as a full
subcategory of this type of categories of exterior flows, the ωl-decomposition

X =
⊔

b∈π̌0(X)

X(l,b)
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can be considered as a generalization for a continuous flow of the decom-
position as a disjoint union of “unstable” submanifolds of a differentiable
flow. Dually, the ωr-decomposition divides a flow in “stable” subflows (see
[27–29,31]).

5.4. Representable, attracting and repelling end points of an exterior flow.
Recall that in Definition 2.3 the notion of e-representable end point has been
introduced for any Freudenthal end of an exterior space. In particular, we
also have this notion for exterior flows. Moreover, we can give the following
omega-representable notion for end points of exterior flows:

Definition 5.5. Let X be an (ǫ, τ)-exterior flow and suppose that X is
τ -locally path-connected.

If ǫ ∈ {l, r}, a Freundenthal end b ∈ π̌0(X) is said to be ωǫ-representable
if ω−1

ǫ (b) 6= ∅; and b is said to be (ωǫ\e)-representable if ω−1
ǫ (b)\e−1(b) 6= ∅.

If ǫ = c, given a pair of end points (a, b) ∈ π̌0(X) × π̌0(X), (a, b) is
said to be (ωl, ωr)-representable if X(a,b) = (ωl, ωr)

−1((a, b)) 6= ∅. An end
point a ∈ π̌0(X) is said to be (ωl, ωr)-representable if the pair (a, a) is
(ωl, ωr)-representable; finally a is said to be ((ωl, ωr) \ e)-representable if
(ωl, ωr)

−1((a, a)) \ e−1(a) 6= ∅.

Definition 5.6. Let X be an (ǫ, τ)-exterior flow and suppose that X is
τ -locally path-connected.

If ǫ = l, an end point b ∈ π̌0(X) is said to be a repelling end point if b
is ωl-representable and the l-basin X(l,b) is an open subset.

If ǫ = r, an end point b ∈ π̌0(X) is said to be an attracting end point
if b is ωr-representable and the r-basin X(r,b) is an open subset.

If ǫ = c, a pair of end points (a, b) ∈ π̌0(X) × π̌0(X) is said to be a
repelling-attracting pair if (a, b) is (ωl, ωr)-representable and the (l, r)-
basin X(a,b) is an open subset.

5.5. Limit flows, bar-limit flows and Freudenthal-end spaces of a flow. If
we consider the functor given in subsection 3.2

(·)(ǫ,τ) : F → E(ǫ,τ)F

and the functors developed in subsection 5.1,

L, L̄, π̌0, ˇ̄π0 : E
(ǫ,τ)F → F,

we can consider the composites

L(ǫ,τ) = L(·)(ǫ,τ), L̄(ǫ,τ) = L̄(·)(ǫ,τ), π̌
(ǫ,τ)
0 = π̌0(·)

(ǫ,τ), ˇ̄π
(ǫ,τ)
0 = ˇ̄π0(·)

(ǫ,τ)

that will be taken as functors from F to F.
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6. Limit flow of an exterior flow, periodic points and

agglomerative points

In this section we analyse the relation between exterior closed singletons
and periodic and agglomerative points.

6.1. Exterior (ǫ,d)-closed singletons and periodic points. In this subsec-
tion, for a point x in a flow X we see that the dynamic property of being a
non-periodic point can be reformulated by using exterior terminology by the
fact that X \{x} is an (ǫ,d)-exterior open subset. Moreover, the subflow of
periodic points is interpreted as the limit space of the exterior space X(ǫ,d).

Lemma 6.1. Let X be an (ǫ,d)-exterior flow and suppose that x ∈ X.
If x is a periodic point, then for every E ∈ ε(X), x ∈ E. Consequently,
P (X) ⊂ L(X).

Proof. Suppose that x is a periodic point. If E ∈ ε(X), then there is
T ∈ ǫ such that T · x ⊂ E. Since x is periodic, T · x = R · x; taking into
account that x ∈ R · x, we have that that x ∈ E.

Theorem 6.2. Let X be a T1 flow. If x ∈ X, then the following state-
ments are equivalent:

(i) x is a non-periodic point,
(ii) X \ {x} is an (ǫ,d)-exterior subset.

Proof. Suppose that x is a non-periodic point. Take y in X . If y is not
in the trajectory of x, then for every T ∈ ǫ, T · y ⊂ X \ {x}. If y is in the
trajectory of x, taking into account that x is not periodic, there is T ∈ ǫ such
that T · y ⊂ X \ {x}. Then X \ {x} is (ǫ,d)-exterior.

Conversely, suppose that x is a periodic point. Then, by Lemma 6.1
above, X \ {x} is not (ǫ,d)-exterior.

Theorem 6.3. Let X be a T1 flow. Then, L(ǫ,d)(X) = P (X) is precisely
the set of periodic points of X.

Proof. Let x ∈ X \P (X). By Theorem 6.2, X \ {x} is an (ǫ,d)-exterior
subset and this implies that x 6∈ L(ǫ,d)(X). Then, L(ǫ,d)(X) ⊂ P (X) and, by
Lemma 6.1, we have that L(ǫ,d)(X) = P (X).

Remark 6.4. As a consequence of this result, one has that for T1 flows
X the construction L(ǫ,d) is idempotent:

L(ǫ,d)L(ǫ,d)(X) = L(ǫ,d)(X).
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6.2. Exterior (ǫ, t)-closed singletons and agglomerative points. Recall
that in Definition 2.9 we have considered the omega-limit (Λ+-limit) set
Λ+(x) of a point x in a flow X and after Definition 4.1 we have seen that
Ω(r,d)(x) = Λ+(x).

In this subsection, for a point x in a flow X we see that the dynamic
property Λ+(x) = ∅ can be reformulated by using exterior terminology by the
fact that X \ {x} is an (l, t)-exterior open subset. Moreover, the subflow
{x ∈ X |Λ+(x) 6= ∅} is interpreted as the limit space of the exterior space
X(l,t).

We consider the following notion of agglomerative point for exterior flows:

Definition 6.5. Let X be an (ǫ, τ)-exterior flow. Given x ∈ X , x is said
to be an (ǫ, τ)-agglomerative point if

Ω(ǫ,τ)(x) 6= ∅.

We denote by Ag(ǫ,τ)(X) the invariant subspace of (ǫ, τ)-agglomerative points

of X . Note that Ag(ǫ,τ)(X) = A(ǫ,τ)(X) is the region of (ǫ, τ)-attraction of

X (see Definition 4.1). In particular, Ag(r,d)(X) = A(X) is the region of
attraction of X , see Definition 2.18. If X is a flow, given x ∈ X , x is said

an (ǫ, τ)-agglomerative point if x is (ǫ, τ)-agglomerative in X(ǫ,τ). Ag(ǫ,τ)(X)
denotes the subflow of (ǫ, τ)-agglomerative points of X .

Proposition 6.6. Let X be an (ǫ, τ)-exterior flow where ǫ ∈ {l, r}. If
x1 ∈ Ω(ǫ,d)(x0) and x2 ∈ Ω(ǫ,d)(x1), then x2 ∈ Ω(ǫ,d)(x0).

Proof. In this proof we suppose that ǫ = r. Similarly, one has an
analogous proof for ǫ = l.

Taking into account that x2 ∈ Ω(r,d)(x1), for each U ∈ tXx2
and t ≥ 0

there is rtU ∈ R+ such that rtU ≥ t and rtU · x1 ∈ U . Since x1 ∈ Ω(r,d)(x0),
we also have that for each V ∈ tXx1

and s ≥ 0 there is rsV ∈ R+ such that
rsV ≥ s and rsV · x0 ∈ V .

Given U ∈ tXx2
and t ≥ 0, since rtU · x1 ∈ U and the flow is continuous,

there is V t
U ∈ tXx1

such that rtU · V t
U ⊂ U . For V t

U ∈ tXx1
and s = 0, there

are r0
V t
U

∈ R+ such that r0
V t
U

· x0 ∈ V t
U . This implies that

(rtU + r0V t
U
) ≥ t+ 0 = t

and
(rtU + r0V t

U
) · x0 = rtU · (r0V t

U
· x0) ∈ rtU · V t

U ⊂ U.

Therefore x2 ∈ [t,+∞) · x0 for every t ≥ 0, so x2 ∈ Ω(r,d)(x0).

For the following results we use the notation −l = r, −r = l and −c = c.

Proposition 6.7. Let X be an (ǫ, t)-exterior flow. If x1 ∈ Ω(ǫ,t)(x0),
then x0 ∈ Ω(−ǫ,t)(x1).
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Proof. Suppose that there are nets xδ and tδ such that xδ → x0, tδ is
ǫ-divergent and tδ · xδ → x1. Then, we have that −tδ is (−ǫ)-divergent and
(−tδ) · (tδ · xδ) → x0. Therefore x0 ∈ Ω(−ǫ,t)(x1).

Corollary 6.8. Let X be a flow. Then

Ag(−ǫ,d)(X) ⊂ Ag(−ǫ,t)(X) ⊂ Ω(ǫ,t)(X).

Proof. Given x ∈ X , we have that Ω(−ǫ,d)(x) ⊂ Ω(−ǫ,t)(x). If ∅ 6=
Ω(−ǫ,d)(x), then ∅ 6= Ω(−ǫ,t)(x). This implies that

Ag(−ǫ,d)(X) ⊂ Ag(−ǫ,t)(X).

Now, take x ∈ Ag(−ǫ,t)(X), then Ω(−ǫ,t)(x) 6= ∅. Take y ∈ Ω(−ǫ,t)(x), by
Proposition 6.7, x ∈ Ω(ǫ,t)(y) ⊂ Ω(ǫ,t)(X). Therefore, x ∈ Ω(ǫ,t)(X).

Theorem 6.9. Let X be a T1 flow. Then the following statements hold:

(i) Given x, y ∈ X, there is an open neighbourhood Vy at y and there is

T ∈ ǫ such that x 6∈ T · Vy if and only if y 6∈ Ω(−ǫ,d)(x),

(ii) X \ {x} is an (ǫ, t)-exterior subset if and only if Ω(−ǫ,d)(x) = ∅.

Proof. (i) Suppose that there is an open neighbourhood Vy at y and

there is T ∈ ǫ such that x 6∈ T · Vy . If we assume that y ∈ Ω(−ǫ,d)(x), then
there is an (−ǫ)-divergent net tδ such that tδ · x ∈ Vy and −tδ ∈ T for every
δ ≥ δ0. If we denote vδ0 = tδ0 · x ∈ Vy , one has that x = (−tδ0) · vδ0 ∈ T · Vy,
which is a contradiction. Therefore, y 6∈ Ω(−ǫ,d)(x).

Conversely, suppose that y 6∈ Ω(−ǫ,d)(x) and for every Vy and every T ∈ ǫ,
x ∈ T · Vy. Note that

∆ = {(T, Vy) | t ∈ ǫ, Vy ∈ tXy
}

is a directed set, δ = (T, Vy) ≤ δ′ = (T ′, V ′
y)} if T ′ ⊂ T and V ′

y ⊂ Vy . Then
there are an ǫ-divergent net (tδ) and a net (vδ) such that vδ → y and tδ ·vδ = x.
Thus the net (−tδ) verifies that (−tδ) · x = vδ → y. Therefore y ∈ Ω(−ǫ,d)(x)
which is a contradiction. Consequently, there is an open neigbourhood Vy at
y and there is T ∈ ǫ such that x 6∈ T · Vy.

(ii) follows from (i).

Corollary 6.10. If X is a T1 flow, then

L(ǫ,t)(X) = Ag(−ǫ,d)(X).

Proof. If Ω(−ǫ,d)(x) = ∅, then, by Theorem 6.9 (ii), X \ {x} is an (ǫ, t)-
exterior subset and this implies that x 6∈ L(ǫ,t)(X). If x 6∈ L(ǫ,t)(X), then
there is an (ǫ, t)-open subset E such that x 6∈ E. Then, E ⊂ X \ {x}. Since
X is T1, we have that X \ {x} is an (ǫ, t)-exterior subset. By Theorem 6.9
(ii), it follows that Ω(−ǫ,d)(x) = ∅.
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Corollary 6.11. If X is a T1 flow, then

(i) L(l,t)(X) = {x ∈ X |Ω(r,d)(x) 6= ∅} = Ag(r,d)(X),

(ii) L(r,t)(X) = {x ∈ X |Ω(l,d)(x) 6= ∅} = Ag(l,d)(X),
(iii) L(c,t)(X) = L(l,t)(X) ∪ L(r,t)(X).

Corollary 6.12. If X is a T1 flow, then

L(ǫ,t)(X) ⊂ Ω(ǫ,t)(X).

Proof. It follows from Corollary 6.8 and Corollary 6.10.

Corollary 6.13. Let X be a T1 compact flow. Then,

L(l,t)(X) = L(r,t)(X) = L(c,t)(X) = X.

Proof. It follows from the property of finite intersection of the compact
flow X and Corollary 6.10.

Theorem 6.14. Let X be a T2 flow. Suppose that for every x ∈ L(ǫ,t)(X),
Ω(−ǫ,d)(x) is compact. Then,

(i) For every x ∈ L(ǫ,t)(X), ∅ 6= Ω(−ǫ,d)(x) ⊂ L(ǫ,t)(X);
(ii) L(ǫ,t)(L(ǫ,t)(X)) = L(ǫ,t)(X);
(iii) Ω(−ǫ,d)(X) ⊂ L(ǫ,t)(X) and the region of (−ǫ,d)-attraction of

Ω(−ǫ,d)(X) is L(ǫ,t)(X).

Proof. (i) Suppose x ∈ L(ǫ,t)(X) and take y ∈ Ω(−ǫ,d)(x). Since
Ω(−ǫ,d)(x) is a closed compact invariant subset of X , one has that

{T · y | T ∈ (−ǫ)}

is a family of closed subsets of Ω(−ǫ,d)(x) with non-empty intersection⋂
T∈(−ǫ) T · y = Ω(−ǫ,d)(y). Note that Ω(−ǫ,d)(y) ⊂ Ω(−ǫ,d)(x). (ii) and (iii)

follow from (i) and Corollary 6.10.

Given an exterior space X = (X, ε(X)), B is a neighbourhood basis of
ε(X) if for every E ∈ ε(X) there is K ∈ B such that K ⊂ E and its interior
Int(K) ∈ ε(X).

Definition 6.15. An exterior space X = (X, ε(X)) is said to be locally
compact at infinity (or ε(X) is locally compact at infinity) if ε(X) has a
neighbourhood basis B such that every K ∈ B is a compact subset.

Corollary 6.16. Let X be a T2 flow. If ε(r,d)(X) is locally compact at
infinity, then

(i) L(l,t)(X) = X = A(X),
(ii) Ω(r,d)(X) is an attractor of X.
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Proof. Take x ∈ X . Since X(r,d) is locally compact at infinity, there are
a compact subset K of X and T ∈ r such that T ·x ⊂ Int(K) ⊂ K. Note that
K is a closed subset because X is T2, and therefore T · x ⊂ K. Applying the
finite intersection property we obtain that Ω(r,d)(x) is a non-empty compact
subset.

Corollary 6.17. Let X be a T2 flow. If ε(c,d)(X) is locally compact at
infinity, then

(i) L(l,t)(X) = X = L(r,t)(X),
(ii) Ω(r,d)(X) is an attractor of X,
(iii) Ω(l,d)(X) is a repeller of X.

In the following, we use the notation R+ = [0,+∞) and R− = (−∞, 0].

Definition 6.18. Let X be a flow. A point x ∈ X is said to be positively
Lagrange-stable if R+ · x is compact, x is said to be negatively Lagrange-stable
if R− · x is compact and x is said Lagrange-stable if x is positively and neg-
atively Lagrange-stable (note that in this case the closure of the trajectory
is compact). A flow X is said to be positively (resp., negatively) Lagrange-
stable if for every x ∈ X , x is positively Lagrange-stable (resp., x is negatively
Lagrange-stable). X is said to be Lagrange-stable if X is positively and neg-
atively Lagrange-stable.

Corollary 6.19. Let X be a T2 flow. If X is positively Lagrange-stable,
then

(i) L(l,t)(X) = X,
(ii) Ω(r,d)(X) is an attractor of X.

Remark 6.20. Dually, one has that if ε(l,d)(X) is locally compact at
infinity or X is negatively Lagrange-stable, then Ω(r,d)(X) is a repeller of X .
We also have that if ε(c,d)(X) is locally compact at infinity or X is Lagrange-
stable, then Ω(c,d)(X) is an attractor and a repeller of X .

Remark 6.21. For a Morse function ([25]) f : X → R, where X is a
compact T2 Riemannian manifold, one has that the opposite of the gradient
of f induces a flow with a finite number of critical points. In this case, we
have that X is locally path-connected and the (ǫ, τ)-exterior flow X(ǫ,τ) is
locally compact at infinity. Then, one has that

L(ǫ,d)(X) = Ω(ǫ,d)(X) = P (X) = C(X), L(ǫ,t)(X) = Ω(ǫ,t) = X

and L(ǫ,d)(X) is an attractor and a repeller of X .
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7. Bar-limit space of an exterior flow, omega-limits and almost

periodic points

7.1. Bar-limit space of an exterior flow and omega-limits. We recall that
the omega-limit set Λ+(x) and the prolongational omega-limit set J+(x) of a
point x in a flow X have been defined in Definition 2.9 and Definition 2.11,
respectively, and after Definition 4.1 we have seen that Ω(r,d)(x) = Λ+(x),
Ω(r,t)(x) = J+(x). Recall the notation Ω(ǫ,τ)(X) = ∪x∈XΩ(ǫ,τ)(x).

In this subsection we prove that under some topological conditions, the
subflow closure of Ω(r,d)(X) is the bar-limit space of the exterior space
X(r,d) and similarly the subflow closure of Ω(r,t)(X) is the bar-limit space
of the exterior space X(r,t). Analogous results are obtained for

Ω(l.d)(x) = Λ−(x), Ω(l,t)(x) = J−(x).

Then, these relevant subflows can be described as bar-limit spaces of
exterior spaces.

Lemma 7.1. If X is an (ǫ, τ)-exterior flow, then

Ω(ǫ,τ)(X) ⊂ L̄(X).

Proof. If E ∈ ε(X), for every x ∈ X there exist T ∈ ǫ and U ∈ τx such
that T · U ⊂ E. Taking the closure, we have T · U ⊂ E. This implies that
Ω(ǫ,τ)(x) ⊂ L̄(X) for every x ∈ X and therefore Ω(ǫ,τ)(X) ⊂ L̄(X).

Proposition 7.2. If X is a flow and ǫ ∈ {l, c, r}, then

(i) Ω(ǫ,d)(x) ⊂ Ω(ǫ,t)(x), for every x ∈ X,
(ii) the following diagram is commutative

Ω(ǫ,d)(X) L̄(ǫ,d)(X)

Ω(ǫ,t)(X) L̄(ǫ,t)(X)

where all the arrows are inclusions.

Proof. (i) It follows from the fact that for any U ∈ τx and T ∈ ǫ,
T · x ⊂ T · U . The rest of the proof is straightforward.

In the following results, it is interesting to take into account that if X =
(X, ε(X)) is an (ǫ, τ)-exterior flow, then ε(X) ⊂ ε(ǫ,τ)(Xt).

Proposition 7.3. Let X = (X, ε(X)) be an (ǫ, τ)-exterior flow and x ∈
X. Then there exists V ∈ (tX)x such that X \ V ∈ ε(X) if and only if
x 6∈ L̄(X).
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Proof. Suppose that there exists V ∈ (tX)x such that X \ V ∈ ε(X).

Since V ∩ (X \ V ) = ∅, then x 6∈ X \ V . Since X \ V ∈ ε(X), it follows that

x 6∈
⋂

E∈ε(X)

E = L̄(X).

Conversely, if x 6∈ L̄(X), there is E ∈ ε(X) such that x 6∈ E; then taking
V = X \ E =Int(X \ E), we have that V ∈ (tX)x and E ⊂ X \ V , so

X \ V ∈ ε(X).

Lemma 7.4. Let X = (X, ε(X)) be an (ǫ, τ)-exterior flow and x ∈ X. If

there exists V ∈ (tX)x such that X \ V ∈ ε(X), then x 6∈ Ω(ǫ,τ)(X).

Proof. Suppose there exists V ∈ (tX)x such that X \ V ∈ ε(X); then
by Proposition 7.3, it follows that x 6∈ L̄(X). By Lemma 7.1, one has that

Ω(ǫ,τ)(X) ⊂ Ω(ǫ,τ)(X) ⊂ L̄(X),

so x 6∈ Ω(ǫ,τ)(X).

Lemma 7.5. Let X be a locally compact regular flow. If x 6∈ Ω(ǫ,τ)(X),
then there exists V ∈ (tX)x such that X \ V is (ǫ, τ)-exterior.

Proof. Suppose that x 6∈ Ω(ǫ,τ)(X). Since X is locally compact, there
is a compact neighbourhood K at x such that K ∩Ω(ǫ,τ)(X) = ∅. Take y ∈ X

and suppose that for every open neighbourhood U at y and for every T ∈ ǫ,
(T · U) ∩ K 6= ∅. Therefore there are a net yδ → y and an ǫ-divergent net
tδ such that tδ · yδ ∈ K. Since K is compact, there are a subnet yδi →
y and a divergent subnet tδi such that tδi · yδi → u ∈ K. This implies
that u ∈ K ∩ Ω(ǫ,τ)(y) ⊂ K ∩ Ω(ǫ,τ)(X), which contradicts the fact that
K ∩ Ω(ǫ,τ)(X) = ∅. Then, for every y ∈ X there are U ∈ tXy

and T ∈ ǫ such

that T · U ∩K = ∅. Since X is regular, there is V ∈ tXx
such that V ⊂ K;

then X \ V is (ǫ, τ)-exterior.

In this way, we obtain the following relation between bar-limits and
omega-limits:

Corollary 7.6. If X is a locally compact regular flow, then

L̄(ǫ,τ)(X) = Ω(ǫ,τ)(X).

Proof. By Lemma 7.1, one has Ω(ǫ,τ)(X) ⊂ L̄(ǫ,τ)(X). Besides, if x 6∈

Ω(ǫ,τ)(X), by Lemma 7.5, there exists V ∈ tXx
such that X \ V is (ǫ, τ)-

exterior. By Proposition 7.3 it follows that x 6∈ L̄(ǫ,τ)(X).
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We note that some of the main results (Theorem 6.13 and Corollary 6.14)
proved in [19] are consequences of Corollary 7.6. Moreover, if we denote

Poissonl(X) = Poisson−(X),

Poissonr(X) = Poisson+(X),

Poissonc(X) = Poisson+(X) ∪ Poisson−(X),

we obtain the following results:

Corollary 7.7. If X is a locally compact T3 flow, then

(i) L(ǫ,d)(X) = P (X) ⊂ Poissonǫ(X) ⊂ Ω(ǫ,d)(X) ⊂ Ω(ǫ,d)(X) =
L̄(ǫ,d)(X),

(ii) L(ǫ,t)(X) = Ag(−ǫ,d)(X) ⊂ Ag(−ǫ,t)(X) ⊂ Ω(ǫ,t)(X) ⊂ Ω(ǫ,t)(X) =
L̄(ǫ,t)(X).

Proof. (i) It follows from Theorem 6.3 and Corollary 7.6.
(ii) It is a consequence of Corollary 6.8, Corollary 6.10 and Corollary 7.6.

Remark 7.8. IfX is a locally compact T3 flow, then the following diagram
is commutative, where all the arrows are inclusions:

Ag(r,d)(X) Ag(c,d)(X) Ag(l,d)(X)

L(l,t)(X) L(c,t)(X) L(r,t)(X)

Ag(r,t)(X) Ag(c,t)(X) Ag(l,t)(X)

Ω(l,t)(X) Ω(c,t)(X) Ω(r,t)(X)

Ω(l,t)(X) Ω(c,t)(X) Ω(r,t)(X)

L̄(l,t)(X) L̄(c,t)(X) L̄(r,t)(X)

This diagram relates (ǫ,d)-agglomerative points, (−ǫ, t)-limits, (ǫ, t)-ag-
glomerative points, prolongational limits and (−ǫ, t)-bar-limits.
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Remark 7.9. Given a flow X and x ∈ X , we can say that x is (ǫ, τ)-
dispersive if Ω(ǫ,τ)(x) = ∅. We point out that X\Ag(ǫ,τ)(X) is the set of (ǫ, τ)-
dispersive points of X . For τ = tX and ǫ = r, we can apply Theorems 1.8 and
2.6 in Chapter IV of [4] to prove that, under suitable conditions,X\Ag(ǫ,τ)(X)
is a parallelizable subflow and X\L(−ǫ,τ)(X) is an open parallelizable subflow.

Remark 7.10. We have seen in Remark 6.4 and Theorem 6.14 that the
functors L(ǫ,τ) are idempotent under some topological conditions. In general
the idempotent property for bar-limits L̄ = L̄(ǫ,τ) could be more difficult to
prove. However, we can always consider for the ordinals 1, 2, · · · , α0, α0+1, · · ·
the corresponding injective maps:

· · · → L̄α0+1 → L̄α0 → · · · → L̄2 → L̄

where L̄β+1(X) = L̄(L̄β(X)) and if β is a limit ordinal L̄β(X) =
⋂

α<β L̄
α(X).

It is clear that for any flow X there is an ordinal β such that

L̄β+1(X) = L̄β(X).

7.2. Limits, bar-limits and (ǫ, τ)-periodic points.

Definition 7.11. Let (X, ε(X)) be an (ǫ, τ)-exterior flow. A point x ∈ X

is said to be (ǫ, τ)-periodic if for every U ∈ tXx
, for every T ∈ ǫ and for every

V ∈ τx, (T · V )∩U 6= ∅. Denote by P (ǫ,τ)(X) the τ -closed subset of points of
X which are (ǫ, τ)-periodic.

Note that x is an (ǫ, τ)-periodic point if and only if x ∈ Ω(ǫ,τ)(x). Then,
P (ǫ,τ)(X) ⊂ Ω(ǫ,τ)(X).

If X is a flow, given x ∈ X , x is an (ǫ, τ)-periodic point if x is an (ǫ, τ)-
periodic point inX(ǫ,τ). P (ǫ,τ)(X) denotes the subflow of (ǫ, τ)-periodic points
of X .

Example 7.12. Let X = R with the topology

tX = {(t,+∞)|t ∈ R} ∪ {∅, X}.

Consider the flow

ϕ : R×X → X, ϕ(r, s) = r + s.

Now it is easy to check that every s ∈ X is an (r,d)-periodic point and X

does not have (l,d)-periodic points.

Lemma 7.13. Let X be a flow and x ∈ X. Then, x is (l, t)-periodic if
and only if x is (r, t)-periodic if and only x is (c, t)-periodic if and only if x
is a non-wandering point.

Proof. First, we prove that a non-(l, t)-periodic point is a wandering
point: Indeed, suppose that x is a non-(l, t)-periodic point; then there is
U ∈ tXx

and there is T ∈ l such that (T · U) ∩ U = ∅. Take r′0 ∈ R such
that (−∞, r′0] ⊂ T ; then, for every r′ ≤ r′0, ϕr′(U) ∩ U = ∅. Since ϕr′ is
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a homeomorphism, it follows that U ∩ ϕ−r′(U) = ∅. Taking r0 = −r′0 one
has that for r ≥ r0, ϕr(U) ∩ U = ∅. Therefore x is a wandering point. The
converse and other implications can be proved similarly.

Consequently, one has that for any flow X :

N(X) = P (l,t)(X) = P (c,t)(X) = P (r,t)(X).

Proposition 7.14. Suppose that X is a flow. Then,

(i) P (X) ⊂ P (l,d)(X) ∩ P (r,d)(X),
(ii) P (c,d)(X) = P (l,d)(X) ∪ P (r,d)(X),
(iii) P (ǫ,d)(X) = Poissonǫ(X),
(iv) P (ǫ,d)(X) ⊂ P (ǫ,t)(X),
(v) P (ǫ,t)(X) = N(X).

Proof. (i) is easy to check. To prove (ii), suppose that x is (c,d)-
periodic and x is not (l,d)-periodic. Since x is not (l,d)-periodic, if U is an
open neighbourhood at x and T ∈ r, there are T ′ ∈ l and U ′ ∈ tXx

, satisfying
that U ′ ⊂ U and (T ′ · x) ∩U ′ = ∅. Taking into account that T ′′ = T ′ ∪ T ∈ c
and x is (c,d)-periodic, one has that (T ′′ · x) ∩ U ′ 6= ∅. This implies that
(T · x) ∩ U 6= ∅; then x is (r,d)-periodic. Applying Lemma 7.13, we obtain
(v) and the rest of the proof is straightforward.

Remark 7.15. For a flow on a compact metric space, we have that the
recurrent points in the sense of Birkoff (see Remark 3.6 of Chapter III in [4])
are (c,d)-periodic points.

Proposition 7.16. Suppose that X is a regular flow. If a point x is
not (ǫ, t)-periodic, then there is V ∈ tXx

such that X \ V is (ǫ,d)-exterior.
Moreover, there is T ∈ ǫ such that

(T · V ) ⊂ X \ V .

Proof. If a point x is not (ǫ, t)-periodic, then there is an open neigh-
bourhood U at x and there is T ∈ ǫ such that (T · U) ∩ U = ∅. Since X is
regular, there is V ∈ tXx

such that x ∈ V ⊂ V ⊂ U . Then T · V ⊂ X \ V .
Let us check that X \ V is (ǫ,d)-exterior:

Indeed, for a given y ∈ X , if (R · y)∩U 6= ∅, then there is r ∈ R such that
r · y ∈ U . Since (T · U) ∩ U = ∅, it follows that (r + T ) · (−r · U) ∩ U = ∅.
Taking T y = r + T and Uy = −r · U , we have that (T y · Uy) ∩ U = ∅. This
implies that

T y · y ⊂ T y · Uy ⊂ X \ V .

Otherwise, one has that (R · y) ∩ U = ∅. Therefore R · y ⊂ X \ V .
Taking into account the definition of (ǫ,d)-exterior, it follows that X \ V is
(ǫ,d)-exterior.
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Theorem 7.17. If X is a regular flow, then

L̄(ǫ,d)(X) ⊂ N(X).

Proof. By part (v) of Proposition 7.14, P (ǫ,t)(X) = N(X). By Proposi-
tion 7.16, if x 6∈ P (ǫ,t)(X), there is V ∈ tXx

such that X \V is (ǫ,d)- exterior.
This implies that x 6∈ L̄(ǫ,d)(X).

Remark 7.18. If X is a T3 flow, then the following diagram is commu-
tative, where all the arrows are inclusions:

P (X) P (X) P (X)

P (l,d)(X) P (c,d)(X) P (r,d)(X)

Ω(l,d))(X) Ω(c,d)(X) Ω(r,d)(X)

L̄(l,d)(X) L̄(c,d)(X) L̄(r,d)(X)

P (l,t)(X) P (c,t)(X) P (r,t)(X) = N(X)

Ω(l,t)(X) Ω(c,t)(X) Ω(r,t)(X)

L̄(l,t)(X) L̄(c,t)(X) L̄(r,t)(X)

This diagram relates positively (negatively) Poisson-stable points, omega-
limits, (ǫ,d)-bar-limits, non-wandering points, first prolongational limits and
(ǫ, t)-bar-limits.

Theorem 7.19. If X is a T3 locally compact flow and every non-
wandering point is a Lagrange-stable point, then the following diagram is com-

mutative, where all the arrows are inclusions (and we also have Ω(ǫ,τ)(X) =
L̄(ǫ,τ(X)):
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L(l,d)(X) L(c,d)(X) L(r,d)(X) = P (X)

P (l,d)(X) P (c,d)(X) P (r,d)(X)

Ω(l,d)(X) Ω(c,d)(X) Ω(r,d)(X)

L̄(l,d)(X) L̄(c,d)(X) L̄(r,d)(X)

N(X) N(X) N(X)

L(l,t)(X) ∩ L(r,t)(X) L(c,t)(X) L(l,t)(X) ∩ L(r,t)(X)

Ω(l,t)(X) ∩ Ω(r,t)(X) Ω(c,t)(X) Ω(l,t)(X) ∩ Ω(r,t)(X)

L̄(l,t)(X) ∩ L̄(r,t)(X) L̄(c,t)(X) L̄(l,t)(X) ∩ L̄(r,t)(X)

Proof. Notice that the results of Remark 7.18 can be completed by

using Corollary 7.6 to obtain that Ω(ǫ,τ)(X) = L̄(ǫ,τ)(X). Moreover, from
the condition that every non-wandering point is Lagrange-stable, applying
Corollary 6.19 we also have that N(X) ⊂ L(l,t)(X) ∩ L(r,t)(X).

Remark 7.20. We note that if X is a T2 compact flow, then X is a T3
locally compact and every point of X is a Lagrange-stable point. In this case
we have that X = L(ǫ,t)(X) = Ω(ǫ,t)(X) = L̄(ǫ,t)(X) and all the subflows of
the last three rows of diagram above are equal to X .

8. Relations between limit spaces and Freudenthal end spaces

Given a flow X , for (ǫ, τ) ∈ {l, r, c}×{d, t} the corresponding (ǫ, τ)-limit
and (ǫ, τ)-end spaces are related by the following commutative diagram:
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L(l,d)(X) L(c,d)(X) L(r,d)(X)

π̌
(l,d)
0

(X) π̌
(c,d)
0

(X) π̌
(r,d)
0

(X)

L(l,t)(X) L(c,t)(X) L(r,t)(X)

π̌
(l,t)
0

(X) π̌
(c,t)
0

(X) π̌
(r,t)
0

(X)

We have a similar diagram for (ǫ, τ)-bar-limit and (ǫ, τ)-bar-end spaces.
We note that this diagram gives decompositions of the different limits sub-

flows as disjoint union of the fibres of the different canonical maps. Moreover,
these various sets of Freudenthal ends can be used to divide the global flow as
a union of disjoint basins associated with the end points of these Freudenthal
sets.

It is interesting to observe the relationship between the limit of sets of
path-components of exterior open subsets of an externology and the set of
connected components of its limit. We can apply the properties of exterior
spaces proved in Theorem 3.17 in [19] to the externologies ε(ǫ,d)(X) (resp.,
ε(ǫ,t)(X)) of a flowX to establish an isomorphism between the set of connected
components of periodic points (resp., agglomerative points) and the profinite
spaces of Freudenthal ends. Consequently, we have:

Corollary 8.1. Let X be a non-empty flow and suppose that X is a con-
nected, locally path-connected space and X(ǫ,τ) is locally compact at infinity.
Then,

(i) L(ǫ,τ)(X) = L̄(ǫ,τ)(X) is compact and π̌
(ǫ,τ)
0 (X) = ˇ̄π0

(ǫ,τ)
(X),

(ii) the canonical map L(ǫ,τ)(X) → π̌
(ǫ,τ)
0 (X) is surjective (i.e., any

Freudenthal end is representable),

(iii) π̌
(ǫ,τ)
0 (X) is a profinite compact space,

(iv) if a ∈ π̌
(ǫ,τ)
0 (X), then L

(ǫ,τ)
a (X) is a non-empty continuum,

(v) if τ = tX , then π̌
(ǫ,t)
0 (X) = {∗} has only one end and

L
(ǫ,t)
∗ (X) = L(ǫ,t)(X) = L̄

(ǫ,t)
∗ (X)

is a non-empty continuum.

Given a topological space Y , we denote by c(Y ) the set of connected
components of Y . Note that as a consequence of Corollary 8.1 we have:

Corollary 8.2. Let X be a non-empty flow and suppose that X is a con-
nected, locally path-connected space and X(ǫ,τ) is locally compact at infinity.
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Then,

c(L(ǫ,τ)(X)) ∼= π̌
(ǫ,τ)
0 (X).

9. Conclusions and further work

In this paper we have seen that there are very nice connections between
concepts of the theory of exterior spaces and the theory of continuous flows.
These facts permit us to apply constructions and properties developed for
exterior spaces to the study of dynamical systems.

On the one hand, for an exterior space, we have, among others, the fol-
lowing notions and constructions:

• notion of open and closed exterior subsets (Definition 2.1),
• the limit space (Definition 2.2),
• the bar-limit space (Definition 2.2),
• the set (or space) of Freudenthal end points (Subsection 2.1),
• the set (or space) of Freudenthal bar-end points (Subsection
2.1),

• the notion of locally compact at infinity (Definition 6.15),
• higher homotopy invariant of exterior spaces ([12,21]) (Steen-
rod, Čech and Brown-Grossmann groups, see [10]).

On the other hand, for a continuous flow, we have common dynamical
notions as the following:

• the omega-limit of a given point and the omega-limit of a subset of
points (Definition 2.9),

• the first prolongational limit space of a given point and the first prolon-
gational limit space of a subset of points (Definition 2.11 and Remark
2.13),

• periodic point (Subsection 2.2),
• positively (negatively) Poisson-stable point (Subsection 2.2),
• non wandering point (Definition 2.15),
• the region of attraction of a subset (Definition 2.18),
• attractor of a region (Definition 2.19),
• decomposition of a flow as disjoint union of basins (Definition 5.3),
• positively (negatively) agglomerative point (Definition 6.5),
• positively (negatively) Lagrange-stable point (Definition 6.18),
• dispersive and parallelizable flows (Remark 7.9), et cetera.

In our study we have found many interesting results relating the exterior
notions and constructions given in the first list and the dynamic notions given
in the second list. For example:

• Theorem 6.14 proves that the (−ǫ, t)-limit of a T2 flow is the region
of attraction of the (ǫ,d)-omega limit.
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• Theorem 7.19 summarizes many of the relations between the sub-
flows associated to canonical exterior constructions and the
more important subflows of a continuous dynamical system. In this
Theorem we give some important relationships between (ǫ,d)-limit,
(ǫ,d)-bar-limits, (ǫ, t)-limits, (ǫ, t)-bar limits and periodic points,
Poison-stable points, omega-limits, non-wandering points, agglomera-
tive points and first prolongational limits.

In addition, for a continuous flowX , the following important relationships
and results have been proved in this paper:

• Given a point x of a T1 flow X , {x} is an (ǫ,d)-closed subset if and
only if x is a non-periodic point (Theorem 6.2);

• Given x ∈ X , {x} is an (ǫ, t)-closed subset if and only if x is not a
(−ǫ,d)-agglomerative point (Theorem 6.9 and Definition 6.5);

• For ǫ ∈ {l, c, r}, the (ǫ,d)-limit of a T1 flow is the subset of periodic
points (Theorem 6.3);

• For ǫ ∈ {l, c, r}, the (ǫ, t)-limit of a T1 flow is the subset of (−ǫ,d)-
agglomerative points of X (Corollary 6.10);

• Results about the relation of the locally compact at infinity con-
dition and attractors and repellers (Corollaries 6.16, 6.17 and Remark
6.20);

• Properties of (l, t)-limit of a flow and the positively Lagrange-stable
condition for a flow (Corollary 6.19);

• The (ǫ,d)-bar-limit of a flow as the closure of the omega-limit of the
flow (Corollary 7.6);

• The (ǫ, t)-bar-limit of a flow as the closure of the first prolongational
limit of the flow (Corollary 7.6);

• Remark 7.8 contains a diagram which relates (ǫ,d)-agglomerative
points, (−ǫ, t)-limits, (ǫ, t)-agglomerative points, prolongational lim-
its and (ǫ, t)-bar-limits;

• The complement of the (ǫ, t)-limit of a flow and dispersive and paral-
lelizable subflows (Remark 7.9);

• For a T3 flow, the diagram given in Remark 7.18 relates positively (neg-
atively) Poisson-stable points, omega-limits, (ǫ,d)-bar-limits, non-
wandering points, first prolongational limits and (ǫ, t)-bar-limits;

• Freudenthal ends of an exterior space and decomposition of a
flow as disjoint union of basins (Proposition 5.2 and Definition 5.3);

• The condition of locally compact at infinity is related to the de-
composition of set of periodic points or the set of agglomerative points
as disjoint union of continuum components (Corollary 8.1);

• The isomorphism obtained (under the conditions of Corollary 8.2) be-
tween the space of connected components of the subflow of periodic
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points or the set of connected components of the subflow of agglomer-
ative points and the corresponding set of Freudenthal ends.

With respect to further work and new research lines relating exterior
spaces and continuous flows we suggest the following:

• To use higher homotopy invariant of exterior spaces (Steenrod,
Čech and Brown-Grossmann groups) as new tools in the analysis
of local and global stability properties of continuous flows and in the
study of chaotic dynamical systems.

• To study the role of the externologies ε(ǫ,τint)(X), where τint is the
intrinsic topology, in the study of repellers and atractors of a dynamical
system. In particular, our techniques based on exterior flows can be
used to generalize some results obtained in [1–3].

• To study the role of the externologies ε(ǫ,τtr)(X) with respect to the
dynamical properties of a flow (without fixed points) in a Riemannian
manifold, where τtr is the topology of the foliation transverse to the
flow.

• To discover the existence of new relationships between the theory of
exterior spaces and the theories of discrete and continuous dynamical
systems .
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Departamento de Matemáticas y Computación
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