
DISSERTATION
submitted to the

Combined Faculty for the Natural Sciences and
Mathematics

of

Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

put forward by
M.Sc. Vera Trajkovska

born in Kumanovo

Date of oral examination:

Learning Probabilistic Graphical Models
for

Image Segmentation

Advisors: Prof. Dr. Christoph Schnörr
Prof. Dr. Björn Ommer

Zusammenfassung

Probabilistische grafische Modelle bieten ein mächtiges Framework für die Darstellung
von Strukturen in Bildern. Auf diesem Konzept basierend wurden viele Inferenz-
und Lernalgorithmen entwickelt. Jedoch, sowohl Lernen als auch Inferenz sind im
allgemeinen Fall kombinatorische NP-harte Probleme. Infolgedessen wurden Relax-
ierungsmethoden entwickelt um die Originalprobleme zu approximieren aber mit dem
Vorteil, dass sie vom Rechenaufwandt effizient sind. In dieser Arbeit betrachten wir
das Lernproblem von binären graphischen Modellen und deren Relaxierungen. Zwei
neuartige Methoden zum Bestimmen der Modellparameter von diskreten Energiefunk-
tionen aus Trainingsdaten werden vorgeschlagen. Das Lernen der Modellparameter
löst elegant das Problem, diese heuristisch zu bestimmen.
Motiviert durch gängige Lernmethoden, die auf die Minimierung des Trainings-

fehlers oder einer Verlustfunktion aufbauen, entwickeln wir eine neue Lernmethode
ähnlich zu structural SVM. Jedoch von dem Gesichtspunkt der Optimierung ist diese
einfacher. Wir benennen diese Methode als linearisierten Ansatz (LA), da er auf linear
abhängige Potentiale beschränkt ist. Die Linearität von LA ist entscheidend um eine
feste konvexe Relaxierung zu erhalten, die den Einsatz von Standard-Inferenz-Lösern
zum behandeln der Teilprobleme ermöglicht die beim Lösen des Gesamtproblems
auftreten.
Allerdings wird diese Art von Lernmethoden fast nie die optimale Lösung liefern

oder perfekte Performance auf der ganzen Trainingsmenge. Was würde also passieren,
wenn das gelernte grafische Modell auf den ganzen Trainingsdaten die exakte Ground-
Truth-Segmentierung wiedergeben würde? Würde das einen Vorteil für die Vorhersage
versprechen?

Inspiriert von inverser Optimierung nutzen wir die inversen linearen Program-
mierung um eine weitere Lernmethode zu entwickeln, bezeichnet als inversen linearen
Programmierungsansatz (invLPA). Dieser Ansatz verbessert die trainierten graphis-
chen Modelle weiter unter Verwendung der zuvor eingeführten Methoden und ist
fähig die exakten Ground-Truth-Daten auf der Trainingsmenge vorherzusagen. Die
empirischen Ergebnisse aus der Umsetzung von invLPA geben Antworten auf unsere
zuvor gestellte Frage.
LA ist in der Lage gleichzeitig die unären und paarweisen Potentiale zu lernen

während dies mit invLPA wegen der gewählten Repräsentierung nicht möglich ist.
Auf der anderen Seite jedoch ist invLPA bezüglich der verwendeten Fittingmethode
sehr flexibel, da die Potentiale nicht auf eine feste Gestalt beschränkt sind.
Auch wenn die korrigierten Potentiale mit invLPA immer zu Ground-Truth- Seg-

mentierung der Trainingsdaten führen, kann invLPA nur Korrekturen der Vorder-
grundsegmente vornehmen. Wegen der relaxierten Problemformulierung beeinflußt
dies jedoch nicht das endgültige Ergebnis der Segmentierung. Vielmehr, solange

v

Zusammenfassung

wir mit vorberechneten Modellparametern einer hinreichend guten Lernmethode
initialisieren, wird diese Schwäche von invLPA das endgültige Vorhersageergebnis
nicht signifikant beeinflussen.
Die Performance von unseren vorgeschlagenen Lernmethoden wird sowohl auf

synthetischen als auch auf realen Datensätzen evaluiert. Wir zeigen das LA konkur-
renzfähig ist im Vergleich zu anderen Lernmethoden, die Verlustfunktionen verwenden
basierend auf Maximum a Posteriori Marginal (MPM) und Maximum Likelihood
Estimation (MLE). Darüber hinaus veranschaulichen wir die Vorteile des Lernens mit
Hilfe von inverser linearer Programmierung. In einem weiteren Experiment demon-
strieren wir die Vielseitigkeit von unseren Lernansätzen indem wir LA anwenden
zum Lernen von Bewegungssegmentierung in Videosequenzen und vergleichen dies
gegenüber state-of-the-art Segmentierungsalgorithmen.

vi

Abstract

Probabilistic graphical models provide a powerful framework for representing image
structures. Based on this concept, many inference and learning algorithms have been
developed. However, both algorithm classes are NP-hard combinatorial problems
in the general case. As a consequence, relaxation methods were developed to
approximate the original problems but with the benefit of being computationally
efficient. In this work we consider the learning problem on binary graphical models
and their relaxations. Two novel methods for determining the model parameters
in discrete energy functions from training data are proposed. Learning the model
parameters overcomes the problem of heuristically determining them.
Motivated by common learning methods which aim at minimizing the training

error measured by a loss function we develop a new learning method similar in fashion
to structured SVM. However, computationally more efficient. We term this method
as linearized approach (LA) as it is restricted to linearly dependent potentials. The
linearity of LA is crucial to come up with a tight convex relaxation, which allows
to use off-the-shelf inference solvers to approach subproblems which emerge from
solving the overall problem.
However, this type of learning methods almost never yield optimal solutions or

perfect performance on the training data set. So what happens if the learned graphical
model on the training data would lead to exact ground segmentation? Will this give
a benefit when predicting?
Motivated by the idea of inverse optimization, we take advantage of inverse

linear programming to develop a learning approach, referred to as inverse linear
programming approach (invLPA). It further refines the graphical models trained,
using the previously introduced methods and is capable to perfectly predict ground
truth on training data. The empirical results from implementing invLPA give answers
to our questions posed before.

LA is able to learn both unary and pairwise potentials jointly while with invLPA
this is not possible due to the representation we use. On the other hand, invLPA
does not rely on a certain form for the potentials and thus is flexible in the choice of
the fitting method.
Although the corrected potentials with invLPA always result in ground truth

segmentation of the training data, invLPA is able to find corrections on the foreground
segments only. Due to the relaxed problem formulation this does not affect the final
segmentation result. Moreover, as long as we initialize invLPA with model parameters
of a learning method performing sufficiently well, this drawback of invLPA does not
significantly affect the final prediction result.

The performance of the proposed learning methods is evaluated on both synthetic
and real world datasets. We demonstrate that LA is competitive in comparison

vii

Abstract

to other parameter learning methods using loss functions based on Maximum a
Posteriori Marginal (MPM) and Maximum Likelihood Estimation (MLE). Moreover,
we illustrate the benefits of learning with inverse linear programming. In a further
experiment we demonstrate the versatility of our learning methods by applying LA to
learning motion segmentation in video sequences and comparing it to state-of-the-art
segmentation algorithms.

viii

Acknowledgments

I would like to thank many people without which this thesis would not have been
possible.
First of all I am very grateful to my supervisor Professor Christoph Schnörr for

giving me the opportunity to join the RTG at the Faculty of Mathematics and
Computer Science. Under his supervision I was able to benefit from his guidance,
support, help and understanding. I am very fortunate, that I had the oppprtunity to
have him as a supervisor and all my knowledge during my PhD studies I owe to him.

I would like to thank a lot Stefania without whom as well a lot of this work would
not have happened. And of course Bogdan who guided me at the beginning of my
PhD work. Many many thanks to Florian, first of all for proofreading this thesis.
And for all the discussions, all the help not only for my work but also for my bike
repair etc. For letting me share the office with him (and Stefania) for some time
and for standing the “warmth” in our office. I am very thankful to Arati and Eva
for being my first friends in Heidelberg. Special thanks goes to Barbara for our
lunches together, all the time spent together and for always being able to listen to
my complaints and problems. Thanks to Evelyn for all the administrative help. I
would like to thank Freddie for all the help and discussions. I am thankful to Fabian
for helping me optimize my code, swimming together etc. I would also like to thank
all my colleagues which were also part of my PhD years: Ecaterina, Artjom, Tabea,
Andreas, Francesco, Mattia, Robert, Jan, Leonid, Lucas, Ruben, Fabrizio, Judit,
Alexander.

And I would like to express my deepest gratitude to Matthias for all the love, help
and support I had from him the last two years. Who always encouraged me and
belived in me. Thank you as well for proofreading my thesis. And finally I would like
to thank my whole family my father Chedomir, my mother Frosina, my sister Violeta
and my brother Simon. Even far away I always had your love and support. And I
would have never been where I am today if it would not have been you encouraging
me in all my goals.

Funding by the Deutsche Forschungsgemeinschaft via the research training group
1653 Spatio / Temporal Graphical Models and Applications in Image Analysis is
gratefully acknowledged.

ix

List of Publications

Part of this thesis has been published at a conference.

V. Trajkovska, P. Swoboda, F. Åström, and S. Petra, Graphical Model Parame-
ter Learning by Inverse Linear Programming, LNCS 10302, pp. 323–334, Springer,
2017

xi

Contents

Zusammenfassung v

Abstract vii

Acknowledgments ix

List of Publications xi

1. Introduction 1
1.1. Overview and Motivation . 1
1.2. Related Work . 3
1.3. Contribution . 4
1.4. Organization . 5
1.5. Notation . 6

2. Background 11
2.1. Graphical Models . 11

2.1.1. Graph Theory Used in Image Processing and Analysis 11
2.1.2. Probabilistic Graphical Models 13
2.1.3. Directed Graphical Models: Bayesian Networks 14
2.1.4. Undirected Graphical Models: Markov Random Fields (MRF) 14

2.2. Basic Concepts in Convex Analysis and Optimization 16
2.2.1. Convex Sets . 16
2.2.2. Convex Functions . 17
2.2.3. Gradient Descent Method . 20
2.2.4. Subgradient Method . 22
2.2.5. Newton Method . 23

2.3. Exponential Families . 24
2.3.1. Basic Definitions and Notions of Exponential Families 24
2.3.2. Properties of the Space of Mean ParametersM 27
2.3.3. Properties of the Forward Mapping ∇A 27
2.3.4. Properties of the Inverse Mapping ∇A∗ 28
2.3.5. Exponential Families for Discrete Graphical Models 30

2.4. Inference . 31
2.4.1. Approximate MAP Inference 33
2.4.2. Variational Formulation . 35
2.4.3. Image Labeling Problem . 36
2.4.4. Graph Cuts . 36
2.4.5. Potts Model for Segmentation 41

xiii

Contents

2.5. Learning . 42
2.5.1. Probabilistic Parameter Learning 42
2.5.2. Loss Minimizing Parameter Learning 45

2.6. Inverse Linear Programming . 46

3. Metric Learning for Segmentation 49
3.1. Introduction . 49
3.2. Mahalanobis Distance Metric Learning 50
3.3. Representative Existing Approaches 52

3.3.1. Mahalanobis Metric Learning for Clustering 52
3.3.2. Large-Margin Nearest Neighbors (LMNN) Method 53
3.3.3. Metric Learning as Eigenvalue Optimization 54
3.3.4. Online Metric Learning . 57

3.4. Numerical Optimization Techniques 59
3.4.1. Gradient Descent and Projected Gradient Descent 59
3.4.2. Minimizing the Maximal Eigenvalue of a Symmetric Matrix . 60
3.4.3. Stochastic Gradient . 61

3.5. Proposed Approach . 62
3.5.1. Objective Functions . 62
3.5.2. Optimization . 66
3.5.3. Experiments and Discussion 71

4. Model Parameter Perturbation and Learning 77
4.1. Overview . 77
4.2. invLPA: Inverse Linear Programming Approach 80

4.2.1. Model Parameter Perturbation 80
4.2.2. Model Parameter Prediction 83

4.3. LA: Linearly Parametrized Joint Learning Approach 85
4.3.1. Model Parameter Perturbation 85
4.3.2. Model Parameter Prediction 87
4.3.3. Optimization . 89
4.3.4. Convergence Analysis of the Deflected Subgradient Method

with a Modified Polayk Step Size 92
4.3.5. Comparison of the Linearized Approach to Structured SVM . 99

4.4. Difference Between the Two Approaches 100
4.5. Experiments and Discussion . 101

4.5.1. Ground Truth Experimental Evaluation of invLPA 102
4.5.2. Learning Unary Potentials . 106
4.5.3. Learning Pairwise Potentials 111
4.5.4. Experiments on the Weizmann Horse Dataset [BU08] 119
4.5.5. Comparison Between the Two Approaches: invLPA and LA . 130

4.6. Semi-Supervised Online Learning in Video Sequences 131
4.6.1. Experimental Results on the DAVIS Video Dataset [PPTM+16]134

5. Conclusion and Further Work 143

xiv

Contents

A. Appendix 147
A.1. Binary Problems . 147

A.1.1. Conversion: Overcomplete to Minimal 149
A.1.2. Conversion: Minimal to Overcomplete 149

Bibliography 151

xv

1. Introduction

1.1. Overview and Motivation

Probabilistic graphical models are nowadays widely used tool in computer vision.
Representing an image with the help of a graph together with its neighborhood
structure allows us to use graphical models and solve a task related to the image,
such as segmentation, labeling or denoising. A common way is to formulate an
energy function which describes the fitness of a variable configuration, and then to
apply numerical optimization to determine an optimal or at least good solution. For
instance let us consider the binary image labeling problem: the aim is to assign each
pixel either to a foreground or a background set. Fig. 1.1 provides an example where
the horse is marked as foreground segment and the remaining pixels as background.

Representing the image labeling problem using graphical models, requires to define
a graph G = (V, E) with nodes V representing the image pixels or superpixels and
edges E representing neighborhood structures. On this a discrete energy function,

Eθ(x) =
∑
i∈V

θi(xi) +
∑
e∈E

θe(xe). (1.1)

is defined and solved using a suitable optimization algorithm.
For (1.1) we need to choose parameters θ which depend on some data feature vectors

in the image, which should capture sufficient information of the image structure.
However, it is not always straight-forward to choose suitable parameters. Moreover,
different choices lead to different results depending on the application at hand. One
way is to define the model parameters based on some heuristic. Often this is not
a straight-forward task, for instance, when the data has high variances in shape
and color as in the Weizmann horse dataset [BU08] visualized in Fig. 1.1. While in
the first image the horse can be easily segmented from the background with some
segmentation algorithm like a minimum cut, this is not the case for the other two
images. The second image is quite difficult to be segmented as the head of the horse
is not easy to be distinguished from the background behind it, and the same holds for
the horse tail. In addition the whole horse region is not homogeneous with respect
to color. In contrast, the third image has a homogeneous color in the horse area, but
part of the background shares the same color. In particular this part is connected to
the horse region. A simple segmentation algorithm would tend to segment this image
as horse together with the white background part or merge the horse head and tail
with the background for the second image. Hand tunning of the model parameters
for each image separately could lead to some reasonable segmentation results. This
is, however, time consuming and is not an appropriate solution especially in the case

1

1. Introduction

(a) input

(b) ground truth segmentation

Figure 1.1. - (a) Three images of horses from the Weizmann horse dataset [BU08] with (b)
their ground truth segmentation. While the first image can be segmented with some segmentation
algorithm, for instance max-flow algorithms which find the minimum cut, the two other images
would certainly fail even when powerful features are used. The reason is variances in the foreground
class and the similarity of the foreground and background class for the last two images respectively.

2

1.2. Related Work

when the data to be processed is huge.
A more appropriate way, is to learn the model parameters, given a set of training

data with available ground truth segmentation, e.g. obtained by hand-annotating
images. For the case when part of our dataset consists from the three images
from Fig. 1.1 learning model parameters results in model parameters which equally
represent the whole dataset. The data on which the model parameters are trained
should be representative for the data on which they are tested. Otherwise the
segmentation performance will deteriorate.
Based on the learned parameters new model parameters corresponding to the

testing data are predicted using some prediction model, e.g. least-squares, Gaussian
regression.

Common approach for learning is to define an objective function, or loss function,
which depends on the model parameters and measures the prediction error on the
training data. After minimizing the function, e.g. using gradient descent-based
methods, the learned model parameters are obtained. Computing the prediction
error involves minimizing (1.1). As in general (1.1) is NP-hard a relaxed version is
considered. Due to this the loss function minimizes error based on approximations.
Or in other words by computing “approximate” gradients. Loss functions of this
type collect all the training data and learn set of model parameters that best match
all data at once. In this fashion the learned set of model parameters might not be
able to always reconstruct ground truth for each of the training data.
Part of our work is motivated by the idea of inverse linear programming which

corrects a given feasible sub-optimal solution to an optimal one. Our first learning
method based on this concept, first corrects the learned approximate gradients
computed by a learning method such that it leads to the exact ground truth solution
for each of the data in the training set. We will refer to this method as inverse
linear programming approach (invLPA). Subsequently any existing model parameter
prediction method can be applied to compute a prediction on the testing data.

A further part of this work is dedicated to our second novel objective function for
learning, referred as linearly parametrized joint learning approach (LA), which has
an objective which is a loss function of the common type as explained above.

1.2. Related Work

The literature of learning in general is vast and and we refer the reader to [NL11] for
an excellent overview. Important related work on learning using relaxed inference is
the work of Wainwright et al. [Wai06] where it was proven that learning can even
benefit from approximations as long as the same approximate inference method is
used while learning and predicting. In practice the error introduced while learning
approximate parameters is partly compensated by the error of the inexact inference.
The literature on inverse linear programming [ZL96, ZL99, AO01] are the basis

for the main novel learning method we present in this work. The authors in [ZL96]
apply inverse optimization to the minimum cost flow problem and the assignment
problem, which result in a linear program. We follow the same idea and develop

3

1. Introduction

an inverse linear program for the relaxed discrete binary energy function for image
labeling.
Most learning methods require the definition of a loss function which steers

optimization towards a very small training error. A well known learning method
based on such a loss function is structured Support Vector Machine (SVM) [FJ08,
THJA04, TJHA05], a generalization of the classification SVM, and can be applied to
different type of data such as lattices, sets and strings. The basic idea is to minimize
a problem specific loss function while maximizing the minimal prediction error on
the training data.

One of our proposed learning methods leads to a similar objective as the structured
SVM. However, our objective is easier to optimize as we fix one of the variables
which has a similar role in the structured SVM learning. In addition we use a
different optimization method as compared to structured SVM. We use an enhanced
subgradient method which involves simpler numerics than a cutting plane method,
as used for structured SVM.

Our subgradient method is also known by the name deflected subgradient method.
This subgradient method was first proposed in [CFM75] with the aim speeding up
the usually slow subgradient method. The PhD work of [Gut03] more thoroughly
analyzes the deflected subgradient method proposed in [CFM75]. The authors
in [dF09] discuss two approaches for speeding up the subgradient method which
tends to advance in zig zag curves. The deflected subgradient method usually comes
with a (modified) Polyak step size first proposed by Polyak in [Pol69]. The Polyak
step size acquires knowledge of the optimal objective value which is in general not
known. Due to this Polyak proposed a modification of this step size when an upper
or lower bound of the function is available.
In order to show competitiveness of learning methods we compare our learning

method LA based on loss minimizing to two methods from [Dom13], which compares
learning methods with different loss functions. Domke compares loss functions based
on Maximum a Posteriori Marginal (MPM) to those based on Maximum Likelihood
Estimates (MLE) for the learning problem. However, he uses only inference methods
based on MPM. Along with a new (heuristic) optimization method he concludes that
MPM loss functions lead to better performance than those based on MLE.

Concerning the real world data we use for evaluation of our learning methods we
use the challenging Weizmann horse dataset [BU08]. In addition we use the densely
annotated video sequence dataset introduced in [PPTM+16].

1.3. Contribution

The main contribution of this work is two novel methods for learning parameters in
graphical models.
In addition we propose a new optimization method and apply it to two metric

learning approaches which arise from learning suitable distances with aim improving
k-means clustering. Metric learning on the other hand can be considered as learning
the unary part of the graphical model. We illustrate the proposed method on few

4

1.4. Organization

small datasets and demonstrate its efficiency with comparison to established solvers
for semi-definite programming.

The first proposed learning method, inverse linear programming approach (invLPA),
we develop, is using the concept of inverse linear programming. This method corrects
the “approximate” gradients of another learning method. We show that the corrected
potentials correspond to exact ground truth segmentation.
The second proposed method we develop, the linearized approach (LA) shares

some common ideas with structured SVM [FJ08, THJA04, TJHA05] but requires
less complex numerics procedure for minimizing the loss function during training. We
show how to choose a parameter set by hand which enforces uniqueness. Furthermore,
we prove convergence of the deflected subgradient method with modified Polyak step
size we use for optimizing the objective of LA.

We evaluate our two learning methods both on synthetic and real world datasets
and compare to state-of-the-art classification methods. Furthermore, we illustrate
the benefit of learning using an objective function where both a regularizer is present
as opposed to training a classifier and adding a regularizer in a post processing
step. We extend our methods to learn pairwise potentials and demonstrate that they
outperform standard regularizers, e.g. the Ising regularizer, when difficult structures
have to be learned. Furthermore, jointly learning unary and pairwise potentials with
LA is compared to two other learning methods for parameters in graphical models
from [Dom13]. In addition to single images we also consider videos and extend LA
to motion segmentation learning and provide experiments on the real world dataset
[PPTM+16].
Finally, we discuss the benefits as well as the drawbacks from both learning

approaches and propose some possible extensions.

1.4. Organization

We organize this work as follows.
In Chapter 2 we introduce all the basic background we use throughout this thesis.

We start with definitions from graph theory used in image analysis and proceed
with probabilistic graphical models. Next, we present the basic tools from convex
optimization in order to proceed with exponential families. The following two
sections are dedicated to inference and learning, which are the central tools for
solving graphical models. The last section addresses inverse linear programming
which is the basis of one of our learning methods presented in Chapter 4.

In Chapter 3 we introduce metric learning methods. We give an overview on the
most popular approaches and the utilized numerical techniques. In addition, we
propose a new optimization procedure which we also apply to two metric learning
objectives. We implement our proposed optimization method to few small datasets
and compare it to established semi-definite solvers used for metric learning.
In Chapter 4 we develop our two novel methods which can learn both unary

and pairwise potentials in a graphical model. We discuss the proposed methods
from a theoretical point of view. Also the optimization methods used in LA are

5

1. Introduction

addressed including proofs for convergence. The differences and similarities of LA
and structured SVM are discussed. In our experiments we apply invLPA and LA to
synthetic and real-world data sets for image segmentation and quantitatively evaluate
invLPA with respect to ground truth. Furthermore, we extend the evaluation of LA
to semi-supervised online learning in video sequences.

In our last Chapter 5 we conclude and propose possible extensions of our contribu-
tion as further work.

1.5. Notation

The following table provides an overview on the notation used throughout the
thesis. Each is introduced in detail in the respective chapter.

Background

G a graph G := (V, E) which is a pair of a set of nodes (vertices)
V, and a set of edges E

X a random variable, a random vector
x a value taken by a random variable X
X all possible events of a random variable X, domain of the

random variable X
p(x) a probability distribution of the random variable X

(X,G) a probabilistic graphical model, a pair of a random variable
X and a graph G

Xi a random variable corresponding to the node i ∈ V from the
set of nodes V in the graph G = (V, E) and taking values in
Xi

XA := (Xi)i∈A a random sub-vector of X consisting of the ran-
dom variables Xi corresponding to the nodes of the set A ⊂ V

ij an edge from the edge set E , such that i, j ∈ V
C a clique of the graph G = (V, E) which is a subset of the set

of vertices V
C(G) set of maximal cliques of the graph G
P(V) set of all subsets of V
fC local function defined on the set C

ϕC(xC) factor or potential indexed with a maximal clique C ∈ C,
such that ϕC depends on x only through xC

Z :=
∫
X
∏
C∈C(G) ϕC(xC)dx partition function, normalizing con-

stant
π(i) the set of all parents of a node i
N (i) the set of all neighbors of a node i

R the set of real numbers

6

1.5. Notation

R : R ∪ {∞} the extended set of real numbers
w : E → R weighting function from the set of the edges E of a

graph G = (V, E) to the set of real numbers R
A ∪B union of the sets A and B
A ∩B intersection of the sets A and B
A \B difference of the sets A and B, elements in the set A which

do not belong to the set B
A |= GB|C set C is separating the disjoint sets A and B, for which

A,B ⊂ V \C, in the case when the sets are random variables,
the relation is for conditional independence of A and B, given
C

φα : X → Rd function called sufficient statistics
θα canonical parameter for φα
Θ space of canonical parameters

A(θ) : Rd → R log-partition function
A∗(µ) : Rd → R conjugate dual to the log-partition function A

E[f(x)] expected value of a function f(x)
M mean parameter space
µα mean parameter
Mo interior of (the mean parameter) space

rint(M) relative interior of (the mean parameter) space
M closure of (the mean parameter) space
H : Rd → R Shannon entropy

M(G) marginal polytope corresponding to the graph G
L(G) local polytope corresponding to the graph G
T a tree-like graph
L set of labels
Eθ energy function corresponding to a distribution with canoni-

cal parameters θ
[n] = {1, 2, ..., n} set of all natural numbers i such that 1 ≤ i ≤ n
[.] Iverson bracket, 1 if the value in the bracket is true and 0

otherwise

IA(x) =
{

0 if x ∈ A
+∞ if x 6∈ A , indicator set function on a set A

KL Kullback-Leibler divergence
N set of natural numbers
||x|| =

√
〈x, x〉 Euclidean norm for x ∈ Rn

〈x, y〉 =
∑n
i=1 xiyi inner product in the Euclidean space, x, y,∈ Rn

Sd+ cone of symmetric positive semi-definite matrices
conv(A) convex hull of a set A ⊂ Rn

aff(A) affine hull of a set A ⊂ Rn
B(x, ε) open Euclidean ball
epi(f) epigraf of a function f
∂f(x) subdifferential of a function f

7

1. Introduction

∇f gradient of a function f
∇2f Hessian of a function f

S−(f, c) sublevel set of a function f
S+(f, c) superlevel set of a function f

Metric Learning

G a graph G := (V, E) which is a pair of a set of nodes (vertices)
V, and a set of edges E

S indices of similar pairs of points
D indices of dissimilar pairs of points
R := {(i, j, k) |xi is more similar to xj than to xk}
M an arbitrary matrix in Rn×n

l(M,D,S,R) a loss function
r(M) a regularizer function

Sn+ cone of symmetric PSD n× n real-valued matrices
I identity matrix

tr(M) trace of a matrix M
dM (xi, xj) := 〈(xi − xj),M(xi − xj)〉1/2 distance metric with respect to

a matrix M
Xij := (xi − xj)(xi − xj)T
XS :=

∑
(xi,xj)∈S Xij

XD :=
∑

(xi,xj)∈DXij

4|D|−1 := {u ∈ R|D|
∣∣∣ ui ≥ 0,

∑n
i=1 ui = 1} the (|D|−1) dimensional

probability simplex
M̃ := X

1/2
S MX

1/2
S

X̃ij := X
−1/2
S XijX

−1/2
S

P := {M |M � 0 and tr(M) ≤ 1}
C := {M̃ � 0 : tr(M̃) = 1}
⊗ Kronecker product

I : R→ R an indicator function defined by I(x) :=
{

0 if x ≥ 0
∞ if x < 0

Model Parameter Perturbation and Learning

Eθ(x) discrete energy function with potentials θ(x)
G a graph G := (V, E) which is a pair of a set of nodes (vertices)

V, and a set of edges E
L the set of labels
µ vector of assignments
µ∗ vector of assignments corresponding to groundtruth segmen-

tation
LG local polytope defined on a graph G

8

1.5. Notation

LMG local polytope defined on a graph G corresponding to minimal
representation

θ̂ intial potentials
θ̃ := θ̂ + θ corrected potentials
w := (wu, wp)> parameter vector, where wu is the part corre-

sponding to the unary potentials and wp the part correspond-
ing to the pairwise potentials

Θ(µ∗) := {θ̃ ∈ Rm+n|minµ∈LMG 〈θ̃, µ〉 = 〈θ̃, µ∗〉} set of model param-
eters that correspond to ground truth assignments

f i feature vector corresponding to unary term
f ij feature vector corresponding to a pairwise term

k(f i, f j) := σ2
m exp

(
− 1

2σ2
f
‖f i − f j‖2

)
, with σ2

f ,σ2
m parameters

K(F) :=
{
k(f i, f j)

}
i,j∈[N]

θφ := θ−A>φ, where A is the matrix corresponding to the local
polytope equations and φ is a dual variable vector

L(w) := maxµ∈LG
{
〈−θ̃w, µ〉 + 〈θ̃w, µ∗〉

}
loss function for the LA

method, in the case when there is one training image
L upper bound on the loss function L

gkk≥0 sequence of subgradients
fkk≥0 sequence of deflected subgradients

PS projection on a set S
αk step size in subgradient method

% mis 100
∑

p
(I(p) 6=Igt(p))
|p| percentage of all mislabeled pixels, I is

the obtained segmented images, Igt is the ground truth seg-
mentation and |p| is the number of pixels

% mis fg 100Area(F∩Fgt)
Area(F∪Fgt) percentage of mislabeled foreground pixels,

Fgt is the ground truth foreground mask and F is the fore-
ground mask of the obtained segmented image

Table 1.1. - Notation used throughout this thesis

9

2. Background

This chapter will introduce all necessary tools which are required in the remainder
of this thesis.
We organize the chapter as follows: in Sect. 2.1 we start with the fundamental

concepts and definitions of graphs and probabilistic graphical models. Next, in
Sect. 2.2 we include brief overview on some basic concepts in convex analysis and
optimization. In Sect. 2.3 we consider the concept of exponential families which
provide a theoretical basis for probabilistic graphical models when interpreted as
exponential family models. Considering a graphical model as an exponential family
member allows us to use convex analysis when exploring graphical models. We
apply these concepts to two of the most important basic problems in computer
vision, inference in Sect. 2.4 and learning in Sect. 2.5, while exploiting the theory of
exponential models. In Sect. 2.6 we address inverse linear programming which is the
most important concept used in this thesis.

2.1. Graphical Models

Graphical models or probabilistic graphical models are tools for modeling probabilistic
relations between random variables using a graph-like structure. Graphical models
are a widely used tool in computer vision, statistics, machine learning and many
other fields in science.
We first introduce the basic concepts and definitions in graph theory, most of

which we use throughout this work. Next we continue with probability theory which
provides the basis for learning probabilistic graphical models.

2.1.1. Graph Theory Used in Image Processing and Analysis

Let us first define what a graph is, [Die12].

Definition 2.1.1. A graph is an ordered pair G = (V, E) consisting of a set of
objects represented as nodes (vertices) V, together with binary subsets of distinct
nodes, represented by a set of edges, E ⊂ {ij ∈ V × V | i 6= j}.

Each edge in the graph represents some relation between two nodes. The edge ij
is referred to as directed edge if ij 6= ji. A graph with undirected edges is referred
to as undirected graph and as directed graph otherwise.

A path is a sequence of distinct nodes, in which the sequent nodes are adjacent in
the graph G. A path from a node to itself which contains each node and edge not
more than once, is called a cycle. A graph is either a cyclic graph if it containts
at least one cycle or an acyclic graph otherwise. An edge between two nodes of

11

2. Background

one cycle, which is not part of the cycle is called a chord of the cycle. A chordal
graph or triangulated graph is an undirected graph G = (V, E), for which every
cycle with length greater than three has a chord. A directed graph with no directed
cycles is called directed acyclic graph (DAG).
A clique C in an undirected graph G = (V, E) is a subset of the set of vertices

C ⊂ V, such that there is an edge between each of the vertices in C, that is
∀i, j ∈ C, i 6= j : ij ∈ E . A maximal clique is a clique which can not be extended
by adding a further node. We denote the set of maximal cliques of a graph G with
C(G).
Node i is called a child of a node j, and a node j is a parent of a node i, if there

exists a directed edge from j to i. We denote the set of all parents of a node i with
π(i). Neighbors of a node i are all nodes which are connected to the node i by an
edge, that is, N (i) := {j ∈ V | ij ∈ E}.
In a connected graph for each node there exists a path to all other nodes. A

tree is an acyclic undirected connected graph. If an acyclic undirected graph is not
connected then the graph is called a forest or union of trees. A spanning tree of
an undirected graph is a subgraph forming a tree which includes all vertices and a
minimum number of edges of G.
Any acyclic directed graph can be transformed into an undirected graph. This

transformed undirected graph is called moral graph.
Definition 2.1.2. An undirected graph G = (V, E) in which all parents of each
child are linked, and all directed edges are converted into undirected ones is called a
moral graph.

With assigning a weight function w : E → R to the graph, so that each edge ij
gets a weight wij , the graph G = (V, E , w) is called weighted graph.

A graph G is said to be connected if there is a path between every pair of vertices
in G. A graph which is not connected is said to be disconnected.
Definition 2.1.3. In an undirected connected graph G = (V, E), C ⊂ V is said to
be a cut or separating set of G if removing it renders the graph disconnected. C
separating two disjoint sets A,B ⊂ V \ C, in G is denoted with A |= GB|C.
Definition 2.1.4. (A,B,C) is a proper decomposition of an undirected graph
G = (V, E) into three disjoint subsets A,B,C ⊂ V, A ∪B ∪ C = V such that C is a
clique of G which separates A and B.

A decomposable graph is one for which there exists a sequence of proper decomposi-
tions such that all subsets A and B are cliques in G. An undirected graph G = (V, E)
is decomposable if and only if G is triangulated, see [CDLS07, Theorem 4.4].
A clique tree is an acyclic undirected graph whose nodes are formed from the

maximal cliques of an undirected graph G, which can be cyclic. For an undirected
graph G which is decomposable there always exists a junction tree which is a clique
tree with a special property.
Definition 2.1.5. A junction tree of an undirected graph G is a clique tree, so
that for any two cliques Ca and Cb, their intersection Ca ∩ Cb is contained in every
clique on the unique path joining them.

12

2.1. Graphical Models

2.1.2. Probabilistic Graphical Models

A probabilistic graphical model is a graphical model G = (V, E) with a random
variable X vector, composed of variables Xi taking values xi ∈ Xi, ∀i ∈ V. The
edge set E is used to imply conditional independences on X and to factorize the
underlying probability distribution p(x) with respect to some measure. We will use
the same notation p(x) for the density function and the probability distribution of a
random variable X, having a value x, that is we denote P (X = x) = p(x), which is
in fact the case for the discrete setting.
For a continuous random variable, the integral of the probabilities of all events

have to be one, that is
∫
X p(x)dx = 1, while for a discrete random variable the

probabilities of all events have to sum up to one, that is
∑
x∈X p(x) = 1. The expected

value of a function f(x) for a continuous random variable is defined as Ep[f(x)] :=∫
x∈X p(x)f(x)dx and for a discrete random variable as Ep[f(x)] :=

∑
x∈X p(x)f(x).

For some subset A ⊂ V , themarginal distribution of the corresponding continuous
variables is p(xA) =

∫
XV\A p(x)dxV\A and in the case of discrete variables, p(xA) =∑

xV\A∈XV\A p(x). For two disjoint subsets A,B ⊂ V the conditional distribution
of a random vector XA, given the observed random vector XB, with p(xB) > 0 is
given with the Bayes’ rule [Bay63]

p(xA|xB) = p(xA, xB)
p(xB) = p(xB|xA)p(xA)

p(xB) . (2.1)

Let A,B,C be disjoint subsets of V. The random vectors XA and XB are called
conditionally independent, given XC with p(xC) > 0, denoted with XA |= XB|XC

if and only if the joint conditional distribution can be written as the product of their
marginal conditional distributions, that is

XA |= XB|XC ⇔ ∀xA ∈ XA, xB ∈ XB, xC ∈ XC : p(xA, xB|xC) = p(xA|xC)p(xB|xC).
(2.2)

The ternary relation X |= Y |Z satisfies the following properties

symmetry if X |= Y |Z then Y |= X|Z (2.3a)
decomposition if X |= (Y, Z)|W then X |= Y |W (2.3b)

weak union if X |= (Y, Z)|W then X |= Y |(Z,W) (2.3c)
contraction if X |= Y |(Z,W) and X |= W |Z then X |= (Y,Z)|W. (2.3d)

If the probability distributions p over the random variables X,Y, Z,W are strictly
positive then the following additional property holds too

intersection if X |= Y |(Z,W) and X |= W |(Y,Z) then X |= (Y,W)|Z. (2.4a)

The notion of a graphical model can be explained using the conditional independences
between random variables. Moreover, a graph can be thought as a map of conditional
independences between random variables. We consider the following definition of
a probabilistic graphical model, valid for both directed and undirected graphical

13

2. Background

models :

Definition 2.1.6. A probabilistic graphical model is a pair (X,G) of a random
vector X and a graph G with a probability distribution p(x). Every conditional
independence statement implied by G is satisfied by p(x), that is for A,B,C ⊂ V,
A |= GB|C =⇒ XA |= XB|XC . The graph G implies conditional independences
between random variables, called Markov property. Moreover the graph G implies
factorization of the probability distribution with

p(x) =
∏
C∈C

fC(xC) (2.5)

where C ⊂ V and C ⊂ P(V), where P(V) is the set of all subsets of V, and fC are
local functions defined on the subsets C ⊂ V.

In the next subsections we give a more precise definition in the sense of the
factorization of the probability function when the graphical model is directed and
undirected.

2.1.3. Directed Graphical Models: Bayesian Networks

Directed graphical models also referred to as Bayesian networks, make use of the
Bayes’ rule to factorize the probability distribution such that each factor represents
a causal relation of the model, leading to a directed acyclic graph. This relation in
directed graphical models is represented by a directed acyclic graph.

Definition 2.1.7. A directed graphical model (X,G) is a pair of a random vector
X and a directed acyclic graph G = (V, E), so that the joint probability distribution
p(x) of X can be factorized as product of local conditional distributions

p(x) =
∏
i∈V

p(xi|xπ(i)), (2.6)

where with π(i) we denoted the set of all parents of a node i.

2.1.4. Undirected Graphical Models: Markov Random Fields (MRF)

When the graph structure in the probabilistic graphical model is undirected then the
graphical model is commonly called Markov random field (MRF). We first give the
definition of an undirected graphical model with respect to the separation property,
see Definition 2.1.3.

Definition 2.1.8. An undirected graphical model (X,G) is a pair of a random
vector X and an undirected graph G = (V, E) so that if two disjoint subsets A,B ⊂
V \ C are not connected in GV\C , then XA |= XB|XC .

The relations between the edge set E of a graph G and the random variables are
given by the Markov properties of the random variables defined next.

14

2.1. Graphical Models

Definition 2.1.9. Markov Properties: For an undirected graphical model (X,G)
we say that X has the

(G) global Markov property with respect to G, if for any three disjoint subsets
A,B,C ⊂ V for which A and B are separated by C, XA |= XB|XC holds. This
property is satisfied for any undirected graphical model, due to Definition 2.1.8.

(L) local Markov property with respect to G, if ∀i ∈ V , Xi |= XV\({i}∪N (i))|XN (i)
holds, where N (i) denotes the neighborhood of i.

(P) pairwise Markov property with respect to G, if for all pairs of non-adjacent
nodes i and j, Xi |= Xj |XV\{i,j} holds.

If in addition to (G) the probability distribution p(x) is strictly positive, p(x) > 0
∀x ∈ X , then both (L) and (P) hold for the undirected model (X,G), that is (G) is
equivalent to (L) and (P), see [Lau96, CDLS07].

For undirected graphical models there is also a factorization rule of p(x), which is
different than the one for directed graphical models.

Definition 2.1.10. For an undirected graphical model (X,G) the probability distri-
bution p(x) of the random vector X factorizes as

p(x) = 1
Z

∏
C∈C(G)

ϕC(xC) and Z =
∫
X

∏
C∈C(G)

ϕC(xC)dx (2.7)

where ϕC are called factors or potentials, indexed with the maximal cliques
C ⊂ C(G) and ϕC depends on x only through xC . The normalizing constant Z is also
refered to as partition function and ensures that the integral of the probabilities
of all events is 1.

It can be shown that if X has the factorization property with respect to an
undirected graph G, then X has the global Markov property. The reverse holds in
the case of strict positivity of p(x) ∀x ∈ X . This is stated in the following theorem
known as Hammersley-Clifford theorem [HC71].

Theorem 2.1.1. Hammersley-Clifford : A random vector X with a strictly
positive probability distribution, that is p(x) > 0 ∀x ∈ X satisfies the pairwise Markov
property with respect to an undirected graph G if and only if it factorizes with respect
to G as in (2.7).

Proof. See [LS03, Theorem 3.9].

In general, the conditional independence properties for undirected graphical models
are much simpler than those for directed graphical models. We saw that a directed
acyclic graph can be transformed into an undirected one using moralization, see
Definition 2.1.2. However, during this transformation some information on conditional
independence of variables is lost. On the other hand a subclass of undirected graphs,
undirected graphs with chordal graph structure, can be transformed into an equivalent
directed one. For details we refer the reader to [KF09].

15

2. Background

2.2. Basic Concepts in Convex Analysis and Optimization

In this section we want to introduce basic concepts of convex analysis and optimization
which will be used throughout this thesis. For more detailed introduction on convex
optimization we refer to [Roc70, BV04].

In practice, solving an optimization problem can be very difficult or not possible at
all. However, when the problem is convex, the situation might become better. This
is also a cause by the fact that convex optimization problems have been studied a lot
in the past and there is a huge literature on how to deal and solve efficiently convex
problems. However, the key property of a convex problem is that local optimizers
are always global ones.

2.2.1. Convex Sets

We start by defining convex sets.

Definition 2.2.1. A set A ⊆ Rn is convex if for all x, y ∈ A and 0 < α < 1, the
point αx+ (1− α)y ∈ A.

The intersection ∪i∈IAi of a family of convex sets {Ai}i∈I for an arbitrary index
set I is also a convex set. The Cartesian product A1 ⊗A2 ⊗ ...⊗An of a family
of convex sets {Ai}i∈I as defined above is a convex set as well. However, the union
of convex sets is not necessarily a convex set.

Definition 2.2.2. A set K ⊂ Rn is called a cone if for all x ∈ K, the ray {λx |λ >
0} ∈ K. If K is convex then the cone K is called a convex cone.

The cone of symmetric positive semi-definite matrices is defined by

Sd+ := {X ∈ Rd×d |X = X>, X � 0}. (2.8)

Similarly with Sd++ we denote the cone of positive definite matrices

Sd++ := {X ∈ Rd×d |X = X>, X � 0}. (2.9)

Theorem 2.2.1. Farkas-Minkowski-Weyl: A cone is polyhedral if and only if it
is finitely generated.

Proof. For proof see [Sch98, Corollary 7.1a].

A polytope is the convex hull of its vertices or extreme points.

Definition 2.2.3. The convex hull of a set A ⊂ Rn is defined as

conv(A) :=
{

n∑
i=1

αixi |A = {x1, x2, ..., xn} , αi ∈ R, αi ≥ 0,
n∑
i=1

αi = 1
}
. (2.10)

Definition 2.2.4. The affine hull of a set A ⊂ Rn is defined as

aff(A) :=
{

n∑
i=1

αixi |A = {x1, x2, ..., xn} , αi ∈ R,
n∑
i=1

αi = 1
}
. (2.11)

16

2.2. Basic Concepts in Convex Analysis and Optimization

Due to more restrictions the convex hull is always a subset of the affine hull.

Definition 2.2.5. A n−1 dimensional simplex ∆n−1 is a n−1 dimensional polytope
which is a convex hull of its n dimensional vertices

∆n−1 := {u ∈ Rn : ui ≥ 0,
n∑
i=1

ui = 1}. (2.12)

The simplex has one dimension less than the space in which it is embedded due to
the constraint that the sum of all its vertices has to sum to one, and so one of the n
vertices can be expressed using the rest n − 1, which makes it one dimension less
than Rn.

Definition 2.2.6. For ε > 0 and x ∈ Rn the open Euclidean ball is defined by

B(ε, x) := {y ∈ Rn | ||y − x|| < ε} . (2.13)

Definition 2.2.7. The interior of a convex set A ⊂ Rn is defined by

Ao := {x ∈ A | ∃ε > 0 : B(ε, x) ⊂ A}, (2.14)

where B(ε, x) is the Euclidean ball as defined in Definition 2.2.6.

Definition 2.2.8. The relative interior of a convex set A ⊂ Rn is defined by

rint(A) := {x ∈ A | ∃ε > 0 s.t. B(ε, x) ∩ aff(A) ⊂ A}, (2.15)

with B(ε, x) as defined in Definition 2.2.6.

The interior Ao and relative interior rint(A) of a convex set A ⊂ Rn are also convex
sets and rint(A) is always nonempty, i.e. rint(A) 6= ∅. A convex set A ⊆ Rn is
full-dimensional if aff(A) = Rn. If A is full-dimensional then rint(A) = Ao.
An important function we will use is the set indicator function defined on a

set A ⊂ Rn by

IA(x) :=
{

0 if x ∈ A
+∞ if x 6∈ A. (2.16)

When A is convex then IA is convex too. Indicator functions of convex sets are
of interest in constrained convex optimization. With their help, a constrained
optimization problem can be converted into an unconstrained one. As a consequence
we can treat both constrained and unconstrained convex problems in a unified way.

2.2.2. Convex Functions

Definition 2.2.9. A function f : Rn → R is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.17)

holds for all x, y ∈ Rn and 0 < α < 1.

17

2. Background

The domain of the function f is defined by

dom f := {x ∈ Rn | f(x) <∞}. (2.18)

Function f : Rn → R is convex if and only if the epigraf of f defined by

epi(f) := {(x, y) ∈ Rn × R | f(x) ≤ y} (2.19)

is convex.

Definition 2.2.10. A function f : Rn → R is strongly convex on some set A ⊂ Rn
if there exists m > 0 such that

∇2f(x) � mI (2.20)

with I the identity matrix.

Definition 2.2.11. A convex function f is called proper if f is finite for at least
one point, that is dom f 6= ∅.

Continuity

A function f is lower semi-continuous if for any sequence {xk}k ⊂ Rn so that
{xk}k → x ∈ Rn

f(x) ≤ lim inf
k→∞

f(xk). (2.21)

Similarly f is upper semi-continuous if for any sequence {xk}k ⊂ Rn so that
{xk}k → x ∈ Rn

f(x) ≥ lim sup
k→∞

f(xk). (2.22)

If f is both lower semi-continuous and upper semi-continuous then f is continuous.

Definition 2.2.12. A function f : Rn → R is continuous relative to some convex
set A ⊂ Rn if the restriction of f to A denoted by f |A is a continuous function.

A stronger notion for the relative continuity is given by the following definition.

Definition 2.2.13. A function f : A→ R is called Lipschitz continuous relative
to A ⊂ Rn if there exists L ≥ 0 such that

||f(x)− f(y)|| ≤ L||x− y|| (2.23)

where x, y ∈ A.

We will see that Lipschitz continuity of the gradient of f is the key ingredient
for convergence guarantees of some optimization algorithms, including the gradient
descent.

18

2.2. Basic Concepts in Convex Analysis and Optimization

Duality

For a proper function f : Rn → R its conjugate dual or Legendre-Fenchel
conjugate dual function f∗ : Rn → R is defined by

f∗(y) := sup
x∈Rn
{〈x, y〉 − f(x)}. (2.24)

The dual is always a convex and lower semi-continuous function even if the function
f is not convex.

Definition 2.2.14. A convex differentiable function f , is essentially smooth, if it
has a nonempty domain A = dom(f), f is differentiable on Ao and limk→∞∇f(xk) =
∞ for any sequence {xk}k ∈ A, limk→∞ xk = µ, where µ is a boundary point of A.

A convex function f with dom(f) = Rn is essentially smooth since its domain Rn
has no boundaries.

Differentiability

A convex function is not necessary differentiable. For this reason the notion of
differentiability is generalized and to this end the notion subdifferential of a proper
function f : A→ R, A ⊆ Rn is introduced and defined as

∂f(x) := {w ∈ A | f(y) ≥ f(x) + 〈w, y − x〉, ∀y ∈ A}. (2.25)

For a convex differentiable f at x the set of subdifferentials at x consists of a single
element which is exactly the gradient ∇f. When f is lower semi-continuous, then
the set of subdifferentials of f is always nonempty, see [Nes04, Theorem 3.1.13].

Proposition 2.2.2. A differentiable function f : A→ R, where A ⊂ Rn is open, is
convex if and only if for all x, y ∈ A

f(y) ≥ f(x) +∇f(x)>(y − x) (2.26)

is satisfied. If the inequality is strict whenever x 6= y, f is strictly convex.

Proof. For proof see [BV04, Sect. 3.1.3].

Proposition 2.2.3. For a twice differentiable function f : A→ Rn where A ⊂ Rn
is convex and open, f is convex on A if and only if the Hessian of f defined by

∇2f(x) :=
(

∂2f

∂xi∂xj
(x1, ..., xn)

)
i,j∈[n]

, x = (x1, .., xn)> (2.27)

is positive semi-definite ∀x ∈ A.

Proof. For proof see [HUL93, Theorem 4.3.1].

19

2. Background

Sublevel set

Definition 2.2.15. The sublevel set of a function f is defined as

S−(f, c) = {x ∈ dom(f) | f(x) ≤ c} (2.28)

and the superlevel set accordingly as

S+(f, c) = {x ∈ dom(f) | f(x) ≥ c}. (2.29)

For an initial point x0 of an iterative algorithm, it should be always satisfied that
the point is in the domain of the function x0 ∈ dom(f) and the sublevel set of the
function f should be closed. Sublevel sets are important for analyzing convergence of
some algorithms like gradient descent: based on the condition number of the Hessian
of the function on the sublevel set, the speed of convergence of gradient descent can
be determined.

2.2.3. Gradient Descent Method

Gradient descent is a first order method for optimizing a differentiable convex function.
Every next iterate is computed in the direction of the negative gradient and with an
appropriately chosen step size. For a convex differentiable function f : RN → R, let
xi be the current iterate, then the next iterate is given by

xi+1 = xi − λi∇f(xi) (2.30)

where λi is a step size appropriately chosen in every iteration. For a descent method
we demand that the function value is decreased in every step, i.e.

f(xi+1) < f(xi) (2.31)

until the optimal x∗ is reached. Due to convexity of f , from Proposition 2.2.2 with
y = xi+1 and x = xi and using the previous inequality (2.31) we require for the
variable update:

∇f(xi)>(xi+1 − xi) < 0. (2.32)

The convergence of the gradient descent depends on the choice of the step size λi.
Convergence can be proved when ∇f is Lipschitz continuous with Lipschitz constant
L ≥ 0, if 0 < infi λi ≤ supi λi < 2

L , see [Nes04].

Line Search Methods

Line search methods search along the line direction for the next iterate, thus de-
termining a step size. In theory, they aim at finding a global minimum of the
function

g(λi) = xi − λi∇f(xi) (2.33)

20

2.2. Basic Concepts in Convex Analysis and Optimization

where λi > 0. Computing this global minimum is in general very expensive and
requires computation of the gradient of g in each step. Due to this, line search
methods are more efficient when they search only for an approximation to this global
minimum or just a sufficient reduction of f in the next iterate.
Line search methods work such that some condition which implies decrease of

the function in the next iterate is satisfied. We present the most commonly used
conditions in line search methods.
An inexact line search method is said to satisfy the Wolfe conditions if the

following constraints are fulfilled:

Armijo condition : f(xi + λi∇f(xi)) ≤ f(xi) + c1∇f(xi)>∇f(xi) (2.34a)
curvature condition : ∇f(xi + λi∇f(xi))>∇f(xi) ≥ c2∇f(xi)>∇f(xi) (2.34b)

where 0 < c1, c2 < 1. The Wolfe conditions are a set of conditions which guarantee
sufficiently fast convergence of the gradient descent method. The Armijo condition
guarantees sufficient decrease of the function, while the curvature condition excludes
short step size which slows down the optimization process. Stronger conditions than
the Wolfe conditions are the strong Wolfe conditions which include the Armijo
condition (2.34a), and instead of the curvature condition (2.34b) the strong Wolfe
condition given by

|∇f(xi + λi∇f(xi))>∇f(xi)| ≥ c2|∇f(xi)>∇f(xi)| (2.35)

with 0 < c2 < 1. The strong Wolfe condition assures the iterate to be in the
neighborhood of the global optimum of (2.33).

For a function which is differentiable and bounded from below there always exists
a step length λi so that the Wolfe conditions are satisfied. This is shown in the next
Proposition.

Proposition 2.2.4. Let f : Rn → R be continuously differentiable and let ∇f(xi)
be the descent direction at xi. Let us also assume that f is bounded from below along
the ray {xi + λi∇f(xi)|λi > 0}. Then for 0 < c1, c2 < 1 there exist intervals of
step lengths satisfying the Wolfe conditions from (2.34) as well as the strong Wolfe
conditions (2.34a) and (2.35).

Proof. For proof see [NW06, Lemma 3.1].

Commonly used inexact line search method, backtracking line search works by
decreasing the step size λi from unit length to λi = βλi, where 0 < β < 1, until the
Armijo condition (2.34a) with 0 < c1 < 0.5 is satisfied. Backtracking line search can
be used for choosing λi for the gradient descent method. It is commonly used with
the damped Newton method (we will shortly briefly describe it) when there is no
guarantee for global convergence.

21

2. Background

2.2.4. Subgradient Method

The subgradient method is an optimization algorithm developed first by Shor [Sho85]
to minimize non differentiable convex functions. We refer to [Ber99] and [Boy14] for
more on subgradient methods.
For the subgradient method a different approach is chosen for selecting the step

size. The subgradient direction is not a descent direction, and so the function is not
guaranteed to decrease with the next iterate. For a convex function f : RN → R, let
xi be the current iterate, then the next iterate with subgradient method is given by

xi+1 = xi − λig(xi) (2.36)

where λi is the step size at the i−th iterate and g is some subgradient of f at xi,
that is g(xi) ∈ ∂f(xi) as defined in (2.25). The subgradient direction at an iterate i
is given by the negative subgradient g(xi). In the case of a differentiable function f
the subgradient direction is the gradient descent direction.
Even though the subgradient method is not a descent method, an important

property that makes the subgradient work is that for certain step size choices the
distance from the current iterate to the optimal one is reduced in every step. This is
a result from the following Proposition:

Proposition 2.2.5. Let the iterate xi be not the optimal one. Then for every optimal
solution iterate x∗, we have

||xi+1 − x∗|| < ||xi − x∗||, (2.37)

for all step sizes λi such that

0 < λi <
2(f(xi)− f(x∗))
||g(xi)||2 . (2.38)

Proof. For proof see [Ber99, Proposition 6.3.1].

From the proposition above the range of appropriate step sizes can be known when
the optimal value f(x∗) is known. However in the case when this value is not known,
an approximation can be used. Using the result from the Proposition above and an
approximate estimation of the optimal value f(x∗) allows one to use certain step size
choices. For more on how the most common step size choices, were developed we
refer to [Ber99, Sect. 6.3.1]. Among the most common step sizes used are: constant
step size when

λi = const ∀i, (2.39)

constant step length when
λi = const

||g(xi)||2
, (2.40)

22

2.2. Basic Concepts in Convex Analysis and Optimization

square summable but not summable when

∞∑
i=1

(λi)2 <∞ and
∞∑
i=1

λi =∞, (2.41)

non-summable diminishing when

lim
i→∞

λi = 0 and
∞∑
i=1

λi =∞. (2.42)

For all these step sizes convergence or approximate convergence can be shown,
see [Boy14]. For the constant step size and constant step length the subgradient
algorithm finds an ε−suboptimal point after a finite number of iterations, that is if
f
i is the minimal value after the i−th iterate of the algorithm and f∗ is the exact

optimal value then it holds
lim
i→∞

f
i − f∗ < ε. (2.43)

While for the other step sizes listed, the square summable but not summable and
the non-summable diminishing it holds

lim
i→∞

f(xi) = f∗. (2.44)

2.2.5. Newton Method

Newton method is an iterative optimization method for a twice differentiable strictly
convex function f : Rn → R with a search direction or Newton step given with

∆x = −∇2f(x)−1∇f(x). (2.45)

It is a descent method since
∇f(xi)>∆x < 0, (2.46)

except when x is optimal, ∇f(x) = 0. The descent direction follows from (2.45) and
the positive definiteness of the Hessian matrix of a strictly convex function.

Newton method was developed using the idea of second order Taylor approximation
of a function f : Rn → R at x given with

f̂(x+ y) = f(x) +∇f(x)>y + 1
2y
>∇2f(x)y. (2.47)

Computing the gradient of the convex function above with respect to y, gives the
minimizer y = ∆x, (2.45). Then f̂(x+ ∆x) is an approximation of the minimizer of
f .

The pure Newton method uses a constant and fixed step size λi = 1, ∀i. While
the so called damped Newton method uses a step size using line search methods.
Necessary and sufficient condition for convergence of the Newton method for a

twice differentiable function f is that the Hessian of f is Lipschitz continuous with
a constant L, f is strongly convex which is equivalent to ∇2f(x) � mI, for m > 0,

23

2. Background

x ∈ S−(f(x), f(x0)) and ∇2f(x) �MI, M > 0, x ∈ S−(f(x), f(x0)). The required
constants M,m and L are not always known in practice. However convergence
analysis for Newton method can be done easily if the function to be optimized is a
self-concordant function.

Definition 2.2.16. Self-concordant function f : R→ R is a convex function for
which

|f ′′′(x)| ≤ f ′′(x)3/2. (2.48)

f : Rn → R is self-concordant if it is self concordant on every line in dom f , that is if
f(y) = f(x+ yv) is self concordant ∀x ∈ dom f and ∀v ∈ Rn.

For self-concordant functions the constant unit step size can be used since then the
Armijo condition (2.34a) always holds. As a consequence no computational expensive
line search is required.

2.3. Exponential Families

In previous literature it was shown that a specific subclass of probabilistic graphical
models can be interpreted as exponential families, see [WJ08]. In this work we will
concentrate on discrete probabilistic graphical models by studying them from the
exponential family point of view which allows to apply methods and results from
convex analysis. That is, we aim at solving a problem represented as a graphical
model by transferring it to a convex optimization problem.
In this section we present the most important definitions and results which we

consider important and which are used in this thesis. For further details and
background we refer to [WJ08] on which also most of the theoretical results in this
section are based on. Furthermore, we introduce important properties of exponential
models. We remark that we use the same notation from the first section, p(x) is the
same as P (X = x).

2.3.1. Basic Definitions and Notions of Exponential Families

Definition 2.3.1. Let X be a random vector with values x ∈ X and let φ = (φα)α∈I
be the associated collection of functions called sufficient statistics, φα : X → Rd,
where d is the dimension of the index set I, d = |I|. Let θ = (θα)α∈I , be the
corresponding exponential parameter for φ, which parametrizes the distribution
according to the sufficient statistic φ. A distribution with density

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)), (2.49)

taken with some base measure ν is called an exponential family model generated
by the sufficient statistic φ, with parameter space

Θ = {θ ∈ Rd :
∫
x∈X

exp(〈θ, φ(x)〉)ν(dx) <∞}, (2.50)

24

2.3. Exponential Families

where
A(θ) = log

∫
x∈X

exp(〈θ, φ(x)〉)ν(dx) (2.51)

is called the log-partition function or cumulant function and is used for nor-
malization, that is when A(θ) <∞, then

∫
X pθ(x)ν(dx) = 1.

For a given fixed sufficient statistic, each member θ from the parameter space
(2.50) represents one exponential family model.

If the parameter space (2.50) is open, the exponential family model (2.49) is
called regular . We remark that in the rest only regular exponential families will be
considered and so we always assume that Θ is open. The exponential family model
(2.49) is called minimal if for the vector of sufficient statistics φ there exists no
nonzero vector a ∈ Rd, so that 〈a, φ(x)〉 is constant almost everywhere (ν−almost
everywhere). In the case of a minimal representation each exponential model is
represented by a unique parameter θ. If the exponential family model (2.49) is not
minimal, then it is overcomplete. In the case of an overcomplete representation
each distribution can be represented by an affine subset of parameter vectors θ.

Two examples for graphical models which are as well exponential families are the
Ising model known from statistical physics [Isi25] and Gaussian Markov random
fields [SK86].

Example 2.3.1. [Ising Model] The Ising model is a graphical model with graph
G = (V, E) and state space {−1, 1}|V| represented as the exponential family model

pθ(x) = exp
(∑
i∈V

θixi +
∑
ij∈E

θijxixj −A(θ)
)

(2.52)

where θij is constant for all edges for the standard Ising model and the log-partition
function is given by

A(θ) = log
∑

x∈{−1,1}
exp

(∑
i∈V

θixi +
∑
ij∈E

θijxixj
)
. (2.53)

The index set I for the Ising model is I = V ∪ E and so d = |I| = |V|+ |E|. Due to
A(θ) <∞ for all θ ∈ Θ, the Ising model is a regular exponential family model. It is
also a minimal exponential model since there are no linear trivial combinations of the
parameters θ equal to a constant with respect to a ν counting measure given with
ν({x}) = 1 if x ∈ {−1, 1} and ν({x}) = 0 otherwise. The Ising model is used a lot in
image analysis, with the binary state space corresponding to 2 values in the image,
for image segmentation for instance. In the general case the pairwise interactions
can be extended to higher order interaction.

Definition 2.3.2. If θ and θ′ define the same distribution, that is pθ(x) = pθ′(x),
then θ′ is called a reparameterization of θ.

The vector parameters θ from (2.50) are called canonical parameters. A prob-
ability distribution in general can be parametrized using other type of parameters,
called mean parameters.

25

2. Background

Definition 2.3.3. Mean parameters µ = (µα)α∈I associated with a sufficient
statistic φ = (φα)α∈I are defined by

µ := Ep[φ(X)] =
∫
X
φ(x)p(x)ν(dx), (2.54)

where p is an arbitrary density function, not necessary the exponential family model.

Definition 2.3.4. The mean parameter space is defined by

M := {µ ∈ Rd | ∃p(x) s.t. p(x) ≥ 0,
∫
X
p(x)ν(dx) = 1, µ = Ep[φ(X)]} (2.55)

where again p(x) is not necessarily an exponential model.

There is a connection between the mean and canonical parameters through the
log-partition function. For this reason we first explore the log-partition function by
defining some of its properties.
Let us first introduce some definitions necessary for the theorem to follow.

Definition 2.3.5. For a random variable X with real values, its variance Var(X)
is defined by

Var(X) := E((X − E(X))2) = E(X2)− E(X)2. (2.56a)
(2.56b)

Definition 2.3.6. For a random variable or a vector X, its covariance matrix is
defined by

Cov(X) := E[(X − E(X))(X − E(X))>] = E(XX>)− E(X)E(X)>. (2.57)

Theorem 2.3.1. The log-partition function

A(θ) = log
∫
x∈X

exp(〈θ, φ(x)〉)ν(dx) (2.58)

associated with any regular exponential family has the following properties:
(a) It has derivatives of all orders on its domain Θ defined in (2.50). The first

two derivatives yield the first two moments of the random vector φ(X), mean and
variance:

∂A

∂θα
(θ) = Epθ [φα(X)] (2.59a)

∂2A

∂θα∂θβ
(θ) = Epθ [φα(X)φβ(X)]− Epθ [φα(X)]Epθ [φβ(X)] (2.59b)

(b) A(θ) is a convex function of θ on its domain Θ. Moreover A(θ) is strictly convex
if the exponential family is minimal.

Proof. For proof see [WJ08, Proposition 3.1.].

26

2.3. Exponential Families

Crucial result of the Theorem 2.3.1 is that ∇A(θ) = Epθ [φα(X)] = µα, that is
∇A is a mapping from the space of canonical parameters Θ to the space of mean
parametersM. The derivative of the conjugate dual of A on the other hand defines
a mapping from the space of mean parameters to the space of canonical parameters.
Before exploring these two mappings we first state some properties of the space of
mean parametersM.

2.3.2. Properties of the Space of Mean Parameters M

The spaceM as defined in (2.55) is always a convex subset of Rd. For two different
µ1, µ2 ∈ M, there exist distributions p1 and p2 that realize them, that is µ1 =
Ep1θ [φ(X)] and µ2 = Ep2θ [φ(X)]. For 0 ≤ λ ≤ 1, the convex combination µ1λ +
µ2(1− λ) ∈M and it is realized by the distribution p1λ+ p2(1− λ). The properties
of the spaceM apart from its convexity are given with the following proposition:

Proposition 2.3.2. For the set of mean parametersM it holds:
(a)M is full-dimensional if and only if the exponential family is minimal.
(b)M is bounded if and only if for the space of canonical parameters Θ = Rd is

satisfied and the log-partition function A is globally Lipschitz on Rd.

Proof. See [WJ08, Proposition B.1].

2.3.3. Properties of the Forward Mapping ∇A

We now want to see what kind of mapping is the mapping from the space of canonical
to the space of mean parameters, ∇A : Θ→M. More precisely, we want to know
when or under which conditions the mapping ∇A is bijective.

Proposition 2.3.3. The mapping ∇A : Θ → M from the space of canonical
parameters to the space of mean parameters is injective if and only if the exponential
family defined by the parameters in Θ is minimal.

Proof. For proof see [WJ08, Proposition 3.2.].

Proposition 2.3.4. For a minimal exponential family the mapping ∇A is surjective
ontoMo, the interior of the space of mean parametersM.

Proof. For proof see [WJ08, Proposition B.1].

From these two propositions it follows that for a minimal exponential family, the
mapping ∇A is bijective onMo. That is, a mean parameter, µ ∈ Mo is uniquely
determined by the minimal exponential model pθ. This result can be extended for
the case of an overcomplete representation. Let φ be a vector of sufficient statistics
in the overcomplete representation. After eliminating elements of φ until no affine
dependencies remain, φ can be brought into a vector of sufficient statistics, ψ in an
equivalent minimal representation. Let ∇Aφ and ∇Aψ be the corresponding mean
parameter mappings andMφ andMψ the corresponding mean parameter spaces.

27

2. Background

Then as a result from Proposition 2.3.4 we have that ∇Aψ is surjective on the interior
of Mψ, Mo

ψ. On the other hand each member from the relative interior of Mφ,
rint(Mφ) see Defintion 2.2.8 for a definition of a relative interior, is related to a
unique element from the interior ofMψ,Mo

ψ. As a conclusion for an overcomplete
vector of sufficient statistics φ, the corresponding mapping ∇Aφ is surjective on the
relative interior ofMφ, rint(Mφ).

Although while definingM we stated that for the mean parameters the distribution
realizing them does not have to be an exponential model from Propositions 2.3.3
and 2.3.4, it follows that for all µ ∈ Mo, where Mo denotes the interior of M,
can be realized by an exponential family model. What is distinguishing about the
exponential family, and we will see in the next sections, is that it has the maximum
entropy of all distributions that realize µ. This is indeed the motivation of using
exponential families when definingM.

Concerning entropy and maximum entropy we refer to the following two definitions.

Definition 2.3.7. Shannon entropy or just entropy is defined as a function of
the distribution p

H(p) := −
∫
X

(log p(x))p(x)ν(dx). (2.60)

Definition 2.3.8. Principle of maximum entropy is to choose among distribu-
tions which are consistent with the data, the distribution p∗ which has the maximum
Shannon entropy. That is

p∗ := arg max
p∈P

H(p) subject to Ep[φα(X)] = µα for all α ∈ I (2.61)

where P is the set of all distributions over a random variable X and µ = (µα)α∈I is
a vector of empirical expectations.

2.3.4. Properties of the Inverse Mapping ∇A∗

Let us first define A∗, the conjugate dual of A. The conjugate dual function A∗

of A is defined by
A∗(µ) := sup

θ∈Θ
{〈µ, θ〉 −A(θ)}, (2.62)

where µ is a vector of dual variables of the same dimension as θ ∈ Rd. For general
A, the conjugate dual A∗ can take values in R ∪ {∞}. However, if A is chosen as
a log-partition-function, then it turns out that µ is in fact the mean parameter of
M. Furthermore, we will notice that the inverse mapping from the space of mean
parametersM to the space of canonical parameters Θ is in fact ∇A∗ as summarized
in the following Proposition.

Proposition 2.3.5. The dual function A∗ is convex and lower semi-continuous. In
the case when A is a log-partition function of a regular and minimal exponential
family the following properties of A∗ hold:
(a) A∗ is differentiable on the interior ofM,Mo and ∇A∗(µ) = (∇A)−1(µ).

28

2.3. Exponential Families

(b) A∗ is strictly convex and essentially smooth, see 2.2.14 for a definition of
essentially smooth function.

Proof. For proof see [WJ08, Proposition B.2].

From the definition of the Shannon entropy in 2.3.7 and the definition of the
expectation we have

−H(pθ(µ)) = Epθ(µ) [〈θ(µ), φ(X)〉 −A(θ(µ))] = 〈θ(µ), µ〉 −A(θ(µ)), (2.63)

where we use the linearity of the expectation and Epθ(µ) [φ(X)] = µ. From the
surjectivity of ∇A, (∇A)−1 is not empty. In the definition of the dual conjugative
function, see (2.62), the supremum is attained for the optimal value θ∗ ∈ (∇A)−1(µ),
µ ∈Mo, such that in the case of minimal representation θ∗ is unique, while in the
case of an overcomplete representation the optimal θ∗ is an affine subset. And so the
optimal value (2.62) is given by

A∗(µ) = 〈θ∗, µ〉 −A(θ∗), µ ∈Mo. (2.64)

From this result together with (2.63) it becomes clear that for µ ∈Mo the conjugate
dual A∗ is in fact the negative Shannon entropy. We saw that the result can
be extended to overcomplete representations, i.e. in the general case of a regular
exponential family when µ ∈ rint(M), A∗ is the maximum negative entropy. This is
stated in part of the following theorem.

Theorem 2.3.6. Let µ ∈Mo and let θ(µ) be the unique canonical parameter fulfilling
∇A(θ(µ)) = µ. Then the conjugate dual A∗ has the form

A∗(µ) =
{
−H(pθ(µ)) if µ ∈Mo

∞ if µ /∈M (2.65)

while for µ ∈M \Mo, A∗(µ) = limk→∞A
∗(µk) where {µk} ⊂ Mo and limk→∞ µ

k =
µ.

Proof. For a proof see [WJ08, B.2].

The log-partition function can be rewritten in terms of the conjugate dual A∗.
Using the fact that it is convex, proper and continuous we obtain the following form:

A(θ) = sup
µ∈M
{〈θ, µ〉 −A∗(µ)}. (2.66)

Theorem 2.3.7. For all canonical parameters θ ∈ Θ the supremum of (2.66) is
attained at a unique vector µ ∈Mo specified by

µ =
∫
X
φ(x)pθ(x)ν(dx) = E[φ(X)]. (2.67)

Proof. For a proof see [WJ08, B.2].

29

2. Background

From Theorem 2.3.6 we can see the dual relationship of A∗ and the Shannon
entropy, Hpθ . For the case A∗(µ) =∞ the maximum entropy problem happens to
be infeasible. If we would restrict the domain of A∗ toM, then we are guaranteed
to find θ, or exponential family model that realizes µ and has the maximum entropy.

From the previous results on A∗ and properties of ∇A for a minimal representation,
in view of Theorem 2.3.6 and 2.3.7, ∇A∗ is bijective fromMo to Θ and similarly
for an overcomplete representation, ∇A∗ is bijective from rint(M) to Θ. For further
discussion and results on this topic we refer to [WJ08].

2.3.5. Exponential Families for Discrete Graphical Models

When the set X is finite the space of mean parametersM can be represented as a
convex hull (see Definition 2.2.3) of vector of sufficient statistics, i.e.

M = conv{φ(x), x ∈ X}. (2.68)

Due to this representation, the setM is also called convex polytope, or marginal
polytope. Every vertex of the marginal polytopeM corresponds to a value in the
finite set X . An equivalent representation of a convex polytope is using an intersection
of half-spaces

M = {µ ∈ Rd|〈aj , µ〉 ≥ bj , ∀j ∈ J }, (2.69)

see Theorem 2.2.1. The non-redundant inequality constraints in this representation
are the facets of the marginal polytope.

The forward mapping from the space of canonical to the space of mean parameters
in the discrete setting can be interpreted as inference, which we discuss in Sect. 2.4.
In contrast, the inverse mapping from the space of mean parameters to the space of
canonical parameters can be interpreted as learning, often solved using maximum
likelihood estimation (MLE), by maximizing the logarithm of the density pθ(x), i.e.

sup
θ∈Θ

1
n

n∑
i=1

log pθ(xi) = sup
θ∈Θ

1
n

n∑
i=1
〈θ, φ(xi)〉 −A(θ) = (2.70a)

= sup
θ∈Θ
〈θ, µ̂〉 −A(θ) = A∗(µ̂) = −Hpθ(µ̂) (2.70b)

where µ̂ := Ê[φ(X)] = 1
n

∑n
i=1 xi. We saw that in the case of a minimal exponential

family and µ̂ ∈Mo the maximum likelihood is unique. Finding this unique optimal
solution is equivalent to computing the inverse mapping from the setM to Θ and for
µ̂ ∈Mo and minimal exponential family it is the dual to optimizing the maximum
entropy solution. That is, for an exponential family we get the canonical parameters
θ ∈ Θ that realize µ ∈Mo so that we have an MLE estimate and maximum entropy.
Computing the MLE estimate in the general case is computationally intensive since
it involves computing the log-partition function A. With the results of this Sect. 2.3
we saw that the effort for computing the log-partition function depends on the
complexity of the space of mean parameters,M. In fact the complexity ofM grows
rapidly with increasing graph size, rendering high-dimensional models impossible to

30

2.4. Inference

be characterized. Furthermore, the determining of the negative entropy requires the
computation of the inverse mapping (∇A)−1 which again requires high-dimensional
integration in most graphical models. Due to the intractability of these steps in
most practical cases approximations for computing M and ∇A have been proposed
[Shl76, Wer07, WJW05a].

In the remaining work we will restrict ourselves to discrete graphical models and use
the discussed interpretation as exponential families. The density p(x) in the case of
a discrete undirected graphical model (X,G) is given with p(x) = 1

Z

∏
C∈C(G) fC(xC),

as in (2.7). From here the corresponding exponential family is defined by:

I(G) := {(C; i)|C ∈ C(G), i ∈ XC} (2.71a)

φ(C;i)(x) :=
{

1 if xC = i

0 otherwise (2.71b)

θ(C; i) := log(fC(i)) (2.71c)

A(θ) := log(Z) = log(
∑
x∈X
〈θ, φ(x)〉). (2.71d)

This section introduced the basic notions used in the next sections where we will
investigate inference and learning in graphical models which is closely related to
MLE.

2.4. Inference

As discussed before, inference on an exponential family model can be interpreted as
the forward mapping ∇A. For a discrete probabilistic graphical model (X,G) with a
probability distribution pθ(x) inference can refer to:
(1) Maximum a posteriori (MAP) inference: compute the most probable configu-

ration x∗ ∈ X∗
x∗ = argmax

x∈X
pθ(x) (2.72)

(2) Marginal inference: compute marginal distributions for A ⊂ V

pθ(xA) =
∑

xV\A∈XV\A

pθ(x) (2.73)

(3) Maximum a posteriori marginal (MPM) inference: compute most probable
configuration for which the random variables of A ⊂ V take the value xA:

p∗θ(xA) = max
xV\A∈XV\A

pθ(x). (2.74)

Note that (2) and (3) are closely connected to computing the expectation or mean
parameter µ = Epθ [φ(X)] defining the exponential model pθ. For the sufficient statis-
tic φ(x) as defined in (2.71b), the mean parameters are the corresponding marginal
distributions, µi = Epθ [φli(Xi)] = P (Xi = li; θ) and µij = Epθ [φli,lj (Xi, Xj)] =
P (Xi = li ∧Xj = lj ; θ).

31

2. Background

Furthermore, (3) can be used to compute (1) which is an integer program (IP) and
can be reformulated as

argmax
x∈X
〈θ, φ(x)〉, (2.75)

since the log-partition function A(θ) does not depend on x. Moreover the connection
between (1) and the log-partition function can be seen from the following theorem.
We remark that from now on we denote the marginal polytope from the previous
section, (2.68) with M(G) to denote that it corresponds to the graphical model
defined with the graph G.

Theorem 2.4.1. For all θ ∈ Θ, andM(G) as defined in (2.68), optimization problem
(1) has two equivalent representations given with

max
x∈X
〈θ, φ(x)〉 = max

µ∈M(G)
〈θ, µ〉 (2.76a)

max
x∈X
〈θ, φ(x)〉 = lim

β→∞

A(βθ)
β

. (2.76b)

Proof. For proof see [WJ08, Theorem 8.1].

This theorem shows that the integer program (IP) (2.72), can be transformed to a
linear program (2.76a). IPs are NP-hard in general. Due to this, the complexity of the
constraint set of the LP, the marginal polytope is apparent. The transformation from
IP to LP over the convex hull of its solutions is a standard technique in combinatorial
optimization and integer programming, see e.g. [BT97, GLS88]. Solving the MAP
inference problem over the marginal polytope is in general computationally intractable
due to the complexity ofM(G). In fact the growth of the number of constraints for
M(G) is non-polynomial in the number of nodes of the graph G, see [DL09].

As a simple illustration of the marginal polytope we give an example of the Ising
model for a very small graph with 3 nodes and 2 edges.

Example 2.4.1. [Marginal Polytope for the Ising Model] The sufficient statis-
tic for the Ising model are the singleton functions (xi, i ∈ V) and the pairwise functions
(xixj , ij ∈ E). The mean parameters correspond to the marginal probabilties, that is
for µ ∈ R|V|+|E|

µi = Epθ [Xi] = P (Xi = 1) ∀i ∈ V (2.77a)
µij = Epθ [XiXj] = P (Xi = 1 ∧Xj = 1) ∀ij ∈ E . (2.77b)

The marginal polytope M is the convex hull of the vector of sufficient statistics.
SinceM is the set of all mean parameters it is the set of all singleton and pairwise
marginal probabilities realized by some distribution over the random variables
Xi ∈ {0, 1}, i ∈ V. This marginal polytope for the Ising model is also called
correlation or cut polytope. Now let us consider the simple example of a graph with
3 nodes and 2 edges, the variables X1, X2, X3 and the edges X12 and X23. The 5
dimensional marginal polytope for the Ising model on this particular graph can be
represented by the convex hull of its sufficient statistics, that is the convex hull of

32

2.4. Inference

{(x1, x2, x3, x12, x23) |xi ∈ {0, 1}, i = 1, 2, 3} and thus

M(G) = conv{(0, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), (2.78a)
(1, 1, 0, 1, 0), (1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1), (1, 1, 1, 1, 1)}. (2.78b)

The marginal polytope can also be represented as intersection of half spaces as in
(2.69). The half space representation is induced by he constraints on the mean
parameters due to (2.77), i.e.

µij ≥ 0 (2.79a)
µi − µij ≥ 0 (2.79b)
µj − µij ≥ 0 (2.79c)

µij − µi − µj ≥ 1 (2.79d)

for i, j ∈ {1, 2, 3}, i < j, which for our particular graph can be written in the following
matrix form: 

0 0 0 1 0
0 0 0 0 1
1 0 0 −1 0
0 1 0 −1 0
0 1 0 0 −1
0 0 1 0 −1
−1 −1 0 1 0
0 −1 −1 0 1




µ1
µ2
µ3
µ12
µ23

 ≥



0
0
0
0
0
0
−1
−1


. (2.80)

We can see that even for a very simple graph structure the marginal polytope has
already many constraints in the half space representation.

NP-hardness of MAP inference in Bayesian networks was proven in [Shi94, Coo90].
However, there exist relaxation methods which efficiently solve the MAP inference
problem approximately. The theory of discrete exponential models can be utilized to
solve the intractable MAP inference problem by relaxing it to a convex optimization
problem.

We remark that usually x is not observed but some noisy observation y, also seen
as a random variable, but for compactness of notation we write pθ(x) instead of
pθ(x|y).

In this work we will only consider MAP inference problems. Note that the solution
of a MAP inference problem is not unique, in fact there is an affine set of global
solutions in the general case of an overcomplete representation as we already saw in
the previous sections.

2.4.1. Approximate MAP Inference

The MAP inference problem, (2.72) can be transformed into an equivalent LP (2.76a)
which is intractable in the general case due to the complexity of the marginal polytope
M(G). The LP can be relaxed, by replacing the constraint setM(G) with a convex

33

2. Background

superset of it, the so called local polytope, M(G) ⊆ L(G). Concerning relaxed
problems we state the following definition:

Definition 2.4.1. Given two problems

(1) min
x∈U

f(x) (2.81a)

(2) min
x∈V

g(x) (2.81b)

with same variables x, (1) is a relaxation of the problem (2) if and only if V ⊂ U

and ∀x ∈ V f(x) ≤ g(x).

Relaxing the integer constraints to real ones and imposing convex constraints on
them, the local polytope is defined by

L(G) : =


µ ∈ [0, 1]d∑
xi∈Xi µi(xi) = 1, i ∈ V∑
xi∈Xi µij(xi, xj) = µi(xi), xj ∈ Xj , ij ∈ E∑
xj∈Xj µij(xi, xj) = µj(xj), xi ∈ Xi, ij ∈ E

= [0, 1]d ∩ aff({φ(x)|x ∈ X}).

(2.82)

While forM(G) the number of constraints grows fast with increasing graph size,
the number of constraints for L(G) is only linear in the graph size. Fig. 2.1 illustrate
L(G) andM(G) for a simple case.
If the linear programming relaxation has an integer solution, then the solution is

exact, and the bound is tight. This is always the case when the graph G is acyclic.
When G is cyclic, we haveM(G) ⊂ L(G).

One way of solving the relaxed LP over L(G) is using a software implementation
of a general LP solver, which can be inefficient in the case of problems with huge
size, since memory consumption grows fast with the problem size. For this reason
specialized solvers were developed which utilize the structure of the graphical model.
Among the proposed convex relaxations of the MAP problem is the LP relaxation
proposed by Schlesinger [Shl76], reviewed in [Wer07], as well as the approach proposed
in [SSKS12]. There are also attempts in research to make the relaxation tighter, by
posing more constraints in addition to the local polytope L(G).
Another powerful relaxation technique of solving (2.72) approximately is the so

called primal-dual scheme [PKT11]. These algorithms make use of the Lagrangian
decomposition known as dual decomposition. The original MAP inference problem is
first relaxed to a bi-level optimization problem, where at the lower level the inference
is performed on tractable subproblems called slaves. At the higher level the master
problem combines the solutions from the slave subproblems via dual variables. The
solution to the dual problem of the relaxation of the MAP inference problem is a
lower bound to the solution of the primal one, the original MAP problem. Dual
decomposition approaches aim at minimizing the gap between the primal and the dual.
Depending on the method chosen for decomposing the problem into subproblems

34

2.4. Inference

L(G)

M(G)

Figure 2.1. - Local, L(G), black, and marginal polytope M(G), red. The vertices of the
marginal polytopeM(G) correspond to mean parameters. We remark that this is just a qualitative
sketch of a local and marginal polytope. The figure can be deceptive in the sense that L(G) has
more facets thanM(G) which is not true. The facets of the marginal polytope are the half-space
intersections, the linear inequalities as in (2.69). The additional vertices in L(G), the non filled
vertices are the fractional solutions.

and to solve them, as well as the optimization scheme for the dual problem, different
dual decomposition relaxation methods result.
One reason why dual methods have been introduced for MAP inference is that

usually the dual (or Lagrange dual) is easier to be solved, since it is always a convex
optimization problem, independent on the convexity of the primal.
One possible approach to decompose (2.72) is to choose optimization on trees
T ⊂ G as subproblems. Tree reweighted (TRW) algorithms work in this way, they
first transform the graph into subtrees, [Kol06, WJW05b]. When the graph is a tree
and thus is acyclic, dual decomposition methods are equivalent to message passing
and as a consequence we have a tight bound on the relaxation, that isM(G) = L(G).

Other approximate optimization techniques developed to solve the MAP inference
problem, are simulated annealing [KGV83], belief propagation [MWJ99] and graph
cuts [BVZ01, KR07].

2.4.2. Variational Formulation

In the literature, it is common to consider the minimization of an energy or cost
function instead of maximizing a probability. The advantage of using an energy
function is the lack of the normalization constant, the log-partition function.

The probability distribution expressed in terms of an energy function, E, is given
by:

pθ(x) = 1
Z(θ) exp(−Eθ(x)) (2.83a)

where for the normalization constant we have Z(θ) = exp(A(θ)), with A being the
log-partition function. In the sequel we consider the distribution in terms of the

35

2. Background

energy. Due to the equivalence, we can minimize the energy instead of maximizing
the probability distribution. Then the MAP inference reads

x∗ = argmin
x∈X

Eθ(x) + const (2.84)

where const = log(Z(θ)). Note that log(Z(θ)) is the log-partition function we defined
with A(θ), see (2.51).

2.4.3. Image Labeling Problem

Many important problems from computer vision can be formulated as solving an
image labeling problem, for instance image segmentation [AK06, LG12, SM00], image
restoration [AK06, LG12], etc. For that reason, in this work we concentrate on the
image lableing problem.
The labeling problem is assigning a unique label to each vertex in a graph which

along with its neighborhood structure includes the relations among the vertices in the
graph. The problem to solve is to find the best labeling, while satisfying conditions
incorporated in the graph structure through minimizing a defined energy function
on the corresponding graph.

An image is represented as a graph G = (V, E), where V is the set of nodes (pixels
or superpixels (grouped pixels) and E is the set of all edges between neighboring
nodes which represent some dependencies between nodes. We concentrate on discrete
graphical models where each node i receives value xi ∈ Xi. We assume that Xi are
the same for all nodes i ∈ V , which we denote with L. Now we can say that labeling
is a mapping X : V → L from the set of nodes, V to the set of labels L. Translating
to an energy function this is a mapping E : L|V| → R, from the set of all possible
labellings (events) L|V| = X to the set of real numbers, R.

2.4.4. Graph Cuts

From now on we consider pairwise graphical models, i.e. the size of the cliques is at
most two. Furthermore, we restrict ourselves to the case of binary state variables,
i.e. the label space has two elements, L = {0, 1}. Many problems in computer vision
are binary, like image segmentation, binary image restoration and binary image
denoising. Furthermore, many energy minimization methods work with reducing the
problem into binary subproblems, like the move-making algorithms, the α− β swap
and the α−expansion algorithm [BVZ01].
In the following we consider the energy function on the graph G = (V, E) in the

form
Eθ(x) = const +

∑
i∈V

θi(xi) +
∑
ij∈E

θij(xij). (2.85)

The constant term emerging from the normalization factor is usually neglected in
the representation as it does not affect the solution. The function θi(xi) is called
data term and measures the cost of assigning the label xi to a node i ∈ V based
on some observed data. The function θij(xi, xj) referred to as smoothness term

36

2.4. Inference

is used to penalize neighboring nodes having different labels, or in other words it
imposes smoothness. It is also a prior term, defined using prior knowledge about the
particular problem. The data and smoothness terms are defined application-specific.

Some optimization algorithms for solving the MAP inference problem efficiently, or
even with a guarantee of a global optimum require that the energy function satisfies
certain conditions. One important property is defined below.

Definition 2.4.2. A binary submodular function is a function θ, defined on a
graph with 2 labels whose pairwise term satisfy

θij(1, 0) + θij(0, 1) ≥ θij(0, 0) + θij(1, 1), (2.86)

that is sum of pairwise terms with the same labels is smaller or equal to the sum of
the pairwise terms with differing labels. The extension of submodularity to n labels,
where the set of labels is given by L = {1, 2, ..., n} is

θij(α, α) + θij(β, γ) ≤ θij(α, γ) + θij(β, α) (2.87)

which must hold for all α, β, γ ∈ L.

In the binary case it was proven that submodular functions can be optimized
globally using graph cuts [KZ04], which turned out to be also the most efficient
algorithms for this problem class. The idea is to construct a graph corresponding to
the considered energy function such that a solution to the minimum cut problem also
solves the energy minimization problem. The minimum cut on the other hand can
be efficiently computed with max-flow algorithms, due to the equivalence of these
two problems which we will demonstrate shortly. Before stating the main theorem
let us first introduce how the terms capacity, flow and cut are defined on the context
of a graph.
Capacity is defined as c : V × V → R+, for i, j ∈ V and in particular c(i, j) = 0

for ij /∈ E .
Let the set of nodes be extended with two additional terminal nodes, s and t,

referred to as source and sink, respectively. The flow on the graph G is defined as a
function f : V × V → R such that:

a) for all nodes i, j ∈ V ∪ {s, t}, f(i, j) ≤ c(i, j)
b) for all nodes i, j ∈ V ∪ {s, t}, f(i, j) = −f(j, i)
c) for all nodes i ∈ V,

∑
j∈V∪{s,t} f(i, j) = 0.

The value of the flow in a graph is the sum of the flow leaving the source s, which
is equivalent to the sum of the flow entering the sink, t,

|f(G)| =
∑

i∈V∪{s,t}
f(s, i) =

∑
i∈V∪{s,t}

f(i, t). (2.88)

The maximum flow is a flow f which maximizes |f(G)|.
A cut in a graph G is a subset of the edge set, which partitions the node set
V ∪ {s, t} into two disjoint subsets Vs and Vt such that s ∈ Vs, t ∈ Vt. The total cost

37

2. Background

of a cut is given with ∑
i∈Vs,j∈Vt

c(i, j). (2.89)

A minimum cut is one which has minimum costs.
It is common to describe the graph cut and max-flow algorithms using directed

graphs. Any undirected graph as considered in this work can be mapped to a directed
graph by simply constructing for one undirected two opposing directed edges. Let
G = (V, E , w) be a weighted directed graph. A weighted graph can be interpreted as
a flow network were the capacity of an edge is given by pairwise weights θij . Weight
or capacity of an edge is the pairwise term in the energy function formulation, θij .

Only for graphs with non-negative weights algorithms with polynomial complexity
are known. For the case when some edge weights are negative, a reparameterization
as introduced in Definition 2.3.2 allows to bring the energy function into a form
having non-negative weights only [KR07]. Furthermore, from Definition 2.3.2 follows
that the solution of the minimization problem does not change. When all the weights
θi(xi) ≥ 0 for xi ∈ {0, 1} and min{θij(0, xj), θij(1, xj)} = 0 for xj ∈ {0, 1} (which
implies that all weights are non-negative) the energy is said to be in normal form.
The normal form is not unique and any binary energy function (2.85) can be

brought into normal form in the following way:
1. While there is an edge ij ∈ E such that min{θij(0, xj), θij(1, xj)} 6= 0 and

ε = min{θij(0, xj), θij(1, xj)}, redefine

θij(0, xj)← θij(0, xj)− ε (2.90a)
θij(1, xj)← θij(1, xj)− ε (2.90b)
θj(xj)← θj(xj) + ε. (2.90c)

2. For all i ∈ V and ε = min{θi(xi) |xi ∈ {0, 1}} redefine

θi ← θi − ε (2.91a)
const← const + ε. (2.91b)

After the energy function was brought into normal form, we have either θij(0, 0) =
θij(1, 1) = 0 or θij(0, 1) = θij(1, 0) = 0.
We state here the min-cut max-flow theorem which was independently proven in

[FF56] and [EFS56].

Theorem 2.4.2. Min-cut max-flow theorem: In any network flow with source
s and sink t, the maximum flow is equal to the capacity of the minimum cut.

Proof. See [FF56, Theorem 1].

Graph cut algorithms solve the labeling problem by solving the min-cut problem
for which algorithms with polynomial complexity are known in the case of positive
weights. After computing the min-cut all nodes are divided into two subsets, where
nodes in one subset are labeled with 0 and with 1 in the other. Before we detail on

38

2.4. Inference

the algorithm let us discuss the question how to construct the corresponding directed
graph for the energy function (2.85).

Constructing the Corresponding Directed Graph for the Energy Function in (2.85)
We describe how the binary labeling problem can be reformulated as a graph cut
problem. Let us assume that θi(xi) ≥ 0,∀i ∈ V and θij(xij) ≥ 0,∀ij ∈ E . First
the node set is extended by the terminal nodes V̂ = V ∪ {s, t} and the edge set is
augmented as Ê = E ∪ {si | i ∈ V} ∪ {it | i ∈ V}. For every edge from Ê , a weight
is assigned as following: wsi = θi(1), wit = θi(0), wij = θij(0, 1). Without loss of
generality, in the following we assume s and t to be in the node set with assigned
0 and 1, respectively. In Fig. 2.2 we illustrate a graph with its minimum cut for a
graph with 9 nodes and up to 4 neighboring nodes, as well as an example for a cut.

In [KZ04] it was shown that the energy minimization problem can be transformed
into a min-cut problem with non-negative weights if and only if the energy function
is submodular.
However even if the function does not satisfy the submodularity condition a

partially global solution can be found using a graph-cut-like algorithm, namely
quadratic pseudo boolean optimization (QPBO), first proposed in [HHS84] and
revised in [KR07].

Quadratic Pseudo Boolean Optimization (QPBO) The QPBO method does not
require a submodular function. However, when the function is not submodular, there
is no guarantee the solution will be complete, meaning there can be some state
variables left with no values assigned.

Let x be a labeling produced by QPBO. Then we can state the following important
properties of the QPBO method:

(1) If all terms of the energy are submodular, then the algorithm outputs
a complete labeling.

(2) Persistency (Weak Autarky): Let y be a complete labeling and let z be
the combined labeling of x and y, that is zi = xi if xi was assigned a label {0, 1} and
zi = yi, otherwise. Then E(z) ≤ E(y) holds.

(3) Partial optimality (Weak Persistency): There exists a labeling x∗ mini-
mizing the energy globally such that x∗i = xi, ∀i ∈ V which get a label.

(4) Invariance to flipping: QPBO is invariant to flipping the values of variables
xi ∈ U for a subset U ⊂ V, interchanging 0 and 1 labels.
In view of property (2) we can see that for an incomplete labeling provided by

QPBO, the energy will not increase no matter what the unassigned variables are
fixed to. Concerning (3) we remark that there is a set of global optimal solutions to
the energy. The reason is the relaxation and the constant term in the energy. (4) is
an important property in the case when after flipping the values 0 and 1 from some
subset U of the node set V would result into submodular energy. Then as a result of
(1) the variables of U will be all labeled.

39

2. Background

s

t

Figure 2.2. - Minimum cut for a graph with 9 nodes and up to 4 neighbors per node. Each
node is connected to its neighbors and to the source and the sink nodes. Weight of an edge is
represented with its thickness. Thicker edge means bigger weight. After the minimum cut is
found the nodes are divided into two subsets, purple and yellow.

Description of the QPBO Algorithm QPBO works like other graph cut algorithms,
i.e. it first constructs the graph corresponding to the energy function and then
a minimum cut is computed assigning binary labels to all nodes. Any binary
energy function can be minimized with QPBO. After the energy is reparametrized
with converting all unary and pairwise weights into non-negative ones, the graph
corresponding to the energy function, is constructed with a doubled set of nodes.
The transformation of the energy to the directed graph is in a similar way as we
described for graph cuts, however now for each node i ∈ V we introduce a further
node î. The new set of nodes is now defined as V̂ := V ∪ {̂i | i ∈ V} ∪ {s, t}. The new
edge set is Ê := E ∪ {si, ŝi|i ∈ V} ∪ {it, ît | i ∈ V} ∪ {iĵ, îĵ, îj | ij ∈ E}. The weights
assigned to the new edges are defined as

wsi = wît = 1
2θ

i(1) wit = wŝi = 1
2θ

i(0)

wij = wĵî = 1
2θ

ij(0, 1) wji = wîĵ = 1
2θ

ij(1, 0)

wiĵ = wjî = 1
2θ

ij(0, 0) wĵî = wîj = 1
2θ

ij(0, 0).

After finding the minimal cut, the graph is divided into two subsets Vs, and Vt,
and the nodes are labeled in the following way

xi = 0 if i ∈ Vs and î ∈ Vt
xi = 1 if i ∈ Vt and î ∈ Vs
xi gets no label otherwise .

(2.92)

The algorithm first finds the minimum cut on the part of the graph with submodular
energy terms. The difference of QPBO to other graph cut algorithms is that it selects
the cut from the set of all minimum cuts which maximizes the number of nodes

40

2.4. Inference

which were assigned a label.
We point out that there are extensions of QPBO to the multi-label case [WIC12].

There are also other graph cut algorithms which do not require submodular functions
and can be used for the multi-label case problem, namely move-making algorithms,
the α− β swap and α−expansion algorithm introduced in [BVZ01]. These graph cut
approaches iteratively apply the binary graph cut algorithm. Other algorithms for
the multi-label case require some other constraints on the smoothness energy term,
like convexity [Ish03]. Important to note is the close connection of submodularity
and convexity [Lov83].

2.4.5. Potts Model for Segmentation

We give an example of approximate inference for the segmentation problem when
using a Potts model.
Image segmentation is separating objects from background and assigning pixels

which belong to the same object the same label. There are many ways of grouping
objects sharing specific characteristic important for the related analysis. Segmentation
is a supervised type of grouping, when the labels are known beforehand. There
are also semi-supervised type of clustering techniques which partitions data into
a predetermined number of clusters based on similarities. For instance k-means
clustering [Llo82] for a fixed number of clusters is a semi-supervised type of clustering.
Unsupervised clustering on the other hand is when both the labels and the number
of clusters are not known before. This is an ill-posed problem in general and
some constraint on the number of clusters has to be provided. Spectral clustering
[Lux07, NJW01] can be considered as an unsupervised type of clustering which is
based on minimum cut techniques and analyzes a similarity matrix. More precisely,
the number of clusters is determined based on the eigenvalues of the similarity matrix.
One way of performing supervised segmentation is using energy minimization

methods. The Potts model, although a very old model [Pot52] is broadly used in
computer vision for image segmentation. It is a generalization of the Ising model,
which is defined on two labels. It acts as prior to cope with the ill-posedness of the
segmentation problem. The Potts prior is the constraint that neighboring pixels are
in the same region.

The Potts model aims to assign each pixel represented by nodes i ∈ V to a region
such that an energy function is minimized:

Eθ(x) =
∑
i∈V

θi(xi) +
∑
ij∈E

θij [xi 6= xj]. (2.93)

The first part penalizes pixel assignments e.g. based on the color, while the second
is the Potts prior defined on the graph edges ij ∈ E . Here θij are non-negative
constants and [.] is the Iverson bracket which is 1 if the expression in the bracket is
true and 0, otherwise, such that assignments with different neighbouring labels are
penalized.
The Potts function in general can be minimized using approximate inference

techniques. It can be easily checked that the Potts function with two labels is a

41

2. Background

submodular function, whereas this is not the case for three or more labels. So in the
case of two labels the Potts function can be globally optimized with graph cuts for
instance. For the case of more labels, minimizing the energy function is an NP-hard
problem in 2D (not in 1D) which comes from its equivalence to the multiway cut
problem [BVZ01], a generalization of the minimum cut problem. This equivalence
was shown in [BVZ98] from which carries over to the use of approximate methods for
the multiway cut problem to minimizing the Potts function. For the multi-label case
approximate solution can be obtained with graph cuts, α− β swap and α−expansion
[BVZ01], and some LP relaxations [KT07, WJW02].

2.5. Learning

Learning is the dual problem to inference. In inference we saw that given the canonical
parameters θ we infer the mean parameters µ. In learning we have given the mean
parameters µ which represent a subset of our data, the training data, from which we
learn the canonical parameters θ, also called model parameters. Just as inference,
learning is a non-trivial problem, however, there are efficient approximations for
learning as well.
There are different approaches to learning. The most natural way to solve the

learning problem is with MLE as we saw before, see (2.70). Due to the close
connection of MLE to Kullback-Leibler (KL) divergence [KL51] the learning problem
has been also formulated in other ways.
Depending on how the objective function of the learning problem is formulated,

(approximate) learning can be divided into two classes: probabilistic parameter
learning which is MLE with different type of approximations, and loss minimizing
parameter learning, when the learning problem is defined as minimizing a loss function
defined as the cost of predicting approximate mean or canonical parameters on data
on which the correct mean parameters are given. Basically the loss function measures
some distance between predicted and correct mean or canonical parameters.
In the following sections we describe these two types of learning.
Many other approaches not discussed fall into this categorization. For more on

this subject we refer to [NL11].

2.5.1. Probabilistic Parameter Learning

Given empirical mean parameters µ̂ = 1
n

∑n
i=1 φ(xi) ∈ M the problem of learning

canonical parameters, or probabilistic learning, is concerned with the problem

sup
θ∈Θ
〈θ, µ̂〉 −A(θ). (2.94)

The equation above is A∗(µ), the conjugate dual to the log-partition function which
is finite for mean parameters µ ∈ M due to the result of Theorem 2.3.6. Solving
the learning problem or optimizing (2.94) is equivalent to computing ∇A∗. This is
computationally intractable in the general case. The reason is the high complexity
of the marginal polytope space parameters as well as of the lack of a closed form

42

2.5. Learning

expression of A∗ in the general case. Exceptions are tree structured graphs where
junction tree theory applies, see [Lau96]. In the case of tree structured graphs the
log-partition function can be written in closed form. When the graph is a tree its
probability function can be decomposed as

pθ(µ)(x) :=
∏
i∈V

µi(xi)
∏
ij∈E

µij(xi, xj)
µi(xi)µj(xj)

, (2.95)

a result from the junction tree theory. When the probability can be decomposed
as above A∗ can be written in closed form. Using this probability distribution
decomposition rule and the result from 2.3.6, that A∗ is equivalent to the negative
entropy for µ ∈ rintM, we have

A∗(µ) = −H(pθ(µ)) = −Epθ(µ) [log pθ(µ)(X)] (2.96a)

= −
∑
i∈V

Hi(µi) +
∑
ij∈E

Iij(µij) (2.96b)

where the singleton entropy Hi(µi) := −
∑
xi µi(xi) logµi(xi), for i ∈ V and the

pairwise information Iij :=
∑
xixj µij(xi, xj) log µij(xi,xj)

µi(xi)µj(xj) .

For general graphs however due to intractability, approximations have been pro-
posed. When relaxing the inference problem we introduced the approximation of the
marginal polytopeM(G) with a local polytope L(G), which is tight for trees. For
the learning problem in addition to relaxing the marginal polytope, the intractable
A(θ) should be approximated.

In [WJW05a] a strictly convex twice differentiable approximation to A∗ was de-
signed so that the domain of the approximation of A∗ is contained in the local
polytope relaxation of the marginal polytope. Let us denote with B∗ the approxi-
mation to −A∗. The motivation for constructing the approximate function comes
from the closed form of A∗ on trees. When the general graph can be considered
as a combination of tree graphs, then due to (2.96) the functions A∗ on each of
the trees would have a closed form expression. In fact any connected graph can
be decomposed into spanning trees. Considering a spanning tree decomposition of
the connected graph G into trees T ∈ T , A∗ can be considered as a decomposition
of A∗ functions in closed form on spanning trees composing the whole graph while
weighting every spanning tree T by a probability P (T) ∈ [0, 1]. Using (2.96) the
approximation proposed by Wainwright et al. [WJW05a] also known as convexified
Bethe entropy approximation is given by

B∗ :=
∑
T∈T

P (T)
(∑
i∈V

Hi(µi)−
∑

ij∈E(T)
Iij(µij)

)
=
∑
i∈V

Hi(µi)−
∑

ij∈E(T)
PijIij(µij),

(2.97)
where Pij =

∑
T P (T)IT , also called edge appearance probability, and IT being the

indicator set function, see (2.16). When Pij > 0 for all ij ∈ E(T), the approximation
B∗ is strictly convex. Using this result the log-partition function A when expressed as
in (2.66) can be approximated using the approximation to −A∗, B∗ and the relaxed

43

2. Background

marginal polytope, LG . We denote the approximation to A as B defined by

B := max
µ∈L(G)

(〈θ, µ〉+B∗(µ)). (2.98)

It can be shown that when the approximation B∗ is strictly convex and twice
continuously differentiable, the approximation B is convex and differentiable and
has a unique solution, see [Wai06]. This approximation of the log-partition function
is used in approximate methods for computing marginals, in particular in tree
reweighted message passing methods (TRW) [WJW05b]. We note that loopy belief
propagation methods use the normal Bethe approximation which differes from the
convexified version in that the weighting probability P from (2.97) is excluded
[YFW05].

Moreover, a learning method which uses a strongly convex approximation to −A∗,
(the entropy) was proven to be globally stable [Wai06].

In practice learning is used to predict mean parameters on novel data. First canon-
ical parameters from given empirical mean parameters are learned, for instance with
an approximation of the intractable MLE (2.70). Using the introduced approximation
to the log-partition function as in [WJW05a] and given empirical mean parameters of
given data samples µ̂ = 1

n

∑n
i=1 φ(Xi), approximate MLE, also known as surrogate

likelihood can be computed by maximizing

lB(θ) := 〈θ, µ̂〉 −B(θ). (2.99)

Optionally a regularizer term R(θ) can be added and weighted by some λ > 0 to
trade off between the data term and the regularizer. Maximizing the surrogate
likelihood can be achieved simply with gradient descent. In the following we call
this step perturbation as the canonical parameters can be thought as perturbed
exact parameters. Based on the learned approximate parameters and given noisy
observations the canonical parameters can be fitted to the observed data, in order
to compute new predicted parameters. We call this step fitting or prediction.
Perturbation and fitting can be done jointly in one step or separately. Finally, using
the predicted canonical parameters mean parameters can be computed in an inference
step.
Wainwright et al. proved in [Wai06] that it is of great importance to use the

same approximate method for computing the approximate parameters and when
inferring the mean parameters in the last step. In particular when learning with
approximate MLE the same approximation of the log-partition function should
be used for the approximate MLE and the computation of the mean parameters
(marginals). Furthermore, Wainwright et al. showed that learning benefits from
approximations (when the same type of approximation is used for learning and
inference) since in practice the errors introduced by the inexact canonical parameters
are partly compensated by the error of the inexact inference.
Learning with approximate MLE can lead to good predictions when the training

data is big, as we will see in the following. To this end we interpret MLE as the
Kullback-Leibler (KL) divergence [KL51] which is a measure of distance between

44

2.5. Learning

probability distributions and defined by

KL(pθ∗ ||pθ) =
∑
i

pθ∗(xi) log pθ
∗(xi)

pθ(xi)
. (2.100)

Let θ∗ be the parameters corresponding to the given empirical mean parameters now
denoted by µ∗ and let θ be the parameter we obtain from approximate MLE learning.
Then minimizing the KL divergence (2.100) between the two distributions we get

min
θ∗

KL(pθ∗ ||pθ) =
∑
i

pθ∗(xi) log pθ∗(xi)−
∑
i

pθ∗(xi) log pθ(xi) (2.101a)

= const−
∑
i

pθ∗(xi) log pθ(xi) = (2.101b)

= −Epθ∗ [log pθ]. (2.101c)

If we consider the MLE as defined in (2.70), then minimizing the negative MLE

− 1
n

n∑
i=1

log pθ(xi) (2.102)

converges to the expectation −E[log pθ] due to the strong law of large numbers, see
[Ete81].
That is for very large training data (n → ∞) minimizing the negative MLE is

equivalent to minimizing the Kullback-Leibler divergence between the true (or exact)
distribution and the searched canonical parameters. This insight motivates the
definition of learning as minimization of a distance between true and estimated
parameters. However, in practice we are not always given a lot of data in which case
learning with MLE performs poorly.

2.5.2. Loss Minimizing Parameter Learning

In the machine learning community learning is usually defined as the minimization
of a loss function. We give a brief description of learning from this point of view.
The defined objective loss function measures a distance between the predicted
approximate mean parameters and the given correct mean parameters, the empirical
mean parameters. As described in the previous subsection, one way is to learn
the canonical parameters using approximate MLE from empirical mean parameters.
Based on that result, in the inference step the predicted mean parameters can be
computed.

In other words, learning in graphical models is concerned with building a graphical
model that describes the problem we want to solve. In practice learning methods
minimize a loss function which measures the similarity between the model we want to
obtain and the model that corresponds to the observed data. Interpreted differently,
the loss function evaluates the distance ∆ between ground truth µ∗ and the minimum

45

2. Background

energy configuration of the MRF model. This can be written as

min
θ

∆(µ(θ), µ∗) subject to µ(θ) = argmin
θ
Eθ(µ), (2.103)

with the energy function defined by

Eθ(µ) =
∑
i∈V

θi(xi)µi(xi) +
∑
ij∈V

θij(xij)µij(xij). (2.104)

In this work we concentrate on supervised learning, i.e. ground truth is provided
for the training data, based on what we have to predict output for new observed
test data. We refer to the learning problem to be unsupervised or semi-supervised if
ground truth is not or only partially available for the training data.
This thesis is concerned with the problem of learning for graphical models. We

introduce 2 novel methods for loss minimizing parameter learning which we will
describe in Chapter 4.

One of our novel learning methods is based on inverse linear programming, which
we will briefly introduce in the next section.

2.6. Inverse Linear Programming

Given some observation, the aim of solving an inverse problem is to determine the
factors that produce them. For instance computer tomography solves an inverse
problem for reconstructing a physical volume for which only some measurements
were observed.

Similarly in inverse optimization, given the observed optimal solution one computes
the model parameters which would result in the optimal solution. In this sense one can
think about learning as an inverse problem. Given observations (mean parameters,
ground truth data) we want to compute model parameters (canonical parameters)
that lead to the given observations, when solving an inference problem.
In inverse optimization a feasible solution to the inverse problem may be found

which is not an optimal one, however. The optimal one can be very difficult or
impossible to find only based on the observed solution. In order to find the optimal
model parameters that produced the observed solution, the given feasible parameters
should be perturbed as little as possible so that they lead (correspond) to an
optimal solution. This is what we refer to by inverse programming or inverse linear
programming when the problem to solve is a linear program (LP) as it is in our
case when applied to the learning problem. More precisely we define inverse linear
programming as in [ZL96] as following:

Definition 2.6.1. Let the linear program (LP) be given by

min
x
〈ĉ, x〉 s.t. Ax ≥ b and l ≤ x ≤ u (2.105)

where ĉ, x, l, u ∈ Rn, b ∈ Rm, A ∈ Rm×n. Let x̂ be a feasible solution to the given LP.
We want to find c̃ which is as close as possible to ĉ so that the feasible solution x̂

46

2.6. Inverse Linear Programming

becomes an optimal solution to the adjusted LP given by

min
x
〈c̃, x〉, s.t. Ax ≥ b and l ≤ x ≤ u (2.106)

whose solution is an optimal x. Then the inverse LP is expressed as

min ||c̃− ĉ||1, s.t. x is an optimal solution to (2.106) . (2.107)

Note that for the definition above we have to know the optimal solution x in order to
solve the inverse LP. This definition for the `1 norm defined by ||c̃− ĉ||1 =

∑
i |c̃i− ĉi|

was extended to the `∞ norm defined by ||c̃− ĉ||∞ = maxi |c̃i − ĉi| in the later paper
by Zhang [ZL99] and to the weighted case (weighted norm) in [AO01]. What is
important is that whenever the original problem is an LP the inverse problem is an
LP, too [AO01]. The feasible region of the inverse problem is formulated using the
complementary slackness constraints and the constraints of the dual problem.

Next we derive the inverse linear program given the original LP.

Given the primal LP as in (2.105) we first define its dual

max
y
〈b, y〉+ 〈l, λ〉 − 〈u, ψ〉 (2.108a)

s.t. Ay + λ− ψ = ĉ, y ≥ 0, λ ≥ 0, ψ ≥ 0 (2.108b)

where y is the associated dual variable to the constraint on x expressed by the matrix
A. Furthermore, λ and ψ are the dual variables associated with the constraints
on x, l, and u respectively. Linear programming optimality conditions state that
the primal and dual solutions x and y are optimal if they are both feasible for the
corresponding problems and the complementary slackness conditions are satisfied,
i.e.

a)Ax > b =⇒ y = 0, (2.109a)
b)x > l =⇒ λ = 0, and (2.109b)
c)x < u =⇒ ψ = 0. (2.109c)

As stated in Definition 2.6.1 we want x̂ to be an optimal solution to the perturbed
problem (2.106). We can consider the primal and the dual for the perturbed problem
as the primal and the dual of the original problem just with ĉ replaced by c̃. We call
the primal and the dual of the perturbed problem the primal perturbed and the dual
perturbed. Now, due to the optimality conditions, x̂ is an optimal solution to the
perturbed primal if and only if there exists a dual problem to the perturbed primal
and the complementary slackness conditions as in (2.109) are satisfied. From the
constraints of the dual problem (2.108) and the complementary slackness conditions

47

2. Background

we can define the following index sets for x̂

B := {i ∈ [m] : (Ax̂− b)i = 0} (2.110a)
L := {j ∈ [n] : (x̂− l)j = 0} (2.110b)
U := {j ∈ [n] : (x̂− u)j = 0} (2.110c)
S := {j ∈ [n] : 0 < x̂j < uj}, (2.110d)

then the constraints in the perturbed dual can be written as

(Ay + λ− c̃)L = 0 (2.111a)
(Ay − ψ − c̃)U = 0 (2.111b)
(Ay − c̃)S = 0 (2.111c)
yB ≥ 0, λL ≥ 0, ψU ≥ 0. (2.111d)

Let us denote c = c̃− ĉ. Then the inverse problem as defined in (2.107) is to minimize
the `1 norm of c such that the constraints as defined in (2.111) are satisfied. To
this end, let us write the `1 norm as ||c||1 = c+ + c−, where c+ = max{c, 0} and
c− = −min{c, 0}. Then we can define the inverse LP by the constraints (2.111)
where instead of c̃ we use c̃ = ĉ+ c = ĉ+ c+ − c−

Inverse LP : min
c+,c−≥0

〈1, c+ + c−〉 s.t. (2.112a)

(Ay − c+ + c− + λ− ĉ)L = 0 (2.112b)
(Ay − c+ + c− − ψ − ĉ)U = 0 (2.112c)

(Ay − c+ + c− − ĉ)S = 0 (2.112d)
yB ≥ 0, λL ≥ 0, ψU ≥ 0. (2.112e)

The problem is clearly an LP, which brings us to the conclusion that the inverse
of an LP is an LP too. In fact the inverse problems of some LPs originating from
the minimum cut, the assignment problem and the shortest path problem have their
inverse problems with the `1 norm as an LP of the same kind as the original problem.

48

3. Metric Learning for Segmentation

3.1. Introduction

When performing segmentation or clustering, one usually clusters data using some
notion of similarity. The choice of the similarity measure is involved and strongly
problem-specific and influences the quality of the clustering considerably. One
approach is to determine a similarity measure based on a clustered training data
by minimizing an appropriate energy function. This is known as metric learning.
The learned metric can then be used in a k-means clustering algorithm [Llo82].

One way to think about metric learning is to consider that we want to learn some
transformation of the Euclidean distance d(x, y) = ||x − y||2, into d(f(x), f(y)) =
||f(x) − f(y)||2. Depending on the function f this transformation can be linear ,
if f(x) = Mx for some matrix M ∈ R|dim(x)|×| dim(x)|, or nonlinear , if f(x) is a
nonlinear function. Please note that the data x and y are some prespecified feature
vectors, defined depending on the type of the problem and data. Due to this, the
distance metric we learn is a transformation of the feature distance.

Let us assume the data is given as a collection of feature vectors X = {xi}i∈V ⊂ Rn,
indexed by the vertices of a given graph G = (V, E). Two subsets defined on pairs of
the vectors of X are classified as

D ⊂ E : indices of pairwise dissimilar feature vectors, (3.1a)
S ⊂ E : indices of pairwise similar feature vectors (3.1b)

and in addition a third set of triplets can be given defined by

R = {(i, j, k) |xi is more similar to xj than to xk}. (3.2)

Then the optimization problem of a feature transformation function f(x) = Mx is
given by

min
M∈dom(M)

l(M,D,S,R) + δr(M). (3.3)

Here l(M,D,S,R) is a loss function which is penalized when the constraint sets
are violated, r(M) is a regularizer and δ ≥ 0 a parameter controlling the trade off
between the loss and the regularizer. A common choice also employed in this work
is dom(M) = Sn+ is the space of symmetric positive semi-definite matrices. In some
applications, the set is further restricted for instance to symmetric positive semi-
definite matrices with bounded trace. Sometimes the metric learning optimization

49

3. Metric Learning for Segmentation

problem can be written using constraints on the loss function

min
M∈dom(M)

r(M) (3.4a)

s.t. l(M,D,S,R) ≤ c (3.4b)

where c is some constant. We point out the resemblance of the metric learning
problem as formulated in (3.3) and (3.4) to support vector machine (SVM) [SS01]
where also a loss function is minimized, however w.r.t. the parameters of a separating
plane instead of a transformation matrix.
Depending on the type of the data we have, metric learning can be supervised,

when the data is associated with labels from which the subsets S,D,R as defined
in (3.1) and (3.2)) can be derived. In the case of weakly supervised learning, the
data is provided with no labels but only grouped into similarity/dissimilarity subsets
S,D,R. Semi-supervised learning refers to data classified into groups S,D,R and
additionally for some of the training data labels are available. Unsupervised metric
learning refers to the case when no prior information is given, that is the training
data is not grouped into subsets S,D and R, and labels are not provided. This
is clearly the most difficult type of metric learning and there has not been much
research in this direction. We will later discuss dimensionality reduction methods
which can also be interpreted as unsupervised metric learning methods.

Metric learning methods can be distinguished depending on whether they are
global, i.e. when a single metric is learned taking into account all training data
points, or local, when multiple metrics are learned on data subsets. Depending on
the problem and data type a local or a global strategy is beneficial. Local metrics
for instance perform better when the data is heterogeneous, since then on each
homogeneous subpart of the image a local metric is learned, while a single global
metric might not be flexible enough to represent complex data sets.
In nonlinear metric learning methods the feature vectors xi are transformed by

a nonlinear function f(xi). Learning this function usually involves a more difficult
optimization problem which generally is not convex. The simplest way of obtaining
nonlinear metric is with kernelizing a linear metric. Nonlinear methods usually
work better for clustering the training dataset but there is no guarantee that they
generalize better to the testing dataset.
In this work we concentrate on linear, global and supervised metric learning

methods. The most prominent type of metric learned is a Mahalanobis metric. We
first start with illustrating a Mahalanobis distance metric learning and continue with
the most influential works on metric learning as well as their optimization procedures.
We conclude by proposing a different optimization technique to two existent metric
learning methods and illustrate its performance on some experiments.

3.2. Mahalanobis Distance Metric Learning

Let us first start with the definition of a metric.

50

3.2. Mahalanobis Distance Metric Learning

Definition 3.2.1. A metric or a distance function d on a set X has to satisfy the
following properties, ∀xi, xj , xk ∈ X:

1. d(xi, xj) + d(xj , xk) ≥ d(xi, xk) (triangular inequality)
2. d(xi, xj) ≥ 0 (nonnegativity)
3. d(xi, xj) = d(xj , xi) (symmetry)
4. d(xi, xj) = 0 ⇐⇒ xi = xj (distinguishability).

(3.5)

A function d which satisfies only the first three properties is called a pseudo-
metric.

Metric learning is also called Mahalanobis metric learning as it employs a
Mahalanobis distance function [Mah36] which is defined as:

dMahal : Rn × Rn → R, (xi, xj) 7→ dMahal(xi, xj) := 〈(xi − xj),Σ−1(xi − xj)〉1/2
(3.6)

where Σ is a covariance matrix defined on the data. When the data fits a Gaussian
distribution the covariance matrix can be a good choice for a distance matrix.
However, the complexity of computing the covariance matrix is cubic in the number
of dimensions. In fact, in the literature the term Mahalanobis distance usually refers
to a distance where a different matrix M is used instead of the usually unknown
inverse covariance matrix Σ−1, i.e.:

dM (xi, xj) := 〈(xi − xj),M(xi − xj)〉1/2. (3.7)

As dM should be real-valued, the matrix M is constrained to be positive semi-definite,
i.e. M ∈ Sn+, see (2.8) for a definition. The Mahalanobis metric (3.7) is a pseudo-
metric, as it satisfies the first three properties in (3.5). In slight abuse of terminology
by metric we will also refer to pseudo-metric in the following. We remark that
sometimes in metric learning algorithms the squared distance is considered instead,
which is not a pseudo-metric itself, but considering the squared distance it eases the
optimization process, due to the beneficial linearity in M .

Metric learning methods aim at learning a distance dM defined as in (3.7), which
separates the data with indices in the set D from the data with indices in the set
S, with S and D as defined in (3.1), in the best possible way. Then the problem
amounts to moving feature vector pairs with indices from S close together while
simultaneously separating feature vector pairs with indices from D, both assessed
using the distance measure.
In the rest of this chapter we denote the identity matrix with I. Clearly when

M = I, we have the Euclidean distance. SinceM ∈ Sn+, it has nonnegative eigenvalues
and utilizing the eigenvalue decomposition we have M = L>L, with L ∈ Rl×n,
l = rank(M). Then

dM (xi, xj) = 〈xi − xj , L>L(xi − xj)〉1/2

= 〈Lxi − Lxj , Lxi − Lxj〉1/2
(3.8)

51

3. Metric Learning for Segmentation

that is xi, xj ∈ Rn are projected to a space with dimension l ≤ n. In this sense when
M is not a full rank matrix, metric learning can be also interpreted as a dimensionality
reduction method. For instance principal component analysis (PCA) [SSM98] is a
type of a metric learning method which maps data to a lower dimensional space. In
addition this can be thought of a type of an unsupervised metric learning method.
But as it more focuses to map the training data to a low-dimensional rather than to
a highly informative space, it does not generalize well to unseen data.
Mahalanobis metric learning usually leads to a convex optimization problem,

allowing to find a globally optimal solution. Usually a projected subgradient method
is employed, where the projection is done on the space of symmetric positive semi-
definite matrices Sn+. This requires the computation of eigenvalues of M in order
to subsequently replace negative ones by 0. The eigenvalue decomposition is the
bottleneck of metric learning approaches as this is computationally expensive for
high dimensional M and thus for high dimensional feature vectors. Minimizing
the distance in the decomposed form (3.8) leads to an unconstrained optimization
problem in L not requiring a projection, however at expense of a non-convex objective
function.
In general the metric learning problem is formulated as in (3.3) or (3.4) with M

being symmetric positive semi-definite matrix. Metric learning approaches differ
with respect to how the loss function and the regularizer are chosen, as well as
the optimization procedures proposed. We will give an overview on some of the
more successful and influencing metric learning approaches in the next section. We
concentrate only on supervised global linear metric learning. The introduced models
will be either in the form (3.3) or (3.4).

3.3. Representative Existing Approaches

Metric learning is still a hot topic in research, in particular in computer vision, bioin-
formatics and information retrieval. Among the many computer vision applications
are image classification, face recognition, pose estimation. Many attempts exist to
formulate the metric learning problem appropriately. In this work we will discuss
only the most influential metric learning approaches, the models proposed therein
and the optimization methods utilized. For a more profound overview on metric
learning methods we refer to the two most recent survey papers [Kul12, BHS14].

3.3.1. Mahalanobis Metric Learning for Clustering

The first most influencing work on metric learning was the work of Xing et al.
[XNJR02] also called Mahalanobis metric learning for clustering. The intention was
to improve k-means clustering using a learned appropriate similarity measure or
distance metric. Xing et al. formulated the metric learning problem as a convex
optimization problem which we will show in Sect. 3.5.1. The authors proposed the

52

3.3. Representative Existing Approaches

following formulation:

max
M�0

∑
(i,j)∈D

dM (xi, xj) (3.9a)

s.t.
∑

(i,j)∈S
d2
M (xi, xj) ≤ 1, (3.9b)

with dM as defined in (3.7) and the sets S and D as defined in (3.1). Constraint (3.9b)
is required to prevent M to grow above all limits. Instead of the value 1 in (3.9b)
another constant can be taken and this will not change the optimization problem, only
the matrix M will be rescaled. The problem formulation aims at learning a suitable
matrix M , so that the sum of distances between dissimilar points is maximized while
the sum of distances between similar points is bounded from above. In view of the
metric learning objective as defined in (3.4) the method of Xing et al. when converted
to a minimization problem has a regularizer r(M) = −

∑
(i,j)∈D

√
tr(MXij), where

Xij := (xi−xj)(xi−xj)> and a constrained loss function l(M,S) = tr(MXS) where
XS =

∑
(i,j)∈S Xij .

3.3.2. Large-Margin Nearest Neighbors (LMNN) Method

A broadly used supervised metric learning method, closely related to SVM is the
Large-Margin Nearest Neighbors (LMNN) method proposed by Weinberger et
al. [WBS06, WS08, WS09]. The similarity constraint sets are now defined using local
information. LMNN aims at bringing k-nearest neighbors with the same label close in
sense of metric distance, while maximizing the separating margin between k-nearest
neighbors with different labels. Weinberger et al. defined the nearest neighbor type
of metric learning problem in the following way:

min
M�0

(1−µ)
∑

(i,j)∈S
d2
M (xi, xj)+µ

∑
(i,j,k)∈R

(1−yik)[1+d2
M (xi, xj)−d2

M (xi, xk)]+ (3.10)

where the first term is the regularizer r(M) = tr(MXS), with XS =
∑

(i,j)∈S(xi −
xj)(xi − xj)> and the second term is the hinge loss defined by [z]+ = max{0, z}.
Sets S, D and R are now defined based on local information, i.e. in (3.1) and (3.2)
point pairs (xi, xj) with labels yi and yj are restricted to those where xj is in the
k-neighborhood of xi and yi = yj . Furthermore, yik denotes an indicator variable such
that yik = 1 if yi = yk and zero otherwise, µ ∈ [0, 1] is a parameter which controls
the trade off between separating and bringing data together. In the above defined
problem from the first term it is clear that LMNN aims at minimizing distances
between similar (local, k-nearest neighbors) pairs of points. As for the second term
when yik 6= 1, that is when xi and xk are dissimilar, the defined hinge loss is zero
when the dissimilar pair (xi, xk) has a distance which is by at least 1 bigger than the
distance of the more similar pair (xi, xj), see definition of (3.2). Or in other words
the margin of separation between dissimilar points should be sufficiently big in order
to lead to a zero loss.

53

3. Metric Learning for Segmentation

A method closely related to LMNN was proposed in [NG08] shown to outperform
LMNN and SVM as well. The only difference of the method in [NG08] to LMNN is
that it is formulated as a quadratic semi-definite programming problem. In addition
the authors in [NG08] propose kernelization of the method.

3.3.3. Metric Learning as Eigenvalue Optimization

An important result in the metric learning literature was proven by Ying et al. in
[YL12]: starting from the formulation of the metric learning problem as defined
in [XNJR02], the authors reformulate it as a convex optimization problem and
show the equivalence to minimizing the largest eigenvalue of a symmetric matrix
[LO96, Ove88].
In the formulation (3.9) the sum of distances of dissimilar pairs of points with

indices in D is maximized. Alternatively, we can maximize the minimum of all
distances of points with indices in D, while enforcing an upper bound on the distance
between similar point pairs with indices in S. Then learning M amounts to solving
the convex optimization problem

max
M�0

min
(i,j)∈D

d2
M (xi, xj) (3.11a)

s.t.
∑

(i,j)∈S
d2
M (xi, xj) ≤ 1. (3.11b)

Remark 3.3.1. In the formulation of Xing et al. as in (3.9) the distance in the
objective is not squared since this would lead always to a rank one matrix M and a
projection of the transformed data on a line as shown in [XNJR02]. However, Ying
et al. consider the squared distance in [YL12] as this results in a linear objective and
it happens to be crucial in the reformulation as an eigenvalue optimization problem
of the metric learning problem.

Using the shorthands

Xij := (xi − xj)(xi − xj)>, (3.12a)

XD :=
∑

(i,j)∈D
Xij , XS :=

∑
(i,j)∈S

Xij , (3.12b)

problem (3.11) reads

max
M�0

min
(i,j)∈D

〈Xij ,M〉 (3.13a)

s.t. 〈XS ,M〉 ≤ 1. (3.13b)

Please note that with r(M) = −min(i,j)∈D tr(MXij) = −min(i,j)∈D〈Xij ,M〉 and
l(M,S) = tr(MXS) = 〈XS ,M〉 we get the standard formulation as defined in (3.4).
In order to show the equivalence of the metric learning problem (3.13) to the

eigenvalue optimization problem we first proof a necessary result for the main proof.

Lemma 3.3.1. Let M∗ be optimal for (3.13), then 〈XS ,M∗〉 = 1.

54

3.3. Representative Existing Approaches

Proof. SupposeM∗ is optimal but 〈XS ,M∗〉 = α < 1, and let k∗ = (i∗, j∗) denote the
index of a minimal 〈Xk,M〉 that, together with M∗, defines the objective of (3.13).
Then, setting M = 1

αM
∗ � 0, we get 〈XS ,M〉 = 1 and the objective function value

min(i,j)∈D 〈Xij ,M〉 = 1
α〈Xk∗ ,M

∗〉 > 〈Xk∗ ,M
∗〉, which contradicts the assumption

that M∗ is optimal, and so 〈XS ,M∗〉 = 1 as claimed.

We introduce the linear mappings

A : Sn → R|D|, S 7→ (. . . , 〈Xij , S〉, . . .)>, (3.14a)

A> : R|D| → Sd, u 7→
∑

(i,j)∈D
uijXij (3.14b)

satisfying

〈AS, u〉 =
∑

(i,j)∈D
uij〈Xij , S〉 =

∑
(i,j)∈D

〈S, uijXij〉 = 〈S,A>u〉, ∀S ∈ Sd, ∀u ∈ R|D|.

(3.15)
Please note that u = (..., uij , ...) ∈ R|D|, (i, j) ∈ D denotes a vector, where each index
ij corresponds to an index pair (i, j) from the set of dissimilar pairs D. Using the
defined mappings we can state the main result:

Proposition 3.3.2. Problem (3.13) has the form

min
u∈∆|D|−1

λmax(A>u,XS), (3.16)

where with ∆|D|−1 we define the |D| − 1 dimensional simplex, see 2.2.5.

The proof of Proposition 3.3.2 below relies on the following variational characteri-
zation of the maximum eigenvalue of a symmetric matrix A [OW93]:

λmax(A) = σC(A) = sup
S∈C
〈A,S〉, C = {S ∈ Sd+ : tr(S) = 1}. (3.17)

More generally, for the largest generalized eigenvalue λmax = λmax(A,B) of the
matrix pencil (A,B) satisfying

Ax = λmaxBx, A ∈ Sn, B ∈ Sd+ (3.18)

for some positive semi-definite matrix B � 0, we have

λmax(A,B) = σCB (A) = sup
S̃∈CB

〈A, S̃〉, (3.19a)

CB = {S̃ = QSQ> : tr(S) = 1, S � 0, Q ∈ Od×d, Q>BQ = I}, (3.19b)

where Q ∈ Od×d is an orthonormal matrix satisfying the specified condition, where
with Od×d we denote the set of square matrices with dimension d which have
orthonormal columns. Inserting the parametrization of S̃ into the objective and
using 〈A, S̃〉 = tr(AS̃) = tr(AQSQ>) = tr(Q>AQS) = 〈Q>AQ,S〉, we can rewrite

55

3. Metric Learning for Segmentation

(3.19) as

λmax(A,B) = σC(Q>AQ) = sup
S∈C
〈Q>AQ,S〉, (3.20a)

C = {S ∈ Sd+ : tr(S) = 1}, Q ∈ Od×d, Q>BQ = I. (3.20b)

Proof of Proposition 3.3.2. With u ∈ ∆|D|−1, we write

min
(i,j)∈D

〈Xij ,M〉 = min
u∈∆|D|−1

∑
(i,j)∈D

uij〈Xij ,M〉 = min
u∈∆|D|−1

〈A>u,M〉 (3.21)

and for problem (3.13) in view of Lemma 3.3.1,

max
M�0

min
(i,j)∈D

〈Xij ,M〉 = max
M�0

min
u∈∆|D|−1

∑
(i,j)∈D

uij〈Xij ,M〉 (3.22a)

= max
M�0

min
u∈∆|D|−1

〈A>u,M〉 s.t. 〈XS ,M〉 = 1. (3.22b)

Because both feasible sets Sd+ ∩ {M ∈ Sn : 〈XS ,M〉 = 1} for M and ∆|D|−1 for u,
respectively, are compact convex, and since the objective is separately linear in M
and u, a saddle point (u∗,M∗) exists (Theorem D.4.2 in [BTN01]). Hence, we can
interchange min and max without changing the solution, then (3.22) becomes

min
u∈∆|D|−1

max
M�0

〈A>u,M〉 (3.23a)

s.t. 〈XS ,M〉 = 1. (3.23b)

Now, let Q ∈ Od×d be an orthonormal matrix such that

Q>XSQ = I. (3.24)

Then 〈XS ,M〉 = 〈Q>XSQ,Q>MQ〉 = 〈I,Q>MQ〉 = tr(Q>MQ). Hence, setting

S := Q>MQ (3.25)

with Q ∈ Od×d satisfying (3.24), we may rewrite (3.23) in the form (3.20),

min
u∈∆|D|−1

max
M�0

〈A>u,M〉 = min
u∈∆|D|−1

max
S∈C
〈Q>(A>u)Q,S〉 (3.26a)

= min
u∈∆|D|−1

λmax(A>u,XS). (3.26b)

In addition to this result, in [YL12] the authors also reformulated the LMNN
metric learning as an eigenvalue optimization problem.
The equivalent transformation of the metric learning problem (3.11) to an eigen-

value optimization problem, allows to exploit the literature on this subject and
optimize with suitable optimization methods the above defined convex and non differ-

56

3.3. Representative Existing Approaches

entiable problem. In Sect. 3.4.2 we will discuss optimization methods for efficiently
solving this convex non differentiable problem.

3.3.4. Online Metric Learning

For large problem size, metric learning algorithms are usually inefficient. The need
for reducing computational time or the intractability to access all data at the same
time has lead to the development of online metric learning algorithms. However,
the time reduction is usually at the expense of finding only an approximate solution
instead of an optimal one. As a result online metric learning approaches usually
perform worse in practice than batch metric learning methods, but usually come
together with an estimate on the error caused by the approximation. We here focus
on the formulation of the proposed metric learning problem for the online setting
and address the corresponding optimization procedure in Sect. 3.4.3.

We start with the formulation of the supervised online metric learning problem in
the general case. Instead of sets S, D and R indicating similarity, dissimilarity and
relative similarity, respectively, we consider a triplet set T = {xi, x′i, yi}i, such that
yi = 1 if xi and x′i are similar and yi = −1 if they are dissimilar.

The online metric learning problem can then be written as

d2
M (xi, x′i) ≤ b−

γ

2 if yi = 1, and (3.27a)

d2
M (xi, x′i) ≥ b+ γ

2 if yi = −1 (3.27b)

which is equivalent to
yi(b− d2

M (xi, x′i)) ≥ γ (3.28)

for i ∈ [|T |], γ is the margin of separation, and b some threshold value which serves
for predicting similarities between pairs, and w.l.o.g. can be set to 1. The idea is
to introduce a loss function that penalizes M for which the predicted similarity of
(xi, x′i) is not consistent with yi. For this purpose we consider an adapted hinge loss
defined on the particular metric learning problem in (3.28) with b = 1, given by

li(M,γ) = max{0, yi(d2
M (xi, x′i)− 1) + γ}. (3.29)

For b = 1 and d2
M (xi, x′i) ≥ 1, the point pair is predicted to be dissimilar and similar

otherwise. It can be easily checked that li vanishes when (3.28) is satisfied and
otherwise penalizes the deviation depending on the margin γ. Then the online metric
learning problem amounts to finding a sufficiently large margin γ such that the
loss (3.29) is minimized. Additionally, often a regularizer is used on the positive
semi-definite matrix M in order to exclude unbounded solutions. A regularizer based
on the Frobenius norm is given by

r(M) = 1
2 ||M ||

2
F . (3.30)

One of the first most influential works on online metric learning was the one by

57

3. Metric Learning for Segmentation

Shalev-Shwartz et al. [SSSN04] where an online metric learning approach called
Pseudo-Metric Online Learning Algorithm (POLA) was proposed. The ob-
jective function involves the adapted hinge loss (3.29), while restricting M to the
positive semi-definite cone.
Another online metric learning algorithm was proposed in [DKJ+07], namely

Information-Theoretic Metric Learning (ITML). The regularizer in the ob-
jective function in the online version of ITML involves positive definiteness of M
using the log-determinant (LogDet) divergence between the optimal M and some
intermediate M i in iteration i, and is defined as

Dld(M,M i) = tr(M(M i)−1)− log det(M(M i)−1)− n (3.31)

where n is the dimension of the matrix M,M i ∈ Rn×n. This term assures pos-
itive definiteness of the matrix M i. Furthermore, it can easily be verified that
r((M i)−1/2M(M i)−1/2) = Dld(M,M i). The motivation of using the LogDet di-
vergence as a regularizer is due to its nice beneficial properties during numerical
optimization. In fact the LogDet divergence as defined in (3.31) is scale and trans-
lation invariant and is only defined for positive definite matrices M i. Furthermore,
when considering the data to be multivariate Gaussian, the distance between two
multivariate Gaussian distributions with the same mean µ and covariances M and
M i can be measured with the Kullback-Leibler (KL) divergence, see (2.100) and the
following identity holds:

KL(p(x;µ,M i)||p(x;µ,M)) = 1
2Dld(M,M i). (3.32)

The loss in ITML at iteration i is taken as the quadratic loss given by

li = (d2
M (xi, x′i)− d2

M i(xi, x′i))2 (3.33)

which measures the quadratic distance between the true distance and the predicted
distance.
Another similar algorithm to ITML was proposed in [JKDG08], LogDet Ex-

act Gradient Online (LEGO) which also involves a LogDet divergence in the
regularizer of the objective.
In [GH11] the authors proposed the first approximate solver for semi-definite

programs which runs in sublinear time by applying a linear complexity algorithm
only on a subset of the data. The proposed algorithm in [GH11] was applied to the
problem of metric learning and processes only a fraction of the set of triples T with
a guarantee to get an ε approximate solution.
The authors use the same objective as in (3.28) with b = 1, while taking into

account that a minimum margin of separation γ should be maximized. Then the
objective can be rewritten as a max−min problem

max
M�0

min
i∈[|T |]

yi(1− d2
M (xi, x′i)). (3.34)

58

3.4. Numerical Optimization Techniques

Additionally M is constrained to be in the bounded cone of positive semi-definite
matrices defined by

P = {M |M � 0 and tr(M) ≤ 1}. (3.35)

The resulting optimization problem can be rewritten using simplex constraints

max
M∈P

min
ui∈4|T |−1

|T |∑
i=1

uiyi
(
1− d2

M (xi, x′i)
)
. (3.36a)

3.4. Numerical Optimization Techniques

After discussing the most representative models for metric learning we present the
optimization techniques used in the literature for solving the optimization problems,
some being semi-definite programming solvers specialized to a particular problem.

3.4.1. Gradient Descent and Projected Gradient Descent

From the general formulation of the metric learning problem (3.3) the domain of
M is constrained to be the cone of positive semi-definite matrices Sn+. As a result
basic gradient descent method, see Sect. 2.2.3, suitable for (convex) differentiable
unconstrained problems will not work. However, when decomposing M as in (3.8)
as M = L>L, which is implied by the positive semi-definiteness of M , the metric
learning problem (3.3) can be solved as an unconstrained optimization problem in L.
The resulting non-convex problem can then be optimized using a gradient descent
method, however with no guaranty to find the global optimum. As the models we
presented in the previous section do not rely on this factorization, we do not further
consider this class of optimization methods in the following.
One approach to solving the convex constrained problem (3.8) is the projected

gradient descent method [LP66], that is a gradient descent with a projection step to
the cone of positive semi-definite matrices. The gradient projection update step on
the general metric learning problem (3.3) can be written as

M i+1 = PSn+

(
M i − λi∇

(
l(M,S,D,R) + δr(M)

))
. (3.37)

The projection P on Sn+ can be implemented by computing the eigenvalues of the
resulting matrix after the gradient descent step M i − λi∇

(
l(M,S,D,R) + λr(M)

)
and equating the negative ones to zero. In order to ensure convergence, the step size
λi should be chosen appropriately, for instance using line search such that the Wolfe
conditions (2.34) are satisfied.

Projected gradient descent was also applied by Xing et al. [XNJR02] for optimizing
the constrained problem (3.9). Beside the constraint on the positive semi-definiteness
of M , the metric learning problem introduces an additional constraint on the metric
for the set of similar points. Due to this the authors propose 2 successive projections
on the corresponding sets.

59

3. Metric Learning for Segmentation

3.4.2. Minimizing the Maximal Eigenvalue of a Symmetric Matrix

Minimizing the maximum eigenvalue of a matrix is a very important class of eigenvalue
optimization tasks [LO96] which can be formulated as a convex but non-smooth
optimization problem. It has been well studied in the literature and we refer the
reader to [Ove88, OW93, Ous00, SF95] for a detailed discussion. A very important
result for us is that semi-definite programs with constant trace on the primal feasible
set can be equivalently reformulated as maximum eigenvalue optimization problems.
Furthermore, the maximum eigenvalue function on a symmetric matrix as defined
in (3.17) is differentiable only when the multiplicity of the maximum eigenvalue is 1
[OW93]. However, in most cases the optimal matrix has a maximum eigenvalue with
a multiplicity larger than 1.
Ying et al. in [YL12] first propose reformulating the metric learning problem as

minimizing the maximum eigenvalue of a symmetric matrix. The metric learning
problem was formulated as a composite function of the maximum eigenvalue function
and a linear function (3.16). The authors propose to first approximate the original
function

f(x) = max{x1, ..., xn}, (3.38)

by a smooth function

fµ(x) := µ ln
(n∑
i=1

exp
(xi
µ

))
. (3.39)

Ying et al. propose a new method to optimize the smoothed problem. The authors
apply the Frank-Wolfe algorithm [FW56] and its extension to semi-definite programs
over the cone of positive semi-definite matrices restricted to trace 1, proposed by
Hazan [Haz08] and a smoothing technique of Nesterov [Nes05].
Smooth approximation of the maximum eigenvalue function optimized with a

globally convergent method was additionally proposed in [CQQT04].
A bundle method for optimizing the maximum eigenvalue function was developed

in [HR00], called a spectral bundle method as it uses more information on the
spectrum of the matrix. The authors propose a specific variant of the cutting plane
model in their bundle algorithm. Subsequently, they reformulate a semi-definite
program without a constraint of the matrix trace to a maximum eigenvalue problem.
First, a dual eigenvalue function of the semi-definite program is formulated and then
an approximating minorant of the dual function is optimized using a proximal point
optimization approach.
In [DK14] a stochastic smoothing algorithm was proposed for minimizing the

maximum eigenvalue of a matrix on a convex set. The idea of the algorithm is based
on perturbations. Gaussian smoothing or perturbing the argument of the function
with a scaled outer product of a random vector from Gaussian distribution with
rank one leads to increasing the spectral gap, i.e. the difference between the largest
and the second largest eigenvalue. As a consequence, the perturbed metric has a
unique maximum eigenvalue. Due to this property, this smoothing always leads to a
maximum eigenvalue function which is always differentiable.

60

3.4. Numerical Optimization Techniques

3.4.3. Stochastic Gradient

A stochastic gradient descent (SGD) [Bot98] method is a gradient descent
method where the gradient of an objective represented by a sum of functions, is
approximated by the gradient of one function only. Due to this, stochastic gradient
is an appropriate method for optimization in online metric learning where at each
iteration one loss function and one triple of the data for the particular iterate is
provided. As a consequence, SGD allows very fast and memory efficient updates. In
an online metric learning scenario with loss function li in iteration i depending on
the current matrix M i, the SGD update is given by

M i+1 = M i − λi∇li(M i) (3.40)

where λi is an appropriately chosen step size.
We saw that in the general case for online metric learning at every iterate the

metric is updated together with a margin value of separation. While this margin
value of separation is maximized, the loss should be minimized. Additionally in
online programming with SGD the notion of orthogonal projections of matrices on a
convex closed set C is considered, i.e.

PC(M) = arg min
M i∈C

1
2 ||M −M

i||2F (3.41)

such that the new projected matrix M i ∈ C is the one closest to M . So the updated
matrix from the online algorithm should be as close as possible to the previous matrix
and should minimize the objective (3.29) on the other hand.
For instance the online metric learning version of the algorithm described in

[SSSN04] is performed using two projection steps: one on the cone of positive semi-
definite matrices, and another one projecting γ on max{1, γ}. It turns out that due
to the eigenvalue interlacing theorem [GVL96] the rank one update of the matrix M
causes only at most one eigenvalue to be negative.

In ITML [DKJ+07] and LEGO [JKDG08] the orthogonal projection update as in
(3.41) is generalized to the LogDet divergence (3.31) and this is called mirror descent
[BT03] method, a generalization of the SGD. No projection to the cone of positive
semi-definite matrices is required as the LogDet divergence guarantees this.
For the sublinear online learning in [GH11] the objective is optimized using an

approximate variant of the SGD, i.e. the projections on the bounded positive semi-
definite cone (3.35) are computed only approximately. The loss is updated using the
multiplicative weights method [AHK12].

The online metric learning algorithm in [GH11] can be thought of as some variant
of a bundle method, algorithm for optimizing convex non smooth functions. Bundle
methods use piecewise affine approximation of the objective function which is itera-
tively refined, such that the final piecewise affine function is a good approximation
of the function in the optimal point. The gradient step is performed on this approxi-
mating function, whereas in online learning we have an approximate gradient to the
original function which updates the metric.

61

3. Metric Learning for Segmentation

Performance of online learning algorithms, is normally measured with a regret
value defined after a certain number of T iterations of the algorithm, with

RT =
T∑
i=1

li(M i)−
T∑
i=1

li(M∗) (3.42)

where li is the loss at some iteration i as a function of the metric matrix M i and
the optimal metric M∗ respectively. The regret measures the difference between
the sum of all losses after certain number of iterations T of the algorithm and the
sum of optimal losses, li(M∗). The regret can also be considered as a measure of
goodness of the best possible solution the online algorithm returns when compared
to a solution of a batch algorithm which processes all data at one time.

For more on the topic on online convex programming we refer to [CBL06, Zin03].

3.5. Proposed Approach

In this work we propose two new optimization approaches for the metric learning
problem formulated by Xing et al. [XNJR02], see (3.9) and the metric learning
problem when formulated as an eigenvalue optimization problem by Ying et al.
[YL12], see (3.16). Our main idea is to use interior point methods to lift the
constraints from these two metric learning problems into the objective function. In
the following sections we first prove some basic results on the two above mentioned
metric learning problems and present our optimization approach. We use both a
first order method and a second order Newton method for the inner iterations of the
barrier method. We demonstrate the efficiency of our optimization technique with
numerical experiments while comparing it to Matlab software for disciplined convex
programming (CVX) [GB].

3.5.1. Objective Functions

In Sect. 3.3.1 we introduced one of the earliest and well known approaches in
Mahalanobis distance learning. The work of [XNJR02] proposes to maximize distance
between dissimilar points while the squared distance between similar points is upper
bounded, under the constraint M ∈ Sn+. We reformulate here again the problem
from (3.9) as a minimization problem:

min
M�0

∑
(i,j)∈D

−
√

tr(MXij) (3.43a)

s.t. tr(MXS) ≤ 1 (3.43b)

with Xij and XS as defined in (3.12).
We first prove the convexity of the function in (3.43) under the constraint of

positive semi-definiteness of M . Also note that the constraint (3.43b) is linear and
convex.

62

3.5. Proposed Approach

Proposition 3.5.1. The following problem is a convex optimization problem

min
M�0

∑
(i,j)∈D

−
√

tr(MXij) (3.44)

with Xij as defined in (3.12).

Proof. We require convexity only on the feasible set Sn+ and in the following when
taking about the objective function in (3.44) we consider its restriction on the feasible
set. We can prove the convexity of the objective function in (3.44) using the Hessian.
A twice differentiable function f(x) is convex if and only if its Hessian is a positive
semi-definite matrix, ∇2f(x) � 0. We have

f(M) = −
∑

(i,j)∈D

√
tr(MXij). (3.45)

A sum of convex functions is a convex function so it is enough to prove the convexity
of one of the functions inside the sum in (3.45). We have to prove convexity of

fij(M) = −
√

tr(MXij) where (i, j) ∈ D. (3.46)

The square root is well defined because tr(MXij) = 〈M>, Xij〉 = 〈M,Xij〉 is an
inner product of two positive semi-definite matrices and thus is non-negative due to
the self-duality of the positive semi-definite cone. For the gradient and Hessian of
fij respectively we have

∇fij(M) = −
X>ij

2
√

tr(MXij)
(3.47a)

∇2fij(M) =
X>ij

⊗
X>ij

4(tr(MXij))3/2 (3.47b)

where by ⊗ we denote the Kronecker product. The matrix Xij is a positive semi-
definite matrix as an outer product of vectors, which implies that all the eigenvalues
of Xij are non-negative. Using the property that the eigenvalues of a Kronecker
product of matrices A ∈ Rn×n and B ∈ Rm×m, with eigenvalues λi, i = 1, .., n and
µj , j = 1, ...,m, respectively, are λiµj , it follows that as a product of non-negative
values they are all non-negative as well. So finally all the Hessians are positive
semi-definite, ∇2fij(M) � 0, from which follows that f(M) is convex and thus (3.44)
is a convex optimization problem.

The second objective on which we want to apply a different optimization technique
using interior point methods is the equivalent eigenvalue optimization problem to
the metric learning problem formulated by Ying et al. [YL12], see (3.16). Inspired
by the approach in [XNJR02], the authors in [YL12], instead of maximizing the sum
of all the distances between pairs in the dissimilarity set, propose a bit different
approach. They maximize the minimal squared distance for pairs with indices in D,

63

3. Metric Learning for Segmentation

under the constraint that the squared distance sum for pairs with indices in S is
upper bounded, as well as the positive semi-definiteness of M . Another difference in
this reformulation mainly is that now instead of taking the Mahalanobis distance
which includes a square root, the squared Mahalanobis distance is used, which leads
to a linear function. This was formulated as in (3.11). This crucial difference enables
a different reformulation as an eigenvalue optimization problem (3.16).

As optimizing the maximum eigenvalue of a symmetric matrix is in general a
non-smooth convex problem, the authors in [YL12] propose smoothing the eigenvalue
function with a log-exponential function (3.39). In order to derive this formulation,
we start from problem (3.22a) with the trace constraint as in (3.22b). In order to
remove the constraint 〈XS ,M〉 = 1 we assume that XS is invertible (in practice this
can be done with adding some small ε term to the diagonal elements of XS), we
define

M̃ := X
1/2
S MX

1/2
S (3.48a)

X̃ij := X
−1/2
S XijX

−1/2
S (3.48b)

with XS and Xij as defined in (3.12). Then tr(M̃) = 1 if and only if 〈XS ,M〉 = 1.
Now we can rewrite the metric learning problem as an equivalent minimization
problem with simplex constraints using the above defined matrices,

min
M̃∈C

min
u∈∆|D|−1

−
∑

(i,j)∈D
uij〈X̃ij , M̃〉 (3.49)

where
C = {M̃ � 0 : tr(M̃) = 1}. (3.50)

The function in (3.49) can be smoothed by adding an additional negative entropy
term µ

∑
(i,j)∈D uij ln(uij), where µ > 0 and µ is very small, e.g. µ ≈ 10−5. The new

smoothed function is clearly again convex being a sum of convex functions, and is
given by

min
M̃∈C

fµ(M̃) = min
M̃∈C

(
min

u∈∆|D|−1

(
−

∑
(i,j)∈D

uij〈X̃ij , M̃〉+ µ
∑

(i,j)∈D
uij ln(uij)︸ ︷︷ ︸

:=g(u)

))
.

(3.51)
We further want to eliminate the simplex constraint. For this purpose we incorporate
the constraint into the function g(u) as defined in (3.51) by introducing a Lagrange
multiplier λ, and take the gradient w.r.t. u:

g(u, λ) =
∑

(i,j)∈D
uij〈X̃ij , M̃〉+ µ

∑
(i,j)∈D

uij ln(uij) + λ(
∑

(i,j)∈D
uij − 1) (3.52a)

∇ug(u, λ)ij = 〈X̃ij , M̃〉+ µ(ln(uij) + 1) + λ · |D| (3.52b)

From the first order optimality conditions (Fermat condition), ∇ug(u, λ) = 0, we can

64

3.5. Proposed Approach

express u for one pair (i, j) ∈ D

uij = exp
(
− 1
µ
〈X̃ij , M̃〉 − 1− λ

µ

)
(3.53)

and inserting this into the simplex constraints

∑
(i,j)∈D

uij =
∑

(i,j)∈D
exp

(
− 1
µ
〈X̃ij , M̃〉 − 1− λ

µ

)
= 1 (3.54)

we can solve for λ yielding

λ = µ ln
(∑

(i,j)∈D
exp(− 1

µ
〈X̃ij , M̃〉 − 1)

)
. (3.55)

Then we can rewrite u as

uij =
exp

(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
) (3.56)

where we used a different notation θ for the pairs with indices in D in the denominator

65

3. Metric Learning for Segmentation

for clearness. Inserting the result into g(u) as defined in (3.51), we get

g(u) =
∑

(i,j)∈D

exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
)〈X̃ij , M̃〉 (3.57a)

+ µ
∑

(i,j)∈D

exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
) ln

(exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
))
(3.57b)

=
∑

(i,j)∈D

exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
)〈X̃ij , M̃〉 (3.57c)

+ µ
∑

(i,j)∈D

exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
) (3.57d)

·
(
− 1
µ
〈X̃ij , M̃〉 − ln

(∑
θ∈D

exp
(
− 1
µ
〈X̃θ, M̃〉

)))
(3.57e)

=− µ
∑

(i,j)∈D

exp
(
− 1

µ〈X̃ij , M̃〉
)

∑
θ∈D exp

(
− 1

µ〈X̃θ, M̃〉
) ln

(∑
θ∈D

exp
(
− 1
µ
〈X̃θ, M̃〉

))
(3.57f)

=− µ
∑

(i,j)∈D
uij ln

(∑
θ∈D

exp
(
− 1
µ
〈X̃θ, M̃〉

))
(3.57g)

=− µ
∑

(i,j)∈D
ln
(∑
θ∈D

exp
(
− 1
µ
〈X̃θ, M̃〉

))
(3.57h)

where in the last equation we used that
∑

(i,j)∈D uij = 1. Finally the new smoothed
problem without a simplex constraint is given by

min
M̃∈C

fµ(M̃) = min
M̃∈C

µ log
(∑

(i,j)∈D
exp(−〈X̃ij , M̃〉/µ)

)
(3.58)

with the spectrahedron C as defined in (3.50).
Now after having derived the final objectives in the next section we propose a new

optimization technique for the metric learning problem with objectives as defined in
(3.43) and (3.58).

3.5.2. Optimization

In the following we propose an optimization approach for the metric learning problems
(3.43) and (3.58) which significantly differ from previous work.

Xing et al. in [XNJR02] solve the optimization problem (3.43) with the projected
gradient method, see Sect. 3.4.1. Ying et al. in [YL12] solve (3.58) with an approxi-
mate Frank-Wolfe algorithm, appropriately designed for their particular function.

66

3.5. Proposed Approach

In contrast, we propose a simpler first order gradient descent method as well as a
second order (damped) Newton method. As both require unconstrained objectives,
we first introduce log-barrier functions to approximate the indicator functions of the
constraint sets. Before proposing our method we give a small introduction on interior
point methods, part of which are barrier methods.

Interior Point Methods

The main idea with interior point methods as the name suggests is to force all
iterates of the algorithm to stay in the interior of the feasible set. To this end,
barrier functions are introduced which are only defined on the inside of the feasible
set. For instance, logarithmic (log) barrier functions approximating a non-negativity
constraint are only defined on the positive real line.

Interior point methods date back to Karmarkar [Kar84] and we refer the reader to
[Ber99, BV04, Tod01, NT08, PW00] for more details.
Let us consider a constrained optimization problem

min f(x) (3.59a)
s.t. gi(x) ≥ 0 i = 1, ..m (3.59b)

with f, gi : Rn → R, i = 1, ..,m convex, continuous differentiable and real valued
functions. We can lift the constraints into the objective function by introducing an
indicator function I : R→ R, yielding

min f(x)− (
m∑
i=1

I(gi(x)) (3.60)

and I being defined by

I(x) =
{

0 if x ≥ 0
∞ if x < 0. (3.61)

The idea of barrier methods is to approximate this indicator function I. Two most
common approximations of the indicator function as defined above, are the log
barrier function given by

Î(x) = −δ log(x) (3.62)

where dom(Î) = R+, the set of positive real numbers, and the inverse function

Î(x) = −δ 1
x

(3.63)

where dom(Î) = R \ {0} and δ is a parameter used to set the accuracy of the
approximation. In the following we use the log barrier function to convert the
constrained problem in (3.59) in an unconstrained one:

min f(x)−
m∑
i=1

δi log(gi(x)). (3.64)

67

3. Metric Learning for Segmentation

The added log barrier function goes to ∞ as gi(x)→ 0.
As δi gets smaller the unconstrained problem in (3.64) is a better approximation to

the original function in (3.59). In practice it has shown to be beneficial to choose δi
as a continuously decreasing sequence {δi,k}k of each of δi such that limk→∞ δi,k = 0,
for i = 1, ..,m. It can be shown that as xk→x∗, δi,k log(gi(x))→0 for i = 1, ..,m.
This was stated and proved in Proposition 4.1.1 in [Ber99].

Proposition 3.5.2. Every limit point of a sequence {xk}k generated by a barrier
method, where the parameters δi are chosen as a continuous decreasing sequences
converging to zero, is a global minimum of the original constrained problem (3.59).

The function in (3.64) is a convex differentiable function and can be optimized
with first order gradient descent method. When f is twice differentiable and convex
second order Newton method can be applied as well.

Optimization with Barrier Method

In a first step we consider the constrained optimization problems (3.43) and (3.58).
We replace the constraints by introducing log barrier functions to the objective to
gain an unconstrained version of the problem.
We denote the new objective function by fXing and the overall unconstrained

version of (3.43) then reads:

min
M

fXing(M) = min
M
−

∑
(i,j)∈D

√
tr(MXij)− δ1 log(1− tr(MXS))− δ2 log(det(M))

(3.65)
where Xij and XS are as defined in (3.12). δ1 and δ2 are parameters which have to
be properly chosen, in order to obtain a sequence of iterates that converge to a global
optimal solution, see Proposition 3.5.2. We will get back on how to choose exactly
δ1 and δ2 when we describe our algorithm we use. Since our function fXing(M)
as formulated above is convex and differentiable we can apply a gradient descent
method. For the gradient of fXing we have

∇fXing(M) = −
∑

(i,j)∈D

X>ij

2
√

tr(MXij)
+ δ1

X>S
1− tr(MXS) − δ2(M−1)−>. (3.66)

Remark 3.5.1. Concerning the last term, the inverse of the positive semi-definite
matrix M , we note that it can happen that M has zero eigenvalues in which case we
have a singular matrix. In order to exclude this we aways add a diagonal matrix, for
instance I · ε = I · 10−6 to M , before inverting it.

As for the second objective formulation from (3.58) we have one inequality con-
straint, M̃ � 0 and one equality constraint, tr(M̃) = 1. For the inequality constraint
we use again a log barrier function, while for the equality constraint we use the method
of Lagrange multipliers see Sect. 5.1.1 in [Ber99]. The final objective depending on

68

3.5. Proposed Approach

two variables is given by

min
M̃

max
λ

L(M̃, λ) = min
M̃

max
λ

µ log
(∑

(i,j)∈D
exp

(
− 〈X̃ij , M̃〉/µ

))
− δ1 log(det(M̃))

+ λ(1− tr(M̃))
(3.67)

with X̃ij and M̃ as defined in (3.48), and appropriate δ1. We optimize this objective
by alternating between the maximization of λ and the minimization of M̃ . The
function is clearly convex and differentiable and for the gradient with respect to M̃
we have

∇M̃L(M̃, λ) = −

∑
(i,j)∈D exp

(
− 〈X̃ij , M̃〉/µ

)
· X̃ij∑

(i,j)∈D exp
(
− 〈X̃ij , M̃〉/µ

) − δ1(M̃−1)> − λI. (3.68)

For the gradient with respect to λ we have ∇λL(M̃, λ) = 1 − tr(M̃). We point
out that even though we use method of Lagrange mutlipliers to handle the linear
equality constraints, in combination with barrier method, this is still considered as
an “extension“ of the barrier method as Boyd et al. call it in [BV04].
We next describe the barrier method we use for optimizing (3.65) and (3.67) in

combination with gradient descent and Newton method.

Barrier Method with Gradient Descent and Newton Method

Algorithm 1: Barrier Method with Gradient Descent
input : feasible matrix M0, so that the constraints of the original problem are

satisfied, number of inequality constraints m, tolerance value ε > 0, α > 0,
δi,k = δi,k0 , i = 1, ..m, k outer iteration number, I inner iteration number

1 while δi,k ·m > ε do
2 while ||∇f(M I)||2 > ε do
3 compute direction of the gradient descent ∇f(M I) ;
4 compute step size t with line search so that Wolfe conditions (2.34) are

satisfied ;
5 M I = M I + t∇f(M I);
6 I = I + 1;

7 δi,k = δi,k
α i = 1, ..m

8 return M I

We have two (unconstrained) convex differentiable problems in (3.65) and (3.67).
One way to globally optimize them is with steepest descent method. As for the second
objective (3.67) where we have a saddle point problem, we use alternate optimization.
We maximize with respect to λ using gradient ascent and minimize with respect to
M̃ using a barrier method with gradient descent for the inner iterations. In this case

69

3. Metric Learning for Segmentation

Algorithm 2: Barrier Method with Newton Method
input : feasible matrix M0, so that the constraints of the original problem are

satisfied, number of inequality constraints m, tolerance value ε > 0, α > 0,
δi,k = δi,k0 , i = 1, ..m, k outer iteration number, I inner iteration number

1 while δi,k ·m > ε do
2 while N2/2 > ε do
3 compute Newton step S = ∇2f(M I)−1∇f(M I) and Newton decrement

N = (∇f(M I)>∇2f(M I)−1∇f(M I))1/2 ;
4 compute step size t with backtracking line search ;
5 M I = M I + tS;
6 I = I + 1;

7 δi,k = δi,k
α i = 1, ..m

8 return M I

in line (7) in every outer iteration of Algorithm 1 we additionally perform the ascent
step for λ, λ = λ + sk(1 − tr(M̃)), with some step size sk, where k is the current
number of the outer iterations. In the experiments here we took for the step size
sk = 1

2k . In order to not cause confusion we did not include this in the pseudo-code
of Algorithm 1. The barrier method uses properly chosen parameters δi,k, i = 1, ...,m
in the outer iteration k and line search for choosing an appropriate step size for the
gradient descent in the inner loop.
Our functions in (3.65) and (3.67) are twice differentiable so another possibility

is to use the Newton method for the inner iterations. To this end we replace lines
(2-6) in Algorithm 1 by a (damped) Newton update step for M I combined with
backtracking line search, see Algorithm 2. For some background of the gradient
descent and the Newton method we refer to Sect. 2.2.3 and Sect. 2.2.5.
Note that it is important for the barrier method to be initialized with a feasible

point. We point out that concerning the inner iterations it is not always required to
solve until convergence as Boyd et al. argue in [BV04]. Instead we use as fixed the
number of inner iterations. The parameter α controls the number of outer iterations.

Convergence Analysis of the Barrier Method in Algorithm 1 and Algorithm 2

For the outer iterations or centering steps we have the following theorem, see
Sect. 11.3.3 in [BV04].

Theorem 3.5.3. After k outer iterations (centering steps) of the barrier method we
have

f(xk)− f∗ ≤ mδi,0
αk

(3.69)

where f∗ is the optimal value of the function we want to achieve, m is the number of
constraints in the original function and α is the factor by which the parameters δi,
with δi,0 the initial ones, i = 1, ...,m are decreasing.

As long as the inner iterations with the gradient descent are solvable, the barrier

70

3.5. Proposed Approach

method converges to the optimal solution. What remains is the speed of convergence
of gradient descent for different choices of values for the decreasing sequences of δi.
Gradient descent can be sometimes very slow but on the other hand is very simple.
In order to converge, gradient descent requires the sublevel set S−(f, f(x0)) to be
closed, see Definition 2.2.15. This condition is always satisfied for closed functions.
A function f is closed if f is continuous and the dom f is closed, or if dom f is open
and f(x) → ∞ as x approaches the boundary of dom f . In our case the second
condition for a closed function is satisfied due to the log barrier functions. Under the
assumption that the sublevel set S−(f, f(x0)) is closed, and the function f is strongly
convex, see Definition 2.2.10, convergence of gradient descent can be analyzed using
the condition number m

M of S−(f, f(x0)) where mI ≤ ∇2f ≤ MI. In order to see
if we can say something about the condition number we first need to compute the
Hessians of the two functions (3.65) and (3.67).
The Hessian of (3.65) is given by

∇2fXing(M) =
X>ij

⊗
X>ij

4(tr(MXij))3/2 − δ1
XS ⊗XS

(1− tr(MXS))2 + δ2(M̃−> ⊗ M̃−1). (3.70)

Let us denote
sM̃ij := exp

(
−
〈
X̃ij , M̃

〉
/µ
)
. (3.71)

Then the Hessian of (3.67) with respect to M̃ is given by

∇2
M̃
L(M̃, λ) = −

(∑
(i,j)∈D s

M̃
ij · X̃ij

)
⊗
(∑

(i,j)∈D s
M̃
ij · X̃ij

)
µ
(∑

(i,j)∈D s
M̃
ij

)2

︸ ︷︷ ︸
I1

+
∑

(i,j)∈D s
M̃
ij · X̃ij ⊗ X̃ij

µ
∑

(i,j)∈D s
M̃
ij︸ ︷︷ ︸

I2

+ δ1(M̃−> ⊗ M̃−1)︸ ︷︷ ︸
I3

.

(3.72)

The Hessian (3.70) does not allow to conclude much on the boundedness, except
that ∇2f(M) ≥ 0, as we already proved in Proposition 3.5.1. For the Hessian (3.72)
of the second objective, we can find upper bounds for terms I1 and I2, see [YL12,
Lemma 4], but none can be found for I3.
If we can prove that both of the objective functions are self-concordant, see

Definition 2.2.16 we can make use of this property to conclude on the convergence of
the Newton method [BV04]. While the log barrier functions are self-concordant we
do not know about the main part of the objective for (3.65) and (3.67).

3.5.3. Experiments and Discussion

In this section we empirically demonstrate the efficiency of the introduced optimization
techniques and in general the objective of metric learning approaches.
To this end we investigate the following aspects:

71

3. Metric Learning for Segmentation

1. We compare k-means clustering based on Euclidean distance similarity measure
to k-means clustering based on metric learned distance, in order to demonstrate
the efficiency of a learned distance.

2. We compare our optimization technique to established semi-definite solvers in
order to demonstrate the ability to find a solution to the optimization problems.

We compare our proposed optimization approach applied to the unconstrained
problems (3.65) and (3.67) to specialized semi-definite solvers applied to the original
constrained optimization problems (3.43) and (3.58) as proposed in the corresponding
papers [XNJR02] and [YL12], respectively. For implementation we use the disciplined
convex programming (CVX, see [GB]) framework in Matlab.

Notation and Technical Details We first introduce the technical details and nota-
tion for the combination of the optimization techniques on the objective functions
which we implement.

When implementing the barrier method with gradient descent for the inner it-
erations as in Algorithm 1 applied on the objective (3.65) we denote it with Xing
(Grad), while when implementing the barrier method with Newton method for the
inner iterations as in Algorithm 2 we denote it with Xing (Newt). When implement-
ing Algorithm 1 on the objective (3.67) we denote it with Ying (Grad). When the
objective (3.43) from Xing et al. [XNJR02] is optimized with a semi-definite solver
from CVX [GB], Sedumi we denote it with Xing (CVX), while when optimizing
the objective (3.58) from Ying et al. [YL12] with Sedumi from CVX [GB] we denote
it with Ying (CVX).
After learning a similarity distance measure in order to illustrate the mapped

data to a different space after learning, we multiply the original data with the lower
triangular matrix L from the Cholesky decomposition [GVL96] of M = LL>.

For the reported results we use an error measure of the total number of misclassified
pixels defined by

Error := 100
∑N
i=1(l(i)− lgt(i))

N
, (3.73)

where N is the total number of instances, l is the obtained label (class) and lgt the
ground truth label.

We normalize the features from the datasets we use to be in the range of [0, 1] in
order all the features to be taken into account equally. This affects the result from
k-means clustering as well.

Toy Data Experiment As data we generate small sets with two classes with 30
instances for each class, Fig. 3.1(a). As features we use the (x, y) position of the
data.

The distance between the data points in each of the two clusters varies and some
data points are spread further from the cluster center. The two clusters also have
some points on the ”borders“. This leads to conclusion that k-means clustering
[Llo82] will fail to cluster some of the data appropriately. This is illustrated in

72

3.5. Proposed Approach

Fig. 3.1(b) where the 4 green points denote incorrectly clustered data which amounts
to 6.67% of the data.

After learning the similarity metric distance with Xing (Grad) the data is mapped
as in Fig. 3.1(c) and clustered with k-means applied to the new distance as in
Fig. 3.1(d). The new metric tends to project the data such that data within each
cluster is brought as close as possible while the clusters tend to get sparated by some
margin. As a result this leads to perfect clustering of the data. The same results
are obtained when learning with Xing (Newt) and Xing (CVX). The results after
learning with Xing (CVX) are illustrated in Fig. 3.1(e) and Fig. 3.1(f).

As for learning with Ying (Grad) the new mapped data after learning is illustrated
in Fig. 3.2(a) and in Fig. 3.2(b) after clustering. The projection of the data is worse
than in the case for Xing(Grad), Xing(Newt) and Xing(CVX) but still slightly better
than the original data. As a result after k-means clustering only one point gets
wrongly clustered. When applying Ying (CVX) the solver fails to return an optimal
solution. The reason can be due to the logarithm and exponential function in the
objective which CVX approximates using Taylor expansions.
The parameters from Algorithm 1 and Algorithm 2 were chosen as following:

m = 2 for Xing (Grad) and Xing (Newt) and m = 1 for Ying (Grad). We choose the
initial parameters to be δi,0 = 1, i = 1, ...,m. The trade off between the inner and
outer iterations was set to α = 2, and we used a fixed number of 50 inner iterations.
For the tolerance value we choose ε = 10−3 and we initialized with the same feasible
matrix Min = 10−1I/(tr(XSI) + 10). In order to gain a feasible M as initialization
of Ying (Grad) we choose Min = I/(tr(XSI)) which fulfills the equality constraint
tr(MXS) = 1. As for the k-means implementation we use the default values for
Matlab.

Experiment on the Fisher Iris Dataset [Fis36] We perform the same experiments
on the Fisher iris dataset [Fis36] which consists of 150 instances, grouped into 3
classes and each instance is given 4 features. We first divide the dataset randomly
into 70% training and 30% testing sets. After learning a suitable metric on the
training data we perform k-means clustering with the new similarity distance learned
on the test dataset. We use the same parameters as for the first experiment on our
synthetic data, except for the tolerance value which we set to ε = 10−5. The resulting
errors are provided in Table 3.1, including the measurements for the training dataset.
Again metric learning significantly improves the classification results. Even tough
the resulting metric from Xing (CVX) leads to best clustering performance, still
our optimization methods Xing (Grad), Xing (Newt) and Ying (Grad) significantly
improve the clustering after learning. Seems that Ying (Grad) learns a better metric
on the train data than Xing (Grad) and Xing (Newt) but this metric does not
generalize good enough on the test data. The reason that Xing (CVX) is better than
our optimization methods can be due to the approximative nature of the barrier
method and the parameter choice we use. We have to remark that it is not always
clear how to choose α for Algorithm 1 and Algorithm 2. Concerning Ying (Grad) the
authors of the corresponding paper propose a sophisticated Frank-Wolfe algorithm

73

3. Metric Learning for Segmentation

for this objective which is an approximation to the original metric learning method
due to smoothing. This suggests that a simple barrier method might not generalize
from small data sets to larger ones.

Experiment on the Wine Dataset [Lic13] In addition we perform the same exper-
iments on the wine dataset from the UCI repository [Lic13]. The dataset consist of
178 instances with 13 features each, assigned to 3 classes. We first divide the dataset
into 70% for training and 30% for testing. The parameters are chosen the same as in
the first experiment, except for ε = 10−8. With Xing (Grad) we learn the metric that
clusters the train data leading to the smallest error. With Ying (Grad) and Xing
(CVX) the classification result on the train data is the same as before learning. The
learned metric from Xing (Grad) and Ying (Grad) does not generalize well to unseen
data, the test data in this case and does not lead to improvement after learning. But
with Xing (CVX) even tough the train data error stays the same as before learning
the test error is improved. Due to high feature dimensionality, we did not use Xing
(Newt) for the wine dataset.

Conclusion With the first toy experiment we illustrated what exactly metric learning
tries to achieve. Project data to a space so that similar data is brought as close
as possible while dissimilar data is separated as much as possible. As a result
after learning a suitable metric the performance of k-means clustering is sufficiently
improved. All the experiments account for that. We showed empirically that our
proposed optimization techniques Xing (Grad), Xing (Newt) and Ying (Grad) are in
most of the cases producing the same or close result as Xing (CVX). This showed the
competitiveness of our optimization method to established metric learning solvers.

method k-means Xing
(Grad)

Xing
(Newt)

Xing
(CVX)

Ying
(Grad) Ying

(CVX)
toy data 6.67 0 0 0 1.67 failed
iris train 5.71 4.76 4.76 0.95 3.81 failed
iris test 6.67 4.44 4.44 2.22 6.67 failed
wine train 4.03 2.42 - 4.03 4.03 failed
wine test 14.81 14.81 - 11.11 14.81 failed

Table 3.1. - Classification errors in percentage on the toy data we generate, the iris dataset
[Fis36] and the wine dataset [Lic13]. Errors are compared when the data is clustered using
k-means with Euclidean distance measure before learning the similarity metric and k-means after
the new distance metric is learned with Xing (Grad) and Xing (Newt). This result is compared
with Xing (CVX). These results are further compared with Ying (Grad) and Ying (CVX). However,
the Sedumi solver fails to solve this problem to optimality which can be due to the approximation
to the logarithm and exponential function in the objective. We can see the huge improvement of
the k-means clustering after learning an appropriate similarity metric. As the dimensionality of
the features is higher for the wine dataset and we require expensive inverted Hessian for Xing
(Newt) we did not implement it.

74

3.5. Proposed Approach

0 0.5 1 1.5
0.00

0.50

1.00

0 0.5 1 1.5
0.00

0.50

1.00

(a) Generated 2D data assigned to
two separate clusters

(b) Clustered 2D data from (a) using
k-means based on Euclidean distance,

green denotes misclassified data

2 4 6
0.00

1.00

2.00

·10−2

2 4 6
0.00

1.00

2.00

·10−2

(c) 2D data from (a) mapped to a
new space using the learned matrix

with Xing (Grad)

(d) Clustered new mapped data from
(c) using k-means based on Euclidean
distance (k-means using new distance

measure)

2 4 6
0.00

0.50

1.00

1.50

·10−4

2 4 6
0.00

0.50

1.00

1.50

·10−4

(e) 2D data from (a) mapped to a
new space using the new matrix

learned with Xing (CVX)

(f) Clustered mapped data from (e)
using k-means based on Euclidean

distance

Figure 3.1. - (a) Two 2D clusters, (b) clustered with k-means, k = 2 leads to 6.67%
misclassification. The clustering is successful when a new distance is used which is learned with
Xing (Grad), see (c) for the mapped data using the matrix learned and (d) for the clustering
result. Same result is obtained when learning with Xing (CVX), see (e) and (f) for transformed
data and clustering result respectively. See text for discussion on the results.

75

3. Metric Learning for Segmentation

0 1 2 3 4
0.00

1.00

2.00

3.00

0 1 2 3 4
0.00

1.00

2.00

3.00

(a) 2D data from Fig. 3.1(a) mapped
to a new space using the new matrix

learned with Ying (Grad)

(b) Clustered mapped data from (b)
using k-means based on Euclidean

distance

Figure 3.2. - The original data from Fig. 3.1(a) mapped to a new space using Ying (Grad) (a)
and classification result using k-means improves (b) when compared to Fig. 3.1(b).

76

4. Model Parameter Perturbation and
Learning

4.1. Overview

The learning problem as introduced in Sect. 2.5 is a central element in computer
vision, for example in image segmentation [RM03, BDS+09], image denoising [EA06,
HKWL14], object recognition [LHB04, Hei03] and scene classification [BLSB04,
ZZS14].
The main contribution of this work is two novel learning methods for graphical

models. The first one exploits inverse linear programming, see Sect. 2.6, and is to
our knowledge the first learning approach to solve the learning problem in graphical
models using inverse optimization. The second approach we propose resembles
already existing learning methods, like structured Support Vector Machine (SVM)
[FJ08, TJHA05, THJA04].
We choose the image labeling problem described in Sect. 2.4.3 as an exemplary

scenario to evaluate the proposed learning methods. A labeling can be considered
as a mapping from the set of all nodes in a graph to the set of labels in the image.
By introducing an energy function measuring the quality of a labeling, the problem
consists in finding a labeling that minimizes the energy. Furthermore, minimizing the
energy function is equivalent to solving the Maximum a Posteriori (MAP) inference
problem which was introduced in Sect. 2.4.2.
Let the discrete energy function be given by

Eθ(x) =
∑
i∈V

θi(xi) +
∑
ij∈E

θij(xi, xi) (4.1)

defined on a graph G = (V, E), where the model parameters θ collect the function
values of the unary and pairwise potentials θi and θij respectively. The energy function
Eθ evaluates assignments of labels x from a predefined label set L = (1, . . . , L) to
every node i ∈ V.
Minimizing the energy (4.1) in the general case is NP-hard problem as discussed

in Sect. 2.4. A common way to solve it approximately is to relax it to a convex
problem, as discussed in Sect. 2.4.1, since convex problems are easier to optimize.
MAP estimation in a discrete setting can be written in the form of a linear integer
program. Relaxing the integer constraints to an appropriate convex set yields a
convex relaxation problem. There are efficient solvers that can find an optimal
solution in polynomial time to a relaxed version of (4.1).

We consider the local polytope relaxation [Shl76, Wer07] which enforces consistency

77

4. Model Parameter Perturbation and Learning

of unary and pairwise variables enclosed in µ via the local polytope LG , and with
abuse of notation we now write in the minimization problem the energy as Eθ(µ)
given by

min
µ∈LG

Eθ(µ) = min
µ∈LG

∑
i∈V

θi(xi)µi(xi) +
∑
ij∈E

θij(xij)µij(xij) (4.2)

and LG is as defined in (2.82). The LP problem above (4.2) can be written in shorter
form

min
µ∈LG

〈θ, µ〉, (4.3)

with 〈., .〉 being the Euclidean product and µ the vector of relaxed (possibly non-
integral) assignments, µ ∈ [0, 1]|V|+|E|.

When one minimizes the relaxed LP (4.3), model parameters θ have to be defined
appropriately, depending on the specific problem application. These model parameters
depend (linearly or non linearly) on so called image features and involve additionally
some parameters which are usually heuristically determined. A more solid approach
is to determine the parameters θ by learning. This can for instance be achieved using
supervised learning, when the ground truth values µ∗ (in our case labellings) are
given on some training samples.
Our two learning approaches learn model parameters θ that minimize the local

polytope relaxation problem in (4.3). Even though we learn approximate parameters
by solving the relaxed inference problem this will not affect our prediction in a
negative way as long as we use the same approximative method of inference for novel
data. In fact, it was theoretically proven that this can even be a benefit, as the
error in the learned approximate parameters can partly compensate for the error in
the approximate inference method [Wai06]. A study on the same topic proves that
learning with solving a relaxed problem (superset of the feasible set) leads to better
results than learning with solving the exact problem on a subset of the feasible set
[FJ08].

In general, inverse linear programming computes minimal perturbation of a given
cost vector so that given the constraints, the minimizing perturbed cost vector results
in a predetermined (ground truth) optimal solution. Similarly, our learning approach
based on inverse linear programming, which we abbreviate from now on as invLPA
computes perturbations θk for training images k ∈ [N], of a given initial model
parameter θ̂, obtained with any other learning method, so that the relaxed problem
(4.3) attains a global minimum for each ground truth labeling µ∗, obtained via the
optimization problem

µ∗ ∈ arg min
µ∈LG

〈θ̂ + θk︸ ︷︷ ︸
=:θ̃k

, µ〉, k ∈ [N] (4.4)

for the adjusted energy Eθ̂+θ and the corrected model parameter θ̂ + θk. Note that
we denote the corrected parameters with θk + θ̂ = θ̃k. For an illustrative example we
refer to Fig. 4.1. We will see empirically how these corrected and approximate (due
to the relaxation) parameters will result in an improvement of the final approximate
prediction.

78

4.1. Overview

(a) input (b) result with θ̂ (c) result with θ̂ + θ

Figure 4.1. - Illustrative example of the invLPA where a perturbation to the initial model
parameters (which alone results in the segmented image (b)) is estimated so that the corrected
model parameter correspond (result) to the obtained (equal to ground truth) segmentation (c)

Our second approach, an instance of the first one finds linearly parametrized
potentials θ(w) in terms of a parameter vector w ∈ Rd, so that labellings xk obtained
by minimizing (4.3) fit ground truth labels x∗k. An intuitive way to model this is to
learn the vector w by solving the non-convex bi-level optimization problem

min
w∈Rd

∑
k∈[N]

‖xk(w)− x∗k‖1 s.t. xk(w) ∈ arg minEθk(w)(x). (4.5)

This objective expresses that we want to find parametrized potentials θ(w) so that
the optimal solution would be as close as possible to the ground truth segmentation.
We can think of this objective as minimizing a so called loss function which measures
the difference of the estimated solution to the true one. We abbreviate this approach
from now on as LA (linearized approach).

Our learning method based on inverse linear programming invLPA has the beneficial
property that any predictor can be used to adapt model parameters to new data.
In contrast, the second learning method LA is restricted to linear dependencies of
the potential vectors. The linearity of the second approach is essential to come up
with a tight convex relaxation that allow the usage of off-the-shelf inference solvers
for labeling subproblems of the overall problem. With the invLPA method for every
train data we find a corrected parameter θk, whereas with the LA method we learn
one vector w on which all parametrized potentials for the train data depend. In
particular in view of (4.5) we find one w vector on which all xk(w) depend (θk(w)).

In this work we confine ourselves to the binary case for which the local polytope
relaxation is tight if the objective function is submodular.

This chapter is organized as follows: the two new approaches for learning are
presented in Sect. 4.2 and Sect. 4.3, while in Sect. 4.4 we comment on the differences
of the two approaches. In Sect. 4.5 we first demonstrate emprirically the ability of
invLPA to learn corrected potentials followed by empirical evaluation of both invLPA
and LA on some academic examples as well as on the Weizmann horse dataset, [BU08].
In particular we demonstrate that learning benefits from inverse linear programming.
In Sect. 4.6 we use our LA approach for online learning motion segmentation in video
sequences, on the DAVIS video segmentation dataset [PPTM+16].

79

4. Model Parameter Perturbation and Learning

4.2. invLPA: Inverse Linear Programming Approach

Based on inverse linear programming, described in Sect. 2.6 we develop our novel
approach for learning parameters in graphical models.
Our learning approach we propose in this section consists of two independent

phases: (i) model parameter perturbation where we propose the novel inverse linear
programming approach for learning model parameters, and (ii) model parameter
prediction based on the results from (i), where we can use any model parameter
prediction method.

4.2.1. Model Parameter Perturbation

In this section we apply the inverse linear programming approach of [ZL96, AO01]
to the problem of learning model parameters of graphical models. For the required
background on minimal representation and the exponential family model we refer to
Sect. 2.3.

We consider the local polytope relaxation to the MAP inference problem, as given
by

min
µ∈LMG

〈θ̂, µ〉, (4.6)

where the local polytope LMG is defined by the so called minimal representation,

LMG :=


µ ≥ 0
−µij + µi ≥ 0, i ∈ V, ij ∈ E
−µij + µj ≥ 0, i ∈ V, ij ∈ E
−µi − µj + µij ≥ 1, i ∈ V, ij ∈ E .

(4.7)

The second and third constraint come from the probabilistic interpretation for
the binary case of two labels 0 and 1 with variables xi, that is, µi = P(xi = 1),
µij = P(xi = 1 ∧ xj = 1). In this section we will assume the minimal representation
when referring to the local polytope representation. Furthermore, for compactness
we will write the constraints (4.7) as a linear inequality system, i.e. Aµ ≥ b.

In the following we will follow the inverse linear programming approach from
[ZL96, AO01]. We want a ground truth segmentation, µ∗ to be in the optimum of a
labeling problem by perturbing an initial vector θ̂:

µ∗ ∈ arg min
µ∈LMG

〈θ̂ + θ, µ〉. (4.8)

Concerning the initial model parameter vectors θ̂, they can be obtained with any
learning method.
Our original problem (4.6) is an LP and using the results from Sect. 2.6 we can

formulate the inverse LP by first constructing the dual and deriving the complemen-
tary slackness conditions. This will allow us to derive the optimal perturbation θ. In
the following we denote n := |V| and m := |E|.

80

4.2. invLPA: Inverse Linear Programming Approach

Let us define the set of all θ parameter vectors that correspond to the ground
truth segmentation µ∗

Θ(µ∗) := {θ̃ ∈ Rm+n| min
µ∈LMG

〈θ̃, µ〉 = 〈θ̃, µ∗〉}. (4.9)

We want to perturb the given initial vector θ̂ /∈ Θ(µ∗), in the sense of the `1
distance, i.e.

θ ∈ min{||θ̃ − θ̂||1 |θ̃ ∈ Θ(µ∗)}. (4.10)

Next we summarize the primal-dual formulation of (4.6) and use the inequality
form Aµ ≥ b to represent the local polytope:

Primal: Dual:
min
µ
〈θ, µ〉, max

ν
〈b, ν〉 (4.11a)

s. t. Aµ ≥ b, µ ≥ 0 s. t. A>ν ≤ θ, ν ≥ 0. (4.11b)

Let us denote with µ∗ the optimal solution to the primal problem. Furthermore,
let ν and νµ be the feasible dual variables to the optimal µ∗, corresponding to the
primal constraints Aµ ≥ b and µ ≥ 0, respectively. Since we are considering a
convex problem, the necessary and sufficient optimality conditions are given by the
Karush-Kuhn-Tucker conditions [BV04]:

stationarity A>ν + νµ = θ (4.12a)
primal feasibility Aµ∗ ≥ b, µ∗ ≥ 0 (4.12b)
dual feasibility ν ≥ 0, νµ ≥ 0 (4.12c)
complementary slackness 〈ν,Aµ∗ − b〉 = 0, 〈νµ, µ∗〉 = 0. (4.12d)

Let us define the following sets

I : = {i ∈ [dim(b)] : (Aµ∗ − b)i > 0} and (4.13a)
J : = {j ∈ [n+m] : µ∗j > 0}. (4.13b)

The complementary slackness conditions imply that for those indices i ∈ I we
have νi = 0 and likewise we have (νµ)j = 0 for j ∈ J .
Based on the primal problem in (4.11) and using the concept of inverse linear

programming, see Sect. 2.6, we derive the main result of this section.

Proposition 4.2.1. Let n = |V|,m = |E| and θ̂ ∈ Rn+m be a given model parameter.
Suppose the local polytope based on the minimal problem representation is given by

LMG = {µ ∈ Rn+m
+ : Aµ ≥ b}. (4.14)

Let µ∗ ∈ {0, 1}n+m be a given binary ground truth labeling. Then the minimal

81

4. Model Parameter Perturbation and Learning

`1-norm perturbation θ ∈ Rn+m of θ̂ is such that µ∗ ∈ arg min{〈θ̂ + θ, µ〉 : µ ∈ LMG }
is a solution to the linear program

min
θ,νµ,ν

‖θ‖1 s.t. A>ν + νµ = θ̂ + θ (4.15a)

θ ∈ Rn+m, νµ ∈ Rn+m
+ , ν ∈ Rdim(b)

+ , νI = 0, (νµ)J = 0, (4.15b)
I := {i ∈ [dim(b)] : (Aµ∗ − b)i > 0}, J := {j ∈ [n+m] : µ∗j > 0}. (4.15c)

Proof. Having initial feasible θ̂ we want to adjust it (correct it) so that the final θ̂+ θ

corresponds to the optimal solution µ∗ to the primal problem in (4.11). From the
theory of inverse linear programming [ZL96, AO01] we know that this amounts to
solving an LP (4.10). On the other hand the necessary KKT optimality conditions
are sufficient, too, since we have a linear (convex) function. From this follows that
the minimal norm perturbation θ can be found by replacing θ by θ̂ + θ in (4.12),
which then leads to the constraints in (4.15).

The problem in (4.15) is not a linear program in the above written form but can
be easily converted into one:

min
ν,νµ≥0,θ

||θ||1 s.t. (4.16a)

A>ν + νµ − θ = θ̂ (4.16b)
D1(µ∗)ν = 0 (4.16c)
D2(µ∗)νµ = 0 (4.16d)

where D1 and D2 are the diagonal matrices that correspond to the constraints from
(4.15), i.e.

D1(µ∗)ii : =

1, if i ∈ I
0, otherwise

i ∈ [dim(b)] (4.17a)

D2(µ∗)jj : =

1, if j ∈ J
0, otherwise

j ∈ [n+m]. (4.17b)

The equation (4.16) above is equivalent to the linear program

min
ν,νµ,θ+,θ−≥0

〈1, θ+ + θ−〉 subject to (4.18a)

 A> In+m −In+m In+m
D1(µ∗) 0 0 0

0 D2(µ∗) 0 0



ν

νµ
θ+

θ−

 =

θ̂0
0

 (4.18b)

where θ+ = max{θ, 0} and θ− = −min{θ, 0}. The linear program above can be
solved with a linear programming solver, for example MOSEK, [ApS15].

82

4.2. invLPA: Inverse Linear Programming Approach

4.2.2. Model Parameter Prediction

In the previous section we saw how to compute the perturbation potentials θ, given the
ground truth labelings, µ∗. In this section we describe the second phase of invLPA,
which is completely independent of the first one. Here we use the perturbation
potentials computed in the first phase to predict new potentials based on novel data
features. Our training data comprises the learned perturbed potentials θ̃k = θ̂ + θk,
and corresponding features fk (unary or pairwise), k ∈ [N]. Note that the outcome
from the invLPA (4.18) is a vector θ = (..., θk, ...) where θk is a scalar value which is
the perturbation value for the corresponding node k (for the case for learning unary
potentials).

We are free to choose any model prediction method that returns model parameter
vector θ based on observed novel features. However, in this work we limit ourselves to
simple linear prediction methods and a nonlinear (NL) Gaussian regression method
able to capture a richer model structure.

Linear Prediction

For linear prediction we consider two common methods, linear least-squares (LS),
and a sparse `1-norm approach. Furthermore, we assume a linear dependency of our
potentials on a vector w, i.e.

θk = 〈fk, w〉, k ∈ [N] (4.19)

where fk, w ∈ Rdimfk . Here θk are the potentials of a discrete graphical model,
see (4.1), and can be either unary or pairwise ones. Furthermore, fk represent the
corresponding features. In the next step, the perturbed model parameters θ̃k = θ̂+θk,
k ∈ [N], obtained by solving (4.15) are fit to the observed features fk. To this end we
collect all our corrected model parameters learned in the first phase and fit linearly
parametrized model parameters to them. We do this with two linear fitting methods
as described next.

Least-squares fitting: We set up an overconstrained system and solve

min
w

∑
k∈[N]

|〈fk, w〉 − θ̃k|2. (4.20)

Please keep in mind that in the equation above the features fk are the corre-
sponding ones to the perturbed potentials θ̃k.

`1-norm fitting: In addition to the smooth least-squares approach, we also apply
the sparse regularization approach

min
w,sk
‖w‖1 + λ

∑
k∈[N]

|sk|, s.t. 〈fk, w〉 − sk = θ̃k, k ∈ [N]. (4.21)

where λ > 0 is some parameter. Here again fk are the features corresponding
to θ̃k in the training data.

83

4. Model Parameter Perturbation and Learning

After having found one fitting vector w for all train data we can use it, together
with the novel features on the test data, to construct new predicted linearized model
parameter vectors as in (4.19).

Nonlinear Prediction

To demonstrate the flexibility of our method we apply different model prediction
methods. For this reason we use a nonlinear Gaussian regression, [RW06], which can
capture more from the model structure as opposed to simple linear methods. The
Gaussian prediction model for obtaining prediction potentials θ(f) is given in the
form

θ(f) := kN (f)>
(
K(F) + σ2

nI
)−1

θ̃ (σ2
n is a parameter) (4.22a)

=
∑
k∈[N]

wk(F, θ̃)k(fk, f), w(F, θ̃) :=
(
K(F) + σ2

nI
)−1

θ̃, (4.22b)

where K(F) is the covariance matrix induced by the training data, that is

K(F) =
{
k(fk, f l)

}
k,l∈[N] (4.23)

where

k(fk, f l) := σ2
m exp

(
− 1

2σ2
f

‖fk − f l‖2
)
, (σ2

f ,σ2
m are parameters), (4.24)

and
kN (f) :=

(
k(f1, f), . . . , k(fN , f)

)> (4.25)

evaluates for any novel feature vector f the kernel function using all given feature
vectors fk, k ∈ [N], for the training data. Thus, given a novel image with feature
vector f , the corresponding model parameter is θ = θ(f).

One drawback of a Gaussian regression is its cubic complexity. However, in
the literature there are many solutions suggested to this problem, all finding an
approximation to the whole model, e.g. by using a sparse Gaussian regression and
selecting a subset of the training data by random. Another option is approximation of
the matrix K(F) +σ2

nI with a low rank matrix. In contrast, the Bayesian Committee
machine[Tre00, ST02] splits the whole data into random subsets (clusters) and
predicts subset-wise, while considering the testing data when making a prediction.

An approach similar to the Bayesian Committee machine was proposed in [ND14],
which considers the inductive property instead of the transductive one. The training
data is split by random into smaller subsets and exact inference is performed on
every of these subsets. In this way the computation time can be reduced if we can
parallelize the inference. In addition, the complexity can be significantly reduced. In
fact the complexity is now linear in the number of data N . If we consider splitting
into M subsets, then we have to invert an N/M matrix and we can write M = N/α,
for some scalar α.

84

4.3. LA: Linearly Parametrized Joint Learning Approach

4.3. LA: Linearly Parametrized Joint Learning Approach

In this section we develop our second method, the linearly parametrized approach
(LA), that jointly determines model parameter perturbations and predictions based
on linearly parametrized potential functions. The motivation for this alternative
is that when using linearly parametrized potentials we can derive a tight convex
relaxation and are able to use off-the-shelf inference implementations for solving the
labeling subproblems of the overall learning model.

We first work out a relaxation of the original learning problem (4.5) and complement
it by an appropriate optimization method. For this approach we use the usual non-
minimal or overcomplete representation which allows us to resort to established solvers
for labeling problems in subroutines. More precisely, we index θ and µ as θi(xi),
θij(xi, xj), µi(xi), µij(xi, xj), i ∈ V, ij ∈ E , by binary labellings xi ∈ {0, 1}, i ∈ V
and the usual local polytope constraints from (2.82).

This approach jointly finds the perturbed approximate model parameters (as we
consider a relaxed problem) and fits them to newly observed data, leading to a set of
predicted (updated) model parameters. For clarity, we split the two phases when
deriving the method.

4.3.1. Model Parameter Perturbation

For deriving the final relaxed problem we will explore the dual of the local polytope
relaxation of the labeling problem (4.3). We start by formulating the primal-dual
pair of LPs:

Primal: Dual: (4.26a)
min
µ
〈θ, µ〉 s.t. max

ψ,φ
ψ s.t (4.26b)∑

xj

µij(xij)− µi(xi) = 0 ψij(xi) ∈ R (4.26c)

∑
xi

µij(xij)− µj(xj) = 0 ψji(xj) ∈ R (4.26d)∑
xi

µi(xi)− µ0 = 0 φ ∈ Rdimµ (4.26e)

µ0 = 1 ψ ∈ R (4.26f)

µi(xi) ≥ 0 θi(xi) +
∑

j∈N (i)
ψij(xi)− φi ≥ 0 (4.26g)

µij(xij) ≥ 0 θij(xij) + φij(xi) + φji(xj) ≥ 0 (4.26h)

µ0 ≥ 0 θ0 +
∑
i∈V

φi − ψ ≥ 0 (4.26i)

85

4. Model Parameter Perturbation and Learning

or more compactly

Primal: Dual: (4.27a)
min
µ≥0
〈θ, µ〉, max

ψ,φ
ψ (4.27b)

s.t Aµ = 0, µ0 = 1 s.t θ −A>φ− e0ψ ≥ 0. (4.27c)

Note that the primal vector µ is augmented by the scalar variable µ0 as first component
which enforces the mass constraints

∑
xi∈{0,1} µi(xi)− µ0 = 0, i ∈ V as part of the

system Aµ = 0 which enforces the local polytope constraint (2.82). The vector φ
together with ψ form the dual variables 1. Furthermore, e0 = (1, 0, ..., 0)> is the
unit basis vector. It becomes clear that the primal formulation is equivalent to (4.3)
with the local polytope constraints from (2.82) in a slightly different form. The dual
formulation is just the reparametrized formulation of the relaxed labeling problem
over the local polytope, [Wer07]. Accordingly we define the reparametrized potentials
as

θφ := θ −A>φ. (4.28)

Let µ∗ be a solution of the primal problem. The complementary slackness conditions
state that there exists a pair (ψ, φ) of dual variables such that

µ∗i (xi) > 0 =⇒ θiφ(xi) = 0, (4.29a)

µ∗ij(xi, xj) > 0 =⇒ θijφ (xi, xj) = 0, (4.29b)

µ∗0 > 0 =⇒ ψ = θ0 +
∑
i∈V

φi. (4.29c)

The third implication can be always satisfied if ψ is set accordingly. We want to
have a unique optimal pair µ∗ and x∗ corresponding to the ground truth labeling.
For this reason and to meet the implications (4.29a) and (4.29b), we choose

θiφ(x∗i) = 0,
θiφ(1− x∗i) ≥ ε,

and
θijφ (x∗i , x∗j) = 0,

θijφ (xi, xj) ≥ ε, ∀(xi, xj) 6= (x∗i , x∗j),
(4.30)

for some ε > 0 and all i ∈ V, ij ∈ E . Introducing the ε term is crucial, since this
choice guarantees a unique optimal θφ.
For this approach we restrict our model parameters to depend linearly on the

feature vector f and a vector w ∈ Rdim f , i.e. θ = (θi, θij)> linearly depends on
w = (wu, wp)> and we can rewrite the model parameters as,

θw,φ := θ(w)−A>φ. (4.31)

Using an additional vector s ≥ 0 of slackness variables in order to convert the
inequalities in (4.30) into equalities, we obtain the relaxed formulation in the form

1We do not denote the dual variables by ν, as in the preceding section, due to the slightly different
LP formulation (4.27)

86

4.3. LA: Linearly Parametrized Joint Learning Approach

of a linear program

min
w,φ,s≥0

〈µ∗, s〉, 〈µ∗, s〉 =
∑
i∈V

si(x∗i) +
∑
ij∈E

sij(x∗i , x∗j) (4.32a)

s.t.



θiw,φ(x∗i)− si(x∗i) = 0,
θiw,φ(1− x∗i)− si(1− x∗i) = ε,

θijw,φ(x∗i , x∗j)− sij(x∗i , x∗j) = 0,

θijw,φ(xi, xj)− sij(xi, xj) = ε, ∀(xi, xj) 6= (x∗i , x∗j),

(4.32b)

for ε > 0 and all i ∈ V, ij ∈ E . The choice of ε will be discussed in detail after deriving
the final relaxed problem. Optionally, we can add an additional convex constraint
in (4.32), 〈wp, f ij〉 ≥ 0, where f ij are the predefined pairwise data features. This
constraint can be added for enforcing submodularity, see Definition 2.4.2, which allows
solving in polynomial time. Alternatively, quadratic pseudo-boolean optimization
(QPBO) solvers, see [KR07] and Sect. 2.4.4, can be used without the additional
submodularity constraint but without a guarantee for a complete labeling. However,
unassigned nodes can be assigned any label without having a negative aspect on the
energy due to the persistency property of the QPBO, see Sect. 2.4.4.

Regarding the formulation (4.32) above we aim at penalizing the slackness variables
s. That is the smaller the objective is, the closer we are to the unique optimal solution,
the ground truth segmentation. When s = 0 this implies that the objective is zero,
which means we have obtained the ground truth segmentation.

4.3.2. Model Parameter Prediction

The large scale LP in (4.32) can not be solved with standard LP solvers due to the
large problem sizes typical for Markov random fields (MRF) occurring in computer
vision applications. Therefore, in this section we propose splitting the task into a
labeling and a parameter estimation subproblem. The labeling subproblems can
then be solved with available max-flow solvers if the submodularity constraint,
〈wp, f ij〉 ≥ 0 is included. The general case can be handled by a QPBO solver [KR07].
The subproblem solutions are fused using Lagrange multipliers. In order to derive
the formulation of the decomposed problem, we consider linearly parametrized local
potentials of the form

θi(w;xi) =
(
θi(w; 0)
θi(w; 1)

)
=
(
〈w0

u, f
i〉

〈w1
u, f

i〉

)
, (4.33a)

θij(w;xi, xj) =
(
θij(w; 0, 0) θij(w; 0, 1)
θij(w; 1, 0) θij(w; 1, 1)

)
=
(
〈w00

p , f
ij〉 〈w01

p , f
ij〉

〈w10
p , f

ij〉 〈w11
p , f

ij〉

)
, (4.33b)

where f i, f ij denote arbitrary unary and pairwise feature vectors extracted at pixel
i ∈ V and edge ij ∈ E . In the formulation above we consider the vector w = (wu, wp)>
as

w =
(
w0
u w1

u w00
p w01

p w10
p w11

p

)>
. (4.34)

87

4. Model Parameter Perturbation and Learning

For simpler reformulation of (4.32) we define modified cost potentials

θ̃i(w;xi) :=
(
〈w0

u, f
i〉 − ε1{x∗i=1}

〈w1
u, f

i〉 − ε1{x∗i=0}

)
, (4.35a)

θ̃ij(w;xi, xj) :=
(
〈w00

p , f
ij〉 − ε1{(x∗ij) 6=(0,0)} 〈w01

p , f
ij〉 − ε1{(x∗ij)6=(0,1)}

〈w10
p , f

ij〉 − ε1{(x∗ij) 6=(1,0)} 〈w11
p , f

ij〉 − ε1{(x∗ij)6=(1,1)}

)
, (4.35b)

with 1predicate = 1 if predicate is true and 1predicate = 0 otherwise. Based on the new
redefined reparametrized potentials in (4.35), and in view of (4.31) we can rewrite
(4.32) as

min
w,φ,s
〈µ∗, s〉 subject to θ̃w,φ − s = 0 . (4.36)

Now in order to solve this problem we fix w and thus the reparametrized potentials
θ̃w and solve the labeling problem in s and φ. Due to the large scale character of
this problem, we derive its dual formulation which is more efficient to solve.

Primal: Dual: (4.37a)
min
φ,s
〈µ∗, s〉 s.t. max

µ
〈−θ̃w, µ〉 s.t. (4.37b)

θ̃w,φ(xi)− s(xi) = 0 µi(xi) ∈ R (4.37c)
θ̃w,φ(xi, xj)− s(xi, xj) = 0 µij(xi, xj) ∈ R (4.37d)

φij(xi) ∈ R
∑

xj∈{0,1}
µij(xi, xj)− µi(xi) = 0 (4.37e)

φji(xj) ∈ R
∑

xi∈{0,1}
µij(xi, xj)− µj(xj) = 0 (4.37f)

si(xi) ≥ 0 µi(xi)− µ∗i (xi) ≥ 0 (4.37g)
sij(xi, xj) ≥ 0 µij(xi, xj)− µ∗ij(xi, xj) ≥ 0. (4.37h)

The constraints are initiated for each node i ∈ V and edge ij ∈ E . Note that in the
dual we have θ̃w without the φ part as in (4.31). Also the constraints for the dual do
not correspond to the usual form of local polytope constraints (2.82). However, we
can substitute µ by µ− µ∗ yielding µi(xi) ≥ 2µ∗i (xi) ≥ 0 for (4.37g) and similar to
(4.37h), which now fit the local polytope form. Furthermore, we have to add 〈θ̃w, µ∗〉
to the dual objective, which for fixed w is indeed a constant value.

We are now ready to formulate the final saddle point problem, reformulation of
the dual from (4.37) taking into account a collection of N training samples

min
w
L(w), L(w) =

∑
k∈[N]

max
µ∈LG

{
〈−θ̃w, µ〉+ 〈θ̃w, µ∗k〉

}
. (4.38)

Remark 4.3.1. Adding a convex regularization term with respect to w, like 1
2 ||w||

2

(or only 1
2 ||wu||

2 or 1
2 ||wp||

2) to the objective function (4.38) may be beneficial to
avoid overfitting in a high-dimension parametrization.

88

4.3. LA: Linearly Parametrized Joint Learning Approach

ε = 0.1 ε = 0.01 ε = 0.001

Figure 4.2. - Resulting segmentation after learning with different choices of ε. We can see
that ε = 0.01 produces the best segmentation or smallest error in the sense of percentage of
mislabeled pixels, 0.06%, whereas the error with ε = 0.1 and ε = 0.001 is 0.19% and 0.13%
respectively.

Setting the parameter ε

The parameter ε was introduced in (4.30) in order to ensure uniqueness of the optimal
pair µ∗ and x∗ or a unique solution to the primal problem in (4.27). In our learning
ε is a parameter to be set up by hand carefully, taking into account the range of
the unary and pairwise features, f i and f ij in (4.35). In the general case ε should
be chosen such that 0 < ε � f i and 0 < ε � f ij . In our experiments we usually
normalize the features to be in the range [0, 1], so we need to set ε so that 0 < ε� 1.

We examine empirically how several choices of ε affect the learning. We take a
simple example for learning unary terms while fixing pairwise terms to be Ising prior
with value 1. Details on the experimental set up will be discussed in Sect. 4.5.2. We
use the same image for training and testing and report here the results in terms of ε
in Fig. 4.2.

From the experiment above we can see that as long as 0 < ε� 1 the segmentation
results do not change significantly. As long as ε is chosen to be smaller than the
feature vectors it does not influence much on the final segmentation.

4.3.3. Optimization

Minimizers of the labeling problems form subgradients of the parameter learning
problem, see Sect. 2.2.4 for a brief overview on subgradient methods. Let µw0 be a
solution to a labeling subproblem of (4.38) for a fixed w0, which can be obtained
with an inference solver, e.g. QPBO, [KR07], see Sect. 2.4.4. The subgradients with

89

4. Model Parameter Perturbation and Learning

respect to w = (wu, wp) in the form (4.34) are given by

∂wuL(w) =
∑
k∈[N]

∑
i∈Vk

(
fk,i · (−µw0

k,i(0) + µ∗k,i(0)), fk,i · (−µw0
k,i(1) + µ∗k,i(1))

)>
(4.39a)

∂wpL(w) =
∑
k∈[N]

∑
ij∈Ek

(
fk,ij · (−µw0

k,ij(0, 0) + µ∗k,ij(0, 0)), (4.39b)

fk,ij · (−µw0
k,ij(0, 1) + µ∗k,ij(0, 1)), (4.39c)

fk,ij · (−µw0
k,ij(1, 0) + µ∗k,ij(1, 0)), fk,ij · (−µw0

k,ij(1, 1) + µ∗k,ij(1, 1))
)>
.

(4.39d)

The index k denotes the training image number, Gk = (Vk, Ek) the corresponding
graph, and fk,i and fk,ij the features of the corresponding nodes and edges. Further-
more, µw0

k,i and µ
w0
k,ij are the label assigned to node i and edge ij respectively, and

similarly, µ∗k,i and µ∗k,ij are the ground truth labels.
Note that the features are vectors and µk,i, µk,ij and µ∗i , µ∗ij are scalars. The prod-

ucts of the feature vectors fk,i and fk,ij with µk,i + µ∗k,i and µk,ij + µ∗k,ij respectively
result in a vector with the same dimension as the feature vector. Consequently, for
the dimension of the subgradients are ∂wuL(w) ∈ R2 dim f i and ∂wpL(w) ∈ R4 dim f ij .
We denote that this is the general case when representing the parameters θ as in
(4.33). However, for some of the experiments in Sect. 4.5 we will consider w with
less parameters.

If considering additionally the submodularity constraint 〈wp, f ij〉 ≥ 0, we need to
use a projected subgradient method. However, the projection to a set with such a
high number of edges is computationally expensive. For this reason we will exclude
this constraint and can resort to a subgradient method without projections.
In general, subgradient methods are extremely slow and for this reason we will

use a smoothed version of the subgradient method, also known in the literature as a
deflected subgradient method see e.g. [dF09, Gut03, CFM75]. It is often combined
with a (modified) Polyak step size rule [Pol69], which leads to a significant speed
up of the subgradient method. In Algorithm 3 we present the applied optimization
algorithm in pseudo code form. Note that for clarity we consider only the case of a
single training image and re-use index k as the iteration index. Furthermore, gk and
fk denote the general and the smoothed subgradient in iteration k. L stands for the
optimal (upper bound) value of the objective we do not actually know. A detailed
discussion of the algorithm and its convergence follows in the next section.
The algorithm described in 3 combines two strategies for enhancing the basic

subgradient method:

1. We refrain from using the common ‘divergent series’ approach with a diminishing
step size αk satisfying

∑
k≥0 αk =∞, that may converge very slowly. Instead

we apply the adaptive step size 1
‖gk‖2

(
L(wk) − L

)
due to [Pol69], where L is

adjusted in line (4-5) and (15-16) in order to compensate for not knowing the
optimal value L∗.

90

4.3. LA: Linearly Parametrized Joint Learning Approach

Algorithm 3: Deflected Subgradient Algorithm with a Modified Polyak Step
Size

input : k = 1, w1 = 1, f0 = 0, L = 0.1, L(w1) =∞, ε1 = 10−5, ε2 = 10−6,n = 40
1 while L(wk)− L > ε2 do
2 Obtain optimal labeling µ(wk) with max-flow solver (for instance QPBO

solver [KR07] in our case) and update the objective L(wk) ;
3 Lmin = mini=1,...,k{L(wi)};
4 if L(wk) < L then
5 L = L(wk)− ε1;
6 gk ∈ ∂wL(wk);
7 βk = max{0,−1.5g

k(fk−1)>
||fk−1||2 };

8 fk = gk + βkfk−1;
9 if ||fk|| < ε2 then

10 break;

11 αk = L(wk)−L
||fk||2 ;

12 ŵk+1 = wk − αkfk;
13 wk+1 = PS(ŵk+1);
14 k = k + 1;
15 if mod (k, n) = 0 ∧ Lmin ≥ L+ ε1 then
16 L = L+Lmin

2 ;

17 return wk

91

4. Model Parameter Perturbation and Learning

2. The sequence of subgradients (gk)k≥0 is replaced by (fk)k≥0, see line (8) as
suggested by [CFM75], to obtain a smoother sequence of updates (wk)k≥0 in
line (12) and faster convergence.

Remark 4.3.2. We include the projection step in line (13) of Algorithm 3 for
generality. In particular it allows to use max-flow solvers other than QPBO, which
require submodular energy, 2.4.2. However in our implementation we use QPBO and
omit the projection step.

4.3.4. Convergence Analysis of the Deflected Subgradient Method with
a Modified Polayk Step Size

The algorithm presented in the previous section will be used for optimizing (4.38)
and thus it is of great interest to analyse its convergence properties.

Ordinary subgradient method can be very slow as the step direction may not be a
descent direction and the sub-optimal choice of the step size.
While for an ordinary subgradient method in every iteration any previous in-

formation is discarded and not used, deflected subgradient methods are based on
combining a filtered information from the previous iterate with the present one. In
this sense the so called zigzagging phenomenon of the subgradient method which
can also slow down the process can be curred. However, when using the projected
subgradient a different type of zigzagging might occur during iterations near the
feasible set boundary. The reason for this type of zigzagging is that the feasible
set is not considered when forming the direction. In order to remove both types
of zigzagging two types of deflection should be combined in a proper way. This is
worked out in [dF09].

The deflected subgradient in Algorithm 3 corrects only the first type of zigzagging
and since we want to prove its convergence we concentrate on this type of deflection
methods.

A subgradient of a convex lower semi-continuous function L, at an iterate wk is a
vector gk satisfying

〈gk, wk − w〉 ≥ L(wk)− L(w) ∀w ∈ domL. (4.40)

The step size is of importance for convergence of the subgradient method. The
usual step size rules, which guarantee convergence like the square summable and
divergent sequences step sizes are very slow in practice. Another choice is the Polyak
step size [Pol69] which also guarantees convergence, and on the other hand was found
to be much faster in practice. It is given by

αk = L(wk)− L∗

||gk||2
(4.41)

where L∗ is the optimal function value and gk the subgradient (4.40). Note that for
deflected subgradient method we use fk, see (4.44) instead of gk. However in most
of the cases the optimal value L∗ is not known. Then one can use a modified Polyak

92

4.3. LA: Linearly Parametrized Joint Learning Approach

step size where L∗ is replaced with an estimate L which can either be an upper or a
lower bound on L∗.

Remark 4.3.3. In our Algorithm 3 line (4-5) we make sure that the value L is such
that the step size αk in (4.41) with L∗ = L is always larger than zero. This is an
important property of the step size for the subgradient method which should be
satisfied, see Proposition 2.2.5.

We need to prove the extension of the subgradient properties to the deflected
subgradient method (in combination with the modified Polyak step size) which
corrects the subgradient direction and causes the iterates to move faster in the
direction of the optimal value iterate. Let us consider the sequence of iterates as in
the Algorithm 3,

ŵk+1 = wk − αkfk (4.42)

and
wk+1 = PS(ŵk+1) (4.43)

with S the set to be projected on, which is closed and convex. Our deflected
subgradient is given by

fk = gk + βkfk−1 (4.44)

with βk chosen as in line (7) in Algorithm 3. We will prove that the deflected
subgradient direction is a subgradient direction, too, from where would follow that
the properties for the subgradient direction can be extended to the deflected direction.
Moreover we will additionally prove convergence for the deflected subgradient method
when the step size is the modified Polyak step size.

First we prove convergence for subgradient method with modified Polyak step size
when an upper bound is used instead of the optimal function value. We use the
result from [Ned08, Theorem 4] and adapt it to our step size choice.

Lemma 4.3.1. [Convergence of subgradient method with modified Polyak
step size] Let the projection set S be closed and convex, and the function L be
convex over Rn with finite optimal value L∗. Let the set S∗ of optimal w∗ values be
nonempty. Then for the iterative sequence {wk} generated by the subgradient method
with Polyak step size

αk = L(wk)− L
||gk||2

(4.45)

where L ≥ L∗ is an upper bound of the optimal value L∗ and g is the subgradient
given by (4.40) we have

lim
k→∞

||wk − w∗|| = 0 for some w∗ ∈ S∗. (4.46)

93

4. Model Parameter Perturbation and Learning

Proof. First let y ∈ S be arbitrary fixed and let αk be any step size. Then for all k

||wk+1 − y||2 ≤ ||wk − αkgk − y||2 (4.47a)
= ||wk − y||2 − 2αk(gk)>(wk − y) + α2

k||gk||2 (4.47b)
≤ ||wk − y||2 − 2αk(L(wk)− L(y)) + α2

k||gk||2. (4.47c)

The first inequality comes from (4.42) and the non expansive property of a projection.
The last inequality follows from the subgradient property (4.40). The same inequality
will hold for y = w∗ ∈ S. Then plugging in the step size αk from (4.45) in (4.47) and
using L ≥ L∗ we have

||wk+1 − w∗||2 ≤ ||wk − w∗||2 − (L(wk)− L∗)2

||gk||2
. (4.48)

By applying the inequality (4.48) recursively, it follows that for any w∗ ∈ S∗ and any
k and l with k > l,

||wk+1 − w∗||2 ≤ ||wl − w∗||2 −
k∑
i=l

(L(wi)− L∗)2

||gi||2
. (4.49)

With l = 0, the iterate sequence {wk} is bounded and consequently has an accumu-
lation point. From (4.49)

∞∑
i=0

(L(wi)− L∗)2

||gi||
≤ ||w0 − w∗||2 <∞. (4.50)

Let us suppose that none of the accumulation points of {wk} belongs to S∗. Then
for a small ε > 0

L(wk) > L∗ + ε for all k. (4.51)

From the boundedness of {wk}, it follows that for sk ∈ ∂L for all k the sequence
{sk} is bounded too and every of its limit points is a subgradient. Then the sequence
of subgradients {gk} is bounded too, that is there exists some m > 0 so that

||gk|| ≤ m for all k. (4.52)

Then
(L(wi)− L∗)2

||gi||2
≥ ε2

m2 . (4.53)

By summing this equation over i we get that

∞∑
i=0

(L(wi)− L∗)2

||gi||2
≥
∞∑
i=0

ε2

m2 =∞. (4.54)

This is a contradiction to (4.50), so our assumption was wrong which implies that every
accumulation point of {wk} must belong to the set S∗. Let ŵ∗ be an accumulation

94

4.3. LA: Linearly Parametrized Joint Learning Approach

point of the sequence {wk} and let {wkj} be a subsequence of {wk} converging to
the accumulation point ŵ∗. With setting w∗ = ŵ∗ and l = kj in (4.49) we obtain for
all k > kj

||wk+1 − ŵ∗||2 ≤ ||wkj − ŵ∗||2 −
k∑

i=kj

(L(wi)− L∗)2

||gi||2
. (4.55)

From here it follows

lim
k→∞

||wk+1 − ŵ∗||2 ≤ ||wkj − ŵ∗||2 −
∞∑
i=kj

(L(wi)− L∗)2

||gi||2
. (4.56)

When j →∞ and using ||wkj − ŵ∗|| → 0 and (4.50), we get

lim
k→∞

||wk+1 − ŵ∗||2 ≤ lim
j→∞

(
||wkj − ŵ∗||2 −

∞∑
i=kj

(L(wi)− L∗)2

||gi||2
)

= 0 (4.57)

which implies that the whole sequence converges to ŵ∗ ∈ S∗ or (4.46) holds.

Note that the result from the Lemma above also holds when αk ≤ L(wk)−L
||gk||2 . In

fact one can notice that Proposition 2.2.5 holds when the step size of the ordinary
subgradient is chosen to be the modified Polyak step size.

After we proved convergence of subgradient method with modified Polyak step size
when the optimal function value is replaced with an upper bound, we want to prove
the same result for the deflected subgradient method. To this end we prove that for
a certain step size the deflected subgradient is in fact a subgradient direction. We
prove this result in the following two Lemmas which we adapt from [Gut03, Theorem
3.10 and Theorem 3.11].

Lemma 4.3.2. [Deflected subgradient direction is a subgradient direction
in sense of (4.40)] Let gk be a subgradient of L(wk) and fk the deflected subgradient
given by (4.44) with βk as chosen in line (7) in the Algorithm 3. Let us denote with
L∗ the optimal value of the objective L. Let {wk}k be a sequence of iterates in the
deflected subgradient optimization. If for the step size αk the following holds

0 ≤ αk ≤
L(wk)− L∗

||fk||2
(4.58)

then
〈fk, wk − w∗〉 ≥ 〈gk, wk − w∗〉, ∀k. (4.59)

Proof. By induction on k. For k = 0, and as in the input in Algorithm 3 we have
fk = 0 and gk = 0, in which case equality holds. Lets assume the inequality (4.44)
holds for k, that is 〈fk, wk − w∗〉 ≥ 〈gk, wk − w∗〉. We have to prove it holds for
k + 1. From (4.44) we have

〈fk+1, wk+1 − w∗〉 = 〈gk+1, wk+1 − w∗〉+ βk+1〈fk, wk+1 − w∗〉, (4.60)

95

4. Model Parameter Perturbation and Learning

and from the condition on βk+1, see line (7) in Algorithm 3, βk+1 ≥ 0. In order
to prove 〈fk, wk+1 − w∗〉 ≥ 0, we use wk+1 = PS(wk − αkfk) and denote pk+1 =
PS(wk − αkfk)− (wk − αkfk):

〈fk, wk+1 − w∗〉 = 〈fk, pk+1 + wk − αkfk − w∗〉 (4.61)
= 〈fk, wk − w∗〉 − αk||fk||2 + 〈fk, pk+1〉 (4.62)
≥ 〈fk, wk − w∗〉 − αk||fk||2. (4.63)

where the last inequality follows from 〈fk, pk+1〉 ≥ 0 [Gut03, Lemmma 3.9]. This
inequality follows from the properties of the projection onto a convex set which
ensures that the angle between fk and pk+1 is not obtuse. Hence, the cosine of the
angle has to be non-negative. From the step size condition (4.58), gk a subgradient
of L, that is (4.40) and the assumption that (4.59) holds for k we have

0 ≤ αk||fk||2 ≤ L(wk)− L∗ ≤ 〈gk, wk − w∗〉 ≤ 〈fk, wk − w∗〉 (4.64)

from which follows

〈fk, wk+1 − w∗〉 ≥ 〈fk, wk − w∗〉 − αk||fk||2 ≥ 0. (4.65)

Consequently, the result holds for k + 1

〈fk+1, wk+1 − w∗〉 ≥ 〈gk+1, wk+1 − w∗〉. (4.66)

With the Lemma above we proved that for certain choice of step size the deflected
subgradient direction satisfies (4.40), i.e. it is a subgradient of L.

The next Lemma will show two important properties of the subgradient direction,
extended to the deflected subgradient direction.

Lemma 4.3.3. [Properties of the deflected subgradient direction with a
modified Polyak step size] Let {wk}k be a sequence of the iterates of the deflected
subgradient method. Assuming the conditions in Lemma 4.3.2 are fulfilled and the
step size is chosen as in (4.58), then for both non-optimal wk and optimal w∗ it
holds:

(a) 〈fk, wk − w∗〉 > 0
(b) ||wk+1 − w∗|| < ||wk − w∗||

Proof. (a) Obvious due to the result of Lemma 4.3.2 and (4.40).
(b) We have

||w∗ − wk+1||2 ≤ ||w∗ − wk + αkf
k||2 (4.67a)

= ||w∗ − wk||2 + αk(αk||fk||2 − 2〈fk, wk − w∗〉) (4.67b)

where the first inequality follows from the non-expansivity property of a projection
(in the general case of subgradient projection). From the step size condition (4.58)

96

4.3. LA: Linearly Parametrized Joint Learning Approach

we have for the term in the parenthesis

αk||fk||2 − 2〈fk, wk − w∗〉 ≤ L(wk)− L∗ − 2〈fk, wk − w∗〉 (4.68a)
< 2(L(wk)− L∗)− 2〈fk, wk − w∗〉 ≤ 0, (4.68b)

where the last inequality follows from (4.40) and the result from the Lemma above
(4.59). From here we have ||wk+1 − w∗||2 < ||wk − w∗||2 and so (b) holds.

The following Lemma adopted from [Gut03, Theorem 3.12] shows a stronger
property of the deflected subgradient direction compared to an ordinary subgradient
method, given that a modified Polyak step size and certain choice of the parameter
β in (4.44) is used.

Lemma 4.3.4. [Convergence of the deflected subgradient direction with a
modified Polyak step size] Let {wk}k be a sequence of iterates in the deflected
subgradient optimization. Let the sequence of step size αk fulfills

0 ≤ αk ≤
L(wk)− L∗

||fk||2
, k = 0, 1, .. (4.69)

where L∗ denotes the optimal value of L and fk the deflected subgradient given by
(4.44), with

βk =
{
−γk g

k(fk−1)>
||fk−1||2 , if gk(fk−1)> < 0

0, otherwise
(4.70)

with 0 ≤ γk < 2, and gk the subgradient of L(wk). Then it holds

〈fk, wk − w∗〉
||fk||

≥ 〈g
k, wk − w∗〉
||gk||

. (4.71)

Proof. If gk(fk−1)> ≥ 0, βk = 0 then from (4.44) fk = gk, in which case (4.71) holds.
If gk(fk−1)> < 0, βk = −γk g

k(fk−1)>
||fk−1||2 and

||fk||2 − ||gk||2 (4.44)= ||gk + βkfk−1||2 − ||gk||2 (4.72)
= βk(2gk(fk−1)> + βk||fk−1||2) (4.73)

(4.70)= βk(2gk(fk−1)> − γkgk(fk−1)>) (4.74)
= βk(2− γk)gk(fk−1)> (4.75)
≤ 0 (4.76)

where the last result comes from the condition 0 ≤ γk < 2, gk(fk−1)> < 0 and
βk ≥ 0. As a result we have ||fk||2 ≤ ||gk||2. Using this result and Lemma 4.3.2 we
finally get

〈fk, wk − w∗〉
||fk||

≥ 〈g
k, wk − w∗〉
||gk||

. (4.77)

97

4. Model Parameter Perturbation and Learning

This result above (4.77) also implies that the angle between the negative deflected
subgradient direction to the optimal set is smaller than the angle between the negative
deflected subgradient direction, which means faster convergence. It can happen that
the ordinary subgradient direction forms an obtuse angle (angle bigger than 90o)
with the previous deflected direction which implies 〈fk−1, gk〉 < 0. This would
result in a zigzag behavior of the iterates. In this case the subgradient direction is
corrected to be the deflected direction fk. This correction is done with a suitable
choice of the parameter β in every iteration. For the deflected direction, however,
〈fk−1, fk〉 ≥ 0 is always satisfied when the parameter γ in β (4.70) is chosen to be
γ ≥ 1, see [Gut03, Theorem 3.13]. As a consequence, the zigzagging occurring in
the subgradient direction and slowing down convergences is curred by the deflected
subgradient direction. We now state the main convergence result for our Algorithm 3.

Theorem 4.3.5. [Convergence of Algorithm 3] Let gk be a subgradient of L(wk)
and fk the deflected subgradient given by (4.44) with βk as chosen in line (7) in the
Algorithm 3. If for the step size αk (4.69) holds, where L∗ denotes the optimal value
of L for a sequence {wk}k of iterates in the deflected subgradient optimization, then
wk →

k→∞
w∗, where w∗ ∈ S∗, is an optimal value.

Proof. Since we don’t know the optimal value L∗ in the step size αk as in line (11)
in Algorithm 3, we use an approximation of the optimal value, L. If L is an upper
bound on L∗, then

0 ≤ αk = L(wk)− L
||fk||2

≤ L(wk)− L∗

||fk||2
. (4.78)

If it happens that L is a lower bound on L∗ we increase L in line (15-16) of Algorithm 3
every certain number of iterations. Eventually, after a finite number of iterations we
will get a value for L such that L > Lmin − ε1, where Lmin is the minimum value of
L, ε1 is some small threshold value. Note that ε1 > ε2 must hold, with ε2 defining
the stopping condition. For our implementation we choose ε1 = 10−5. From here
L ≥ L∗. This implies (4.78) and so the conditions of Lemma 4.3.4 are fulfilled. As
a result after a finite number of iterations (4.59) and (4.71) hold. From (4.59) and
(4.40) the deflected subgradient f is a subgradient, too, so all the results that hold for
the subgradient will hold for the deflected subgradient as well. This implies that the
convergence result for the Polyak step size will also hold for the deflected subgradient
method when the optimal function value is replaced by an upper bound. Then
from Lemma 4.3.1 is follows that wk →

k→∞
w∗, that is the deflected subgradient with

modified Polyak step size as implemented in Algorithm 3 converges to an optimal
solution.

Remark 4.3.4. Algorithm 3 might converge slowly, e.g. due to selecting a very
small upper bound, like in our input L = 0.1. This can be a lower bound and will
take a lot of iterations to be adjusted to the actual upper bound. However, we can
always choose different input parameters, that is bigger L and smaller n, from the

98

4.3. LA: Linearly Parametrized Joint Learning Approach

input line for Algorithm 3. If not stated otherwise, for all experiments we will use
the parameters as described in Algorithm 3.

Remark 4.3.5. For the parameter γk in (4.70), we use a constant value γk = 1.5,
∀k as suggested in [CFM75].

4.3.5. Comparison of the Linearized Approach to Structured SVM

Structured SVM [FJ08, TJHA05, THJA04] generalizes the classification SVM to
general structured output labels and is defined by

min
w,ξ

1
2 ||w||

2 + Cξ, s.t. ξ ≥ 0 (4.79a)

1
N

∑
k∈[N]

〈θw, µ− µ∗k〉 ≥
1
N

∑
k∈[N]

4(µ, µ∗k)− ξ (4.79b)

where θw are the model parameters depending on the vector w which is to be learned,
ξ is a slack variable which is added in order to allow errors in the training data and
C is a parameter that controls the weighting between the training error and the
maximum margin of separation. N is the number of training instances, 4(µ, µ∗k)
denotes a loss function which can be designed depending on the type of the problem,
with µ∗k being ground truth labeling of the training data k and a given training
labeling µ such that µ 6= µ∗k, k ∈ [N]. Structured SVM tries to find a minimal `2-norm
w, so that the training error i.e. the error between the obtained segmentation to
the ground truth observed segmentation regulated through ξ is as small as possible,
while uniqueness is enforced by choosing w for which the margin of separation of the
predicted and the ground truth score is the biggest.
In our linearized approach (LA) we can optionally add the norm of w in the

objective to make sure there is no overfitting, see Remark 4.3.1. The uniqueness in
our approach was enforced by the ε term (4.30). We minimize the function L (our
loss function) in (4.38) which we rewrite as

min
w

∑
k∈[N]

(
〈θ̃w, µ∗k〉 − max

µ∈LG
〈θ̃w, µ〉

)
. (4.80)

A loss function similar to ours,
∑
k∈[N]

(
〈θ̃w, µ∗k〉 − maxµ∈LG 〈θ̃w, µ〉

)
, was used in

[LH05] and referred to as the generalized perceptron loss function. However, the
authors consider a minimization instead of a maximization problem.
Now let us substitute our loss function (4.80) into the structured SVM problem.

Adding 1/N before the loss function does not affect the final result, and we get:

min
w,ξ

1
2 ||w||

2 + Cξ, s.t. ξ ≥ 0 (4.81a)

1
N

∑
k∈[N]

〈θw, µ− µ∗k〉 ≥
1
N

∑
k∈[N]

(
〈θ̃w, µ∗k〉 − max

µ∈LG
〈θ̃w, µ〉

)
− ξ. (4.81b)

Taking into account the reparametrized potentials θ̃ as defined in (4.35) we have

99

4. Model Parameter Perturbation and Learning

θ̃(x∗) = θ, while θ̃(x) = θ − ε for x 6= x∗, for all nodes and edges different than the
ground truth segmentation. Using this result, we can reformulate the problem as

min
w,ξ

1
2 ||w||

2 + Cξ, s.t. ξ ≥ 0 (4.82a)

1
N

(∑
k∈[N]

〈θw, µ− 2µ∗k〉+ max
µ∈LG
〈θw, µ〉 − max

µ∈LG
〈ε, µ〉

)
+ ξ ≥ 0. (4.82b)

If we set maxµ∈LG 〈ε, µ〉 = ξ(N − 1), it becomes clear that the purpose of the
hand-chosen ε is similar to the slack variable ξ.
In our objective (4.80) we are minimizing over one variable which is clearly an

easier to optimize function, as opposed to the objective in structured SVM where
there are two variables to be optimized over. Our optimization procedure as described
in Sect. 4.3.3 differs from the ones proposed for the structured SVM. Despite using
sophisticated subgradient optimization our method is less complex than cutting plane
methods [JFY09], the most efficient ones for structured SVMs.

We can conclude that our objective which is directly minimizing the loss function
as in (4.80) closely resembles an objective with structured SVM learning, see (4.81)
where we inserted the same loss function as in our objective. However our objective
comes down to a less complex optimization when compared to structured SVM.
While we minimize a loss function over one variable in our objective, we enforce
uniqueness too, with setting an additional term by hand.

4.4. Difference Between the Two Approaches

The two approaches presented here both solve the problem of learning parametrized
potentials θ for the relaxed binary labeling problem (4.3). However, the two-step
invLPA, see Sect. 4.2, and the linearly parametrized approach (LA), see Sect. 4.3 ,
take two completely different approaches to solve the problem.
With invLPA following the method for inverse linear optimization as in [ZL96,

AO01] we exploit the KKT conditions in order to come up with the inverse linear
program which finds exact perturbations, whereas with LA we exploit the dual in
order to come up with the convex relaxation of the original non-convex bi-level
optimization problem. In order to gain a tight convex relaxation when using LA
and being able to use off-the-shelf inference solvers, it is essential to build on linear
dependencies of the parametrized potentials with respect to the w vectors being
learned. In contrast invLPA is not restricted to any potential model, which is major
advantage since we are very flexible to use any model parameter prediction method.

The invLPA method separates learning in two separate and independent steps: the
first computes the exact perturbations (corrected potentials), with linear optimization,
while the second step fits the learned potentials to given data features. And advantage
of LA in this respect is that it solves both the perturbation and fitting problem
jointly in one step, but with a more involved optimization method, an improved
subgradient procedure for solving the parametrized subproblems of the saddle point
problem, (4.38).

100

4.5. Experiments and Discussion

While our LA approach resembles structured SVM learning methods, our invLPA
is a completely novel method as to our knowledge. It is the first method which
uses inverse linear programming [ZL96, AO01] for learning parameters in graphical
models. And the first method which can find exact perturbations corresponding to
given ground truth data, that is model parameters which lead to given exact ground
truth data. This, however, applies to the training data.
Concerning empirical comparison of the two presented methods we refer to the

next Sect. 4.5.

4.5. Experiments and Discussion

In this section we evaluate:

1. The first approach, invLPA from Section 4.2 which computes for each training
image a model parameter perturbation that exactly has the corresponding
ground truth labeling as global minimum, followed by fitting a model parameter
vector to these perturbations.

2. The second approach, LA from Section 4.3 which solves the same problem in
one step, or jointly computes perturbations and fits a model parameter vector.

We perform experiments and do the following validations and comparisons:

1. We validate the ability of invLPA to find the exact perturbed model parameters
by performing an experiment with ground truth data designed for our purpose.

2. We validate the performance of invLPA, as well as the performance of LA, by
a) learning unary potentials, considering presence of a regularizer, an Ising

prior. This is a different objective than the standard training of a classifier
offline followed by plugging in the learned unary potentials into an energy
function which contains a regularizer.

b) Learning pairwise potentials, with very weak unary terms for a scenario
for which any standard regularizer, for instance Ising prior would certainly
fail.

3. We validate the performance of the two approaches on the Weizmann horse
dataset [BU08] by:
a) learning jointly unary and pairwise terms using LA with comparison to

training a linear SVM on the unary data,
b) learning pairwise terms using invLPA and
c) comparison to the learning method from [Dom13], with two different loss

functions, one based on Maximum a Posteriori Marginal (MPM) and one
based on Maximum Likelihood Estimate (MLE).

4. We compare the two approaches, invLPA and LA with respect to unary
potential learning as well as pairwise potential learning. In addition we explain
the drawbacks for both learning methods, invLPA and LA.

101

4. Model Parameter Perturbation and Learning

4.5.1. Ground Truth Experimental Evaluation of invLPA

We want to demonstrate the ability of our invLPA approach to learn correct model
parameters which lead to ground truth segmentations, see (4.9). We will see from
the experiments in the following sections that our invLPA approach always finds
some corrected potentials that lead to the exact ground truth segmentation. There
is indeed a set of model parameters which lead to the desired segmentation, see
(4.9). But what happens if we know unique ground truth model parameters, will our
invLPA method lead to these ground truth potentials? Or how will the potentials
obtained from invLPA differ to the ground truth ones? In order to give answers to
these questions we perform a simple experiment with data we generated. We fix
probability distributions and sample from it a simple chain graph with 128 nodes.
From the probability distribution we can compute the model parameters. In the
following we explain in details what we exactly do.

Sampling We use a chain graph which is an acyclic graph and a tree. This allows
to apply the theory of probability distributions on trees. Drawing samples from a
tree distribution is based on sampling from local conditional distributions. Given
a tree T = (V, E) a tree distribution p(x) can be represented as in (2.95). Taking
into account that we have an acyclic graph, the marginals are the corresponding
probabilities, we rewrite the factorized probability distribution as

p(x) =
∏
ij∈E p(xi, xj)∏
i∈V p(xi)d(i)−1 , (4.83)

where d(i) = |N (i)| is the degree of a node i, for N (i) denoting the set of adjacent
nodes to i. We consider the tree T as a directed chain with V = {0, 1, . . . , n}. Then,
since d(0) = d(n) = 1 and d(i) = 2 if 1 ≤ i ≤ n− 1, (4.83) reads

p(x) = p(xn, xn−1)
p(xn−1) · · · · · p(x1, x0)

p(x0) p(x0) (4.84a)

= p(xn|xn−1) · · · · · p(x1|x0)p(x0). (4.84b)

Thus, we can sample from the probability distribution, that is x ∼ p(x) can be
computed sequentially by x0 ∼ p(x0), x1 ∼ p(x1|x0), . . . , xn ∼ p(xn|xn−1).

We can compute the model parameters from the binary probability distribution in
the following way. We first consider the marginal representation (4.84) of a binary

102

4.5. Experiments and Discussion

distribution on a chain graph and compute

log p(x) =
∑
i∈[n]

log p(xi, xi−1)−
∑

i∈[n−1]
log p(xi) (4.85a)

=
∑
i∈[n]

(
log p(xi = 0, xi−1 = 0)(1− xi)(1− xi−1) (4.85b)

+ log p(xi = 0, xi−1 = 1)(1− xi)xi−1 (4.85c)

+ log p(xi = 1, xi−1 = 0)xi(1− xi−1) + log p(xi = 1, xi−1 = 1)xixi−1
)

(4.85d)

−
(

log p(xn−1 = 0)(1− xn−1) + log p(xn−1 = 1)xn−1 (4.85e)

+ log p(x1 = 0)(1− x1) + log p(x1 = 1)x1
)

(4.85f)

=ηn(n−1)(0, 0)(1− xn)(1− xn−1) + · · · − η1(1)x1 (4.85g)

=
∑
i∈[n]

θi(i−1)xixi−1 +
∑

i∈[n−1]
θixi. (4.85h)

We note that the canonical parameters above are in a minimal representation form.
The last equality in the equation above is due to the exponential model representation,
see (2.49), which we write here again without the log-partition function, as no
normalizing factor is required, since the sum of both sides over all binary vectors x is
equal to 1. This follows from the fact that we used the marginal representation
of p(x) which is only possible on an acyclic graph. We write the exponential model
as

p(x) = exp
(
〈θ, φ(x)〉

)
, φ(x) = (xnxn−1, . . . , x1x0, xn−1, . . . , x1). (4.86)

We fix the values of the local marginal distributions as

p(xi−1 = 0) = α (4.87a)
p(xi−1 = 1) = 1− α (4.87b)
p(xi−1, xi) = p(xi|xi−1)p(xi−1) (4.87c)

where the pairwise distribution is computed by fixing the conditional distribution to

p(xi|xi−1) =
(
β 1− β
γ 1− γ

)
(4.88)

where i = 1, ..., n, with n+ 1 the size of the chain graph (n nodes plus the root node),
129 in our case. We write the conditional probability in the form (4.88) due to the
ancestral sampling which we use and requires this form of conditional probabilities.
We take α = 0.7, β = 0.9 and γ = 0.2. This fixes both η and θ by the preceding

103

4. Model Parameter Perturbation and Learning

relations. That is, from (4.85) the canonical parameters θ can be expressed as

θ0 =η0(0)− η0(1)− η1,0(0, 0) + η0,1(0, 1) (4.89a)
θi−1 =ηi−1(0)− ηi−1(1)− ηi,i−1(0, 0) + ηi,i−1(0, 1)− ηi−1,i−2(0, 0) (4.89b)

+ ηi−1,i−2(1, 0) for i = 2, ..n (4.89c)
θi,i−1 =ηi,i−1(0, 0)− ηi,i−1(0, 1)− ηi,i−1(1, 0) + ηi,i−1(1, 1) for i = 1,n, (4.89d)

where the parameters ηij , ηi are the log-values of the local marginals of the chain
distribution

ηi−1(0) = log(p(xi−1 = 0)) (4.90a)
ηi−1(1) = log(p(xi−1 = 1)) (4.90b)
ηi,i−1(0, 0) = log(p(xi−1 = 0, xi = 0)) (4.90c)
ηi,i−1(0, 1) = log(p(xi−1 = 0, xi = 1)) (4.90d)
ηi,i−1(1, 0) = log(p(xi−1 = 1, xi = 0)) (4.90e)
ηi,i−1(1, 1) = log(p(xi−1 = 1, xi = 1)) (4.90f)

(4.90g)

for i = 1, ..., n.
We draw 1000 samples. After having generated our data and computed ground

truth model parameters we want to perform the perturbation step of our invLPA
method. We use a simple scenario where we learn only the data term and consider
the pairwise terms as fixed, the ground truth ones. In oder to apply invLPA we need
some initial model parameters. For this we use noisy version of our data.

Remark 4.5.1. In what follows, we use the vertex set V = [n] = {1, . . . , n}. The
node 0 was only used above to highlight a particular node as the “root” of an oriented
chain, to explain the sampling procedure.

Data Term and Inference In practice we do not observe x directly, but the data
vector y = {y1, . . . , yn}, which can be binary or real. A data observation model taking
into account noise has to be specified in terms of the conditional data likelihood
distribution

p(y|x) =
∏
i∈[n]

p(yi|xi), (4.91)

that we adopt in the simplest possible form: fully factorized which means conditional
independence of the data given x, and functional form that is independent of the
location i (i.e. the same distribution p on the right at every vertex i). Then we
choose a prior p(x) which typically is just the ‘edge part’ (smoothness prior) above
corresponding to φ(x) = (x1x2, . . . , xn−1xn). MAP inference then means

arg max
x

p(x|y) = arg max
x

p(x|y)p(y) = arg max
x

p(y|x)p(x), (4.92)

104

4.5. Experiments and Discussion

because the term p(y) does not depend on x. It remains to rewrite (4.91) in
exponential form in order to conduct inference with the LP relaxation.
We consider the case of binary data vectors y and write

l00 = log p00 = log p(yi = 0|xi = 0) (4.93)

etc. Then

log p(y|x) =
∑
i∈[n]

log p(yi|xi) (4.94a)

log p(yi|xi) =
(
l00(1− yi) + l10yi

)
(1− xi) +

(
l01(1− yi) + l11yi

)
xi (4.94b)

=
(
(l00 + l11 − l10 − l01)yi + l10 − l00

)
xi + (terms independent of xi)

(4.94c)
= θi(yi)xi. (4.94d)

Absorbing terms that do not depend on x into the normalizing constant, we get

p(y|x) = exp
(∑
i∈[n]

log p(yi|xi)
)
∝ exp(〈θ(y), x〉), θ(y) =

(
θ1(y1), . . . , θn(yn)

)>
.

(4.95)
An elementary data likelihood model with noise level ε is

p(yi|xi) =
(
p00 p01
p10 p11

)
=
(

1− ε ε

ε 1− ε

)
, ε ∈ (0, 1), (4.96)

for all i from the training data. This results in the canonical parameters

θi(yi) = 2 log
(1− ε

ε

)
yi − log

(1− ε
ε

)
=

− log
(1−ε

ε

)
if yi = 0

+ log
(1−ε

ε

)
if yi = 1

i ∈ V. (4.97)

To motivate the above choice of data term, we can consider local decisions solely
based on this likelihood model. If ε ↘ 0 then log

(1−ε
ε

)
→ +∞, which implies the

decision xi = yi in order to maximize the energy θi(yi)xi, which makes sense in the
case of no noise ε ≈ 0. On the other hand, for increasing noise levels this data term
becomes weaker, and if ε > 0.5 it even changes the sign, because then xi 6= yi is more
likely the correct decision.

Perturbation We sample observed values y ∈ {0, 1} from the samples x with a
fixed conditional probability as in (4.96). We take three different choices of noise
ε1 = 0.01, ε2 = 0.1 and ε3 = 0.6.

In the first step of the inverse LP approach we find correction to initial θ̂ parameters
on the data term only, while fixing the smoothness prior to the computed ground
truth potentials from the probability distribution we sample from.

We illustrate for one sample and the three different noise levels ε for the initial θ̂
as in (4.97) in Fig. 4.3 the data term we use, the corrected potentials on the data

105

4. Model Parameter Perturbation and Learning

term and the correct ground truth unary parameters corresponding to the probability
distribution from which we sample.

For all noise levels the corrected potentials lead to ground truth segmentation.
However, as we can see from Fig. 4.3 the initial potentials are only corrected in
those nodes where µ∗ = 1. Moreover the corrected potentials θ + θ̂ correspond to
the ground truth potentials which we calculated from our sampling distribution at
the end nodes of the 1 segments. First the set of optimal θ which lead to optimal
µ∗ is not unique, i.e. the set (4.9) contains more than one element. This is part of
the explanation why the corrected potentials which do not match the ground truth
ones still lead to the ground truth segmentation. The reason why for the rest of
the 1 segments we have θ̂ + θ < θ∗ is the minimization problem minµ∈LG 〈µ, θ + θ̂〉,
which will get a minimum for smaller θ values corresponding to 1 nodes, while θ + θ̂

leads to the same ground truth µ∗, see (4.9). This is as well the second part of the
explanation why the corrected potentials match the ground truth segmentation. As
for the nodes where µ∗ = 0 there is no correction, except in few cases when the initial
θ̂ < 0, then the potentials get a correction, such that θ̂ + θ = 0. This is the case if
both ν = 0 and νµ = 0 as discussed in (4.18).

As a conclusion we can say that our invLPA method always corrects the initial
potentials so that the corrected ones lead to the exact ground truth segmentation.
However, this is achieved only by correcting the nodes corresponding to the foreground
segment. As a result the predicted potentials will depend on the initial potentials
too. When we have some initial θ̂ obtained with some other learning method we
can always expect to get an improvement as our invLPA method will correct some
of the potentials corresponding to foreground nodes. The background nodes will,
however, always stay as they are. The fitting in the next step will then depend
on the corrected potentials. In other words we can rely on our invLPA method to
give improved predicted potentials only when we have initial potentials obtained
from another learning method. Moreover, we only need initial potentials for the 0
segments.

The same argument follows for the pairwise potentials. invLPA will correct only
those pairwise potentials that correspond to edges which connect nodes that both
belong to a foreground segment.

4.5.2. Learning Unary Potentials

In this section we evaluate the two approaches for learning unary terms in a presence
of a fixed regularizer. We want to demonstrate that learning the unary potentials
while considering an objective where a regularizer is present, too, has a benefit over
a learning method where the unary potentials are learned offline and a regularizer
is added afterwards. Moreover, we want to demonstrate the benefit of our invLPA
method which learns corrected initial potentials.

106

4.5. Experiments and Discussion

20 40 60 80 100 120
−10.00

−5.00

0.00

5.00

index

va
lu
e

(a) ε1 = 0.01

20 40 60 80 100 120
−10.00

−5.00

0.00

5.00

index

va
lu
e

(b) ε2 = 0.1

20 40 60 80 100 120
−10.00

−5.00

0.00

5.00

index

va
lu
e

(c) ε3 = 0.6
θ∗ θ̂ θ̂ + θ µ∗

Figure 4.3. - Initializing with three different noise levels. In all three cases invLPA finds the
correct ground truth potentials only at the end points of each of the 1 segments (µ∗ = 1). For
the 1 segments when θ̂ + θ < θ∗ is due to the minimization problem minµ∈LG 〈µ, θ + θ̂〉, which
will get a minimum for smaller θ values corresponding to 1 nodes and a set of potentials θ + θ̂
leading to the same ground truth µ∗, see (4.9). As for the 0 segments (µ∗ = 0) the potentials
are not corrected (except few which have negative θ̂ are corrected to result in θ̂ + θ = 0). The
reason that for the 0 segments the potentials are not well corrected is due to the form of the
matrix A in (4.18). We are searching for sparse correction θ to θ̂ such that the conditions from
(4.18) are satisfied. This is equivalent to finding sparse θ such that µ∗ = arg minµ∈LG 〈µ, θ + θ̂〉.
When µ = 0, θ̂ + θ can be anything and this will not change the optimal solution, which is why
θ = 0 in this case. This is also the reason why the corrected potentials still lead to the ground
truth segmentation µ∗.

107

4. Model Parameter Perturbation and Learning

Experimental Set-Up

For validation of the two approaches for learning unary potentials we used 100
generated images with random lines, vertical and horizontal, see Fig. 4.4. All the
images are the same size 64 × 64 pixels. For features we used correlated images
with 8 image filters as illustrated in Fig. 4.5. After correlating an input image, the
resulting values were encoded for each pixel by stacking corresponding unit-vectors.
This resulted in feature vectors f i ∈ R97 with a large number of degrees of freedom
for learning. In order to exclude errors on the border due to the correlation we ignore
the 4 closest pixels to the border from the images of feature values. Accordingly, we
will work with images of dimension only 56× 56. For the invLPA approach we wish
to start with a strong data term θ̂u = (..., 〈f i, wu〉, ...) in order to investigate if it can
further improve the result. LA on the other hand is not sensitive to initialization.
To this end we trained a linear classifier using logistic regression and 10 independent
foreground and 10 independent background images, see Fig. 4.4. The training error
on these images was: 99 wrong foreground pixels and 140 wrong background pixels,
out of 62720 = 56× 56× 10× 2 or 0.38% mislabeled pixels in total.

We note that from these 10 foreground and 10 background images we generate our
100 images which we divide into 70% train and 30% test dataset.

In the experiments to follow, as an error measure we use the percentage of misla-
beled pixels similarly like in [BYVG11]. We calculate the percentage of mislabeled
pixels with

100
∑
p(I(p) 6= Igt(p))

|p|
(4.98)

where I is the final segmented image we learn, Igt is the ground truth segmentation
and |p| is the total number of pixels in the image.

Applying invLPA

Next we explain the implementation details for invLPA.
This approach consists of two independent steps: perturbation and fitting which

we separately explain in the following.

Perturbation We consider N training samples. For simplicity of notation we
consider N to be the set of all nodes through all the images, although this step can
be parallelized, when we consider each image separately and compute perturbations
in parallel for each image. We have for each image its ground truth segmentation,
where µ∗i , i ∈ [N], µ∗i here denotes the ground truth label of the node i. We
compute perturbations θi to the initial potentials θ̂i, i ∈ [N] obtained with training
state-of-the-art logistic classifier with the set up as explained in Fig. 4.4.

As stated before in section 4.2 for the invLPA we use the minimal representation for
the local polytope relaxation. We consider µ∗ to be the solution to (4.3) with LG =
LMG given by (4.7) and θ̂ vector of model parameters such that µ∗ /∈ arg minµ∈LMG 〈θ̂, µ〉.

108

4.5. Experiments and Discussion

(a) input (b) ground
truth

(c) background
images

(d) foreground
images

Figure 4.4. - (a) 10 images composed of two random processes with vertical and horizontal
lines out of 100 along with (b) ground truth segmentations. (c) 10 independent background
images and (d) 10 independent foreground images used for training a linear classifier using logistic
regression in order to define a strong data term θ̂. Features were computed by using the templates
depicted by Fig. 4.5.

109

4. Model Parameter Perturbation and Learning

Figure 4.5. - 8 binary filter masks for computing the feature vectors corresponding to each
pixel. After correlating an input image, the resulting values were encoded for each pixel by
stacking corresponding unit-vectors. This resulted in feature vectors f i ∈ R97 with a large number
of degrees of freedom for learning. In view of the images from Fig. 4.4.

µ∗ is represented as

µ∗ := (..., µ∗i , ..., µ∗ij , ...), i ∈ V, ij ∈ E (4.99)

where µ∗i = 0 if pixel i is in the background and µ∗i = 1 if pixel i is in the foreground,
µ∗ij = 1 if both pixels i and j are in the foreground and 0 for all other cases. With V
we denote the set of all nodes from the training data, E the set of all edges from the
training data. For the unary case (learning only unary potentials) we considered a
fixed Ising prior with weight β for the pairwise potentials. Setting β = 2 showed to
be a good choice in this case. Then the initial potentials are defined as:

θ̂ := (θ̂u, θ̂p) = (..., 〈ŵu, f i〉+ |N (i)|β, ...,−2β, ...)> ∈ RN+M , i ∈ V (4.100)

where with |N (i)| we denote the number of neighbors of a node i ∈ V , N is the number
of nodes and M is the number of edges. With the subscript u we denote the unary
part of the potentials and with the subscript p the pairwise part of the potentials.
In the general case ŵu is the initial guess for the parametrization θ̂u = θ̂u(ŵu). In
our case we obtained ŵu by training a linear classifier using a logistic regression, and
f i is the feature vector corresponding to node i ∈ V.
We compute the perturbations θi, i ∈ [N] by solving the linear system (4.18).

Fitting In the second step, we do the fitting on the computed perturbed potentials,
which now correspond to the exact ground truth labellings of the training data. We
are given the features

f i, i ∈ [N] (4.101)

and the corrected potentials

θ̃iu := 〈ŵu, f i〉+ θiu = initial potential + perturbation (correction) (4.102)

collected from all locations and from all training images. We can learn potentials θ̃
employing any model prediction method. For the following experiments we used the
three prediction methods described in Sect. 4.2.2.

1. Linear fitting: We used least-squares fitting with solving the overconstrained
system (4.20) and `1-norm fitting, with solving (4.21).

2. Nonlinear fitting: We applied Gaussian regression in order to investigate if
it will capture more from the structure than the simple linear methods.

110

4.5. Experiments and Discussion

method In(LOG) LS L1 NL LA
% mis 2.44 2.42 2.44 2.00 2.02

Table 4.1. - The numbers correspond to the mean errors from Fig. 4.7 and Fig. 4.8. The
nonlinear Gaussian fitting, (NL) in average outperforms all other methods.

For the nonlinear Gaussian fitting we used a sparse Gaussian regression with
only 5% of the whole training data, chosen by random. We use the publicly
available code from [RW06] for optimizing the regression parameters.

In Fig. 4.7 we compare the error of the investigated fitting methods to an offline-
trained state-of-the-art logistic classifier with an Ising prior added, which we denote
from now on with LOG. Table 4.1 summarizes the mean errors. The results show
that the nonlinear fit in average significantly outperforms any linear fitting method
as well as the logistic classifier. In our experiments we demonstrated the benefit of
learning in conjunction with a regularizer compared to LOG. We show some results
on part of the segmented images from the test data chosen by random in Fig. 4.6.

Applying LA

LA is less complex from implementation point of view compared to invLPA as
perturbation and fitting are performed in a single step. However, in contrast to
invLPA where it is sufficient to solve a linear system, for LA we have to apply the
deflected subgradient algorithm, see Algorithm 3.
For the reparametrized potentials (4.35) we chose ε = 0.1 which proofed to be a

good choice when using a fixed Ising prior of 1. Note that we choose different Ising
priors for the two approaches, depending on which leads to better results. In Fig. 4.8
we illustrate the error we obtain when learning with LA. We compare to the result
of LOG. LA outperforms this method in average, see Fig. 4.8 and Table 4.1.

The Ising prior in the logistic classifier prediction step was chosen the same as the
approach with which we compared to. The reason for choosing different values for
the Ising prior was to illustrate the general benefit of learning with a regularizer. In
addition our two approaches invLPA and LA use different solvers for the labeling
subproblems. We use MOSEK [ApS15] for invLPA and QPBO [KR07] for LA. Due
to this and the different Ising prior for the logistic classifer learning method the
results in the plots in Fig. 4.7 and Fig. 4.8 are not identical for the LOG curve.

4.5.3. Learning Pairwise Potentials

In the proceeding section we evaluate the two approaches for learning pairwise
potentials when fixing the unary term. For the unary term we simply take the gray
scale value minus a thresholding constant, 0.5 in our case. We want to demonstrate
that our learning methods are able to learn appropriate pairwise potentials which
can preserve to some extent a difficult to segment structure, for which a standard
regularizer, e.g. Ising fails completely.

111

4. Model Parameter Perturbation and Learning

(a) ground
truth

(b) input
(c) plug-in

data term with
Ising prior

(d)
thresholding
the plug-in
data term

(e) learned
data term with

Ising prior

(f)
thresholding
the learned
data term

Figure 4.6. - Exemplary images from the test dataset chosen at random. (c) Segmentation
results when using a linear classifier trained offline using logistic regression with regularizer,
denoted by LOG and (d) without additional regularization, in comparison to (e) method invLPA
with and (f) without regularizer. The final results improve only for invLPA that learns in
conjunction with the regularizer.

112

4.5. Experiments and Discussion

5 10 15 20 25 30
0.00

1.00

2.00

3.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

In(LOG) L1 LS NL

Figure 4.7. - Performance on test data of regularization-driven data term learning for the
method invLPA with two linear fitting models, linear least-squares fitting (LS), `1-norm fitting
(L1), and nonlinear Gaussian fitting (NL) versus LOG with which we initialize, (In(LOG)). Remark:
the blue and the yellow curve, In(LOG) and L1 respectively, overlap as the initial θ̂ is already
sparse. We can see that the nonlinear Gaussian fitting, NL outperforms the other linear fitting
methods. For mean test errors we refer to Table 4.1.

5 10 15 20 25 30
0.00
1.00
2.00
3.00
4.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

LOG LA

Figure 4.8. - Performance on test data of regularization-driven data term learning for the LA
method. The plot shows that learning a data term in conjunction with a regularizer with the LA
method outperforms LOG. Regarding the mean test errors we refer to Table 4.1.

113

4. Model Parameter Perturbation and Learning

Experimental Set-Up

In order to validate the two approaches for learning pairwise potentials we use 20
noisy images, evenly split into training and testing sets, with random horizontal and
vertical lines, see Fig. 4.9. All the images are of size 64× 64 pixels. In order to define
our pairwise features we correlate the images with 10 filter masks of different size,
see Fig. 4.10, in order to capture the structure of the non equally sized random lines.
We define the pairwise features f ij , ij ∈ E as matrices

f ij := {Gσf (f l, fk)}l,k∈N (i)∪N (j) (4.103)

where each entry is a Gaussian kernel given by Gσf (f l, fk) = exp(− 1
2σ2
f
||f l − fk||2),

with σf = 0.4, and N (i) and N (j) define the neighborhoods for the nodes i and
j, respectively. We use a 4 neighborhood for the experiments in this subsection.
In order to avoid errors due to boundaries handling, we only consider the 56× 56
positions where the 5× 5 filter masks in Fig. 4.10 completely fit the input data.

Applying invLPA

We describe below the two independent steps, perturbation and fitting.

Perturbation We first obtain initial potentials θ̂, using the LA method. The neces-
sary conversion from the overcomplete to the minimal representation is documented
in Appendix A.1.1.
We denote the initial potential from LA with θ̂ and the potentials from invLPA

with θ. Concerning the notation from Appendix A.1.1 we set the labels l1 = 1 and
l2 = 0. We learn only pairwise terms and fix the unary terms θ̂i(1) = p(i) − 0.5,
θ̂i(0) = 0, where p(i) denotes the gray value of the input image at location i.

Our initial θ̂p vector depends linearly on the features and some vector ŵp we learn
using LA and which is given by

ŵp =
(
ŵ00 ŵ01

ŵ10 ŵ11

)
(4.104)

where we fixed ŵ01 = ŵ10 and ŵ00 = −20 · 1 which showed to be a good trade-off
between fast-convergence and number of submodular edges. First we convert θ̂
according to (A.12) without changing the optimum value. In the following we use
the same notation θ̂ for the new converted model parameters. Now in view of (A.14)
we have

θ
i = θ̂i(1) +

∑
ij∈E

θ̂ij(1, 0) +
∑
ij∈E

θ̂ij(0, 1) (4.105a)

θ
ij = θ̂ij(1, 1)− θ̂ij(1, 0)− θ̂ij(0, 1). (4.105b)

In the first step we compute perturbations θi and θij for θi and θij for all nodes
and edges from the training set, by solving the linear systems in (4.18) and obtain

114

4.5. Experiments and Discussion

(a) ground
truth

(b) input

Figure 4.9. - We started by creating (a) 10 training images from a random line process as
well as (b) noisy versions which were used for learning a regularizer in conjunction with very weak
unary potentials (single pixel comparison to a fixed threshold, 0.5 in our case).

115

4. Model Parameter Perturbation and Learning

Figure 4.10. - We used 10 binary filter masks for computing feature vectors. After correlating
an input image with each of the filters masks, we use neighboring feature vectors for computing
Gaussian kernels, in order defining the pairwise features as in (4.103).

the updated parameters

θ̃i = θi + θi − θ̂i (4.106a)

θ̃ij = θ
ij + θij , (4.106b)

where in the first equation we subtract the initial unary term which we had fixed, θ̂i,
as discussed above.

Fitting The next step consists of fitting w on the perturbed potentials θ̃. In the
following we consider three alternatives:

1. Linear fitting: We consider a linear dependency and define wu := w01 + w10

and wp = w11 − w01 − w10.

• Least square fitting: we solve the following two minimization problems

min
wu

∑
i∈[N]

|〈
∑

j∈N (i)
f ij , wu〉 − θ̃i| and (4.107a)

min
wp

∑
ij∈[M]

|〈f ij , wp〉 − θ̃ij | (4.107b)

where f ij are the pairwise features we define as in (4.103), N is the number
of all vertices and M the number of all edges from our training data, N (i)
is the defined neighborhood of i, the 4-neighborhood in this case.

• `1-norm fitting: we solve

min
wu,si

||wu||1 + λ
∑
i∈[N]

|si| s.t. 〈
∑

j∈N (i)
f ij , wu〉 − si = θ̃i and

(4.108a)

min
wp,sij

||wp||1 + λ
∑

ij∈[M]
|sij | s.t. 〈f ij , wp〉 − sij = θ̃ij (4.108b)

where λ > 0.

Please note that the feature vectors in the equations (4.107) and (4.108) corre-
spond to the train data. After learning wu and wp we fit them to new feature
vectors corresponding to the test data. This defines the new predicted model
parameters.

116

4.5. Experiments and Discussion

2. Nonlinear fitting: Similar to learning unaries, we use the nonlinear predictor
function

θ(f) := kM (f)>(K(F) + σ2
m)−1θ̃ (4.109)

with
kM (f) = (k(f1, f), ..., k(fM , f)) (4.110)

where with f1, ..., fM are denoted the pairwise features f ij defined in (4.103),
M is the number of edges from the training data, σm is a parameter obtained
with the code from [RW06]. K(F) is defined as K(F) := (kP(f ij , fkl))ij,kl∈[M]
where

kP(f ij , fkl) := σ2
P1 exp

(
− 1
σ2
P2

d2
p(f ij , fkl)

)
with

dP(f ij , fkl) := || log(f ij)− log(fkl)||F ,
(4.111)

where σP1 and σP2 are computed using the code in [RW06]. Since we have
positive definite matrices for pairwise features, see (4.103) we define the distance
dP as the log-Euclidean metric on the manifold of positive definite matrices.

In Fig. 4.11 we show the error as defined in (4.98) on the test data given in
Fig. 4.12(a). We compare the above-mentioned three fitting methods. The results of
the outperforming method, least-squares fitting, are illustrated in detail in Fig. 4.12.
We used sparse Gaussian regression on 0.1% of all the train data. In Table 4.2 we
can observe that invLPA in average improves the initial segmentation which was
computed using LA. For all methods the labeling problems are solved using the
MOSEK linear solver [ApS15]. As a result we do not need to convert again from
minimal to overcomplete representation.

2 4 6 8 10
6.00

7.00

8.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

In(LA) L1 LS NL

Figure 4.11. - Performance on test data of learned pairwise potentials with fixed very weak
unary term. Initial potentials are computed with the LA method, (In(LA)), linear fitting with
least-squares error (LS), linear fitting with l1−norm minimization (L1), and Gaussian fitting (NL).
We can observe that the invLPA method with least-squares linear fitting in average outperforms
the LA method, which was also used to initialize the potentials for invLPA. Remark: The curves
for In(LA) and L1 overlap due to sparsity of initial θ̂. For mean errors, see Table 4.2.

117

4. Model Parameter Perturbation and Learning

(a) ground
truth

(b) result

Figure 4.12. - Random line process images. (a) Ground truth segmentations on the test data.
(b) Segmentation results when applying the learned regularizer to the noisy input data as in Figure
4.9. The result shows that the regularizer captures and preserves to some extent the random
image structure, unlike any standard prior (e.g. Ising) that is not at all able to discriminate
foreground lines from noise.

118

4.5. Experiments and Discussion

method In(LA) LS L1 NL
% mis 7.59 7.48 7.59 7.56

Table 4.2. - Computed mean test errors from the results in Fig. 4.11. From the results here
we conclude that invLPA, always leads to at least as good or improves in average on the error
of the method that was used to initialize the potentials, In(LA).

Applying LA

We apply the Algorithm 3 while respecting the form of the edge potentials

θij =
(
〈f ij , w00〉 〈f ij , w01〉
〈f ij , w10〉 〈f ij , w11〉

)
(4.112)

by setting w01 = w10 and fixing w00 = −20 · 1. We fix ε for the reparametrized
potentials (4.35) to 0.1.
We note that we tried the same scenario with hand-tunning an Ising regularizer.

This completely fails by producing constant images, i.e. leads to no segmented
random lines.

4.5.4. Experiments on the Weizmann Horse Dataset [BU08]

In this section we illustrate our learning approaches on real world data. We choose a
challenging dataset comprising of 327 images of horses with different poses, shades
and background including ground truth segmentation. Moreover, we demonstrate
the ability of the method LA to efficiently learn unary and pairwise potentials. In
addition we compare LA to linear SVM and to two other methods for learning
parameters in graphical models.

Experimental Set-Up

We divide the dataset into training and testing dataset. As the images contain horses
in different colors we want our training data to be representative enough. We first
divide the images into 5 classes, brown, black, white, black-white and brown-white.
We randomly divide each of the 5 color type image groups into train (70%) and test
(30%) datasets. We used state-of-the-art SLIC [ASS+12] superpixels to process the
image data, a common approach to reduce the problem size, and benefit from the
rich superpixel structure when extracting features. After resizing the images to the
ground truth data size we divide each image into ≈ 800 superpixels.

It is not easy to segment some of the horses images alone without learning due to
the same shade of color in the horse area and in the background. Before we group the
image pixels into superpixels we preprocess the horse dataset by mapping the image
color values in the range from [red green blue] = [0.2 0.3 0]> to [0.6 0.7 1]>
to the [0 0 0]> to [1 1 1]> range.
We have to use more sophisticated features in order to be able to represent and

extract the horse shape in all the images. As the horses share the same colors within

119

4. Model Parameter Perturbation and Learning

Figure 4.13. - A sample horse image from the Weizmann horse dataset [BU08] segmented
into SLIC superpixels [ASS+12]. The white lines are the border lines of each superpixel. We
colored in red the center superpixel for which we illustrate its three layer neighboring superpixels
in green.

the 5 groups, we base our features on color values. Moreover, we tried several color
spaces and included those that lead to an improvent of the segmentation result when
both training and testing on a separate small subset of the training dataset (3 images).
We considered the color spaces HSV, the opponent color space, RGB and CIELAB
as features. Only the latter two proved to be informative in our experiments and
thus we selected them for defining the unary features. Due to this we used both the
RGB and the CIELAB color space when defining the unary features, as well as the
pairwise features as we will see in the following.
Both for the unary and pairwise features we use a region covariance descriptor

[TPM06]. We can consider our superpixel regions as a Gaussian distribution or a
histogram of data. Then for the pairwise features we can use distance measures
defined on distributions and histograms.
We use the following superpixel features:

1. Unary features:

f i :=
(
LCovi, Li, ai, bi, Ri, Gi, Bi, Xi, Y i

)>
. (4.113)

The first feature LCovi is the logarithm of the eigenvalues of the covariance
region descriptor [TPM06]. The covariance descriptor of a superpixel Si is
defined using a feature mapping, Φ on the image I such that Φ(I, x, y) = F (x, y)
with

F (x, y) :=
(
x, y, L, a, b, R, G, B, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
I2
x + I2

y

)>
.

(4.114)

We compute the first order (Ix, Iy) and second order image gradients, (Ixx, Iyy)
on the gray scale image I. Then the covariance descriptor on a superpixel Si

120

4.5. Experiments and Discussion

is defined as the covariance matrix of F (x, y) on Si. The remaining features
of f i are the mean values of pixels on Si of the CIELAB (Li, ai, bi) and
RGB (Ri, Gi, Bi) color space. Furthermore, (Xi, Y i) are the normalized center
coordinates of Si, motivated by the fact that all horses are approximately
located at the image center.

2. Pairwise features:

f ij :=
(
H ij
Lab, H

ij
RGB, CovD

ij , QCijRGB, QC
ij
Lab, QC

ij
SIFT

)>
, (4.115)

where with H we denote the Hellinger distance between multivariate Gaussian
distributions. We make the assumption that all pixels pk in a superpixel S,
pk ∈ S, k = 1, ..., n can be viewed as samples from a Gaussian process with
corresponding density functions P (p|µS ,ΣS), with µS being the 3-dimensional
mean vector of all 3-dimensional vector values in some of the color spaces,
from all the pixels pk in the superpixel S and ΣS being the covariance matrix
of the 3-dimensional vectors in the same color space from all the pixels pk in
the superpixel S. Let Si and Sj be represented by the multivariate normal
distributions N (µi,Σi) and N (µj ,Σj) respectively, both estimated from the
pixels in the corresponding superpixel. Also let Sj ∈ Ii, where Ii is the neigh-
borhood set of superpixel Si. The Hellinger distance between two multivariate
distributions Si and Sj is defined by

H2(Si, Sj) :=

1− det(Σi)1/4 det(Σj)1/4

det
(

Σi+Σj
2

)1/2 exp
(
−1

8(µi − µj)>
(Σi + Σj

2

)−1
(µi − µj)

)
.

(4.116)

The color distributions of two superpixel distributions are identical if H2 = 0,
and maximally different as H2 → 1. We define Hellinger distance on the
CIELAB and RGB space and denote them with H ij

Lab and H
ij
RGB respectively.

The third pairwise feature CovDij is the distance on the manifold of the
covariance descriptors or positive definite matrices defined by

CovDij := || log(Covi)− log(Covj)||F , (4.117)

where Covi and Covj are the region covariance descriptors of the superpixels
Si and Sj respectively, and log stands for the matrix logarithm function. The
above defined distance is an approximation of the true geodesic distance which
is computationally more expensive.

With QC we denote the quadratic chi squared distance [PW10] between his-
tograms. Both in the RGB and CIELAB space, we compute for every color
channel a histogram using 25 bins and normalize the counts to sum up to 1.
The quadratic chi histogram distance is normalized using a cross bin similarity

121

4. Model Parameter Perturbation and Learning

measure which reduces the effect of large bins. For two superpixels Si and Sj
with their histogram like distributions P and Q, respectively, the quadratic chi
squared distance is defined as

QCAm(P,Q) :=

√√√√∑
kl

(Pk −Qk
(
∑
c(Pc +Qc)Ack)m

)(Pl −Ql
(
∑
c(Pc +Qc)Acl)m

)
, (4.118)

and some 0 ≤ m < 1. The cross bin similarity is incorporated through the
similarity matrix A defined as

Akl := 1− Dkl

maxkl(Dkl)
(4.119)

with Dkl being cross bin distance between the histogram bin centers. When we
have 1D histograms as we consider in our case, D can simply be the `1 distance
across the bins.

We remark that more powerful engineered feature representations may improve
the segmentation results. However, as we will show in the evaluation, given inexact
potentials our proposed framework learns a more descriptive representation, thus
improving the final segmentation result. In order to further improve the numerical
efficiency we group superpixels into nonlocal neighborhoods where each group contains
the superpixels which are adjacent or connect via up to two superpixels as illustrated
in Fig. 4.13.

In addition to error measure (4.98) we also compute the percentage of mislabeled
foreground pixels

100Area(F ∩ Fgt)
Area(F ∪ Fgt)

(4.120)

similar to [BYVG11] in order to measure the quality of the foreground mask. Here
F and Fgt are the computed and ground truth foreground mask, respectively.

Jointly Learning Unary and Pairwise Potentials with LA

For the proposed LA method it is straight forward to apply joint learning of both
unary and pairwise potentials, whereas for the invLPA method this is not the case.
The reason is the different representation used. For the minimal representation as
used in invLPA the unary part of the potentials, see (4.105a) reads for the linear case

θ
i = 〈f i, wi〉+ 〈

∑
ij∈E

f ij , wij〉. (4.121)

After computing the perturbed potentials θ̃i = θ
i + θi it is not possible to clearly

relate them to the unary or pairwise features. This is still true for the fitting step,
possibly leading to erroneous predictions.

We jointly learn unary and pairwise potentials using the LA method. The unaries
are then transfered and fixed for the invLPA method while the pairwise potentials

122

4.5. Experiments and Discussion

are used as initialization.
For illustration we demonstrate joint learning with the LA method on the Weizmann

horse dataset [BU08] with the setup of features and training images as introduced
in Sect. 4.5.4. We define the potentials θi and θij as in (4.33) with all entries of w
different and we fix ε = 0.1. We are aware of the over parametrization when we learn
all the entries in our unary and regularizer term. One reason is that this leads to
better predicted segmentations. Another reason is to have a fair comparison with
the methods from [Dom13] we will compare to in Sect. 4.5.4, which use the above
mentioned forms of the potentials. And in order to avoid possible overfitting we add
||w||2

2 to the objective in (4.38), where w = (wu, wp) as in (4.34).
For comparison we train a linear SVM classifier [SV99] on the unary features.

The main reason is to examine how powerful our unary features (4.113) are. We
compare joint learning with our LA method with learning the unaries with SVM.
This is illustrated in Fig. 4.14 and Fig. 4.15, and report the mean train and test
errors in Table 4.3. From the curves in Fig. 4.14 and Fig. 4.15 we can clearly see the
significantly better performance of our joint learning approach. This demonstrates
that our unary feature vector alone is not sufficiently descriptive to capture the shape
and structure of all the horses in the train dataset. However, we can see the benefit
of joint learning unary and pairwise terms, in comparison to only learning unaries
with linear SVM. Example segmented test images are shown in Fig. 4.16.

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

80.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

LA SVM

Figure 4.14. - Performance on test data with the error measure (4.98) when learning jointly
unary and pairwise terms with LA, compared to training a linear SVM on the unary terms. For
mean test errors we refer to Table 4.3.

Learning Pairwise Potentials with invLPA

Next we apply our invLPA method on the Weizmann horse dataset [BU08] to evaluate
the capability to learn pairwise terms. As an extension of the comparison of LA and
linear SVM we compare our invLPA method to LA with which we initialize. We

123

4. Model Parameter Perturbation and Learning

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

80.00

image

%
m
isc

la
ss
ifi
ed

fg
pi
xe
l

LA SVM

Figure 4.15. - Performance on test data with the error measure (4.120) when learning jointly
unary and pairwise terms with LA, compared to training a linear SVM on the unary terms.
Concerning mean test errors we refer to Table 4.3.

method LA SVM
% mis train 15.8 47.0
% mis fg train 36.8 53.5
% mis test 18.7 46.4
% mis fg test 41.5 53.5

Table 4.3. - Comparison of jointly learning unary and pairwise terms with LA to learning
unaries only with linear SVM. In the table are reported mean train and test errors. The mean
test errors correspond to Fig. 4.14 and Fig. 4.15.

transfer the learned unary terms to invLPA and keep them fixed while the pairwise
terms are used as initialization.
We apply both linear and nonlinear fitting.

1. Linear Fitting: The same as with learning pairwise potentials for the random
lines we solve the minimization problems (4.107) for least-squares fitting and
(4.108) for `1−norm fitting.

2. Nonlinear Fitting: Same as in 4.5.3 except that now in the Gaussian kernel
for measuring the distance of pairwise features we use the `2−norm as we
have vectors of pairwise features. We choose a sparse Gaussian regression with
a small subset, 0.3% of all the train data chosen by random, as the sparse
Gaussian regression was outperforming the splitting methods described in
subsection 4.2.2.

We plot the results in Fig. 4.17 and Fig. 4.18 and provide quantitative train and test
errors in Table 4.4. The nonlinear Gaussian fitting outperforms the two linear fitting
methods as well as the LA method used to initialize the potentials. However, with

124

4.5. Experiments and Discussion

(a) input

(b) LA

(c) SVM

Figure 4.16. - Subset of 5 test images (a) from the Weizmann horse dataset [BU08]. The
images (b) are segmented after jointly learning unary and pairwise terms with the LA method
and (c) compared to the resulting segmented images when training linear SVM on the unary
data.Red color pixels means misclassified pixels. As can be seen from the images joint learning is
significantly better than training SVM which has many false positives. These results demonstrate
that our unary features alone are not so powerful to capture the structure and pose of all the
horses from the train data.

respect to the error measure measuring only mislabeled foreground pixels (4.120) the
initial error is not improved, moreover the least-squares fitting as well as the sparse
Gaussian regression lead to bigger error than the initial method. The reason for this
is the approximate conversion from minimal to overcomplete representation, in order
to solve the final labeling problem using the predicted potentials.

Remark 4.5.2. In order to use the results from the LA approach for initialization
we first converted from overcomplete to minimal representation. Again for solving
the final labeling problem after the fitting procedure we used the same specialized
inference solver QPBO [KR07], which we use for LA and requires overcomplete
representation of the potentials. Due to the second approximate conversion the
results in Table 4.4 for our initialization are slightly different than the ones in Table
4.3. For all results reported here we use the same type of approximate conversion for
all fitting methods for invLPA. Concerning the details on the conversions mentioned
here we refer to Appendix A.1.1 and Appendix A.1.2.

Comparison of LA to Different Learning Methods

We have already shown the benefit of our learning approaches over state-of-the-art
SVM classification method. Now we want to compare it with other learning methods
related to our LA method. We note that our invLPA method differs from other
standard methods for learning parameters of graphical models. We can think of

125

4. Model Parameter Perturbation and Learning

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

In(LA) LS L1 NL

Figure 4.17. - Performance on test data with the error measure (4.98) when learning pairwise
terms with invLPA, while initializing with LA (In(LA)). For the fitting step two linear fitting
methods are used, least-squares fitting (LS) and `1−norm linear fitting (L1), as well as a nonlinear
Gaussian fitting (NL). From the curves we can see that overall NL performs the best. We remark
that In(LA), pink curve and L1, yellow curve overlap due to the sparsity of the initial solution.
Concerning mean test errors we refer to Table 4.4.

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

80.00

image

%
m
isc

la
ss
ifi
ed

fg
pi
xe
l

In(LA) LS L1 NL

Figure 4.18. - Performance on test data using the error measure as in (4.120) when learning
pairwise terms with invLPA, while initializing with LA (In(LA)). For the fitting step two linear
fitting methods are used, least-squares fitting (LS) and `1−norm linear fitting (L1), as well as a
nonlinear Gaussian fitting (NL). Again In(LA) and L1, pink and yellow curve respectively overlap.
Concerning mean test errors we refer to Table 4.4.

126

4.5. Experiments and Discussion

method In(LA) LS L1 NL
% mis train 22.8 21.7 22.8 18.5
% mis fg train 40.8 41.6 40.8 47.6
% mis test 25.1 23.8 25.1 20.4
% mis fg test 43.7 44.5 43.7 51.2

Table 4.4. - Train and test errors when learning pairwise terms with invLPA and initializing
with LA (In(LA)) with different fitting methods. Two linear fitting methods, least-squares fitting
(LS) and `1−norm fitting (L1) as well as nonlinear fitting (NL). The mean test errors correspond
to the plots in Fig. 4.17 and Fig. 4.18 percentage of mislabeled pixels, % mis test, percentage of
mislabeled foreground pixels, % mis fg test.

the invLPA as a method for correcting the approximate gradient. In contrast, other
methods learn model parameters using approximated gradients.
While learning we minimize a loss function which measures how the energy or

distribution defined by the parameter potentials fits the ground truth data. The
similarity can be measured in words of Maximum a Posteriori (MAP), Maximum
a Posteriori Marginal (MPM) or Maximum Likelihood Estimation (MLE). In the
work of Domke [Dom13] learning based on MPM and MLE has been explored and
compared against each other. MLE is the most likely estimate, the one which
corresponds to the most probable observation. On the contrary MAP estimate is the
most probable joint distribution given some observation whereas MPM estimate are
the marginally most probable distributions. In other words MPM is MAP for each
variable separately.

In [Dom13] Domke in addition to comparing learning methods with different loss
functions based on MPM and MLE, proposes a new optimization method, using
truncated fitting in order to speed up the inference and a perturbation method for
computing the approxiamte gradient. Truncated fitting means optimizing so that
an approximate result is reached with a predefined number of iterations. Using a
perturbation method for computing the gradient means optimizing twice, the second
time initializing with the perturbed output parameters from the first result.
Computing MLE, MAP and MPM estimate in the general case is NP-hard. For

this reason there are methods that compute approximate solutions. An older study
experimentally shows that the quality of learning depends very much on how the
inference method used while learning and the gradient approximation method are
coupled [KAH05]. This is the same observation as the one proved in [Wai06].

Learning with MLE was reported more thoroughly in [NL11], while learning with
MPM was previously proposed in [Dom12, GRDB06].
One drawback of the comparative study of Domke is that he does not use and

compare MAP inference as well as MAP based loss function as in our case. The
experimental evaluation in [Dom13] shows that learning benefits from loss functions
based on MPM while using MPM inference. The reason can be that while learning
we are taking into account the error we get while performing the inference and we
measure the quality of each variable (marginal) separately rather than jointly like
with MAP or MLE. And as observed in [Dom13] MPM learning happens to be more

127

4. Model Parameter Perturbation and Learning

robust to model misspecification.

We use the publicly available code from Domke to compare a loss function based on
MPM and a loss function based on MLE along with the new proposed optimization
procedure in [Dom13], to our LA learning method. We choose the logistic clique loss
from MPM like loss functions and surrogate expectation maximization likelihood loss
from MLE type of loss functions accompanied with tree reweighed (TRW) message
passing algorithm for inference. We choose particularly these two loss functions since
in [Dom13] the reported results on the horse dataset suggest that the logistic clique
marginal loss performs the best from MPM like loss functions evaluated in [Dom13]
and the surrogate likelihood perform the best from the MLE like loss functions
evaluated in [Dom13]. For the MLE like loss, when using truncated fitting in the
optimization procedure for the inference the prediction results are poor. This is not
surprising since the truncated fitting for this type of loss is performed heuristically
which is in general true for all truncated fitting methods including the MPM loss.
For more details we refer to [Dom13]. Due to this we didn’t use truncated fitting for
the MLE loss function comparison. Instead, for the reported results for the MLE
loss function we used TRW with a convergence threshold of 10−5 and regularizer
10−3 and 1000 iterations. For the MPM loss function we used truncated fitting with
TRW with 5 iterations, regularizer 10−3 and 1000 iterations. However, when using
TRW with more iterations, e.g. 40 as suggested in [Dom13] for better results we
got approximately the same errors as with our LA method, as reported in Table 4.5.
The truncated fitting introduced by Domke for our particular setup leads to better
results when the inference is less accurate in each step. This leads to doubts for
the accuracy of the heuristic optimization method Domke uses, as it appears that
increasing the number of iterations deteriorates results instead of improving them.

We used the same experimental set up as for our LA method as described in
Sect. 4.5.4. The results are reported in Fig. 4.19 and Fig. 4.20. The mean train
and test errors from the comparison are reported in Table 4.5. We can see from
the results that the MPM based loss learning method with the logistic clique loss
outperforms our method. On the other hand the surrogate likelihood loss from MLE
performs much worse than our method. The methods from [Dom13] we compare our
learning method with are incomparably slow. On a same machine for the MLE loss
the training time was 7 hours and 31 minutes, for MPM for TRW with 5 iterations
for what we report our results here, 5 hours and 7 minutes, while the training for
our LA method took 1 hour and 48 minutes.

We include some segmented images to illustrate the results in Fig. 4.21.

The results suggest that our LA method is a competitive learning method. Our
comparison results also support that when learning parameters in a graphical model
the loss function should also correspond to the inference type for better results. MPM
loss learning accompanied with inference based on MPM seems to perform the best.
However, a reason for the outperformance of the logistic clique loss function can be
the heuristic inaccurate optimization used in [Dom13].

128

4.5. Experiments and Discussion

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

80.00

image

%
m
isc

la
ss
ifi
ed

pi
xe
l

LA Marg Lik

Figure 4.19. - Performance on test data with the error measure (4.98) when learning jointly
unary and pairwise terms with LA, compared to the learning methods from [Dom13] with a loss
function based on MPM, logistic clique loss (Marg) and a loss function based on MLE, surrogate
likelihood loss (Lik). The curve for Marg is mostly below the two other curves for LA and Lik,
while for some images for instance between 30th and 40th LA is below Marg. Lik on the other
hand is almost always having the highest error when compared to LA and Marg. Concerning
mean test errors we refer to Table 4.5.

10 20 30 40 50 60 70 80 90 100
0.00

20.00

40.00

60.00

80.00

100.00

image

%
m
isc

la
ss
ifi
ed

fg
pi
xe
l

LA Marg Lik

Figure 4.20. - Performance on test data with the error measure (4.120) when learning jointly
unary and pairwise terms with LA, compared to the learning methods from [Dom13] with a loss
function based on MPM, logistic clique loss (Marg) and a loss function based on MLE, surrogate
likelihood loss (Lik). Same discussion as in Fig. 4.19. Concerning mean test errors we refer to
Table 4.5.

129

4. Model Parameter Perturbation and Learning

method LA Marg Lik
% mis train 15.8 14.4 19.0
% mis fg train 36.8 31.6 47.3
% mis test 18.7 17.4 22.0
% mis fg test 41.5 36.5 52.0

Table 4.5. - Comparison of learning methods on the Weizmann horse dataset. We compare
our LA method to two learning methods from Domke [Dom13] one with loss function based on
MPM (Marg) and one with loss function based on MLE (Lik). The numbers correspond to the
mean train and test errors from Fig. 4.19 percentage of mislabeled pixels, % mis (train) test, and
Fig. 4.20, percentage of mislabeled foreground pixels, % mis fg (train) test.

4.5.5. Comparison Between the Two Approaches: invLPA and LA

After performing the experimental evaluation we can empirically compare our two
learning methods. In addition we discuss some benefits and drawback of the two
proposed learning methods.

We saw that when learning unary potentials in Sect. 4.5.2 invLPA was outperform-
ing LA.
One benefit of LA over invLPA is that it does not require any initialization as

we are solving a convex problem and can always obtain a unique global optimum.
We enforced uniqueness with the ε term, see (4.30). However, the performance of
invLPA depends on the initial potentials we use. This is due to the wrong correction
(no correction) for the background segments, as we saw from the experiment in
Sect. 4.5.1. From the experimental evaluation we have seen that invLPA always leads
to at least as good or better result than the one from the initial model parameters.
This was also the case when learning pairwise potentials in Sect. 4.5.3 and initializing
with LA, where invLPA lead to improvement in average. Only for learning pairwise
potentials on the horse dataset we did not get improvement with respect to the error
measure for misclassified foreground nodes. And the reason was the approximate
conversion.
The computation time for LA depends on some parameters. In Algorithm 3 we

can always set differently the upper bound on the optimal value of the objective L
as well as n as we pointed out in Remark 4.3.4. Optionally we can add few lines in
Algorithm 3 for increasing the upper bound after several iterations. We note that
when choosing small parameters like the ones we did for the experiments until now
will still lead to convergence as already proven in Theorem 4.3.5 but sometimes it
can be very slow.

With the LA method, we can always learn all type of potentials at the same time,
unary and pairwise in the case of a pairwise graphical model. However, this is not
possible with invLPA due to the minimal representation we use. Due to this we
compared only LA with the learning methods from [Dom13].
A very big benefit of invLPA is the freedom to choose any model parameter

predictor. We saw that nonlinear predictor like Gaussian which can capture much
more from the model structure than simple linear model will almost always result in

130

4.6. Semi-Supervised Online Learning in Video Sequences

(a) input

(b) LA

(c) Marg

(d) Lik

Figure 4.21. - (a) Subset of 5 test images from the Weizmann horse dataset [BU08]. (b)
Corresponding resulting segmented images with the LA approach when jointly learning. (c)
Segmented images when learning with the method from [Dom13] with a logistic clique marginal
loss (Marg) and (d) resulting segmented images when learning with surrogate likelihood loss
function from [Dom13] (Lik). Overall Marg performs the best as the mean errors in Table 4.5
suggest. However the results from LA method are very close to those with Marg, as the images
here illustrate, although it can happen that for some images LA leads to smaller error, while for
others Marg is much better than LA. On the other hand some images are almost not segmented
at all with the surrogate likelihood based loss learning method from [Dom13], Lik. Red color
denotes misclassified pixels which can be either from the background or foreground.

better predictions than the linear model.

4.6. Semi-Supervised Online Learning in Video Sequences

Our aim is to show another application of our learning methods beside binary
segmentation in images. In this section we apply our LA approach for learning
motion in dynamic video sequences. By dynamic we mean a video taken by a moving
camera in which there are moving objects. To simplify the exposition we consider only
one moving object in the sequence. We note that extension to more than one object
is possible. We use the ground truth data from only the first three spatio-temporally
connected image frames, which is why now our learning is semi-supervised.
We always consider three neighboring frames to be spatio-temporally connected

and define spatio-temporal features on these frames. We do online learning on a
video sequence in the following way: starting from the first three frames with provided

131

4. Model Parameter Perturbation and Learning

ground truth segmentation we learn the motion segmentation for the fourth frame.
Afterwards we propagate the learned segmentation of the fourth frame together with
the previous two frames forming the spatio-temporal neighborhood and features in
order to learn the motion segmentation of the fifth frame and so on.
It is expected that in this way as the number of frames grows the learned seg-

mentation would be inferior. This happens since we learn from “learned“ motion
segmentations and not from ground truth. Performance can be improved when ap-
plying a smoothing stage as post processing in batch mode or online before learning
the next frame.

We apply only the LA approach as it is easier from implementation point of view.
We note that optionally we can apply the invLPA approach when initializing with
LA but in this case we have to perform two steps for each frame, perturbation and
fitting, instead of one. In addition we could only learn the unary or the pairwise
terms.

Again we use SLIC superpixels [ASS+12] to reduce the problem size and exploiting
the richer structure of the superpixels.

Defining the Neighborhood We consider the neighborhood N (Sit) of a superpixel
Sit in a time frame t as an union of the spatial Nspatial(Sit) and spatio-temporal
neighborhood, Nspatio−temporal(Sit), i.e. N (Sit) = Nspatial(Sit) ∪ Nspatio−temporal(Sit).
Below we define the spatial and the spatio-temporal neighborhood.

• Spatial neighborhood, Nspatial:

For spatial neighborhood of a superpixel Si we consider the closest two layers of
superpixels in the same frame t relative to a reference superpixel Sit , similarly
like for the horse dataset where we considered the three closest layers of a
reference center superpixel, see Fig. 4.13. We used less layers due to the larger
problem size caused by the image size which is at least five times larger than
for the horse dataset.

• Spatio-temporal neighborhood, Nspatio−temporal:

For a superpixel Sit in a frame t, its spatio-temporal neighborhood consists of
superpixels Sjt′ in frame t′ = t ± 1 whose spatial position is taken to be the
superpixel which contains the pixel corresponding to the superpixel center of Sit
in the frame t′ as well as its spatial neighboring superpixels, as defined above.
That is we have

Nspatio−temporal(Sit) = Sjt′ ∪Nspatial(S
j
t′), (4.122)

where the spatial position j in frame t′ is obtained such that for the the center
pixel of the superpixel Sit , c(Sit) we have c(Sit) ⊂ S

j
t′ .

Spatio-Temporal Features In addition to using a spatio-temporal neighborhood we
want to use spatio-temporal features. We want to have more descriptive representation

132

4.6. Semi-Supervised Online Learning in Video Sequences

of the moving object in the video, which is not always easy to segment taking into
account only the features based on appearance.
We define a spatio-temporal region covariance descriptor, similar to the region

covariance descriptor we used in Sect. 4.5.4, see (4.114). However, now we have a
feature image which is three dimensional, with the third dimension being the time
dimension. We define a feature mapping Φ from our video pixel RGB image I(x, y, t)
to F (x, y, t) = Φ(I, x, y, t) with

F (x, y, t) :=(
x, y, t, R, G, B, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
I2
x + I2

y , arctan |Iy|
|Ix|

, |It|, |Ixt|, |Iyt|
)>
.

(4.123)

Compared to the feature mapping for a 2 dimensional image (4.114), we added
the derivatives with respect to time t and arctan |Iy ||Ix| and excluded the CIELAB
color values. In order to compute time derivatives we took the frame before and the
frame after for a center image frame of the video and computed the temporal and
spatio-temporal derivative images It, Ixt and Iyt.
For the video sequences we used we did not observe a significant improvement

when adding the CIELAB color values both for the unary features and for the
spatio-temporal region covariance descriptor. Adding arctan |Iy ||Ix| in the feature image
happened to be a benefit when learning in the video sequences while for the horse
images it was not relevant.
After having defined the feature mapping (4.123) for the spatio-temporal region

covariance descriptor for unary features we take the logarithm of the eigenvalues of
the covariance matrix. For the pairwise spatio-temporal feature we use the same
distance measure of covariance matrices on the manifold of positive semi-definite
matrices (4.117).

Additional Unary Features The task of semi-supervised learning in a video se-
quence is more difficult when compared to supervised learning of segmentations
from trainining data. Our feature vectors we used for the horse dataset in Sect.4.5.4
are only low-dimensional. We want to extend the unary feature vector for better
performance and being able to learn in a semi-supervised manner.

Motivated by the idea of features used in [Dom13] on the horse dataset we use the
sinusoidal expansion as in [KOT11]. In particular let us take the subset of our unary
features

A :=
(
X, Y, R, G, B

)>
(4.124)

where X and Y are the normalized x and y center coordinates of the superpixel in
the image. We include the features sin(bA) and cos(bA), where b is the matrix of all
possible binary vectors of length 5. This leads to additional 64 unary features which
showed to be beneficial for the segmentation result in practice. Hence, we use them
in the following despite their high number of dimensions.
At the end we have a 87 dimensional unary feature vector and 6 dimensional

133

4. Model Parameter Perturbation and Learning

pairwise feature vector. To sum up we define the unary feature vector of a superpixel
Sit by

f i :=
(
LCovi, Li, ai, bi, Ri, Gi, Bi, Xi, Y i, sin(bAi), cos(bAi)

)>
. (4.125)

The unary features are similar to those for the horses (4.113), with difference that
now the region covariance descriptor is defined using the feature mapping as in
(4.123), and the additional sinusoidal expansion features. Ai is the feature vector as
in (4.124) for a superpixel Sit in a time frame t. The pairwise features are defined the
same as the pairwise features for the horses (4.115) just that now our spatio-temporal
region covariance distance is defined using the spatio-temporal region covariance
descriptor using the feature mapping as in (4.123).

4.6.1. Experimental Results on the DAVIS Video Dataset [PPTM+16]

The DAVIS video dataset [PPTM+16] comprises of 50 densely segmented video
sequences. It is the only dataset to our knowledge that provides dense segmentation
of every frame in all the videos. It is a challenging dataset as it includes different type
of video sequences, for instance with fast motion, change of appearance, dynamic
background, motion blur, occlusions, shape complexity etc. We note that we are
interested only in those sequences from DAVIS which include camera movement.

When applying LA we optimized the objective as in (4.38) with the additional term
||w||2

2 in order to avoid overfitting which can occur due to the high-dimensionality
of the vector w. In order to speed up the learning time we change the parameter
in Algorithm 3, the upper bound of the optimal value of the objective L = 10. We
add a few lines in Algorithm 3 in order to increase the upper bound by 5 every 50
iterations of the deflected subgradient algorithm. This can significantly speed up
the algorithm. However, for some sequences the execution time for the whole video
sequence was still too long. The reason for this is learning from approximate learned
segmentation which can be poor after a large number of video frames when the video
is more challenging and the object more difficult to segment. As a result on some
sequences we did the learning only on part of the sequence.
We evaluate our LA learning method on few sequences taken from the DAVIS

dataset [PPTM+16].
As a post processing step after learning the whole or part of the sequence we add

smoothing on the pixel level image with contrast sensitive Potts prior [BJ01], where
the Potts constant is different for every pair of neighboring pixels and depends on
the intensity of the pixels. The contrast sensitive Potts prior is given by

P (i, j) = exp
(
− ((I(i)− I(j))2

2λ2

) 1
d(i, j) , (4.126)

where i and j are the neighboring pixels with intensities I(i) and I(j) respectively
and d(i, j) is the distance between two pixels i and j, which in case of neighboring
pixels is 1. For the Potts post processing smoothing we used 4 neighborhood.

134

4.6. Semi-Supervised Online Learning in Video Sequences

In [PPTM+16] the dataset is evaluated using a number of unsupervised, semi-
supervised and supervised segmentation algorithms. Some of these algorithms define
a graph which can be with higher order potentials and highly connected on the
whole video sequence and solve a big optimization problem. The semi-supervised
algorithms assume a manual annotation on the first or first few frames, while the
supervised algorithms assume that after each frame is segmented, the segmentation
is corrected manually and propagated.

There are few error measures used for the evaluation in DAVIS [PPTM+16]. One
of the error measures is a Jacardi index which is a total number of mislabeled pixels.
This is the same as our error measure (4.98) which gives the percentage of total
mislabeled pixels. We compare our results with those with the Jacardi index in
[PPTM+16, Table 4]. This is not a fair comparison especially for those videos on
which we do not learn the whole sequence as the results in [PPTM+16] are from the
whole sequence.

We evaluated starting from the forth frame and stopped when our LA method
became too slow. We present the mean errors before and after post processing
in Table 4.6. We converted the Jacardi index results in percentage and took the
best from all the methods compared in [PPTM+16] independent of whether it is
unsupervised, semi-supervised or supervised. The best result from DAVIS to which
we compare our results to is usually the one produced using supervised segmentation.
Still on the surf sequence on which we evaluate on the whole sequence our method
performs best. On car-roundabout the results in [PPTM+16] are a bit better than
ours and we perform best on the remaining two sequences on which we did not manage
to evaluate on all frames. This comparison results show the benefit of our learning
method when compared to even supervised or manually initiated segmentation.
In Fig. 4.22, 4.23, 4.24, 4.25 and 4.26 we present part of the frames from the

video sequences we learn together with the obtained segmentation.

sequence surf(55) car-
round(75)

kite-
surf(34)

car-
shadow(31)

bus(28)

% mis 5.3 15.5 1.13 9.0 11.0
% mis fg 27.5 25.91 62.0 51.0 35.2
% mis(+Potts) 4.5 15.1 1.11 7.0 10.0
% mis fg(+Potts) 24.3 61.7 26.78 45.8 33.3

DAVIS(best)% mis 5.6 12.9 34.6 12.0 11.5

Table 4.6. - We compare the results on 5 sequences from the DAVIS video dataset. On the
surf and car-roundabout sequence the learning was done on the whole sequence, i.e. 55 and 75
frames, respectively. On the remaining sequences kite-surf, car-shadow and bus only 34 of 50, 31
of 40 and 28 of 80 frames were computed due to time limitations. We use the error measures
as in (4.98), % mis and in (4.120), % mis fg. We compare the result before and after post
processing with the contrast sensitive Potts prior (4.126). In addition we compare our results
% mis to the best reported results from the DAVIS video dataset on the video sequences while
using supervised, semi-supervised or unsupervised segmentation algorithms.

As we can see from the reported results and the figures, learning only from the first

135

4. Model Parameter Perturbation and Learning

three frames using our setup of features is possible only in certain cases when the
sequence is not too challenging and the moving object is not so difficult to segment
from the rest of the frame. Additional prior information might be enough to improve
the learning. Adding more powerful features could also lead to better learning results.
Furthermore our invLPA method could be used in the same manner as LA with
using only the first three frames with ground truth segmentation. And considering
every learned (predicted) subsequent frame for the perurbation step. We expect that
this could improve the predicted segmentations.
Our primary aim for performing the experiments on learning in videos was to

illustrate another application of our learning methods. And our results indicate
competitiveness with the results from the evaluation of DAVIS [PPTM+16].

136

4.6. Semi-Supervised Online Learning in Video Sequences

frame
number (a) input (b) LA (c)+Potts

4

14

24

34

44

54

Figure 4.22. - Resulting segmented image frames from the (a) surf sequence with (b) our
LA method without post processing and (c) with. Red color denotes misclassified pixels. Our
learning method manages to some extent to perform learning through the whole sequence and
even the last frame with no surfer is correctly classified. In this sequence there is an movement
of the background as the water waves are moving, but still this does not pose a major issue while
learning, although in some frames spurious particles of the water are segmented as the surfer.

137

4. Model Parameter Perturbation and Learning

frame
number (a) input (b) LA (c)+Potts

4

14

24

34

54

74

Figure 4.23. - Resulting segmented image frames from (a) the car-roundabout sequence with
(a) our LA method without post processing and (c) with. Red color denotes mislabeled pixels.
This is a more challenging sequence as we have other objects in the background and in addition
there is background clutter. The learning seems to fail at the end when a parked car is suddenly
appearing in the sequence. This car has a different color than the rest of the image frame and
since most of our features are based on color the algorithm segments the wrong car as a moving
one. While our moving car was only partly segmented from the previous frames it is difficult for
the algorithm to learn from this inaccurate poor segmentation. We can also observe from the
beginning of the sequence that parts of the background are segmented as our moving car, which
is due to their similarity in color.

138

4.6. Semi-Supervised Online Learning in Video Sequences

frame
number (a) input (b) LA (c)+Potts

4

14

24

34

Figure 4.24. - Resulting segmented image frames from (a) the kite-surf sequence with (b)
our LA method without post processing with the contrast sensitive Potts prior (4.126) and (c)
with post processing. Red color means mislabeled. This is a challenging sequence due to the
edge ambiguity, the heterogeneous moving object, occlusion and scale variation. The background
water waves are moving, too. Our learning algorithm does not segment the other object, the kite
strings to which the surfer is holding as they are too thin. Due to occlusion in the frame 33, the
one before the last one illustrated here, part of the surfer in frame 34 is not segmented.

139

4. Model Parameter Perturbation and Learning

frame
number (a) input (b) LA (c)+Potts

4

14

24

31

Figure 4.25. - Resulting segmented image frames from (a) the car-shadow sequence with (b)
our LA method without post processing with the contrast sensitive Potts prior (4.126) and (c)
with. Red color means mislabeled. This is a more challenging sequence due to varying illumination.
Also the background colors do not differ much from the car colors and after some frames when
the segmentation is poorer and the appearance of the car changes, it is more difficult the car to
be properly segmented.

140

4.6. Semi-Supervised Online Learning in Video Sequences

frame
number (a) input (b) LA (c)+Potts

4

14

24

28

Figure 4.26. - Resulting segmented image frames from (a) the bus sequence with (b) our
LA method without post processing with the contrast sensitive Potts prior (4.126) and (c) with.
Red color means mislabeled pixels. Again after few frames when the segmentation becomes less
accurate it is more difficult to learn from it and only parts of the black color of the bus get
segmented.

141

5. Conclusion and Further Work

In this work we discussed learning on probabilistic graphical models.
Chapter 3 discussed the most common metric learning approaches as well as the

optimization methods used for metric learning. Moreover, we proposed suitable
optimization technique and applied it to two different metric learning objectives. The
experimental results showed competitive performance. Metric learning is interpreted
as learning data or unary model parameters based on which a k-means algorithm can
perform clustering. Proper distance on the data features is learned which is further
used for improving a clustering algorithm.

In our main Chapter 4 we presented our novel learning methods for learning both
data (or unary) and pairwise potentials which depend on the features.
Standard learning methods usually learn “approximate” gradients (approximate

since relaxed version of the problem is solved) which fit all training data at once. Due
to this after learning, the potentials do not lead to ground truth segmentation on all
the training data. Motivated by the idea to see how correcting the “approximate”
gradients from some learning method can affect on the prediction results we developed
a novel learning method very different from present ones in the literature. For this
reason we exploited inverse linear programming. With inverse linear programming we
can find a perturbation to each of the model parameters so that the final perturbed
model parameter will lead to the exact ground truth segmentation on the train data.
Our inverse linear programming approach (invLPA) achieves this.

In addition we developed a second novel learning method, the linearized approach
(LA) which resembles other existing learning methods, in particular structured SVM.
While from the implementation point of view LA is easier to use, it is restricted to
linearized potentials.

We demonstrated the advantage of learning when both a unary and a regularizer
term is present. Our experiments demonstrated the advantage of learning with
our learning methods where we incorporated a fixed regularizer over learning a
state-of-the-art logistic classifier offline with a regularizer added in a post processing
step. Moreover our experimental evaluation showed that learning a regularizer with
a fixed unary term with our novel learning methods can capture and segment a
structure for a specific scenario of randomly distributed vertical and horizontal lines
on which a standard regularizer e.g. Ising will always fail.
The experiments presented here showed the advantage of learning with inverse

linear programming. Moreover, we demonstrated that learning when using exact
“approximate” gradients performs at least as good as the method used to initialize
the potentials. In fact invLPA always improved on the error over the method used
for initialization except in the experiment where we used approximate conversion for
solving the final labeling problem with a specialized max-flow solver. In this respect

143

5. Conclusion and Further Work

invLPA outperformed LA as well, when initial potentials for invLPA were learned
with LA. Moreover, in the case for learning unary terms where we initialized invLPA
with potentials output from training a logistic state-of-the-art classifier, invLPA was
better than LA.
We showed the validity of our learning methods on a real world dataset, the

Weizmann horse dataset [BU08] and showed their competitiveness when compared
to other learning methods for parameters in graphical models. Furthermore, we
showed that the application of our learning methods is not restricted to only learning
segmentations in images by implementing our LA method to semi-supervised online
learning in video sequences, where we considered only the first three frames with
ground truth segmentation. This showed promising results in comparison to state-of-
the-art segmentation algorithms applied on the video sequences.
One drawback of the invLPA approach is that it only corrects the potentials

corresponding to foreground nodes, whereas potentials corresponding to background
nodes are not adapted. However, still the corrected potentials lead to the ground
truth segmentation. This is a result of the inverse linear program formulation and
the representation we use. As a result of only correcting foreground nodes in the
first perturbation step of invLPA, the prediction step of the method depends on the
initialization of the model parameters.

Further Work

In this work we concentrated on binary image labeling, foreground and background.
Next steps could be to extend the invLPA and LA learning methods to the non-binary
case. We used only pairwise graphical models and extension to higher order models
can be considered as future work as well.
It remains an open question for further work how to extend invLPA to also find

corrections for the background segments as well as for pairwise terms in this sense.
We believe that using a different representation of the local polytope constraints
this drawback of our invLPA method can be fixed. We expect that the results can
significantly improve by this step. A further direction of research is to adapt the
proposed invLPA method to find corrections that best fit all training data instead of
finding corrections on each train data separately.
For our LA method we used a sophisticated subgradient optimization procedure,

still much simpler than other optimization methods for non differentiable optimization.
Even though the deflected subgradient significantly improves on the speed over using
a usual subgradient, more can be done to improve this. In particular, the subgradient
method used for our LA method can be replaced by a bundle method for faster speed.
Also the extension to non-linear potentials would render LA more flexible.

Concerning online learning motion segmentation in video sequences a lot more
can be done using our learning methods. Using additional stronger spatio-temporal
features could improve the learning. Incorporating additional step after learning
for refining the resulted learned segmentation could enhance the prediction step.
Furthermore invLPA could also be used for online learning in video sequences in the

144

same fashion as LA, using only the first three frames with ground truth segmentation.
And considering every prediction from the fourth frame on as a given data (ground
truth) which is used for the prediction of the frame to follow and so on.

145

5. Conclusion and Further Work

146

A. Appendix

A.1. Binary Problems

In this section we describe how to convert an overcomplete parameter representation
in energy functions to a minimal representation and vice versa. This is for the
purpose of the experimental section of Chapter 4 in order to be able to use the same
solver for the labeling problems.
Let us consider minimizing the binary discrete energy

min
x∈X

Eθ(x), Eθ(x) =
∑
i∈V

θi(xi) +
∑
ij∈E

θij(xi, xj), (A.1)

where every variable xi ∈ X can have one of the two labels in X = {l1, l2}.

Remark A.1.1. In this work we consider undirected graphs, that is θij(xi, xj) =
θji(xj , xi). Due to this and in order to reduce computational capacity for the
representation we assume that ij ∈ E implies ji /∈ E .

Minimal Representation The encoding of a single variable of the data term by an
indicator vector µi = (µi(l1), µi(l2))> ∈ {(1, 0)>, (0, 1)>} reads

xi → θi(xi) ∈ {θi(l1), θi(l2)} ⇐⇒ µi → 〈θi, µi〉, θi = (θi(l1), θi(l2))>. (A.2)

Since we consider the binary case we have µi(l2) = 1− µi(l1) and so for a node i we
have only one variable µi(l1). This results in

〈θi, µi〉 = θi(l1)µi(l1) + θi(l2)(1− µi(l1)) = (θi(l1)− θi(l2))µi(l1) + θi(l2). (A.3)

For easier notation we redefine
µi := µi(l1). (A.4)

For the pairwise variables we have

θij = θij(xi, xj) = (θij(l1, l1), θij(l1, l2), θij(l2, l1), θij(l2, l2))>, (A.5)

and for the encoding of each pairwise term by a corresponding indicator vector µij

(xi, xj)→ θij(xi, xj) ⇐⇒ µij → 〈θij , µij〉. (A.6)

The labeling decision that the label l1 is assigned to node i and the label l2 is assigned
to node j is given by (xi, xj) = (l1, l2) and similarly for the three other cases. These
decisions can be encoded using the binary variables for a single node and their

147

A. Appendix

product, that is

µij = (µi(l1)µj(l1), µi(l1)µj(l2), µi(l2)µj(l1), µi(l2)µj(l2)). (A.7)

Using (A.4) and µi(l2) = 1− µi(l1) we can rewrite

µij = (µiµj , µi(1− µj), (1− µi)µj , (1− µi)(1− µj))>. (A.8)

From this follows:

〈θij , µij〉 = θij(l1, l1)µiµj + θij(l1, l2)µi(1− µj) (A.9a)
+ θij(l2, l1)(1− µi)µj + θij(l2, l2)(1− µi)(1− µj) (A.9b)

=
(
θij(l1, l1) + θij(l2, l2)− θij(l1, l2)− θij(l2, l1)

)
µiµj (A.9c)

+
(
θij(l1, l2)− θij(l2, l2)

)
µi +

(
θij(l2, l1)− θij(l2, l2)

)
µj (A.9d)

+ θij(l2, l2). (A.9e)

We want to have a linearized representation and based on the variables from (A.4)
we define

µij := µiµj . (A.10)

Now using (A.3) and (A.9) and the definitions (A.4) and (A.10) for the discrete
energy from (A.1) as a function of µ and dropping terms that do not depend on µ
we have

Eθ(µ) =
∑
i∈V

(
θi(l1)− θi(l2)

)
µi (A.11a)

+
∑
ij∈E

((
θij(l1, l2)− θij(l2, l2)

)
µi +

(
θij(l2, l1)− θij(l2, l2)

)
µj (A.11b)

+
(
θij(l1, l1) + θij(l2, l2)− θij(l1, l2)− θij(l2, l1)

)
µij
)
. (A.11c)

Note that adding a constant to every unary and pairwise term will not change the
optimum. We choose to subtract θi(l2) and θij(l2, l2) from the unary and pairwise
terms repectively and obtain the following new model parameters:

θ̃i(l1) := θi(l1)− θi(l2) (A.12a)
θ̃i(l2) := θi(l2)− θi(l2) = 0 (A.12b)

θ̃ij(l1, l1) := θij(l1, l1)− θij(l2, l2) (A.12c)
θ̃ij(l1, l2) := θij(l1, l2)− θij(l2, l2) (A.12d)
θ̃ij(l2, l1) := θij(l2, l1)− θij(l2, l2) (A.12e)
θ̃ij(l2, l2) := θij(l2, l2)− θij(l2, l2) = 0. (A.12f)

148

A.1. Binary Problems

Using the new redefined potentials as in (A.12) and taking into account that ij = ji,
for the discrete energy in (A.11) we have

Eθ(µ) =
∑
i∈V

(
θ̃i(l1)) +

∑
ij∈E

θ̃ij(l1, l2) +
∑
ij∈E

θ̃ij(l2, l1)
)
µi (A.13a)

+
∑
ij∈E

(
θ̃ij(l1, l1)− θ̃ij(l1, l2)− θ̃ij(l2, l1)

)
µij . (A.13b)

A.1.1. Conversion: Overcomplete to Minimal

For our experimental evaluation when initializing the invLPA with LA we have to
convert from overcomplete to minimal representation.
Let us denote from now on the model parameters for the overcomplete represen-

tation with θ̂ and for the minimal with θ. In the overcomplete representation we
have given for every node i ∈ V, θ̂i(l1), θ̂i(l2), and for every edge ij ∈ E , θ̂ij(l1, l1),
θ̂ij(l1, l2), θ̂ij(l2, l1) and θ̂ij(l2, l2). In a first step we can convert them by considering
θ = θ̂ which would also not affect the energy from the overcomplete representation,
too. In order to get a minimal representation we need to determine the factors in
front of µi and µij in (A.13) for all nodes i and edges ij and using θ̂ instead of θ̃ for
clarity we get:

θ
i = θ̂i(l1) +

∑
ij∈E

θ̂ij(l1, l2) +
∑
ij∈E

θ̂ij(l2, l1) (A.14a)

θ
ij = θ̂ij(l1, l1)− θ̂ij(l1, l2)− θ̂ij(l2, l1). (A.14b)

Given θ̂(l1), θ̂ij(l1, l1), θ̂ij(l1, l2), θ̂ij(l2, l1) for all i ∈ V and all ij ∈ E , θi and θij can
be easily computed.

A.1.2. Conversion: Minimal to Overcomplete

Specialized max-flow solvers for labeling problems usually use overcomplete represen-
tation and they often produce better segmentation results than a simple linear solver
which uses minimal representation. Due to this and a fair comparison, often after
prediction we want to solve the labeling problem from the invLPA method with the
same max-flow solver we use for LA. For this we need to convert from minimal to
overcomplete representation.
However, this is not so straight forward as from overcomplete to minimal. Now

given θi and θij , see (A.14) we need to derive θ̂. Without loss of generality we can
assume that θ̂i(l2) and θ̂ij(l2, l2) = 0. Let us first consider the case when we have
any two nodes i and j and the edge between them ij in the minimal representation,
that is θi, θj and θij . This leads to determining 2 variables for the vertices and 3 for
the edges in the overcomplete representation. We note that we can use inconsistent
labellings, e.g. µi = 1, µj = 0 and µij = 1, because with overcomplete representation
consistency is enforced through the constraints rather than the parameterization.
Then for two nodes and the edge between them we can have the following label

149

A. Appendix

configurations,

µ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}, (A.15)

generating independent equations, while {(1, 1, 0), (1, 1, 1), (0, 0, 0)} do not. Then we
can derive the following system of equations

θ̂i(l1) + θ̂ij(l1, l2) + θ̂ij(l2, l1) = θ
i (A.16a)

θ̂j(l1) + θ̂ij(l1, l2) + θ̂ij(l2, l1) = θ
j (A.16b)

θ̂ij(l1, l1)− θ̂ij(l1, l2)− θ̂ij(l2, l1) = θ
ij (A.16c)

θ̂i(l1) + θ̂ij(l1, l1) = θ
i + θ

ij (A.16d)

θ̂j(l1) + θ̂ij(l1, l1) = θ
j + θ

ij (A.16e)

The equations above form a linear system Ax = b where

A =


1 0 0 1 1
0 1 0 1 1
0 0 1 −1 −1
1 0 1 0 0
0 1 1 0 0

 . (A.17)

The matrix A is singular and the system of linear equations is ill posed. This leads
to zero or infinite number of solutions. So we do not know if we will (exactly) recover
the model parameters for the overcomplete representation. Still we can determine a
least-squares solution using Moore-Penrose pseudoinverse [Bje51] of the matrix A.

Similarly, the equation system for all edges and nodes is ill-posed. However, solving
this problem in a least-squares sense is computationally expensive and only provides
an approximate solution. For this reason in our work we will only use an efficient
approximation.

For invLPA in our experimental evaluation we either learn unary or pairwise terms,
while fixing the other. We convert from minimal to overcomplete representation
when learning the pairwise terms. In this case we know the unary terms and so we
only approximately estimate the pairwise terms for the overcomplete representation
by solving a linear system as in (A.16).

150

Bibliography

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale, The multiplicative weights
update method: a meta-algorithm and applications., Theory of Comput-
ing 8 (2012), no. 1, 121–164.

[AK06] G. Aubert and P. Kornprobst, Mathematical Problems in Image Pro-
cessing: Partial Differential Equations and the Calculus of Variations,
vol. 147, Springer New York, 2006.

[AO01] R.K. Ahuja and J.B. Orlin, Inverse Optimization, Oper. Res. 49 (2001),
no. 5, 771–783.

[ApS15] MOSEK ApS, The MOSEK Optimization Toolbox for MATLAB Manual,
version 7.1 (revision 28), 2015.

[ASS+12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), no. 11, 2274–2282.

[Bay63] T. Bayes, An Essay Towards Solving a Problem in the Doctrine of
Chances, Philos. Trans. R.Soc. 35 (1763), 370–418.

[BDS+09] K. Briggman, W. Denk, S. Seung, M. N. Helmstaedter, and S. C. Turaga,
Maximin Affinity Learning of Image Segmentation, Advances in Neural
Information Processing Systems, 2009, pp. 1865–1873.

[Ber99] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
Mass., 1999.

[BHS14] A. Bellet, A. Habhard, and M. Sebban, A Survey on Metric Learning
for Feature Vectors and Structured Data, Tech. report, Department of
Computer Science, University of Southern California, 2014.

[BJ01] Y. Boykov and M-P Jolly, Interactive Graph Cuts for Optimal Bound-
ary and Region Segmentation of Objects in ND Images, Proc. IEEE
Int’l. Conf. Comput. Vision, vol. 1, 2001, pp. 105–112.

[Bje51] A. Bjerhammar, Application of Calculus of Matrices to Method of
Least Squares with Special Reference to Geodetic Calculations, Kungl.
Tekniska Högskolans Handlingar, Lindståhl, 1951.

[BLSB04] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, Learning Multi-Label
Scene Classification, Pattern Recognit. 37 (2004), no. 9, 1757–1771.

151

BIBLIOGRAPHY

[Bot98] L. Bottou, Online Learning and Stochastic Approximations, Online
Learning and Neural Networks 17 (1998), no. 9, 142.

[Boy14] S. Boyd, Subgradient Methods, Notes for EE364b, Stanford University
Spring (2013-2014).

[BT97] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization,
vol. 6, Belmont, MA: Athena Scientific, 1997.

[BT03] A. Beck and M. Teboulle, Mirror Descent and Nonlinear Projected
Subgradient Methods for Convex Optimization, Oper. Res. Letters 31
(2003), no. 3, 167–175.

[BTN01] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms, and Engineering Applications, SIAM, 2001.

[BU08] E. Borenstein and S. Ullman, Combined Top-Down/Bottom-Up Seg-
mentation, IEEE Trans. Patt. Anal. Mach. Intell. 30 (2008), no. 12,
2109–2125.

[BV04] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, New York, NY, USA, 2004.

[BVZ98] Y. Boykov, O. Veksler, and R. Zabih, Markov Random Fields with
Efficient Approximations, Proc. IEEE Conf. Computer Vision Pattern
Recognition, June 1998, pp. 648–655.

[BVZ01] , Fast Approximate Energy Minimization via Graph Cuts, IEEE
Trans. Pattern Anal. Mach. Intell. 23 (2001), no. 11, 1222–1239.

[BYVG11] L. Bertelli, T. Yu, D. Vu, and B. Gokturk, Kernelized Structural SVM
Learning for Supervised Object Segmentation, Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition, June 2011, pp. 2153–2160.

[CBL06] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games,
Cambridge University Press, 2006.

[CDLS07] R. G. Cowell, P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Proba-
bilistic Networks and Expert Systems: Exact Computational Methods for
Bayesian Networks, 1st ed., Springer Publishing Company, Incorporated,
2007.

[CFM75] P.M. Camerini, L. Fratta, and F. Maffioli, On Improving Relaxation
Methods by Modified Gradient Techniques, Math. Program. Study 3
(1975), 26–34.

[Coo90] G. F. Cooper, The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks (research note), Artif. Intell. 42 (1990),
no. 2-3, 393–405.

152

BIBLIOGRAPHY

[CQQT04] X. Chen, H. Qi, L. Qi, and K.-L. Teo, Smooth Convex Approximation to
the Maximum Eigenvalue Function, J. Global Optim. 30 (2004), no. 2,
253–270.

[dF09] G. d’Antonio and A. Frangioni, Convergence Analysis of Deflected
Conditional Approximate Subgradient Methods, SIAM J. Optim. 20
(2009), no. 1, 357–386.

[Die12] R. Diestel, Graph Theory, 4th Edition, Graduate Texts in Mathematics,
vol. 173, Springer, 2012.

[DK14] A. D’Aspremont and N. E. Karoui, A Stochastic Smoothing Algorithm
for Semidefinite Programming, SIAM J. Optim. 24 (2014), no. 3.

[DKJ+07] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, Information-Theoretic
Metric Learning, Proc. Int’l. Conf. Mach. Learn. (2007).

[DL09] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, 1st ed.,
Springer Publishing Company, Incorporated, 2009.

[Dom12] Justin Domke, Learning Convex Inference of Marginals, CoRR
abs/1206.3247 (2012).

[Dom13] J. Domke, Learning Graphical Model Parameters with Approximate
Marginal Inference, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013),
no. 10, 2454–2467.

[EA06] M. Elad and M. Aharon, Image Denoising via Sparse and Redundant
Representations over Learned Dictionaries, IEEE Trans. Image Process.
15 (2006), no. 12, 3736–3745.

[EFS56] P. Elias, A. Feinstein, and C. Shannon, A Note on the Maximum Flow
Through a Network, IRE Trans. Inf. Theory 2 (1956), no. 4, 117–119.

[Ete81] N. Etemadi, An Elementary Proof of the Strong Law of Large Numbers,
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 55
(1981), no. 1, 119–122.

[FF56] L. R. Ford and D. R. Fulkerson, Maximal Flow Through a Network,
Can. J. Math. 8 (1956), 399–404.

[Fis36] R.A. Fisher, The Use of Multiple Measurements in Taxonomic Problems,
Annals of Eugenics 7 (1936), no. 2, 179–188.

[FJ08] T. Finley and T. Joachims, Training Structural SVMs when Exact
Inference is Intractable, Proc. Int’l. Conf. Machine Learning, 2008.

[FW56] M. Frank and P. Wolfe, An Algorithm for Quadratic Programming,
Nav. Res. Logist. 3 (1956), no. 1-2, 95–110.

153

BIBLIOGRAPHY

[GB] M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex
Programming.

[GH11] D. Garber and E. Hazan, Approximating Semidefinite Programs in
Sublinear Time, Advances in Neural Infromation Processing Systems
24 (2011), 1080–1088.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Algorithms and Combinatorics, vol. 2,
Springer, 1988 (English).

[GRDB06] S. S. Gross, O. Russakovsky, C. B. Do, and S. Batzoglou, Training
Conditional Random Fields for Maximum Labelwise Accuracy, Proc.
19th Int’l. Conf. Neural Information Processing Systems (Cambridge,
MA, USA), MIT Press, 2006, pp. 529–536.

[Gut03] B. Guta, Subgradient Optimization Methods in Integer Programming
with an Application to a Radiation Therapy Problem, Ph.D. thesis,
Technische Universität Kaiserslautern, 2003.

[GVL96] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, 1996.

[Haz08] E. Hazan, Sparse Approximate Solutions to Semidefinite Programs,
Proc. 8th Latin Amer. Symp. on Theoretical Informatics, Springer,
2008, pp. 306–316.

[HC71] J. M. Hammersley and P. E. Clifford, Markov Random Fields on Finite
Graphs and Lattices, Unpublished manuscript (1971).

[Hei03] B. Heisele, Visual Object Recognition with Supervised Learning, IEEE
Intell. Syst. 18 (2003), no. 3, 38–42.

[HHS84] P. L. Hammer, P. Hansen, and B. Simeone, Roof Duality, Complemen-
tation and Persistency in Quadratic 0–1 Optimization, Math. Program.
28 (1984), no. 2, 121–155.

[HKWL14] D. A. Huang, L. W. Kang, Y. C. F. Wang, and C. W. Lin, Self-Learning
Based Image Decomposition with Applications to Single Image Denoising,
IEEE Trans. Multimedia 16 (2014), no. 1, 83–93.

[HR00] C. Helmberg and F. Rendl, A Spectral Bundle Method for Semidefinite
Programming, SIAM J. Optim. 10 (2000), no. 3, 673–696.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Mini-
mization Algorithms I, Springer Berlin Heidelberg, 1993.

[Ish03] H. Ishikawa, Exact Optimization for Markov Random Fields with Convex
Priors, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), no. 10, 1333–
1336.

154

BIBLIOGRAPHY

[Isi25] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für
Physik 31 (1925), no. 1, 253–258.

[JFY09] T. Joachims, T. Finley, and C.-N. J. Yu, Cutting-Plane Training of
Structural SVMs, Machine Learning 77 (2009), no. 1, 27–59.

[JKDG08] P. Jain, B. Kulis, I. Dhillon, and K. Grauman, Online Metric Learning
and Fast Similarity Search, Advances in Neural Information Processing
Systems (2008).

[KAH05] Sanjiv Kumar, Jonas August, and Martial Hebert, Exploiting Inference
for Approximate Parameter Learning in Discriminative Fields: An
Empirical Study, pp. 153–168, Springer Berlin Heidelberg, 2005.

[Kar84] N. Karmarkar, A New Polynomial-Time Algorithm for Linear Program-
ming, Proc. 16th Annual ACM Symposium on Theory of Computing,
ACM, 1984, pp. 302–311.

[KF09] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques, MIT Press, 2009.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simu-
lated Annealing, Science 220 (1983), no. 4598, 671–680.

[KL51] S. Kullback and R. A. Leibler, On Information and Sufficiency, The
Anals of Mathematical Statistics 22 (1951), no. 1, 79–86.

[Kol06] V. Kolmogorov, Convergent Tree-Reweighted Message Passing for En-
ergy Minimization, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006),
no. 10, 1568–1583.

[KOT11] G. Konidaris, S. Osentoski, and P. S. Thomas, Value Function Ap-
proximation in Reinforcement Learning Using the Fourier Basis, AAAI
Conf. Artificial Intelligence 6 (2011).

[KR07] V. Kolmogorov and C. Rother, Minimizing Non-Submodular Functions
with Graph Cuts - A Review, IEEE Trans. Pattern Anal. Mach. Intell.
29 (2007), no. 7, 1274–1279.

[KT07] Nikos Komodakis and Georgios Tziritas, Approximate Labeling via
Graph Cuts Based on Linear Programming, IEEE Trans. Pat-
tern Anal. Mach. Intell. 29 (2007), no. 8, 1436–1453.

[Kul12] B. Kulis, Metric Learning: A Survey., Foundations and Trends in
Machine Learning 5 (2012), no. 4, 287–364.

[KZ04] V. Kolmogorov and R. Zabin, What Energy Functions can be Minimized
via Graph Cuts?, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004),
no. 2, 147–159.

155

BIBLIOGRAPHY

[Lau96] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.

[LG12] O. Lézoray and L. J Grady, Image Processing and Analysis with Graphs,
Theory and Practice, CRC Press, 2012.

[LH05] Y. LeCun and F. J. Huang, Loss Functions for Discriminative Training
of Energy-Based Models, AlStats., January 2005.

[LHB04] Y. LeCun, F. J. Huang, and L. Bottou, Learning Methods for Generic
Object Recognition with Invariance to Pose and Lighting, Proc. IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition,
CVPR, vol. 2, IEEE, 2004, pp. II–104.

[Lic13] M. Lichman, UCI Machine Learning Repository, 2013.

[Llo82] S. Lloyd, Least Squares Quantization in PCM, IEEE Trans. Inf. Theory
28 (1982), no. 2, 129–137.

[LO96] A. S. Lewis and M. L. Overton, Eigenvalue Optimization, Acta Numerica
5 (1996), 149–190.

[Lov83] L. Lovász, Submodular Functions and Convexity, Mathematical Pro-
gramming The State of the Art, Springer, 1983, pp. 235–257.

[LP66] E. S. Levitin and B. T. Polyak, Constrained Minimization Methods,
USSR Comput. Math. Math. Phys. 6 (1966), no. 5, 1–50.

[LS03] S. L. Lauritzen and N. A. Sheehan, Graphical Models for Genetic
Aanalyses, Statistical Science (2003), no. 18, 489–514.

[Lux07] Ulrike Luxburg, A Tutorial on Spectral Clustering, Statistics and Com-
puting 17 (2007), no. 4, 395–416.

[Mah36] P. C. Mahalanobis, On the Generalized Distance in Statistics, Proc. Na-
tional Institute of Sciences (Calcutta) 2 (1936), 49–55.

[MWJ99] K. P. Murphy, Y. Weiss, and M. I. Jordan, Loopy Belief Propagation
for Approximate Inference: An Empirical Study, Proc. 15th Conf. Un-
certainty in Artificial Intelligence (San Francisco, CA, USA), UAI’99,
Morgan Kaufmann Publishers Inc., 1999, pp. 467–475.

[ND14] J. W. Ng and M. P. Deisenroth, Hierarchical Mixture-of-Experts Model
for Large-Scale Gaussian Process Regression, ArXiv e-prints (2014).

[Ned08] A. Nedich, Subgradient Projection Method, Lecture Notes on Convex
Analysis IE 598 AN Fall 2008, 2008.

[Nes04] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Kluwer Academic Publishers, 2004.

156

BIBLIOGRAPHY

[Nes05] , Smooth Minimization of Non-Smooth Functions, Math. Pro-
gram. 103 (2005), no. 1, 127–152.

[NG08] N. Nguyen and Y. Guo, Metric Learning: A Support Vector Approach,
European Conf. Mach. Learn. Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD) (2008), 125–136.

[NJW01] A.Y. Ng, M.I. Jordan, and Y. Weiss, On Spectral Clustering: Analysis
and an Algorithm, Advances In Neural Information Processing Systems,
MIT Press, 2001, pp. 849–856.

[NL11] S. Nowozin and C. H. Lampert, Structured Learning and Prediction in
Computer Vision, Foundations and Trends in Computer Graphics and
Vision 6 (2011), no. 3–4, 185–365.

[NT08] A. S. Nemirovski and M. J. Todd, Interior-Point Methods for Optimiza-
tion, Acta Numerica 17 (2008), 191–234.

[NW06] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer,
New York, 2006.

[Ous00] F. Oustry, A Second-Order Bundle Method to Minimize the Maximum
Eigenvalue Function, Math. Program. 89 (2000), no. 1, 1–33.

[Ove88] M. L. Overton, On Minimizing the Maximum Eigenvalue of a Symmetric
Matrix, SIAM J. Matrix Anal. Appl. 9 (1988), no. 2, 256–268.

[OW93] M. L. Overton and R. S. Womersley, Optimality Conditions and Duality
Theory for Minimizing Sums of the Largest Eigenvalues of Symmetric
Matrices, Math. Program. 62 (1993), no. 1-3, 321–357.

[PKT11] N. Paragios, N. Komodakis, and Tziritas, MRF Energy Mini-
mization and Beyond via Dual Decomposition, IEEE Trans. Pat-
tern Anal. Mach. Intell. 33 (2011), 531–552.

[Pol69] B.T Polyak, Minimization of Unsmooth Functionals, U.S.S.R. Com-
put. Math. Math. Phys. 9 (1969), 14–29.

[Pot52] R. B. Potts, Spontaneous Magnetization of a Triangular Ising Lattice,
Phys. Rev. 88 (1952), 352–352.

[PPTM+16] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung, A Benchmark Dataset and Evaluation Methodology
for Video Object Segmentation, Comput. Vision Patt. Recognition, 2016.

[PW00] F. A. Potra and S. J. Wright, Interior-Point Methods, J. Com-
put. Appl. Math. 124 (2000), no. 1, 281–302.

[PW10] O. Pele and M. Werman, The Quadratic-Chi Histogram Distance Family,
European Conf. Comput. Vision, 2010, pp. 749–762.

157

BIBLIOGRAPHY

[RM03] X. Ren and J. Malik, Learning a Classification Model for Segmentation,
Proc. 9th IEEE Int’l Conf. Comput. Vision, IEEE, 2003, pp. 10–17.

[Roc70] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[RW06] C.E. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning, MIT Press, 2006.

[Sch98] A. Schrijver, Theory of Linear and Integer Programming, John Wiley
& Sons, 1998.

[SF95] A. Shapiro and M. K. H. Fan, On Eigenvalue Optimization, SIAM
J. Optim. 5 (1995), no. 3, 552–569.

[Shi94] S. E. Shimony, Finding MAPs for Belief Networks is NP-Hard, Artif. In-
tell. 68 (1994), no. 2, 399–410.

[Shl76] M. I. Shlesinger, Syntactic Analysis of Two-Dimensional Visual Signals
in the Presence of Noise, Kibernetika 4 (1976), 113–130.

[Sho85] N. Z. Shor, Minimization Methods for Non-Differentiable Functions,
vol. 3, Springer Science and Business Media, 1985.

[SK86] T. P. Speed and H. T. Kiiveri, Gaussian Markov Distributions over
Finite Graphs, The Annals of Statistics 14 (1986), 138–150.

[SM00] J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. 22(8) (2000), 888–905.

[SS01] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond, MIT Press,
Cambridge, MA, USA, 2001.

[SSKS12] B. Savchynskyy, S. Schmidt, J.H. Kappes, and C. Schnörr, Efficient
MRF Energy Minimization via Adaptive Diminishing Smoothing, Un-
certainty in Artificial Intelligence (2012), 746–755.

[SSM98] B. Schölkopf, A. Smola, and K.-R. Müller, Nonlinear Component Anal-
ysis as a Kernel Eigenvalue Problem, Neural Comput. 10 (1998), no. 5,
1299–1319.

[SSSN04] S. Shalev-Shwartz, Y. Singer, and Y. N. Ng, Online Learning of Pseudo-
Metrics, Proc. International Conf. Mach. Learn. (2004).

[ST02] A. Schwaighofer and V. Tresp, Transductive and Inductive Methods
for Approximate Gaussian Process Regression, Advances in Neural
Information Processing Systems 15 (S. Thrun and K. Obermayer, eds.),
MIT Press, Cambridge, MA, 2002, pp. 953–960.

[SV99] J. A. K. Suykens and J. Vandewalle, Least Squares Support Vector
Machine Classifiers, Neural Process. Lett. 9 (1999), no. 3, 293–300.

158

BIBLIOGRAPHY

[THJA04] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support
Vector Machine Learning for Interdependent and Structured Output
Spaces, Proc. 21st Int’l. Conf. Mach. Learn., ACM, 2004, pp. 104–111.

[TJHA05] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large Margin
Methods for Structured and Interdependent Output Variables, J. Mach.
Learn. Res. 6 (2005), 1453–1484.

[Tod01] M. J. Todd, Semidefinite Optimization, Acta Numerica 2001 10 (2001),
515–560.

[TPM06] O. Tuzel, F. Porikli, and P. Meer, Region Covariance: A Fast Descriptor
for Detection and Classification, European Conf. Comput. Vision, 2006,
pp. 589–600.

[Tre00] V. Tresp, A Bayesian Committee Machine, Neural Computation 12
(2000), 2000.

[TSÅP17] V. Trajkovska, P. Swoboda, F. Åström, and S. Petra, Graphical Model
Parameter Learning by Inverse Linear Programming, LNCS 10302,
pp. 323–334, Springer, 2017.

[Wai06] M.J. Wainwright, Estimating the “Wrong” Graphical Model: Benefits
in the Computation-Limited Setting, J. Mach. Learning Res. 7 (2006),
1829–1859.

[WBS06] K. Q. Weinberger, J. Blitzer, and L. Saul, Distance Metric Learning for
Large Margin Nearest Neighbor Classification, In Advances in Neural
Information Processing Systems (NIPS) (2006), no. 18, 1473?1480.

[Wer07] T. Werner, A Linear Programming Approach to Max-sum Problem:
A Review, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007), no. 7,
1165–1179.

[WIC12] T. Windheuser, H. Ishikawa, and D. Cremers, Generalized Roof Duality
for Multi-Label Optimization: Optimal Lower Bounds and Persistency,
European Conf. Comput. Vision, Springer, 2012, pp. 400–413.

[WJ08] M. J Wainwright and M. I. Jordan, Graphical Models, Exponential
Families, and Variational Inference, Now Publishers Inc., 2008.

[WJW02] Martin Wainwright, Tommi Jaakkola, and Alan Willsky, MAP Esti-
mation via Agreement on (Hyper)trees: Message-Passing and Linear
Programming Approaches, IEEE Trans. Information Theory 51 (2002),
3697–3717.

[WJW05a] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, A New Class of
Upper Bounds on the Log Partition Function, IEEE Trans. Inf. Theory
51 (2005), no. 7, 2313–2335.

159

BIBLIOGRAPHY

[WJW05b] , MAP Estimation via Agreement on Trees: Message-Passing
and Linear Programming, IEEE Trans. Inf. Theory 51 (2005), no. 11,
3697–3717.

[WS08] K. Q. Weinberger and L. K. Saul, Fast Solvers and Efficient Implementa-
tions for Distance Metric Learning, Proc. 25th int’l. Conf. Mach. Learn.,
ACM, 2008, pp. 1160–1167.

[WS09] , Distance Metric Learning for Large Margin Nearest Neighbor
Classification, J. Mach. Learn. Research 10 (2009), 2017–244.

[XNJR02] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell, Distance Met-
ric Learning with Application to Clustering with Side-Information, In
Advances in Neural Information Processing Systems 15 (2002), 505–512.

[YFW05] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing Free-Energy
Approximations and Generalized Belief Propagation Algorithms, IEEE
Trans. Inf. Theory 51 (2005), no. 7, 2282–2312.

[YL12] Y. Ying and P. Li, Distance Metric Learning with Eigenvalue Optimiza-
tion, J. Mach. Learn. Research 13 (2012), 1–26.

[Zin03] M. Zinkevich, Online Convex Programming and Generalized Infinitesi-
mal Gradient Ascent, Proc. International Conf. Mach. Learn. (2003),
928–936.

[ZL96] J. Zhang and Z Liu, Calculating Some Inverse Linear Programming
Problems, J. Comput. Appl. Math. 72 (1996), no. 2, 261 – 273.

[ZL99] J. Zhang and Z. Liu, A Further Study on Inverse Linear Programming
Problems, J. Comput. Appl. Math. 106 (1999), no. 2, 345–359.

[ZZS14] L. Zhang, X. Zhen, and L. Shao, Learning Object-to-Class Kernels
for Scene Classification, IEEE Trans. Image Process. 23 (2014), no. 8,
3241–3253.

160

	Zusammenfassung
	Abstract
	Acknowledgments
	List of Publications
	Introduction
	Overview and Motivation
	Related Work
	Contribution
	Organization
	Notation

	Background
	Graphical Models
	Graph Theory Used in Image Processing and Analysis
	Probabilistic Graphical Models
	Directed Graphical Models: Bayesian Networks
	Undirected Graphical Models: Markov Random Fields (MRF)

	Basic Concepts in Convex Analysis and Optimization
	Convex Sets
	Convex Functions
	Gradient Descent Method
	Subgradient Method
	Newton Method

	Exponential Families
	Basic Definitions and Notions of Exponential Families
	Properties of the Space of Mean Parameters M
	Properties of the Forward Mapping A
	Properties of the Inverse Mapping A
	Exponential Families for Discrete Graphical Models

	Inference
	Approximate MAP Inference
	Variational Formulation
	Image Labeling Problem
	Graph Cuts
	Potts Model for Segmentation

	Learning
	Probabilistic Parameter Learning
	Loss Minimizing Parameter Learning

	Inverse Linear Programming

	Metric Learning for Segmentation
	Introduction
	Mahalanobis Distance Metric Learning
	Representative Existing Approaches
	Mahalanobis Metric Learning for Clustering
	Large-Margin Nearest Neighbors (LMNN) Method
	Metric Learning as Eigenvalue Optimization
	Online Metric Learning

	Numerical Optimization Techniques
	Gradient Descent and Projected Gradient Descent
	Minimizing the Maximal Eigenvalue of a Symmetric Matrix
	Stochastic Gradient

	Proposed Approach
	Objective Functions
	Optimization
	Experiments and Discussion

	Model Parameter Perturbation and Learning
	Overview
	invLPA: Inverse Linear Programming Approach
	Model Parameter Perturbation
	Model Parameter Prediction

	LA: Linearly Parametrized Joint Learning Approach
	Model Parameter Perturbation
	Model Parameter Prediction
	Optimization
	Convergence Analysis of the Deflected Subgradient Method with a Modified Polayk Step Size
	Comparison of the Linearized Approach to Structured SVM

	Difference Between the Two Approaches
	Experiments and Discussion
	Ground Truth Experimental Evaluation of invLPA
	Learning Unary Potentials
	Learning Pairwise Potentials
	Experiments on the Weizmann Horse Dataset BR
	Comparison Between the Two Approaches: invLPA and LA

	Semi-Supervised Online Learning in Video Sequences
	Experimental Results on the DAVIS Video Dataset DAVIS

	Conclusion and Further Work
	Appendix
	Binary Problems
	Conversion: Overcomplete to Minimal
	Conversion: Minimal to Overcomplete

	Bibliography

