
INAUGURAL-DISSERTATION

zur Erlangung der Doktorwürde
der Naturwissenschaftlich-Mathematischen Gesamtfakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Master of Science Francesco Silvestri

aus Eberbach am Neckar

Tag der mündlichen Prüfung:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/141542426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Representations of Partition Problems
and the Method of Moments

Betreuer:
Prof. Dr. Gerhard Reinelt

Prof. Dr. Christoph Schnörr

to my parents

Zusammenfassung

Die vorliegende Dissertation verfolgt zwei Ziele. Das erste besteht darin, ver-
schiedene Darstellungen von Partitionen zu formulieren, zu erklären und miteinan-
der in Verbindung zu bringen, die zur Modellierung von Partitionsproblemen ver-
wendet werden können. Das zweite besteht darin, durch Einsatz der Momentmeth-
ode, einem Ansatz aus der polynomiellen Optimierung, konvexe Relaxierungen dieser
Darstellungen zu konstruieren, um die globalen Optimallösungen der zugehörigen
Partitionsprobleme abzuschätzen. Für Probleme wie dem Euklidisches k-Clustering
weicht diese Methodik stark von den herkömmlichen Ansätzen ab, die sich vorwiegend
mit Heuristiken und lokalen Optima beschäftigen. Da die Momentmethode konvexe
Probleme konstruiert, liegt der Fokus der Arbeit darauf, Darstellungen zu �nden und
auszunutzen, deren Lösungsräume nur eine triviale Symmetriegruppe zulassen, damit
die Lösungen der Relaxierung zu zulässigen Lösungen gerundet werden können.

Die in dieser Arbeit behandelten Darstellungen sind Assignment-, Partitions- und
Projektionsmatrizen, sowie simpliziale Überdeckungen für eine verallgemeinerte Ver-
sion des Euklidischen k-Clustering. Es werden Verbindungen sowie Übergänge zwis-
chen den Matrizenklassen hergestellt und mit der Literatur verglichen, und es wird ex-
plizit nachgewiesen, wie Partitionsmatrizen auf natürliche Weiße durch die Moment-
methode aus Assignmentmatrizen hervorgehen.

Das Ausnutzen von Projektionsmatrizen ermöglicht es uns eine neue Formulie-
rung für die Färbungszahl einzuführen, und die aus der Momentmethode resultieren-
den Relaxierungen werden mit der Lovász Theta Zahl verglichen. Es wird charak-
terisiert, unter welchen Bedingungen beide Relaxierungen übereinstimmen, und als
erstes Hauptresultat liefern Relaxierungen von Binärmatrizen in diesem Fall bessere
Ergebnisse als Relaxierungen von binären Eigenwerten.

Der letzte Teil der Arbeit beschäftigt sich mit dem sogenannten a�nen Euklidis-
chen k-Clustering, welches das Euklidische k-Clustering verallgemeinert. Als zweites
Hauptresultat der Arbeit wird eine neue Methodik für dieses anspruchsvolle Problem
eingeführt, die simpliziale Überdeckungen des Lösungsraums ausnutzt um eindeutige
Darstellungen der Optimallösungen des zugrunde liegenden Problems zu ermöglichen.
Im Gegensatz zum direkten Einsatz der Momentmethode auf die Standardformulierung
ermöglicht der Einsatz auf dieser Formulierung einen langsameren Anstieg der Prob-
lemgröße, bessere Parallelisierbarkeit sowie die Möglichkeit Informationen als Grund-
lage für eine Rundungsheuristik zu erhalten, was aus Symmetriegründen bei der Stan-
dardformulierung nicht möglich ist.

Abstract

The thesis follows two main goals. The �rst is to formulate, explain and link repre-
sentations of partitions that can be used to model partition problems. The second is
to use the method of moments, an approach from polynomial optimization, to bound
the global optima of the corresponding partition problems by constructing convex re-
laxations of these representations. For problems like Euclidean k-clustering, this is a
stark contrast to their usual treatment, which mostly involves heuristics that are con-
tent with local optima. Since the method of moments results in a convex approach, the
focus lies on �nding and exploiting representations that lack a non-trivial symmetry-
invariant solution space in order to be able to round the relaxations to feasible solu-
tions.

The representations considered in the thesis are assignment matrices, partition ma-
trices, projection matrices and simplicial covers for a generalized version of Euclidean
k-clustering. Connections and transformations between the matrix classes are estab-
lished and compared to the literature, and it is explicitly shown how partition matrices
arise naturally from assignment matrices through the method of moments.

Using projection matrices, we are able to give a new formulation of the colouring
number, and the resulting relaxations from the method of moments are compared to
the Lovász theta number. We characterize under which circumstances the relaxations
agree and explain when they do not, indicating our �rst main result that in this case,
relaxing binary matrix entries yields better results than relaxing binary eigenvalues.

The �nal part of the thesis is devoted to what we call the a�ne Euclidean k-
clustering problem, which is a more general version of the Euclidean k-clustering
problem. As our second main result of the thesis, we introduce a new method for
this challenging problem, utilizing simplicial covers of the feasible region to formulate
unique representations of the optimal solutions of the underlying problem. In contrast
to applying the method of moments directly, applying it to our formulation yields a
slower growth in size, better parallelizability and enables us to recover information
that can be used for rounding, which is not possible for the standard formulation due
to symmetry.

Acknowledgement

This thesis could not have been written without the support of various people:
First, I want to thank my supervisor Prof. Gerhard Reinelt for introducing me to the

fascinating topic of combinatorial optimization as a student, and for guiding me along
my academic career from bachelor student to Ph.D. student, while always encouraging
me to follow my interests and generously supporting my endeavors.

I also want to thank my second supervisor Prof. Christoph Schnörr for his generous
support and input on various topics of this thesis, and in particular for sharing his
perspective on the a�ne Euclidean clustering problem encountered in image analysis.

Next, I would like to thank the secretaries Catherine Proux-Wieland, Evelyn Wil-
helm and Barbara Werner, who did a fantastic job and helped with all administrative
tasks that occurred during my time at the Faculty of Mathematics and Computer Sci-
ence of Heidelberg University.

I am very grateful for the time I was able to spend with all the wonderful peo-
ple from the Combinatorial Optimization and the Image & Pattern Analysis groups,
resulting in great memories and fruitful discussions both in and outside of work. In
particular, I would like to thank Achim Hildenbrandt, Artjom Zern, Jan Kuske, Mattia
Desana, Robert Breckner and Tobias Dencker for our time working together and the
nice atmosphere they helped to shape, which I will remember for a long time.

Thanks for the support and funding of the German Research Foundation (DFG).
I was member of the Research Training Group (RTG) 1653 "Spatio/Temporal Proba-
bilistic Graphical Models and Applications in Image Analysis", which I acknowledge
gratefully.

I also very much enjoyed my interactions with the people from AAU in Klagenfurt
during my trips to visit Prof. Rendl, and I would like to thank him for introducing me
to the topics of semide�nite optimization, as well as for his support. In the same vein,
I’d like to thank all people that I met during the HeKKSaGOn project that allowed me
to go to Kyoto, and Prof. Fujishige for introducing me to the LP-Newton method.

I’d like to thank my friends for the time we spent together, especially during our
board game nights, which greatly helped me to relax. For proofreading parts of this
thesis I thank Artjom Zern, Nadine Bär, Peter Gräf and Thomas Hölters, whose com-
ments helped a lot to improve this thesis, and to ease my mind.

My parents Rita Silvestri and Pasquale Silvestri as well as my brother Alessandro
Silvestri deserve my heartfelt thanks for their unconditional support throughout my
life. At the same time, I thank Nadine Bär for her loving support and encouragement,
as well as for the great time we have been spending together. She contributed a lot to
making my time as a Ph.D. student a precious experience.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Linear Algebra . 5
2.2 Combinatorial Structures . 6
2.3 Computational Complexity . 8
2.4 Convex Analysis . 9
2.5 Algebra . 12
2.6 Method of Moments . 16

3 Computational Aspects 21
3.1 Method of Moments on a Variety . 21
3.2 Conic Linear Programming . 24
3.3 The LP-Newton Method for CLPs . 25

3.3.1 The CLP-Newton Method . 26
3.3.2 The Minimum-Norm-Point Algorithm 31
3.3.3 Linear Optimization on K-Zonotopes 32
3.3.4 Experiments . 39

4 Partitions and Assignment Matrices 42
4.1 Overview . 42
4.2 Assignment Matrices . 45

4.2.1 Symmetry induced Problems 48
4.2.2 Orbitopes . 50

5 Partition Matrices 55
5.1 Overview . 55
5.2 Connection to Combinatorial Moment Matrices 57
5.3 Convexi�cation . 59

5.3.1 Applying the Method of Moments to Partition Matrices 59
5.3.2 Applying the Method of Moments to Orbitopes 63

Contents ix

6 Projection Matrices 66
6.1 Overview . 66
6.2 Convexi�cation . 70
6.3 Applications . 74

6.3.1 Graph Colouring . 74
6.3.2 Euclidean k-Clustering . 82

7 A�ne Euclidean Clustering 86
7.1 Overview . 86

7.1.1 Problem Formulation . 86
7.2 Simplicial Covers . 90

7.2.1 Separating Simplicial Covers 93
7.3 Convexi�cation . 97
7.4 Related Approaches . 101

7.4.1 Moment Sequences . 102
7.4.2 Mixed Linear Regression . 102

7.5 Rounding . 103
7.6 Modi�cations . 109
7.7 Applications . 116

8 Conclusion 121

Bibliography 124

Index 128

List of Figures

1.1 Euclidean clustering . 1
1.2 Graph colouring . 2
1.3 Symmetry in Euclidean clustering . 2

3.1 Update step for the Conic LP-Newton Method 30
3.2 Runtime of the Conic LP-Newton Method 40
3.3 Newton-steps of the Conic LP-Newton Method 40
3.4 MNP computations of the Conic LP-Newton Method 41

4.1 Visualization of Theorem 4.14. 50
4.2 Plot of distance between orbitope and barycenter 54

6.1 Relaxation of projection matrix visualized as third order tensor 73

7.1 Simplicial cover vs simplicial complex 90
7.2 Illustration of Theorem 7.28. 107
7.3 Decomposition of a square into triangles 112
7.4 Simplicial decompositions of a square 113
7.5 σ -skeletons of a square . 114
7.6 Comparison of simplicial covers for Euclidean Clustering I 117
7.7 Comparison of simplicial covers for Euclidean Clustering II 117
7.8 Euclidean Clustering on a discrete solution space 118
7.9 Hyperplane Clustering I . 119
7.10 Hyperplane Clustering II . 119
7.11 A�ne Hyperplane Clustering . 120

List of Tables

6.1 Comparison of the growth of | ProMon,t | and dim(Rt [R]). 72
6.2 Relaxations for G(n1,n2,n3). 82
6.3 Relaxations for G(n1,em). 82

List of Algorithms

3.1 Conic LP-Newton Method . 29
3.2 Minimum-Norm-Point Algorithm . 31
3.3 Linear Optimization over [l ,u]Ln . 37

7.1 Farthest Point Clustering . 108
7.2 Deterministic Rounding . 109

List of Symbols

Basics

N non-negative integers
Ndt d-dimensional non-negative integer vectors whose sum is at most t
R real numbers
R+ non-negative real numbers
2S power set of the �nite set S
[n] the set {1, 2, . . . ,n} for n ∈ N, n ≥ 1
[U] orbit of U under a group action or equivalence class
Sn set of permutations on [n]

Partitions

Pn(L) set of all partitions of [n] with parts restricted to L ⊆ 2[n]
Pn
k
(L) set of all partitions of [n] with k parts restricted to L ⊆ 2[n]

Un,k(L) set of n × k assignment matrices arising from Pn
k
(L)

Ulex
n,k
(L) set of matrices inUn,k(L) with lexicographic sorted columns

PMn
k
(L) set of n × n partition matrices arising from Pn

k
(L)

CProMn
k
(L) set of projection matrices arising from Pn

k
(L)

Algebra

xα the monomial ∏i∈[d] x
αi
i for α ∈ Nd , x ∈ Rd

R[x] ring of real multivariate polynomials in x = (x1, . . . ,xd)
Rt [x] vector space of polynomials in R[x] of degree at most t
zd(t) dimension of Rt [x] where x = (x1, . . . ,xd), equal to

(d+t
d

)
vt (x) vector of moments of x ∈ Rd up to degree t
td(f) truncated degree of a multivariate polynomial f given by

⌈
deg(p)

2

⌉

xiv List of Symbols

Combinatorial Objects

Gn set of all simple graphs with vertex set [n]
L an independence system
L∗ an independence system without the empty set
T the partition {T1, . . . ,Tk}{
n
k

}
Stirling number of the second kind

Convex Cones

K a proper cone
Rn+ cone of vectors in Rn with non-negative entries
Sn+ cone of positive semide�nite n × n matrices
Ln cone of vectors (x0,x) ∈ (R+ × Rn) satisfying ‖x ‖2 ≤ x0

Polytopes

Cd
k

k-truncated d-dimensional unit cube
∆d

Ω Ω-constrained standard simplex in Rd

Vectors / Matrices

eI characteristic vector of I ⊆ [n]
ei shorthand for e{i}
e shorthand for e[n] if n is clear from context
In n × n identity matrix
Jn,m n ×m matrix of all ones de�ned as Jn,m = e[n]e

>
[m]

ΩL n × n binary matrix de�ned by independence system L ⊆ 2[n]
AG n × n adjacency matrix of the graph G ∈ Gn
Mt (f ,y) localizing moment matrix of order t of y with respect to f

Relations

⊆ inclusion as subset (with possible equality)
↔ existence of a bijection between two sets
≤ conic order induced by Rn+ or subgraph relation
� conic order induced by Sn+
≤K conic order induced by K
<lex lexicographic monomial order on Nd

xv

Maps / Operators

∧ join in the context of orders, logical AND otherwise
∨ meet in the context of orders, logical OR otherwise
⊗ tensor product for matrices or product of independence systems
δΨ Kronecker delta assuming the truth values 0/1 of Ψ
∗ group action
rank(X) the rank of the matrix X
col(X) the set of column vectors of the matrix X
tr(X) trace of the quadratic matrix X
spct(X) set of eigenvalues of the quadratic matrix X
diag(X) diagonal of the square matrix X as vector
Diag(x) diagonal matrix X with diagonal equal to x
supp(x) set of indices i ∈ [n] for which x ∈ Rn is non-zero
‖x ‖0 shorthand for | supp(x)|
dist(x ,C) Euclidean distance between x ∈ Rn and the convex set C ⊆ Rn
πC(x) orthogonal projection from x ∈ Rn onto the convex set C ⊆ Rn
bd(C) boundary of the set C ⊆ Rn
int(C) interior of the set C ⊆ Rn
lin(C) linear span of the set C ⊆ Rn
a�(C) a�ne hull of the set C ⊆ Rn
conv(C) convex hull of the set C ⊆ Rn
bar(C) barycenter of C
IdC identity map on C
vert(P) set of vertices of a polytope P
CC(G) set of connected components of graph G

Abbreviations

MM method of moments
psd. positive semide�nite

xvi List of Symbols

Chapter 1

Introduction

Overview

In this thesis, we are interested in the general problem of optimally partitioning a
set of mathematical objects according to a given criterion. A prominent geometric
example for this is Euclidean k-clustering, where the goal is to partition a set of points
{bi | i ∈ [n]} ⊆ Rd into k parts such that each part has a center x j with low average
Euclidean distance towards its members, as can be seen in Figure 1.1.

Figure 1.1: Example of Euclidean 3-clustering. Circles correspond to the input bi , dia-
monds to centers x j and colours to parts.

Partition problems constitute a large class of hard and well-studied problems with
underlying combinatorial structure and are ubiquitous in the �elds of data science. A
purely combinatorial example for a notoriously hard problem belonging to this class is
the one of graph-colouring. Given a simple graphG, the goal is to �nd the least amount
of colours necessary to colour each node, such that the same colour is never connected
with an edge. Figure 1.2 shows some minimal colourings for small graphs.

2 Chapter 1. Introduction

Figure 1.2: Examples of minimal colourings.

Unfortunately, our examples, as well as a lot of other interesting partition prob-
lems, are NP-hard, and a lot of work has been done to tackle these problems. Investi-
gating these problems, it quickly becomes apparent that a key di�culty of formulating
partition problems is their inherent symmetrical structure. While a partition is mathe-
matically a set of parts, a computer necessarily needs to store the parts in some order,
thus representing a partition as a list of parts. This transition introduces a �xed, but
arbitrary order on the parts, which means that any solution has one representation
for each permutation of its parts, leading to overblown solution spaces and naturally
ill-posed problems.

These symmetries are especially problematic for approaches relying purely on con-
vex optimization, since their optima tend to lie inside the interior of the convex hull
of the optimal feasible solutions. In the worst case, such an optimum may not even
provide any means to recover an actual feasible solution, as shown in Figure 1.3.

Figure 1.3: Left: All 3! = 6 optimal solutions for the Euclidean 3-clustering instance
from Figure 1.1. Right: Convex combination of the optimal solutions both in colours
and center locations, with no means to go back to the left.

3

For this reason, it is important to �nd proper representations of partitions that
circumvent the problems induced by symmetries and are still tractable from a compu-
tational point of view as well. There are still many open questions in this regard, and
the aim of this thesis is to give some insight in how to approach them.

Organization
This thesis pursues two main goals. The �rst is to formulate, explain and link repre-
sentations of partitions. The second is to use the method of moments, an approach from
polynomial optimization, to construct convex relaxations of these representations, in
order to bound the global optima of the corresponding partition problems. For prob-
lems like Euclidean k-clustering, this is a stark contrast to their usual treatment, which
mostly involves heuristics that are content with local optima.

In Chapter 2, we recall the theoretical results that are used as mathematical foun-
dation throughout the thesis. While mostly self-contained, we keep the explanation of
results to a bare minimum, and proofs are omitted. We highly recommend to inspect
the listed books there for further information.

Chapter 3 complements Chapter 2 by going into the details of the underlying com-
putational aspects of this thesis. In particular, we explore preprocessing to reduce the
problem size, explain the computational setup and describe our adaption of the LP-
Newton method for conic linear programs, which may be skipped on a �rst reading.

Our treatment of partition problems starts in Chapter 4, where they are formally
de�ned. We show how to represent partitions in terms of assignment matrices and
properly illustrate the issues of symmetrical solutions in a convex setting, as well as a
potential �x for this in the form of orbitopes.

In Chapter 5, we review partition matrices used in combinatorial optimization, our
�rst matrix class that uniquely represents each partition. In particular, we explicitly
show that the method of moments connects them to the assignment matrices from the
preceding chapter, a fact that has implicitly been exploited for a long time in literature.

Chapter 6 shows how to transition from partition matrices to projection matrices,
our second matrix class that uniquely represents each partition. We use this class to
introduce a new relaxation for the graph-colouring problem and show how it relates
to established relaxations like the Lovász theta number ϑ (G).

Finally, Chapter 7 is devoted to the a�ne Euclidean k-clustering problem, which is a
more general version of the Euclidean k-clustering previewed here. As one main result
of this thesis, we introduce a new method for this challenging problem, utilizing sim-
plicial covers of the feasible region to formulate unique representations of the optimal
solutions of the underlying problem.

4 Chapter 1. Introduction

Parts of this thesis have been published in the following papers:

[SRS15] Francesco Silvestri, Gerhard Reinelt, and Christoph Schnörr. A convex
relaxation approach to the a�ne subspace clustering problem. In Pat-
tern Recognition - 37th GermanConference, GCPR 2015, Aachen, Germany,
October 7-10, 2015, Proceedings, pages 67–78, 2015

[SRS16] Francesco Silvestri, Gerhard Reinelt, and Christoph Schnörr. Symmetry-
free SDP relaxations for a�ne subspace clustering. ArXiv e-prints, July
2016

[SR16] Francesco Silvestri and Gerhard Reinelt. The LP-Newton method and
conic optimization. ArXiv e-prints, November 2016

In particular, Section 3.3 contains material from [SR16], and Chapter 7 contains mate-
rial from [SRS15, SRS16].

Chapter 2

Preliminaries

This chapter recalls the underlying de�nitions and most important results that will be
used throughout the thesis. It is assumed that the reader has some basic understanding
of linear algebra, and proofs are omitted in general, but can be found in the given
references.

Notation
The majority of the commonly used notation can be found in the List of Symbols, while
the rest will be introduced when appropriate. In general, we will use small letters like
a,x , λ for scalars or elements of a set and capital letters like S,T ,U for sets. Small bold
letters are used for vectors like a,x , λ and capital bold letters for matrices like A,X,Λ.
Instead of writing index sets of small size like {i} or {i, j}, we will sometimes simply
write i or ij respectively. For a formal statement Ψ, the Kronecker delta δΨ assumes the
value 1 if the statement Ψ is true and 0 otherwise; for a pair of objects a,b in the same
space, δa,b denotes the shorthand for δa=b .

For the sets S ⊆ R and C,D ⊆ Rn, we use the shorthand set operations

S ·C := {s · c | s ∈ S, c ∈ C} ,
C + D := {c + d | c ∈ C, d ∈ D} ,

where the latter is known as Minkowski sum. In particular, −C is short for −1 · C and
corresponds to a point re�ection of C at 0.

2.1 Linear Algebra
For a quadratic matrix A ∈ Rn×n, its trace is de�ned as

tr(A) :=
∑
i∈[n]

aii ,

6 Chapter 2. Preliminaries

which is equivalent to the sum of its eigenvalues. The trace induces an inner product
on the space of n ×m matrices called the trace product, which is de�ned by

〈A,B〉 := tr(AB>) =
∑
i∈[n]

∑
j∈[m]

aijbij .

Form = 1, this reduces to the usual notion of the scalar product for vectors in Rn.
Let A ∈ Rn×n be invertible and u, v ∈ Rn. Then the rank 1 update A + uv> is

invertible if and only if 1 + v
>A−1u , 0. Furthermore, if the inverse exists, it is given

by the Sherman-Morrison formula

(A +uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
. (2.1)

2.2 Combinatorial Structures

Graphs
A good introduction for graphs can be found in the textbook [Die05]. A (simple) graph
G is a tuple (V ,E) consisting of a �nite set V called nodes (or vertices) and a set

E ⊆ (V ×V) \ {(v, v) | v ∈ V }

called edges. A (graph) homomorphism from graph H = (VH ,EH) to graphG = (VG ,EG)
is a map φ : VH → VG such that (i, j) ∈ EH if and only if (φ(i),φ(j)) ∈ EG . A graph H
is called a subgraph of a graph G, which we denote by H ≤ G, if there is an injective
homomorphism from H to G. For a graph G = (VG ,EG) and a subset U ⊆ VG , the
subgraph G[U] induced by U is de�ned as the graph G[U] := (U ,EG ∩ (U ×U)).

A bijective graph homomorphism is called a (graph) isomorphism, and a graph iso-
morphism from a graph to itself is called a (graph) automorphism. A graph G = (V ,E)
is called vertex-transitive, if, for every pair of nodes i , j ∈ V , there exists an automor-
phism φij of G such that φij(i) = j.

Given a graphG = (V ,E)whose node set has �nite size |V | = n ∈ N, we can always
relabel the nodes as natural numbers by constructing a graph homomorphism fromV
to [n]with appropriate edge set. For this reason, we can de�ne the set of graphs of size
n as

Gn := {G | G = ([n],E) is a graph } ,
and de�ne with E(G) the set of edges of G.

Given a graph G ∈ Gn, its adjacency matrix is de�ned as the unique symmetrical
n × n binary matrix AG with the property that (AG)ij = 1 if and only if {i, j} ∈ E. In
particular, this assignment yields a bijection for

Gn ↔
{
A ∈ {0, 1}n×n

�� A = A>, diag(A) = 0
}
.

2.2. Combinatorial Structures 7

The complement (graph) of a graph G ∈ Gn is the graph G ∈ Gn satisfying

AG + AG + In = Jn .

For a pair of nodes i, j ∈ [n] in a graph G ∈ Gn, an (i, j)-path is a non-repeating
sequence of nodes v0, v1, . . . , vm such that (vk−1, vk) ∈ E(G) for all k ∈ [m] and v0 = i ,
vm = j. The pair (i, j) is called connected if there exists an (i, j)-path, and being con-
nected is an equivalence relation. The corresponding equivalence classes are called
connected components, and denoting the set of all connected components ofG by CC(G)
induces a surjection

CC : G 7→ CC(G) ∈ Pn

from Gn to Pn, the set of partitions of [n]. A graphG ∈ Gn is called bipartite if its nodes
[n] can be partitioned into two sets U ,V such that E(G[U]) = E(G[V]) = ∅.

Independence Systems

A subset L ⊆ 2[n] is called an independence system or abstract simplicial complex if it is
closed under taking subsets; more formally, the de�ning quality is the implication

I ∈ L ⇒ 2I ⊆ L. (2.2)

Without loss of generality, we will assume that whenever L ⊆ 2[n] is an independence
system, then {i} ∈ L for all i ∈ [n]; otherwise, we could consider L as independence
system of a strictly contained subset of [n].

It will often be useful to consider an independence system without the empty set;
for this reason, we de�ne L∗ = L \ {∅}.

Independence systems are closed under taking unions in the sense that whenever
L ⊆ 2J and L′ ⊆ 2J ′ are independence systems, so is the set of individual unions

L ⊗ L′ := {I ∪ I ′ | I ∈ L, I ′ ∈ L′} ⊆ 2J∪J ′ .

Abusing notation, we will write Lk for the independence system emerging from the in-
dependence system L ⊆ 2[n] by using this construction on the union of k distinct copies
of [n], and likewise Lk∗ for the construction with L∗, where we stress that (Lk)∗ , Lk∗.

For later, we will also introduce the matrix ΩL = {ωij}i,j∈[n] ∈ {0, 1}n×n, which we
de�ne pointwise as

ωij =

{
1 if {i, j} < L,

0 else.

We can consider the matrix ΩL as the adjacency matrix of the graph that represents
forbidden pairs in L.

8 Chapter 2. Preliminaries

Order Theory
A (non-strict) partial order on a set C is a binary relation E on C that satis�es

(i) a E a (re�exivity),

(ii) a E b and b E a imply a = b (antisymmetry),

(iii) a E b and b E c imply a E c (transitivity)

for all a,b, c ∈ C . A partial order E onC induces a binary relation C called strict partial
order for which a C b is true if and only if a E b and a , b. A set C together with a
partial order E is called a partial ordered set, or poset for short. A partial order E on C
is called a total order , if for each pair a,b ∈ C , either a E b or b E a.

For a subset S of a posetC , any elementu ∈ C that satis�es sEu for all s ∈ S is called
an upperbound of S . Furthermore, if u∗ is an upperbound of S ⊆ C with the property
that u∗ E u for all upperbounds u of S , then u∗ is called the join (or supremum) of S . If
(C, E) is a poset, then the upperbound and join of S in (C, D) are called lowerbound and
meet (or in�mum) in (C, E), respectively. The meet and join of a set S ⊆ C are unique
when they exist. A poset C for which every pair a,b ∈ C has a unique meet a ∨ b and
a unique join a ∧ b is called a lattice.

A total order is called a well-order if every nonempty subset contains a lowerbound
of itself.

2.3 Computational Complexity
We will only give an informal overview of some basic notions here. For a formal in-
troduction, consider the book [AB09].

In the context of this thesis, an algorithm will be treated as a �nite list of elemen-
tary instructions which work on some input data and produce some output data. We
assume that each elementary instruction takes the same constant time to be carried
out by a computer and that arithmetic operations on rational numbers can be treated
as elementary instructions.

We use the term problem to describe an assignment of values to a subset of possible
inputs to an algorithm. This way, a problemQ de�nes a partial function fQ on the sets
of all inputs. The inputs for which fQ is well-de�ned are called valid (for Q). An
algorithm A is correct (for Q), or rather solves Q , if it returns the value of fQ for all
valid inputs, that is, if A computes fQ . The problem Q is called a decision-problem if fQ
is 0/1 valued, where we can interpret 0 as no and 1 as yes.

The input and output of the algorithm consists of structural and numerical data
and we consider the number of numbers in the input as its input size. For a problemQ ,
we can assign a runtime function tA : N → N to every algorithm A by de�ning tA(n)

2.4. Convex Analysis 9

as the maximal number of elementary instructions that A uses on any valid input of
input size n.

The function tA is well-de�ned if it only attains �nite values, that is, ifA terminates
for any valid input of Q . Note that tA only predicts the performance in the worst case
and may not be indicative for the average case.

For two functions f : N → N and д : N → N, the big O notation is de�ned as the
relation

f = O(д) ⇔ ∃c > 0 ∃n0 ∈ N ∀n > n0 : f (n) ≤ c · д(n).

In other words, f = O(д) implies that f is not growing faster than д asymptotically.
A problem Q is said to be e�ciently solvable if there is a correct algorithm A that

solves Q with tA ∈ O(nk) for some �xed k ∈ N, and we call A e�cient in this case.
The complexity-class P contains all e�ciently solvable decision problems. A decision
problem Q belongs to the class NP if there is an algorithm A such that for every valid
input x with fQ (x) = 1, there is a certi�cate yx with the property that A can e�ciently
verify fQ (x) = 1 with input (x ,yx).

While P ⊆ NP is known, deciding whether P = NP or P , NP is one of the major
open problems in theoretical computer science. For this thesis, we will assume the
following.
Conjecture 2.1:
Finding a solution is harder than verifying it, or, in other words, P,NP.

A problem Q is called NP-hard when an e�cient algorithm for Q can be converted
into an e�cient algorithm for every problem that belongs to the class NP. In particular,
if any NP-hard problem is e�ciently solvable, then P=NP.

2.4 Convex Analysis
A comprehensive treatment of convex analysis can be found in [Roc09].

A setC ⊆ Rd is called convex if for any pair x ,y ∈ C , their connecting line segment

{µ · x + (1 − µ) · y | µ ∈ [0, 1]}

is contained inC as well. Given any setC ⊆ Rd , its convex hull conv(C) is the smallest
convex set that contains C (with regards to set inclusion). A hyperplane H ⊆ Rd is
a set of the form

{
x ∈ Rd

�� 〈x ,a〉 = b} for a ∈ Rd and b ∈ R+. The two associated
closed halfspaces are H− :=

{
x ∈ Rd

�� 〈x ,a〉 ≤ b
}

and H+ :=
{
x ∈ Rd

�� 〈x ,a〉 ≥ b
}
. A

hyperplane supports a convex setC if H ∩C , ∅ and eitherC ⊆ H+ orC ⊆ H−, and the
intersection H ∩C is called a face of C .

A real valued function f : C → R de�ned on a convex set C ⊆ Rn is called convex
if for any pair x ,y ∈ C , its graph is below their connecting line segment, or, more

10 Chapter 2. Preliminaries

formally, if
f (µ · x + (1 − µ) · y) ≤ µ · f (x) + (1 − µ) · f (y)

for all choices of µ ∈ [0, 1]. For a convex function f : C → R, its subdi�erential ∂ f (x0)
at a given point x0 parametrizes the supporting hyperplanes of the epigraph of f that
pass through (x0, f (x0)). More formally, we have

∂ f (x0) := {y ∈ Rn | f (x) − f (x0) ≥ 〈y,x − x0〉 ∀x ∈ C} .
The elements of the subdi�erential are called subgradients and generalize the gradient
for di�erentiable functions.

For a closed convex set C ⊆ Rd and a point x ∈ Rd , we can de�ne their Euclidean
distance as

dist(x ,C) := min {‖x − y‖2 | y ∈ C} ,

which is a convex function in x . The minimizer of dist(x ,C) is unique and called the
orthogonal projection πC(x).
Lemma 2.2:
Let C ⊆ Rd be closed and convex, then

x − πC(x)
dist(x ,C) ∈ ∂ dist(x ,C).

Convex Cones

A setK ⊆ Rd is called a cone if it is invariant under positive rescaling, or, more formally,
if R+ · K ⊆ K . A cone is convex when it is closed under addition as well, so when
K +K ⊆ K . A convex cone K is called pointed if it has the property K ∩ −K = {0}
and proper if it is pointed, closed and has nonempty interior. The dual cone K∗ of a
convex cone K is de�ned as

K∗ := {y ∈ Rn | 〈x ,y〉 ≥ 0 ∀x ∈ K} ,
and a cone K for which K = K∗ is called self-dual.

A proper cone K ⊆ Rd induces a corresponding conic (partial) order ≤K on Rd by
setting

y ≤K x ⇔ x − y ∈ K .

In particular, membership x ∈ K is equivalent to stating x ≥K 0.

Example 2.3:
The set Rn can be considered as a convex cone with dual cone (Rn)∗ = {0}, but is not
pointed and thus not proper. Well-known proper, self-dual cones and their conic orders

2.4. Convex Analysis 11

include the non-negative orthant (Rn+, ≤), the cone of symmetrical positive semide�nite
n × n matrices (Sn+, �) denoted below and the Lorenz-cone (Ln, ≤L) de�ned as

Ln = {(x0, x̃) ∈ R+ × Rn | ‖x̃ ‖2 ≤ x0} .

Furthermore, the poset (Rn+, ≤) is a lattice.

Positives Semide�nite Matrices

A quadratic, symmetrical matrix A ∈ Rn×n is called positive semide�nite, or psd. for
short, if the corresponding quadratic form x>Ax is non-negative for all x ∈ Rn. Equiv-
alently, there exists a Cholesky decomposition of A, which means there is a matrix
V ∈ Rn×rank(A) such that A = VV>. A direct consequence is the following lemma.
Lemma 2.4:
Let A,B ∈ Rn×n and C = BAB> where B is invertible. Then A � 0 ⇔ C � 0.

Furthermore, every psd. matrix A has a unique psd. square root A
1
2 that satis�es

(A 1
2)2 = A. The Schur complement of a psd. matrix

M =
(

A B
B> C

)
� 0 (2.3)

with invertible A is de�ned as M/A = C−B>A−1B. The following is a central argument.
Lemma 2.5 (Schur complement Lemma):
Let M be as in (2.3). Then M � 0 if and only if M/A � 0. Furthermore, M is invertible if
and only if M/A is invertible.

Polytopes

The following is a minimal introduction to polytopes, and we refer the reader to [Zie95]
for a more elaborate treatment of the topic.

A convex set P ⊆ Rd that can be written as the convex hull of a �nite set of points
V = (v1, . . . , vm) is called a (convex) polytope and has the so-called inner description

P =
{
x ∈ Rd

�� x = Vλ, λ ≥ 0, 〈λ,e〉 = 1
}
.

Example 2.6:
The set

∆d :=
{
λ ∈ Rd+

�� 〈λ,e〉 = 1
}
= conv({e1, . . . ,ed})

used to parametrize a polytope in its inner description is called (standard) simplex and
is itself a polytope.

12 Chapter 2. Preliminaries

Alternatively, each polytope can be described by a �nite intersection of halfspaces,
which leads to its so-called outer description

P =
{
x ∈ Rd

�� Ax ≤ b
}
.

The faces of a polytope P ⊆ Rd are polytopes themselves, and its zero-dimensional
faces are called its vertices, denoted by vert(P). For any �nite set S ⊆ Rd , it holds that
vert(conv(S)) ⊆ S , and conv(vert(P)) = P holds for all polytopes P ⊆ Rd .
Example 2.7:
The k-truncated d-dimensional unit-cube Cd

k
has the outer description

Cd
k =

{
x ∈ Rd

�� 〈x ,e〉 ≤ k, 0 ≤ xi ≤ 1 ∀i ∈ [d]}
and its inner description can be constructed from its vertices

vert(Cd
k) =

{
x ∈ {0, 1}d

�� 〈x ,e〉 ≤ k
}
.

The shorthand Cd := Cd
d

is used for the d-dimensional unit-cube itself.
One major result about polytopes is the following theorem.

Theorem 2.8 (Carathéodory’s theorem, [Die05, Prop. 1.15]):
Let V ⊆ Rd be a �nite set of points and consider a point x ∈ Rd in the polytope conv(V).
Then x ∈ conv(V ′) for a subset V ′ ⊆ V of size at most |V ′| ≤ dim(conv(V)) + 1.

2.5 Algebra
For a good introduction to computer algebra and the necessary foundations, we rec-
ommend the book [CLO15].

Polynomials, Ideals, Varieties
Given vectors α ∈ Nd and x ∈ Rd , the product xα =

∏
i∈[d] x

αi
i is called a mono-

mial whose total degree is de�ned as deg(xα) := 〈e,α 〉. Let R[x] denote the set of
multivariate polynomials in x = (x1, . . . ,xd), where we extend

deg(f) := max {deg(xα) | fα , 0}

for any element f (x) = ∑
α fαxα of R[x].

The vector space of multivariate polynomials of degree at most t is

Rt [x] := { f ∈ R[x] | deg(f) ≤ t} ,

2.5. Algebra 13

where zd(t) := dim(Rt [x]) =
(d+t
d

)
. By de�ning

Ndt :=
{
α ∈ Nd

�� 〈α ,e〉 ≤ t
}
,

we see that each polynomial f ∈ Rt [x] can be written as f (x) = ∑
α∈Ndt fαx

α and we
may identify Rt [x] with RNdt � Rzd (t) by identifying the polynomial f with its vector
of coe�cients f . In this context, we will also write f ∈ Rzd (t) and denote the canonical
monomial base (xα)α∈Ndt through the Veronese map vt (x), such that

f (x) = 〈f , vt (x)〉.

Given y = (yα)α∈Nd ∈ RN
d , we can use this identi�cation to de�ne the Riesz functional

Ly : R[x] → R as
f 7→ Ly(f) = 〈f ,y〉,

which can be understood as the linearization of a polynomial.
A subset I ⊆ R[x] is called an ideal if it is closed under addition (I + I ⊆ I) and

under multiplication of the whole multivariate polynomial ring (R[x] · I ⊆ I). Any
set of polynomials H ⊆ R[x] generates an ideal 〈H〉 := ∑

h∈H R[x] · h. An ideal I is
called �nitely generated if it can be generated by a �nite set H ⊆ I, in which case H
is called a basis of I. By Hilbert’s basis theorem [CLO15, Ch. 2, §5, Thm. 4], every ideal
I ⊆ R[x] is �nitely generated. The set

VR (I) :=
{
x ∈ Rd

�� h(x) = 0 ∀h ∈ I}
is the set of common real zeros of all polynomials in I and called the real variety of I.
Given a �nite subset G ⊆ R[x], the set{

x ∈ Rd
�� д(x) ≥ 0 ∀д ∈ G}

is called (closed) basic semialgebraic. In particular, real varieties are basic semialgebraic.

Gröbner bases
A monomial order C is a strict well-order on Nd that is translation invariant, or more
formally, which implies for all choices of α , β,γ ∈ Nd that α +γ C β +γ follows from
α C β . Given a monomial order C, we also write α E β if either α C β or α = β .
Example 2.9:
The lexicographic order <lex on Rd is de�ned as

α <lex β ⇔ αm < βm form = min {i ∈ [d] | αi , βi}

and the graded lexicographic order <дrlex on Rd is de�ned as

α <дrlex β ⇔ 〈α ,e〉 < 〈β,e〉 or 〈α ,e〉 = 〈β ,e〉, α <lex β .

Both of these orders are monomial orders.

14 Chapter 2. Preliminaries

Let p = ∑
α pαxα ∈ R[x]\ {0} and �x a monomial order C to de�ne its leading term

LTC(p) = pα∗xα∗ , where α∗ is the maximal α w.r.t. C such that pα , 0. More generally,
the leading terms LTC(I) of an ideal I , {0} are de�ned as

LTC(I) := {LTC(p) | p ∈ I \ {0}} .

A Gröbner basis (or standard basis) of an idealI is any basis G = {д1, . . . ,дm} ofI with
the property that LTC(I) = 〈LTC(д1), . . . ,LTC(дm)〉. Additionally, G is called reduced
if, for each i ∈ [m], LTC(дi) is a monomial and no monomial appearing in дi lies in
〈LTC(G \ {дi})〉. For every ideal {0} , I ⊆ R[x] and every monomial order C, there
exists a unique reduced Gröbner basis.

Quotients of Polynomial Rings
Any ideal I ⊆ R[x] de�nes an equivalence relation on R[x] by setting

д ≡ f mod I ⇔ д − f ∈ I.

The set of its equivalence classes R[x]/I = {[д] | д ∈ R[x]} is called the quotient of
R[x] modulo I, and [д] = { f ∈ R[x] | д ≡ f mod I} = д + I is a ring itself with the
operations [f] + [д] = [f + д] and [f] · [д] = [f · д].
Theorem 2.10 ([CLO15, Ch. 5, §3, Prop. 4]):
Let I ⊆ R[x] be an ideal. Then

R[x]/I � lin ({xα | xα < LTC(I)}) (2.4)

as R-vector spaces with isomorphism

[f] 7→ f .

In particular, we can write [f] = f + I for all f ∈ R[x].
Remark 2.11:
Given a reduced Gröbner basis for I and C, the computation of the reduction map
[f] 7→ f from Theorem (2.10) can be carried out e�ciently algorithmically, as outlined
in [CLO15]. In particular, addition [f] + [д] and multiplication [f] · [д] translate into
f + д and f · д respectively, where the latter is computationally much more involved
than the former.

As a generalization of the degree constrained vector space Rt [x], we also de�ne

Rt [x]/I � lin ({xα | xα < LTC(I), 〈α ,e〉 ≤ t}) .

We close this section with examples for various ideals that will be encountered in
the rest of the thesis.

2.5. Algebra 15

Example 2.12 (Binary Vectors):
Let

I(Cd) = 〈x2
1 − x1, . . . ,x

2
d − xd〉

be the ideal whose variety are the vertices of the d-dimensional unit cube Cd , e.g. the
set of d-dimensional binary vectors. A reduced Gröbner basis for I(Cd) and <дrlex is
given by

{
x2
i

�� i ∈ [d]}, and by Theorem 2.10, we get the R-vector space isomorphisms

R[x]/I(Cd) � lin
({
xα

�� α ∈ {0, 1}d}) � lin
({
xI

��� I ∈ 2[d]
})

by using ({0, 1}d ,∨) � (2[d],∪) via α ↔ supp(α). Then multiplication in R[x]/I(Cd)
translates into the multiplication xI · x J = xI∪J for all I , J ⊆ [d].
Example 2.13 (Independence Systems):
For an independence system L ⊆ 2[d], let

I(L) :=
〈
xα

�� α ∈ Nd , supp(α) < L
〉

be its Stanley-Reisner ideal, whose variety is

VR (L) := VR (I(L)) =
{
x ∈ Rd

�� supp(x) ∈ L
}
,

the union of linear subspaces of Rd whose support is in L. A reduced Gröbner basis for
I(L) and <дrlex is given by{

xα
�� α ∈ {0, 1}d , supp(α) is minimally dependent in L

}
.

By Theorem 2.10, we get the R-vector space isomorphism

R[x]/I(L) � lin
({
xα

�� α ∈ Nd , supp(α) ∈ L
})

and multiplication in R[x]/I(L) becomes

xα · xβ =

{
xα+β if supp(α + β) ∈ L,
0 else.

The sum of both ideals then yields the intersection of the corresponding varieties,
the L-constrained cube given by

VR
(
I(Cd) + I(L)

)
= {0, 1}d ∩VR (L) =

{
x ∈ {0, 1}d

�� supp(x) ∈ L
}
,

and it can be shown that

R[x]/I(L) � lin
({
xα

�� α ∈ {0, 1}d ∩VR (L)}) � lin ({xI | I ∈ L}) ,

with multiplication

xI · x J =
{
xI∪J if I ∪ J ∈ L,
0 else.

16 Chapter 2. Preliminaries

Example 2.14 (A�ne Hyperplane):
Let h = 1 − 〈x ,e〉 be the linear polynomial whose variety is the hyperplane in Rd
containing ∆d and let I(∆d) = 〈1 − 〈x ,e〉〉 ⊆ R[x] be the corresponding ideal. For the
monomial order <дrlex , a reduced Gröbner basis is h itself, and since LTдrlex (h) = x1, it
follows that R[x]/I(∆d) � R[x2, . . . ,xd], which can be realized by just eliminating all
occurrences of x1 via x1 = 1 − x2 − . . . − xd .

While R[x]/I(∆d) � R[x2, . . . ,xd] is intuitive, it creates an arti�cial asymmetry
between the otherwise symmetrical variables in x . The following result can be used
as symmetrical alternative instead.
Theorem 2.15:
We have Rt [x]/I(∆d) � Rht [x] := { f ∈ R[x] | deg(f) = t} via the homogenization map

f (x) 7→ f ht (x) := 〈x ,e〉t · f
(x
〈x ,e〉

)
. (2.5)

Proof. By de�nition, f ht ≡ f mod I(∆d) for any f ∈ Rt [x], so the map is well-
de�ned, and all monomials occurring in f ht have degree t , so the image ofRt [x]/I(∆d)
is contained in Rht [x]. It su�ces now to show that both vector spaces have the same
dimension, and by Example 2.14,

dim(Rt [x]/I(∆d)) = dim(Rt [x2, . . . ,xd]) = zd−1(t) =
(
d − 1 + t

t

)
= dim(Rht [x]),

where the last equation follows from [Sta11, p. 18]. �

2.6 Method of Moments
This section gives a basic description of method of moments (MM), and is based mostly
on the book [Las15], with some minor changes of notation.

Moments
Moment matrices

For t ∈ N and y ∈ RNd2t , the matrix Mt (y) indexed by Ndt is de�ned entrywise by

(Mt (y))α ,β := Ly(xα · xβ) = yα+β ∀α , β ∈ Ndt
and is called the moment matrix of order t of y.

More generally, let f ∈ R[x] be a multivariate polynomial and de�ne

td(f) :=
⌈
deg(f)

2

⌉
.

2.6. Method of Moments 17

Then for t ≥ td(f), the matrix Mt (f ,y) indexed by Nd
t−td(f) and entrywise de�ned as

(Mt (f ,y))α ,β := Ly(xα · xβ · f)
is called the localizing moment matrix of order t of y with respect to f . Note that each
entry of Mt (f ,y) is a linear expression in y and that we recover Mt (y) = Mt (1,y) as a
special case.
Example 2.16:
Consider the bivariate polynomial ring R[x] with x = (x1,x2) and the polynomials
hi(x) = x2

i − xi for i = 1, 2. Then, for t = 2 we have

v2(x)> = (1,x1,x2,x
2
1 ,x1x2,x

2
2)

and consequently

v2(x)v2(x)> =

©«

1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1x2 x1x
2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2

1 x3
1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2

ª®®®®®®®¬
.

Applying Ly componentwise on this matrix then shows

M2(y) =

©«

y(0,0) y(1,0) y(0,1) y(2,0) y(1,1) y(0,2)
y(1,0) y(2,0) y(1,1) y(3,0) y(2,1) y(1,2)
y(0,1) y(1,1) y(0,2) y(2,1) y(1,2) y(0,3)
y(2,0) y(3,0) y(2,1) y(4,0) y(3,1) y(2,2)
y(1,1) y(2,1) y(1,2) y(3,1) y(2,2) y(1,3)
y(0,2) y(1,2) y(0,3) y(2,2) y(1,3) y(0,4)

ª®®®®®®®¬
,

which has entries y ∈ RN2
4 � R15 and thus lies in a 15-dimensional subspace. Note that

the blocks in both matrices contain entries corresponding to constant total degree.
Since td(hi) = 1, we also get the componentwise maps

Ly : hi(x)v1(x)v1(x)> 7→ M2(hi ,y)
which is explicitly given for the case of i = 1 as

h1(x)v1(x)v1(x)> =
©«

x2
1 − x1 x3

1 − x2
1 x2

1x2 − x1x2
x3

1 − x2
1 x4

1 − x2
1 x3

1x2 − x2
1x2

x2
1x2 − x1x2 x3

1x2 − x2
1x2 x2

1x
2
2 − x1x

2
2

ª®¬
and

M2(h1,y) =
©«
y(2,0) − y(1,0) y(3,0) − y(2,0) y(2,1) − y(1,1)
y(3,2) − y(2,0) y(4,0) − y(3,0) y(3,1) − y(2,1)
y(2,1) − y(1,1) y(3,1) − y(2,1) y(2,2) − y(1,2)

ª®¬ .

18 Chapter 2. Preliminaries

Measures and moments

Let N(C) ⊆ R[x] be the convex cone of polynomials that are nonnegative on C ⊆ Rd
and denote its dual cone by

N∗(C) :=
{
y ∈ RNd

��� Ly(f) ≥ 0 ∀f ∈ N(C)
}
.

Denote byM+(C) the space of �nite (nonnegative) Borel measures supported onC
and by P(C) the subset of probability measures on C . We can recover the cone of the
corresponding moments{

y ∈ RNd
���� ∃µ ∈ M+(C) : yα = ∫

C
xα · dµ ∀α ∈ Nd

}
⊆ N∗(C), (2.6)

where equality holds if C is compact [Las15, Lemma 4.7].

The Method
Reformulation of Optimization Problems

Let C ⊆ Rd be a compact set and f (x) = ∑
α∈Ndt fαx

α be a real-valued multivariate
polynomial, then

inf
x∈C

f (x) = inf
µ∈P(C)

∫
C
f · dµ (2.7)

can be reduced to a convex linear programming problem. Indeed, we have that∫
C
f · dµ =

∫
C

∑
α∈Ndt

fαx
α · dµ =

∑
α∈Ndt

fα

∫
C
xα · dµ = Ly(f),

where
yα =

∫
C
xα · dµ

is the moment of order α .
Consequently,

inf
{
Ly(f)

�� y0 = 1, y ∈ N∗(C)
}

(2.8)
is a relaxation of problem (2.7) with the bene�t of being a reformulation whenever
equality holds in (2.6).

Note that the constraint y0 = 1 normalizes y ∈ N∗(C) to represent a probability
measure in P(C) (M+(C).
Although problem (2.8) is a convex linear programming problem, the characterization
of y ∈ N∗(C) (known asC-moment problem in the literature) may be notoriously hard
for general C .

2.6. Method of Moments 19

However, for compact semi-algebraic C given as

C =
{
x ∈ Rd

�� д(x) ≥ 0 ∀д ∈ G}
(2.9)

for some �nite set of polynomials G ⊆ R[x], an explicit characterization of N∗(C) is
available. SinceC is assumed to be compact, we will assume without loss of generality
that

0 ≤ R2 − ‖x ‖2 ∈ G,
where R is a su�ciently large positive constant.
Remark 2.17:
In fact, we would only need any function u in the quadratic module generated by G to
have a compact superlevel set

{
x ∈ Rd

�� u(x) ≤ 0
}

for the following.
This representation allows the application of a theorem on positivity by Putinar

[Las15, Theorem 2.15], which leads to

N∗(C) =
{
y ∈ RNd

��� Mt (y) � 0, Mt (д,y) � 0 ∀д ∈ G, ∀t ∈ N
}

=: N∗�(G).

In particular, problem (2.8) is equivalent to

inf
{
Ly(f)

�� y0 = 1, y ∈ N∗�(G)
}
.

To summarize, if f is a polynomial andC a compact semi-algebraic set, then prob-
lem (2.7) is equivalent to a convex linear programming problem with an in�nite num-
ber of linear constraints on an in�nite number of decision variables.

Semide�nite Relaxations

Now, for t ≥ td(f), consider the �nite-dimensional truncations

ρt = inf
{
Ly(f)

�� y0 = 1, y ∈ N∗t (G)
}

(2.10)

of problem (2.8) where

N∗t (G) :=
{
y ∈ RNd2t

���� Mt (y) � 0,
Mt (д,y) � 0 ∀д ∈ G : t ≥ td(д)

}
.

By construction, {N∗t (G)}t∈N generates a hierarchy of relaxations forN∗(C) in problem
(2.8), where each N∗t (G), is concerned with moment and localizing matrices of �xed
size t . The lowerbounds ρt monotonically converge toward the optimal value of (2.7)
[Las15, Theorem 6.2] and �nite convergence may take place, which can be e�ciently
checked [Las15, Theorem 6.6].

20 Chapter 2. Preliminaries

Furthermore, in the best case of �nite convergence, (2.10) will yield the global op-
timal value and a convex combination of global optimal solutions as minimizer, which
can be e�ciently decomposed into optimal solutions [Las15, Sct. 6.1.2].

In the noncompact case, the ρt are still monotonically increasing lower bounds of
(2.7), but convergence to the optimum is not guaranteed.
Remark 2.18:
In the literature, this construction is known as Method of Moments (MM), where it is
assumed that t ≥ maxi td(дi) in addition to t ≥ td(f) in order to start with a complete
description of all the constraints used in the problem. Our slightly di�erent de�nition
is more �exible by enabling us to start with an incomplete set of constraints of low
degree while still �tting into the overall hierarchy.

It should be noted that using a value of t that truncates most of the ’relevant’ in-
equalities for the problem is not likely to yield a useful lower bound.

For convenience, we will also introduce a shorthand notation for polynomial equa-
tions h(x) = 0 (imposed by having both h(x) ≥ 0 and −h(x) ≥ 0) by setting

N∗t (H,G) :=
y ∈ RN

d
2t

������ Mt (y) � 0
Mt (д,y) � 0 ∀д ∈ G : t ≥ td(д)
Mt (h,y) = 0 ∀h ∈ H : t ≥ td(h)

 . (2.11)

If the description of a basic semialgebraic set

C =
{
x ∈ Rd

�� h(x) = 0 ∀h ∈ H, д(x) ≥ 0 ∀д ∈ G}
is clear from context, we will also abuse notation to writeN∗t (C) instead ofN∗t (H,G).

Chapter 3

Computational Aspects

The goal of this chapter is to outline the computational aspects of MM, that is, how to
implement and formulate the relaxations encountered in Section 2.6 in practice.

As a preprocessing step, we explain in Section 3.1 how the results from Section 2.5
can be exploited to reduce the size of the moment matrices when optimizing over a
variety. Section 3.2 then describes the software and hardware that we used to carry
out all experiments throughout the thesis. Lastly, Section 3.3 gives a new method to
solve conic linear problems.

3.1 Method of Moments on a Variety

When using MM on a set K whose description includes polynomial equations, the
size of the moment matrices involved can be reduced. To see this, let (2.9) be the
intersection

C =
{
x ∈ Rd

�� д(x) ≥ 0 ∀д ∈ G}
∩VR (〈H〉)

of an basic semialgebraic set and a real variety. From an algebraic point of view, the
constraints Mt (h,y) = 0 in (2.11) are not very natural, since they depend on a speci�c
generating system of their underlying ideal I = 〈H〉 and neglect the overall structure
of I. In addition, we have the issue of redundancy in the form of inherent linear
dependent columns in the moment matrices, as shown by the following lemma.

Lemma 3.1:
For h,д ∈ R[x], let t ∈ N satisfy t ≥ deg(h) + td(д). If y ∈ RNd satis�es Mt+1(h,y) = 0,
then

Mt (д,y) · h = 0.

Proof. Let h(x) = ∑
α∈Nd hα · xα and д(x) = ∑

α∈Nd дα · xα . Due to linearity of Ly , for

22 Chapter 3. Computational Aspects

each γ ∈ Nd
t−td(д) it holds that

(Mt (д,y) · h)γ =
∑

α∈Nddeg(h)

hα · Ly(xα · xγ · д) = Ly(xγ · д · h)

=
∑

β∈Nddeg(д)

дβ · Ly(xβ · xγ · h). (3.1)

Then the inequality deg(xβ+γ) ≤ 2 (t + 1 − td(h)) is sharp, depending on the parities
of deg(д) and deg(h). Consequently, Mt+1(h,y) is the smallest moment matrix that sets
all entries Ly(xβ · xγ · h) occuring in (3.1) to 0. �

Lemma 3.1 needs Mt+1(h,y) = 0 rather than Mt (h,y) = 0 when deg(д) is even while
deg(h) is odd, as shown in the next example.
Example 3.2:
Let d = 2, д(x) = 1 and h(x) = x3

1 − x2
2 ∈ R[x]. For t = 3, we have

M2(h,y) =
©«
y(3,0) − y(0,2) y(4,0) − y(1,2) y(3,1) − y(0,3)
y(4,0) − y(1,2) y(5,0) − y(2,2) y(4,1) − y(1,3)
y(3,1) − y(0,3) y(4,1) − y(1,3) y(3,2) − y(0,4)

ª®¬ ,
but

M2(д,y) · h =

©«

y(3,0) − y(0,2)
y(4,0) − y(1,2)
y(3,1) − y(0,3)
y(5,0) − y(2,2)
y(4,1) − y(1,3)
y(3,2) − y(0,4)
y(6,0) − y(3,2)
y(5,1) − y(2,3)
y(4,2) − y(1,4)
y(3,3) − y(0,5)

ª®®®®®®®®®®®®®®®¬

=

©«

0
0
0
0
0
0

y(6,0) − y(3,2)
y(5,1) − y(2,3)
y(4,2) − y(1,4)
y(3,3) − y(0,5)

ª®®®®®®®®®®®®®®®¬
is not necessarily 0. Note that the non-zero entries all contain linearizations of poly-
nomials containing monomials of degree 2t .

In particular, we get the following corollary.
Corollary 3.3:
For h,д ∈ R[x], let t ∈ N satisfy t ≥ deg(h) + td(д). Then

Mt (д,y) · h = 0

is a valid constraint for N∗t ({h}, {д}) and can be used to reduce the size of Mt (д,y) � 0.

3.1. Method of Moments on a Variety 23

Proof. Lemma 3.1 shows that the constraint is valid, and Lemma 2.4 shows that we can
simultaneously reduce one column and row of Mt (д,y) to 0, making it obsolete for the
psd. constraint. �

To remedy this, one can instead set up MM in the quotient ring R[x]/I as opposed
to R[x], working with the projections of the inequalities given by G onto R[x]/I.
This approach results in the theory of theta bodies, as explained in [BPT13, Chap-
ter 6]. There, it is shown that compared to the approach outlined so far, working in
the quotient ring can yield tighter relaxations with smaller moment matrices, albeit at
the cost of doing computations in R[x]/I instead of R[x].
De�nition 3.4:
Given an ideal I ⊆ R[x], f ∈ R[x] and t ≥ td(f), the matrix MIt (f ,y) indexed by{

α ∈ Ndt−td(f)

��� xα < LTдrlex (I)
}

and entrywise de�ned as

(MIt (f ,y))α ,β := Ly
(
xα · xβ · f

)
,

is called the reduced localizing moment matrix of order t of y with respect to f .
Example 3.5:
Recall Example 2.16, where we considered moment matrices for t = 2 and the bivariate
polynomials hi(x) = x2

i − xi , which de�ne a basis for I(C2). Instead of using the
constraints

M2(y) � 0, M2(h1,y) = 0 and M2(h2,y) = 0,

to describe C2, we can instead consider v2(x)v2(x)> mod I(C2) to get

v2(x)v2(x)> ≡

©«

1 x1 x2 x1 x1x2 x2
x1 x1 x1x2 x1 x1x2 x1x2
x2 x1x2 x2 x1x2 x1x2 x2
x1 x1 x1x2 x1 x1x2 x1x2
x1x2 x1x2 x1x2 x1x2 x1x2 x1x2
x2 x1x2 x2 x1x2 x1x2 x2

ª®®®®®®®¬
mod I(C2). (3.2)

As one can see, Corollary 3.3 shows that the coe�cient vectors of h1 and h2 given by

h1 = (0,−1, 0, 1, 0, 0) and h2 = (0, 0,−1, 0, 0, 1)

belong to the kernel of the matrix-polynomial (3.2) independently of the evaluation of
the variable x . Consequently, using a basis of R2[x]/I(C2) removes the linear depen-

24 Chapter 3. Computational Aspects

dent columns and rows arising this way and yields the reduced matrices

©«
1 x1 x2 x1x2
x1 x1 x1x2 x1x2
x2 x1x2 x2 x1x2
x1x2 x1x2 x1x2 x1x2

ª®®®¬ 7→ MI(C
2)

2 (y) =
©«
y(0,0) y(1,0) y(0,1) y(1,1)
y(1,0) y(1,0) y(1,1) y(1,1)
y(0,1) y(1,1) y(0,1) y(1,1)
y(1,1) y(1,1) y(1,1) y(1,1)

ª®®®¬ ,
where the latter only needs 4 variables out of the total 15 variables contained iny ∈ RN2

4

used in the original approach.
This motivates the usage of the following theorem.

Theorem 3.6 (Moment Matrix Reduction):
LetH,G ⊆ R[x], 〈H〉 = I and t ≥ max {td(h) | h ∈ H}, then for

N∗t (H,G) :=
y ∈ RN

d
2t

������ MIt (y) � 0
MIt (д,y) � 0 ∀д ∈ G : t ≥ td(д)
Mt (h,y) = 0 ∀h ∈ H

we get the inclusion

N∗(H,G) ⊆ N∗t (H,G) ⊆ N∗t (H,G).
In particular, the constraints Mt (h,y) = 0 are only necessary to compute the entries of
y ∈ N∗t (H,G) that don’t appear in the matrix MIt (y).

The reason whyR[x]/I and its degree-truncations admit smaller moment matrices
in Theorem 3.6 is the reduction given by Theorem 2.10. Replacing the standard mono-
mial basis by the basis given in Theorem 2.10 removes all linear dependencies that are
implied by polynomials in I through Corollary 3.3. However, depending on I, the
computation of a Gröbner basis may not be available in practice. Fortunately, the ide-
als shown in Examples 2.12, 2.13 and 2.14 already cover the most important cases we
will examine. In particular, reduced moment matrices using the basis of R[x]/I(Cd) in
Example 2.12 are called combinatorial moment matrices and have long been studied in
the context of combinatorial optimization [Lau03].

In the case that a Gröbner basis is not available, we can still use Corollary 3.3
iteratively as a preprocessing step to reduce the size of Mt (д,y) signi�cantly to the
point where the columns do not contain the support of any entry in Mt (h,y).

3.2 Conic Linear Programming

The task of optimizing over the sets N∗t (H,G) or N∗t (H,G) belongs to the problem
class of conic linear problems (or CLP), which all can be transformed into the standard
form

min {〈c,x〉 | Ax = b, x ∈ K} , (3.3)

3.3. The LP-Newton Method for CLPs 25

for some convex cone K ⊆ Rd .
We will assume that the reader is familiar with the basic concepts of (conic) linear

programming and suggest the book [AL12] for an in-depth treatment of both theory
and practice. Currently, the �eld of conic linear programming is dominated by interior
point methods, and this class of methods has seen numerous improvements due to
being studied extensively in recent years [NT08]. Unfortunately, scaling becomes a
major problem with these methods, making them prohibitive for large problems.

To �ll this gap, another line of research is concerned with well-scaling �rst-order
methods [EZC10]. For example, [OCPB16] recently proposed a combination of oper-
ator splitting and homogeneous self-dual embedding to tackle this problem and was
able to beat state-of-the-art interior point methods on large instances. However, while
�rst-order methods may perform faster in general, they usually do so at the expense
of accuracy.

Setup

In order to solve any conic linear problems arising in this thesis, we utilized the widely
used package SDPT3 [TTT96, TTT03] for MATLAB version 8.1.0.604 (R2013) with an
Intel i5 of 3.2 GHz × 4 and 16 GB of memory. In particular, the package can solve
problems given in the standard form (3.3) when K ⊆ Rd is a convex cone given as
the Cartesian product of any combination of the cones Rn, Rn+, Sn+ and Ln in various
dimensions n, which is true for all problems that we will encounter.

Remark 3.7:
In this context, the psd. matrix cone Sn+ is identi�ed with the vector space of its upper
triangular entries in R(n2) and thus vectorized.

The package uses an infeasible primal-dual path-following algorithm and thus be-
longs to the class of interior point methods. While the algorithm can be considered as
an oracle for the sake of this thesis, we encourage the interested reader to read up on
the underlying ideas in [TTT03].

3.3 The LP-Newton Method for CLPs
As an alternative to the interior point method implemented in SDPT3, and to give a self
contained treatment of how to solve (3.3), we introduce the conic LP-Newton method
(or CLP-Newton method), which is a generalization of the LP-Newton method devised
in [FHYZ08].

The original method computes the end-point of the intersection of a line and a
zonotope, and L and P stand for line and (convex) polyhedron, respectively. In particu-
lar, it was shown that for the case ofK = Rn+, solving (3.3) can be recast as �nding the

26 Chapter 3. Computational Aspects

endpoint of such an intersection under mild assumptions, and we will show that the
same is true for any self-dual cone K .

While interior point methods either start in or eventually enter the feasible region
and then traverse it towards an optimal solution, the CLP-Newton-method starts with
an infeasible point and converges towards an optimal feasible solution exclusively from
outside of the feasible set. Although both approaches utilize the Newton method in
some form, they function very di�erently, and the CLP-Newton method is conceptually
closer to algorithms designed for feasibility problems.

Overview

This section is divided into two parts.
In the �rst part, we restate the results from [FHYZ08] in the setting of CLPs. For

this, we introduce conic zonotopes and construct directly the adapted CLP-Newton
method for them in Section (3.3.1). Since the minimum-norm-point algorithm is nec-
essary for the projection step of the algorithm, it is recalled in Section (3.3.2).

In the second part, we show how to make the method explicit for widespread con-
vex cones and evaluate the method based on experiments. In particular, Section (3.3.3)
contains conditions for K to be exploited by the algorithm and considers the cones
Rn+, Ln and Sn+, which are all covered by SDPT3 as well. Finally, Section (3.3.4) reports
experiments on Ln and Sn+, which shows how the algorithm performs in cases that
were not considered in the original paper [FHYZ08].

3.3.1 The CLP-Newton Method
Conic Zonotopes

Throughout this section, letK ⊆ Rn be a proper self-dual cone as in Section 2.4. Recall
that ≤K de�nes a partial order on Rn by de�ning for all x ,y ∈ Rn that

y ≤K x ⇔ x − y ∈ K,

where 0 ≤K x is short for membership x ∈ K . Extending this concept, we also de�ne

y <K x ⇔ x − y ∈ K, x , y.

For any two points l ≤K u ∈ Rn, we de�ne their K-box as

[l ,u]K := {x ∈ Rn | l ≤K x ≤K u} .

Throughout this section, we will assume that l <K u, which implies the inclusion of
the line segment between l and u in their K-box, showing that

conv({l ,u}) ⊆ [l ,u]K

3.3. The LP-Newton Method for CLPs 27

is nonempty and nontrivial. Now let A ∈ Rm×n and de�ne

Z = {z | z = Ax ,x ∈ [l ,u]K} ,

which we will call a K-zonotope in Rm. This generalizes the already established zono-
topes [Zie95], which correspond to Rn+-zonotopes in our setting.

Remark 3.8:
Linear optimization over Z is equivalent to linear optimization over [l ,u]K , as

max {〈c,z〉 | z ∈ Z } = max
{
〈A>c,x〉

�� x ∈ [l ,u]K}
.

CLP reformulation

Consider the CLP

max {〈c,x〉 | Ax = b, x ∈ [l ,u]K} . (Box-CLP)

This is slightly di�erent from the standard form (3.3) for CLPs, but can be cast into the
form of (Box-CLP) given appropriate bounds on the feasible region, which are often
available or can be easily computed.

Following [FHYZ08], we de�ne an (m + 1) × n matrix

Ā =
(

A
c>

)
as well as a K-zonotope

Z̄ = {z | z = Āx , x ∈ [l ,u]K}

and the line

LL =

{(
b
γ

) ����γ ∈ R} .
Using this notation, problem (Box-CLP) can be restated as

γ ∗ = max
{
γ

���� (
z
γ

)
∈ LL ∩ Z̄

}
, (Box-CLP′)

where γ ∈ R. The rest of this section is dedicated to solving (Box-CLP′).

28 Chapter 3. Computational Aspects

The Method

In order to describe the CLP-Newton method, we need to introduce additional de�ni-
tions. To start, let

γ0 = max {〈c,x〉 | x ∈ [l ,u]K} , (3.4)
which is a relaxation of (Box-CLP′) and as such yields an upperbound of γ ∗. We will
also need the orthogonal projection πC on a given convex setC ⊆ Rn from Section 2.4.
Lastly, we introduce the shorthand

b̄(γ) =
(
b
γ

)
∀γ ∈ R

to parametrize LL and simplify notation. The following observation is the basis for the
CLP-Newton method.

Consider the continuous, convex scalar function д : R→ R given by

γ 7→ д(γ) :=
b̄(γ) − πZ̄ (

b̄(γ)
)

2 = dist(b̄(γ), Z̄).

Then д(γ) = 0 if and only if b̄(γ) ∈ Z̄ , and since b̄(γ) parametrizes the line LL, the set
of zeros of д is a parametrization of the set LL ∩ Z̄ via γ 7→ b̄(γ). Moreover, it follows
by de�nition that the zeros of д also coincide with all possible values of the objective
function of (Box-CLP′), which necessarily form a closed interval. This leads us to the
following result.
Lemma 3.9:
The optimal value γ ∗ of (Box-CLP′) is equal to

max {γ ∈ R | д(γ) = 0} . (MZ)

Now, applying the CLP-Newton method to solve (Box-CLP′) consists of solving
(MZ) with a generalized Newton method instead. The idea is that since д is convex
and γ0 is an upperbound to γ ∗, we can start such a method at γ0 and are guaranteed to
converge towards γ ∗ from above. In general, д will be non-di�erentiable, and we need
to use the subdi�erential instead of the usual derivative. For this, the following lemma
shows that we can extract a point in the subdi�erential of д from a projection onto Z̄ .
Lemma 3.10:
For all γ ∈ R we have

γ −
〈
em+1,πZ̄ (b̄(γ))

〉
dist

(
b̄(γ), Z̄

) ∈ ∂д(γ).

Proof. The function д(γ) = dist
(
b̄(γ), Z̄

)
is the composition of an a�ne map

b̄(γ) =
(
0
1

)
γ +

(
b
0

)

3.3. The LP-Newton Method for CLPs 29

and a distance function, so we can use the chain rule for subderivatives [Roc09, Ch. A]
to yield

∂д(γ) = e>m+1 · ∂x=b̄(γ) dist
(
x , Z̄

)
.

By Lemma 2.2, we have
x − πZ̄ (x)
dist

(
x , Z̄

) ∈ ∂ dist(x , Z̄),

and thus
γ −

〈
em+1,πZ̄ (b̄(γ))

〉
dist

(
b̄(γ), Z̄

) =

〈
em+1, b̄(γ) − πZ̄ (b̄(γ))

〉
dist

(
b̄(γ), Z̄

) ∈ ∂д(γ).

�

Now that we can extract a point in the subdi�erential from a projection onto Z̄ , we
are able to state the following algorithm.
Algorithm 3.1: The CLP-Newton Method (CLPN)
Data: Data A,b,c, l ,u for (Box-CLP′), error tolerance ε > 0.
Result: An approximate solution xk for (Box-CLP′) or the detection that

(Box-CLP′) is infeasible.
1 Compute γ0 = max {〈c,x〉 | x ∈ [l ,u]K};
2 for k = 1, 2, . . . do
3 Find xk such that Āxk = πZ̄ (b̄(γk−1));
4 if

Āxk − b̄(γk−1)

2 < ε then
5 return xk ;
6 Set (z>

k
, ζk)> = Āxk ;

7 if ζk ≥ γk−1 then
8 return “Problem (Box-CLP′) is infeasible” ;
9 Compute γk = ζk − ‖b − zk ‖22 · (γk−1 − ζk)−1;

After initializing γ0 as the starting value, the k-th step of Algorithm 3.1 checks
for stopping criteria and then performs a Newton step on the current iterate γk−1 as
follows.

First, д(γk−1) is computed, and if д(γk−1) ∈ [0, ε) for a given precision ε , then γk−1
is accepted as a zero of д, thus terminating the algorithm.

In the next part, it is checked whether the new iterate passed the minimum of д,
indicating that д has no zeros, thus proving the problem is infeasible.

If neither of these conditions is ful�lled, a new iterate γk can be computed by per-
forming a Newton step. To do this, we choose hk ∈ ∂д(γk−1) as in Lemma 3.10 in the
recursion

γk = γk−1 −
д(γk−1)
hk

30 Chapter 3. Computational Aspects

д
hkд(γk−1)

γk−1γkγ∗

γ

R

Z̄

γ∗ γk ζk γk−1

Rm

L
b

zk

γ

д(γk−1)

Hk

Figure 3.1: Visualization of the update step (3.5). Left: Newton step using д. Right:
Geometric deduction from supporting hyperplane Hk .

to get

γk = γk−1 −
dist(b̄(γk−1), Z̄)2

γk−1 − ζk
= ζk −

‖b − zk ‖22
γk−1 − ζk

. (3.5)

We can also understand the Newton step geometrically by �rst noting that

Hk =

{(
z
ζ

)
∈ Rm+1

���� 〈(zζ) − (
zk
ζk

)
,

(
b
γk−1

)
−

(
zk
ζk

)〉
= 0

}
is a supporting hyperplane of Z̄ at πZ̄ (b̄(γk−1)). Then any feasible point in LL ∩ Z̄ is
necessarily contained in the halfspace de�ned by Hk not containing b̄(γk−1), and (3.5)
computes the intersection LL∩Hk . Figure 3.1 compares the two approaches to deduce
(3.5).

The following was shown in the original paper [FHYZ08] and generalizes to our
setting.

Lemma 3.11 ([FHYZ08]):
The following statements hold for all values of k attained in Algorithm 3.1.

(i) If γk−1 > ζk , then ζk > γk .

(ii) If γk−1 < ζk or γk−1 = ζk and zk , b, then CLPN correctly assesses infeasibility of
(Box-CLP′).

(iii) If γk−1 = ζk and zk = b, then γk−1 is equal to the optimal value of (Box-CLP′).

3.3. The LP-Newton Method for CLPs 31

Remark 3.12:
Since д is convex, Algorithm 3.1 falls into the class of generalized Newton methods,
which immediately shows asymptotic convergence in case that (Box-CLP′) is feasible
and �nite termination in case that there is no feasible solution.

3.3.2 The Minimum-Norm-Point Algorithm
Algorithm 3.1 is limited by its routines to compute γ0 and evaluate πZ̄ , so both opera-
tions need to be e�cient for practical usage. Fortunately, we can use Algorithm 3.2, an
adaption of the minimum-norm-point algorithm taken from [Bac11, Jag13], to reduce
the computation of πZ̄ to a series of conic LPs of the form (3.4).
Algorithm 3.2: Minimum-Norm-Point Algorithm (MNP) for dist(y, Z̄)
Data: Data l ,u, Ā for (Box-CLP′), b̄ ∈ Rm+1, s0 ∈ [l ,u]K , error tolerance ε .
Result: x̂ ∈ [l ,u]K such that 0 ≤ ‖Āx̂ − b̄‖2 − dist(b̄, Z̄) ≤ ε .

1 Set P = {s0} and k = 0;
2 for k = 1, 2, . . . do
3 Compute xk = argmin

{
‖Āx − b̄‖22

�� x ∈ a�(P)
}
;

4 if xk ∈ conv(P) then
5 Compute sk = argmin

{
〈s, Ā>(Āxk − b̄)〉

�� s ∈ [l ,u]K}
;

6 if 2〈Ā(xk − sk), Āxk − b̄〉 < ε then
7 return xk ;
8 else
9 Set P = P ∪ {sk};

10 else
11 Compute µ̂ = max

{
µ

�� µ ∈ [0, 1], xk−1 + µ(xk − xk−1) ∈ Z̄
}
;

12 Set xk = xk−1 + µ̂(xk − xk−1);
13 Set P to the minimal subset P ′ ⊆ P such that xk ∈ conv(P ′);

While �nite termination of MNP is established by the following theorem, it is an
open problem whether the runtime of MNP can be bounded by a polynomial in the
input size.
Theorem 3.13 ([Jag13]):
Algorithm 3.2 produces a sequence {xk}k∈N such that for k > 1 and

hk := 2〈Ā(xk−1 − sk), Āxk−1 − y〉,

we get

0 ≤ ‖Āxk − y‖2 − dist(y, Z̄) ≤ hk+1 ≤
27 diam(Z̄)2

4(k + 2) .

In particular, the algorithm works correctly and terminates after a �nite number of steps.

32 Chapter 3. Computational Aspects

Remark 3.14:
In [Jag13], it is shown that the preceding theorem also applies to other variants of
the Frank-Wolfe algorithm that can approximate πZ̄ (b̄(γk)). However, preliminary ex-
periments have shown that among the variants we tested, the minimum-norm-point
algorithm was the fastest. For another discussion of MNP, consider [Bac11, Sct. 9.2].

In the following, we will formalize a suitable class of problems for MNP, based on
the di�culty of solving the related conic linear optimization problem of the form (3.4).
De�nition 3.15:
K ⊆ Rn is called suitable for CLPN if the problem

max {〈c,x〉 | x ∈ [l ,u]K ⊆ Rn} (3.6)

can be solved in time O(n2).
This property ensures that the bottleneck of computing MNP is the evaluation of

projection xk = πa�(P)(b̄), corresponding to solving a linear system of dimension at
most n × n. At the same time, it guarantees an e�cient way to compute the starting
point γ0.
Remark 3.16:
The set of cones suitable for CLPN is closed under taking Cartesian products. In par-
ticular, if K = ⊗

i∈I Ki , then the corresponding K-zonotope can be decomposed into
several smallerKi-zonotopes, making (3.6) solvable in parallel for eachKi and poten-
tially accelerating the algorithm by a huge margin.

3.3.3 Linear Optimization on K-Zonotopes
In the following, we will investigate the structure of (3.6) to get a better understanding
whenK is suitable for CLPN, and apply these insights on three well-studied cones from
the literature.

Necessary conditions

Since (3.6) involves linear optimization over a convex set, the optimal solutions will
necessarily be extreme points, as summarized in the following result.
Lemma 3.17 (Extreme points of [l ,u]K):
Problem (3.6) is equivalent to

max
{
〈c,x〉

�� x ∈ {l ,u} ∪ (
bd(l +K) ∩ bd(u − K)

)}
.

Proof. The set of extreme points of [l ,u]K is

bd([l ,u]K) =
(
bd(l +K) ∩ (u − K)

)
∪

(
(l +K) ∩ bd(u − K)

)
.

3.3. The LP-Newton Method for CLPs 33

Without loss of generality, we can assume for an optimal solution x∗ of (3.6) that

x∗ ∈ bd(l +K) ∩ int(u − K) \ {l},

so that we can write x∗ = l + y with y ∈ K \{0}. Then for small ε > 0, we maintain

l + (1 ± ε)y ∈ bd(l +K) ∩ int(u − K) \ {l},

and the optimality of x∗ implies 〈c,y〉 = 0. But then 〈c,x∗〉 = 〈c, l〉 and we can choose
l as maximizer instead. �

The related dual problem of (3.6) also allows us some insights.

Lemma 3.18:
Let c = c+ + c− be the Moreau decomposition where

c+ = πK(c) and c− = π−K∗(c) = −πK(−c),

since K is self-dual. Then the dual of (3.6) is equivalent to

min {〈l −u,y〉 | y ≥K −c+, y ≥K c−} . (3.7)

Proof. The dual problem reads

min {〈l ,y2〉 − 〈u,c1〉 | y2 − y1 = c, y1,y2 ∈ K} , (3.8)

since K is self-dual. We can reparametrize y1 = y − c− and y2 = y + c+ to satisfy the
equality constraint and get

min {〈l −u,y〉 + 〈l ,c+〉 + 〈u,c−〉 | y ≥K −c+, y ≥K c−} .

Since 〈l ,c+〉 + 〈u,c−〉 is constant, the result follows. �

While Lemma 3.18 might seem rather uninteresting on its own, it has implications
for cones whose cone orders ≤K have special structural properties.

Remark 3.19:
The optimal solution of the dual (3.7) is a least upperbound on the set {c−,−c+} in the
partial ordered set (Rn, ≤K). If (Rn, ≤K) is a lattice, then the solution of the dual can
be recovered from the join c− ∨ −c+ in (Rn, ≤K).

34 Chapter 3. Computational Aspects

The nonnegative orthant K = Rn+
Since the original paper [FHYZ08] treats this case, it is naturally suited for CLPN.
In contrast to our general setting, the cone Rn+ satis�es the useful property that the
minimum-norm-point algorithm converges to the optimal solution in a �nite number
of iterations [Wol]. As such, the LP-Newton method converges in a �nite number of
steps [FHYZ08], and an important open problem is to decide whether this number can
be bounded by a polynomial in the input size.

To see that (3.6) can easily be solved in linear time, note that a solution x∗ is given
by greedily choosing the largest increase of the objective function componentwise by
setting

x∗i =

{
li if ci < 0,
ui else.

(3.9)

Another way to see the optimality of the greedy algorithm is by noting that ≤ satis�es
the lattice property. Then Remark 3.19 shows y = 0 in (3.7), since

yi = (c− ∨ −c+)i = max{0,−|ci |} = 0,

which con�rms (3.9) through the dual variables y1 = −πRn−(c) and y2 = πRn+(c) in (3.8).

The Lorentz-cone K = Ln

Recall from Section 2.4 that the Lorentz-cone is given as

Ln = {(x0, x̃) ∈ R+ × Rn | ‖x̃ ‖2 ≤ x0} .

A useful property of the Lorentz-cone is the explicit description of its boundary

bd(Ln) = {(x0, x̃) ∈ R+ × Rn | ‖x̃ ‖2 = x0} ,

which we can exploit by applying Lemma 3.17.
To simplify notation, we will denote the vector a = (a0,a1, . . . ,an) ∈ Rn+1 by

writing a> = (a0, ã>), where ã = (a1, . . . ,an) ∈ Rn and a0 ∈ R. In addition, we will
assign a special set E(w) to each w ∈ Ln, which we formally de�ne as

E(w) =
{
x ∈ Rn+1 �� ‖x̃ ‖22 = x2

0 , ‖w̃ − x̃ ‖22 = (w0 − x0)2
}
. (3.10)

Using this notation, we can show the following representation result.
Lemma 3.20:
For any w = (w0, w̃) ∈ int(Ln), de�ne the parameters

w̄ := 1
w0

w̃, w̄0 :=
w

2
0 − ‖w̃‖22

2w0
, Q := In − w̄w̄

> and γ :=
√

1
2w0w̄0.

3.3. The LP-Newton Method for CLPs 35

Then

E(w) =
{
x ∈ Rn+1

���� x0 = 〈x̃ , w̄〉 + w̄0,
Q

1
2 (x̃ − 1

2 w̃)
2

2
= γ 2

}
and in particular, E(w) is an n-dimensional ellipsoid.

Proof. Subtracting the equations in (3.10) immediately shows containment in the hy-
perplane

H =
{
x ∈ Rn+1 ��x0 = 〈x̃ , w̄〉 + w̄0

}
, (3.11)

where w̄ and w̄0 are well de�ned since w ∈ int(Ln).
Using (3.11) in either equation in (3.10) on x0 yields an equation of the form

0 = x̃>Qx̃ − 2〈w̄0w̄, x̃〉 − w̄2
0

where Q is positive de�nite since ‖w̄‖2 < 1. Completing the square yields the equiva-
lent condition

‖Q 1
2 (x̃ − w̄0Q−1

w̄)‖22 = w̄
2
0 + w̄

2
0 · w̄>Q−1

w̄,

which de�nes an n-dimensional ellipsoid.
Using the Sherman-Morrison formula (2.1) we can simplify

w̄0Q−1
w̄ = 1

2 w̃

and
w̄

2
0 + w̄

2
0 · w̄>Q−1

w̄ = 1
2w0w̄0 = γ

2.

�

Lemma 3.21:
For any w ∈ Ln, the linear optimization problem

max {〈c,x〉 | x ∈ E(w)} (3.12)

can be solved in O(n).

Proof. We will distinguish the cases w ∈ bd(Ln) and w ∈ int(Ln), which can be
checked in O(n).

For w ∈ bd(Ln), we claim that E(w) = conv({0,w}). By assumption, ‖w̃‖2 = w0
and ‖x̃ ‖2 = x0, so

‖w̃ − x̃ ‖2 = ‖w̃‖2 − ‖x̃ ‖2 ∀x ∈ E(w),
which is only possible if x̃ is a multiple of w̃. Consequentially, x0 is the same multiple
of w0, which shows the claim. Then (3.12) is equal to either 0 or 〈c,w〉.

For w ∈ int(Ln), we can rewrite the result of Lemma 3.20 as

E(x) =
{
x ∈ Rn+1

��� x0 = 〈x̃ , w̄〉 + w̄0, x̃ = Q−
1
2y + 1

2 w̃, ‖y‖
2
2 = γ

2
}
.

36 Chapter 3. Computational Aspects

This yields a reparametrization of (3.12) in terms of y with objective value

〈c,x〉 = 〈c̃ + c0
w0
w̃, x̃〉 + c0w̄0 ≡ 〈c̃ + c0

w0
w̃,Q−

1
2y + 1

2 w̃〉 ≡ 〈Q
− 1

2 (c̃ + c0
w0
w̃),y〉,

where≡ denotes equality up to a constant di�erence. We need to distinguish two cases:
If Q−

1
2 (c̃ + c0

w0
w̃) = 0, then every solution is optimal, and we set

y∗ = γ · e
√
n
.

Otherwise, we set

y∗ = γ ·
Q−

1
2 (c̃ + c0

w0
w̃)

‖Q− 1
2 (c̃ + c0

w0
w̃)‖2
,

since the optimal solution of a linear optimization problem over a scaled Euclidean ball
is parallel to the objective function.

In both cases, we recover the optimal solution of (3.12) by using the parametrization

x̃∗ = Q−
1
2y∗ + 1

2 w̃, x∗0 = 〈x̃∗, w̄〉 + w̄0.

To see that x∗ can be computed in linear time, note that this is equivalent to carry-
ing out a multiplication by Q−

1
2 in time O(n). This can be achieved by using a speci�c

formula for Q−
1
2 , as we will show now. For this, we �rst compute a set of parameters

depending on w̃.
If w̃ , 0, we set

α :=
1 − 2γ

w0

‖w̃‖22
, β := α

1 − α ‖w̃‖22
=

w0
2γ − 1
‖w̃‖22

,

and α = β = 0 otherwise. Using w0 > ‖w̃‖2, one can verify that α , β ≥ 0 and a
straightforward computation shows the identities

Q
1
2 = In − α w̃w̃>, Q−

1
2 = In + β w̃w̃>, (3.13)

where one identity can be reduced to the other by the Sherman-Morrison formula (2.1).
Then (3.13) shows that multiplication by Q−

1
2 amounts to

Q−
1
2 x̃ = x̃ + β 〈x̃ , w̃〉w̃,

where the right-hand side can be computed in O(n). �

Theorem 3.22:
The cone Ln is suitable for CLPN.

3.3. The LP-Newton Method for CLPs 37

Proof. Through translation we can assume that l = 0 and focus on the case

max
{
〈c,x〉

�� x ∈ [0,w]Ln ⊆ Rn+1} (3.14)

where w = u − l ∈ Ln \ {0} and consequently w0 = u0 − l0 > 0. By Lemma 3.17, it
su�ces to compute

max {〈c,x〉 | x ∈ bd(Ln) ∩ bd(w − Ln) =: E′(w)}

and compare this value to 〈c, 0〉 = 0 and 〈c,w〉. Thus, we have

E′(w) =
{
x ∈ Rn+1 �� ‖x̃ ‖2 = x0, ‖w̃ − x̃ ‖2 = w0 − x0

}
= {x ∈ E(w) | x0 ∈ [0,w0]}

by (3.10) and claim that E′(w) = E(w).
To see this, we can use Lemma 3.21 with objective c> = (±1, 0>) to get

max {±x0 | x ∈ E(w)} = 1
2w0 ± 1

2 ‖w̃‖2 ∈ [0,w0],

where the bounds follow from w ∈ Ln. Then (3.14) is equivalent to

max {〈c,x〉 | x ∈ E(w)} ,

which can be done in linear time according to Lemma 3.21. �

As a summary of the preceding results, we close this subsection with Algorithm 3.3,
an explicit linear time algorithm for solving (3.14).

Algorithm 3.3: Explicit solution for (3.14)
Data: Data l ,u,c for problem (3.14), w̄0, β,γ as in Theorem 3.22.
Result: Solution x∗ ∈ [l ,u]K to (3.14).

1 Initialize w = u − l , x∗ = 0;
2 if ‖w̃‖22 < w

2
0 then

3 ỹ∗ = c̃ + c0
w0
w̃;

4 ỹ∗ = ỹ∗ + β 〈ỹ∗, w̃〉w̃;
5 if ỹ∗ = 0 then
6 ỹ∗ = γ · e√

n
;

7 else
8 ỹ∗ = γ · ỹ∗

‖ỹ∗‖2 ;

9 x̃∗ = ỹ∗ + (β 〈ỹ∗, w̃〉 + 1
2)w̃;

10 x∗0 =
1
w0
〈x̃∗, w̃〉 + w̄0;

11 x∗ = x∗ + l ;
12 return argmax {〈y,c〉 | y ∈ {l ,x∗,u}};

38 Chapter 3. Computational Aspects

Remark 3.23:
The parameters w̄0, β andγ only depend on w = u−l . When optimizing multiple times
over [l ,u]K with di�erent objective functions, like in our setting, these parameters can
be stored and need to be computed only once.

The positive semide�nite cone K = Sn+
Let Sn+ denote the cone of symmetrical n × n matrices that are positive semide�nite
and let � be the corresponding conic order. For statements regarding complexity, note
that we can embed Sn+ ⊆ RN for N =

(n
2
)
∈ O(n2).

Then (3.6) reads
max {〈C,X〉 | L � X � U} .

In order to solve this problem, we will transform it into a more suitable form. Just
as with the case of the Lorentz cone, we �rst use the substitution Y = X − L to get the
equivalent problem

max {〈C,Y〉 | 0 � Y � W} ,
where W := U − L and the constant 〈C, L〉 was dropped from the objective. To sim-
plify the argument, we will assume without loss of generality that W ∈ int(Sn+), since
singular W can be reduced to this case by changing to a suitable subspace. Using the
Cholesky decomposition W = VV>, we can rewrite Y = VZV> to get the equivalent
problem

max {〈C′,Z〉 | 0 � Z � In} , (3.15)
where C′ = V>CV.

By applying these preprocessing steps, we reduced the original constraints to box-
constraints on the eigenvalues of Z, which allow us to solve the problem explicitly.
Theorem 3.24:
Let C′ = B>DB be the eigenvalue decomposition of C′. Then the solution to (3.15) is given
by

Z = B>Λ∗B,

where Λ∗ is a diagonal matrix with diag(Λ∗) = λ∗ and λ∗ is the solution of

max {〈diag(D),λ〉 | λ ∈ [0, 1]n} . (3.16)

Proof. Let d = diag(D) and let λ denote the eigenvalues of Z. Then the Ho�man-
Wielandt inequality [Ren10, Sct. 18.3.7] states

〈C′,Z〉 ≤ 〈d, Pλ〉,
where P is a permutation that assigns the i-th biggest entry of λ to the i-th biggest
entry of d for all i ∈ [n]. Since λ ∈ [0, 1]n, the right-hand side is maximal when λ is
the solution λ∗ of (3.16) and P the identity. Then one can verify that the left hand-side
also attains this upperbound by choosing Z = B>Diag(λ∗)B. �

3.3. The LP-Newton Method for CLPs 39

Now that we showed that solving (3.15) reduces to the computation (3.9), it is im-
portant to note that the computational burden actually lies in the preprocessing. From
the point of view of complexity, we have the following.

Theorem 3.25:
The cone Sn+ is suitable for CLPN.

Proof. The complexity of computing the eigenvalues of a n×n matrix as well as matrix
multiplication is contained in O(n3). Since Sn+ ⊆ RN with n ∈ O(N 1/2), we get an
algorithm in O(n3) ⊆ O(N 3/2) ⊆ O(N 2). �

Remark 3.26:
The preceding theorem is noteworthy in terms of Remark 3.19, since the conic order �
induced bySn+ is explicitly known to not satisfy the lattice property. In particular, if we
have a proper interval L ≺ U, then Slater’s condition holds and we expect strong dual-
ity to hold in Lemma 3.18, so that the preceding theorem yields an oracle for elements
of the set of least upperbounds of {C−,−C+} in (RN , �).

3.3.4 Experiments

In this section, we show some experiments done with a simple implementation of both
MNP and CLPN. As a reference, we used the widespread SDPT3 package [TTT03].

Data generation

SOCP

Based on parameter tuples n
m , we generated random instances for K = Ln. We set

l = 0, u0 = 10 and ũ to a random vector with entries in [−0.5, 0.5], which was after-
wards normalized such that ‖ũ‖2 was a random number in the interval [0, 10].

The vector c was randomly chosen with entries in [−0.5, 0.5] and A was chosen as
a randomm × n matrix with entries in [0, 1]. To guarantee feasibility, we included the
midpoint of [l ,u]Ln into the feasible region by setting b = 1

2A(u − l).

SDP

Based on parameter tuples n
m , we generated random instances for K = Sn+. We set

L = 0 and constructed U in the following way: We �rst constructed a random n × n
matrix V with values in [0, 1] and set U = VV> + 1

10 In. Afterwards, U was normalized
such that tr(U) = 10.

The remaining parameters were chosen in the same way as for SOCP: C was ran-
domly chosen with entries in [−0.5, 0.5] andA was chosen as a randomm × n2 linear

40 Chapter 3. Computational Aspects

operator with entries in [0, 1]. To guarantee feasibility, we included the midpoint of
[L,U]Sn+ into the feasible region by setting B = 1

2A(U − L).

Plots

In the following plots, each data point n
m corresponds to the average of 25 instances

randomly generated according to the procedure outlined before with parameters n
m .

The error tolerance for CLPN was set to 10−6 and the error tolerance ε given in the
plots apply to the subroutine MNP.

200
10

350
10

500
10

200
50

350
50

500
50

200
100

350
100

500
100

100

101

102
ε = 10−7

ε = 10−6

ε = 10−5

SDPT3

20
10

27
10

32
10

20
50

27
50

32
50

20
100

27
100

32
100

10−1

100

101

102

ε = 10−8

ε = 10−7

ε = 10−6

SDPT3

Figure 3.2: Runtime (sec) for parameters n
m . Left: SOCP. Right: SDP.

200
10

350
10

500
10

200
50

350
50

500
50

200
100

350
100

500
100

3

4

5

6

7
ε = 10−7

ε = 10−6

ε = 10−5

20
10

27
10

32
10

20
50

27
50

32
50

20
100

27
100

32
100

4

5

6

7

8 ε = 10−8

ε = 10−7

ε = 10−6

Figure 3.3: Newton-steps for parameters n
m . Left: SOCP. Right: SDP.

3.3. The LP-Newton Method for CLPs 41

200
10

350
10

500
10

200
50

350
50

500
50

200
100

350
100

500
100

103

104

ε = 10−7

ε = 10−6

ε = 10−5

20
10

27
10

32
10

20
50

27
50

32
50

20
100

27
100

32
100

103

104

ε = 10−8

ε = 10−7

ε = 10−6

Figure 3.4: MNP computations for parameters n
m . Left: SOCP. Right: SDP.

The plots in Figure 3.2 show that the choice of accuracy for MNP has a great impact
on the overal running time of the algorithm. While reducing the accuracy can speed up
the algorithm signi�cantly, going below the accuracy given in the plots often resulted
in major problems in converging to the solution, so care has to be taken by choosing
this parameter.

Overall, the data in Figure 3.3 resembles the results of [FHYZ08] for the case of Rn+,
in the sense that only a few Newton-steps are necessary to get a close approximate
solution. Figure 3.4 also shows that, like in the original paper, the number m of con-
straints seems to a have a much larger impact on the performance than the number of
the variables n, since much more subproblems have to be solved.

Conclusion
Unfortunately, the experiments show that our implementation of the CLP-Newton
method is much slower than the reference algorithm. However, the runtime of the
algorithm could be drastically reduced by a faster algorithm for the minimum-norm-
point subroutine, since the number of Newton-steps remain small independent of the
underlying cones. In particular, the algorithm might be improved by a more rigor-
ous treatment of the necessary accuracy for the subproblems, since the experiments
indicate much slower progress with increasing accuracy.

Chapter 4

Partitions and Assignment Matrices

In this chapter, we formally introduce partition problems in Section 4.1 and discuss
the (dis)advantages of representing them as assignment matrices in Section 4.2, where
we discuss problems related to symmetries and how to solve them with the theory of
orbitopes.

4.1 Overview

Partitions

For a �xed number n ∈ N, a partition of [n] is a subset
{
Tj

�� j ∈ [k]} ⊆ 2[n] such that

(i) Tj , ∅ ∀j ∈ [k],
(ii) ⋃

j∈[k]Tj = [n],

(iii) Ti ∩Tj = ∅ ∀i, j ∈ [k].
The sets that make up a partition are called parts. Throughout the thesis, we will use
the shorthand notation T =

{
Tj

�� j ∈ [k]} and assume that L ⊆ 2[n] is an independence
system.
De�nition 4.1 (Set of Partitions):
For k ∈ [n], let Pn

k
denote the set of all partitions of [n] that consist of exactly k parts.

Then the set
Pn
k (L) :=

{
T ∈ Pn

k

�� T ⊆ L
}

denotes the set of all partitions of [n] whose k parts belong to L. More general, we let

Pn(L) =
⋃
k∈[n]
Pn
k (L)

4.1. Overview 43

be the set of all partitions of [n] with regards to L and we shortly write Pn := Pn(2[n])
as well.
Lemma 4.2 (Cardinality, [Sta11, p. 73�.]):
The cardinality of Pn

k
is given by

{
n
k

}
, the Stirling numbers of the second kind. They

have the explicit description {
n
k

}
=

1
k!

∑
j∈[k]
(−1)k−j

(
k

j

)
jn,

and satisfy the recurrence {
n
k

}
= k ·

{
n−1
k

}
+

{
n−1
k−1

}
where

{
k
k

}
=

{
n
1
}
= 1 for all n,k ∈ N.

The cardinality of Pn is given by the Bell number B(n) and satis�es the formulas

B(n) =
∑
k∈[n]

S(n,k) =
n∑
i=0

(
n

i

)
B(i),

where B(0) = 1.

k-partition Problems
Let k ∈ [n]. A function f : Pn

k
(L) → R is called k-partition function and its associated

optimization problem
min

{
f (T)

�� T ∈ Pn
k (L)

}
is called a k-partition problem. For reference, we will denote this problem as (f ,Pn

k
(L)).

A k-partition function fk : Pn
k
(L) → R is separable (with regards to f : L→ R), if

for each T ∈ Pn
k
(L) we have

fk(T) =
∑
j∈[k]

f (Tj),

and the corresponding k-partition problem is called separable as well.
Example 4.3 (Max-Cut):
Consider a graph G ∈ Gn with a weighted adjacency matrix C ∈ Rn×n to de�ne a
function cutC : 2[n] → R through

cutC(T) =
∑
i,j∈T

cij ∀T ⊆ [n].

Then the famous Max-k-Cut problem can be stated as the separable k-partition prob-
lem (cutk ,P[n]2) where

cutk(T) =
∑
j∈[k]

cutC(Tj)

is separable with regards to cutC as de�ned above.

44 Chapter 4. Partitions and Assignment Matrices

Remark 4.4:
The problem Max-2-Cut is often simply denoted as Max-Cut in literature.

As a corollary of the preceding example, we see that partition problems are NP-
hard in general.
Theorem 4.5 ([Sch03, Vol. C, Theorem 75.1]):
The problem Max-2-Cut is NP-hard.

Partition Problems

A function f : Pn(L) → R is simply called partition function and the associated prob-
lem

min { f (T) | T ∈ Pn(L)}

is called a partition problem, which will be denoted as (f ,Pn(L)).
Likewise, a partition function f[n] is separable (with regards to f : L → R), if the

restriction of f[n] to k-partitions is separable with regards to f for every k ∈ [n], that
is

f[n](T) =
∑
j∈[k]

f (Tj) ∀T ∈ Pn
k (L)

holds for all k ∈ [n].
A partition function f is called a counting function if it only depends on the number

of parts in a partition and is strictly increasing. In particular, if f is a counting function,
then there is a strictly increasing function д : N→ R such that

f (T) = д(k)

holds for all k-partitions T ∈ Pn
k
(L). We may abuse notation by denoting the counting

function by д(k) directly instead.
A partition problem whose partition function is a counting function is called a

minimum-cover problem and has the following combinatorial interpretation.
Lemma 4.6:
Let (д,Pn(L)) be a minimum-cover problem. Then solving (f ,Pn(L)) is equivalent to
�nding

min
{
k ∈ N

�� Pn
k (L) , ∅

}
,

and we can assume without loss of generality that д = Id.
Example 4.7 (Graph Colouring):
Consider a graph G ∈ Gn and denote by SG ⊆ 2[n] the stable sets of G where

SG = {S ⊆ [n] | E(G[S]) = ∅} ,

4.2. Assignment Matrices 45

that is, S ∈ SG if and only if the induced subgraph G[S] does not contain any edges.
Note that this way, SG satis�es the axioms (2.2) of an independence system.

Then the minimum-cover problem
(
Id,Pn

k
(SG)

)
is the problem of �nding the small-

est partition of [n] into stable sets ofG, which is known as the graph colouring problem.
In particular, the chromatic number χ (G) can be expressed as

χ (G) = min
{
k ∈ N

�� Pn
k (SG) , ∅

}
.

A more detailed treatment of the colouring problem is the topic of Section 6.3.1.
Lastly, we also consider regularized partition functions fд : Pn(L) → R that can be

written as
fд = f[n] + д

where f[n] is a separable partition function and д is a counting function that serves as
a regularizer .
Example 4.8 (Regularized Euclidean clustering):
Consider a set of points {bi}i∈[n] ⊆ Rd in Euclidean space. Then we can de�ne an
optimal-value function f : 2[n] → R by setting

f (T) = min
x∈Rd

∑
i∈T
‖x − bi ‖22

for all T ⊆ [n] to get a partition function f[n] separable with regards to f . Now us-
ing д(k) = k2 and some penalty parameter µ > 0, the regularized partition function
fµ·д corresponds to quadratically regularized Euclidean clustering. The treatment of
Euclidean clustering problems is the topic of Section 6.3.2.

4.2 Assignment Matrices
In the following, we will describe how to �t partitions into an optimization framework
by giving a standard representation of partitions as assignment matrices. Given a set
I ⊆ [n], its characteristic vector eI ∈ {0, 1}n is coordinate-wise de�ned as

(eI)i =
{

1 if i ∈ I ,
0 else.

Geometrically, the map I 7→ eI bijectively maps the power set 2n to the vertices of the
n-dimensional unit cube Cn. In particular, we have

I ∩ J = ∅ ⇔ 〈eI ,e J 〉 = 0 (4.1)

and
e(I∪J) = eI + e J − e(I∩J). (4.2)

46 Chapter 4. Partitions and Assignment Matrices

Our goal is now to express k-partitions through n×k binary matrices by treating their
columns as characteristic vectors. To this end, let

V (L) = {eI ∈ {0, 1}n | I ∈ L∗} = {x ∈ {0, 1}n | supp(x) ∈ L∗}

be the vertex-set associated with L and de�ne the set of L-constrained assignment
matrices

Un,k(L) =
{
U ∈ {0, 1}n×k

�� Ue[k] = e[n], col(U) ⊆ V (L)
}
. (4.3)

We will also use the notation

Un,k := Un,k(2[n]) =
{
U ∈ {0, 1}n×k

�� Ue[k] = e[n], 0 < col(U)
}
,

which immediately shows the alternative expression

Un,k(L) = Un,k ∩VR
(
Lk∗

)
for (4.3).

By examining (4.1) and (4.2), we can verify that each matrix inUn,k(L) can be turned
into a partition by treating the columns as characteristic vectors. Unfortunately, we
have multiple matrices inUn,k(L) that yield the same partition.
Example 4.9:
Both matrices ©«

1 0
1 0
0 1

ª®¬ and ©«
0 1
0 1
1 0

ª®¬
represent the partition {{1, 2}, {3}} by treating their columns as characteristic vectors.

This lack of unique representation arises since the elements ofUn,k(L) are ordered
columns, while the elements of Pn

k
(L) are unordered sets. More formally, the groupSk

induces a group action onUn,k(L) by permutation of its columns. Setting

π ∗ (u1, . . . ,uk) =
(
uπ (1), . . . ,uπ (k)

)
, ∀π ∈ Sk , ∀ (

u1, . . . ,uk
)
∈ Un,k(L),

recall that the orbit of a matrix U ∈ Un,k(L) under this group action is the set

[U] := {π ∗ U | π ∈ Sk} ,

and we expect each orbit to correspond to a partition in Pn
k
(L). To properly see this,

let us introduce an order onUn,k(L) to de�ne a unique representative for each orbit by
choosing the maximal member with regards to that order.
De�nition 4.10 (Maximal Orbit Representatives, [KP08]):
De�ne an order ≺lex on Rn×k by setting A ≺lex B if and only if aij < bij for the smallest
(i, j) w.r.t. <lex such that aij , bij . Then Ulex

n,k
(L) is de�ned as the set of matrices

U ∈ Un,k(L) which are maximal with regards to ≺lex in their orbit [U].

4.2. Assignment Matrices 47

Example 4.11:
The setU3,2 listed in ascending order of ≺lex is given by

©«
0 1
0 1
1 0

ª®¬ ≺lex ©«
0 1
1 0
0 1

ª®¬ ≺lex ©«
0 1
1 0
1 0

ª®¬ ≺lex ©«
1 0
0 1
0 1

ª®¬ ≺lex ©«
1 0
0 1
1 0

ª®¬ ≺lex ©«
1 0
1 0
0 1

ª®¬ .
With this de�nition at hand, we can state the core representation result.

Theorem 4.12:
We have

Pn
k (L) ↔ U

lex
n,k (L),

or rather
Pn
k (L) ×Sk ↔Un,k(L). (4.4)

Proof. We de�ne the map φ : Pn
k
(L) → Ulex

n,k
(L), which assigns T ∈ Pn

k
(L) to

φ(T) =:
(
πT ∗ (eT1, . . . ,eTk)

)
∈ Ulex

n,k (L),

where πT ∈ Sk is chosen such that φ(T) is maximal in its orbit.
This map is bijective: Its inverse takes the columnsui of U ∈ Ulex

n,k
(L), extracts their

support Ti = supp(ui) and outputs {T1, . . . ,Tk}. This inverse is well-de�ned, since by
de�nition of ui ∈ V (L), we have Ti ∈ L∗ nonempty, and since Ue[k] = e[n], they are
disjoint and satisfy ⋃

j∈[k]Tj = [n].
For the second part, it now su�ces to argue that

Ulex
n,k (L) ×Sk ↔Un,k(L).

To see this, consider the mapψ : Ulex
n,k
(L) ×Sk →Un,k(L) given as

ψ (U,π) = π ∗ U.

Since any U ∈ Ulex
n,k
(L) has k distinct columns, ψ is injective, and since it is surjective

by de�nition ofUlex
n,k
(L), the statement follows. �

Fortunately, for k = 2, we can describeUlex
n,2 (L) explicitly.

Theorem 4.13:
Let n ∈ N, then

Ulex
n,2 (L) =

{
U ∈ Un,2(L)

�� u11 = 1
}
.

Proof. Let U = (u1,u2) ∈ Un,2(L) and U′ = (u2,u1). Then the orbit of U is given by
[U] = {U,U′} and by de�nition, (u1)1 , (u2)1. Thus

U′ <lex U⇔ (u2)1 < (u1)1 ⇔ (u1)1 = 1, (u2)1 = 0,

which is what we wanted to show. �

48 Chapter 4. Partitions and Assignment Matrices

Of course, Theorem 4.13 is not very surprising. Since we already now that the �rst
element will necessarily be part of one of the sets, the theorem merely states that we
can list this set as the �rst one.

4.2.1 Symmetry induced Problems
Theorem 4.12 implies that in general, it is a very bad idea to useUn,k(L) as a modelling
basis. Since we would like to optimize functions de�ned on Pn

k
(L), we can state (4.4)

as
Pn
k (L) ↔ Un,k(L)/Sk ,

which means that the representation of any k-partition function f in this setting must
be constant on the orbitsUn,k(L)/Sk . This will necessarily introduce problems in any
approach to this problem involving the whole setUn,k(L), since both the feasible and
the optimal set become highly symmetrical without applying any techniques for sym-
metry breaking.

Since we ultimately want to tackle k-partition problems with a convex formulation,
it is paramount to highlight these problems in the convex setting. To this end, we will
ignore the constraints given by L for now and assume L = 2[n] to focus on the easiest
caseUn,k .

The smallest convex body containingUn,k is naturally conv(Un,k), but we will use

Un,k =
⋃

U∈Ulex
n,k

[U]

to consider the subset conv([U]) ⊆ conv(Un,k) for U ∈ conv(Un,k) as well. To this end,
we get the following characterization.
Theorem 4.14:
For all U ∈ Ulex

n,k
, we have

bar(conv(Un,k)) = bar(conv([U])) = 1
k Jn,k

where bar denotes the barycenter. In particular, all convexi�ed orbits intersect in 1
k Jn,k ,

and if f : Rn×k → R is a convex function invariant under the group action ofSk , then

min
{
f (X)

�� X ∈ conv(Un,k)
}
= min { f (X) | X ∈ conv([U])} = f (1k Jn,k).

Proof. The barycenter of a set is necessarily invariant under its symmetries, so we
consider the Reynolds operator

φ : U 7→ 1
k!

∑
π∈Sk
(π ∗ U)

4.2. Assignment Matrices 49

that maps any matrix U ∈ Un,k to the average over its orbit. In particular, this means
that φ(U) ∈ conv([U]). Since

φ(U) = 1
k!

(∑
π∈Sk

uπ (1), . . . ,
∑
π∈Sk

uπ (k)

)
=

1
k

(∑
j∈[k]

uj , . . . ,
∑
j∈[k]

uj

)
=

1
k

Jn,k

is constant on Un,k , the point 1
k Jn,k is necessarily the barycenter of each convexi-

�ed orbit conv([U]) and conv(Un,k). Furthermore, φ is also constant on the whole
of conv(Un,k) due to linearity.

Now, for any U ∈ conv(Un,k), the second statement follows from

f (U) = 1
k!

∑
π∈Sk

f (π ∗ U) ≥ f (φ(U)) = f
(1
k Jn,k

)
,

where the �rst equation follows from the invariance of f . �

We visualize Theorem 4.14 before we look at its implications.
Example 4.15:
Consider the set

U3,2 =

©«
0 1
0 1
1 0

ª®¬ , ©«
0 1
1 0
0 1

ª®¬ , ©«
0 1
1 0
1 0

ª®¬ , ©«
1 0
0 1
0 1

ª®¬ , ©«
1 0
0 1
1 0

ª®¬ , ©«
1 0
1 0
0 1

ª®¬
 ,

and recall that it is listed ascending in ≺lex . Then the corresponding set

Ulex
3,2 =

©«
1 0
0 1
0 1

ª®¬ , ©«
1 0
0 1
1 0

ª®¬ , ©«
1 0
1 0
0 1

ª®¬

contains exactly one element of each orbit. For visualization purposes, we will use the
linear projection ρ : R3×2 → R2 given by

ρ(U) = 1
√

6
· diag

((√
3 0 −

√
3

−1 2 −1

)
· U

)
,

and note that the projection is chosen in such a way that the line spanned by J3,2
is mapped to the origin. Then Figure 4.1 shows how the convex hull of each orbit
intersects 1

2J3,2, and that the convex hull ofUlex
3,2 is much smaller due to the absence of

symmetry.
Theorem 4.14 shows that if we want to work with conv(Un,k) and a convex objec-

tive function f , mild assumptions on f will lead to the trivial result of 1
k Jn,k , which,

interpreted as a probabilistic statement, merely states that each partition is as likely as
any other to be the optimal solution to the problem at hand. This is more likely when
the objective function f is nonlinear, but may also happen in the linear case, when the
underlying algorithm does not guarantee an extreme point as solution.

50 Chapter 4. Partitions and Assignment Matrices

ρ(conv(U3,2)) ρ(conv(Ulex
3,2))

Figure 4.1: Visualization of Theorem 4.14. The shaded area shows the projection of
convex hulls ofU3,2 andUlex

3,2 respectively. The dashed lines are the projections of the
convex hulls of the orbits, highlighting how they meet in the barycenter.

4.2.2 Orbitopes

Even if we work with the simplex-algorithm, which guarantees vertex solutions, Fig-
ure 4.1 still shows that it would be bene�cial to rather work with the reduced polytope
conv(Ulex

n,k
) instead. This is particular true for branch and bound algorithms, which

may build up an extensive tree due to enumerating members of the same orbit in dif-
ferent branches.

To this end, Kaibel et al. used the term partition-orbitope for the set conv(Ulex
n,k
) and

showed both an explicit description of exponential size [KP08], as well as a compactly
lifted representation of linear size [FK09].
Remark 4.16:
The term orbitope has also been used for a related, but di�erent construction in liter-
ature and should not be confused. In [Stu11], orbitopes are de�ned as convex hulls of
the orbits of a compact algebraic group acting linearly on a real vector space.

This notion does not coincide with our de�nition, since we consider the convex
hull of selected representatives from multiple orbits. In particular,Ulex

n,k
(L) has a non-

empty intersection with each orbitope arising from Un,k(L) according to the second
de�nition. This can be seen in Figure 4.1, where the dashed lines are projections of the
orbitopes of the second de�nition.

We summarize the main result of the latter paper without getting into the details.
Theorem 4.17 ([FK09]):
There is an extended formulation Pn,k ∈ RO(nk) for conv(Ulex

n,k
) such that Pn,k is integral

and can be described by O(nk) inequalities. Furthermore, linear optimization over Pn,k ,
and, as a consequence, over conv(Ulex

n,k
) can be done in time O(nk).

The idea here is that one can identify the matrices in Ulex
n,k

with certain �ows
through a directed, acyclic network arising from a slightly altered n × k grid graph.
In this setting, linear optimization can be reduced to a longest s − t path problem and
solved in linear time in the size of the grid.

4.2. Assignment Matrices 51

As a special case of Theorem 4.17, we will explicitly show a description of the
simple orbitopes conv(Ulex

n,2).
Theorem 4.18:
Let n ∈ N, then

conv(Ulex
n,2) =

{(
1 0

e −u u

)
∈ Rn×2

���� u ∈ [0, 1]n−1, 〈u,e〉 ≥ 1
}
.

Proof. LetC denote the set on the right handed side. Then by Theorem 4.13,Ulex
n,2 ⊆ C ,

and since C is convex, this holds true when taking the convex hull on both sides. To
see the inverse, note that this is equivalent to showing that

conv
({
u ∈ {0, 1}n−1 �� u , 0

})
=

{
u ∈ [0, 1]n−1 �� 〈u,e〉 ≥ 1

}
,

by the characterization ofUlex
n,2 in Theorem 4.13. This can be veri�ed by showing that

the vertices of both sets coincide, which follows by inspection of the facet de�ned by
〈u,e〉 ≥ 1. �

While the theory of orbitopes takes care of all k-partition functions that can be ex-
pressed as linear functions overUn,k , they don’t help much with non-linear functions.
In particular, we argue that asymptotically, as n grows for �xed k , optimizing over
conv(Ulex

n,k
) can only help with the �rst few elements. To see this, let the aggregation

of conv(Ulex
n,k
) be de�ned as

A(n,k) :=
∑

U∈Ulex
n,k

U.

Lemma 4.19:
We have the recurrence

A(n,k) =
(
k · A(n − 1,k){

n−1
k

}
· e>[k]

)
+

(
A(n − 1,k − 1) 0

0
{
n−1
k−1

})
where

A(n, 1) = e[n] and A(k,k) = Ik
for all k,n ∈ N.

Proof. Denote the right hand side by B(n,k) and decompose it as the sum

B(n,k) =
∑
j∈[k]

∑
U∈Ulex

n−1,k

(
U
e>j

)
+

∑
U′∈Ulex

n−1,k−1

(
U′ 0
0 1

)
.

We argue that each matrix in this sum belongsUlex
n,k

and occurs only once. To see the
latter, note that both individual summations clearly involve di�erent matrices, and we

52 Chapter 4. Partitions and Assignment Matrices

can never have U =
(
U′ 0

)
for any pair U ∈ Ulex

n−1,k ,U
′ ∈ Ulex

n−1,k−1, since the last
column of U needs to have at least one non-zero entry to represent a k-partition.

To see membership in Ulex
n,k

, note that
(

U
e>j

)
is maximal among its orbit w.r.t. ≺lex

since U already is. For
(

U′ 0
0 1

)
, the same is true since U′ is maximal among itsSk−1-orbit

w.r.t. ≺lex and since the last column
(0

1
)

is the smallest vector in this order.
We �nish the proof by claiming that B(n,k) sums over as many matrices as A(n,k).

Since Ulex
n,k

� Pn
k

, we necessarily have A(n,k)e[k] =
{
n
k

}
· e[n]. At the same time, we

have
B(n,k)e[k] =

(
k ·

{
n−1
k

}
+

{
n−1
k−1

})
· e[n] =

{
n
k

}
· e[n]

by Lemma 4.2, which shows the claim. �

Since the barycenter of conv(Un,k) was given as the average over its vertices by
Theorem 4.14, we want to investigate the average of vertices of conv(Ulex

n,k
), which is

given by
Â(n,k) = A(n,k)/

{
n
k

}
.

Denote with â(n,k, i) the i-th row of Â(n,k). It follows from Lemma 4.19 that for
1 ≤ i < n, we have the recurrence

â(n,k, i) =
k ·

{
n−1
k

}{
n
k

} · â(n − 1,k, i) +
{
n−1
k−1

}{
n
k

} · (â(n − 1,k − 1, i) 0
)
. (4.5)

While giving explicit formulas is very hard in the general case, we have the follow-
ing simple theorem for the case of bi-partitions.

Theorem 4.20:
For k = 2 and 1 < i ≤ n, we have

â(n, 2, i) =
(

2n−2−1
2n−1−1

2n−2

2n−1−1

)
.

In particular,

lim
n→∞

â(n, 2, i) = 1
2 · e[2].

Proof. We show this result by induction on n. For n = 2, it follows by de�nition that
A(2, 2) = I2 and so

â(2, 2, 2) =
(
0 1

)
=

(1−1
2−1

1
2−1

)
.

For n > 2, we use the fact that
{
n
2
}
= 2n−1− 1. To see this, note that we can enumerate

all 2-partitions of [n] twice by enumerating the pairs (T , [n]\T), whereT ∈ 2[n]\{∅, [n]}.

4.2. Assignment Matrices 53

Then for 1 < i < n, (4.5) turns into

â(n, 2, i) =
2 ·

{
n−1

2
}{

n
2
} · â(n − 1, 2, i) +

{
n−1

1
}{

n
2
} · (â(n − 1, 1, i) 0

)
=

2 · (2n−2 − 1)
2n−1 − 1 ·

(
2n−3−1
2n−2−1

2n−3

2n−2−1

)
+

1
2n−1 − 1 ·

(
1 0

)
=

(
2n−2−1
2n−1−1

2n−2

2n−1−1

)
.

For i = n, we also have

â(n, 2, i) =
{
n−1

2
}{

n
2
} e[2] +

{
n−1

1
}{

n
2
} e2 =

(
2n−2 − 1
2n − 1

2n−2

2n − 1

)
.

�

In general, we can observe a similar process for k > 2 in the sense thatâ(n,k, i) − 1
k
e[k]

2

is quickly decreasing both in i and in n. In particular, Figure 4.2 suggests the following
conjecture.
Conjecture 4.21:
The limits

lim
n→∞

dist
(
conv(Ulex

n,k), bar(conv(Un,k))
)
≤ lim

n→∞

Â(n,k) − 1
k

Jn,k

2

exist, are �nite and grow sublinearly with k .

Unfortunately, this conjecture would imply that for �xed k and growing values
of n, there is a good chance for the optimum of non-linear convex functions over
conv(Ulex

n,k
) to stay relatively close to bar(conv(Un,k)), since the distance is indepen-

dent of the dimension of the underlying space. In particular, using conv(Ulex
n,k
) over

conv(Un,k)might only lead to marginal improvements, which is why we will consider
reformulation techniques to break the underlying symmetry in the following chapters.

One main obstacle in proving the conjecture is the unavailability of sharp bounds
for the fractions

{
n−1
k

}
/
{
n
k

}
that appear in the convex combination used to update the

rows in (4.5). These fractions play a major role in statistics to compute an unbiased
estimation with minimum variation of certain distributions, as explained in [Ber75].
For �xed fractions k

n , we have the asymptotic behaviour{
n−1
k

}{
n
k

} ∼ α(kn)
n
,

54 Chapter 4. Partitions and Assignment Matrices

where α(x) is the solution of 1−exp(−α)
α = x according to [Har68], which implies that

lim
n→∞

k
{
n−1
k

}{
n
k

} → 1.

This means that new rows â(n,k,n) are already initialized increasingly close to 1
k · e[k]

and do not change much through the update (4.5), supporting the conjecture.

0 20 40 60 80 1000

0.5

1

1.5

2

Figure 4.2: Plots of
Â(n,k) − 1

k Jn,k

2 against n = k,k +1, . . . , 100 for increasing values
of k . The plots for k = 2, 3, 4, 5 are shown from bottom to top respectively.

Chapter 5

Partition Matrices

This chapter treats partition matrices, a class of matrices that have been long used in
combinatorial optimization for clustering problems like Max-k-cut or graph colouring.
We introduce them in Section 5.1 and show how they relate to combinatorial moment
matrices in Section 5.2. Finally, in Section 5.3 we show how these matrices are con-
nected to assignment matrices through MM.

5.1 Overview
Another approach to remove symmetry from partition problems is to map the setUn,k

of assignment matrices onto the set of k-partition matrices, which are de�ned as fol-
lows.
De�nition 5.1:
A binary matrix W ∈ {0, 1}n×n is called (k-)partition matrix, if there are k integers
n1, . . . ,nk and a permutation π ∈ Sn such that n = ∑

j∈[k] nj and

π (W) =
©«
Jn1 0 . . . 0

0 Jn2
. . .

...
...
. . .

. . . 0
0 . . . 0 Jnk

ª®®®®¬
.

The set of all k-partition matrices will be denoted as PMn
k
.

The idea here is that partition matrices contain the information whether two ele-
ments belong to the same part of a given partition. To this end, note that for a given
partition matrix W, we have

wij =

{
1 if i and j belong to the same set,
0 else.

56 Chapter 5. Partition Matrices

As a consequence, we have diag(W) = e and each block corresponds to a part of the
partition.

We can explicitly describe the set of k-partition matrices with the following lemma.
Lemma 5.2 ([Ren10, Lemma 18.3]):
The set PMn

k
can be explicitly described as

PMn
k = {W ∈ {0, 1}

n×n | diag(W) = e, rank(W) = k, W � 0}.

With this representation in hand, we can now extend this concept to L-constrained
k-partitions.
De�nition 5.3:
The L-constrained k-partition matrices are given as

PMn
k(L) :=

{
W ∈ PMn

k

�� col(W) ⊆ V (L)
}
= PMn

k ∩VR (L
n
∗) .

By de�nition, we only allow columns that represent nonempty sets belonging to L.
We are now able to show that there is a one to one correspondence between partitions
and partition matrices.
Lemma 5.4:
We haveUlex

n,k
(L) ↔ PMn

k
(L) via the surjection φ : Un,k(L) → PMn

k
(L) given by

U 7→ UU>.

Furthermore, φ is invariant under orthogonal transformations and constant on the orbits
contained inUn,k(L)/Sk .

Proof. Let U = (u1, . . . ,uk) and φ(U) = W = (w1, . . . ,wn). Since the rows of U are bi-
nary unit vectors, we immediately get W ∈ {0, 1}n×n and diag(W) = e . Thus W ∈ PMn

k
,

since rank(W) = k and W � 0 follow by de�nition from W = UU> and the pairwise
orthogonality of the columns of U. To see that W ∈ PMn

k
(L), note that e>i U = e>j for

some j ∈ [k] and thus
Wei = UU>ei = Uej ∈ V (L) (5.1)

by assumption.
To see the invariance of φ under orthogonal transformations Q, note that

φ(UQ) = UQQ>U> = UU>,

which also shows that φ is constant on the orbits induced by column-permutations.
Injectivity of φ onUlex

n,k
(L) follows by noting that the sets

{u1, . . . ,uk} = {w1, . . . ,wn}

5.2. Connection to Combinatorial Moment Matrices 57

coincide due to (5.1) and 0 < col(U).
To see surjectivity of φ, let W ∈ PMn

k
(L) and consider the Gram representation

W = U0U>0 with U0 ∈ Rn×k and rank(U0) = k . Then there is an invertible k × k
submatrix M and we assume without loss of generality that

U0 =

(
M
U′0

)
.

Then rank(MM>) = rank(M) = k , and MM> is binary with diag(MM>) = e as a
submatrix of W. Then MM> = Ik = M>M is orthogonal and

U1 :=
(

Ik
U′1

)
=

(
MM>

U′0M>

)
= U0M>

shows that U1U>1 = U0MM>U>0 =W where U1 contains Ik as submatrix where M used
to be. This shows U1 is binary, since(

Ik U′>1
U′1 U′1U′>1

)
=

(
Ik
U′1

) (
Ik
U′1

)>
= U1U>1 =W ∈ {0, 1}n×n .

Now (5.1) shows both col(U1) ⊆ V (L) as well as the last equation in

[n] = supp(diag(W)) ⊆ supp(We) = supp(U1e) ⊆ [n],

which implies U1e = e . Then U1 ∈ Un,k(L) and we are done. �

As a consequence, we get a nice characterization of the set of partitions Pn(L) as

PMn(L) =
⋃
k∈[n]

PMn
k(L) =

{
W ∈ {0, 1}n×n

�� diag(W) = e, W � 0, col(W) ⊆ V (L)
}
.

5.2 Connection to Combinatorial Moment Matrices

At this point, the description of PMn
k

is di�cult to work with due to both the binary
constraint as well as the rank constraint, which both lead to NP-hardness in general.
Since Theorem 4.5 showed that Max-Cut is NP-hard, so is optimizing over PMn

k
, since

a Max-Cut instance with objective C is equivalent to solving

max
{
〈C,W〉

�� W ∈ PMn
2
}
.

As such, we can not expect to remove both of these constraints, although it is possible
to remove the rank constraint as shown in the following lemma.

58 Chapter 5. Partition Matrices

Lemma 5.5 ([Ren10, Lemma 18.4]):
The set of k-partition matrices has the explicit description

PMn
k = {W ∈ {0, 1}

n×n | diag(W) = e, (tW � J ⇔ t ≥ k)}

=
{
W ∈ {0, 1}n×n

��� diag(W) = e,
[(

t e>

e W

)
� 0⇔ t ≥ k

] }
. (5.2)

This lemma is important, since it highlights a link to the theory of combinatorial
moment matrices from Subsection 3.1. Lemma 5.4 shows that starting from an assign-
ment matrix U, we can get a partition matrix by setting

W = UU> =
∑
j∈[k]

uju
>
j ,

where each uj is the characteristic vector of a part of the partition. By adding a new
entry 1, we can consider

(
1 u>j

)
as a truncated moment sequence up to degree 1, and

the collection of these sequences yields an extended assignment matrix(
e>

U

)
∈ {0, 1}(n+1)×k

which factors into an extended partition matrix as(
k e>

e W

)
=

(
k e>U>

Ue UU>

)
=

(
e>

U

) (
e U>

)
=

∑
j∈[k]

(
1 u>j
uj uju>j

)
.

The important observation here is that an extended k-partition matrix is equal to the
sum of the k �rst-order combinatorial moment matrices corresponding to the individ-
ual sets in its k-partition.
Example 5.6:
Consider again the partition {{1, 2}, {3}} ∈ P3

2 from Example 4.9. Lexicographic or-
der of the corresponding characteristic vectors leads to the assignment and partition
matrices

U = ©«
1 0
1 0
0 1

ª®¬ , W = ©«
1 1 0
1 1 0
0 0 1

ª®¬ .
The extended partition matrix can be decomposed as sum of �rst-order combinatorial
moment matrices as

©«
2 1 1 1
1 1 1 0
1 1 1 0
1 0 0 1

ª®®®¬ =
©«

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

ª®®®¬ +
©«

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

ª®®®¬ .

5.3. Convexi�cation 59

5.3 Convexi�cation
In the end, we are interested in solving optimization problems over PMn

k
(L), so we are

naturally interested in its convex hull conv(PMn
k
(L)). However, as we have already

seen, Max-k-Cut can be described as
max

{
〈C,X〉

�� X ∈ PMn
k

}
,

which is equivalent to
max

{
〈C,X〉

�� X ∈ conv(PMn
k)

}
,

due to the linearity of the objective. Consequently, we should not expect to �nd a
compact description of conv(PMn

k
(L)), as it is likely out of reach.

In order to tackle this problem anyway, it is easiest to work with convex relaxations
of conv(PMn

k
). The standard convex relaxation of the set PMn

k
in literature arises from

formulation (5.2) by relaxing the integrality constraint W ∈ {0, 1}n×n away. This leads
us to the set

RPMn
k(L) =

{
W ∈ Rn×n

���� diag(W) = e,

(
k e>

e W

)
� 0, 〈W,ΩL〉 = 0

}
, (5.3)

which is a convex relaxation of PMn
k
(L). The constraint 〈W,ΩL〉 = 0 arises as a trun-

cation of col(W) ⊆ V (L) and only excludes the sets of size 2 that are forbidden by L.

5.3.1 Applying the Method of Moments to Partition Matrices
A way to interpret Lemma 5.4 is to consider the set PMn

k
(L) as the image of the second

order moments of Un,k(L) under a linear map. It follows then, since N∗1 (Un,k(L)) is
a convex relaxation of the second order moments of Un,k(L), that applying the same
linear map to N∗1 (Un,k(L)) will lead us to a convex relaxation of PMn

k
(L) as well. The

goal of this section is to show that surprisingly, this approach yields a relaxation that
is equivalent to the straightforward relaxation RPMn

k
(L) from (5.3).

To see this, �rst recall the set of assignment matrices
Un,k(L) =

{
U ∈ {0, 1}n×k

�� Ue[k] = e[n], col(U) ⊆ V (L)
}

from (4.3). In order to state the corresponding relaxation of PMn
k
(L), we will �rst in-

vestigate the structure of N∗1 (Un,k(L)), where any assignment matrix U = (u1, . . . ,uk)
is represented as

©«

1
u1
u2
...
uk

ª®®®®®®¬
©«

1
u1
u2
...
uk

ª®®®®®®¬

>

=

©«

1 u>1 u>2 . . . u>
k

u1 u1u>1 u1u>2 . . . u1u>k
u2 u2u>1 u2u>2

. . .
...

...
...

. . .
. . . uk−1u

>
k

uk uku
>
1 . . . uku

>
k−1 uku

>
k

ª®®®®®®®¬
. (5.4)

60 Chapter 5. Partition Matrices

For the rest of this section, let us denote matrices with this block structure as

U(n,k) :=

©«

1 u>1 u>2 . . . u>
k

u1 U11 U12 . . . U1k

u2 U21 U22
. . .

...
...

...
. . .

. . . U(k−1)k
uk Uk1 . . . Uk(k−1) Ukk

ª®®®®®®®¬
∈ R(1+nk)×(1+nk). (5.5)

In order to describe the set N∗1 (Un,k(L)), we use the representation

Un,k(L) = Un,k ∩VR
(
Lk

)
to work with

N∗1 (Un,k(L)) = N∗1 (Un,k) ∩ N∗1 (I(Lk)).

Then N∗1 (Un,k) can be explicitly described as

N∗1 (Un,k) =
{
U(n,k) � 0

���� ∑
j∈[k]uj = e, 〈ui ,e〉 ≥ 1∑
j∈[k] Uij = uie>, diag(Uii) = ui

∀i ∈ [k]
}
. (5.6)

Furthermore, it follows from Example 2.13 that

N∗1 (I(Lk)) = {U(n,k) � 0 | 〈Uii ,ΩL〉 = 0 ∀i ∈ [k]} , (5.7)

whose block structure repeats with k .
Now if U(n,k) arises from a matrix U ∈ Un,k(L), then the linear map φ2 given by

φ2 : U(n,k) 7→
∑
j∈[k]

Ujj

yields the same result as φ from Lemma 5.4, since under these circumstances,

φ2(U(n,k)) =
∑
j∈[k]

Ujj =
∑
j∈[k]

uju
>
j = UU> = φ(U).

As a consequence, we get a convex relaxation of PMn
k
(L) by noting that

PMn
k(L) ⊆ φ2(N∗1 (Un,k(L))).

The rest of this section is dedicated to show Theorem 5.8, which will state that already

φ2(N∗1 (Un,k(L))) = RPMn
k(L).

5.3. Convexi�cation 61

Due to the symmetry, we can construct multiple valid representations of (5.4) by
permuting the columns of the assignment matrix U before the construction. To see
this, let the groupSk act on R(1+nk)×(1+nk) by setting

π ∗ U(n,k) =
©«

1 u>
π (1) . . . u>

π (k)
uπ (1) Uπ (1)π (1) . . . Uπ (1)π (k)
...

...
. . .

...
uπ (k) Uπ (k)π (1) . . . Uπ (k)π (k)

ª®®®®¬
for each π ∈ Sk and each U(n,k) ∈ R(1+nk)×(1+nk). It then follows from the symmetrical
nature ofUn,k(L) that whenever U(n,k) arises from U ∈ Un,k(L) as in (5.4), the matrix
π∗U(n,k) arises from π (U). This naturally leads tok! distinct representations π∗U(n,k)
of each partition, which makes the set N∗1 (Un,k(L)) di�cult to work with.

However, we can reduce it to its symmetry invariant subspace. To this end, let us
introduce the linear Reynolds operator ψ : R(1+nk)×(1+nk) → R(1+nk)×(1+nk) given as

ψ (U(n,k)) := 1
k!

∑
π∈Sk
(π ∗ U(n,k)) =

©«

1 a> a>

a A B . . . B
... B . . .

. . .
...

...
...
. . .

. . . B
a B . . . B A

ª®®®®®®¬
=: U(A,B,a),

where

a =
1
k!

∑
π∈Sk

uπ (i) =
1
k

∑
j∈[k]

uj ∀i ∈ [k],

A =
1
k!

∑
π∈Sk

Uπ (j)π (j) =
1
k

∑
j∈[k]

Ujj ∀i ∈ [k],

B =
1
k!

∑
π∈Sk

Uπ (i)π (j) =
1

k(k − 1)
∑

i,j∈[k],i,j
Uπ (i)π (j) ∀i, j ∈ [k].

For later, note that we get the identity

φ2(U(n,k)) =
∑
j∈[k]

Ujj = kA = φ2(U(A,B,a)), (5.8)

which shows that φ2 ◦ψ = φ2 as a side result.
Denoting the linear subspace given by the image ofψ by Hψ := φ

(
R(1+kn)×(1+kn)

)
, it

has the explicit description

Hψ =
{
U(A,B,a)

�� A,B ∈ Rn×n,a ∈ Rn
}
,

62 Chapter 5. Partition Matrices

as
π ∗ U(A,B,a) = U(A,B,a)

holds for all π ∈ Sk and all A,B ∈ Rn×n,a ∈ Rn. The intersection Hψ ∩ S(1+nk)+ is
particularly nice, as is shown by the following lemma.
Lemma 5.7 ([GL08, Lemma 2.8]):
Let A,B ∈ Rn×n and

X = Ik ⊗ A + Jk ⊗ B =
©«
A + B B . . . B

B . . .
. . .

...
...

. . .
. . . B

B . . . B A + B

ª®®®®¬
∈ Rkn×kn .

Then X � 0 if and only if A � 0 and A + kB � 0.

We are now ready to show the central result of this section.
Theorem 5.8:
It holds that

φ2(N∗1 (Un,k(L))) = RPMn
k(L).

Proof. We �rst argue that

ψ (N∗1 (Un,k(L))) = N∗1 (Un,k(L)) ∩ Hψ .

For ” ⊆ ”, note that N∗1 (Un,k(L)) is convex and that by de�nition, ψ maps matrices
U(n,k) ∈ N∗1 (Un,k(L)) into the convex hull of their orbits, so

ψ (N∗1 (Un,k(L))) ⊆ N∗1 (Un,k(L)).

For ” ⊇ ”, note that ψ acts as the identity on Hψ , and so U(n,k) ∈ N∗1 (Un,k(L)) ∩ Hψ
implies U(n,k) = ψ (U(n,k)) ∈ ψ (N∗1 (Un,k(L))).

It follows then from (5.6) that

ψ (N∗1 (Un,k)) =
{
U(A,B, 1

ke) � 0
�� A + (k − 1)B = 1

k Jn, diag(A) = 1
ke

}
.

Using the Schur complement Lemma 2.5 on U(A,B, 1
ke) shows

U(A,B, 1
ke) � 0 ⇔ Ik ⊗ (A − B) + Jk ⊗ (B − 1

k2 Jn) � 0,

which is equivalent to

A − B � 0, (A − B) + k(B − 1
k2 Jn) � 0

5.3. Convexi�cation 63

by Lemma 5.7. Since A+(k−1)B = 1
k Jn holds by assumption, the second psd. condition

is satis�ed and solving for B yields

B(A) := 1
k − 1

(
1
k

Jn − A
)
,

which can be substituted into A − B � 0 to yield A � 1
k2 Jn after rescaling.

We can thus simplify

ψ (N∗1 (Un,k)) =
{
U

(
A,B(A), 1

ke
) ���� (

1 1
ke
>

1
ke A

)
� 0, diag(A) = 1

k
e

}
=

{
U

(
A,B(A), 1

ke
) �� kA ∈ RPMn

k

}
,

and (5.8) shows the claim for L = 2[n].
To �nish the proof, we need to show that this structural result is unchanged by in-

troducing a non-trivial L. But this follows by de�nition, since adding an independence
system L only introduces the constraint 〈A,ΩL〉 = 0 in both sets, as can be seen by
comparing (5.3) and (5.7). �

This shows that one way to understand the approximation quality of RPMn
k
(L) is

the fact that it reduces to computing the �rst stage of MM forUn,k(L).

5.3.2 Applying the Method of Moments to Orbitopes
As we have seen in the preceding section in Theorem 5.8, the symmetry of Un,k(L)
leads to a compact formulation of the �rst stage of MM, and in turn to the compact re-
laxation RPMn

k
(L) for PMn

k
(L). While this is good in terms of computation, the question

is whether this also leads to a decrease in quality of the solutions, as is often the case
with relaxations de�ned on the symmetry-invariant subspace. To this end, the next
logical step is to apply MM to the symmetry-freeUlex

n,k
(L) instead, and ask if the image

under φ2 leads to tighter relaxations than RPMn
k
(L).

In general, this would be an ambitious approach, since applying MM to the ex-
tended formulation of Ulex

n,k
(L) does not lead to sets with intuitive descriptions. For-

tunately, we can explicitly analyse this construction for the case of k = 2, due to the
simpli�ed description ofUlex

n,2 (L) in Theorem 4.13.
Remark 5.9:
Although k = 2 may seem limiting at �rst, it can actually be considered as the hard-
est setting by noting that good approximation ratios for Max-k-Cut are available for
growing k through the following, simple heuristic:

Choosing a partition matrix W ∈ PMn
k

uniformly at random, the probability of
wij = 1 equals 1

k for any pair i , j ∈ [n]. This translates to an expected approximation

64 Chapter 5. Partition Matrices

ratio of 1 − 1
k for Max-k-Cut given as

max
{
〈C,W〉

�� W ∈ PMn
k

}
, (5.9)

which is strictly increasing for growing k .
Before we go on, it is important to point out that in the case of L , 2[n], we can

simplify the problem drastically.
Lemma 5.10:
Let L , 2[n], GL ∈ Gn be the graph whose adjacency matrix is given by ΩL and let
m = | CC(GL)| be the number of its connected components. Then

Un,2(L) ↔ U0
m,2 :=

{
U ∈ {0, 1}m×2 �� Ue[2] = e[m]

}
.

Proof. By the central assumption that Pn
2 (L) , ∅, GL is bipartite and can be decom-

posed into the union of its bipartite connected components. Then for j ∈ [m], the j-th
connected component has a unique partition {T j

1,T
j
2} withT j

1 , ∅, which can by found
by the following well-known algorithm:

Starting with any node i of the component, assume i ∈ T j
1 to conclude for its neigh-

bourhood N (i) that N (i) ⊆ T j
2 . But then N (N (i)) ⊆ T j

1 , and iterating this process at
most n steps, we cover all nodes of the component and arrive at a full list for {T j

1,T
j
2}.

Now any element of {T1,T2} ∈ Pn
2 (L) is completely described by an assignment{

T j
1

��� j ∈ [m]} → {T1,T2},

since for {a,b} = [2], we have T j
1 ⊆ Ta if and only if T j

2 ⊆ Tb . Thus Un,2(L) can be
represented by allm × 2 assignment matrices, where we allow for 0 columns. �

Recall that according to (5.6) and (5.7), the �rst stage of MM forUn,2(L) is

N∗1 (Un,2) =

U(n, 2)

��������
u1 +u2 = e, Ui1 + Ui2 = uie>,

diag(U11) = u1, diag(U22) = u2,
〈u1,e〉 ≥ 1, 〈u2,e〉 ≥ 1,

U(n, 2) � 0

 ,
where the inequalities 〈ui ,e〉 ≥ 1 are the only addition to N∗1 (Un,2) over N∗1 (U0

n,2).
Theorem 5.11:
For all n ∈ N, it holds that

N∗1 (U
0,lex
n,2) � N

∗
1 (U0

n−1,2),

where
U0,lex

n,2 =
{
U ∈ U0

n,2
�� u11 = 1

}
.

5.3. Convexi�cation 65

Proof. Let U ∈ N∗1 (U
0,lex
n,2). Then U ∈ N∗1 (U0

n,2) and by de�nition of MM, we have the
additional constraints (u1)1 = 1 and Ui1e1 = ui for i = 1, 2. In particular,

U = ©«
1 u>1 u2>
u1 U11 U12
u2 U21 U22

ª®¬ =
©«

1 1 u′>1 0 u′2>
1 1 u′>1 0 u′2>
u′1 u′1 U′11 0 U′12
0 0 0 0 0
u′2 u′2 U′21 0 U′22

ª®®®®®¬
, (5.10)

where the blocks of both matrices correspond to each other. Then we can reduce U � 0
to U′ � 0, where

U′ = ©«
1 u′>1 u′2>
u′1 U′11 U′12
u′2 U′21 U′22

ª®¬ ,
due to Corollary 3.3.

But then U′ ∈ N∗1 (U0
n−1,2), which can be veri�ed by applying the equations from

N∗1 (U0
n,2) on the blocks given by the right hand side of (5.10). �

While it is true that from a structural point of view, we could now use Theorem 5.8
on the reformulation given by Lemma 5.10 to end up with RPMm−1

2 , the reduction
breaks down when we consider the objective function as well. When formulating (5.9)
in the setting of N∗1 (Un,2), we get the objective matrix

©«
0 0 0
0 W 0
0 0 W

ª®¬ =
©«

0 0 0 0 0
0 w11 w

′>
1 0 0

0 w
′
1 W′11 0 0

0 0 0 w11 w
′>
1

0 0 0 w
′>
1 W′11

ª®®®®®¬
7→W′ = ©«

w11 w
′>
1 0

w
′
1 W′11 0

0 0 W′11

ª®¬ ,
for which we cannot �nd a new objective W′′ such that

〈U′,W′〉 = 〈φ2(U′),W′′〉.

This shows that applying MM to orbitopes does indeed break the symmetry and pre-
vents a compact formulation similar to RPMm−1

2 , though at the cost of an SDP of twice
the size. As a corollary, the same is true for the case when L = 2[n], with the minor
addition of the inequality 〈u2,e〉 ≥ 1, since 〈u1,e〉 ≥ 1 is satis�ed by assumption.
Corollary 5.12:
For all n ∈ N, it holds that

N∗1 (Ulex
n,2) �

U(n − 1, 2)

������ u1 +u2 = e, Ui1 + Ui2 = uie>,
diag(U11) = u1, diag(U22) = u2,
〈u2,e〉 ≥ 1, U(n − 1, 2) � 0

 .

Chapter 6

Projection Matrices

So far, we have seen that the symmetrical nature of assignment matrices Un,k(L) has
both led to meaningless solutions as well as more compact formulations of otherwise
large problems. The reason for this is the ’global’ representation of the partition:

Given the i-th row of an assignment matrix, we only know the label of the part
that contains i , but not how this set actually looks like. Since we need the complete
assignment matrix in order to reconstruct the part, in a sense, this information is locally
unknown.

The idea of this chapter is to make this information locally available - if we assign
an actual description of the part containing i to i instead of a label, symmetry will cease
to be an issue, although at the price of a redundant description.

To this end, we will express the partitions as projection matrices in Section 6.1,
which will have nice properties concerning the hierarchy constructed by MM in Sec-
tion 6.2. In Section 6.3, we will apply this representation to both the graph-colouring
and Euclidean k-clustering problems. As a main result of the thesis, we give a new for-
mulation of the graph colouring number χ (G) and relate its relaxations to well-studied
ones from literature.

6.1 Overview

Throughout this chapter, let R = (r1, . . . ,rn) = {rij}i,j∈[n] ∈ Rn×n. We �rst recall some
basic properties about projection matrices arising from orthogonal projections onto
subspaces.

De�nition 6.1:
Let X ∈ Rn×k be a matrix with full column rank to de�ne its corresponding projection
matrix as

ρ(X) := X(X>X)−1X> ∈ Rn×n .

6.1. Overview 67

The set of symmetric projection matrices of size n is de�ned as

SProMn :=
{
R ∈ Rn×n

�� R2 = R, R = R>
}
⊆ Sn+.

Note that by assumption, X>X is invertible and ρ(X) ∈ SProMn. We proceed by
recalling some fundamental properties of projection matrices.
Lemma 6.2:
Let R ∈ SProMn and X ∈ Rn×k with full column rank. Then the following holds:

(i) Binary eigenvalues: spct(R) ⊆ {0, 1},

(ii) Rank equation: tr(R) = rank(R),

(iii) Projection property: ρ(X)X = X, ρ(X) · Rn = X · Rk ,

(iv) Isometry invariance: ρ(X) = ρ(XQ) for all orthogonal Q ∈ Rn×n.

Proof. (i) follows from the Cayley-Hamilton theorem applied to the matrix polynomial
R2 = R. For (ii), note that tr(R) is equivalent to the sum of its eigenvalues, which count
the rank due to (i). (iii) and (iv) follow directly from the de�nition. �

Remark 6.3:
The set of projection matrices can be bijectively mapped to the set of all linear sub-
spaces of Rn by assigning a projection matrix to its image. In particular, the matrix
ρ(X) maps to the column space spanned by X as can be seen by Lemma 6.2.

More speci�cally, we can recover the Grassmannian Gr(k,Rn) as a real variety by
intersecting SProMn with the a�ne hyperplane{

R ∈ Rn×n
�� tr(R) = k

}
and evoking the rank equation in Lemma 6.2.
Example 6.4:
Recall Example 5.6, where we looked at the assignment matrix U and corresponding
partition matrix UU> of the partition {{1, 2}, {3}} given by

U = ©«
0 1
0 1
1 0

ª®¬ and UU> = ©«
1 1 0
1 1 0
0 0 1

ª®¬ .
Applying ρ to U leads us to the corresponding projection matrix

ρ(U) = ©«
1 0
1 0
0 1

ª®¬
(
2 0
0 1

)−1 (
1 1 0
0 0 1

)
=

©«
1
2

1
2 0

1
2

1
2 0

0 0 1

ª®¬ .

68 Chapter 6. Projection Matrices

Denoting the columns as ρ(U) =
(
r1,r2,r3

)
, we observe for the following that

• U>U is a diagonal matrix which contains the size of parts of the partition,

• ρ(U) is a rescaled version of the partition matrix UU>,

• the columns {r1,r2,r3} consist of all eigenvectors of ρ(U) with repetition,

• {r1,r2,r3} ⊆ ∆3,

• ‖ri ‖0 · ‖ri ‖∞ = 1 holds for each column i ∈ [3],

• ri = rj if and only if (ri)j = (rj)i > 0.

The preceding example motivates the following de�nition of a special class of dou-
bly stochastic matrices.
De�nition 6.5:
The set of combinatorial projection matrices CProMn

k
(L) is given as

CProMn
k(L) =

R ∈ Rn×n

��������
col(R) ⊆ ∆n

L
rij · (ri − rj) = 0 ∀i, j ∈ [n]

R = R>

tr(R) = k

 ,
where

∆n
L := {r ∈ ∆n | supp(r) ∈ L} .

The quadratic equations

rij · (ri − rj) = 0 ∀i, j ∈ [n]
will be called block-inducing in the following.

Unsurprisingly, this set turns out to be exactly the projection matrices correspond-
ing to assignment matrices, as shown by the following two lemmas.
Lemma 6.6:
Combinatorial projection matrices are projection matrices

CProMn
k(L) ⊆ SProMn

and have strictly positive diagonal diag(R) > 0. In particular, each column ri is uniquely
determined by its support via

rji = δj∈supp(ri)
1
‖ri ‖0

and satis�es the equation
‖ri ‖0 · ‖ri ‖∞ = 1.

6.1. Overview 69

Proof. Let R ∈ CProMn
k
(L) and choose any i, j, l ∈ [n]. By assumption, the block-

inducing equations ril · (ri − rl) = 0 and rij · (ri − rj) = 0 show the identity

rilrjl = rilrij = rijril = rijrjl ,

using the symmetry of R. Then R2 = R follows from

(R2)ij =
∑
l∈[n]

rilrjl =
∑
l∈[n]

rijrjl = rij
(∑
l∈[n]

rjl

)
= rij = (R)ij ∀i, j ∈ [n].

Furthermore, the block-inducing equations rij · (ri −rj) = 0 show rii(rij −rii) = 0 for all
j ∈ [n], which implies rij ∈ {0, rii}. Since ri ∈ ∆n, we necessarily have rii · ‖ri ‖0 = 1,
which �nishes the proof. �

Theorem 6.7:
The combinatorial projection matrices are precisely the projection matrices corresponding
to assignment matrices:

ρ(Un,k(L)) = CProMn
k(L) ⊆ SProMn .

In particular, ρ is a bijection that shows

Ulex
n,k (L) ↔ CProMn

k(L).

Proof. We �rst show ρ(Un,k(L)) ⊆ CProMn
k
(L), so let U = (u1, . . . ,uk) ∈ Un,k(L). We

already know ρ(U) ∈ SProMn and the corresponding properties from Lemma 6.2, so
we only need to check the �rst two properties outlined in De�nition 6.5.

For the �rst, assume (uj)i = 1 to see

ρ(U)ei = U(U>U)−1U>ei = U(U>U)−1ej = U
ej
〈uj ,uj〉

=
uj

〈e,uj〉
∈ ∆n

L,

where we used that uj is binary in the second to last equation. For later, note the
implication that

{supp(ρ(U)ei) | i ∈ [n]} =
{
supp(Uej)

�� j ∈ [k]} . (6.1)

For the second, assume e>i ρ(U)ej > 0, since ρ(U) ≥ 0 and there is nothing to show
otherwise. Assuming (uj ′)j = 1 and (ui ′)i = 1, we have

0 < e>i ρ(U)ej = e>i U(U>U)−1U>ej = e>i ′ (U>U)−1ej ′ = δi ′,j ′ · (U>U)−1
i ′,i ′,

since (U>U)−1 is diagonal. It follows that i′ = j′, which in turn means

U>ei = ei ′ = ej ′ = U>ej .

70 Chapter 6. Projection Matrices

In particular,
ρ(U)(ei − ej) = U(U>U)−1 (

U>(ei − ej)
)
= 0,

which we wanted to show.
The reverse inclusion ρ(Un,k(L)) ⊇ CProMn

k
(L) follows if we can show that ρ is a

bijection from Ulex
n,k
(L) to CProMn

k
(L), since ρ(Un,k(L)) = ρ(Ulex

n,k
(L)) by the isometry

invariance of Lemma 6.2.
To see that ρ is injective, note that the invariant (6.1) immediately shows that when-

ever U,U′ ∈ Ulex
n,k
(L) are assignment matrices of distinct partitions T , T′, then also

ρ(U) , ρ(U′).
To show surjectivity, we argue that for R ∈ CProMn

k
(L), the map

R→ T(R) =: {supp(ri) | i ∈ [n]} ∈ Pn
k (L)

is well-de�ned and injective, since then the corresponding assignment-matrices de�ne
a proper inverse ρ−1(R).

Since ri ∈ ∆n
L, we have T(R) ⊆ L∗. Disjointness of the sets in T(R) follows from

the implications of the block-inducing equations, and coverage of [n] follows due to R
being doubly stochastic and so T(R) ∈ Pn

k
(L) is well-de�ned.

Finally, the map R→ T(R) is injective since R can be uniquely reconstructed from
T(R) by starting with i ∈ supp(ri) and applying Lemma 6.6. �

6.2 Convexi�cation
As in the case of partition matrices, we are interested in the complexity of optimizing
a linear function over CProMn

k
(L). Unfortunately, Section 6.3 shows examples where

this is NP-hard, so we can not expect a algorithmically exploitable description. For this
reason, we again revert to studying relaxations of the convex hull.

The easiest convex relaxation for CProMn
k
(L) is given by replacing the non-linear

constraints
rij · (ri − rj) = 0 ∀i, j ∈ [n]

with a psd. constraint R � 0 emerging from the fact that since R is a projection matrix,
we have R2 = R. We thus get the set

RProMn
k(L)

0 =
{
R ∈ Rn×n+

�� tr(R) = k, Re = e, 〈R,ΩL〉 = 0, R � 0
}
.

Just like in the preceding chapters, the idea now is to take the variety CProMn
k
(L)

and apply MM to it. For this reason, we will need to investigate the monomial structure
of the underlying ideal of CProMn

k
(L), which we will call Iρ and is de�ned as

Iρ =
〈{
rij − rji , tr(R) − k, 〈ri ,e〉 − 1, rij(ril − rjl) ∀i, j, l ∈ [n]

}〉
⊆ R[R].

6.2. Convexi�cation 71

Unfortunately, the ideal Iρ is an example where stating a reduced Gröbner basis
and a corresponding basis for R[R]/Iρ explicitly becomes di�cult and would distract
from the underlying problem structure. For this reason, we will only state a generating
system instead of a basis.
Lemma 6.8:
A monomial generating system of Rt [R]/Iρ can be indexed by the set

ProMon,t =
{
(G,ψ) ∈ Gn × NCC(G)

����� 1
2 |E(G)| +

∑
T∈CC(G)

ψ (T) = t

}
.

Proof. Let RΨ ∈ Rt [R], so in particular Ψ ∈ Nn×nt . We will show that each equivalence
class [RΨ] ∈ Rt [R]/Iρ can be identi�ed with a pair (G,ψ) as described in the set above.
To simplify notation, we will note that the congruence RΨ ≡ RΨ′ mod Iρ can equiva-
lently be expressed as a congruence on the exponent matrices Ψ � Ψ′, whose integer
entries describe the powers of the corresponding variables.

First, since the columns of R are normalized, we have the inclusion

R[R]/Iρ ⊆
∏
i∈[n]
R[ri]/I(∆n)

and we can use homogenization (2.5) on any column ri to see that RΨ can be written
as a sum of several RΨ′ , where Ψ′ ∈ Nn×n and 〈Ψ′, Jn〉 = t .

Second, we can �nd Ψ′ � Ψ′′ where Ψ′′ is upper triangular, since rij = rji , and so
everything can be expressed in terms of rij with i ≤ j.

Third, we can use the identities rij(ril − rjl) = 0 with l = j to see that

rjj · rij = r 2
ij = rii · rij , (6.2)

which shows that we can decrease the o�-diagonal entries of Ψ exceeding 1 to in-
crease the main-diagonal of the corresponding column or row. We thus can �nd upper-
triangular Ψ′′′ � Ψ′′ such that

Ψ′′′ ∈ {0, 1}n×n + Diag(Nn), 〈Ψ′′, Jn〉 = t ,

e.g. all o�-diagonal exponents are binary.
In this form, the o�-diagonal entries of Ψ′′′ de�ne the adjacency matrix of a directed

graph, which we can identify with its underlying undirected graphG. We de�ne a map
ψ ∈ NCC(G) by setting

ψ (T) =
∑
i∈T

Ψii ∀T ∈ CC(G).

Then (6.2) shows that the construction ofψ is independent on how we choose to con-
struct Ψ′′′ from Ψ′′, since we can decrease any Ψ′′′ii by an integer to increase Ψ′′′jj by the

72 Chapter 6. Projection Matrices

same amount whenever the edge (i, j) is contained inG without leaving its equivalence
class. In particular, this extends to any connecting path between i and j, such that the
sum of the diagonal entries over a connected component are invariant. We can thus
identify Ψ′ with the couple (G,ψ) as claimed, allowing us to write any RΨ as a linear
combination of such monomials. �

One can verify that ProMon,1 �
{
(i, j) ∈ [n]2

�� i ≤ j
}
, as graphs containing a single

edge (i, j) can be identi�ed with that edge, and the connected components of edge-
less graphs can be identi�ed with their vertices i to yield (i, i). We thus recover the
monomials

{
rij

�� i ≤ j
}

we started with.

Remark 6.9:
The monomial generating system indexed by ProMon,t in Lemma 6.8 is not isomorphic
to a basis for Rt [R]/Iρ , since further reductions via the unused equation tr(R) − k are
possible. We neglect any such simpli�cations for the sake of clarity.

While considering Rt [R] with symmetry equations would lead to z(n2)(t) monomi-
als, the reduced system indexed by ProMon,t grows much slower, as can be seen in
Table 6.1.

1 2 3 4 5
5 15 100 390 1000 1863
6 21 201 1156 4451 12230
7 28 364 2905 15876 62972

1 2 3 4 5
5 16 136 816 3876 15504
6 22 253 2024 12650 65780
7 29 435 4495 35960 237336

Table 6.1: Left: | ProMon,t | indexed by pairs (n, t). Right: Values dim(Rt [R]) indexed
by pairs (n, t).

Table 6.1 shows that the number of monomials for approximating CProMn
k
(L) grows

much too fast. Unfortunately, even the very �rst stage of MM needs second order
moments, which still grow too fast even for small inputs. To remedy this, we can relax
the �rst stage of MM by discarding some of the o�-diagonal entries. One way to do
this is by starting with all monomials in R[R], discarding o�-diagonal entries to end
up with a block-diagonal structure and then reducing the remaining matrices by using
a smaller monomial base suited for R[R]/Iρ .

The main matrix in N∗1 (CProMn
k
(L)) is given by

M1(R) =
©«

1 r>1 . . . r>n
r1 R11 . . . R1n
...
...
. . .

...
rn Rn1 . . . Rnn

ª®®®®¬
� 0.

6.2. Convexi�cation 73

The easiest way to relax this condition is to discard all matrices Rij with i , j, which
relaxes M1(R) � 0 to the system

M1(ri) =
(

1 r>i
ri Rii

)
� 0 ∀i ∈ [n].

Invoking the results of Lemma 6.8, we see that we can discard the �rst row and column
from this condition. Applying the remaining constraints for each Rii , we end up with
feasible sets

Ri =
{
Rii ∈ Rn×n+

�� 〈Rii , Jn〉 = 1, Riiei = diag(Rii), Rii � 0
}
,

where the condition Riiei = diag(Rii) breaks the symmetry between di�erent i ∈ [n].
By invoking the block inducing equations, one can show that additionally, the matrices
Rii are linked through the constraints∑

i∈[n]
Rii = R

and
(Rii)jl = (Rjj)il = (Rll)ij ,

which implies that we can consider each matrix Rii as a slice of a symmetrical third-
order tensor, as shown in Figure 6.1.

=
R11

=
R11 R22 R33

=
R11

R22

R33

Figure 6.1: Di�erent ways to align the variables of the various Rii into the same sym-
metrical third order tensor, each cube representing one variable.

Denoting this structure with the set

R =

{
R ∈ Rn×n

����� R =
∑
i∈[n]

Rii , (Rii)jl = (Rjj)il , Rii ∈ Ri ∀i, j, l ∈ [n]
}
,

a relaxation of the �rst stage of MM is given by

RProMn
k(L) = {R ∈ R | tr(R) = k, Re = e, 〈R,ΩL〉 = 0} ,

where RProMn
k
(L)0 relaxes this set by using R ⊆ Rn×n+ ∩ Sn+.

74 Chapter 6. Projection Matrices

Remark 6.10:
The approach of constructing a symmetrical third-order tensor to relax a moment ma-
trix of order 1 was already proposed in [GL08] to relax a combinatorial moment matrix
of order 1 for the stable set problem. In particular, each entry of our tensor can be iden-
ti�ed with a set {i, j, l} via its indices, which can in turn be understood as a rescaling
of combinatorial moments up to the third order.

While this process can be generalized to turn higher order combinatorial moment
matrices of rank 1 into symmetrical tensors of appropriate order, it does not work in
our setting. The main reason is the assumption rank(R) = k > 1, which destroys the
symmetry; in general, the equation (Rij)lm = (Ril)jm will not hold, so we can not derive
unique entries for the entries associated with {i, j, l ,m}.

6.3 Applications

6.3.1 Graph Colouring
We will shortly recall the basics about graph colouring before we show how to use
projection matrices for a new formulation of this problem. For an extensive survey on
convex relaxations for graph colouring, consider [GL08].

Stable Sets
De�nition 6.11:
A stable set of a graph G ∈ Gn is a subset S ⊆ [n] such that the subgraph induced
by S does not contain any edges. The set of stable sets in G is denoted by SG ⊆ 2[n].
The stable set number α(G) is the biggest size |S | of any stable set in G and de�nes a
function α : Gn → N. The clique number ω(G) of G is the biggest size |S | of a stable
set in the complement graph G, so ω(G) := α(G).

Formally, we can express α(G) as the solution to an integer problem by working
with characteristic vectors x ∈ {0, 1}n via

α(G) = max
{
〈x ,e〉

�� xixj = 0 ∀(i, j) ∈ E, x ∈ {0, 1}n}
= max

{
〈x ,e〉

�� x>AGx = 0, x ∈ {0, 1}n
}
,

where AG denotes the adjacency matrix of G. For later, we will note the following
crucial property of SG .
Lemma 6.12:
The stable sets SG form an independence system.

Proof. Follows directly by checking the properties in the de�nition (2.2). �

6.3. Applications 75

Graph Colourings

De�nition 6.13:
A k-colouring of a graph G = ([n],E) is a k-partition T = (T1, . . . ,Tk) of the node set
[n], such that each Ti is a stable set in G. The chromatic number χ (G) is the smallest
value k such that G has a k-colouring.

As shown back in Example 4.7, computing χ (G) is a minimum cover problem, but
it can not be modelled with assignment matrices alone. While there is a model involv-
ing assignment matrices, we will consider another standard formulation in terms of
extended partition matrices instead.

χ (G) = min
{
k ∈ N

�� X ∈ PMn
k(SG)

}
(6.3)

= min
{
k ∈ R

���� (
k e>

e X

)
� 0, 〈X,AG〉 = 0, diag(X) = e, X ∈ {0, 1}n×n

}
Unfortunately, we have the following hardness result.

Theorem 6.14 ([Sch03, BS94]):
Computing α(G) or χ (G) is NP-hard. Furthermore, it is NP-hard to approximate χ (G)
within n1/14−ϵ for any ε > 0.

In spite of being NP-hard to compute in general, χ (G) behaves much nicer restricted
to special classes of graphs with regards to the following construction.

De�nition 6.15 (Lovász theta number [Lov79]):
The Lovász theta number ϑ (G) is the optimal value of the following primal/dual SDP
problems

max {〈X, Jn〉 | 〈X, In〉 = 1, 〈X,AG〉 = 0, X � 0} , (ϑ -P)

min
{
k

���� diag(Y) = e, 〈Y,AG〉 = 0,
(
k e>

e Y

)
� 0

}
. (ϑ -D)

Theorem 6.16 (Lovász sandwich Theorem [Lov87]):
For all G ∈ Gn, we have

ω(G) ≤ ϑ (G) ≤ χ (G).

This result shines in the context of perfect graphs, where ω(H) = χ (H) for all
induced subgraphs H ⊆ G, and χ (G) can be computed in polynomial time. For more
on the theory of perfect graphs, consider the recent survey [Tro15].

In spite of the hardness results in Theorem 6.14, a lot of work has been done to
improve ϑ (G) to get better bounds for imperfect graphs. We exemplarily show the
following variants taken from [DR07] and [GL08].

76 Chapter 6. Projection Matrices

Nonnegativity

Adding X ≥ 0 to (ϑ -P) and Y ≥ 0 to (ϑ -D) results in the Schrijver number ϑ−(G)
[Sch79] and the Szegedy number ϑ+(G) [Sze94] respectively.

Applying MM

Following Section 5.3, we can interpret PMn
k
(SG) in (6.3) as variety in terms ofUn,k(SG),

and MM can be applied as shown before. Denoting the corresponding optimal value
of the t-th stage asψ (t)(G), we get a converging hierarchy of lower bounds for χ (G).

Note that we actually have ψ (1)(G) = ϑ (G), since the feasible set of formulation
(ϑ -D) is precisely the relaxation RPMn

k
(SG) in this case. In particular, the Lovász theta

number arises from the underlying MM hierarchy, and so MM can be seen as a natural
generalization.

Summarizing the results so far, [GL08] shows

ψ (1)(G) = ϑ (G) ≤ ϑ+(G) ≤ ψ (2)(G) ≤ χ (G).

There are several other relaxations for χ (G) available in [GL08], where among others
the computationally tractableψ (G) is introduced.

The projection ϑ -number

We now propose a new formulation in terms of projection matrices and relate it to
ϑ (G).
Theorem 6.17:
We have the following characterization of the chromatic number:

χ (G) = min
{
k

�� CProMn
k(SG) , ∅

}
= min

tr(R)

��������
col(R) ⊆ ∆n

rij = 0 ∀(i, j) ∈ E(G)
rij · (ri − rj) = 0 ∀i, j ∈ [n]

R = R>

 .
Proof. The �rst equation follows by de�nition, so we will show the second. Let χ ′(G)
denote the optimal value of the second optimization problem and let T be a mini-
mal colouring with χ (G) colours. Then the projection matrix R(T) corresponding
to T is feasible for the second optimization problem, since supp(R(T)ej) ∈ SG and
diag(R(T)) > 0 imply e>i R(T)ej = 0 whenever (i, j) ∈ E(G), and so χ ′(G) ≤ χ (G).

To see the other inequality, �rst note that χ ′(G) ≥ 0 is integral, since whenever R
is feasible, R ∈ SProMn as shown in the proof of Lemma 6.6, and so the eigenvalues of

6.3. Applications 77

R are binary. It su�ces to show that R ∈ CProMn
tr(R)(SG) then, and the only thing that

is left to prove is supp(ri) ∈ SG .
Suppose that supp(ri) < SG , so there is (j, l) ∈ E(G) such that (ri)j , (ri)l > 0. It

follows from rij · (ri − rj) = 0 that (rj)l = (ri)l > 0, which contradicts (rj)l = 0. �

The importance of the preceding theorem lies in the fact that we made the con-
straint supp(ri) ∈ SG tractable, so that we can use the hierarchy given by MM to ap-
proximate χ (G). Following Section 6.2, we can immediately give the 0-th stage of our
relaxations.
De�nition 6.18:
The projection ϑ -number is given as

ϑ̂ (G) :=min
{
k ∈ Rn+

�� RProMn
k(SG)

0 , ∅
}

=min
{
tr(R)

�� R � 0, Re = e, 〈R,AG〉 = 0, R ≥ 0
}
. (6.4)

We should note that by non-negativity of R, we have

〈R,AG〉 = 0 ⇔ rij = 0 ∀(i, j) ∈ E(G),
and we will prefer this notation. For the following, it will be important to explicitly
write down the Szegedy number mentioned before, which is given as

ϑ+(G) := min
{
x0

���� (
x0 e>

e X

)
� 0, diag(X) = e, 〈X,AG〉 = 0, X ≥ 0

}
. (6.5)

Since both bounds have similar computational complexity, it makes sense to com-
pare their quality. Unfortunately, it turns out that the classical approach is always at
least as good as using projection matrices, as shown in the following theorem.
Theorem 6.19:
Let G ∈ Gn, then ϑ+(G) ≥ ϑ̂ (G).

Proof. Let x0 = ϑ
+(G) and X be an optimal solution to (6.5). Since X is symmetrical and

non-negative, it follows from [BPS66] that there exists a diagonal matrix D = Diag(d)
with d > 0 such that(

1 0
0 D

) (
ϑ+(G) e>

e X

) (
1 0
0 D

)
=

(
ϑ+(G) d>

d DXD

)
� 0,

where R := DXD is doubly stochastic, so Re = e . In particular, R is feasible for (6.4),
and we have tr(R) = ‖d ‖22 . Using positive semide�niteness, for any µ ∈ R, we have

0 ≤
(
−1
µd

)> (
ϑ+(G) d>

d R

) (
−1
µd

)
= ϑ+(G) − 2µ‖d ‖22 + µ2(d>Rd)

78 Chapter 6. Projection Matrices

which becomes

ϑ+(G) ≥ 2µ‖d ‖22 − µ2(d>Rd) = ‖d ‖22
(
2µ − µ2(d>‖d ‖2 R d

‖d ‖2)
)

≥ ‖d ‖22
(
2µ − µ2) = tr(R)

(
2µ − µ2) .

Since max
{
2µ − µ2 �� µ ∈ R} = 1, it follows that R is a feasible solution to (6.4) that

satis�es ϑ+(G) ≥ tr(R) and the theorem follows. �

A crucial question in understanding the projection-model is the magnitude of the
gap ϑ+(G) − ϑ̂ (G). It turns out that we can state an explicit asymptotic lowerbound.
Theorem 6.20:
The worst case gap ϑ+(G) − ϑ̂ (G) has asymptotic behaviour

max
{
ϑ+(G) − ϑ̂ (G)

��� G ∈ Gn} = Ω(n).

In particular,

lim sup
n→∞

max
{
ϑ+(G) − ϑ̂ (G)

n

����� G ∈ Gn
}
≥

(
3
√

2
− 2

)
≈ 0, 1213.

Proof. We will explicitly construct a graph family for which the bound on the gap holds
true asymptotically. To this end, consider for any two integers n1,n2 ∈ N, the graph

G(n1,n2) := Kn1 ∪ Kn2,

which we de�ne as the union of two complete graphs withn1 andn2 nodes respectively.
In particular, the corresponding adjacency matrix is given as

AG(n1,n2) =

(
Jn1 − In1 0

0 Jn2 − In2

)
,

and since these graphs are perfect, we explicitly have

χ (G(n1,n2)) = ϑ+(G(n1,n2)) = ω(G(n1,n2)) = max(n1,n2).

For ϑ̂ (G(n1,n2)), we will construct the optimal solution R in closed form. Since this
graph has multiple symmetries, we can assume R to be symmetry invariant and para-
metrize the feasible set with only three parameters α , β ,γ by setting

R =
(
α In1 βJn1,n2
βJn2,n1 γ In2

)
.

6.3. Applications 79

Now that the constraint 〈R,AG(n1,n2)〉 = 0 is satis�ed, the remaining a�ne constraints
turn into

R ≥ 0 ⇔ α , β,γ ≥ 0,
Re = e ⇔ α + n2β = 1, γ + n1β = 1.

Assuming α ,γ , 0 to make the condition R � 0 non-trivial, we can use the Schur
complement Lemma 2.5 to rewrite

R � 0 ⇔ γ In2 −
β2

α
Jn2,n1 · Jn1,n2 � 0 ⇔ γ In2 −

β2

α
n1Jn2 � 0

⇔ γ ≥ β2

α
n1n2,

where we used the fact that Jn only has one non-zero eigenvalue given by n. Lastly,
we can explicitly express the objective function as

tr(R) = αn1 + γn2 = n1 + n2 − 2n1n2β,

using the a�ne constraints. Ignoring the constants, the resulting problem of comput-
ing the number ϑ̂ (G(n1,n2)) is equivalent to

max
{
β

�� α + n2β = 1, γ + n1β = 1, αγ ≥ β2n1n2, α , β,γ ≥ 0
}
.

Using the equations, one can show that the unique solution is

©«
α
β
γ

ª®¬ = 1
n1 + n2

©«
n1
1
n2

ª®¬
and

ϑ̂ (G(n1,n2)) =
n2

1 + n
2
2

n1 + n2
.

In particular, we now have the gap

∆(n1,n2) := ϑ+(G(n1,n2)) − ϑ̂ (G(n1,n2)) = max(n1,n2) −
n2

1 + n
2
2

n1 + n2
. (6.6)

W.l.o.g., let n1 =m, n2 = µm ∈ N for some µ ∈ [0, 1]. Then (6.6) reads

∆(m, µm) =m − (1 + µ
2)m2

(1 + µ)m = µ

(
1 − µ
1 + µ

)
m.

Finally, optimizing the choice µ ∈ [0, 1] yields the biggest theoretical gap for µ =
√

2−1
and

max
µ∈[0,1]

∆(m, µm) = (3 − 2
√

2)m.

80 Chapter 6. Projection Matrices

For growing m, we can approximate this gap arbitrarily well by choosing n1 = m and
n2 = d(

√
2 − 1)me to get a graph of size d

√
2me with asymptotic relative gap

lim sup
m→∞

∆(m, d(
√

2 − 1)me)
d
√

2me
=

3 − 2
√

2
√

2
≈ 0, 1213.

�

As a side e�ect of the preceding theorem, we get the following corollary, which
might explain the discrepancy by relating ϑ̂ (G) to Theorem 6.16.
Corollary 6.21:
The inequationω(G) ≤ ϑ̂ (G) does not hold in general. In particular, ϑ̂ (G) is not necessarily
exact for perfect graphs G.

Even though the preceding results show severe disadvantages over the classical
formulation, we can recover some useful properties for the class of vertex-transitive
graphs. We �rst cite the property in question.
Theorem 6.22 ([Sze94]):
For all G ∈ Gn, the inequality

ϑ+(G) · ϑ−(G) ≥ n

holds, with equality if G is vertex-transitive.

Surprisingly, we can use ϑ̂ (G) to sharpen this inequality.
Lemma 6.23:
For all G ∈ Gn, the inequality ϑ̂ (G) · ϑ−(G) ≥ n holds.

Proof. Let R be an optimal solution to (6.4). Recalling the de�nition

ϑ−(G) = max
{
〈X, J〉

�� tr(X) = 1, 〈X,AG〉 = 0, X � 0, X ≥ 0
}

as (ϑ -P) with non-negativity constraints, we see that X := 1
tr(R)R is a feasible solution

and as desired,
ϑ−(G) ≥ 〈X, J〉 = 〈R, J〉tr(R) =

n

ϑ̂ (G)
.

�

Theorem 6.24:
For vertex-transitive G ∈ Gn, we have

ϑ+(G) = ϑ̂ (G).

In particular, ω(G) = ϑ̂ (G) = χ (G) for vertex-transitive perfect G ∈ Gn.

6.3. Applications 81

Proof. Using Theorem 6.19, Lemma 6.23 and Theorem 6.22, we see that

ϑ+(G) ≥ ϑ̂ (G) ≥ n

ϑ−(G)
= ϑ+(G)

whenever G ∈ Gn is vertex-transitive. �

Since vertex-transitive graphs are known to be examples for which the relaxations
ϑ (G) and ϑ+(G) perform badly, it is surprising to see that we can recover an analogue
of Theorem 6.16 for ϑ̂ (G) in this case. The implication is that the advantage of ϑ (G)
over ϑ̂ (G) is related to exploiting the lacking symmetries of a given graph.

Moving up in the hierarchy

We close this section by noting that even when we re�ne ϑ̂ (G) by using the compu-
tationally expensive RProMn

k
(SG) instead of RProMn

k
(SG)0, we still cannot guarantee a

lower-bound of ϑ (G). To this end, let

ϑ̂ ′(G) := min
{
k ∈ Rn+

�� RProMn
k(SG) , ∅

}
be the corresponding strengthening of ϑ̂ (G).

Empirical evidence points to the fact that ϑ̂ ′(G) yields the correct answer for the
graph classG(n1,n2) used as counter example in Theorem 6.20. However, we can easily
generalize this counter example to �nd another class of perfect graphs for which we
get results where ϑ (G) > ϑ̂ ′(G). Let n1,n2,n3 ∈ N such that

G(n1,n2,n3) = Kn1 ∪ Kn2 ∪ Kn3

is the union of three complete graphs. Again, this class of graphs is perfect, and as
such we get

ϑ (G(n1,n2,n3)) = ω(G(n1,n2,n3)) = max{n1,n2,n3}.

Continuing in this fashion, we also de�ne the class of perfect graphs given by the union
of a complete graph on n1 nodes together withm isolated nodes, or more formally

G(n1,em) = Kn1 ∪
(⋃
i∈[m]

K1

)
,

where
ϑ (G(n1,em)) = ω(G(n1,em)) = n1.

Fixing the number of total nodes to 9, the tables in Figure 6.2 and 6.3 show how the
various relaxations behave. While there is a de�nite increase in quality by going from

82 Chapter 6. Projection Matrices

n1 n2 n3 ϑ̂ ϑ̂ ′ ϑ = χ
3 3 3 3 3 3
4 3 2 3.222 3.968 4
4 4 1 3.666 4 4
5 2 2 3.666 4.972 5
5 3 1 3.888 4.983 5
6 2 1 4.555 5.983 6
7 1 1 5.666 6.985 7

Table 6.2: Relaxations for G(n1,n2,n3).

n1 m ϑ̂ ϑ̂ ′ ϑ = χ
2 7 1.222 1.772 2
3 6 1.666 2.792 3
4 5 2.333 3.851 4
5 4 3.222 4.905 5
6 3 4.333 5.951 6
7 2 5.666 6.986 7
8 1 7.222 8 8

Table 6.3: Relaxations for G(n1,em).

ϑ̂ (G) to ϑ̂ ′(G), the di�erence between ϑ̂ ′(G) and ϑ (G) grows roughly linear with the
number of connected components.

The main reason for this bad performance of relaxations based on projection matri-
ces is the fact that the relaxations are not monotone in terms of subgraphs. In particular,
if H is a subgraph of G, then we have the implication

H ≤ G ⇒ ϑ (H) ≤ ϑ (G),

which is not true for either ϑ̂ (G) or ϑ̂ ′(G). Unfortunately, it is not straightforward to
add this property to the functions in question, leaving them at a inherent disadvantage
compared to the original ϑ -function. In particular, this begs the question if in general,
approximating matrices with binary eigenvalues is harder than approximating matri-
ces with binary entries.

6.3.2 Euclidean k-Clustering

Surprisingly, projection matrices also occur naturally in Euclidean clustering, where the
goal is to cluster points in euclidean space into sets such that their deviation from a
central point, or centroid, is minimal. More formally, we have the following de�nition.
De�nition 6.25:
Let B = (b1, . . . ,bn) ∈ Rd×n and de�ne the corresponding squared error set-function
SEB : 2[n] → R as

SEB(T) = min
{∑
i∈T
‖bi − x ‖22

����� x ∈ Rd
}
.

Then Euclidean k-clustering is the separable partition problem given by

min
{∑
T∈T

SEB(T)
����� T ∈ Pn

k

}
. (6.7)

6.3. Applications 83

Unfortunately, Euclidean k-clustering is known to be NP-hard [ADHP09]. We cite
the following, stronger result regarding its approximation.

Theorem 6.26 ([ACKS15]):
There exists a constant ε > 0 such that it is NP-hard to approximate the Euclidean k-
clustering problem (6.7) to a factor better than (1 + ε).

In alternative to (6.7), we can restate the problem by using assignment matrices via

min
{∑
T∈T

SEB(T)
����� T ∈ Pn

k

}
= min

{∑
T∈T

min
{∑
i∈T
‖bi − x ‖22

����� x ∈ Rd
} ����� T ∈ Pn

k

}
= min

{∑
T∈T

∑
i∈T
‖bi − xT ‖22

����� T ∈ Pn
k , {xT }T∈T ⊆ R

d

}
= min

{∑
j∈[k]

∑
i∈[n]

uij ‖bi − xj ‖22

����� U ∈ Un,k , X ∈ Rd×k
}
.

It is important to note that due to symmetry, the minimizers of this formulation
are not unique. While we could remedy this by working with Ulex

n,k
, it would be di�-

cult to apply MM due to the newly introduced centroid variables xj . Instead, we will
reformulate the problem based on the following lemma.

Lemma 6.27:
The function SEB has the following explicit form:

SEB(T) =
∑
i∈T
‖bi ‖22 −

1
|T |

∑
i∈T

bi

2

2

In particular, the unique minimizer of SEB(T) is given by

x∗T =

∑
i∈T bi
|T | .

Proof. For a �xed T ∈ 2[n], let д(x) = ∑
i∈T ‖bi − x ‖22 . Since д is convex, it su�ces to

�nd a local minimizer by �nding a point where the gradient vanishes. This leads to

∇д(x) = 2
∑
i∈T
(x − bi),

84 Chapter 6. Projection Matrices

which vanishes if and only if |T | · x = ∑
i∈T bi . Consequently,

SEB(T) = д(x∗T) =
∑
i∈T

bi − ∑
i∈T bi
|T |

2

2

=
∑
i∈T

(
‖bi ‖22 −

2
|T | 〈bi ,

∑
j∈T

bj〉 +
∑i∈T bi
|T |

2

2

)
=

∑
i∈T
‖bi ‖22 −

1
|T |

∑
i∈T

bi

2

2
.

�

Corollary 6.28:
For each T ∈ 2[n], the unique minimizer of SEB(T) is contained in conv({bi | i ∈ [n]}),
the convex hull of the data points. Since each vertex bi is a minimizer of SEB({i}), this set
coincides with the convex hull of all minimizers of SEB, which shows that it has a compact
description as a polytope on n vertices.

Lemma 6.27 allows us to formulate Euclidean k-clustering as a linear optimization
problem over the set of combinatorial projection matrices as follows.

Theorem 6.29 ([PX05]):
The Euclidean k-clustering problem (6.7) is equivalent to

min
{
〈B>B, In − R〉

�� R ∈ CProMn
k

}
.

Proof. Let T ∈ Pn
k

and let U = (u1, . . . ,uk) ∈ Un,k be the corresponding assignment
matrix. Applying Lemma 6.27 to (6.7) shows∑
T∈T

SEB(T) =
∑
T∈T

∑
i∈T
‖bi ‖22 −

∑
T∈T

1
|T |

∑
i∈T

bi

2

2
=

∑
i∈[n]
‖bi ‖22 −

∑
j∈[k]

1
‖uj ‖22

‖Buj ‖22

= 〈B>B, In〉 −
∑
j∈[k]

1
‖uj ‖22

〈B>B,uju
>
j 〉 =

〈
B>B, In −

∑
j∈[k]

uju>j

‖uj ‖22

〉
= 〈B>B, In − ρ(U)〉.

Since ρ(Un,k) = CProMn
k

by Theorem 6.7, the result follows. �

This formulation was already proposed in [PX05], where it was shown that the
same is true for a slightly relaxed formulation of CProMn

k
, where the block inducing

equations are replaced with the more general projection constraint R2 = R.

6.3. Applications 85

Convexi�cation

In [PW07], it was shown that RProMn,0
k

is a suitable relaxation for CProMn
k

and that
using techniques similar to spectral clustering, one can use the solution of

min
{
〈B>B, In − R〉

�� R ∈ RProMn,0
k

}
. (6.8)

to arrive at a Euclidean k-clustering problem in dimensionRk−1. Solving the new prob-
lem is, for the common situation where d � k , signi�cantly easier, and it is shown that
such a solution can be used to reconstruct a 2-approximation of the original problem.
In particular, for the special case of k = 2, the resulting clustering problem can be
solved in time O(n logn).

While it is possible to improve the results of (6.8) by going from RProMn,0
k

to the
sharper relaxation RProMn

k
, the runtimes of other approximation algorithms give little

incentives to do so. For a proper overview over viable alternatives, we direct the reader
to the paper [PW07].

Chapter 7

A�ne Euclidean Clustering

This chapter covers the treatment of what we call the a�ne Euclidean k-clustering
problem by using a simplicial cover of the feasible set. This is the largest chapter of
this thesis, since this problem is very general and can express many di�erent kinds of
partition problems.

In Section 7.1, we introduce the problem and show how it is an overall much harder
generalization of Euclidean k-clustering. In order to tackle this problem anyway, we
introduce the concept of simplicial cover in Section 7.2 and show how to use this to
reformulate the problem into a much more structured form, ready to be exploited in
Section 7.3 to formulate convex relaxations. At this point, we are able to relate our
relaxation to existing work in Section 7.4 before we go on by showing how to extract
feasible solutions in Section 7.5. After that, we show how our approach can be gen-
eralized to various variants of the problem in Section 7.6 before we �nish the chapter
with a discussion of applications in Section 7.7.

7.1 Overview
This section outlines the problem of a�ne Euclidean k-clustering and the associated
di�culties in solving it.

7.1.1 Problem Formulation

In Section 6.3.2, we considered set functions SEB, which mapped a subset of given
points to their least-square centroid as partition criterion. In this chapter, we will
examine a generalization of these functions with increased expressiveness and start
by introducing them.
De�nition 7.1:
A set function SEAB : 2[n] → R is called an a�ne squared error function, if there are

7.1. Overview 87

matrices A := {Ai}i∈[n] ⊆ Rl×d and B = (b1, . . . ,bn) ∈ Rl×n such that

SEAB (T) = min
{∑
i∈T
‖Aix − bi ‖22

����� x ∈ Rd
}
. (7.1)

Setting d = l and using Ai = Id for all i ∈ [n], we recover SEB. However, com-
pared to SEB, the map SEAB is more complex, as it can in general not be geometrically
understood as computing a centroid of the point set {bi}i∈T . Following Section 6.3.2,
we de�ne the a�ne Euclidean k-clustering problem as the separable partition problem
given by

min
{∑
T∈T

SEAB (T)
����� T ∈ Pn

k

}
. (7.2)

Alternatively, we can restate the problem by using assignment matrices via

min
{∑
T∈T

SEAB (T)
����� T ∈ Pn

k

}
= min

{∑
T∈T

min
{∑
i∈T
‖Aix − bi ‖22

����� x ∈ Rd
} ����� T ∈ Pn

k

}
= min

{∑
T∈T

∑
i∈T
‖AixT − bi ‖22

����� T ∈ Pn
k , {xT }T∈T ⊆ R

d

}
= min

{∑
j∈[k]

∑
i∈[n]

uij ‖Aixj − bi ‖22

����� U ∈ Un,k , X ∈ Rd×k
}
.

For later reference, the formulation

min
{∑
j∈[k]

∑
i∈[n]

uij ‖Aixj − bi ‖22

����� U ∈ Un,k ,X ∈ Rd×k
}
. (7.3)

will be referred to as a�ne Euclidean k-clustering from now on and will be the focus
of this chapter. We start with a basic observation.
Lemma 7.2:
Problem (7.3) is a polynomial optimization problem.

Proof. Since
‖Aixj − bi ‖2 = x>j (A>i Ai)xj − 2(b>i Ai)xj + ‖bi ‖22

and
uij ∈ {0, 1} ⇔ uij(1 − uij) = 0

for all i ∈ [n] and j ∈ [k], we need to optimize a polynomial over a real variety. �

88 Chapter 7. A�ne Euclidean Clustering

We point out that again due to symmetry, the minimizers of (7.3) are not unique,
since any permutation acting on the columns of both U and X simultaneously will
leave the objective value invariant.

While we could hope on using Ulex
n,k

to remedy this, it would be di�cult to apply
MM due to the newly introduced centroid variables X. In particular, the total degree of
the objective function is 3 due to X, so that we would need the prohibitive big second
stage of MM, which is not available for practical computations. Furthermore, it is hard
to extract feasible solutions from lower levels of MM, and the symmetrical structure
of the problem makes this even harder.

Instead, a better strategy would be to �rst reduce the problem to a more compact
reformulation. To this end, it makes sense to follow Section 6.3.2 again and to try
�nding a closed form for SEAB . This leads to the following lemma.
Lemma 7.3:
The minimizers of SEAB (T) are given as the solution space of the linear system

∑
i∈T

A>i bi =

(∑
i∈T

A>i Ai

)
x .

Proof. For a �xed set T ∈ 2[n], let д(x) = ∑
i∈T ‖Aix − bi ‖22 . Since д is continuous

and convex, it su�ces to �nd a local minimizer by �nding a point where the gradient
vanishes. This leads to

∇д(x) = 2
∑
i∈T

A>i (Aix − bi),

which vanishes if and only if x solves the linear system ∑
i∈T A>i bi =

(∑
i∈T A>i Ai

)
x .
�

Unfortunately, the introduction of the linear maps Ai makes it very di�cult to give
an explicit formula for the minimizer of SEAB , so that we can not follow the approach
from Section 6.3.2. Before pursuing a di�erent line of thought in the following section,
we �nish with a theorem that highlights the potential complexity of SEAB .
Theorem 7.4:
We can �nd matrices {Ai}i∈[n] and vectors {bi}i∈[n] such that the convex hull of the min-
imizers of SEAB (T) is a polytope with an exponential number of vertices and facets in the
input size.

Proof. We will explicitly construct such an instance for a given numbern of pairs (A,b).
Before we start, �rst note that if we partition

Ai =

(
Ai,1 0
0 Ai,2

)
, bi =

(
bi,1
bi,2

)
, x =

(
x1
x2

)

7.1. Overview 89

into blocks of consistent dimension, we can separate

SEAB (T) = SEA1
B1
(T) + SEA2

B2
(T)

whereAj = {Ai,j}i∈[n] ⊆ Rlj×dj and Bj =
(
b1,j , . . . ,bn,j

)
∈ Rlj×n for j = 1, 2 to compute

x1 and x2 separately. Furthermore, if we can partition [n] = T1 ∪T2 such that

i ∈ T1 ⇒ (Ai,2,bi,2) = (0, 0),
i ∈ T2 ⇒ (Ai,1,bi,1) = (0, 0),

then

arg min
(
SEAB (T)

)
= arg min

(
SEA1

B1
(T ∩T1)

)
× arg min

(
SEA2

B2
(T ∩T2)

)
.

It thus su�ces to construct one instance that results in an exponential number of ver-
tices and one that results in an exponential number of facets to show the result, since
vertices and facets are preserved under taking the convex hull of their Cartesian pro-
duct.

For the �rst instance, we create the n-dimensional unit-cube Cn by setting d = n,
l = 1 and

(Ai ,bi) = (e>i , 1) ∈ R1×n × R ∀i ∈ [n].
Then for any set T ∈ 2[n], we can set xT = eT to see that since∑

i∈T
A>i bi =

∑
i∈T

ei · 1 =
∑
i∈T

ei 〈ei ,eT 〉 =
(∑
i∈T

eie
>
i

)
eT =

(∑
i∈T

A>i Ai

)
xT ,

the solution xT is optimal for SEAB (T) according to Lemma 7.3. This takes care of the
exponential number of vertices in n, since we get a unique solution for each T ∈ 2[n],
resulting in 2n vertices.

For the second instance, we construct the n-dimensional cross polytope given by

(Cn)∗ = conv({±ei | i ∈ [n]})

by setting d = l = n and

(Ai,±,bi,±) = (In,±ei) ∈ Rn×n × Rn ∀i ∈ [n].
This way, we model the special case of SEB, where

B = (+e1,−e1, . . . ,+en,−en) ∈ Rn×2n .

By Corollary 6.28, it follows immediately that the convex hull of the minimizers of SEB
is equal to (Cn)∗. This takes care of the exponential number of facets in n, since (Cn)∗
is the dual-polytope of Cn, and thus has one facet for each of the 2n vertices of Cn.

Combining both instances through their Cartesian product results in an instance
with 3n pairs (A,b) and at least 2n vertices and facets, thus completing the proof. �

90 Chapter 7. A�ne Euclidean Clustering

7.2 Simplicial Covers
In its general form, it seems very hard to tackle problem (7.3). Instead, we will introduce
some assumptions that make the problem easier to handle, starting with a bound on
the minimizers of SEAB . We will need a de�nition �rst.
De�nition 7.5 (Simplicial cover):
A �nite set of d-dimensional simplices {Ps}s∈[q] with disjoint interior is called a sim-
plicial cover of SEAB if the inclusion

{xT }T∈2[n] ⊆ P =
⋃
s∈[q]

Ps

holds for the minimizers xT of SEAB (T).
In the following, we will abuse notation by using P to denote both the set of sim-

plices {Ps | s ∈ [q]} as well as their union.
Remark 7.6:
The concept of simplicial cover is motivated by what is known in literature as a sim-
plicial complex. A simplicial complex is a collection of simplices P = ⋃

s∈[q] Ps with
the property that whenever Fs is a face of Ps and Fs ′ is a face of Ps ′ , their intersection
Fs ∩Fs ′ is a face of both Ps and Ps ′ , independent of the choice of s, s′ ∈ [q]. In particular,
such a simplicial complex de�nes an independence system on the set of vertices of a
simplicial cover P, where the independent sets are precisely the sets of vertices that lie
on a common face of any simplex Ps . By our de�nition, each simplicial complex gives
rise to a simplicial cover, but the reverse is not true in general, as shown by Figure 7.1.

Figure 7.1: Four examples of simplicial covers. All simplicial covers but the last one
are also simplicial complexes.

A natural question is to ask about the availability of such a simplicial cover. Since
our goal is to use this concept to solve the optimization problem (7.3), the construc-
tion of such an simplicial cover should be much cheaper than computing each of the
exponentially many minimizers {xT }T∈2[n] �rst. To this end, we will use the following
underlying assumption for now.
Assumption 7.7 (Simplicial cover assumption):
Given {(Ai ,bi)}i∈[n], we can construct a simplicial cover of SEAB in polynomial time.

7.2. Simplicial Covers 91

The crucial property of Assumption 7.7 is not the existence but rather the e�ciency
of the underlying construction. In particular, a simplicial cover always exists, since
each point xT can be computed by Lemma 7.3, and the convex hull of these points is a
polytope that can be turned into a simplicial complex via various methods [BEF00].

Alternatively, if a bound on the norm of all minimizers is available, then a sin-
gle simplex containing all minimizers can easily be constructed. Such a bound is not
unlikely to be available in applications [XWI05].
Example 7.8:
Setting each matrix Ai to the identity matrix, we recover the original Euclidean clus-
tering problem (6.7). Then Assumption 7.7 is satis�ed by Corollary 6.28, since

max {‖bi ‖2 | i ∈ [n]}

is a bound for the norm of all points in the convex hull of the minimizers.
We will skip the realization of Assumption 7.7 for now and postpone a closer inves-

tigation to Section 7.7 where we give examples that satisfy the assumption naturally.
For now, we proceed by introducing notation based on a �xed simplicial cover P for
SEAB . Let Vs ∈ Rd×(d+1) be the matrix whose columns denote the vertices of Ps . Then
conv(Vs) = Ps and we gather all vertices in V = (V1, . . . ,Vq) ∈ Rd×m, where

m :=
∑
s∈[q]
|Vs | = q(d + 1).

Furthermore, we implicitly de�ne index sets v(s) for each Ps by partitioning

[m] = Û
⋃
s∈[q]

v(s).

Then membership x ∈ P naturally implies the existence of

λ> := (λ>
v(1), . . . ,λ

>
v(q)) ∈ ∆

m

where
x = Vλ =

∑
s∈[q]

Vsλv(s).

Remark 7.9:
If the simplices Ps share common vertices, then V has multiple identical columns across
di�erent Vs . This is intentional, and the potential bene�t of removing multiples of these
columns will be explored in Section 7.6.

Now P can be expressed as the linear image of a constrained standard simplex
through

P =
{
x ∈ Rd

��� ∃λ ∈ ∆m : x = Vλ, λ
v(r)λ

>
v(s) = 0 ∀ r , s ∈ [q], r , s

}
. (7.4)

92 Chapter 7. A�ne Euclidean Clustering

The nonlinear orthogonality constraint

λ
v(r)λ

>
v(s) = 0 ∀ r , s ∈ [q], r , s (7.5)

ensures that exactly one λ
v(s) is nonzero, which implies x = Vλ = Vsλv(s) ∈ Ps for some

s ∈ [q]. Since λ ≥ 0, we can see that (7.5) is equivalent to the quadratic constraint

λ>Ωλ = 0,

where
Ω := (Jq − Iq) ⊗ Jd+1 ∈ {0, 1}m×m

induces a block structure with zero block-diagonal. This suggests to set

∆m
Ω :=

{
λ ∈ ∆m

�� λ>Ωλ = 0
}

so that in particular, we can write

P = V · ∆m
Ω

as a shorthand for (7.4).
Remark 7.10:
The index sets {v(s) | s ∈ [q]} ⊆ 2[m] induce a relatively simple independence set

L =
⋃
s∈[q]

2v(s) ⊆ 2[m]

due to their disjointness, and our choice of Ω coincides with the ΩL matrix de�ned for
this independence system L, which makes this problem another instance of problems
constrained by independence systems.
Remark 7.11:
The parametrization (7.4) of points in P is unique almost everywhere. This is implicit
in Theorem 2.8, which guarantees uniqueness for all interior points x ∈ Û⋃s∈[q] int(Ps).
However, since simplicial covers allow intersections of boundaries bd(Pr)∩bd(Ps) to be
nonempty, we can not assume unique representations for boundary points once q > 1.

Given the new notation, we can proceed by parametrizing (7.1) in terms of (7.4).
Using x = Vλ, we can homogenize the objective by using 1 = 〈λ,e〉 to end up with

‖Aix − bi ‖22 = 〈λj ,Ciλ
j〉,

where

Ci := V>A>i AiV − (eb>i AiV + V>A>i bie
>) + ‖bi ‖22 · Jm ∀i ∈ [n].

7.2. Simplicial Covers 93

This leads to the reformulations

SEAB (T) = min
{∑
i∈T
〈λ,Ciλ〉

����� λ ∈ ∆m
Ω

}
of (7.1) and

min
{∑
i∈[n]

∑
j∈[k]

uij 〈λj ,Ciλ
j〉

����� U ∈ Un,k , λ
j ∈ ∆m

Ω ∀j ∈ [k]
}

(R1)

of (7.3).

7.2.1 Separating Simplicial Covers
So far, the goal of every chapter has been to reformulate the partition problems by
replacing the assignment matrices with a class of matrices that is better suited to deal
with the underlying structure of the problem at hand.

We will continue to follow this paradigm and start by noting that in the context of
(R1), the assignment matrix U can be interpreted as assigning an optimal minimizer of
SEAB to each data point. To see this, consider the equation∑

j∈[k]
uij 〈λj ,Ciλ

j〉 =
〈(∑

j∈[k]
uijλ

j
)
,Ci

(∑
j∈[k]

uijλ
j
)〉
,

which holds since each row of U is a binary unit vector. Letting λi(U) := ∑
j∈[k]uijλ

j

for each i ∈ [n] then shows that

U ∈ Un,k ⇔ {λi(U) | i ∈ [n]} = {λj | j ∈ [k]}.

In particular, (R1) can be restated as

min
{∑
i∈[n]
〈λi ,Ciλi〉

����� λi ∈ {λj}j∈[k] ⊆ ∆m
Ω ∀i ∈ [n]

}
, (7.6)

where λi(U) is replaced by a new vector λi subject to the membership constraint
λi ∈ {λj}j∈[k].

At this point, we want to recall again that while it is important to model this mem-
bership constraint in a more tractable formulation, using the set Un,k introduced the
inherent problematic symmetries mentioned in Section 4.2.1 by inducing an arbitrary
order on the set {λj}j∈[k].

For this reason, our goal is to propose a di�erent, symmetry-free way to formalize
this membership, and we will use the following property as a starting point.

94 Chapter 7. A�ne Euclidean Clustering

De�nition 7.12 (Separating simplicial cover):
Let P = ⋃

s∈[q] Ps be a simplicial cover of SEAB . Then a set of points X ⊆ P is called
separated by P if

|X ∩ Ps | ≤ 1 ∀s ∈ [q].
Likewise, a set of parameters Λ ⊆ ∆m

Ω is separated by P if their image under V is
contained in P and separated by P.

In addition, let xT be the minimizer of SEAB (T) for allT ∈ 2[n]. Then we say P sepa-
rates SEAB if there is an optimal solution T of (7.2) such that {xT |T ∈ T} is separated
by P.

The idea behind separating simplicial covers is to guarantee pairwise orthogonality
of the vectors λj in (7.6), as can be seen in the following lemma.
Lemma 7.13:
Let P = ⋃

s∈[q] Ps be a simplicial cover of SEAB . For a set X ⊆ P, let Λ ⊆ ∆m
Ω be its

representation in (7.4). Then X is separated by P if and only if for each pair λ , λ′ ∈ Λ,

λ′
v(s)λ

>
v(s) = 0 ∀s ∈ [q]. (7.7)

In particular, each pair in λ , λ′ ∈ Λ is coordinatewise orthogonal and has disjoint
support.

Proof. Let x , x′ ∈ P with x = Vλ and x′ = Vλ′. Then for some �xed t , t ′ ∈ [q],

x ∈ Pt ⇔ 〈λv(s),e〉 = δst and x′ ∈ Pt ′ ⇔ 〈λ′
v(s),e〉 = δst ′

for all s ∈ [q]. Now due to non-negativity, each equation of (7.7) can be equivalently
expressed as

λ′
v(s)λ

>
v(s) = 0 ⇔ 0 = 〈λ′

v(s)λ
>
v(s), Jd+1〉 = 〈λ′

v(s),e〉〈λv(s),e〉 = δst ′δst
⇔ (s , t) ∨ (s , t ′).

Then letting s run through [q] shows that (7.7) is equivalent to t , t ′, which means
that x and x′ are separated by P. �

A direct consequence of Lemma 7.13 is that if P separates SEAB , then (7.7) necessar-
ily holds for an optimal solution of (R1). Furthermore, its simple observation implies
that we can express the membership constraint in (7.6) with linear inequalities and
quadratic constraints.
Lemma 7.14:
Let P be a simplicial cover for SEAB and let

λ∗ :=
∑
j∈[k]

λj (7.8)

7.2. Simplicial Covers 95

for a separated set {λj}j∈[k] feasible for (R1). Then the equivalence

λ ∈ {λj}j∈[k] ⇔ λ ≤ λ∗ (7.9)

holds for λ ∈ ∆m
Ω.

Proof. Implication ”⇒ ” is straightforward. Consider the reverse direction for λ ∈ ∆m
Ω

and let sj ∈ [q] for j ∈ [k] such that supp(λj) ⊆ v(sj). Then it follows from λ>Ωλ = 0,
0 ≤ λ ≤ λ∗ and Lemma 7.13 that

supp(λ) ⊆ v(s∗) ⊆ supp(λ∗) = Û
⋃
j∈[k]

supp(λj) = Û
⋃
j∈[k]

v(sj),

which implies s∗ = sj ′ for some j′ ∈ [k]. Therefore,

0 ≤ λ ≤ λj ′ and 〈λ,e〉 = 1 = 〈λj ′,e〉,

which is only possible if λ = λj ′ . �

Lemma 7.14 reduces the membership in {λj}j∈k to a more tractable relation involv-
ing its sum λ∗. The idea is that if we can also give a tractable characterization of those
λ∗ that correspond to a sum of {λj}j∈[k] satisfying the orthogonality constraint (7.7),
then we can restate (R1) without the assignment matrices when SEAB is separated by P.
Fortunately, we can give such a tractable characterization, as is shown in the following
lemma.
Lemma 7.15:
Let

L :=
{
{λj}j∈[k] ⊆ ∆m

Ω

�� (7.7) holds
}

and
L′ :=

{
λ ∈ k · ∆m

�� 〈λ
v(s),e〉λv(s) = λ

v(s) ∀s ∈ [q]} . (7.10)

Then L ↔ L′ through the bijection ϕ : L → L′ given by

ϕ({λj}j∈[k]) :=
∑
j∈[k]

λj .

Proof. To verify that ϕ is well-de�ned, we recall from the proof of Lemma 7.13 that

〈λj
v(s),e〉 = δs,sj

for some sj ∈ [q], and that the sj are pairwise distinct. In particular, the identity

δs,sjλ
j
v(s) = λj

v(s)

96 Chapter 7. A�ne Euclidean Clustering

holds for all j ∈ [k] and all s ∈ [q]. Then〈 ∑
j∈[k]

λj
v(s),e

〉(∑
j∈[k]

λj
v(s)

)
=

(∑
j∈[k]

δs,sj

) (∑
j∈[k]

δs,sjλ
j
v(s)

)
=

∑
j∈[k]

δs,sjλ
j
v(s) =

∑
j∈[k]

λj
v(s)

since δs,sjδs,sj ′ = δj,j ′δs,sj , and so ϕ is well-de�ned.
We proceed by constructing an inverse-function ψ : L′ → L, so let λ ∈ L′. By

taking the scalar product with e on each of the de�ning equations in (7.10), we see the
membership 〈λ

v(s),e〉 ∈ {0, 1} for all s ∈ [q]. By de�nition, there is a set {sj}j∈[k] ⊆ [q]
such that 〈λ

v(sj),e〉 = 1 for all j ∈ [k]. Now de�ne vectors {λj}j∈[k] according to

λj
v(s) :=

{
λ
v(s) if s = sj ,

0 else
∀s ∈ [q], ∀j ∈ [k]

and set ψ (λ) := {λj}j∈[k]. It is easy to check that ψ is well-de�ned. Now for λ ∈ L′
one has

ϕ(ψ (λ))
v(s) =

∑
j∈[k]

λj
v(s) =

{
λ
v(s) if s ∈ {sj}j∈[k],

0 = λ
v(s) else,

which shows ϕ ◦ψ = IdL ′ .
For {λj}j∈[k] ∈ L, let λ = ϕ({λj}j∈[k]). Then we can choose {sj}j∈[k] such that

1 = 〈λ
v(sj),e〉 =

∑
j ′∈[k]
〈λj ′

v(sj),e〉 = 〈λ
j
v(sj),e〉

by Lemma 7.13, which showsψ ◦ ϕ = IdL . �

With all the tools available from the preceding results, we can restate the variant
(7.6) of (R1) as the following, symmetry-free polynomial optimization problem

min

∑
i∈[n]
〈λi ,Ciλi〉

��������
λ∗ ∈ k · ∆m,

〈(λ∗)v(s),e〉(λ∗)v(s) = (λ∗)v(s) ∀s ∈ [q],
λi ∈ ∆m

Ω, ∀i ∈ [n],
λi ≤ λ∗ ∀i ∈ [n]

 . (R2)

Formally, we have the following connection between (R1) and (R2).

Theorem 7.16:
Problem (R2) computes the optimal separated solution of (R1). In particular, both prob-
lems are equivalent if and only if P separates SEAB .

7.3. Convexi�cation 97

Proof. Starting from (7.6), the optimal separated solution of (R1) is given as

min
{∑
i∈[n]
〈λi ,Ciλi〉

����� λi ∈ {λj}j∈[k] ∀i ∈ [n], {λj}j∈[k] ∈ L
}

by Lemma 7.13. Applying Lemma 7.14, this turns into

min
{∑
i∈[n]
〈λi ,Ciλi〉

����� λi ≤
∑
j∈[k]

λj ∀i ∈ [n], {λj}j∈[k] ∈ L
}
,

which in turn is equal to (R2) given as

min
{∑
i∈[n]
〈λi ,Ciλi〉

����� λi ≤ λ∗ ∀i ∈ [n], λ∗ ∈ L′
}

by Lemma 7.15. By de�nition, there is an optimal separated solution of (R1) if and only
if P separates SEAB , so the rest of the theorem follows. �

Remark 7.17:
While the separation assumption in Theorem 7.16 makes the choice of P harder when
we want to �nd the global optimum of (7.2), it can also be used as a powerful mod-
elling paradigm. In particular, we can construct P to search for the optimal solution
in predetermined regions, which may be desirable in practice. For example, various
facility location problems may be modelled this way.

7.3 Convexi�cation

The goal of this section is to construct convex relaxations of (R2).

Description of (R2) as semi-algebraic set

Before we attempt to relax anything, it is necessary to �x an explicit list of polynomial
inequalities to describe (R2). Given the preceding discussion, we will use the following
system, which is taken directly from (R2).

98 Chapter 7. A�ne Euclidean Clustering

min
λ

∑
i∈[n]
〈λi ,Ciλi〉 s .t . (7.11a)

〈(λ∗)v(s),e〉(λ∗)v(s) = (λ∗)v(s) ∀s ∈ [q] (7.11b)
〈λ∗,e〉 = k (7.11c)
〈λi ,e〉 = 1 ∀i ∈ [n] (7.11d)

(λ∗)v(s)(λi)>
v(s) = (λi)v(s)(λi)>

v(s) ∀s ∈ [q] ∀i ∈ [n] (7.11e)
(λi)v(s)(λi)>

v(t) = 0 ∀s , t ∈ [q] ∀i ∈ [n] (7.11f)
λ∗ ≥ λi ≥ 0 ∀i ∈ [n] (7.11g)

It is not hard to verify that excluding (7.11e), this is a reformulation of (R2). The ad-
ditional equations (7.11e) are implied by Lemma 7.13 and actually redundant. However,
since their degree is low and they directly reduce the number of available monomials,
we use them to decrease the size of MM in what follows.

A big advantage of this description is the following property, which will be invalu-
able for actual computations.
Remark 7.18:
Each polynomial of (7.11) belongs to a polynomial ring of the form R[λ∗,λi] for some
i ∈ [n]. In particular, this sparsity pattern implies that once the values for λ∗ are
�xed, the problem decomposes into multiple independent problems. This is a crucial
property to speed up computations and will be exploited algorithmically in the next
section.

Let (R2)[t] denote the t-th stage of MM for the system (7.11). Since the problems
are quickly expanding in size with growing t , it will only make sense to consider t = 1
in the following.

Simplifying (R2)[1]

While (R2)[1] is still prohibitively large on its own, we can simplify the formulation to
end up with a much more tractable formulation that can be solved by current software.
To this end, we will �rst explicitly write down an SDP-representation of (R2)[1]where
we use the notation

M1(λ) =

©«

1 λ>1 · · · λ>n λ>∗
λ1 Λ11 · · · Λ1n Λ1∗
...

...
. . .

...
...

λn Λn1 · · · Λnn Λn∗
λ∗ Λ∗1 · · · Λ∗n Λ∗∗

ª®®®®®®¬
� 0

7.3. Convexi�cation 99

for the moment matrix involved. We proceed by explicitly writing the �rst stage of
MM of (R2) given by (7.11).

min
λ,Λ

∑
i∈[n]
〈Ci ,Λii〉 s .t . (7.12a)

(Λ∗∗)v(s)e = (λ∗)v(s) ∀s ∈ [q] (7.12b)
〈λ∗,e〉 = k, Λj∗e = kλj ∀j ∈ [n] ∪ {∗} (7.12c)
〈λi ,e〉 = 1, Λjie = λj ∀j ∈ [n] ∪ {∗} ∀i ∈ [n] (7.12d)

(Λi∗)v(s) = (Λii)v(s) ∀s ∈ [q] ∀i ∈ [n] (7.12e)
〈Λii ,Ω〉 = 0 ∀i ∈ [n] (7.12f)

λ∗ ≥ λi ≥ 0, Λ∗∗ ≥ Λ∗i ≥ Λii ≥ 0 ∀i ∈ [n] (7.12g)
M1(λ) � 0 (7.12h)

This can be veri�ed by checking that each line of (7.12) is the consequence from the
corresponding line in (7.11), with the addition of (7.12h).

Unfortunately, (7.12) is not tractable in practice, since the dimension of M1(λ) is
given by O(nm), which is prohibitive for SDP-solvers in general. However, (7.12) is
not optimized for e�cient computation at this point, and we will be able to make the
formulation much more compact using the following lemmas.
Lemma 7.19:
Let M1(λ |i) denote the submatrix of M1(λ) in (7.12) given by

M1(λ |i) := ©«
1 λ>i λ>∗
λi Λii Λi∗
λ∗ Λ∗i Λ∗∗

ª®¬ .
Then we can replace M1(λ) � 0 in (7.12) with

M1(λ |i) � 0 ∀i ∈ [n].
Proof. Follows from the application of [Las15, Section 8.1] to Remark 7.18. The idea
is that the underlying variables of the polynomial rings R[λi ,λ∗] satisfy the running
intersection property, which allows to separate them for computations. �

While this is already a signi�cant reduction of the SDP constraint, the following
lemma gives an alternative proof for the fact that we can discard the constant and
linear monomials due to Theorem 2.15 or Corollary 3.3.
Lemma 7.20:
Consider a matrix Λ � 0 and a vector a. Let a>Λa = ν and de�ne λ := Λa. Then

νΛ � λλ> or equivalently
(
ν λ>

λ Λ

)
� 0. (7.13)

100 Chapter 7. A�ne Euclidean Clustering

Proof. Since Λ � 0, there is M such that Λ = M>M and consequently,

ν = a>Λa = ‖Ma‖22 .

Then for arbitrary x we have

x>(νΛ − (Λa)(Λa)>)x = ν · 〈Mx ,Mx〉 − 〈Mx ,Ma〉2

= ‖Ma‖22 · ‖Mx ‖22 − |〈Mx ,Ma〉|2 ≥ 0

where the last inequality is the Cauchy-Schwarz inequality. The equivalent second
formulation of (7.13) follows from the Schur complement Lemma 2.5. �

We are now ready to simplify (7.12) in the following form.

min
λ,Λ

∑
i∈[n]
〈Ci ,Λii〉 s .t . (7.14a)

(Λ∗∗)v(s)e = (Λ∗ie)v(s) ∀s ∈ [q] ∀i ∈ [n] (7.14b)
Λj∗e = kΛjie ∀j ∈ [n] ∪ {∗} ∀i ∈ [n] (7.14c)

(Λi∗)v(s) = (Λii)v(s) ∀s ∈ [q] ∀i ∈ [n] (7.14d)
〈Λii ,Ω〉 = 0 ∀i ∈ [n] (7.14e)
〈Λii , J〉 = 1 ∀i ∈ [n] (7.14f)

Λ∗∗ ≥ Λ∗i ≥ Λii ≥ 0 ∀i ∈ [n] (7.14g)(
Λii Λi∗
Λ∗i Λ∗∗

)
� 0 ∀i ∈ [n] (7.14h)

Theorem 7.21:
Problem (7.14) is equivalent to (7.12).

Proof. Problem (7.14) arises from (7.12) by �rst applying Lemma 7.19 to break down
the moment matrix and then applying Theorem 2.15 to reformulate the problem in
terms of monomials of degree 2. �

Now reformulation (7.14) uses n psd. matrices of dimension 2m = 2q(d + 1), which
is still very limiting. However, we don’t really exploit 〈Λii ,Ω〉 = 0, which results in a
huge sparsity pattern in the block-diagonal Λii .

Based on this observation, a good approach is to drop all variables in Λi∗ and Λ∗∗
from (7.14) that do not belong to the blockdiagonal structure induced by Ω. Conceptu-
ally, the intention is that we only lose information of entries in Λ∗∗ that have a minor,
indirect impact on Λii . On the computational side, this turns each constraint in (7.14h)
into q separate psd. constraints of the form(

(Λii)v(s) (Λi∗)v(s)
(Λ∗i)v(s) (Λ∗∗)v(s)

)
� 0 ∀s ∈ [q]

7.4. Related Approaches 101

of size 2(d + 1). This is already much smaller, but using the fact that

(Λi∗)v(s) = (Λii)v(s),

we can additionally compress this to

(Λ∗∗)v(s) � (Λii)v(s) ∀s ∈ [q]
as a consequence of the Schur complement Lemma 2.5.

Formally, we end up with the following smaller relaxation of (7.12).

min
λ,Λ

∑
i∈[n]

∑
s∈[q]
〈(Ci)v(s),(Λii)v(s)〉 s .t . (7.15a)∑

s∈[q]
〈(Λ∗∗)v(s), J〉 = k (7.15b)∑

s∈[q]
〈(Λii)v(s), J〉 = 1 ∀i ∈ [n] (7.15c)

(Λ∗∗)v(s) < (Λii)v(s) < 0 ∀s ∈ [q] ∀i ∈ [n] (7.15d)

Theorem 7.22:
Problem (7.15) is a relaxation of (7.14).

Proof. The objectives of both problems are equal, since only the blocks (Λii)v(s) can be
nonzero due to 〈Λii ,Ω〉 = 0. With the same reasoning, (7.15c) is just a reformulation
of 〈Λii , J〉 = 1. Equation (7.15b) then follows from (7.14) as

k = k 〈Λii , J〉 = (ke>Λii)e = (e>Λ∗i)e =
∑
s∈[q]

e>
v(s)(Λ∗ie)v(s) =

∑
s∈[q]

e>(Λ∗∗)v(s)e .

�

While relaxation (7.15) may be slightly weaker than (7.14), it is much more tractable
for computation. In fact, we only need to care about 2qn psd. constraints for matrices
of size d + 1, which is much better than the n psd. constraints for matrices of size
2q(d +1) in (7.14) from a computational point of view. In particular, since the system is
only weakly coupled, parallel computing schemes can be e�ciently used to solve the
relaxation for problems of moderate parameters (n,q,d).

7.4 Related Approaches
Now that we laid down our approach, we are able to compare it to similar approaches
found in literature.

102 Chapter 7. A�ne Euclidean Clustering

7.4.1 Moment Sequences
In the preceding sections, one main idea was (7.8), where we aggregated the optimal
parameters λj into their sum λ∗, and continued to treat λ∗ as a separate, new variable.

One way to interpret this is as aggregation of monomials of the �rst degree. Then,
a possible way to extend this idea is to aggregate whole moment sequences instead
and work with the resulting new object. In particular, letting yj ∈ N∗(∆d

Ω) denote the
moment sequence of λj , we can de�ne

y∗ =
∑
j∈[k]

yj ∈ N∗(∆d
Ω), (y∗)0 = k,

to get the implication

y ∈ {yj}j∈[k] ⇒ y,y∗ − y ∈ N∗(∆d
Ω), y0 = 1

as a weaker alternative to (7.9). Then, applying MM on the sets N∗(∆d
Ω) individually

leads to the hierarchy

min
y

∑
i∈[n]

Lyi (Wi) (7.16a)

s.t. yi ∈ N∗t (∆m
Ω), (yi)0 = 1, ∀i ∈ [n],

y∗ − yi ∈ N∗t (∆m
Ω), y∗0 − (yi)0 = k − 1 ∀i ∈ [n], (7.16b)

where it can be shown that for t = 1, this coincides with (7.15) after properly reformu-
lating.
Remark 7.23:
(7.16) coincides with problem (21) given in [SRS15] in the respective setting.

7.4.2 Mixed Linear Regression
Conceptionally, our approach has the following properties:

(i) global variables are replaced with local estimates for each data point,

(ii) each local estimate is optimized against its data term,

(iii) constraints enforce global consistency among the estimates.

In [HJ16], a similar approach is considered, where objective and constraints are ex-
changed to yield the following properties:

(i) global variables are replaced with local estimates for each data point,

7.5. Rounding 103

(ii) global consistency among the estimates is optimized,

(iii) constraints enforce optimality of each local estimate against its data term.

We will now formally describe their approach, starting with a reformulation of (7.3)
given by

min
{∑
i∈[n]

Ai

(∑
j∈[k]

uij · x j
)
− bi

2

2

����� U ∈ Un,k , X ∈ Rd×k
}
.

Assuming that the linear equation systems Aix = bi are solvable, we can set

xi(U) :=
∑
j∈[k]

uij · x j

and, following our approach in Subsection 7.2.1, relax it to a local estimate xi to yield

min
{ ∑
i,j∈[n]

‖xi − xj ‖2

����� Aixi = bi ∀i ∈ [n]
}
,

where the objective describes global coherence of the estimates. As with our approach,
solving this relaxations amounts to solving a conic program, where the resulting esti-
mates need to be clustered afterwards. In particular, this optimization problem can be
formulated using the Lorentz cone Lm.

In [HJ16], only matrices Ai = a>i with one column are treated, which is known
in the literature as mixed linear regression. In this setting, the assumption of the solv-
ability of the underlying linear equations 〈x ,ai〉 = bi is always satis�ed, and under
certain separability assumptions on the underlying data, they show that recovery of
the optimal solution is possible.

7.5 Rounding
Given a solution (Λ∗∗,Λii) of (7.15), we still need to determine a proper partition of
[n] through a rounding procedure. Ideally, such an algorithm would aim at a high
approximation guarantee, but both achieving and proving this can become arbitrarily
hard, or may even be impossible, as shown in Theorem 6.14 for the colouring problem.

In the following, we will motivate our rounding procedure for (7.15), leaving the
question about provable approximation guarantees open. Before we start with a struc-
tural lemma, we will introduce some additional de�nitions. Let (Λ∗∗,Λii) be a solution
of (7.15) and de�ne the vectors

λ∗ := Λ∗∗e, λi := Λiie ∀i ∈ [n].
Furthermore, we de�ne the set Λ := {λi | i ∈ [n]}.

104 Chapter 7. A�ne Euclidean Clustering

Lemma 7.24:
The inequality 〈λi ,Ciλi〉 ≤ 〈Ci ,Λii〉 holds for all i ∈ [n]. Furthermore, strict inequality
implies that (λ∗λ>∗ ,λiλ>i) is infeasible for (7.15).

Proof. By Lemma 7.20 and the Schur complement Lemma 2.5, Λii � λiλ>i , and the
inequality follows from Ci � 0 due to self-duality ofSn+. By our optimality assumption,
the set (λ∗λ>∗ ,λiλ>i) cannot be feasible and have strictly smaller objective value. �

The set (λ∗λ>∗ ,λiλ>i) already satis�es several properties of (7.12). In particular, the
only constraints that can be violated are

〈(λ∗)v(s),e〉(λ∗)v(s) = (λ∗)v(s) ∀s ∈ [q], ∀i ∈ [n], (7.17a)
(λ∗)v(s)(λi)>

v(s) = (λi)v(s)(λi)>
v(s) ∀s ∈ [q], ∀i ∈ [n], (7.17b)

(λi)v(s)(λi)>
v(t) = 0 ∀s , t ∈ [q], ∀i ∈ [n], (7.17c)

which all enforce the combinatorial structure of the problem through restricting the
support of the vectors.

Due to this fact and the nonlinear nature of the problem, our goal is now to use
the set Λ in order to construct a good partition T for the original problem (7.2) in-
stead of deriving a feasible solution for (R2). In particular, we use the vectors λi over
their matrices Λii , since rounding to their native space ∆m is much more tractable than
rounding to the space of doubly stochastic matrices of rank 1.

To motivate how we construct the partitions, we need to introduce another concept.
Given Λ, we de�ne the family {λT | T ⊆ [n]} by de�ning

λT :=
∨
i∈T

λi

as the meet of {λi | i ∈ T } in the lattice (Rm+ , ≤). In other words, λT is maximal with
regards to ≤ such that λT ≤ λi for all i ∈ T , and as a byproduct, we also have λT ≥ 0.
The idea behind this concept is the following observation.

Lemma 7.25:
Let T ∈ Pn

k
, λTj , 0 for all j ∈ [k] and Ci ≥ 0 for all i ∈ [n]. Then∑

j∈[k]

∑
i∈Tj
〈λTj ,CiλTj 〉 ≤

∑
i∈[n]
〈Ci ,Λii〉 ≤ max

{
〈λTj ,e〉−2 �� j ∈ [k]} ·∑

j∈[k]

∑
i∈Tj
〈λTj ,CiλTj 〉.

Proof. The �rst inequality follows from the assumption Ci ∈ Sm+ ∩ Rm×m+ , since

(Λii − λiλ
>
i) + (λiλ

>
i − λTjλ>Tj) ∈ S

m
+ + R

m×m
+ = (Sm+ ∩ Rm×m+)∗.

7.5. Rounding 105

For the second inequality, �rst note that λT
〈λT ,e〉 ∈ ∆m holds for all T ⊆ [n]. We now

argue that the set
{

λTj
〈λTj ,e〉

��� j ∈ [k]} together with U(T) can be considered as a feasible
point for (R1), showing∑

i∈[n]
〈Ci ,Λii〉 ≤

∑
j∈[k]

∑
i∈Tj
〈λTj ,e〉−2 · 〈λTj ,CiλTj 〉

since (7.15) is a relaxation of (R1).
To see this, �rst note that De�nition 7.5 states that the constraint λj ∈ ∆m

Ω in (R1) is
redundant. While this normally means the constraint can be ignored completely with-
out changing the optimal value of (R1), we still need to make sure that the constraint
〈λj ,e〉 = 1 remains in place, since it was used in the construction of the objective ma-
trices Ci for homogenization. Since this is the case for

λTj
〈λTj ,e〉

, we can set λj =
λTj
〈λTj ,e〉

and use the assignment matrix U(T) as feasible point of a slight variant of (R1) with
the same optimal value. Finally, the second inequality follows by bounding the terms
〈λTj ,e〉−2 from above. �

The preceding lemma shows that in the case of nonnegative objective Ci , we can
actually give an upperbound for the approximation quality in the form of

ρ(T) := max
{
〈λTj ,e〉−2 �� j ∈ [k]} .

Maybe unsurprisingly, there is an inverse relation between the governing parameter
〈λT ,e〉 = ‖λT ‖1 and the diameter of the underlying set. In particular, we de�ne the
diameter diam(C) of a compact set C ⊆ Rd as

diam(C) := max {‖x − y‖2 | x ,y ∈ C} .

However, in order to show this, we �rst need some additional geometric insights. For
this, we �rst recall that the d-dimensional unit ball with radius r and center µ is given
as

Bdr (µ) :=
{
x ∈ Rd

�� ‖x − µ‖2 ≤ r
}
.

We can now formulate the following result.

Theorem 7.26 (Jung’s Theorem, [DGK63, Thm. 2.6]):
Let C ⊆ Rd be compact. Then there is µ ∈ Rd and

1
2 diam(C) ≤ r ≤

√
d

2(d+1) diam(C)

such that C ⊆ Bdr (µ).

106 Chapter 7. A�ne Euclidean Clustering

In what follows, let H =
{
x ∈ Rd

�� 〈x ,e〉 = 1
}

be the unique hyperplane satisfying
the inclusion ∆d ⊆ H ⊆ Rd . Furthermore, we parametrize the (d−1)-dimensional balls
in H � Rd−1 through their centers by setting

BH
r (µ) := Bdr (µ) ∩ H ⊆ H .

for all µ ∈ H .
Lemma 7.27:
The inclusion BH

r (µ) ⊆ ∆d implies r ≤
(
d(d − 1)

)− 1
2 .

Proof. Let γ be maximal such that BH
γ (µ) ⊆ ∆d . Then by symmetry, we can assume

that the center is given by µ = 1
de ∈ Rd , and the d facet-de�ning inequalities of ∆d are

given by xi ≥ 0. It follows then from symmetry that

γ 2 = min
{
‖µ − x ‖22

�� x ∈ ∆d , xi = 0
}

= 1
d2 +min

{
‖µ′ − x ‖22

�� x ∈ ∆d−1}
= 1

d2 + dist
(
µ′,∆d−1)2

,

where µ′ = 1
de ∈ Rd−1. Since e is orthogonal to H , the orthogonal projection of µ′

onto ∆d−1 is π∆d−1(µ′) = 1
d−1e , and the latter minimum is(1

d
− 1
d − 1

)
e

2

2
=

1
(d − 1)2d2 · (d − 1) = 1

(d − 1)d2 .

As a consequence, γ =
√

1
d2 +

1
(d−1)d2 =

(
d(d − 1)

)− 1
2 . �

Theorem 7.28 (Lower Bound Construction):
Let Λ ⊆ ∆d ⊆ Rd+ and denote by λ∨ the meet of Λ in (Rd+, ≤). Then there is a lower bound
0 ≤ µ+ ≤ λ∨ such that

1 − d−1√
2
· diam(Λ) ≤ ‖µ+‖1 ≤ ‖λ∨‖1.

Proof. Applying Theorem 7.26 on Λ ⊆ H � Rd−1 yields a translation µ′ ∈ H such that

Λ ⊆ BH
r (µ′) ⊆ H

where
r ≤

√
d−1
2d · diam(Λ).

Using translation and scaling operations, we have the equivalence

BH
γ (1de) ⊆ ∆d ⇔ (1de − µ

′) + BH
γ (µ′) ⊆ ∆d ⇔ BH

γ (µ′) ⊆ (µ′ − 1
de) + ∆

d

⇔ γ
r · B

H
r (µ′) ⊆ (µ′ − 1

de) + ∆
d ⇔ BH

r (µ′) ⊆ r
γ (µ
′ − 1

de) +
r
γ · ∆

d ,

7.5. Rounding 107

and it follows by Lemma 7.27 that all statements are true forγ =
(
d(d−1)

)− 1
2 . Denoting

µ := r
γ (µ′ −

1
de) and τ := r

γ , we thus have the inclusion

BH
r (µ′) ⊆ µ + τ · ∆d =: D ⊆ H . (7.18)

Now let µ = µ+ + µ− be the Moreau decomposition of µ into non-negative and non-
positive vectors. Since Λ ⊆ D+ := D ∩ Rd+, we have 0 ≤ µ+ ≤ λ for all λ ∈ Λ and in
particular 0 ≤ µ+ ≤ λ∨. As a direct consequence,

‖λ∨‖1 = 〈λ∨,e〉 ≥ 〈µ+,e〉 ≥ 〈µ,e〉 = 1 − τ ,

where the second equality follows from (7.18). Finally, we have

τ =
r

γ
≤ d − 1
√

2
· diam(Λ).

�

D

D+

Br (µ′)

e1 e2

e3

√
2 · τ

√
2

diam(Λ)

Λ

D

µ

0

e2

e1τ1 − τ

Λ

Figure 7.2: Illustration of Theorem 7.28. Left: H for d = 3, µ , µ+. Right: d = 2,
µ = µ+.

Remark 7.29:
It should be noted that the factor d−1√

2
in the result of Theorem 7.28 is overly pessimistic

and depends heavily on the shape of conv(Λ). In particular, the worst case is achieved
whenΛ contains the midpoint of every facet of∆d , yielding the translation of a rescaled
version of −∆d , which can be considered as the dual polytope of ∆d .

108 Chapter 7. A�ne Euclidean Clustering

However, the constraints (7.17a) actively push the solution away from this con�gu-
ration, which still has an e�ect on the relaxations as is implicit in the relations between
λ∗ and λi . Since this in�uence is hard to quantify, we will just stress that the preceding
result describes the worst-case, and actual results may be much better in practice.

Now that we have an interest in using the diameter in place of the quality of the
solution, our goal is to �nd partitions of Λ that minimize the largest diameter of their
parts. We will do this indirectly by minimizing a close upperbound on the diameter,
which can be derived from the triangle inequality as follows.

Let X = {x1, . . . ,xn} ⊆ Rd . Then for any l ∈ [n], we have

diam(X) = max
{
‖xi − xj ‖2

�� i, j ∈ [n]}
≤ max

{
‖xi − xl ‖2 + ‖xl − xj ‖2

�� i, j ∈ [n]}
≤ 2 ·max {‖xi − xl ‖2 | i ∈ [n]} ≤ 2 · diam(X).

In particular, 2 · max {‖xi − xl ‖2 | i ∈ [n]} is a 2-approximation for every l ∈ [n], and
choosing l to minimize the term will usually give an even better approximation.

Optimizing this 2-approximation of the diameter immediately brings us to the k-
center clustering problem.
De�nition 7.30 (k-center Clustering):
Given a set X = {xi | i ∈ [n]} ⊆ Rd , the k-center clustering problem is de�ned as

C∞(X ,k) := min
{

max
i∈[n]

dist(xi ,Y)
��� Y ⊆ X , |Y | = k

}
. (7.19)

Fortunately, this is a well-studied problem with e�cient and deterministic heuris-
tics despite it being NP-hard.

Algorithm 7.1: Farthest Point Clustering (FPN)
Data: Data X = {xi | i ∈ [n]} ⊆ Rd , k ∈ [n]
Result: Centers Y ⊆ X , |Y | = k

1 b ←∞, Y ← ∅;
2 for i ∈ [n] do
3 Yi ← ∅, y1 ← xi ;
4 for j ∈ [k] do
5 Yi ← Yi ∪ {yj};
6 yj+1 ← argmax {dist(x ,Yi) | x ∈ X };
7 if dist(yk+1,Yi) < b then
8 b ← dist(yk+1,Yi);
9 Y ← Yi ;

10 return Y ;

7.6. Modi�cations 109

Algorithm 7.1 greedily builds the set of cluster centers Y by iteratively choosing
those points which are farthest away from all prior centers. As initialization, every
point is chosen as the �rst cluster center once and the best overall result is kept as
the output of the algorithm. Given its output Y = {y1, . . . ,yk}, we can construct a
partition T(Y) = {T1, . . . ,Tk} ∈ Pn

k
by setting

Tj =
{
i ∈ [n]

�� dist(xi ,Y) = ‖xi − yj‖2
}
.

As explained by the following theorem, Algorithm 7.1 is optimal for this problem.
Theorem 7.31 (Approximating k-Center clustering [HS85]):
For d > 2, achieving an approximation ratio for (7.19) better than 2 is NP-hard, and a
2-approximation is given by Algorithm 7.1.

Our rounding procedure can now be summarized as follows.
Algorithm 7.2: Deterministic Rounding
Data: Solution (Λ∗∗,Λii) of (7.15).
Result: Partition T for (7.2).

1 set Λ = {Λie | i ∈ [n]};
2 compute Y = FPN(Λ,k);
3 return T(Y);

7.6 Modi�cations
When we introduced simplicial covers in Section 7.2, we focused on a basic setting for
the sake of exposition. In this section, we return to some underlying assumptions and
see how they might be generalized in order to extend the framework suggested in this
chapter. In particular, we will focus on the structure of simplicial covers, including the
choices of V and Ω, as well as the objective function.

For most of these generalizations, the constructions in Sections 7.2–7.3 can be car-
ried through analogously, and we will only comment on the results that break down.

Removing redundant vertices

In Section 7.2, there was no assumption on the uniqueness of the columns in V, and, as
pointed out by Remark 7.9, if simplices shared vertices, we used one copy of each vertex
for each simplex. The underlying idea was to ensure the blockdiagonal structure of Ω,
which in turn is the foundation of Lemma 7.13 and all of its consequences throughout
Section 7.2.

However, we can arrive at a slight variation of (R2) even without this assumption.
To see this, we merely need to change the de�nition of the index sets v(s) and adjust Ω

110 Chapter 7. A�ne Euclidean Clustering

and λ∗ accordingly. Given a matrix V =
(
V1, . . . ,Vq

)
with multiple identical columns,

let V′ collect all the unique columns of V. Then let v(s) denote the unique set of indices
in V′ corresponding to the columns of Vs and let Ω be the binary matrix which is one
everywhere, except for the principal submatrices indexed by each v(s).
Remark 7.32:
If P de�nes a simplicial complex with corresponding independence system L as in
Remark 7.6, then the new matrix Ω is equal to the matrix ΩL arising from L as de�ned
in Section 2.2. This is analogous to the connection described in Remark 7.10 and can
be seen as generalization.

As a consequence of these new index sets, we might have 〈(λ∗)v(s),e〉 > 1 for some
s ∈ [q], as can be observed in Example 7.33. To resolve this, we have to weaken (R2)
by only assuming inequality instead of equality in

〈(λ∗)v(s),e〉(λ∗)v(s) ≥ (λ∗)v(s).
Then, by construction,

min

∑
i∈[n]
〈λi ,Ciλi〉

��������
λ∗ ∈ k · ∆m,

〈(λ∗)v(s),e〉(λ∗)v(s) ≥ (λ∗)v(s) ∀s ∈ [q],
λi ∈ ∆m

Ω, ∀i ∈ [n],
λi ≤ λ∗ ∀i ∈ [n]

 (7.20)

is still a relaxation of the original problem. However, an analogue to Theorem 7.16
fails to hold in this situation, as showcased by the following example.
Example 7.33:
Consider the 1-dimensional Euclidean 2-clustering problem from Subsection 6.3.2 for
the set of points {b1,b2,b3,b4} = {−0.6,−0.4, 0.4, 0.6}. Enumerating all partitions, it
can be veri�ed that the optimal solution is achieved with x1 = −0.5 and x2 = 0.5 for
the partition {{1, 2}, {3, 4}} and has value 0.04.

Let the simplicial cover P = P1 ∪ P2 ⊆ R be given by P1 = [−1, 0] and P2 = [0, 1].
Then P is separating, and by Theorem 7.16, the optimal solution can be computed by
using V1 =

(
−1 0

)
, V2 =

(
0 1

)
and V =

(
−1 0 0 1

)
to construct and solve (R2).

Now consider the reduced matrix V ′ =
(
−1 0 1

)
consisting of unique columns.

By the previous discussion, the indices are given as v(1) = {1, 2} and v(2) = {2, 3}, and
thus

Ω = ©«
0 0 1
0 0 0
1 0 0

ª®¬ .
Then the vectors (

λ∗,λ1,λ2,λ3,λ4
)
=

©«
0.6 0.6 0.4 0 0
0.8 0.4 0.6 0.6 0.4
0.6 0 0 0.4 0.6

ª®¬

7.6. Modi�cations 111

are feasible for (7.20) and each λi represents its data-point bi . Then this solution is op-
timal for (7.20) and has objective value 0, which is strictly lower than the real minimum
of 0.04.

The example shows that while this approach reduces m and thus the size of the
matrices involved in the MM approach of Section 7.3, the quality of the solutions may
drop to a point where they do not yield any actual information about the optimum
anymore. Additionally, we lose the computational advantages of the diagonal block
structure of Ω, resulting in a weakly coupled system.

Furthermore, the example illustrates the mechanism responsible for the reduced
quality of the solution as a “discount” in terms of convex combinations. In particular,
raising the upperbound given by λ∗ on those vertices occuring in multiple polytopes
extends the representable points in all of these polytopes, in contrast to the vertices
occuring only once. Consequently, the individual λi will have a larger spread, as can
be seen by comparing Figures 7.6 and 7.7.

However, the same approach can succesfully be used to replace the simplices in
our simplicial cover by general polytopes, as can be seen in the next subsection.

Polytope covers

In Section 7.2, we introduced P as a union of separate simplices whose dimension is
�xed to that of the ambient space. We can easily generalize this concepts by allowing
any combination of

• a union of general polytopes instead of simplices,

• di�erent dimensions for each of the polytopes.

Both generalizations have in common that in principal, they only impact the number
of vertices for each polytope in P. Consequentially, only the de�nition of the matrix V
in (7.4) needs to be slightly adjusted, and we can arrive at both (R2) and (7.15) without
impacting any of the theoretical results.

For practical computations however, there is a slight di�erence between allowing
lower dimensional simplices and using general polytopes instead of simplices. While
the former does not impact the relaxations constructed by MM, the latter su�ers from
the lack of unique representation, as is implicit in the lack of uniqueness in Theorem
2.8 and showcased in the following example.

Example 7.34:
Consider the unit square C2 = [0, 1]2 and a point x ∈ C2. Then V =

(0 1 0 1
0 0 1 1

)
describes

the vertices of C2 and any vector λ ∈ ∆4 that satis�es Vλ = x represents x . However,

112 Chapter 7. A�ne Euclidean Clustering

if x ∈ int(C2), this representation is not unique, since

C2 = conv
((

0 1 0
0 0 1

))
∪ conv

((
1 0 1
0 1 1

))
= conv

((
0 0 1
0 1 1

))
∪ conv

((
0 1 1
0 0 1

))
can be decomposed in two di�erent ways, which is visualized by Figure 7.3.

0 10

1

0 10

1

Figure 7.3: Both decompositions of C2 as union of 2 triangles.

By Caratheodory’s theorem, both decompositions de�ne di�erent representations
and every convex combination of these representations results in yet another repre-
sentation.

Most of the time, this ambiguity will weaken the relaxation (7.15) considerably,
since there are more degrees of freedom available. Luckily, we can use the ideas of the
preceding section to remove the ambiguity by adjusting Ω. To see this, let P be the
union of polytopes Ps for s ∈ [q] and Vs their corresponding vertices. Then we can
subdivide each polytope Ps into a simplicial complex to rewrite

Ps =
⋃
i∈qs

Ps,i

where each Ps,i is a simplex. Then each Ps,i de�nes a unique index-set v(s, i) of the
columns of Vs , and we can de�ne Ω as the binary matrix which is one everywhere,
except for the principal submatrices indexed by v(s, i) for both s ∈ [q] and i ∈ [qs]. This
approach guarantees a unique representation for almost every point in the interior
of the polytope Ps . Computationally, this results in a single psd. block of size |Vs |,
compared to the unique representation achieved by using the qs blocks of size d +1 for
each simplex Ps,i .

Example 7.35:
Consider P = ⋃

s∈[4] Pzs ⊆ R2 where Pzs = zs +C2 for C2 = [0, 1]2 and

(
z1 z2 z3 z4

)
=

(
0 1 0 1
0 0 1 1

)
.

7.6. Modi�cations 113

Then

V =
(

V1 V2 V3 V4
)

=

(
0 1 0 1 1 2 1 2 0 1 0 1 1 2 1 2
0 0 1 1 0 0 1 1 1 1 2 2 1 1 2 2

)
∈ R2×16

and since each polytope is a translation of C2, we can choose the same simplicial de-
composition for each polytope. We thus divide each square into a lower-left and upper-
right triangle, as depicted by Figure 7.4. Consequentially, we set

Ω = J16 − I4 ⊗
©«
1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1

ª®®®¬
to get a unique representation involving 4 psd. blocks of size 4 each. This is a computa-
tional trade-o�, since using the simplicial decomposition directly would have resulted
in 8 sdp blocks of size 3.

0 20

2

0 20

2

0 20

2

Figure 7.4: Left: Original polytope cover consisting of 4 squares. Middle: Simplicial
decomposition using 8 triangles. Right: Polytope cover with implied constraints from
simplicial decomposition.

Describing the σ -skeleton
As a special case of the previous subsection, P might be given as the σ -skeleton of a
polytope, given by the following de�nition.
De�nition 7.36:
Let P ⊆ Rd be a polytope with vertex set V and σ ∈ [d]. De�ne Gσ (P) as the graph
with vertex set V where the edge (v1, v2) is contained if and only if the line segment
conv ({v1, v2}) is contained in a face of P with dimension at most σ . Then A

Gσ (P) de-
notes the adjacency matrix of the complementary graph and the σ -skeleton skelσ (P)

114 Chapter 7. A�ne Euclidean Clustering

of P is formally de�ned as

skelσ (P) :=
{
x ∈ Rd

��� x = Vλ, λ ∈ ∆m
AGσ (P)

, ‖λ‖0 ≤ σ + 1
}
, (7.21)

which is the union of all faces of P of dimension at most σ .
Example 7.37:
The unit square C2 is given as the convex hull of V =

(0 1 0 1
0 0 1 1

)
and skel1(C2) con-

sists of 4 line segments, as shown in Figure 7.5. Choosing P = skel1(C2) we need 4
2-simplices and consequently m = 8 vertices for using the polytope cover approach
from Section 7.6. Using the sparsity constraint ‖λ‖0 ≤ 2 in (7.21) allows us to use each
vertex only once to end up withm = 4 instead.

Figure 7.5: The σ -skeletons of C2. As σ ranges from 1 to 3, the σ -skeleton describes
the union of vertices, edges and the square itself.

Remark 7.38:
The sparse set {λ ∈ ∆m | ‖λ‖0 ≤ σ } can be described by adding the equations

λeS = 0 ∀ S ⊆ [m] : |S | ≥ σ + 1.

Using MM, these equations can be incorporated by expanding Ω to sum over higher
moments as well. However, this approach becomes impractical very quickly since it
requires a stage t > σ to work.

It would be interesting to investigate low-degree polynomials as approximations
of sparsity constraints.

Simplicial Covers for Semialgebraic Sets
So far, our focus in this section was to modify the construction of the underlying sim-
plicial cover, where we have always assumed that SEAB optimizes a variable x ∈ Rd
as in (7.1). However, the powerful results concerning semi-algebraic optimization in
Sections 2.6 and 3.1 can be used with our framework to restrict x to a semialgebraic
subset K ⊆ Rd as well. In particular, let

K =
{
x ∈ Rd

�� дi(x) ≥ 0, i ∈ I
}

7.6. Modi�cations 115

for multivariate polynomials дi ∈ R[x]. Then each дi(x) can be easily turned into
a polynomial expression д′(λ) = д(Vλ), and we can additionally assume that д′ is a
homogeneous polynomial of the same degree as д, such that x ∈ K where x = Vλ if
and only if

λ ∈ K′ :=
{
λ ∈ Rm

�� д′i (λ) ≥ 0, i ∈ I
}
.

Consequentially, it su�ces to add the membership λi ∈ K′ for all i ∈ [n] to problem
(R2). Using MM, we then arrive at (7.14) with additional constraints. In general, we
only need to cover K by a set of simplices to use our approach. In particular, there is
no need for a simplicial cover to approximate K with those simplices, as long as K is
covered by them.
Example 7.39:
Let K be the unit sphere, then K =

{
x ∈ Rd

�� 〈x ,x〉 = 1
}

is described by the homo-
geneous quadratic equation 〈x ,x〉 = 1. Substituting x = Vλ yields again a quadric
de�ned by λ>

(
V>V

)
λ = 1. Adding this constraint to (7.14) then turns into

〈Λii ,V>V − Jm〉 = 0 ∀i ∈ [n],
where we used homogenization.
Example 7.40:
Let K be the set of vectorized orthogonal 2 × 2 matrices X in R4 given by the map

X =
(
x1 x12
x21 x2

)
7→

(
x1 x12 x21 x2

)>
= x .

Then K can be described as the zeros of four quadratic equations, one for each entry of
XX> = I2. Denoting them by x>Qlx = ql , substituting x = Vλ yields again an inter-
section of quadrics de�ned by λ>

(
V>QlV

)
λ = ql , which turn into the homogeneous

equations
〈Λii ,V>QlV − qlJm〉 = 0 ∀i ∈ [n]

for (7.14).
However, we note that �nding a separating simplicial cover may prove much harder

when K has a complex geometry. In particular, while MM will converge towards feasi-
bility in K , we necessarily need to start at a stage determined by the maximum degree
of a polynomial describing K to avoid crude approximations.

Clustering Varieties
The task of (7.2) is to partition a�ne subspaces in such a way that the minimizer of
SEAB is as close as possible to all of them. Ideally, this would mean that we get a com-
mon intersection of the corresponding a�ne subspaces, and so we can consider (7.2)

116 Chapter 7. A�ne Euclidean Clustering

as a generalized common intersection point. Consequentially, we can generalize this
concept from subspaces to arbitrary sets and try to adjust our approach accordingly.

An extension to the case of varieties can be done in the following way. We replace
Aix − bi in (7.1) with Fi(x), where Fi ∈ R[x] is a multivariate polynomial describing
the variety VR(‖Fi ‖22). Following Section 7.2, we may replace x by Vλ and homoge-
nize ‖Fi(Vλ)‖22 using 〈λj ,e〉 = 1 to end up with a variant of (R2), where the objective
function has been replaced. The results from Section 7.3 follow according to this re-
placement, but the stage of MM needs to be twice the maximum degree of any Fi .

Regularization

We want to point out that the reformulation (R2) never explicitly uses the number
k except in the equation 〈λ∗,e〉 = k implicit in λ∗ ∈ k · ∆m. We can thus treat k
throughout as a variable instead and include a function of k in the objective function
to dynamically search for the number of sets contained in a desired partition. The
di�culty then lies in choosing this function in a way to retain a useful solution to the
original problem.

7.7 Applications
We will state various applications and visualize the resulting relaxations.

Euclidean Clustering

By choosing Ai = In in (7.2), we recover the classical problem (6.7) of Euclidean clus-
tering for the points {b1, . . . ,bn} ⊆ Rd . As pointed out in Corollary 6.28, it is well
known that conv({b1, . . . ,bn}) ⊆ P will contain all optimal solutions. In particular,
for the simplicial cover assumption it su�ces that P covers a box which includes all
{b1, . . . ,bn}, which can be easily extracted.

We can use Euclidean clustering to get a better intuition of how the relaxation
works. Regarding the choice of P, consider Figure 7.6. Using any simplex containing
all the points is the coarsest approximation but yields useless results, since each local
estimate Vλi can be chosen as bi .

In view of Theorem 7.16, the algorithm will perform best if the simplicial cover is
separating, which means that the cluster centers are separated by the polytopes in P.
This suggests that there should be at least k simplices, and that an oversegmentation
removes the need of knowing the location of the centers in advance, as can be observed
in Figure 7.6 as well. Some of the variants from Section 7.6 that change how V and Ω
are constructed are visualized in Figure 7.7, but compared to Figure 7.6, they do not
o�er any noteworthy improvement in quality.

7.7. Applications 117

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-1 1-1

1

-1 1-1

1

-1 1-1

1

-1 1-1

1

Figure 7.6: Euclidean clustering with d = 2, k = 3, n = 60. Top: Circles correspond-
ing to input bi and crosses corresponding to points parametrized by the λi extracted
from (7.15). Bottom: Di�erent choices of P. From left to right: Minimal cover, non-
separating cover, minimal separating cover, oversegmentation. Algorithm 7.2 was able
to recover the optimal solution implied by the right plot in each scenario.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-1 1-1

1

-1 1-1

1

-1 1-1

1

Figure 7.7: Euclidean Clustering with d = 2, k = 3, n = 60. Top: Circles correspond-
ing to input bi and crosses corresponding to points parametrized by the λi extracted
from (7.15). Bottom: Variants described in Section (7.6) for describing the feasible set
[−1, 1]2. From left to right: P is the union of 1, 2, 3 polytopes respectively. Vertices at
dashed lines are unique rows in V and used in each bordering polytope.

118 Chapter 7. A�ne Euclidean Clustering

As pointed out by Remark 7.17, we can easily restrict the feasible set in a way
to force the optimal solution into speci�c regions. For example, by choosing each
polytope in P to be a single vertex, we reduce (7.15) to an LP which aims to choose an
optimal collection of locations from a discrete set of points, as can be seen in Figure 7.8.
In this case, our experiments always returned the optimal solution.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 1-1

1

-1 1-1

1

-1 1-1

1

Figure 7.8: Euclidean k-clustering with d = 2, k = 3, n = 100 restricted to discrete P.
Top: Circles corresponding to inputbi , diamonds corresponding to centers and colours
corresponding to clusters. Bottom: Di�erent choices of discrete P.

Hyperplane Clustering
By choosing Ai = ai as row vectors in Rd and setting bi = 0, (7.3) becomes the problem
of choosing minimal 〈ai ,xj〉2 terms. We can interpret this as simultaneously choosing
k hyperplanes parameterized by their normal vectors xj and assigning the points ai to
them according to their weighted angle.

We can uniquely parametrize these hyperplanes by choosing an element x of their
complement space which satis�es membership in both Sd‖·‖ =

{
x ∈ Rd

�� ‖x ‖ = 1
}

for
any �xed norm ‖ · ‖ and the ’upper halfspace’ Hd

+ =
{
x ∈ Rd

�� x1 ≥ 0
}
.

Note that the norm will weight each point x ∈ Sd‖·‖ ∩H
d by ‖x ‖. We will also write

Sdp for the ‖ · ‖p norms. In particular, even though any polyhedral approximation of
Sd2 ∩ Hd

+ corresponds to a norm and can be used as P, this will introduce a slight bias.
The application of this approach is illustrated by Figure 7.9.

As an application of Example 7.39, we can also work directly with S2
2∩H 2

+ by adding
the quadratic constraint 〈xj ,xj〉 = 1 and choosing P ⊆ H 2

+. Since S2
2 is not polyhedral,

we need to use 3-dimensional simplices for P in Figure 7.10 whereas 2-dimensional
simplices su�ce for the polyhedral approximation shown by Figure 7.9.

7.7. Applications 119

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-1 1

1

0 -1 1

1

0 -1 1

1

0

Figure 7.9: Hyperplane k−clustering with d = 2, k = 3, n = 60. Top: Circles cor-
responding to input ai and lines parametrized by λi extracted from (7.15). Bottom:
Approximations of S2

2 ∩ H 2
+ by polygonal lines. For better visibility the ends of each

line segment are connected to the origin with a dotted line. Dashed lines end in optimal
angles.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-1 10 -1 10 -1 10

Figure 7.10: Hyperplane Clustering with d = 2, k = 3, n = 60. Top: Circles corre-
sponding to input ai and lines parametrized by λi extracted from (7.15). Bottom: The
semicircle S2

2 ∩H 2
+ is covered with triangles in P. Dashed lines end in optimal angles.

120 Chapter 7. A�ne Euclidean Clustering

Mixed Linear Regression
We can easily extend the hyperplane clustering to the more general case ofmixed linear
regression that we mentioned already in Section 7.4.2 by changing to homogeneous
coordinates. In particular, we can encode the data point ai ∈ Rd as (ai , 1) ∈ Rd+1 and
try to �nd a hyperplane orthogonal to (xj ,−zj) ∈ Rd to get the minimization of terms
like

〈(ai , 1), (xj , zj)〉2 = (〈ai ,xj〉 − zj)2,
which approximate membership in the a�ne hyperplane

ai ∈ H(x j ,zj) =
{
a ∈ Rd

�� 〈a,xj〉 = zj
}
.

Since the manipulation only amounts to lifting the input data {ai}i∈[n], this is just an
instance of the hyperplane clustering problem in a space with dimension increased by
1. In particular, the problem of Figure 7.11 can be computed as an instance of clustering
points from R3 into 2-dimensional hyperplanes.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.11: Mixed Linear Regression with d = 2, k = 3, n = 60 as a special case
of Hyperplane Clustering with d = 3. Top: Circles corresponding to input ai and lines
parametrized byλi extracted from (7.15). Bottom: Gray lines corresponding to rounded
solution of (7.15) and coloured data points according to the extracted clustering. From
left to right: Discretization of (S2

2 ∩ H 2
+) × [−0.3, 0.3] into (2 × 8) , (4 × 4), (8 × 2) and

(8 × 8) line segments, where S2
2 ∩ H 2 is approximated like in Figure 7.9.

Chapter 8

Conclusion

In this thesis, di�erent representations for partitions were formulated and used to ap-
proximate partition problems. While doing so, special focus was on �nding representa-
tions that are invariant under permutations of the individual parts, with the intention
of evading the computational problems commonly associated with the lack of such
invariance. A major tool in doing so was the method of moments, which was used to
construct convex relaxations of the underlying polynomial optimization problems that
can be solved by semide�nite optimization techniques.

In the �rst part of the thesis, we set up the machinery surrounding the method
of moments in Chapters 2 and 3, while providing an explicit way of solving the un-
derlying optimization problems. The algorithm we presented for this was the CLP-
Newton method, which we introduced as a generalization of the LP-Newton method
for self-dual cones. Experiments with the CLP-Newton method were provided, which
indicated that, while the computation of a Newton step is quite expensive, only a small
number of Newton steps were needed to come close to the optimal solution.

The second part of the thesis was concerned with classical partition problems that
can be represented using various classes of matrices. For this, we started with as-
signment matrices and the related theory of orbitopes in Chapter 4, showcasing the
problems that can arise in the convex setting when representations of partitions are
not invariant under permutations of their parts.

We proceeded by showing how assignment matrices naturally give rise to partition
matrices in Chapter 5, which explicitly described a connection that has been implicitly
used in literature for a long time. Furthermore, the class of combinatorial projection
matrices was introduced in Chapter 6, and its close connection to partitions matrices
was established. As a main result, we used combinatorial projection matrices to give
a new formulation of the colouring number of graphs and compared the associated
relaxations to variants of the Lovász theta number. We were able to show that while the
Szegedy number, a slight improvement of the Lovász theta number, is always at least as

122 Chapter 8. Conclusion

good as our relaxation, both relaxations agree on the di�cult class of vertex-transitive
graphs. In particular, this result implies that relaxations for binary eigenvalues perform
worse than relaxations of binary matrix-entries for this problem.

The third and �nal part of the thesis treated the challenging problem of a�ne Eu-
clidean k-clustering in Chapter 7, which, to the best of our knowledge, has not been
investigated in this generality prior to this thesis. While the classical Euclidean k-
clustering allows for a reformulation based on the optimality condition of a subset of
the variables, the generalized a�ne Euclidean k-clustering lacks this property, making
it much harder to solve and relax. Assuming a certain separability property on the
feasible set associated with the same subset of variables, we proposed a new approach
for this problem. Using a simplicial cover of this feasible set, it was shown how to con-
struct a reformulation that can be relaxed to yield bounds on the global optimum. In
particular, it was shown how to extend this method to several variations of the a�ne
Euclidean k-clustering problem that contain additional constraints, and the method
was shown to work on a number of several di�erent toy examples.

Further Research Directions

At the conclusion of this thesis, several intriguing questions are still open.

On the numerical side, the CLP-Newton method could be improved by using a more
e�cient way to solve the minimum-norm-point algorithm. While all relaxations in this
thesis would bene�t from a computational improvement of the underlying CLP solvers,
the a�ne Euclidean k-clustering problem would bene�t the most, given that the scal-
ing of the method using simplicial covers makes the method currently prohibitive for
practical application. In particular, the runtime of the method might be improved by
utilizing recently published SOCP-hierarchies instead of the classical SDP-hierarchies
associated with the method of moments. In general, switching to SOCP-hierarchies
tends to improve the runtime considerably at only a marginal cost in solution quality.

On the theoretical side, it would be interesting to get a better understanding about
the di�erence between partition matrices and combinatorial projection matrices in
terms of relaxation quality. Any insights on this matter might help us to answer the
deeper question of whether binary matrix entries or binary eigenvalues are a better
modeling paradigm for relaxation based approaches. For the graph colouring prob-
lem in particular, it would be interesting to know if there is a class of additional con-
straints that could be added to combinatorial projection matrices to reduce the gap to
the Szegedy number.

In terms of the a�ne Euclidean k-clustering, it would be helpful to know whether
conditions can be given that guarantee a �xed approximation ratio of our method.

123

While this is unlikely for the general case due to the high expressiveness of the prob-
lem, there might be mild conditions under which certain problems have provable guar-
antees, even in the �rst stage of the hierarchy we considered. From a practical per-
spective, the separability assumption is mostly unexplored, and a list of problems with
this property would be desirable to get further insights into the applicability of our
method.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

[ACKS15] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Ke-
mal Sinop. The hardness of approximation of euclidean k-means. CoRR,
abs/1502.03316, 2015.

[ADHP09] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-
hardness of euclidean sum-of-squares clustering. Machine Learning,
75(2):245–248, 2009.

[AL12] Miguel F Anjos and Jean B Lasserre. Handbook on semide�nite, conic and
polynomial optimization, International Series in Operations Research &Man-
agement Science, vol. 166. Springer, New York, 2012.

[Bac11] Francis R. Bach. Learning with submodular functions: A convex optimiza-
tion perspective. CoRR, abs/1111.6453, 2011.

[BEF00] Benno Büeler, Andreas Enge, and Komei Fukuda. Exact Volume Compu-
tation for Polytopes: A Practical Study, pages 131–154. Birkhäuser Basel,
Basel, 2000.

[Ber75] Sven Berg. Some properties and applications of a ratio of stirling numbers
of the second kind. Scandinavian Journal of Statistics, 2(2):91–94, 1975.

[BPS66] Richard A Brualdi, Seymour V Parter, and Hans Schneider. The diago-
nal equivalence of a nonnegative matrix to a stochastic matrix. Journal of
Mathematical Analysis and Applications, 16(1):31 – 50, 1966.

[BPT13] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha Thomas, editors.
Semide�nite Optimization and Convex Algebraic Geometry. SIAM, 2013.

[BS94] Mihir Bellare and Madhu Sudan. Improved non-approximability results.
In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of
Computing, STOC ’94, pages 184–193. ACM, 1994.

Bibliography 125

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Commu-
tative Algebra. Springer, 4th edition, 2015.

[DGK63] L. Danzer, B. Grünbaum, and V. Klee. Helly’s Theorem and Its Relatives. Pro-
ceedings of symposia in pure mathematics: Convexity. American Mathe-
matical Society, 1963.

[Die05] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,
August 2005.

[DR07] Igor Dukanovic and Franz Rendl. Semide�nite programming relax-
ations for graph coloring and maximal clique problems. Math. Program.,
109(2):345–365, 2007.

[EZC10] Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A general framework for a
class of �rst order primal-dual algorithms for convex optimization in imag-
ing science. SIAM J. Imaging Sciences, 3(4):1015–1046, 2010.

[FHYZ08] Satoru Fujishige, Takumi Hayashi, Kei Yamashita, and Uwe Zimmermann.
Zonotopes and the LP-Newton method. Optimization and Engineering,
10(2):193–205, 2008.

[FK09] Yuri Faenza and Volker Kaibel. Extended formulations for packing and
partitioning orbitopes. Math. Oper. Res., 34(3):686–697, 2009.

[GL08] Nebojsa Gvozdenovic and Monique Laurent. The operator psi for the chro-
matic number of a graph. SIAM Journal on Optimization, 19(2):572–591,
2008.

[Har68] Bernard Harris. Statistical inference in the classical occupancy problem
unbiased estimation of the number of classes. Journal of the American Sta-
tistical Association, 63:837–847, 1968.

[HJ16] Paul Hand and Babhru Joshi. A convex program for mixed linear regres-
sion with a recovery guarantee for well-separated data. arXiv preprint
arXiv:1612.06067, 2016.

[HS85] Dorit S. Hochbaum and David B. Shmoys. A Best Possible Heuristic for
the k-Center Problem. Mathematics of Operations Research, 10(2):180–184,
May 1985.

[Jag13] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex op-
timization. In Sanjoy Dasgupta and David Mcallester, editors, Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13),

126 Bibliography

volume 28, pages 427–435. JMLR Workshop and Conference Proceedings,
2013.

[KP08] Volker Kaibel and Marc E. Pfetsch. Packing and partitioning orbitopes.
Math. Program., 114(1, Ser. A):1–36, 2008.

[Las15] Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic
Optimization, volume 52. Cambridge University Press, 2015.

[Lau03] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver,
and Lasserre relaxations for 0-1 programming. Mathematics of Operations
Research, 28(3):470–496, 2003.

[Lov79] László Lovász. On the shannon capacity of a graph. IEEE Trans. Inf. Theor.,
25(1):1–7, 1979.

[Lov87] László Lovász. An algorithmic theory of numbers, graphs and convexity,
volume 50. SIAM, 1987.

[NT08] Arkadi S. Nemirovski and Michael J. Todd. Interior-point methods for op-
timization. Acta Numerica, 17:191–234, 2008.

[OCPB16] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic
optimization via operator splitting and homogeneous self-dual embedding.
Journal of Optimization Theory and Applications, 169(3):1042–1068, 2016.

[PW07] Jiming Peng and Yu Wei. Approximating K-means-type Clustering via
Semide�nite Programming. SIAM J. Optimization, 18(1):186–205, 2007.

[PX05] Jiming Peng and Yu Xia. A new theoretical framework for k-means-type
clustering. In Foundations and advances in data mining, pages 79–96.
Springer Berlin Heidelberg, 2005.

[Ren10] Franz Rendl. Semide�nite relaxations for integer programming. In
Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Lau-
rence A. Wolsey, editors, 50 Years of Integer Programming 1958-2008 - From
the Early Years to the State-of-the-Art, chapter 18, pages 647–686. Springer,
2010.

[Roc09] R. Tyrrell Rockafellar. Convex Analysis. Springer, 2009.

[Sch79] Alexander Schrijver. A comparison of the Delsarte and Lovász bounds.
Information Theory, IEEE Transactions on, 25(4):425–429, 1979.

Bibliography 127

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and E�-
ciency. Springer, 2003.

[SR16] Francesco Silvestri and Gerhard Reinelt. The LP-Newton method and conic
optimization. ArXiv e-prints, November 2016.

[SRS15] Francesco Silvestri, Gerhard Reinelt, and Christoph Schnörr. A convex re-
laxation approach to the a�ne subspace clustering problem. In Pattern
Recognition - 37th German Conference, GCPR 2015, Aachen, Germany, Octo-
ber 7-10, 2015, Proceedings, pages 67–78, 2015.

[SRS16] Francesco Silvestri, Gerhard Reinelt, and Christoph Schnörr. Symmetry-
free SDP relaxations for a�ne subspace clustering. ArXiv e-prints, July
2016.

[Sta11] Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 2011.

[Stu11] Raman Sanyal ; Frank Sottile ; Bernd Sturmfels. Orbitopes. Mathematika :
a journal of pure and applied mathematics, 57(2):275–314, 2011.

[Sze94] Mario Szegedy. A note on the theta number of Lovász and the generalized
delsarte bound. In 35th Annual Symposium on Foundations of Computer Sci-
ence, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 36–39, 1994.

[Tro15] Nicolas Trotignon. Perfect graphs: a survey. arXiv preprint arXiv:1301.5149,
2015.

[TTT96] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3 — a MAT-
LAB software package for semide�nite programming, 1996.

[TTT03] Reha H. Tütüncü, Kim-Chuan Toh, and Michael J. Todd. Solving
semide�nite-quadratic-linear programs using SDPT3. Math. Program.,
95(2):189–217, 2003.

[Wol] Philip Wolfe. Finding the nearest point in a polytope. Math. Program.,
11(1):128–149.

[XWI05] Rui Xu and Donald Wunsch II. Survey of Clustering Algorithms. IEEE
Trans. Neural Networks, 16(3):645–678, May 2005.

[Zie95] Günter M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics.
Springer, New York, 1995.

Index

A

adjacency matrix . 6
assignment matrix 45

B

barycenter . 48
basis . 13
Bell number . 43
block-inducing constraints 68

C

characteristic vector 45
Cholesky decomposition 11
chromatic number 45, 75
clustering

k-center . 108
colouring . 75
combinatorial projection matrices 68
cone . 10

conic order . 10
dual . 10
Lorenz- . 11
pointed . 10
positive semide�nite 11
proper . 10
self-dual . 10

convex
function . 9
hull . 9
set . 9

counting function 44

E

edge . 6
Euclidean

clustering . 45, 82
a�ne . 87

distance . 10

F

face . 9

G

Gröbner basis . 14
reduced . 14

graph . 6
bipartite . 7
colouring . 45
complement . 7
homomorphism. 6
isomorphism . 6
perfect . 75
subgraph . 6

Grassmannian . 67
group action . 46

H

halfspace . 9
hyperplane . 9

supporting . 9

I

ideal . 13

Index 129

independence system 7

K

k-partition
function . 43
problem . 43

K-box . 26
K-zonotope . 27

L

lattice . 8
Lovász theta number 75
LP-Newton method 25

conic . 25

M

Max-k-Cut . 43
method of moments 16, 20
minimum-cover problem 44
Minkowski sum . 5
mixed linear regression 103
moment matrix . 16

combinatorial 24
localizing . 17
reduced . 23

monomial . 12
order . 13

N

node . 6
NP-hard . 9

O

orbit . 46
order

graded lexicographic 13
lexicographic . 13
monomial . 13
partial . 8

strict . 8
total . 8
well . 8

orthogonal projection 10

P

partition . 42
function . 44

regularized . 45
separable . 43

matrix . 55
orbitope . 50
part . 42
problem . 44

polytope . 11
poset . 8
projection matrix . 66

R

real variety . 13
regularizer . 45
Reynolds operator 48, 61
Riesz functional . 13

S

Schur complement 11
semialgebraic . 13
separated . 94
Sherman-Morrison formula 6
simplex . 11
simplicial cover . 90
squared error function 82

a�ne . 86
stable set . 44, 74

number . 74
Stirling numbers of the second kind . . . 43
subdi�erential . 10
subgradient . 10
suitable for CLPN. 32

130 Index

T

total degree . 12
trace . 5

product . 6

U

unit cube . 12

V

Veronese map . 13
vertex . 12
vertex-transitive . 6

	Introduction
	Preliminaries
	Linear Algebra
	Combinatorial Structures
	Computational Complexity
	Convex Analysis
	Algebra
	Method of Moments

	Computational Aspects
	Method of Moments on a Variety
	Conic Linear Programming
	The LP-Newton Method for CLPs
	The CLP-Newton Method
	The Minimum-Norm-Point Algorithm
	Linear Optimization on K-Zonotopes
	Experiments

	Partitions and Assignment Matrices
	Overview
	Assignment Matrices
	Symmetry induced Problems
	Orbitopes

	Partition Matrices
	Overview
	Connection to Combinatorial Moment Matrices
	Convexification
	Applying the Method of Moments to Partition Matrices
	Applying the Method of Moments to Orbitopes

	Projection Matrices
	Overview
	Convexification
	Applications
	Graph Colouring
	Euclidean k-Clustering

	Affine Euclidean Clustering
	Overview
	Problem Formulation

	Simplicial Covers
	Separating Simplicial Covers

	Convexification
	Related Approaches
	Moment Sequences
	Mixed Linear Regression

	Rounding
	Modifications
	Applications

	Conclusion
	Bibliography
	Index

