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Abstract— Two key types of inhomogeneous spatially dispersive media are described, both
based on a spatially dispersive generalisation of the single resonance model of permittivity. The
boundary conditions for two such media with different properties are investigated using La-
grangian and distributional methods. Wave packet solutions to Maxwell’s equations, where the
permittivity varies and is periodic in the medium, are then found.

1. INTRODUCTION

All media are, at least to some extent, both temporally and spatially dispersive [1–5]. A temporally
dispersive medium takes time to respond to an electromagnetic signal. A spatially dispersive
medium responds not only to a signal at a particular point, but to signals in the neighbourhood of
that point. Likewise all media are inhomogeneous, both on the macroscopic scale due to the finite
nature of any sample of material, and on the microscopic scale.

Metamaterials [6–10] offer a way of constructing spatially dispersive media with desired elec-
tromagnetic properties. Compact, high gradient, accelerators have a wide range of applications
in academia, industry, energy and health. A dielectric wakefield accelerator [6] uses electrons to
create a field in a dielectric which in turn accelerates further electrons. Using a spatially dispersive
dielectric with a periodic inhomogeneity, requires a knowledge about which electromagnetic fields
propagate in such dielectric and how the fields pass through the vacuum-dielectric boundary.

For this article we will assume that there is a linear constitutive relationship between the po-
larization field P(t,x) = D(t,x)−E(t,x) and electric field E(t,x). All media respond linearly for
sufficiently small electromagnetic fields and ultimately all media, including the vacuum, are non
linear for sufficiently high fields. To simplify the analysis we make the following assumptions.

• There is no magnetization so that H = B.
• All fields are functions of time t and one spatial coordinate x = x1, thus independent of x2,

x3. In frequency domain, k2 = k3 = 0 and we set k = k1.
• The electric and polarization fields are transverse so that E1(t, x) = 0, P1(t, x) = 0 and

B1(t, x) = 0. This assumption automatically satisfies the two non-dynamic source free
Maxwell’s equations.

• We choose a linearly polarized wave so that in the (e1, e2, e3) frame E(t, x) = E(t, x)e2,
P(t, x) = P (t, x)e2 and B(t, x) = B(t, x)e3.

The relationship between P (t, x) and E(t, x) analysed here is a generalisation of the single
resonance model of permittivity. The first generalisation is a simple extension to make the medium
spatially dispersive, achieved by introducing a finite propagation speed β,

P̃ (ω, k) =
Ẽ(ω, k)

ω2 − 2iλω + (α2 − λ2)− β2|k|2 (1)

where P̃ (ω, k) =
∫∞
−∞

∫∞
−∞ e−2πi(ωt+kx)P (t, x)dtdx is the Fourier transform of P (t, x). Media with

such a constitutive relation can be constructed using a cross wire configuration [10].
The second generalisation is to allow the quantities λ, α and β to depend on position x. To do

this we replace the frequency-wave number relation (1) with the PDE in space and time given by
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∂x

)
= E (2)

It is easy to see that if λ, α and β are constants then the Fourier transform of (2) reproduces (1).
We consider two types of inhomogeneity.
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In Section 3 we consider a simple boundary between two homogeneous regions. For spatially
dispersive media the standard boundary conditions for Maxwell’s equations are insufficient to com-
pletely specify the solutions for outgoing waves in terms of the incoming waves. The additional
equations are called “additional boundary conditions” (ABC) and have often drawn controversy [6–
10, 12–14]. For the boundary between a spatially dispersive medium and the vacuum the standard
ABC are given by Pekar [12]. In this article, we consider the boundary conditions between two
spatially dispersive regions. We consider two methods for deriving the boundary conditions for
Maxwell’s equations for non-spatially dispersive media: One is the distributional or pill box method,
the other is to use a Lagrangian method to derive natural boundary conditions. We show these
give the same boundary conditions, which reduce to Pekar’s boundary condition in the limit where
β → 0 in one of the regions.

In Section 4, we consider a periodic structure where α and λ are periodic with the same period.
We assume that these quantities take the form of a constant term plus a small periodic inhomo-
geneity, e.g., α(x) = α0 +α1 cosx where the α1 is small. The goal in this section is to find solutions
to the source free Maxwell equations, i.e., the dispersion relations. However since the medium is
inhomogeneous it is not possible to find single mode solutions of the form e2πi(ωt+kx) and is there-
fore necessary to look for packet solutions of the form e2πiωtP̂ (x). In the following we present an
analytic form for an approximate solution for P̂ (x). In addition we present a numerical method for
finding the permitted frequencies and P̂ (x).

In Section 5, we give a discussion of the implications of this research.

2. MAXWELL’S EQUATIONS AND STATIONARY MEDIA

From E(t, x) = E(t, x)e2 etc., the source free dynamical Maxwell’s equations become E′ = −Ḃ and
B′ = −(Ė + Ṗ ) which we can combine to give E′′ = Ë + P̈ . Taking the Fourier transform with
respect to t gives

(2π)−2Ê′′ = −ω2
(
Ê + P̂

)
(3)

where P̂ (ω, x) =
∫∞
−∞ e−2πiωtP (t, x)dt. In most cases, in the following, we will not explicitly write

the ω argument in Ê and P̂ .
The Fourier transform of the constitutive relation (2) is

(2π)−2
(
β2(x)P̂ ′

)′
+ L(x)P̂ = Ê where L(x) = (ω + iλ(x))2 + α(x)2 (4)

3. ADDITIONAL BOUNDARY CONDITIONS FOR SPATIALLY DISPERSIVE MEDIA

In this section we set the media parameters α(x), β(x), λ(x) to be piecewise constant: α(x) =
θ(−x)αL + θ(x)αR etc., so that L(x) = θ(−x)LL + θ(x)LR, for media constants αµ, βµ, λµ ≥ 0
with µ = L,R. Here θ(x) is the Heaviside step function θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0.

Eliminating Ê from (3) and (4) we have a fourth order ODE for P̂ (x). For each region this is
solved by

Ê(x) = A+
µe2πik+

µ x + A−µe−2πik+
µ x + B+

µ e2πik−µ x + B−
µ e−2πik−µ x (5)

where

k±µ =

√
β2

µω2 + Lµ ±
√

(β2
µω2 − Lµ)2 + 4β2

µω2

√
2βµ

(6)

Since λµ > 0 the waves are damped in the direction of motion, (see Figure 1). Maxwell’s equations
give us two boundary conditions

[
Ê

]
= 0 and

[
Ê′

]
= 0 (7)

where [Ê] is the discontinuity [Ê] = limx→0+ Ê(x) − limx→0− Ê(x). However, we need two addi-
tional boundary conditions for [P̂ ] and [P̂ ′]. In the usual scattering problem we prescribe the
incoming wave amplitudes {A−L , B−

L , A+
R, B+

R} and we calculate the outgoing wave amplitudes
{A+

L , B+
L , A−R, B−

R}.
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Figure 1: Incoming and outgoing modes, given in (5).

3.1. Lagrangian Formulation of Boundary Conditions
Due to the damping term, it is non trivial to formulate a Lagrangian which gives rise to both
Maxwell’s equations and the constitutive relation (2). However since we are interested in the
boundary conditions, is it sufficient to use the Fourier transform Equations (3) and (4). These can
be derived by varying the action

S[Ê, P̂ ] =
∫
L

(
Ê, Ê′, P̂ , P̂ ′, x

)
dx (8)

where

L
(
Ê, Ê′, P̂ , P̂ ′, x

)
=

1
2

(
(Ê′)2

(2π)2ω2
− Ê2 +

β(x)2

(2π)2
(P̂ ′)2 − L(x)P̂ 2

)
− ÊP̂ (9)

Varying (8) with respect to Ê and P̂ away from the boundary yields (3) and (4) respectively. In
order to obtain the boundary conditions we must consider variations with support which includes
the boundary x = 0. It is necessary to assume Ê and P̂ are continuous, i.e.,

[
Ê

]
= 0 and

[
P̂

]
= 0 (10)

Varying (8) with respect to P̂ then gives

δP̂S =
∫ ∞

−∞
δP̂Ldx =

∫ ∞

−∞

(
β(x)2

(2π)2
P̂ ′δP̂ ′ − L(x)P̂ δP̂ − ÊδP̂

)
dx

=
∫ 0

−∞

d

x

(
β(x)2

(2π)2
P̂ ′δP̂

)
+

∫ ∞

0

d

x

(
β(x)2

(2π)2
P̂ ′δP̂

)
= −

[
β(x)2

(2π)2
P̂ ′

]
δP̂

Since this vanishes for all variations δP̂ , one has
[
β(x)2P̂ ′

]
= 0 (11)

Similarly varying (8) with respect to Ê gives

[Ê′] = 0. (12)

In the limiting case βL → 0, the left hand region is only temporally dispersive. One must make
a choice about the behaviour of {A+

L , A−L , B+
L , B−

L } in this limit. For a certain choice the boundary
conditions (7), (10) and (11) reduce to Pekar’s ABC

[
Ê

]
= 0,

[
Ê′

]
= 0 and

[
P̂

]
= 0 (13)
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3.2. Distributional Method of Boundary Conditions
Given smooth functions fL(x) and fR(x) and setting f(x) = θ(−x)fL(x)+θ(x)fR(x), then one has
f ′′(x) = δ′(x)[f ]+2δ(x)[f ′]+ θ(−x)f ′′L(, x)+ θ(x)f ′′R(x). In order to avoid multiplying distributions
we must assume P is continuous and set P ′(x) = θ(−x)P ′

L(x) + θ(x)P ′
R(x). Substituting this into

(3) and (4) again implies (10), (11) and (12).
[
Ê

]
= 0,

[
P̂

]
= 0,

[
Ê′

]
= 0 and

[
P̂ ′

]
= 0 (14)

In the limit βL → 0, for appropriate choices, these again reduce to Pekar’s ABC (12).

4. PERIODIC MEDIA

In this section we investigate media where the constitutive quantity L(x) in (4) is periodic L(x+1) =
L(x) and β is constant. We assume that the amplitude of the inhomogeneity is dominated by the
first mode, that is

L(ω, x) = L0(ω) + 2Λ(ω) cos(2πx) (15)

Taking the Fourier transforms of (3) and (4) with respect to x we get (ω2 − k2)Ẽ(k) = −ω2P̃ (k)
and −k2β2P̃ + (L̃ ∗ P̃ )(k) = Ẽ(k). Combining these into a single equation gives

(
L̃ ∗ P̃

)
(k) =

(
β2k2 − ω2

ω2 − k2

)
P̃ (k) (16)

We look for periodic solutions of the form

P̂ (x) =
∞∑

m=−∞
Pme2πimx (17)

whose Fourier transform P̃ (k) consists of a series of delta functions P̃ (k) =
∑∞

m=−∞ Pmδ(k −m).
Substituting (16) and (14) into (15) yields the difference equation

ΛPk−1 + fkPk + ΛPk+1 = 0 where fk =
β2k4 + ω2 +

(
ω2 − k2

)
L0(ω)− β2ω2k2

ω2 − k2
(18)

Observe that having higher order modes in L(ω, x) will result in more terms in (17). We can
trivially solve (17) simply by arbitrarily fixing P0 and P1 and then using (17) to solve for all
subsequent Pk. However, in general, this will lead to Pk’s which diverge |Pk| → ∞ as k → ±∞. The
Fourier transform of this would therefore be a non-smooth wave which may not even be continuous.
Therefore for physical solutions, we demand that |Pk| → 0 as k → ±∞. As we see below we can
obtain approximate analytic solutions for small Λ. In addition we also give a numerical method for
finding arbitrary solutions.

4.1. Approximate Analytic Wave Packet Solutions
We have found two approximate analytic solutions in the case when Λ ¿ L0, an even solution
(ω(e), P (e)) and an odd solution (ω(o), P (o)). Since these are approximate solutions, we set the left
hand side of (17) to Qk, that is Qk = ΛPk−1 + fkPk + ΛPk+1 so that Qk = 0 is an exact solution
to (17). By contrast we solve Qk = O(Λp) for some order p which depends on k.

The even solution ω = ω(e) is given by
(

f1 − Λ2

(
1
f2

+
2
f0

)) ∣∣∣
ω=ω(e)

= 0 (19)

P (e) is then given by

P
(e)
−1 = 1, P

(e)
0 = −2Λ

f0
, P

(e)
1 = 1 and P (e)

m =
(−Λ)|m|−1

∏|m|
k=2 fk

+ O
(
Λ|m|+1

)
(20)

By direct substitution into Qm shows Q0 = 0, Q±1 = O(Λ4) and Qm = O(Λ|m|+1) for |m| ≥ 2.
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The odd solution ω = ω(o) is given by
(

f1 − Λ2

f2

) ∣∣∣
ω=ω(o)

= 0 (21)

and P
(o)
m by

P
(o)
−1 = −1, P

(o)
0 = 0, P

(o)
1 = 1 and P (o)

m = sign(m)
(−Λ)|m|−1

∏|m|
k=2 fk

+ O
(
Λ|m|+1

)
(22)

Again Q0 = 0, Q±1 = O(Λ4) and Qm = O(Λ|m|+1) for |m| ≥ 2.
Depending on how L0 and Λ depend on ω these are often the lowest two modes. The shape of

these modes is given in Figure 2, using the numerical approach below. In this case the even mode
(ω(e), P (e)) cannot be supported by the medium and is damped.

1

0.5

0

-0.5

-1
P
-3 -2 -1 0 1 2 3

P P P P P P

Figure 2: Pe (blue) and Po (red) for L0 ≡ 1, Λ ≡ 0.75. In this case ω(e) = 0.753i and ω(o) = 0.399

4.2. Numerical Approaches
A numerical approximation scheme, which is valid if Λ 6¿ L0 and gives packets in addition to (19)–
(21), is as follows: Choose an integer N ≥ 2. Then assume that Pm ≈ 0 for |m| > N thus truncating
the infinite set of equation given by (17) to a set of 2N + 1 linear equations for {P−N , . . . , PN}.
Write this in matrix language Mb = 0 where M is a (2N + 1) × (2N + 1) matrix with Mk,k =
fk−N−1, Mk,k−1 = Mk,k+1 = Λ and bk = Pk−N−1. Solve det(M) = 0 to obtain values for ω. The
corresponding null spaces give Pm.

5. CONCLUSION AND DISCUSSION

In this article we address two key problems: What wave packets can propagate though a spatially
dispersive medium and how wave packets behave as they pass through a boundary between two
media.

We have given two methods of deriving the boundary conditions for a junction between two spa-
tially dispersive regions. These two methods give the same boundary conditions. These boundary
conditions are tied to the choice of differential equation and ultimately depend on the microstruc-
ture of the materials.

We have given approximate solutions to Maxwell’s equations for a periodic spatially dispersive
medium. Since we have only given two modes, it is natural explore the behaviour of a general
mode. From the numerical approach it appears that the higher frequency resemble the case for
homogeneous media. This is currently being explored.
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