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Abstract—This paper focuses on the performance evaluation of
an energy harvesting (EH) equipped dual-hop relaying system for
which the end-to-end signal-to-noise ratio (SNR) and the overall
system throughput are analysed. The transmitter and the relay
nodes are equipped with both fixed and EH batteries. The source
for harvesting at the transmitter is the solar energy, and at the
relay node, the interference energy in the radio frequency is the
harvesting source. Time switching scheme is used at the relay
to switch between EH and decoding information. Harvest-use
approach is implemented, and we investigate the effects of the
harvesting energy in enhancing the performance of the relaying
system by deriving estimated closed-form expressions for the
cumulative distribution function of each link’s individual SNR
and of the end-to-end SNR. The analytical expression for the
ergodic capacity is also derived. These expressions are validated
through Monte-Carlo simulations. It is also shown that with the
additional EH at the transmitter (source and relay), a significant
improvement in the system throughput can be achieved when
fixed batteries are running on low powers.

Index Terms—EH, radio frequency EH, solar EH, relaying,
time switching, cumulative distribution function.

I. INTRODUCTION

The continuously growing demand for higher data rates
and the increase in the number of mobile devices have led
to a rapid growth in the data traffic and communications
infrastructure. This excessive demand in communicating data
requires increasing energy consumption, which in turn, results
in higher greenhouse gas emission, higher pollution and higher
energy costs [1]. On the other hand, while the wireless traffic
is increasing rapidly, battery capacity is still limited. In fact,
the battery advancement has been much slower than the need
for long-life batteries. Hence, the gap between increasing the
rate demands and the battery improvement had been widened
over the last few years [1]]. E|

In addition to the battery limitation, according to climate
group SMART (2020) [2], higher greenhouse gas emissions
have increased the carbon footprint to 349Mt and the elec-
trical energy consumption to 1700TWh, which could result in
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loosing at least 5% of the global gross domestic product (GDP)
every year. Due to the increase in the carbon-dioxide emission,
limited battery life advancements, and the operational costs,
several projects started to look for solutions to reduce the high
energy consumption of communication networks [J3], e.g., en-
ergy aware radio and network technologies (EARTH) [4] and
towards real energy-efficient network design (TREND) [J5].
There is an increasing interest in the academics and related
industries to design and develop higher data rate devices while
lowering the device energy consumption. As discussed in [6],
and references therein, there are four key trade-offs between
energy efficiency, spectrum efficiency, latency and deployment
costs. In this regard, green wireless communication has a
potential to provide possible solutions to the current energy
limitation problems in the information and communication
technology (ICT) sector [[7].

A. Motivation and Related Works

Referring to the famous Shannon capacity formula, when
the transmission power increases, the received signal-to-noise
ratio (SNR) improves, and in turn, the link capacity in-
creases [8]. The capacity may also increase when the distance
between the communicating nodes decreases, which will ef-
fectively reduce the path loss [9]. Employing a relaying node
between the transmitter and its end receiver, which reduces the
distance between the communicating nodes, could improve the
capacity. On the other hand, to increase the transmission power
without spending more from the device fixed battery, one can
employ an additional energy harvesting (EH) battery [10]. By
implementing EH at the source transmitter and at the relay, the
transmission rate can be improved while limiting the energy
consumption from the fixed batteries [11]].

EH has indeed the potential to prolong the lifetime and
improve the performance of energy limited networks, e.g.,
wireless sensor networks (WSNs) [12]], [13]. This technology
not only promises to resolve the limited battery issues, but
also to reduce the carbon footprint of high data rate wireless
devices, by reusing the energy from the surrounding environ-
ment [13[]. Energy can be harvested from natural sources such
as solar, thermal, wind and kinetic energy [/1]]. One of the most
commonly used ambient energy sources is the solar energy,
since light can be directly converted into electricity that runs
a wide range of portable devices [14]. The solar energy is by
far the largest and the most widely available source among the
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renewable energy sources. In a cellular network for example,
the transmitter at the base station can have high solar energy
panels [15].

Apart from conventional renewable sources, energy can also
be harvested from ambient energy in the radio frequency
(RF) [16]. The RF interference was used as a source of energy
in many recent works [17]-[19]. In particular, the use of RF
harvesting got popular due to the fact that it is autonomous
and does not depend on dedicated energy sources [14], [[16].
Among modern technologies manufacturers, we note Ambient
Micro and Maxim who have developed methods for combining
multiple EH resources [20]]. Also, Powercast powerharvester
devices convert the radio waves into DC power in order to
increase the life-cycle of devices with low-power consump-
tion [21].

On the other hand, due to practical circuit limitations, it
is not possible to harvest energy and decode information
at the same time [15], [22]. From an architectural point of
view, there are two protocols for EH and wireless information
transmission, e.g., time switching (TS) and power splitting
(PS) [23]]. In the former, the device switches over time to either
harvest energy or to transmit information data. In PS, on the
other hand, the receiver splits the received signal power into
two parts, one for processing the information and the other for
EH [23].

A Solar EH point-to-point communication system was con-
sidered in [24] wherein the rate of the system was evaluated.
A water-filling algorithm was proposed for improving the
throughput of the communication links with harvest-store-
use EH limited battery devices in [10]. Directional water-
filling algorithms to maximize throughput in EH networks
were later proposed in [25[]. Optimum transmission policies
under the constraints on energy causality condition of a fixed
EH battery to maximise the throughput was studied in [26]. A
comprehensive receiver architecture and rate-energy tradeoff
analysis of an EH relaying system was presented in [27]].

The combination of relaying and EH technology was shown
useful in increasing the battery ife of relays in [23], in
deploying WSNs in remote areas [28], and in multiple-input
multiple-output (MIMO) networks [29]. Also, optimal network
beamforming in collaborative relaying systems that uses both
RF and solar EH was proposed in [35]. Optimal scheduling
and power allocation for a two-hop relaying system with
harvesting at the source and non-EH relays was developed
in [36].

The received signal at the relay node is a combination
of unwanted signals (interference) and the signal from the
source [30]]. We note that improving the signal-to-interference-
plus-noise ratio (SINR) by decreasing the interference is an
important and challenging concern for most of the current
communication networks [18]]. In this field, various methods
including multi-cell coordination or interference-alignment
were used for interference cancellation [|18]]. Although inter-
ference reduces the throughput of the system, if it is used as a

source of energy it may improve the system performance [30]].
In fact, interference emerges as an additional source of energy
that can help the communication process by improving the
system performance [17]-[19], [30].

The performance analysis of RF EH relaying network was
studied in [22], which considered energy constraint on the
transmission power and transceiver hardware impairment for
multiple EH relays. RF-powered WSNs with simultaneous
wireless information and power transfer (SWIPT) was con-
sidered in [31], wherein stochastic geometry was used to
analyze the performance on the downlink. Relay selection
with residual impairments and multiple antennas devices was
considered in [32]], wherein the best relay was chosen using
the channel-state-information (CSI) at each hop and applying
maximal ratio combining (MRC). Similar performance anal-
ysis approach was used for non-orthogonal multiple access
(NOMA) under Nakagami-m fading in [33]]. Also, cooperative
NOMA with SWIPT, where the users close to the source act
as EH relays, were considered in [34]]. User selection schemes
were proposed to improve the system throughput and outage
probability in [34]. Outage probability and throughput of an
amplify-and-forward relaying system using EH in Nakagami-
m fading channel is derived in [35]]. In addition to that, per-
formance analysis of a dual-hop under-water communication
system subject to x — p shadowed fading channel with RF-EH
was analyzed in [36].

Despite the importance of energy constraint and its effects
on the transceiver design issues in cooperative networks, most
of the research works in the literature focused on harvesting
sources at the transmitter or at the relay with no fixed batteries.
It is inevitable that a limited fixed battery is implemented
within the communication system nodes [29]]. Given the nature
of the most types of EH sources, which is random and not
necessarily available all the times, a limited fixed battery can
provide extra flexibility and continuity in service. However, a
thorough study on how EH can improve the performance of
relaying system with fixed, but limited power batteries, is yet
to be done.

B. Contributions

In this paper, a dual-hop relaying system, in which the
source transmitter and the relay are both equipped with fixed,
as well as, EH batteries is considered. The harvesting at the
transmitter node is done from solar energy and the harvesting
at the relay node is from RF interference. The TS scheme is
used at the relay to harvest energy and to decode information.
For the considered relaying system, we analyse and discuss the
impact of EH on the system performance. First, closed-form
expressions for the cumulative distribution function (CDF) of
the end-to-end SNR, and also for each link SNRs are obtained.
To do so, we analyse the randomness in the transmission
power due to the RF interference energy at the relay, and
we evaluate the end-to-end SNR. Analytical expression for
the ergodic capacity is also derived. Numerical results for the
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validation of the developed analysis are obtained using Monte-
Carlo simulations. The effect of different parameters, such as
the EH power, the fixed batteries power levels, and the energy
conservation coefficient, are discussed and analysed.

To summarize, the main contributions of this paper are
enlisted below:

o The benefits of having interference EH at the relay node
and solar EH at the source transmitter, along with limited
power fixed batteries, on the performance of a dual-
hop relaying system, are investigated. To the best of the
authors’ knowledge, this paper is the first to address this.

¢ Closed-form expressions for the CDF of the end-to-end
SNR and the SNR at each link are derived. The closed-
form expressions reduce the computational complexity,
but are also challenging to derive due to the presence
of randomness in the interference at the relay node.
Since, the channel between the relay and the sink is also
random, the presence of multiplication of several random
parameters in the received SNR, makes the analysis
difficult]

o The analytical expression for the ergodic capacity, which
is an important performance metric for delay-insensitive
services, of the relaying system is obtained.

o The impact of the additional energy sources to improve
the overall system performance is evaluated by using
mathematical closed-form expressions, which are vali-
dated through Monte-Carlo simulations. Differences be-
tween the numerical results corresponding to the analysis
and the Monte-Carlo simulations are small, indicating the
correctness of the closed-form expressions.

« Finally, the impact of solar and interference and also the
fixed batteries power levels, on the system performance,
is studied through numerical results.

C. Organization

The remainder of the paper is organized as follows. Section
IT describes the system model and assumptions. Performance
analysis of the EH relaying system is discussed in Section
III. In Section IV, we derive the CDF of the first-hop SINR,
that of the second-hop SNR, and the one of the end-to-
end SNR. Results are expressed in closed-form. Also this
section includes the derivation of the ergodic capacity. Finally,
numerical results and discussion are given in Section V,
followed by the conclusion.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a dual-hop decode-and-forward (DF) relaying
system, in which the transmitter 7 communicates with the sink
S through an EH relaying node R, as presented in Fig. 1. No

2The closed-form expressions developed here are of great help when it
comes to the system design in practice, e.g., when the impact of interference,
solar energy and energy conversion coefficient on the system performance
needs to be investigated.
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Figure 1: Relaying system with fixed and energy-harvesting batteries.
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Figure 2: Time-switching protocol for harvesting energy and infor-
mation processing.

direct communication between transmitter 7" and the sink .S
is possible, e.g., due to shadowing. Node 7 is equipped with
a fixed battery B; and a conventional solar EH battery. The
relay node is also energy constrained with a fixed battery Bo
but can also harvest energy from RF signals in the form of
interference. The reason behind this assumption is that many
current wireless networks, e.g., WSNs, operate on low and
non-replaceable batteries [37]]. The source can be a transmitter
at high levels, and can thus benefit from solar EH, whereas the
relay can be considered as a sensor node that operates on low
and non-replaceable batteries. This system model is applicable
to practical cases when we need to deploy WSNs for short-
range communications. This type of networks can indeed
benefit from additional energy obtained through harvesting,
even though this additional energy is not necessarily large.
We note that, even if the fixed batteries are out of energy,
the network may still be able to survive on EH batteries.
The analysis and derivations of this paper can also apply to
the system scenario where the fixed batteries are completely
discharged, by simply replacing the value of the fixed battery
level to zero in the paper’s derivations.

The knowledge of the instantaneous channel state informa-
tion (CSI) is not required at the source transmitter, as we are
not considering adaptive power allocation at the source. When
the relay node operates as a receiver during the first time
slot, it is assumed to have the CSI of the link between the
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Figure 3: Illustration of key parameters in time-switching protocol
for harvesting energy and information processing.

transmitter and the relay. However, instantaneous information
of the interference channels are not known at the relay node.
When the relay operates as a transmitter, it does not have
knowledge of the instantaneous CSI of the link between the
relay and the sink.

The power level of the transmitter and the relay fixed
batteries are given by P; and P, respectively. We also assume
that the arrival rate of the harvesting solar energy at the
source transmitter is constant, hence (), has a fixed value.
Similar assumption is used in where harvesting energy
is assumed to have a continuous fashion, which is summed
up to a constant value. Also, solar energy is considered in
[39] which introduces a practical sensor node prototype that
assumes solar energy to be constant for optimal event detection
probability in the network. EH serving as the only source of
energy, and modeled as a continuous function with fixed rate,
is considered in [38]] and a throughput maximization problem
is solved in this paper.

The overall interference induced on the relay node origi]r\lfates

from N i.n.i.d. interferers || and is represented by > I,

where I; denotes the interference power of the ith interfér_elr. It
is assumed that the interference and the desired channels are
independent from each other. Here, the interference imposed
on the other networks from the considered relaying system is
not analysed. However, the results of this paper can pave the
way for analysing a system with both incoming and imposing
interference to the neighbouring networks. To do so, a further
complex variable can be introduced for inter-cell interference.
By that, the analysis and derivations of this paper can be
further updated to be used for multi-cell applications.

We assume DF relaying is employed, hence, the message
received at the relay node is decoded and then is forwarded
to the sink. Each node is assumed to have a single antenna
and to work in a half duplex mode within the dual-hop
communication system. TS approach is used at the relay for
EH and processing information, as described in Fig. 2. Let
Tsym denote the time during which the overall communication
between the source transmitter and the sink takes place. 7Ty,
for which 7 varies from 0 < 7 < 1, is the fraction of time
in which the relay harvests energy both from the received
signals and from the external interference. (1 — 7)Tgym is then

divided in two equal parts and represents the fraction of time
during which information is transmitted from the source to the
relay and from the relay to the sink. An illustration of the key
parameters in the time allocation considered is provided in Fig.
3. In the TS architecture demonstrated in Fig. 3, the source
node and the relay are assumed to have HU batteries, in which
harvesting energy cannot be stored and must be used immedi-
ately when it becomes available for signal transmission. When
the source is transmitting, the relay uses part of this time to
listen and decode the source signal. When this phase finishes,
the relay switches to harvesting. Since the relay cannot store
the harvesting energy, the harvesting period is considered to
be right before the relay signal transmission time. The relay
harvests energy while the source is still transmitting. As soon
as the harvesting energy becomes available at the relay, the
latter will transmit the signal, which has already been decoded,
to the sink destination. When relay is transmitting, the source
node harvests energy, hence, no TS is required at the source
transmitter.

In the considered HU approach, energy collected through
harvesting is assumed available at the end of the harvesting
time [39]. As there is no buffer to store the harvesting
energy, the energy causality constraints are not applicable here.
Rechargeable batteries, which consider energy causality con-
straints for energy storage through harvesting, are discussed
in The EH circuit activation threshold, which defines
the minimum energy level required to activate the circuit for
harvesting [48], is considered -10dBm for the relay node [37].
Additive white Gaussian noise (AWGN) is considered at the
relay and at the sink.

A. Channel Modeling Parameters

The channel modeling parameters considered for the system
model depend on different factors including path-loss, fading
model and asymmetric characteristics. We start with path-loss
description which mainly depends on the distance between
the transmitter and the receiver, the operating frequency,
and the environmental terrain [42]. We note that since the
distance between the transmitter and the relay, i.e., dg, is
different from the distance between the relay and the sink,
i.e., dg, hence the path-loss factors of the first- and second-
hop channels are different. Path-loss factor at first-hop is given
by Pr, = Kdg’g , with K indicating a frequency dependent
constant and S > 2 referring to the environmental/terrain
dependent path-loss exponent [42]]. Similarly, Pr ¢ represents
the path-loss factor for the second-hop, which is given by
Pr, = Kdg #. Note that the dual-hop relay considered in this
paper is asymmetric and the path-loss factors for the channel
between the transmitter and the relay is not necessarily the

3More information on the HU approach is provided in . In the present
work, the solar EH battery level is considered fixed within a transmission
cycle, while the interference from the RF source is random given the nature
of ambient energy. Similar to and [41], no device equipment is dedicated
to store energy.
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same as the one for the channel between the relay and the
sink.

Channels follow the block flat-fading model, i.e., each of the
channel gains are invariant during each fading block, but vary
independently from one block to another. The length of each
fading block is denoted by T}. The symbol duration is given
by Tyym = 1/B, where B is the system bandwidth. We assume
that the fading block duration is an integer multiplication of
the symbol durationE] Furthermore, the fading block duration
of all channels are assumed to be same.

The first-hop and second-hop channels experience inde-
pendent Rayleigh fading and their respective channel power
gains are given by h and g such that h ~ CN(0,€),) and
g~ CN(0, ). Parameters 2, and ), denote the variance of
channel power gains h and g, respectively.

III. PERFORMANCE ANALYSIS OF ENERGY-HARVESTING
RELAYING SYSTEM

In this section, we evaluate the end-to-end SNR and the
ergodic capacity of the relaying system with fixed and EH
batteries, as described in Section II. The end-to-end ergodic
capacity C' (in b/s/Hz) is the average of the minimum between
the rate at the first hop (R;) and the one at the second hop
(R»), represented by

C = E (min(Ry, R2)),

where E(.) indicates the expectation operator and rates R; and
Ro are given by

1—
=0 D hogy (145,). M

Lo tog, (14 4). @)
where 7, denotes the received SINR at the relay, and -,
indicates the received SNR at the sink. The effect of the
interference at the relay is considered as an AWGN which
is the worst effect of interference.

1) First-Hop (Transmitter-to-Relay): During this phase,
node 7' transmits the information signal, consuming power P;
from its fixed battery and an additional power Qt from its EH
battery. The SINR at the relay node can then be formulated

as
P+ h
= —AHCOR 3)
KR+PLR ZL
2

(2

Ry =

where K = PLRO’E%B, with 02 indicating the variance of the

1—
AWGN and Q1 = ﬂ The source transmitter-to-relay
T
SINR, 7, is further simplified as
h
= 4
T = T “)

41t Ty, is smaller than Tyym, then one symbol will be divided into two
fading blocks and will experience different fading. Hence, the derivations of
the paper will not hold anymore.

N
(P +Qr)h z; l

K R (o} I%B
is assumed to be decoded correctly only when the SINR is
greater than a predefined threshold ~.

2) Second-Hop (Relay-to-Sink): For the second-hop com-
munication, the total power at the relaying node is the sum
of the power from its fixed battery and the RF harvesting
power from the interference and the source transmitter signal.
Therefore, the power at the relay will be

PR =P+ Qr, (&)

where Qg indicates the power harvested at the relay nodeﬂ
The total energy that is harvested from the received informa-
tion signal and from the interference signal for a duration of
TTym at each block is given by

and Iy = . The received data

where v, =

N
By =1 [Z L + (Py + Q1) h| TTaym, (©6)

i=1

with 7 indicating the energy conversion coefficient which
varies from 0 to 1 [43]. The processing power at the relay,
required by the transmit/receive circuitry is negligible com-
pared to the power used for data transmission [30]]. Therefore,
we assume that the relay consumes the harvesting and the
fixed battery energy for forwarding information to the sink.
The transmission power at the relay can hence be written as

— EH
Qr = (1 —7)Taym/2

Replacing the value of Ey from (6) into (7) and substituting
it into (@), yields

(7

2tn
Pr = P
R 2+1—T PLR

N
P+ h
[ZIH'(I QT)]. ®)
i=1
The SNR at the sink S is hence given by
_Tkg
%S KS ’
where K¢ = Py, SagB, with o§ indicating the variance of the
AWGN at the sink. Inserting the value of Pr from (8) into 7,

yields
27 N P+ h
Pt 2T (Sry (P +Qr) p
o 1 — T i=1 PLR
%S KS J
which can be further simplified into
Ys = Ve + w(IR + ), 9)
P, 2ol
where v, = 9-2 and w = N1TIRY . We note that w is

g 2P Lg (1 — 7')
a random variable (RV) with the same distribution as of g but
with a different variance.

5 As previously mentioned, P is the power level of the relay’s fixed battery
Bs and is assumed constant.
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IV. CLOSED-FORM DERIVATIONS

Here, we aim to derive a closed-form expression for the
CDF of the transmitter-to-relay SINR, the relay-to-sink SNR,
and also the end-to-end SNR for the considered EH DF
relaying system with TS approach. By definition, the CDF
of SNR at a certain threshold, ~, shows the probability of
the instantaneous SNR to be less than . This threshold
can represent the criterion for a minimum quality-of-service
requirement at each node. The CDF of the SINR at the first-

hop is formulated as F,_(v) = Pr(v, < ~), and the CDF of
the SNR at the second-hop is given by F., (v) = Pr(% <),

where Pr(.) denotes the probability and Fx(z) stands for the
CDF of RV X at x.

With the channels following independent Rayleigh fading,
the probability distribution function (PDF) of ~; is exponential

and is given by
1
= — exXp (I)7x Z 07
Th Th

where 7y, is the average SNR from the source transmitter
(P + Q1)

fon () (10)

to the relay and is given by 7, = . Similarly,

. . R .
the PDF of the interference signal, Ir, which is the sum of
N statistically i.n.i.d. exponential random interferences, each
with a mean of u;, can be written as [44]

v(A) Ti(A)

fIR Z Z )\Zj )'

=1 j=1

- 1exp( y) y >0,

(1)

where matrix A = diag(p1, g2, ..., ), With gy > ps >
- > fiy(a) being the diagonal elements in decreasing order,
v(A) denotes the number of distinct diagonal elements of
A, 7;(A) is the multiplicity of p;, and A;; is the (7,7)th
characteristic coefficient of A as discussed in [44].

A. CDF of the First-Hop SINR

The CDF of the first-hop received SINR, Pr(v, < 7), can
be expanded by inserting the value of ,, from @) to get

Pr(y, <7)=Pr(m < (1 + Ir)7)- (12)

Using the PDF of v, given in (I0), the CDF of the first-hop
SINR for each value of interference Ig can be expanded as

)]

where [Ej, is the expectation operator with respect to RV Ig.
The expression in (I3)) can be expanded by using the definition
of expectation [45 p. 30], yielding

Pa=1- [ " exp (‘”(f“)) fr(w)du. (1)

13)

We now replace the PDF of interference Ir from (TI)) into (T4)
to get

o0 v(A) 7;(A)
P =1 [ oo (L) TS A
0 i=1 j=1
H‘_j i—1 —u
X ————q) exp< )du. (15)
(-1 i
In order to solve (I3), we re-arrange the equation as
v(A) 7 (A)
=13 3 ew () asla)
=1 j=1

pi? 1 ( wi)
Mt (= (1422
(G- (ﬂi h
oo, j—1
x/ u <1+W’>exp< (1+’ym>>du. (16)
0 223 Th i Th

which can be solved in closed-form according to

v(A) 7:(A)

w123 2w (3

=1 j=1

—1 —j+1
((Hw’) (j— D)ld™ (1+W1) ) 17)
T Th

Therefore, the CDF of the first-hop received SINR is obtained
by simplifying to get

v(A) 7:(A) vy AN
15 o (2 (12)
im1 =1 Th Ta
(18)

The closed-form expressions for the CDF of the first-hop
SINR, which are given in (18), depends on the average SNR
from the transmitter to the relay (3,) and on the mean value
of each interference signal at the relay, e.g., p;, ¢ = 1,--- N.
(18) shows that the CDF of the first-hop SINR is directly
related to p;, ¢ = 1,--- N, whereas it is inversely related to
h- Hence, the CDF of the first-hop SINR decreases with the
average SNR from the transmitter to the relay and increases
with p;, i =1,--- N.

B. CDF of the Second-Hop SNR

In this subsection, we obtain a closed-form expression for
the CDF of the second-hop received SNR, Pr(y, < ). The
analysis is difficult due to the presence of randomness in
the RF interference signals and in the fading channels. The
transmit power at the relay follows a random exponential
distribution according to (5). Since the channel between the
relay and the sink is also random, the SNR will have the
impact of these two random parameters multiplied.

We start by defining z = v, + I to simplify (9). Then, the
target CDF becomes

F

s (V) = Pr(yg +wz <)
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= E.E,, (1 —exp <-’Y;Jg)) . (19)

where w = E. and E,, are the expectation

. 0§PLS(1—T)’ )
operators with respect to RVs z and -y, respectively. We note
that the PDF for ~, is an exponential function given by

1
) = = ex0 (—”) ,

Ve

(20)

PrQ

where 7, = £. In order to solve (T9), we first solve the

. Hs
expectation with respect to ,, to get

1 -
(’yg+wz<fy)_1—exp( 7)
e 2W

)
x / exp <7‘°’ n 7g) dye. (1)
0 ’Yg wz

Solving the integral in (ZI) and replacing it into (T9) yields

Pr(ng + w2 < 7) =

E, (/ <1 — 711}27 exp <—FY>
0 Ve — W=z Ve

Solving the expectation with respect to z in is challenging
because the outer expectations . and inner expectation [E.,
are multiplied and the result becomes computationally difficult
to solve. Recall that z is defined as z = ~, + Ir, which
itself is a summation of two random variables with different
distributions. Since 7, and Ir are independent, we get the joint
distribution, fv, 1, (z,y) = f+,(2) fr. (y). The PDF of z is then
calculated by inserting the individual PDFs, £, («) and fr, (),
from (I0) and (TI)), and integrating according to [30} p. 6428,
eq. 13], which yields

(22)

_ v(A) 7, (A) 5 —j
fzz=exp< > A (1—1)
-gom(F) 5 (-5
X (1 —exp (—a;z) Z C]:j'zk> , (23)
k=0
a1l 1
where a; = — — —. Then, by inserting the PDF of z from
(23) into @ﬁ we obtam
v(A) 7i(A) L
=1- Aij ( 1-=
Y (%)

/oo wz
X —— &Xp
¥ P)/h(’}/g - ’U)Z)

Ji

1 > w —
+ —exp (—V> / 71”27 exp <Z> dz
Th Ve vy Vg — W2 Th

. o oo 1
— a7/ — exp (’7 — Z> exp (—a;z) ZFdz
PJy Wz

J3

(24)

Since there is an additional fraction multiplied with the same
entity in the exponential function present in the integral in (24)),
obtaining closed-form espression for (24) is challenging. We
start by dividing (24) into three integrals, where the first
and the second integrals are solved by using the generalized
incomplete Gamma functions (given in [46]).Details are given
below.
1) Closed-Form Expression for J,: The integral J; has a
fractional equation of z multiplied to an exponential function
wz
— in 29,

Ve —
wz _ Vg — Vg — WZ
*yg—ﬁz_ Vg — WZ

(-1
:_1+<1_wz> ,
Ve

N1 _
The term (1 — wz) can be approximated to 1 + Y% for
Ve e

of z. We start with simplifying the ratio

according to

(25)

% — 0. Thus, we have

Ve
_wswE (26)
Ve —WZ Ve
Now, we recall the formulation for generalized incomplete
Gamma function given by [47} p. 372],

I'(a, 2;b) :/ t* lexp (-t —bt™")dt,

which will later be used for obtaining a closed-form expression
for J 1-

27)

Lemma 1. Using the recurrence relation for the incomplete
generalized Gamma function in [48l p. 101], the following
equality can be obtained

IMNa+1,z;b) = al'(a, x;b) + bI'(a — 1, 23 b)
+a%exp(—z —bz™ '), a=0. (28)
Proof. The proof is provided in Appendix A. O

Using the results of Lemma 1 for & = 1 and (26)), a solution
for the first integral J; can be obtained according to

Jl ~ 7£ (F (0, 71; 7 )
Ve Th ThYW
: >)

—yexp(—y — by~ )+F(1,7
Th Th YW

(29)
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2) Closed-Form Expression for Jy: To obtain a closed-from
expression for Jy (shown in (24)), we use the approximation
result in 26), yielding

JQNLGXP <—7>/ zexp( )dz
Th Ve Ve ~ Yn

which allows us to obtain a closed-form expression for J, as

) (0 (5+5)
l—-—=Jexp|—y|=+= .
'Yh'Yg T Te  h

3) Closed-Form Expression for Js3: Using (27), we obtain
a closed-form expression for .J3, according to,

Ja = L ( ,)jz_fl( )
3 = WeXP a; %l a;
k=0
k -1
k by biy
X£<m><—bi>m (”” 0 w) Gy

1
where b, = — + and q; is defined right after 23).

o
Finally, we obtain the closed-form solution for the CDF of

F, (7). by inserting 29), (30) and (31) into (24), yielding

i (A)

~1—Uz: > Aii(A) (1—>_j

=1 j=1
Y Y
—yexp(—y — by~ )—&—1"(,7 )
Th ThYgW
o) 5 0-3)
T ThYeW Vg Th

11 “1 ¢
xeXp<7(+>>exp a; ZE —a;)

Th Ve 0
k -1
E\ b
i 1,biv;
: Z(m) b (’“ 7 )

C. CDF of the End-to-End SNR

The end-to-end SNR is defined by the probability that
the instantaneous output SNR falls below a certain threshold
which is already defined as . Mathematically, it is written as

| &l

(32)

= Pr((7e + wz)1 <), (33)

Pr(min (v, %s) <7)
where 1 symbolizes an indicator of RV, with 1 = 1 for vy, >
and 0 otherwise. This RV also indicates that the power at the
relay is not only the power coming from its fixed battery Bs,
but also the random replenished energy from the interference.
Let us introduce the RV 2 = (4, + Ir)1. The PDF f.(2) is

given by

v(A) i ( —j
o (1-%)
Th

f;@mjhexp(%f) > g

1 bt j_laf 22 ' 34
x eXp( a’1+7)];)k! <1+7) - O9
Thus, by inserting (34) into (22), the PDF of the end-to-
end SNR, Yend-toend, 15 Obtained as Obtaining a closed-form
solution for can be done by using a similar method as in
subsection It is noted that the solutions to the first and
the second integrals are already known from (29) and (30).
In the third integral, we use the Taylor series expansion for
(2 —~)¥ [49] and use the definition of generalized incomplete
Gamma function (given in [47, p. 372]). Details are given
below.

1) Closed-Form Expression for Ks: The third integral
K3 is solved by using direct substitution of a Taylor series
expansion of (2 —v)* with respect to 2 [30, p. 6430] and the
identity of the generalized incomplete Gamma function [46|
Eq. (3.351.1), Eq.(3.334)]. This gives

K 1 . (ai'y )JE:I 1 (—am/)k
~ —ex —

RPN\ ) &R \T

k b1 biy

F 1b277

<55 () gt (02

g

(36)

We now obtain the closed-form solution for the CDF of the

end-to-end SNR by inserting (29), (30) and (36), into (24),
yielding

F'Yend-lo-end (7) =
v(A) 7, (A) —j
-3 3 Au(A) <1>
=1 j=1
xw(—vexp(—v—bv”)ﬂ“(l,v; g )
Ve T YW
wods)) - (- 3)
h ThYgW Ve “h
( (5+%) 5= (55)
— — exXp
T e “h 1+~
S RO
=k 14y = \m (=biy)™
b
T <m—|— 1, by ”) (37)
YW

We note that the transmission power at the relay, i.e., Pg, does
not only depend on the power level of the relay’s fixed battery,
but also on the energy available through harvesting. We recall
that EH at the relay node is the combination of the energy
collected from interference and the energy received from the
source’s signals. Hence, the distribution of the received SNR at
the sink node depends on the variations of the relay-to-sink, as
well as the transmitter-to-relay, channel power gains. One can
show that the second-hop SNR can be improved if the level of
interference increases. However, the effect of the interference
power on the end-to-end SNR, given in (37), cannot be easily
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v(A) 7i(A) —j 0o . N
I 1 wz —y z .
s (1) = 1 wita) (1= ) T[T LT e (2222
P Th v Th Vg — w2 ZW Y
K,
1 < Wz -z
+ —exp (_,y) / — exp () dz
h Vo) Jy Vg WZ h
Ko
Nak 1 2 2\ [2—-7\"
— —Z/ —ex (—A — ) — exp (—ai) ( ) d? (35)
= "'Jy WZ 147 1+~
=0
K3
verified. This can also be intuitively explained since in the Table I Simulation parameters
considered relaying system, the interference reduces the SINR | Parameters | Default value Parameters | Default value
of the first hop, whereas it increases the SNR of the second N 5 n 0.3 else stated
hop. v 02 dB pii=1,..5 03
T 0.4 else stated 0s’B 1 else stated
) ) P 1 dB else stated Kr 1 else stated
D. Ergodic Capacity Qn 1 else stated 02B 1 else stated
In this subsection, we analytically derive the ergodic capac- Ks 1 else stated Qy 1 else stated

ity of the relaying system which is calculated by taking the
average of the minimum between the rate at the first-hop and
that at the second-hop [50], formulated in b/s/Hz as

C =
E <min <(1 g ) logy (14 %)

ot

1_ o

u ;T) 10g2(1+%s))>

logy (1 + min(y. %»)

-7

r
= —F 10g2 (1 + 'Yend-to—end)f Yend-to-end ('Vend—to-end) dYend-to-end,

2 0
(38)

where f .. .() is the PDF of the RV Yengioend =
min(y,, %s). We now solve (38) by using integration by parts
as follows:
1—71
C= 9 (10g2 (1 + ’Yend—to—end)
© 1-7
F end-to-en - ]- ‘ -
X < “Yend-to-end (’Y d-t d) ) > 0 2 hl 2
X / “F Yend-to-end (Yend-to-end) —
0 1 + “Yend-to-end

oo
- 1—7 / 1-F ~Yend-to-end ('Yend—to-end)d’Yend—to—end
0

1
d'Yend—to-end

- 2In2 1 + Yend-to-end

Where’ F'Yend-lo-end (ryel’ld-t()—el’ld) is given in @D'

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we numerically evaluate the effect of EH,
the fixed batteries power levels and the energy conversion

coefficient on the ergodic capacity and the end-to-end SNR
of the studied relaying system. In all the figures, we assume
that the power of the fixed battery at the source transmitter
T is equal to the power of the fixed battery at the relay
R, hence, P, = P, = P. In our simulation we have used
values directly for Kg, e.g., , Kr = 1, in which the effect of
distance is included through the path-loss model. Hence we
did not choose any specific value of dgr. In the simulations,
we included the value for Kr = Kg = 1, else stated.
The channels are assumed unit variance Rayleigh, hence,
= € = 1, unless otherwise indicated. The number
of interference signals at the relay is set to N = 5 with
normalized p; = 0.3, ¢ = 1,...5, and the TS parameter is
set to 7 = 0.4, unless otherwise indicated. Values for @), and
n are taken from studies shown in [51]]. The noise variance at
relay and sink is assumed to be equal, hence of = 03 = 1,
unless otherwise indicated.

In Fig. 4, we start by plotting the CDF of the first-hop
SINR F,_(7), the CDF of the second-hop SNR F, (7), and
the CDF of the end-to-end SNR F,_, .. versus the power
consumed from the fixed batteries P, at v = 0.2, n = 0.3,
Krp = 0.5 and Kg = 0.3 with ; = 1dB. The figure
includes both analytical and Monte-Carlo simulation results
to verify the correctness of the closed-form derivations. From
the graphs, we observe that the CDF of the received SNR at
the second hop is greater than the one of the SINR at the first
hop, for most of the time. It is noted that the CDF of the
end-to-end SNR is similar to the CDF of the second hop SNR
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Closed-form solution for F_ (y)
0.9 Vim
Monte-Carlo simulations for F_(y)
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= \ Closed-form solution for Fy y)
?o7f \ g o for F
2 o— Monte—Carlo simulation for FVRS(V)
> 061 Closed-form solution for F v)
- & end-to-end
Z o05f _pg— . Monte—Carlo simulation for F (U5
R end-to-end
Y o0af
2
K 0.3F
w
0.2F
0.1f
0 . . .
0 2 4 6 10

P (dB)
Figure 4: The CDF of ~y, (first-hop), CDF of ~ (second-hop), and
the CDF of 7end-to-end (end-to-end SNR) versus the power consumed
from the fixed batteries P, when v = 0.2, n = 0.3, Kr = 0.5 and
Ks =0.3 and Q; = 1dB.

0.8
<
0.7F
0.6
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02} * ER) Q=1dB
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0.1F
o ‘ ‘ ‘ :
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P (dB)
Figure 5: Average rates at the first and second hops (E(R1), E(Rz2))
versus P with n = 0.3.

F (7). This is due to the fact that, for the settings used in
this figure, the first hop SINR is the minimum of the SINR at
the first and the SNR at the second hop for most of the time.
Further, the plots confirm that the results obtained from the
closed-form expressions match to the ones obtained from the
Monte-Carlo simulations, hence indicating that the obtained
closed-form expressions yield accurate measures of the CDF
of the individual links’ SNRs and the end-to-end SNR.

Fig. 5 shows the plots for E(R;) (the average rate at the first
hop) and E(R3) (the average rate at the second hop) versus
the power level of the fixed batteries P, at 7 = 0.3 and for
various values of ;. From the plots, we note that when P =
0dB and no harvesting is available at the source, the average
rate of the second hop is slightly higher than the one at the
first hop. The relay harvests energy both from source signal
and RF interference and, hence, under the above-mentioned
conditions, the second hop achieves a slightly higher rate than
the first hop. When @, = 1dB, and at the same time the energy
conversion coefficient at the relay remains small (n = 0.3),
the average rate at the first hop E(R;) dominates E(Rz). This

10

0.9 ——F
RS
F
0.8t Vim
07}
2, 06} 1
e
w
05 1
= |
L 04 ]
03} 1
02
0.1
0 ‘ ‘ ‘ ‘
0 0.2 0.4 06 08 1

Q, (@8)
Figure 6: F.y (7) and Fy (7) versus Q at v = 0.2 with n = 0.3
and P = 1dB.

0.25 .
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+  ER,). QF1dB
0.2r > C,Q=1dB
E(R,), Q=0.5dB
~ t
< 015 —+— E(R,), Q=0.5d8
2 015}
S C, Q=0.5dB
3
o
>
g o01f
[
>
<
0.05F
ol ) ‘ ‘ 5
0 0.2 0.4 0.6 0.8 1

T
Figure 7: Average rates at the first and second hops, (E(R1), E(R2)),
versus 7, with 7 = 0.3 and various values of Q.

happens because the solar energy at the transmitter is stronger
compared to the RF energy level at the relay. We also observe
that the difference between the two rates decreases at higher
power values P of the fixed batteries, indicating that EH is
less beneficial in devices with higher powers.

Fig. 6 includes the plots for the CDF of the SINR at the first-
hop ~, and the CDF of the SNR at the second hop ~, versus
@, at n = 0.3, P = 1dB and ~ = 0.2. From the graph, we
notice that not only the CDF of the first hop SINR (F,_ (7))
decreases with the increase in the solar energy, but also the
CDF of the second hop SNR (F, (7)) shows a similar trend.

Fig. 7 illustrates the plots for the average rates E(R;),
E(Rz) and C versus the TS parameter 7 with n = 0.3,
u = 0.3, P =1dB, and various values of @,. It is noted that
when Q; = 0.5dB, E(R3) shows bell curve while E(R;) is
monotonically decreasing. This is due to the fact that although
with increasing 7, more energy will be available at the relay
node through harvesting, but at the same time, less time is
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Figure 8: Average rates (first-hop and second-hop) versus the energy
conversion coefficient n, with P = 1dB and various values of Q.

available for signal information transmission. This conflicting
effect, makes the shape of E(Ry) with respect to 7 bell-shape.
When solar energy increases, e.g., ; = 1dB, the two curves
coincide each other at smaller values of 7 = 0.5. This happens
because with higher @, E(R;) is bigger. Hence, the amount of
time which will be used for harvesting, instead of information
transmission reduces E(R;) quicker and hence, the two curve
coincide at a smaller value of 7, when compared to the case
with Q; = 0.5dB. Generally, the trend shows the higher the
solar energy is, the less time should be allocated for harvesting
in the second hop.

In Fig. 8, we present the plots for the average rate at the
first-hop and the average rate at the second-hop versus energy
conversion coefficient 7 at P = 1dB with various values of
Q. At small values of 7, i.e., n < 0.1, with @, = 1dB, the
average rate at the first-hop is slightly higher than that at the
second-hop, due to the small energy conversion coefficient at
the relay harvesting battery. As 7 increases, i.e., n > 0.1, the
average rate at the second hop dominates the average rate at
the first hop.

Fig. 9 shows the plots for the average rates versus (J; with
n = 0.3 and P = 1dB. The figure shows three different rate
plots defined by the average rate at the first hop, the average
rate at the second hop and the average end-to-end ergodic
rate C. We notice that E(R;) increases rapidly with @, while
the average rate at the second hop increases slowly with Q.
When @), = 0dB, we observe that the E(Ry) is higher than
E(R1). As Q increases, e.g., @ > 1.5dB, the average rate at
the first hop becomes larger than that at the second hop. This
happens due to the fact that in E(R;) the transmitter node has
a direct access to solar energy, whereas in case of E(Rs), the
harvested power gets affected by the Rayleigh fading channel
h. Furthermore, the total end-to-end capacity C' increases with
@, showing that the higher the solar energy is, the better the
end-to-end ergodic rate is. The numerical results validate the
mathematical expression for the ergodic capacity in (38).
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Figure 9: Average rates (first hop, second hop and end-to-end) versus

Q. at n = 0.3 with P = 1dB.
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Figure 10: Average SNR/SINR versus Qi at n = 0.3 with P = 1dB.
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Figure 11: Average rates (first hop, second hop and end-to-end) versus
average interference at the relay E(/g), with 7 = 0.4, Q; = 1dB and

varying p.

Fig. 10 shows the plots for the average SINR at the first-
hop and average SNR at the second-hop, versus @, at n = 0.3
and P = 1dB. As observed, both values increase when solar
energy increases. Meanwhile, at (); = 0dB, the average SNR at
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the second hop is higher than the average SINR at the first hop.
This is due to the fact that while @, is small, i.e., Q; = 0dB,
the relay still has access to harvesting power from the RF
interference signal. At @ = 1.5dB, the two plots coincide
each other. Overall, the first-hop SINR increases more rapidly
with @, compared to the second hop SNR.

Finally, Fig. 11 demonstrates the plots for the average rate
at the first hop, the average rate at the second hop, and
the average end-to-end ergodic rate C, versus the average
interference power at the relay E(Ig), with n = 0.3, P = 1dB
and @, = 1dB. When @), = 1dB and the average interference
power is small, i.e., E(Ig) < 0.2, the first-hop rate is slightly
higher than the one at the second hop. The average interference
adversely affects the rate of the first hop, therefore E(R;) is
always decreasing with E(Ig); whereas it improves the rate
of the second hop through EH. When the interference signal
is weak, the rate of the first hop is better than the rate of the
second hop. With an increase in the average interference at the
relay, E(R2) gives higher values since the solar transmitter has
access to solar energy. Furthermore, the average end-to-end
capacity C' shows a monotonic decrease with E(I), revealing
that the more the average interference is, the less the end-to-
end ergodic rate will be.

VI. CONCLUSION

In this paper, we investigated the system performance of a
dual-hop DF relaying system, in which the transmitter and the
relay are equipped with fixed, as well as, EH batteries. Har-
vesting at the transmitter is done through solar energy source,
whereas interference from the RF is used as the EH source
at the relay. TS is used for EH and information transmission
at the relay. We showed that EH at the source transmitter and
at the relay can improve the end-to-end SNR. Closed-form
expressions were derived for the CDF of the SNR at each hop,
and also for the end-to-end SNR. The analytical expression for
the end-to-end ergodic capacity was also obtained. Numerical
results were provided to verify the correctness of the closed-
from derivations. The effect of energy conversion efficiency
and the fixed batteries power levels on the CDF of the SNR for
the individual links were also investigated. The results further
demonstrated that with the addition of EH at the source and
the relay, significant improvement in the system throughput
can be achieved. Future work includes consideration of input
power constraints at the fixed batteries and catering inter-cell
interference and hardware impairments.

APPENDIX A

Here, we aim to prove the equation in Lemma 1, given
in (I). We start by referring to the below recurrence equa-
tion [48, p. 101]

d
%xa exp (—z — bz ') = az® Texp(—z — bz ")

+ b 2 exp(—x — bz~ ') — z%exp(—x — bz~ '),  (39)

12

For o = 1, the expression simplifies to

d (zexp(—z — bz~ 1))
dx

=(1+bx ' —x)
x exp(—x — bz~ ). (40)

Re-arranging {@0) and taking integration on both sides gives,

/ rexp(—z — br~V)dr =
.

o0

/ b lexp(—z — br~ ') + zexp(—z — bz 1)
v ol

+/ exp(—z — bz~ !)dz. (41)
¥

Different parts of (4I) can be re-written into generalized
incomplete Gamma function [47] as

/ zrexp(—z — bx™') =T'(2,2;b), 42)
.
/ be~exp(—x — ba™t) = T(0,z;b), (43)
7 oo
/ exp(—x — bx~') =T(1, z;b). (44)
~
Hence, replacing @2)-@4) into @I) yields,
['(2,2;0) = T'(0,2;b) + zexp(—z — bx ™) -
-
+T(1,23b). (45)
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