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Abstract—In this paper, a correntropy-based evolving fuzzy
neural system (correntropy-EFNS) is proposed for approximation
of nonlinear systems. Different from the commonly used mean-
square error criterion, correntropy has a strong outliers rejection
ability through capturing the higher moments of the error distri-
bution. Considering the merits of correntropy, this paper brings
contributions to build EFNS based on the correntropy concept
to achieve a more stable evolution of the rule base and update
of the rule parameters instead of the commonly used mean-
square error criterion. The correntropy-EFNS (CEFNS) begins
with an empty rule base and all rules are evolved online based on
the correntropy criterion. The consequent part parameters are
tuned based on the maximum correntropy criterion where the
correntropy is used as the cost function so as to improve the non-
Gaussian noise rejection ability. The steady-state convergence
performance of the CEFNS is studied through the calculation of
the steady-state excess mean square error (EMSE) in two cases: i)
Gaussian noise; and ii) non-Gaussian noise. Finally, the CEFNS is
validated through a benchmark system identification problem, a
Mackey-Glass time series prediction problem as well as five other
real-world benchmark regression problems under both noise-free
and noisy conditions. Compared with other evolving fuzzy neural
systems, the simulation results show that the proposed CEFNS
produces better approximation accuracy using the least number
of rules and training time and also owns superior non-Gaussian
noise handling capability.

Index Terms—Evolving Fuzzy Neural System, Mean-Square
Error, Correntropy, Steady-State Excess Mean Square Error,
Nonlinear System

I. INTRODUCTION

FUZZY neural systems (FNSs) are able to deal with un-
certain information through IF-THEN rules and to model

nonlinear systems by learning from input-output datasets or
data streams [1], [2]. Extracting a set of suitable fuzzy rules
from the available input-output datasets or data streams is
a challenge, especially, if it is to be done automatically.
In traditional approaches of designing the FNSs, the fuzzy
rules are pre-trained and learnt from a given set of input-
output data in an offline mode [3], [4]. This leads to a
static rule base of the resulting system. However, in the real-
world most processes are nonstationary and possess dynamical
and changeable behavior over time. The FNSs with static
structure can hardly handle nonstationary processes, in which
the modeling performance is degraded. To address this issue,
intensive research work have been concentrated on developing
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evolving FNSs (EFNSs) aiming to design FNSs with a higher
level of flexibility and autonomy [2], [4]–[15]. EFNSs evolve
their structure according to the information from the dynamic
processes and thus are able to deal with data shift and drift
due to changes in the operating environment over time.

Since the beginning of the century, various approaches of
developing EFNSs have been proposed [4], [6]. Depending
on the Euclidean distance of the fuzzy rules to the newest
datum, some EFNSs, i.e., dynamic evolving neuro-fuzzy in-
ference system (DENFIS) [16], self-constructing neuro-fuzzy
inference network [17] are developed to recruit the rules.
In addition to the distance criterion, the learning error at
each instant is applied as a criterion for evolving the system
structure in some EFNSs [7], [8]. But these EFNSs are prone
to outliers. In parallel, based on the informative potential of
the new datum representing accumulated spatial proximity
information, an evolving Takagi-Sugeno (eTS) model [9] was
proposed. In the eTS model, the sum distances to all data
points is taken into account in the potential and thus outliers
supported by few data points have no chance to become rule
centers. A family of eTS models, such as simplified eTS model
(Simp eTS) [10], evolving extended TS model (exTS) [2],
and evolving TS model from streaming data (eTS+) [11] have
been developed. In a similar way, a meta-cognitive neuro-fuzzy
inference system (McFIS) [12] is proposed to update the rule
base based on the spherical potential of each learning datum
that represents the novel knowledge contained in each datum.

Except the instantaneous information of each datum, the
statistical contribution of the new datum defined as the signif-
icance criterion is proposed as an effective way to evolve the
rule base in [13], [18]. The author has proposed a sequential
adaptive fuzzy inference system (SAFIS) [14] where the
determination of rules is based on the influence of a rule
represented by its statistical contribution to the system output.
But the calculation of rule influence requires that the input
data are uniformly distributed. This limits its application. To
improve the performance of SAFIS, the author has developed
an extended SAFIS (ESAFIS) [15] based on the modified
influence of a rule in which the uniform distribution of the
input data is not necessary. In [19], a multivariable Gaussian
evolving fuzzy modeling system (eMG) is developed using a
recursive clustering algorithm inspired by the idea of partici-
patory learning. A evolving fuzzy model (eFuMo) method [20]
is proposed for a monitoring system based on the normalized
Mahalanobis distance. To create a new cluster, certain previous
samples must satisfy the distance adding criterion in order
to reduce influence of the outliers. Using the Mahalanobis
distance, an evolving possibilistic fuzzy modeling approach
(ePFM) [21] is proposed to forecast realized volatility with
jumps. The ePFM includes a utility measure to avoid unused
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clusters that persists during learning.
In addition to the identification of the fuzzy rules, the design

of the EFNSs also requires mechanism for online adaptation
of parameters of the rules. When analyzing the existing work,
the parameter update is mainly based on the mean square
error (MSE) criterion. To achieve the minimum of the MSE
between the desired and the system outputs, some parameter
optimization algorithms, i.e., recursive least squares (RLS)
[22] or extended Kalman filter methods [23] are applied to
adjust the parameters of rules. Actually, the minimum of MSE
equivalently minimizes the variance of the modeling error
distribution. Also, under the MSE criterion, only the second-
order moment of the error distribution are considered. In this
way, the utilization of MSE to update the parameters of EFNSs
is optimal only when the modeling errors are distributed under
the Gaussian law.

In general, the real-time dynamical and time-varying pro-
cesses are highly nonlinear and, thus owns the complex non-
Gaussian properties of the modeling errors. To tackle the non-
Gaussian nature of the modeling errors, an effective way is
to adopt the information content of the error distribution as a
quality criterion [24]–[26]. By capturing the higher moments
of the error distribution, the information contained in the
higher moments are passed to the EFNSs instead of remaining
in the error distribution. A measure of information content
is correntropy that represents a nonlinear and local similarity
measure between two arbitrary random variables. Correntropy
is a special case of the cross entropy in information theoretic
learning (ITL) [27]. In correntropy, the error space is mapped
to a Reproducing Kernel Hilbert Space (RKHS). In the case,
an L2 distance is defined in the kernel space and a nonlinear
distance measure in the original error space [28] is presented.
In comparison with MSE, correntropy has been proven to
have a strong outliers rejection ability in many applications,
e.g., adaptive filtering [29] [30], pattern classification [31],
dimension reduction [32] and feature selection [33].

Correntropy criterion has been applied to update the param-
eters of a neuro-fuzzy classifier by Principe, the creator of ITL
theory. The resulting classifier is applied to classify the sleep
state of the patient and better results are achieved compared
with the MSE criterion. But in the work the rule base need
to be pre-determined and can not be changed according to
the learning process. Also some key issues still need to be
solved, e.g., the convergence of parameter update under the
correntropy criterion. Considering the merits of correntropy,
this paper brings further contributions to build the EFNS based
on the correntropy concept of ITL to achieve the evolution
of the rules and update of the rule parameters instead of the
absolute error and the MSE criteria widely used in the existing
literature. Until know, not any publication has so far come
to use online building of the EFNS based on correntropy.
From the viewpoint of ITL, the proposed CENFS has several
appealing advantages, which are given here.

1) The correntropy presents the probability of similarity
between the desired and real outputs, thus it is directly related
with the addition criterion in the proposed CEFNS. That is,
the structure of fuzzy rules is evolved automatically based on
the correntropy. This offers a robust mechanism to avoid the

detrimental effect of outliers, and is intrinsically different from
the use of the absolute error in existing techniques.

2) In the proposed CEFNS, online adaptation of parameters
existing in the rules is achieved according to the maximum
correntropy criterion (MCC) where the similarity between the
desired and real outputs is maximized in the correntropy sense.
Then the gradient ascent technique is adopted to train the
consequent parameters of rules. Compared with MSE criterion,
the MCC represents a local similarity criterion and is very
effective to handle non-Gaussian dynamic environments. Also,
the computational complexity of the proposed algorithm in this
paper is lower than those of the existing works.

3) The steady-state excess mean square error (EMSE) of the
proposed CEFNS under the MCC are studied in our work. This
is totally different from the prior studies. Two cases of noise
are considered. One is the Gaussian noise in which the exact
value of the steady-state EMSE is gained through building
a fixed-point equation. The other is the non-Gaussian noise
where an approximated expression of the steady-state EMSE is
analytically derived according to a Taylor expansion approach.

The rest of the paper is organized as follows. Section II
presents the proposed CEFNS structure. The learning details
of the proposed CEFNS is described in section III. The
convergence analysis in terms of the EMSE for the proposed
CEFNS is presented in section 5. In section V the proposed
system is evaluated through simulation results. In section VI
we give the conclusion.

II. CEFNS STRUCTURE

For the sequentially arrived input-output data streams
{(xn, yn), n = 1, 2, ...} each of which contains the Nx-
dimensional inputs and 1-dimensional output at time n, the
construction of the proposed CEFNS aims to model an un-
known function F : ℜNx → ℜ from the data stream. In the
CEFNS, the fuzzy rules are built “from scratch” and gradually
evolve from the given input-output data with an adaptive self-
constructing rule generator. The rules make use of the form
of the first-order Takagi-Sugeno (TS) fuzzy model, whose kth
rule is defined to take the following form:

Rule k: if (x1 is A1k) · · · AND (xi is Aik) · · · AND (xNx

is ANxk), then (ŷ is βk)
where βk = qk0 + qk1x1 + · · · + qkNxxNx(k = 1, 2, ..., Nh)
is the consequence, Nh is the number of fuzzy rules. The
membership function Aik corresponding to the ith input vari-
able xi in rule k is computed from a Gaussian function and
represented as,

Aik(xi) = exp

(
− (xi − µik)

2

σ2
k

)
(1)

where µik is the Gaussian function center, σk is the Gaussian
function width. According to the sum-product composition,
the firing strength (if part) Rk(x) is expressed as follows,

Rk(x) =

Nx∏
i=1

Aik(xi) = exp

(
−||x− µk||2

σ2
k

)
(2)

The TS-type consequence as a linear model with exogenous
inputs is expressed as,

βk = xT
e qk (3)
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where xe is an extended input vector with 1, i.e., [1,xT ]T ; qk

is the parameter matrix of rule k that equals as,

qk = [qk0, · · · , qkNx ]]
T
(Nx+1)×1 (4)

With the weighted average defuzzification technique, the sys-
tem output is calculated as,

ŷ =

∑Nh

k=1Rk(x)βk∑Nh

k=1Rk(x)
(5)

We rewrite the network output (5) in a matrix form as
follows:

ŷ = HTa (6)

where H is the normalized firing strength of rules and a is
the parameter matrix of all the existing rules, which are given
as,

a =
[
q10 ... q1Nx ... qNh0 ... qNhNx

]T
Nh(Nx+1)×1

(7)
and

H =

[
xT
e

R1(x)∑Nh

k=1Rk(x)
, · · · ,xT

e

RNh
(x)∑Nh

k=1Rk(x)

]T
Nh(Nx+1)×1

(8)
The design of the proposed CEFNS consists of two sub-

tasks [9]. One is the structure identification with the determi-
nation of the antecedent part of the rules, such as the centers
(µ) and widths (σ) of the Gaussian membership functions and
the number of rules (Nh). The other is the adjustment of the
consequent parameters (a) for the rules determined within the
structure identification sub-task. In this paper, the two sub-
tasks are realized based on the correntropy concept of the ITL
and described below in details.

III. LEARNING ALGORITHM OF CEFNS

In this section we present the learning algorithm of the
CEFNS and describe how correntropy is used to evolve its
structure and learn its parameters.

A. Correntropy

As a similarity measure between two random variables y
and ŷ, the correntropy is generally defined as [27],

V (y, ŷ) = E[κ(y − ŷ)] (9)

where E[·] denotes mathematical expectation, κ(·) is a shift-
invariant Mercer kernel. In reality, the joint distribution func-
tion of y and ŷ is unknown. However for a finite number of
samples (yn,yn)

N
n=1, the estimator of correntropy is calculated

as [27],

V̂ (y, ŷ) =
1

N

N∑
n=1

κ(yn − ŷn) (10)

The Mercer kernel κ(·) in the correntropy transforms the
data y from the original space to an infinite dimensional
reproducing kernel Hilbert space (RKHS) F by means of a
nonlinear mapping Φ. Thus, we obtain

κ(yn − ŷn) = ⟨Φ(yn),Φ(ŷn)⟩F (11)

where ⟨·, ·⟩F is the inner product in F. Two new
vectors ȳ = [Φ(y1),Φ(y2), · · · ,Φ(yN )]T and ¯̂y =
[Φ(ŷ1),Φ(ŷ2), · · · ,Φ(ŷN )]T are constructed in the Hilbert
Space F. Then their Euclidean distance ED(ȳ, ¯̂y) can be
represented as follows

ED(ȳ, ¯̂y) = (⟨(ȳ − ¯̂y), (ȳ − ¯̂y)⟩) 1
2

=
(
⟨ȳ, ȳ⟩ − 2⟨ȳ, ¯̂y⟩+ ⟨¯̂y, ¯̂y⟩

) 1
2

=

(
N∑

n=1

κ(yn − yn)− 2
N∑

n=1

κ(yn − ŷn) +
N∑

n=1

κ(ŷn − ŷn)

) 1
2

=
{
2N · [κ(0)− V̂ (y, ŷ)]

} 1
2

(12)

ED(ȳ, ¯̂y) is an L2-norm in the Hilbert space. For translation
invariant kernels like the Gaussian kernel, V (y, ŷ) = V̂ (y−ŷ).
It can be shown that correntropy presents a nonlinear distance
measure in the original error space. Also, Gaussian kernel has
the smooth and strictly positive definite properties and has
been widely used as the kernel function in correntropy. In
this work, without mentioned otherwise, the kernel function
in correntropy is Gaussian kernel, which is given as,

κ(yn − ŷn) =
1√
2πσ

exp(− (yn − ŷn)
2

2σ2
) (13)

where σ > 0 is the kernel width. Thus (10) becomes as,

J = V̂ (y, ŷ) =
1

N

N∑
n=1

κ(yn − ŷn)

=
1√

2πσN

N∑
n=1

exp

(
− (yn − ŷn)

2

2σ2

)

=
1√

2πσN

N∑
n=1

exp

(
− e2n
2σ2

)
(14)

where en = yn − ŷn is the error between the desired and the
actual outputs. The modeling of the CEFNS is a continuous
online learning process and thus the correntropy information
at each time is necessary to build the structure of rule-based
models and adapt the consequent parameters of rules. At the
nth instant, the correntropy is written as

Jn =V̂ (yn, ŷn) =
1√
2πσ

exp

(
− (yn − ŷn)

2

2σ2

)
=

1√
2πσ

exp

(
− e2n
2σ2

)
(15)

Correntropy represents a nonlinear measure of similarity
between the desired and actual outputs in kernel space. Taking
Taylor series expansion of the exponential function yields,

V (y, ŷ) =
1√
2πσ

E

[
exp

(
− (y − ŷ)2

2σ2

)]
=

1√
2πσ

∞∑
n=0

(−1)n

2nn!
E

[
(y − ŷ)2n

σ2n

]
As it can be seen, the correntropy is able to extract the higher
(even) order statistics of the data. Hence, the correntropy can
exhibit better performance than its linear counterparts, which
has been verified in many applications and will be further
confirmed in our study.
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B. Rules Evolving

The evolution of rules includes adding new rules online to
the fuzzy model structure. It improves the fuzzy model perfor-
mance and adapts its structure. In some existing literature, the
conditions of adding new rules are based on the model output
error and the distance of the current sample to the existing
rules [7], [8], and the information potential that depends on
the current sample’s spatial proximity to all other data points
[2], [9]–[11]. In this paper, the correntropy in (15) together
with the distance between the current sample to the existing
rules is used as the criteria to determine whether a rule needs
to be generated. Rule adding of the CEFNS is presented as
follows. The CEFNS begins with an empty fuzzy rule base.
When the first input-output data (x1, y1) sample comes in, the
first new rule is generated with the mean and center of the
new fuzzy set and its consequent parameters assigned by

µ1 = x1, σ1 = κ∥x1∥, q10 = y1, q1i = 0, i = 1, 2, ..., Nx

(16)
For each subsequently incoming input-output xn, yn (n > 1

is the time index), fuzzy rules are added by judging

||xn −µnr|| > θn & e < Jn =
1√
2πσ

exp(− e2n
2σ2

) < ē (17)

where e and ē are the lower and upper thresholds of the rule
addition chosen according to the desired accuracy of CEFNS.
µnr is the center of the fuzzy rule which is closest to xn. θn
is the distance threshold which decays exponentially and is
given as,

θn = max{θmax × γn, θmin} (18)

where θmax, θmin are, respectively, the largest and smallest
length of interest and γ is the decay constant. The exponential
decay of θn initially brings the coarse learning with fewer
fuzzy rules and at a later stage brings the fine learning with
more fuzzy rules. Once the system generates a new fuzzy rule,
the number of the fuzzy rules is set to Nh = Nh +1. For the
newly added rules, the antecedent parameters (µNh+1, σNh+1)
and the initial consequent parameters are allocated as follows:

q(Nh+1)0 = en, q(Nh+1)i = 0, i = 1, 2, ..., Nx

µNh+1 = xn, σNh+1 = κ||xn − µnr|| (19)

(16) shows that the antecedent parameters are evolved from
scratch in an evolvable way. For any new sample, a new rule
is recruited when the criteria of adding rule are satisfied and
then its antecedent parameters are determined with the newly
loaded sample based on (19). In this way, the antecedent
parameters are permanently updated whenever a new rule is
generated.

In (17), the distance criterion ensures that the new rule is
added at a sufficient distance from all existing rules while the
correntropy guarantees the similarity between the desired and
real outputs. Compared with the commonly used error criterion
[7], [8], the correntropy criterion presents a local similarity
within a small region that is determined by the kernel width
σ. Fig. 1 depicts the curves of correntropy under different
kernel widths, from which it can be seen that the behavior of
correntropy is varied under different kernel width σ and also
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Fig. 1. The correntropy Jn and Jcn under different kernel widths σ.

the correntropy is quite small when the error is large. Thus,
the lower threshold of the correntropy is set to resist the effect
of the noise in which the correntropy is small due to the large
error. The upper threshold of the correntropy ensures a high
similarity between the desired and real outputs. In this study, a
new rule is deemed to be created when the similarity between
the desired and real outputs is within the interval [e, ē] and the
distance between the current sample and the existing rules is
farther than the threshold θn.

From Fig. 1(a) one can see that the maximum value of
correntropy Jn varies too much under different kernel width
values, thus making the growing thresholds (e, ē) vary a
lot and are hard to choose. Defining ek =

√
2πσe and

eg =
√
2πσē, the correntropy criterion becomes ek < Jcn =

exp(−∥en∥2

2σ2 ) < eg. In this context, the maximum value of
Jcn lies around 1 with different kernel widths, as shown in
Fig. 1(b). It is easy to choose the parameters (ek, eg) during a
practical implementation. From Fig. 1(b), it can be found that
the bigger kernel width yields bigger value of Jcn under the
same error value. When the kernel width chosen is too small,
the value of Jcn tends to zero for most errors. Consequently,
we choose σ > 0.5 in our study for all the approximation
problems.
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C. Parameter Updating

In the CEFNS, the antecedent parameters of the rules are
determined according to (19) in an evolvable way. When there
is no addition of rules, the consequent parameters a from (6)
are updated. In the existing work, estimation of the consequent
parameters is transformed into a least square problem and
updated recursively based on the MSE criterion. Here, the
MCC is used as the performance function to adjust the
consequent parameters (a) of the CEFNS. In MCC, the system
output is ensured to be close to the desired response through
maximizing the error probability density at the origin. Also,
the MCC adaptation can be applied in any noise environments
where its maximum value is at the origin [28]. Thus, the MCC
being a local criterion of similarity has the advantages over
MSE and very effective to handle nonzero mean and non-
Gaussian cases with large outliers.

Accordingly, for the given input-output dataset (xn, yn),
n = [1, N ], the cost function based on the correntropy is
expressed as,

Jn =
1√
2πσ

exp

(
− (yn −HT

nan)
2

2σ2

)
(20)

where Hn =

[
xT
en

R1(xn)∑Nh
k=1 Rk(xn)

, · · · ,xT
en

RNh
(xn)∑Nh

k=1 Rk(xn)

]T
,

xen = [1,xn]
T . Under the MCC, the optimal consequent

parameter an is recursively updated using the gradient ascent
approach in order to maximize the cost function Jn. With a
small step δ > 0, the parameter is updated along the positive
gradient of the performance function Jn in the parameter space
and expressed as,

an+1 = an + δ∇Jn (21)

where

∇Jn =
∂Jn
∂an

=

{
1√
2πσ

exp

(
− (yn −HT

nan)
2

2σ2

)}′

=
1√
2πσ

exp

(
− (yn −HT

nan
2σ2

)(
− (yn −HT

nan)
2

2σ2

)′

=
1√
2πσ3

exp

(
− (yn −HT

nan)
2

2σ2

)
(yn −HT

nan)Hn (22)

According to (22), the updating equation of the consequent
parameter at the next time instant n+ 1 equals to,

an+1 = an+
δ√
2πσ3

exp

(
− (yn −Hnan)

2

2σ2

)
(yn−Hnan)Hn

(23)
Denoting η = δ√

2πσ3N
> 0, the above parameter updating

equation can be simplified as,

an+1 = an + ηexp

(
− e2n
2σ2

)
enHn = an + ηJcnenHn (24)

where en = yn − Hnan is the estimation error, and η is
the step size. (24) is called the MCC algorithm [34]. When
Jcn = exp

(
− e2n

2σ2

)
= 1 in (24), the MCC algorithm reduces

to the least mean square (LMS) adaption algorithm which uses
MSE criterion as its cost function,

an+1 = an + ηenHn (25)

However, comparing (24) and (25), it can be observed that
the MCC algorithm obtains an extra scaling factor that is
also the correntropy criterion function Jcn . The extra scaling
factor Jcn = exp(− e2n

2σ2 ) is an exponential function of the
error en and depicts the outlier rejection property of the
correntropy similarity measure. But for the learning algorithms
like RLS and LMS based on the MSE criterion, the parameter
update is related to the scalar factor en. It is obvious to see
that η(i) ≤ η and thus the convergence speed of the MCC
is reduced accordingly. However, when the kernel width is
not too small, the effect of the convergence speed of the
parameters in MCC is relatively weak. Fig. 2 depicts the curves
of the two scalar factors existing in the MCC and MSE. As
shown in Fig. 2 it can be seen that the scalar factor Jcnen in the
MCC varies much less than the scalar factor en in the MSE
criterion especially when the error en has a large variation.
This means that the parameter adaption using the MSE is
easy to be influenced seriously by a large error en that may
be caused by outliers or impulsive noise, whereas parameter
adaptation using MCC is more stable when the desired outputs
have strong outliers or impulsive characteristics.
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Fig. 2. The curves of two scalar factors (Jcnen, en) with different error
values.

The learning algorithm of the proposed CEFNS is summa-
rized in Algorithm 1.

IV. STEADY-STATE MEAN SQUARE CONVERGENCE OF
CEFNS

The convergence performance is the key aspect of any learn-
ing algorithm. In this section, the steady-state convergence
performance is evaluated for the proposed CEFNS algorithm.
The evaluation is done by calculating its steady-state excess
mean square error (EMSE).

A. EMSE of CEFNS

Suppose the desired output yn with noise νn at time n can
be represented as

yn = HT
na0 + νn (26)
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Algorithm 1 CEFNS Learning Algorithm
Sample: xn ∈ RNx , yn ∈ R
Initialize: setting Nh = 0 and giving the growing thresholds
θn, ek, eg
1. Calculate the system output and error

ŷn = HT
nan, en = yn − ŷn

2. Compute the distance parameter

θn = max{θmax × γn, θmin}, (0 < γ < 1)

3. Apply the rule addition criteria
if ||xn − µnr|| > θn and ek < Jcn < eg then

assign a new fuzzy rule Nh + 1 with

q(Nh+1)0,j = enj , q(Nh+1)i,j = 0

i = 1, 2, ..., Nx, j = 1, 2, ..., Ny

µNh+1 = xn, σNh+1 = κ||xn − µnr||
else

adjust the consequent parameters using the MCC algo-
rithm an+1 = an + η · Jcnen ·Hn

end if

where a0 is the desired unknown parameter and needs to
be estimated, νn is the disturbance noise with variance σ2

v .
Substituting (26) into the estimation error en = yn − HT

nan
we have

en = HT
n ãn + νn = ean + νn (27)

where an is the estimate of a0 at time n, ãn = a0 − an is
the parameter error vector at time n. ean = HT

n ãn is the so-
called a priori error, which is also called the error signal due
to parameter mismatch. Its mean square of the priori error
is E[ea

2
n], which is also named the EMSE. It is a popular

performance evaluation measure for the learning algorithms.
Substituting ãn+1 = a0−an+1 and ãn = a0−an into (24)

yields
ãn+1 = ãn − ηf(en)Hn (28)

where f(en) = exp
(
− e2n

2σ2

)
en is the scalar function of the

error en. Multiplying both sides of (28) by HT
n yields

HT
n ãn+1 = HT

n ãn −HT
nηf(en)Hn (29)

Define epn = HT
n ãn+1 as a posteriori error. Substituting

ean = HT
n ãn into (29) obtains

ηf(en) =
epn − ean
∥Hn∥2

(30)

According to (30), we get

ãn+1 = ãn −
epn − ean
∥Hn∥2

Hn (31)

Squaring both sides of (31) is equal as,

∥ãn+1∥2 = (ãn −
epn − ean
∥Hn∥2

·Hn)
T (ãn −

epn − ean
∥Hn∥2

·Hn)

= ∥ãn∥2 +
|epn|

2 − |ean|2

∥Hn∥2
(32)

Taking the expected values of (32), one gets

E
[
∥ãn+1∥2

]
=E

[
∥ãn∥2

]
+ E

[
(ean − η · f(en) · ∥Hn∥2)2 − |ean|2

∥Hn∥2

]
=E

[
∥ãn∥2

]
+ η2E

[
f2(en)∥Hn∥2

]
− 2ηE [f(en)ean] (33)

Next, we focus on deriving the theoretical value of the
steady-state EMSE defined as S = limn→∞E[ea

2
n]. When

the CEFNS algorithm arrives at the steady state, the parameter
error satisfies

lim
n→∞

E
[
∥ãn+1∥2

]
= lim

n→∞
E
[
∥ãn∥2

]
(34)

Then (33) becomes

2 lim
n→∞

E [f(en)ean]− ηTr(RHH) lim
n→∞

E
[
f2(en)

]
= 0

(35)
where ∥Hn∥2 is assumed to be asymptotically uncorrelated
with f2(en) and RHH = E

[
HnH

T
n

]
equals the correlation

matrix of the vector Hn. Tr(·) denotes the trace operator.
In the following, two different kinds of noise cases are con-

sidered to derive the theoretical value of steady-state EMSE
S.

1) Case of Gaussian Noise: The noise νn is assumed to
be Gaussian with mean zero and variance σ2

ν . Also the input-
output datastreams is assumed to be long enough such that
ean is Gaussian. According to Price theorem [35] [36], one
gets

lim
n→∞

E [f(en)ean] = lim
n→∞

E
[
ean

2
]
E [f ′(en)]

=
S√
2πσe

lim
n→∞

∫ ∞

−∞
exp

(
− e2n
2σ2

)(
1− e2n

σ2

)
· exp

(
− e2n
2σ2

e

)
den

=
σ3S

(σ2 + σ2
ν + S)

3
2

(36)

where σe = E
[
ean

2
]
+ σ2

ν is the variance of error en.
Similarly,

lim
n→∞

E
[
f2(ean + νn)

]
=

σ3(S + σ2
ν)

(2σ2
ν + σ2 + 2S)

3
2

(37)

Hence, the theoretical value of the steady-state EMSE S under
the Gaussian noise is obtained according to the fixed-point
equation given as

S =
1

2
ηTr(RHH)

(S + σ2
ν)(σ

2 + σ2
ν + S)

3
2

(2σ2
ν + σ2 + 2S)

3
2

(38)

The steady-state EMSE value of S can be achieved by solving
the above fixed-point equation. (38) has only one fixed point
whose value is real and positive. This has been verified in the
following simulation studies.

2) Case of Non-Gaussian Noise: When the noise νn is
non-Gaussian, the theoretical value of steady-state EMSE S
is derived using the Taylor series expansion of the function
f(en) [37]. At the steady-state, the distributions of ean and
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en are unrelated to n and, thus, the time index is omitted for
the purpose of brevity. (35) is rewritten as,

2E [f(e)ea]− ηTr(RHH)E
[
f2(e)

]
= 0 (39)

The Taylor expansion of f(en) in relation to ean around νn
is given as,

f(e) = f(ea+ν) = f(ν)+f ′(ν)ea+
1

2
f ′′(ν)e2a+o(e

2
a) (40)

where o(e2a) is the third and higher-order term, and

f ′(ν) = exp

(
− ν2

2σ2

)(
1− ν2

σ2

)
(41)

f ′′(ν) = exp

(
− ν2

2σ2

)(
ν3

σ4
− 3ν

σ2

)
(42)

According to (40), one gets

E[eaf(e)] = E[eaf(ν)+f
′(ν)e2a+o(e

2
a)] ≈ E[f ′(ν)]S (43)

and

E[f2(e)] ≈ E[f2(ν)] + E[f(ν)f ′′(ν) + |f ′(ν)|2]S (44)

Then, substituting (43) and (44) into (39), yields

S =
ηTr(RHH)α

2β − ηTr(RHH)γ
(45)

where E[o(e2a)] is assumed to be small enough and omitted
here.

α = E

[
exp(−ν

2

σ2
)ν2
]
, β = E

[
exp(−ν

2

σ2
)(1− ν2

σ2
)

]
γ = E

[
exp(−ν

2

σ2
)(1 +

2ν4

σ4
− 5ν2

σ2
)

]
From (45), it is clear that the EMSE S is related with the
distribution of the noise v. When the distribution is given,
the theoretical value of the steady-state EMSE in (45) can
be obtained accordingly. But the steady-state EMSE of (45)
is derived under the assumption that the steady-state a priori
error ea is small enough to ignore its third and higher-order
terms. This can be ensured under the circumstances of small
step size and noise power. Besides, from (38) and (45), one
can note that the calculation of the steady-state EMSE S is
directly related with Tr(RHH). In order to achieve this, the
analytical expression of Tr(RHH) is shown in the following.

B. The evaluation of Tr(RHH)

The vector Hn in (8) is further rewritten as

Hn =
1

λ

[
xT
e R1(xn), · · · ,xT

e RNh
(xn)

]T
=

1

λ

[
xT
e κ(xn,µ1), · · · ,xT

e κ(xn,µNh
)
]T

(46)

where λ =
∑Nh

k=1Rk(xn) is a scalar assumed as a constant
here. For 1 ≤ i, j ≤ Nh, the (i, j)-th entry of RHH is
expressed as

[RHH]ij =
1

λ2
E[xex

T
e κ(xn,µi)κ(xn,µj)]

=
1

λ2
{
Cov(xT

e xe, κ(xn,µi)κ(xn,µj))

+ E[xT
e xe]E[κ(xn,µi)κ(xn,µj)]

}
(47)

where Cov(xT
e xe, κ(xn,µi)κ(xn,µj)) is the covariance of

xT
e xe and κ(xn,µi)κ(xn,µj). Here, it is assumed that xT

e xe

is nearly uncorrelated with κ(xn,µi)κ(xn,µj). This assump-
tion we introduced here has the same spirit as the inde-
pendence assumption but it is weaker. And, it is restricted
to the variance of x not being very large, which will be
discussed at great length in the following subsection. Under
this assumption, then (47) becomes

[RHH]ij =
1

λ2
Rxexe [Rκκ]ij (48)

where [Rκκ]ij = E[κ(xn,µi)κ(xn,µj)] and Rxexe =
E
[
xex

T
e

]
.

Let z = [z1, ..., zn]
T be a Gaussian random vector with

E[z] = 0 and E[zzT ] = Rzz . Let Q = zTWz+ bTz be the
quadratic form of z where W is an n× n matrix and b is an
n × 1 vector. The moment generating function of Q is given
by [38]:

ψQ(s) = E[esQ]

= |I − 2sWRzz|−
1
2 exp

(
s2

2
bTRzz(I − 2sWRzz)

−1b

)
(49)

This result will be useful to compute the Rκκ whose (i, j)-th
entry is given as

[Rκκ]ij

=E

{
exp

(
− 1

2ξ2i
||xn − µi||2 −

1

2ξ2j
||xn − µj ||2)

)}

=E

{
exp

[
−
ξ2i + ξ2j
2ξ2i ξ

2
j

(
||xn||2 −

2(ξ2jµ
T
i + ξ2iµ

T
j )

ξ2i + ξ2j
xn

)]}

· exp

(
−||µi||2

2ξ2i
− ||µj ||2

2ξ2j

)
(50)

Defining b = −2(ξ2jµi+ξ2iµj)

ξ2i+ξ2j
, s = − ξ2i+ξ2j

2ξ2i ξ
2
j

and according to
(49), we can obtain (51).

The correlation matrix Rxexe of the extended input vector
is calculated as

[Rxexe ] = E

[
1 xT

n

xn xnx
T
n

]
=


1, i = j = 1

E[xT
n ], i = 1, j ̸= 1

E[xn], i ̸= 1, j = 1

Rxx, i ̸= 1, j ̸= 1
(52)

with 1 ≤ i, j ≤ Nx + 1.
According to (51) and (52), Tr(RHH) is obtained as

Tr(RHH) =
1

λ2

Nh×(Nx+1)∑
i=j=1

[RHH]ij

=
1

λ2

Nh∑
j=1

Nx+1∑
i=1

[Rxexe ]ii[Rκκ]jj
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(c) Impulse noise

Fig. 3. Simulated and theoretical EMSE in different noise

=
1

λ2

Nh∑
j=1

Nx∑
i=1

(1 + [Rxx]ii)|I +
2

ξ2j
Rxx|−

1
2

· exp

(
2

ξ4j
µT

j Rxx(I +
2

ξ2j
Rxx)

−1µj −
||µj ||2

ξ2j

)
(53)

C. An Illustration Example

In this subsection, an example is presented to verify the the-
oretical steady-state EMSE analysis of the proposed CEFNS
algorithm by means of the comparisons between the simulated
learning curves and analytical models under different kinds of
noise. Here, a ’SinC’ function is used as an example. It is
given by

y(x) =

{
sin(x)/x x ̸= 0
0 x = 0

(54)

Here, the input x follows a zero-mean Gaussian random
distribution with unit variance (2000 data are generated for the
purpose of the training). Three kinds of noise are added to all
the training samples. The first kind is the zero-mean Gaussian
noise with variance 0.5. The other two kinds are non-Gaussian
noise, that is the uniform noise within the interval [−0.5, 0.5]
and the unit-amplitude impulse noise that is imposed at an
interval of 10 samples.

TABLE I
SIMULATED AND THEORETICAL EMSE IN DIFFERENT NOISE

Noise Parameters
Rules Theoretical Simulation

Distribution Setting

Gaussian η = 0.005, σ = 1.5 14 0.0026 0.0030
Uniform η = 0.001, σ = 1.5 16 0.00068 0.00066
Impulse η = 0.005, σ = 1 14 0.0047 0.0055

In order to demonstrate arrival at the steady-state, 15000
iterations are run under each kind of noise. The steady-state
EMSE values under the three different kinds of noise are

depicted in Fig. 3, where the theory and simulated values
are illustrated by dot and dash-dot lines, respectively. Table
I shows the EMSE simulated values achieved at the final
iteration and the theoretical values under the three kinds of
noise. From the results, it can be observed that the simulated
steady-state EMSE values concur the theoretically expected
values calculated according to (38) under the Gaussian noise
and (45) under the non-Gaussian noise very well. This further
experimentally validates the steady-state mean square conver-
gence of the proposed correntropy-EFNS.

To demonstrate the reasonability of this uncorrelated as-
sumption, we use the example and the same data set for
simulation. Fig. 4(a) shows the simulated EMSE values and
the theoretical ones in the Gaussian noise and different co-
variances of the input x. Also the covariances of xT

e xe and
κ(xn,µi)κ(xn,µj) are presented in Fig. 4(b). From Fig.4(a),
one can see that the simulated EMSE values calculated based
on the assumption match the theoretical ones very well when
the variance σx of the input is within 1. However, as σx grows,
the error between the simulated and the theoretical EMSE ac-
cordingly increases. This is mainly because the covariance of
xT
e xe and κ(xn,µi)κ(xn,µj) is getting bigger along with σx

increasing. Table II shows these results in different covariances
σx. As shown in the table, Cov(xT

e xe, κ(xn,µi)κ(xn,µj))
almost equals to zero when σx is very small. Based on
these, it is assumed that xT

e xe is nearly uncorrelated with
κ(xn,µi)κ(xn,µj). And, this assumption is restricted to the
variance of x which should not be very large.

Besides, the example is further used to illustrate the differ-
ence of the convergence and accuracy between MCC, LMS
and LSE parameter adaption methods. It is noteworthy that
only the parameter adaptation methods are different while
the rule evolution maintains same. Except 2000 training data,
2000 different data are generated for the purpose of the
evaluation. Fig.5(a) shows the convergence curves in terms

[Rκκ]ij = |I +
ξ2i + ξ2j
ξ2i ξ

2
j

Rxx|−
1
2 exp

(
1

2ξ4i ξ
4
j

(ξ2jµ
T
i + ξ2iµ

T
j )Rxx(I +

ξ2i + ξ2j
ξ2i ξ

2
j

Rxx)
−1(ξ2jxi + ξ2i xj)

)

· exp

(
−||µi||2

2ξ2i
− ||µj ||2

2ξ2j

)
(51)
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TABLE II
SIMULATED AND THEORETICAL EMSE VALUES AND COVARIANCES Cov(xT

e xe, κ(·)κ(·)) IN DIFFERENT σx

σx 0.05 0.1 0.5 1 2 4 8

Theoretical S 0.0007 0.0010 0.0016 0.0026 0.0054 0.0103 0.0270
Simulated S 0.0006 0.0011 0.0015 0.0030 0.0034 0.0042 0.0075

Cov(xT
e xe, κ(·)κ(·)) 0.0036 0.0025 0.0126 0.0188 0.0326 0.0412 0.0638
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(a) Theoretical and simulated EMSE S
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Fig. 4. Simulated and theoretical EMSE values and covariances
Cov(xT

e xe, κ(·)κ(·)) in different σx

of the validation RMSE between the three methods without
any noise. From the figure, one can find that LSE has a
faster convergence speed than MCC and LMS. The MCC and
LMS have very similar convergence speed. Besides, the three
methods achieves similar accuracies when there are no noise.
Fig.5(b) further illustrates the convergence curves under the
impulse noise. From the figure, it is clear to see that the MCC
has a more stable learning process and better testing accuracy
than the LSE and LMS. This verifies the outlier rejection
property of the MCC.

V. PERFORMANCE EVALUTION OF CEFNS

In this section, the performance of the proposed CEFNS is
evaluated in details on one time-varying system identification
problem, one Mackey-Glass time series prediction problem
and three real-world benchmark regression problems. For these
problems, CEFNS has been compared with other popular fuzzy
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Fig. 5. Learning error evolution between LMS, LSE and MCC methods for
Sinc example.

neural system algorithms, such as SAFIS [14], ESAFIS [15],
OS-Fuzzy-ELM [39], eTS [9] and Simpl eTS [10]. All the
algorithms go through the training data sequentially in a single
pass and then performance comparison is made in terms of
training time, training and testing accuracies and the number
of rules. The root mean square error (RMSE) between the
desired values without any noise and the approximated values
is applied as the index of the training and testing accuracies.
Also in the simulation studies, the dataset is separated into
the training dataset and testing dataset. The structure and
parameters of the fuzzy systems are built based on the training
data. Once the training is finished, the structure and parameters
are frozen and the testing performance of the algorithms is
evaluated using the testing data without involving any training
process. All the simulations are conducted in MATLAB 7.12.0
environment running on an ordinary PC with 3.30 GHz CPU
and 4 GB RAM.
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TABLE III
PERFORMANCE COMPARISON FOR TIME-VARYING NONLINEAR SYSTEM

Algorithms
Without Noise With Impulse Noise

Training Testing Training
Rules

Training Testing Training
Rules

RMSE RMSE Time RMSE RMSE Time

SAFIS 0.1588 0.1914 11.6689 39 0.2498 0.2710 48.5943 92

ESAFIS 0.1478 0.1799 21.5593 25 0.2740 0.2428 39.5775 34

OS-Fuzzy-ELM 0.1888 0.1787 5.9959 20 0.2295 0.2358 9.7953 35

eTS 0.1693 0.2104 35.5682 74 0.2516 0.3073 50.6379 106

Simpl eTS 0.2597 0.2506 18.1429 34 0.3217 0.3335 20.6389 35

CEFNS 0.1569 0.1736 1.6536 19 0.1650 0.1752 2.5272 34

A. Guidelines for Parameter Selection

The performance of the proposed CEFNS depends on some
parameters to be decided before learning. The predefined
parameters contain the distance thresholds (θmax, θmin, γ), the
overlap factor (κ), the step size η, the kernel width (σ) and
the growing thresholds (ek, eg) for a new rule. Following [14],
a general selection procedure for these parameters is given
as follows: θmax is set to around the upper bound of input
variables, θmin is set to around 10% of θmax, γ is set to
around 0.999. The overlap factor κ is, generally, set to 1.0
which is used to initialize the width of the newly recruited rule.
The growing threshold ek is used to prevent small correntropy
values caused by outliers or impulse noise to add rules. It is,
generally, set to 0.5. In this study, the parameters described
above are fixed as follows: γ = 0.999, θmax = 1.0, θmin =
0.1, κ = 1.0, ek = 0.5. Another growing threshold eg exhibits
the similarity degree between the desired and real outputs
and its selection is associated with the system performance,
which is usually set around 0.9. The step size η determines
the learning speed and the kernel width σ > 0.5 is considered
when CEFNS is applied to different problems. They are chosen
differently for different problems so as to achieve an optimal
performance.

B. Time-Varying Nonlinear System Identification

The time-varying nonlinear system considered in the study
is described as

x(n) =
19β(n)

40
sin

(
16u(n− 1) + 8x(n− 1)

β(n)(3 + 4u(n− 1)2 + 4x(n− 1)2)

)
+

1

5
u(n− 1) +

1

5
x(n− 1) (55)

where β(n) is a time-varying parameter and varied according
to the following relationship:

β(n) =

 1.0 0 ≤ n ≤ 1500
0.9 1500 < n ≤ 2500
0.8 2500 < n ≤ 5000

The training input u(n) is uniformly selected in the range
[−1, 1] and the testing input is given by u(n) = sin(2πn/25).
For the purposes of training and testing, 5000 training data
and 200 testing data are produced, respectively. Also to further
assess the non-Gaussian noise resistance performance of the

CEFNS, the impulse noise with amplitude 2 at an interval of
10 samples are added in the input data.
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Fig. 6. Rules updating process between different algorithms for time-varying
system.

Table III gives the performance comparison for the problem
between the CEFNS and the other algorithms. From the table
it can be seen that CEFNS achieves slightly better testing
accuracy with smaller training time and number of rules in
the noise-free condition. However, under the circumstance of
impulse noise, the proposed CEFNS is very robust and can
effectively suppress the impulse noise and achieve better per-
formance. Similar to the existing fuzzy evolving algorithms,
CEFNS can automatically determine the system structure and



11

TABLE IV
PERFORMANCE COMPARISON FOR MACKEY-GLASS TIME SERIES PREDICTION

Algorithms

Without Noise With Impulse Noise

Testing Testing Training
Rules

Testing Testing Training
Rules

RMSE NDEI Time RMSE NDEI Time

SAFIS [14] 0.0939 0.3760 / 6 0.0983 0.3861 16.8169 41

ESAFIS 0.0752 0.2955 5.8344 6 0.0962 0.3780 14.8513 11

OS-Fuzzy-ELM 0.0761 0.2991 0.9253 5 0.1134 0.4455 2.0311 10

eTS [9] 0.0968 0.3805 / 9 0.1052 0.4134 68.2384 98

Simpl eTS [10] 0.1003 0.3940 / 11 0.1364 0.5360 9.6877 34

CEFNS 0.0679 0.2635 0.4368 5 0.0885 0.3478 1.1544 7
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Fig. 7. Learning error updating process between different algorithms for
time-varying system.

update the parameters simultaneously. Here, the number of
fuzzy rules required by the OS-Fuzzy-ELM algorithm is fixed
and determined by a trial-and-error. The evolution of the fuzzy
rules for different fuzzy algorithms is shown in Fig. 6 in the
noise-free and noisy cases. From the figure one can see that
the CEFNS uses the least number of rules compared with
other algorithms. Also change of the rules together with β
is observed in the figure. When the system dynamics changes
due to the variation of β at step number 1500 and 2500, the
rules are added to adapt for the variations. Fig. 7 shows the
update process of the learning error RMSE index in the noise-
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Fig. 8. Rules updating process between different algorithms for Mackey-
Glass prediction

free and noisy cases. It can be found from the figure that the
error increases and decreases according to β. From the figure,
one can find that the approximation error suddenly increases
when the system dynamics changes at step number 1500 and
2500. But the proposed CEFNS can reject the large errors
and generate the smooth learning process compared with other
algorithms. Besides, in the impulse noise circumstances, the
EFNS achieves a smooth learning process due to its outlier
rejection property.
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TABLE V
DETAILS AND PARAMETERS CHOSEN FOR REAL WORLD REGRESSION BENCHMARK PROBLEMS

Datasets
Input Output Training Testing Parameter Parameter Parameter

number number number number η σ eg

Autos 15 1 80 79 0.45 1.5 0.9

California Housing 8 1 10320 10320 0.3 1.6 0.9

Delta Ailerons 5 1 3000 4129 0.45 1.5 0.98

TABLE VI
PERFORMANCE COMPARISON FOR REGRESSION BENCHMARK PROBLEMS

Datasets Algorithms

Without Noise With Impulse Noise

Training Testing Training
Rules

Training Testing Training
Rules

RMSE RMSE Time RMSE RMSE Time

Autos

SAFIS 0.0764 0.1184 0.4524 5 0.1089 0.1377 0.3120 9

ESAFIS 0.0612 0.0604 0.2184 3 0.1256 0.1290 0.3276 5

OS-Fuzzy-ELM 0.0153 0.0595 0.0296 2 0.1695 0.1612 0.0866 5

eTS 0.0299 0.0535 0.2184 3 0.1497 0.1449 1.1856 19

Simpl eTS 0.0856 0.0689 0.5772 10 0.1195 0.1208 0.1716 6

CEFNS 0.0644 0.0666 0.0156 2 0.0834 0.0976 0.0312 5

SAFIS 0.0955 0.0988 21.9805 12 0.1189 0.1223 21.3565 14

ESAFIS 0.0866 0.0892 30.2330 6 0.0932 0.0966 57.6892 9

California OS-Fuzzy-ELM 0.1302 0.1320 6.7252 5 0.1227 0.1253 6.2993 5

Housing eTS 0.0744 0.0772 7.6128 3 0.0920 0.0938 128.5604 41

Simpl eTS 0.0744 0.0773 5.5536 3 0.1181 0.1203 47.6115 17

CEFNS 0.0847 0.0878 1.5444 2 0.0900 0.0932 3.4788 4

SAFIS 0.0548 0.0549 6.8328 14 0.0961 0.0970 17.1167 37

ESAFIS 0.0493 0.0506 12.3865 13 0.0729 0.0738 24.9064 24

Delta OS-Fuzzy-ELM 0.0497 0.0507 0.4602 3 0.1186 0.1222 5.9179 18

Ailerons eTS 0.0508 0.0513 2.1372 4 0.1166 0.1173 28.5638 51

Simpl eTS 0.0509 0.0512 2.0088 4 0.1253 0.1260 22.9789 34

CEFNS 0.0519 0.0502 0.3432 3 0.0704 0.0713 1.5288 16

C. Mackey-Glass Time Series Prediction

The CEFNS is further evaluated by predicting the chaotic
Mackey-Glass time series, which is generated from the fol-
lowing differential equation [14]:

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (56)

In the study τ = 17 and the initial state x(0) = 1.2. In the
prediction process, the past three values and the current value
consist of the input vector [x(t−18), x(t−12), x(t−6), x(t)]
and are used to predict the value x(t + 85). A total of 3000
training data is extracted from the interval between t = 201
and t = 3200. 500 testing data is extracted from the interval
between t = 5001 and t = 5500. As in [9], [10] and [14],
the input and output data are normalized in the range [0,1].
Likely, the impulse noise with unit amplitude at an interval of
10 samples are added in the input data to validate the non-
Gaussian resistance performance of the CEFNS.

The prediction accuracy, the training time and the number of
rules obtained by CEFNS, SAFIS, ESAFIS, OS-Fuzzy-ELM,
eTS and Simpl eTS algorithms are presented in Table IV.

Besides the RMSE performance index, the Non-Dimensional
Error Index (NDEI) which is defined as the RMSE divided
by the standard deviation of the true output values is utilized
as the performance index here. From table IV one can find
that the CEFNS achieves the best prediction accuracy with
the least training time and the smallest number of fuzzy rules
in the noise-free and noisy cases. The evolution of fuzzy rules
in CEFNS, SAFIS, ESAFIS and OS-Fuzzy-ELM is shown in
Fig. 8. From Fig. 8 it can be seen that the CEFNS generates
the least number of rules. Also CEFNS has a smooth rule
evolution process while the rule evolution process of SAFIS
and ESAFIS is clearly oscillatory in the noisy case.

D. Regression Problems

In this section, three real-world regression problems are
further considered to evaluate the performance of CEFNS.
Details of the problems are listed in Table V. The input
and output attributes are normalized in the range [0, 1]. All
the inputs are used in the simulation studies. The optimal
parameters (eg, σ, η) chosen for these problems are listed in
Table V.
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Table VI presents the performance comparison between
SAFIS, ESAFIS, OS-Fuzyy-ELM, eTS and Simple eTS. In
order to illustrate the robustness of the CEFNS against the non-
Gaussian noise, the unit-amplitude impulse noise have been
added on the training samples at an interval of 10 samples
while the testing data remain noise-free. The results in the
noise-free and noisy experiments are both presented in table
VI. From the table, it can been found that the proposed CEFNS
produces similar testing accuracy with the least number of
rules and training time compared with other algorithms in the
noise-free condition. However, under impulse noise conditions,
CEFNS obviously obtains better testing accuracy than other
algorithms. Also, smaller training time is required and smaller
number of rules are obtained compared with other algorithms.

VI. CONCLUSIONS

In this paper, a correntropy-based evolving fuzzy neural sys-
tem (CEFNS) is proposed. Correntropy represents a nonlinear
measure of similarity between the desired and the actual out-
puts in a kernel feature space and is able to extract the higher
order statistical information of the error than the commonly
used MSE criterion. Based on this, the correntropy together
with the distance criterion is applied to evolve its rule base
of the CEFNS, which is different from commonly used error
criterion for adding rules. To prevent the data with outliers
from becoming rules, the lower limit of the correntropy is
set which ensures that the system obtains reasonable rules.
The parameters of the CEFNS are adjusted according to the
maximum correntropy criterion (MCC). Compared with the
commonly used parameter adjusting techniques based on the
MSE criterion, the MCC parameter adaption contains an extra
scaling factor which is an exponential function of the error,
which can reject the outliers in the training data. Besides, the
steady-state convergence performance of the CEFNS in the
case of Gaussian and non-Gaussian noise is analyzed in the
study. The simulation results from one system identification
problem, Mackey-Glass time series prediction and three real-
world benchmark regression problems show that the proposed
CEFNS obtains similar learning accuracy with smaller number
of rules and less training time compared with other fuzzy
algorithms in the noise-free circumstance. The results also
demonstrate that the proposed CEFNS has the superior non-
Gaussian noise handling capability to other fuzzy algorithms.
In view of merits of the correntropy, it will be extended to
different evolving fuzzy systems without user-specific parame-
ters, such as eTS+ [11], and TEDA [40], in our future research
work. In order to prevent the rule size from growing too large
in case of real and long on-line data streams, it is necessary to
merge or prune on-line similar or redundant fuzzy rules. This
issue will be addressed in our future work.
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