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Abstract. The problem of detecting malicious behavior in network traf-
fic has become an extremely difficult challenge for the security com-
munity. Consequently, several intelligence-based tools have been pro-
posed to generate models capable of understanding the information trav-
eling through the network and to help in the identification of suspi-
cious connections as soon as possible. However, the lack of high-quality
datasets has been one of the main obstacles in the developing of reli-
able intelligence-based tools. A well-labeled dataset is fundamental not
only for the process of automatically learning models but also for testing
its performance. Recently, RiskID emerged with the goal of providing
to the network security community a collaborative tool for helping the
labeling process. Through the use of visual and statistical techniques,
RiskID facilitates to the user the generation of labeled datasets from
real connections. In this article, we present a machine learning extension
for RiskID, to help the user in the malware identification process. A pre-
liminary study shows that as the size of labeled data increases, the use
of machine learning models can be a valuable tool during the labeling
process of future traffic connections.

Keywords: Machine Learning, dataset generation, network security

1 Introduction

In the field of network security research, intelligence-based detection approaches
emerged as a tool for dealing with the fast evolution of the different network
scenarios. Probably the most significant challenge during the developing of such
systems is the lack of appropriate public datasets [9]. Just before deploying in
any real world environment, an intelligence-based Network Intrusion Detection
System (NIDS) must be trained and evaluated using real labeled network traffic
traces with an intensive set of intrusions or attacks [5].

One of the reason behind behind the lack of public datasets arises from the
data’s sensitive nature. It is no secret to anyone that bringing to light network
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traffic can reveal sensitive information. Such information is generally related to
confidential and personal communications coming from organization business
data or in other cases user private access behaviors. It is understandable that
in the face of such high risks, researchers frequently encounter insurmountable
organizational and legal barriers when they attempt to provide datasets to the
community [9].

For the previous reason, the main strategy points to create synthetic or
benchmark dataset to deal with the data confidentiality problem. Synthetic
datasets are created to represent certain problem domains. Specifically to cover
specific needs or certain condition [5]. On the other hand, benchmark datasets
are often very useful but suffer excessive preprocessing that separates them from
real network environments. Examples of known benchmark datasets are: KDD-
cup99 [10] who was built upon the data captured in the DARPA98 IDS eval-
uation program, DEFCON [2] that contains network traffic captured during a
hacker competition called ” Capture The Flag”, CAIDA dataset [1] that contain
particular kind of attack, among others.

Other solutions point to real life datasets. These datasets are created gener-
ally capturing traffic from institutional networks. Recently, the Stratosphere In-
trusion Prevention System (IPS) project [3] has emerged as a project focused on
providing an state of the art IPS to the Non Governmental Organizations (NGO).
One of the goals of the project consists of generating high quality datasets for
testing and developing new malware detection techniques. The particular en-
coding of the network behavior used by stratosphere IPS project facilitates the
release of network data to the community.

However, the problem of labeling all the published data remains a very dif-
ficult task. The labeling process not only requires a considerable human effort
but also the responsible of labeling must be a security specialist, who could not
be always available. The fact is that the difficulty behind the labeling process
could be the real reason behind the lack of high quality real life datasets.

With these issues in mind, we developed RiskID [7]. Still in an early stage,
RiskID aims at being a collaborative labeling tool based on visual analytics
and statistical techniques. In particular, RiskID is based on the combinations
of several visualizations strategies with clustering algorithms working together
for facilitating the recognition of malicious traffic. In this paper, we propose an
extension for RiskID based on machine learning techniques. The general idea
behind using machine learning techniques inside RiskID consists of generating a
classifier trained on the subset of already labeled connections and use classifier
output for helping the user in the decision process. Here, the goal is just to
provide to the user another tool for supporting his decision process.

The rest of the article is organized as follows: Section 2 describes the problem
statement, details the strategy for generating the behavioral models proposed by
the Stratosphere project and shows the general aspects of the RiskID tool. Then
section 3 exposes the proposed machine learning extension for RiskID. Section 4
presents the experiments design and the performance evaluation of the proposed
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extension for RiskID. Finally, concluding remarks and future works are described
in section 5.

2 Problem Statement

The RiskID tool takes a dataset containing network traffic as input and uses
visual representation techniques to help users to identify malicious behaviors.
The main goal behind RiskID is to provide to the network security community
labeled datasets. We believe that by including machine learning techniques in-
side RiskID, the effort of identifying malicious behavior can be reduced. As an
extension of current RiskID labeling tool, we propose the inclusion of a Machine
Learning classification algorithm for helping the user during the labeling process.
The idea is simple: Based on the subset of already labeled SC connections, the
classification algorithm can provide the probability that a given connection. No-
tice that the final decision will still be user responsibility. We proceed to discuss
the main aspects of the current version of RiskID.

2.1 The RiskID Tool

As you can see in Figure 1, RiskID is a visual analytics tool that combines
visualization with clustering techniques to assist the user in the process of la-
beling connections [7]. The goal is to obtain a real life data set with, as much as
possible, labeled connections. Specifically, the application aim at labeling traffic
generated by botnet attacks. The process for labeling in RiskID is the following:

1. RiskID receives a JSON file that contains for every SC (from here referred
simply as connection) some basic network information, such as IP addresses
and Ports, together with its corresponding behavioral encoding.

2. The feature extraction module analyzes all connection behavioral encodings
and creates for every connection a new vector summarizing the information
in terms of periodicity, duration and size.

3. The cluster composition module analyzes the feature vectors and groups
them according to a standard similarity measure.

4. The UI represents the list of connections with a Heatmap of the feature
vectors, using different colors for each type of feature.

5. The user explores the connection list to discover common patterns through
color similarity. During this process she can select potentially similar con-
nections.

6. Upon selection, details about the connection composition are shown in order
to facilitate comparison.

7. Eventually, when the user finds a high coincidence between selected connec-
tions she can proceed to label them as ”Botnet” or ”Normal”.

It is worth noting that a correct labeling process mainly depends on the user
selection strategy.
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Fig. 1: RiskID User Interface. A: left panel collects descriptors for all connections
with heatmaps of different colors for periodicity, size and duration features. B:
right panel shows details for up to three connections. C: control panel to get
a set of connections with similar filters selections. D: control panel to select
Stratosphere datasets, get visual representation legends and save the labeled
dataset resultant after connections labeling task by the user.

2.2 Behavioral Models

To deal with the confidentiality problem of network data, RiskID uses the encod-
ing proposed by the Stratosphere IPS project. Such encoding only consider the
size, duration and periodicity of network flows. The encoding start aggregating
the flows according to a 4-tuple composed of: the source IP address, the destina-
tion IP address, the destination port and the protocol. They create Stratosphere
connection (SC) putting together all the flows that match a tuple. From a traffic
capture several of these SC are created. Each one of the these SC contains a
group of flows. A sample behavioral encoding is shown in Fig. 2. The figure
shows the symbols representing all the flows for a SC based on UDP protocol
from IP address 10.0.2.103 to port 53 of IP address 8.8.8.8.

2.4.2*%4. R.R*a*b*a*a*b*b*a*R.R*R.R*a*a*b*a*a*a*a*

Fig.2: An example behavioral encoding of connection from IP address 10.0.2.103
to destination port 53 at IP address 8.8.8.8 using UDP.
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RiskID as part of its data conversion generate for each connection a 10-
dimensional numerical vector (denoted as feature vector) where the first four
dimensions represent the periodicity (strong periodicity, weak periodicity, weak
non periodicity and strong non periodicity respectively), the other three refer to
duration (duration short, duration medium and duration large respectively) and
the last three represent the size (size short, size medium, size large). The feature
vector for a given connection is generated considering, for the complete symbol
sequence, the cumulative frequency of the corresponding values associated with
the behavioral encoding. At the end of the sequence, a percent of each feature is
calculated and normalized between the values [0,1]. These final vector are used
to create the heatmap visual representation where the intensity in the color scale
indicates a given feature is predominant over the rest. To improve the heatmap
the connections are organized making clusters using k-means algorithm [7]. For
each connection we use the 10-dimensional feature vector and cluster ID to shape
the training set.

2.3 Visualization Techniques

Main visualization tools used in RiskID consists of a heatmap representation
supported by cluster strategies. Both components joined to filter options, his-
tograms and pie graphs Figure 1(B) make up the bulk of the user interface.
The heatmap representation is used for the list of Stratosphere connections Fig-
ure 1(A), that shows the connections grouped by the similarity in their encoding
behavior. With the heatmap, it is intuitive to recognize the predominant features
of each connection and, more importantly, relate connections with similar fea-
tures. First, the connections are grouped by clusters. The clustering process helps
the user get a first approximation of similar connections [7]. Once any connection
is selected by a user the connection details section add this to the connection
details list and show relevant information about it. A histogram graph displays
their character distributions while a pie graph shows specifically their periodicity
feature percent. One important advantage of RisklId is the possibility to compare
two or more connections [7]. Each newly selected connection is placed under the
previously selected one, and the details are stacked in the Detailed Connection
View. Thus, the user can start a detailed comparison.

3 A Probability Estimator Based on Machine Learning
Techniques

Machine Learning techniques are extensively used by malicious detection sys-
tems [9]. Their ability to learn with little data and then predict or detect similar
behaviors make it a fundamental strategy in network detection field. In particu-
lar, we use a bagging strategies know like Random Forest (RF). RF is a general
class of ensemble building method using a decision tree as the base classifier [8].
We use an RF to through the labeled connections to get a probability of botnet
in unlabeled connections.

1273



XXIII Congreso Argentino de Ciencias de la Computacion La Plata - 9 al 13 de octubre de 2017

Once we get a botnet probability of whole unlabeled connections we help the
user’s decision for the next labeled. This information can be useful to represent
in the connection list the output classification given by RF allowing the users get
another evaluation criteria. We don’t pretend to be determinants of the labeling
process but yes be an influence in users decision. This new feature could reduce
labeling time improving whole labeling task. We get first labeled connections by
the RiskID users and create a training set to a machine learning algorithm and
predict botnet behavior in remainder connections. Formally, suppose we have C
like whole dataset and let C. and C} be the training set and test set respectively,
we require C,. N C; =0 and C. UC; = C.

4 Evaluation

For measuring the actual impact of the proposed machine learning extension, we
need to consider not only a statistical evaluation but also the user interaction
and confidence of the proposed extension. However, in this paper we will focus
solely on the computational evaluation, leaving the evaluation with users for a
later experiment. Specifically, we evaluate what is known as learning rate: the
speed at which our extension learns new information or trends and updates the
probability by connections accordingly [4]. We address the following questions:

1. Can random forest face at the beginning the disproportion between labeled
and unlabeled and get a correct botnet probability for unlabeled connec-
tions?

2. How random forest behaves by types of connections?

The first question aims at the study of the classification performance of the pro-
posed algorithm when it is trained with an small portion of labeled data and to
predict the rest. Just like recommender system faces the cold start problem at
first the model faces the challenge of giving a botnet probability from the few
data labeled by users so far. Presumably, these probabilities will not be the best,
but how well or poorly does the algorithm predict against this difficulty is the
scenario we want to evaluate. For the second question we want to analyze the
classification performance of the proposed algorithm considering the different
type of traffic connection. It is clear that the traffic behavior of SMTP connec-
tions could be very different compared with HTTP. Such difference can certainly
impact the in the performance of the learning rate of the classifier.

4.1 Dataset Description

For evaluating the performance of the proposed algorithm, we use the CTU-13
Dataset. The CTU-13 dataset consist of a group of thirteen different malware
captures done in a real network environment taken from CVUT university cam-
pus networks. Datasets are publicly available as part of the Malware Capture
Facility Project (MCFP) [6].
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ID IRC SPAM CF PS DDoS FF P2P US HTTP Botnet Conn. Normal Conn. MCFP IDs

A X X X - - - - - - 911 415 CTU13-42
B X X X - - - - - - 344 82 CTU13-43
Cc X - - X - - - X - 13 292 CTU13-44
D X - - - X - - X - 70 441 CTU13-45
E - X - X - - - - X 31 147 CTU13-46
F - - - X - - - - - 211 159 CTU13-47
H - - - X - - - - - 29 135 CTU13-49
I X X X X - - - - - 4000 513 CTU13-50
J X - - - X - - X - 22 174 CTU13-51
K X - - X - - X - 2 21 CTU13-52
L - - - - - - X - - 57 209 CTU13-53
M - X X - - X 479 231 CTU13-54

Table 1: Characteristic of botnet scenarios and general information about
datasets.(CF: Click Fraud, PS: Port Scan, FF: Fast Flux, US: Compiled and
controlled by us)

Table 1 provides brief information about each of the thirteen datasets. The
first column shows the ID used for referencing the dataset. The next nine columns
show the characteristics of the botnet scenarios. Then, in column ten and eleven,
the number of connections labeled as botnet and normal. Finally, the last column
shows the ID of the dataset in MCFP. For the purpose of the study, the three
datasets were merged.

4.2 Experiment Design

During the training phase, we apply k-fold cross validation with 5 folds. To an-
swer the first question, we trained the algorithm on different sizes portion of the
dataset and tested on the remaining portion. In next iterations, we increase the
number of data in the training set. This way, we simulate the use of the algorithm
within the application over time. We started by taking only a random sample of
200 connections for the training set and tested with the remaining 8788 connec-
tions. Following this, we randomly took another 200 connections from the test
set to add them to the training set. We perform this operation until there are
approximately 200 connections in the test set. We use F1 Score to evaluate the
RF performance at each iteration. This metric can be interpreted as a weighted
average of the fraction of relevant instances among the retrieved instances (pre-
cision) and the fraction of relevant instances that have been retrieved over total
relevant instances (recall). Each experimental scenario was simulated 30 times
(i.e. 1320 simulations in total) to ensure the statistical robustness of results.
As the final result, we use the mean value for F1 Score. To answer the second
question we use the probabilities resultant of RF when was training with 2 per-
cent, 50 percent, and 90 percent of the training set. These percentage values
were selected to represent the initial, middle and final phase, respectively, of
the labeling process. We perform a study of the algorithm behavior by types of
connections. The connections were divided by port type, keeping only the most
representative of all of them.
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Fig. 3: Random Forest performance with incremental training data

4.3 Random Forest Performance with Incremental Training Data

The idea behind this experiment is to analyze the impact of incrementing the
number of data in training set. Specifically, we evaluate the F1 score metric
by each iteration of RF. Figure 3 shows that as the number of data in the
training set increases, the mean of F1 score improves. On the X-axis we have
the different sizes in training set. Each point in the graph represents the number
of times that RF is training and testing. On the Y-axis we have the mean of
F1 score returned by RF in each iteration. When we training RF with the first
200 labeled connections (approximately 2 percent of the whole CTU-13 dataset)
and then test with the remaining portion of the dataset we get a mean F1 Score
about 0.92 value. This is a good first result but the F1 score still increases until
25 iterations when it stays oscillating close to 0.96 value. This result shows that
approximately from the first 5000 (55 percent of the whole CTU-13 dataset)
labeled connections, RF predicts with good results the rest of the connections.

4.4 Detection Performance Analysis of Random Forest by Type of
Connections

In this section, we analyze the detection performance of RF by type of connec-
tions. Specifically we analyze the connections by ports. In the previous experi-
ment, we evaluate RF with different training set size. The Figure 4 displays the
proportion of connections correctly classified (show in color green) and incor-
rectly classified (show in color red) by the most representative ports when RF
was training with 2 percent, 50 percent, and 90 percent of the training set. The
information provided by Figure 4 exposes the fact that most of the traffic in
CTU-13 come from 25 port. The port 25 refers to Simple Mail Transfer Protocol
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Fig. 4: Prediction performance by port.

(SMTP), used for email routing between mail servers. As can be seen, the RF
detection model is able to detect the 100 percent of all the cases where port
25 is present. Even when the proposed algorithm was generated using only the
2 percent of the labeled data. This good performance happens because SMTP
traffic may be very similar to each other and with just a few examples we can
learn a lot. By the other hand the port 80 (refers to Hypertext Transfer Pro-
tocol "HTTP”) present some detection error. This error is present due to the
variability in the connections that share port 80. The remaining ports, although
they have bad qualifications, most of the times connections are well identified.

5 Concluding Remarks and Future Work

In the present article we presented a machine based extension to RiskID [7], a
tool for generating labeled network traffic datasets for research community. The
preliminary study shows the viability of using a probability estimator generated
from the subset of labeled data. To start using this extension inside RiskID tool,
some connections need to be labeled previously. The Figure 3 has shown that
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is not necessary much data for train our strategy and get good results. Once
the new extension starts to suggest probability of botnet for each connection the
users will have a new evaluation criterion. This favors the increase of connections
that will be used to train and as we saw in Figure 3 this improve the detection
performance. In this way, the new extension proposed in this article decreases
the labeling time of the analyzed dataset. A similar analysis considering the
type of connections displayed same results. Figure 4 showed decrease in error
(bar with color red) when RF was trained with more data. In some cases, such
as SMTP connections, the amount of needed labeled connections is considerable
small (about 2 percent of the dataset). On the other hand, HTTP connections
required a higher number of labels to reduce the classification errors. A user
experience analyze is required to get a final evaluation for this new extension.
We are working on some test to collect users experience and will be exposed in
future works. Last observation is about the quality of training dataset, which
determines that the proposed strategy be able to create a good prediction model.
RiskID users could label connections with some errors and this could impact in
RF results. Noise robustness is a very important problem in machine learning
algorithms and our strategy don’t escape this. The quality of first labels created
by RiskID users is crucial for a good future prediction of our RF algorithm.
Feature analysis about noise robustness of our new extension proposed for RiskID
will be accomplished in next works.
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