Supplementary Information

TORC1 Coordinates the Conversion of Sic1 from a Target to an Inhibitor of Cyclin-CDK-Cks1

Marta Moreno-Torres, Malika Jaquenoud, Marie-Pierre Péli-Gulli, Raffaele Nicastro, and Claudio De Virgilio

INVENTORY OF SUPPLEMENTARY INFORMATION

Supplementary Figures

Figure S1 In vivo and in vitro specificity of the anti-Sic1-pThr³³ antibodies.

Figure S2 Sic1^{T173A}-expressing $cdc4-2^{ts}$ cells are not defective in the clearance of Cln1, Cln2 or Clb5 when treated with rapamycin.

Figure S3 Cln2-HA₃ and Clb5-HA₃ interact with Cdc28 in vivo.

Figure S4 Proliferating, Sic1^{T173A}-expressing cells exhibit enhanced levels of Cln-/Clb-CDK activity.

Supplementary Tables

Table S1. Strains used in this study Table S2. Plasmids used in this study Table S3. Antibodies used in this study

Supplementary References

Figure S1 *In vivo* and *in vitro* specificity of the anti-Sic1-pThr⁵/-pThr³³ antibodies. (**a**) Sic1-pThr⁵ and Sic1-pThr³³ levels were determined by immunoblot analyses using respective phospho-specific antibodies and extract of exponentially growing cells that expressed plasmid-encoded versions of myc₁₃-tagged Sic1 and Sic1^{T5A} (left panels), or myc₁₃-tagged Sic1 and Sic1^{T33A} (right panels). The levels of the Sic1-myc₁₃ variants were determined by using polyclonal anti-myc antibodies. The asterisk denotes an unspecific band. (**b**, **c**) Clb5-HA₃-CDK immunocomplexes from exponentially growing yeast cells were used for *in vitro* kinase assays in which the bacterially-purified, N-terminal parts (encompassing the first 100 amino acids) of Sic1 (WT), Sic1^{T5A} (T5A), and Sic1^{T33A} (T33A) served as substrates. Sic1-pThr⁵ (b) and Sic1-pThr³³ (c) levels were determined by immunoblot analyses using respective phospho-specific antibodies and the indicated GST-Sic1¹⁻¹⁰⁰ variants that have been phosphorylated (+), or not (-), by Clb5-HA₃-CDK. The input levels of the GST-Sic1¹⁻¹⁰⁰ variants were determined by using polyclonal anti-GST antibodies.

Figure S2 Sic1^{T173A}-expressing $cdc4-2^{ts}$ cells are not defective in the clearance of Cln1, Cln2 or Clb5 when treated with rapamycin. $cdc4-2^{ts}$ and $cdc4-2^{ts}$ sic1^{T173A} strains expressing Cln1-myc₁₃, Cln2-myc₁₃, or Clb5-HA₃ were grown as in Fig. 1A. the levels of the tagged proteins were determined by immunoblot analyses using monoclonal anti-myc or anti-HA antibodies. Adh1 levels served as loading control.

Figure S3 Cln2-HA₃ and Clb5-HA₃ interact with Cdc28 *in vivo*. Plasmid-expressed, HA₃-tagged Cln2 or Clb5 were immunoprecipitated (IPed) from extracts of exponentially growing wild-type cells. Cell lysates (Input) and anti-HA immunoprecipitates (IP: anti-HA) were analyzed by immunoblotting with anti-HA (top panels), anti-Cdc28 (panels in the middle), and anti-Sic1 (bottom panels) antibodies. Please note that both Cln2-HA₃ and Clb5-HA₃ interact with Cdc28, while only Clb5-HA₃ is able to bind Sic1 as expected. Neither Cdc28 nor Sic1 were recovered in anti-HA immunoprecipitates from extracts of cells that carried an empty plasmid (-; 3rd lanes in all panels).

Figure S4 Proliferating, Sic1^{T173A}-expressing cells exhibit enhanced levels of Cln-/Clb5/6-CDK activity. For synchronization, exponentially growing WT cells expressing genomically-tagged Sic1-myc₁₃ or Sic1^{T173A}-myc₁₃ were treated for 2 h with α -factor (5 μ g ml⁻¹). Following α -factor release, samples were collected at the indicated time points. The phosphorylation levels of Thr⁵ in Sic1 and Sic1^{T173A} were determined by using phosphospecific anti-Sic1-pThr⁵ antibodies and normalized with respect to the total levels (quantified by using anti-myc antibodies) of Sic1-myc₁₃ and Sic1^{T173A}-myc₁₃, respectively.

Supplementary Tables

Table S1. Strains used in thi	s study
-------------------------------	---------

Strain	Genotype	Source	Figure	
JK9-3D	MATa, leu2, his4, trp1, ura3, rme1, GAL, HMLa	Ref. (1)	2A/B, 3B, 2C, 4G, S1B/C, S3	
RL343-E1	[JK9-3D] <i>his3</i> , <i>HIS4</i> , <i>cdc28</i> ∆, pRS416- <i>cdc28</i> ^{as} (F88G)	Ref. (2)	4C	
YMM114	$[JK9-3D] cdc4-2^{ts}::kanMX$	Ref. (3)	1A/C	
YMM118-2D	[JK9-3D] cdc4-2 ^{ts} ::kanMX, sic1 ^{T173A} , EMP46::natMX	Ref. (3)	1A/C	
YMM67-1C	$[JK9-3D]$ sic 1Δ ::kanMX	Ref. (3)	1A/B, S1A	
YMM237-1A	[JK9-3D] cdc4-2 ^{ts} ::kanMX, cdc28A::kanMX, pRS416-cdc28 ^{as}	This study	1 B/D	
YMM250-10C	$[JK9-3D]$ cdc4-2 ^{ts} ::kanMX, cdc28 Δ ::kanMX, pRS416-cdc28 ^{as} , sic1 ^{T173A} , EMP46::natMX	This study	1B/D	
YMM246-1C	[JK9-3D] cdc4-2 ^{ts} ::kanMX, CLB5-HA ₃ ::TRP1, CLN1-myc ₁₃ ::kanMX	This study	S2	
YMM247-4B	[JK9-3D] $cdc4-2^{ts}$:: $kanMX$, $CLB5-HA_3$:: $TRP1$, $CLN1-myc_{13}$:: $kanMX$, $sic1^{T173A}$, $EMP46$:: $natMX$	This study	S2	
YMM249-2B	[JK9-3D] cdc4-2 ^{ts} ::kanMX, CLB5-HA ₃ ::TRP1, CLN2-myc ₁₃ ::kanMX	This study	S2	
YMM252-2A	[JK9-3D] $cdc4-2^{ts}$:: $kanMX$, $CLB5-HA_3$:: $TRP1$, $CLN2-myc_{13}$:: $kanMX$, $sic1^{T173A}$, $EMP46$:: $natMX$	This study	S2	
MJA4090	[JK9-3D] cdc4-2 ^{ts} ::kanMX, CLB5-HA ₃ ::TRP1	This study	S2	
MJA4091	MJA4091 $[JK9-3D]$ cdc4-2 ^{ts} ::kanMX, CLB5-HA ₃ ::TRP1, sic1 ^{T173A} , EMP46::natMX			
YMM91	[JK9-3D] sic1 ^{T173A} , EMP46::natMX	Ref. (3)	2A/B, 3B,	
MJA490	[JK9-3D] CKS1-HA ₃ ::kanMX	This study	2D-F, 4A	
MJA491	[JK9-3D] CKS1-HA ₃ ::kanMX, sic1 ^{T173A} , EMP46::natMX	This study	2D-E, 4A	
MJA524-2B	$[JK9-3D] sic I^{R262A/L264A} - myc_{13} :: kanMX$	This study	3A	
YMM63	[JK9-3D] <i>SIC1-myc</i> ₁₃ :: <i>kanMX</i>	Ref. (3)	3A, 4B, S4	
YMM98	[JK9-3D] sic1 ^{T173A} -myc13::kanMX, EMP46::natMX	Ref. (3)	3A, S4	
MJA523	[JK9-3D] sic1 ^{R262A/L264A} , EMP46::natMX	This study	3B	
MJA536	$[JK9-3D]$ cln1 Δ ::kanMX, cln2 Δ ::kanMX	This study	3B	
MJA528	[JK9-3D] sic1 ^{T173A/R262A/L264A} , EMP46::natMX	This study	3B	
YMM232-6A	[JK9-3D] <i>clb5∆::kanMX, clb6∆::kanMX, sic1^{T173A}, EMP46::natMX</i>	This study	3B	
MJA544-2B	$[JK9-3D]$ $cln1\Delta$:: $kanMX$, $cln2\Delta$:: $kanMX$, $sic1^{T173A}$, $EMP46$:: $natMX$	This study	3B	
YMM253-11A	[JK9-3D] <i>clb5∆::kanMX, clb6∆::kanMX</i>	This study	3B	
MJA547	$[JK9-3D]$ clb5 Δ ::kanMX, cln1 Δ ::kanMX, cln2 Δ ::kanMX, sic1 ^{T173A} , EMP46::natMX	This study	3B	
MJA545	[JK9-3D] CKS1-HA ₃ ::kanMX, CLB5-myc ₁₃ ::kanMX, sic1 ^{T173A} , EMP46::natMX	This study	3D	
MJA546	[JK9-3D] CKS1-HA3::kanMX, CLB5-myc13:kanMX	This study	3D	
MJA531	[JK9-3D] CKS1-HA ₃ ::kanMX, CLN2-myc ₁₃ ::kanMX, sic1 ^{T173A} , EMP46::natMX	This study	3E	
MJA530	[JK9-3D] CKS1-HA ₃ ::kanMX, CLN2-myc ₁₃ ::kanMX,	This study	3E	
YMM231-1A	[JK9-3D] CKS1-HA ₃ ::kanMX, mpk1 Δ ::kanMX	This study	4A	
YMM230-8A	[JK9-3D] CKS1-HA ₃ ::kanMX, cdc55 <i>A</i> ::natMX	This study	4A	
YMM233-3A	[JK9-3D] CKS1-HA ₃ ::kanMX, cdc55∆::natMX, sic1 ^{T173A} , EMP46::natMX	This study	4A	
MJA518	$[JK9-3D] cdc28\Delta, pRS416-cdc28^{as}$	This study	4C	
MJA519	$[JK9-3D]$ cdc28 Δ , pRS416-cdc28 ^{as} , rim15 Δ ::kanMX	This study	4C/H	
YMM58-1B	[JK9-3D] rim154::kanMX	This study	4E/F	
MM3D	[JK9-3D] $cdc28\Delta$, pRS416- $cdc28^{as}$, $rim15\Delta$:: $kanMX$, $LEU2$:: $CYC1p-HHF2$ - $tDimer$	This study	4D	

Plasmid	Genotype	Source	Figure
pRS415	CEN, <i>LEU2</i>	Ref. (5)	
pMJA2881	[pRS415] ADH1p-SIC1-myc13	This study	S1A
pMJA3173	[pRS415] ADH1p-sic1 ^{T5A} -myc ₁₃	This study	S1A
pMJA3174	[pRS415] <i>ADH1p-sic1</i> ^{T33A} -myc ₁₃	This study	S1A
pMJA2995	[pRS415] <i>ADH1p-SIC1</i> ¹⁵⁰⁻²⁸⁵ -myc ₁₃	This study	2F
pMJA2996	[pRS415] <i>ADH1p-sic1</i> ^{150-285 - T173A} -myc ₁₃	This study	2F
pRS416	CEN, URA3	Ref. (5)	S3
pMJA3038	[pRS416] ADH1p-CLB5-HA3	This study	2B/C, 3A, 4F/G, S3, S1B/C, S3
YCplac33	CEN, URA3	Ref. (6)	
JCE456	[YCplac33] ADH1p-CLN2-HA ₃	Ref. (7)	2A/C, 4D, 4F/G, S3
pAS2654	[YCplac33] ADH1p-LST7-HA3	Ref. (8)	4F
pGEX	GST	Ref. (9)	4G, S1B/C
pMMT2629	[pGEX] GST-SIC1	This study	2C
pMMT2630	[pGEX] GST-sic1 ^{T173A}	This study	2C
pMJA3029	[pGEX] GST-sic1 ^{R262A/L264A}	This study	2C
pMJA3037	[pGEX] GST-SIC1 ¹⁻¹⁰⁰	This study	2C, 3A, 4G, S1B/C
pMJA3219	[pGEX] <i>GST-sic1</i> ^{T5A(1-100)}	This study	S1B/C
pMJA3220	[pGEX] GST-sic1 ^{T33A(1-100)}	This study	S1B/C
pVW995	[pGEX] GST-RIM15944-1149	Ref. (10)	4G
pVW827	CEN, LEU2, ADH1p-GST-RIM15	Ref. (10)	4F
pVW904	2µ, LEU2, TDH3p-RIM15-myc ₁₃	Ref. (10)	4H
pVW910	2μ, LEU2, TDH3p-rim15 ^{T1075A} -myc ₁₃	Ref. (10)	4H
pFD1008	CEN, TRP1, ADH1p-rim15 ^{K823Y} -GFP	Ref. (10)	4D/E

Table S2. Plasmids used in this study

Table S3. Antibodies used in this study

Name	Dilution	Source
Anti-Sic1	1:1'000	sc-50441 Santa Cruz
Anti-Adh1	1:200'000	Calbiochem
Anti-Sic1-pThr ¹⁷³	1:1'000	GenScript
Anti-Sic1-pThr ⁵	1:1'000	GenScript
Anti-Sic1-pThr ³³	1:1'000	GenScript
Anti-myc	1:3'000	9E10; sc-40; Santa Cruz
Anti-HA	1:1'000	Enzo Life Sciences
Anti-GST	1:3'000	Bethyl Laboratories
Anti-Igo1-pSer ⁶⁴	1:1'000	GenScript
Anti-Igo1	1:1'000	Eurogentec
Anti-Cln2	1:1'000	Santa Cruz
Anti-Cdc28	1:300	Santa Cruz
Anti-Clb5	1:1'000	Santa Cruz
Anti-Sch9-pThr ⁷³⁷	1:1'0000	GenScript
Anti-Sch9	1:1'000	GenScript
Anti-Rim15-pThr ¹⁰⁷⁵	1:10'000	Eurogentec
Goat anti-rabbit IgG HRP	1:3'000	Biorad
Goat anti-mouse HRP	1:3'000	Biorad
Donkey anti-goat HRP	1:5'000	Abcam
Goat anti-mouse IgG-Fcy HRP	1:5'000	Jackson Immunoresearch
Goat anti-mouse IgG, light chain HRP	1:5'000	Jackson Immunoresearch

Supplementary References

- 1. Heitman J, Movva NR, & Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. *Science* 253(5022):905-909.
- 2. Bodenmiller B, *et al.* (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. *Sci. Signal.* 3(153):rs4.
- 3. Moreno-Torres M, Jaquenoud M, & De Virgilio C (2015) TORC1 controls G₁-S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway. *Nat. Commun.* 6:8256.
- 4. Pedruzzi I, *et al.* (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G₀. *Mol. Cell* 12(6):1607-1613.
- 5. Brachmann CB, *et al.* (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14(2):115-132.
- 6. Gietz RD & Sugino A (1988) New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. *Gene* 74(2):527-534.
- 7. Quilis I & Igual JC (2012) Molecular basis of the functional distinction between Cln1 and Cln2 cyclins. *Cell Cycle* 11(16):3117-3131.
- Péli-Gulli MP, Sardu A, Panchaud N, Raucci S, & De Virgilio C (2015) Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. *Cell Rep* 13(1):1-7.
- 9. Smith DB & Johnson KS (1988) Single-step purification of polypeptides expressed in *Escherichia coli* as fusions with glutathione S-transferase. *Gene* 67(1):31-40.
- 10. Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, & De Virgilio C (2005) Regulation of G₀ entry by the Pho80-Pho85 cyclin-CDK complex. *EMBO J.* 24(24):4271-4278.