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Supplementary Figures  

 

 
Figure S1 In vivo and in vitro specificity of the anti-Sic1-pThr5/-pThr33 antibodies. (a) Sic1-pThr5 and Sic1-
pThr33 levels were determined by immunoblot analyses using respective phospho-specific antibodies and 
extract of exponentially growing cells that expressed plasmid-encoded versions of myc13-tagged Sic1 and 
Sic1T5A (left panels), or myc13-tagged Sic1 and Sic1T33A (right panels). The levels of the Sic1-myc13 variants 
were determined by using polyclonal anti-myc antibodies. The asterisk denotes an unspecific band. (b, c) 
Clb5-HA3-CDK immunocomplexes from exponentially growing yeast cells were used for in vitro kinase 
assays in which the bacterially-purified, N-terminal parts (encompassing the first 100 amino acids) of Sic1 
(WT), Sic1T5A (T5A), and Sic1T33A (T33A) served as substrates. Sic1-pThr5 (b) and Sic1-pThr33 (c) levels were 
determined by immunoblot analyses using respective phospho-specific antibodies and the indicated GST-
Sic11-100 variants that have been phosphorylated (+), or not (-), by Clb5-HA3-CDK. The input levels of the 
GST-Sic11-100 variants were determined by using polyclonal anti-GST antibodies. 
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Figure S2 Sic1T173A-expressing cdc4-2ts cells are not defective in the clearance of Cln1, Cln2 or Clb5 when 
treated with rapamycin. cdc4-2ts and cdc4-2ts sic1T173A strains expressing Cln1-myc13, Cln2-myc13, or Clb5-
HA3 were grown as in Fig. 1A. the levels of the tagged proteins were determined by immunoblot analyses 
using monoclonal anti-myc or anti-HA antibodies. Adh1 levels served as loading control. 

 
 

 
Figure S3 Cln2-HA3 and Clb5-HA3 interact with Cdc28 in vivo. Plasmid-expressed, HA3-tagged Cln2 or Clb5 
were immunoprecipitated (IPed) from extracts of exponentially growing wild-type cells. Cell lysates (Input) 
and anti-HA immunoprecipitates (IP: anti-HA) were analyzed by immunoblotting with anti-HA (top panels), 
anti-Cdc28 (panels in the middle), and anti-Sic1 (bottom panels) antibodies. Please note that both Cln2-HA3 
and Clb5-HA3 interact with Cdc28, while only Clb5-HA3 is able to bind Sic1 as expected. Neither Cdc28 nor 
Sic1 were recovered in anti-HA immunoprecipitates from extracts of cells that carried an empty plasmid (-; 
3rd lanes in all panels). 
 
 
 
 
 
 
 
 
 

21

18

20

17

16

19

Cln1-myc13-

Adh1 -

Adh1 -

Cln2-myc13 -

Adh1 -

Clb5-HA3 -

RAP (min) 0 15 30 45 60 0 15 30 45 60

cdc4-2ts cdc4-2ts sic1T173A

Supplementary Figure 2

Cln2-HA3 -

Cdc28 -

CLN2-
HA3

Sic1 -

Clb5-HA3 -

Input IP: anti-HA

CLB5-
HA3

-
CLN2-
HA3

CLB5-
HA3

-



  

- S4 - 

 
Figure S4 Proliferating, Sic1T173A-expressing cells exhibit enhanced levels of Cln-/Clb5/6-CDK activity. For 
synchronization, exponentially growing WT cells expressing genomically-tagged Sic1-myc13 or Sic1T173A-
myc13 were treated for 2 h with a-factor (5 µg ml-1). Following a-factor release, samples were collected at the 
indicated time points. The phosphorylation levels of Thr5 in Sic1 and Sic1T173A were determined by using 
phosphospecific anti-Sic1-pThr5 antibodies and normalized with respect to the total levels (quantified by using 
anti-myc antibodies) of Sic1-myc13 and Sic1T173A-myc13, respectively. 
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Supplementary Tables 

 
Table S1. Strains used in this study 

Strain Genotype Source Figure 
JK9-3D 
 

MATa, leu2, his4, trp1, ura3, rme1, GAL, HMLa Ref. (1) 2A/B, 3B, 
2C, 4G, 
S1B/C, S3 

RL343-E1 [JK9-3D] his3, HIS4, cdc28∆, pRS416-cdc28as (F88G) Ref. (2) 4C  
YMM114 [JK9-3D] cdc4-2ts::kanMX Ref. (3) 1A/C 
YMM118-2D [JK9-3D] cdc4-2ts::kanMX, sic1T173A, EMP46::natMX Ref. (3) 1A/C 
YMM67-1C [JK9-3D] sic1∆::kanMX Ref. (3) 1A/B, S1A 
YMM237-1A [JK9-3D] cdc4-2ts::kanMX, cdc28∆::kanMX, pRS416-cdc28as This study 1B/D 
YMM250-10C [JK9-3D] cdc4-2ts::kanMX, cdc28∆::kanMX, pRS416-cdc28as, 

sic1T173A, EMP46::natMX 
This study 1B/D 

YMM246-1C [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1, CLN1-myc13::kanMX This study S2 
YMM247-4B [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1, CLN1-myc13::kanMX, 

sic1T173A, EMP46::natMX 
This study S2 

YMM249-2B [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1, CLN2-myc13::kanMX This study S2 
YMM252-2A [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1, CLN2-myc13::kanMX, 

sic1T173A, EMP46::natMX 
This study S2 

MJA4090 [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1 This study S2 
MJA4091 [JK9-3D] cdc4-2ts::kanMX, CLB5-HA3::TRP1, sic1T173A, 

EMP46::natMX 
This study S2 

YMM91 [JK9-3D] sic1T173A, EMP46::natMX Ref. (3) 2A/B, 3B, 
MJA490 [JK9-3D] CKS1-HA3::kanMX This study 2D-F, 4A 
MJA491 [JK9-3D] CKS1-HA3::kanMX, sic1T173A, EMP46::natMX This study 2D-E, 4A 
MJA524-2B [JK9-3D] sic1R262A/L264A-myc13::kanMX This study 3A 
YMM63 [JK9-3D] SIC1-myc13::kanMX Ref. (3) 3A, 4B, S4 
YMM98 [JK9-3D] sic1T173A-myc13::kanMX, EMP46::natMX Ref. (3) 3A, S4 
MJA523 [JK9-3D] sic1R262A/L264A, EMP46::natMX This study 3B 
MJA536 [JK9-3D] cln1Δ::kanMX, cln2Δ::kanMX This study 3B 
MJA528 [JK9-3D] sic1T173A/R262A/L264A, EMP46::natMX This study 3B 
YMM232-6A [JK9-3D] clb5Δ::kanMX, clb6Δ::kanMX, sic1T173A, EMP46::natMX This study 3B 
MJA544-2B [JK9-3D] cln1Δ::kanMX, cln2Δ::kanMX, sic1T173A, EMP46::natMX This study 3B 
YMM253-11A [JK9-3D] clb5Δ::kanMX, clb6Δ::kanMX This study 3B 
MJA547 [JK9-3D] clb5Δ::kanMX, cln1Δ::kanMX, cln2Δ::kanMX, sic1T173A, 

EMP46::natMX 
This study 3B 

MJA545 [JK9-3D] CKS1-HA3::kanMX, CLB5-myc13::kanMX, sic1T173A, 
EMP46::natMX 

This study 3D 

MJA546 [JK9-3D] CKS1-HA3::kanMX, CLB5-myc13::kanMX This study 3D 
MJA531 [JK9-3D] CKS1-HA3::kanMX, CLN2-myc13::kanMX, sic1T173A, 

EMP46::natMX 
This study 3E 

MJA530 [JK9-3D] CKS1-HA3::kanMX, CLN2-myc13::kanMX,  This study 3E 
YMM231-1A [JK9-3D] CKS1-HA3::kanMX, mpk1Δ::kanMX This study 4A 
YMM230-8A [JK9-3D] CKS1-HA3::kanMX, cdc55Δ::natMX This study 4A 
YMM233-3A [JK9-3D] CKS1-HA3::kanMX, cdc55Δ::natMX, sic1T173A, 

EMP46::natMX 
This study 4A 

MJA518 [JK9-3D] cdc28∆, pRS416-cdc28as This study 4C 
MJA519 [JK9-3D] cdc28∆, pRS416-cdc28as, rim15Δ::kanMX This study 4C/H 
YMM58-1B [JK9-3D] rim15Δ::kanMX This study 4E/F 
MM3D [JK9-3D] cdc28∆, pRS416-cdc28as, rim15Δ::kanMX, LEU2::CYC1p-

HHF2-tDimer 
This study 4D 
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Table S2. Plasmids used in this study 

Plasmid Genotype Source Figure 
pRS415 CEN, LEU2 Ref. (5)  
pMJA2881 [pRS415] ADH1p-SIC1-myc13 This study S1A 
pMJA3173 [pRS415] ADH1p-sic1T5A-myc13 This study S1A 
pMJA3174 [pRS415] ADH1p-sic1T33A-myc13 This study S1A 
pMJA2995 [pRS415] ADH1p-SIC1150- 285-myc13 This study 2F 
pMJA2996 [pRS415] ADH1p-sic1150-285 - T173A-myc13 This study 2F 
pRS416 CEN, URA3 Ref. (5) S3 
pMJA3038 [pRS416] ADH1p-CLB5-HA3 This study 2B/C, 3A, 4F/G, S3, S1B/C, S3 
YCplac33 CEN, URA3 Ref. (6)  
JCE456 [YCplac33] ADH1p-CLN2-HA3 Ref. (7) 2A/C, 4D, 4F/G, S3 
pAS2654 [YCplac33] ADH1p-LST7-HA3 Ref. (8) 4F 
pGEX GST Ref. (9) 4G, S1B/C 
pMMT2629 [pGEX] GST-SIC1 This study 2C 
pMMT2630 [pGEX] GST-sic1T173A This study 2C 
pMJA3029 [pGEX] GST-sic1R262A/L264A This study 2C 
pMJA3037 [pGEX] GST-SIC11-100 This study 2C, 3A, 4G, S1B/C 
pMJA3219 [pGEX] GST-sic1T5A(1-100) This study S1B/C 
pMJA3220 [pGEX] GST-sic1T33A(1-100) This study S1B/C 
pVW995 [pGEX] GST-RIM15944-1149 Ref. (10) 4G 
pVW827 CEN, LEU2, ADH1p-GST-RIM15 Ref. (10) 4F 
pVW904 2µ, LEU2, TDH3p-RIM15-myc13 Ref. (10) 4H 
pVW910 2µ, LEU2, TDH3p-rim15 T1075A-myc13 Ref. (10) 4H 
pFD1008 CEN, TRP1, ADH1p-rim15K823Y-GFP Ref. (10) 4D/E 

 
 
Table S3. Antibodies used in this study 

Name Dilution Source 
Anti-Sic1 1:1’000 sc-50441 Santa Cruz 
Anti-Adh1 1:200’000 Calbiochem 
Anti-Sic1-pThr173 1:1’000 GenScript 
Anti-Sic1-pThr5 1:1’000 GenScript 
Anti-Sic1-pThr33 1:1’000 GenScript 
Anti-myc 1:3’000 9E10; sc-40; Santa Cruz 
Anti-HA 1:1’000 Enzo Life Sciences 
Anti-GST 1:3’000 Bethyl Laboratories 
Anti-Igo1-pSer64 1:1’000 GenScript 
Anti-Igo1 1:1’000 Eurogentec  
Anti-Cln2 1:1’000 Santa Cruz 
Anti-Cdc28 1:300 Santa Cruz 
Anti-Clb5 1:1’000 Santa Cruz 
Anti-Sch9-pThr737 1:1’0000 GenScript 
Anti-Sch9 1:1’000 GenScript 
Anti-Rim15-pThr1075 1:10’000 Eurogentec 
Goat anti-rabbit IgG HRP 1:3’000 Biorad 
Goat anti-mouse HRP 1:3’000 Biorad 
Donkey anti-goat HRP 1:5’000 Abcam 
Goat anti-mouse IgG-Fcy HRP 1:5’000 Jackson Immunoresearch 
Goat anti-mouse IgG, light chain HRP 1:5’000 Jackson Immunoresearch 
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