Article title: Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives

Authors: Yong-Jian Wang, Heinz Müller-Schärer, Mark van Kleunen, Ai-Ming Cai, Ping Zhang, Rong Yan, Bi-Cheng Dong and Fei-Hai Yu Article acceptance date: 29 August 2017

The following Supporting Information is available for this article:

Fig. S1 Leaf mass (a, d and g), clonal organ mass (b, e and h), and root mass (c, f and i) of the recipient ramets (a-c), the donor ramets (d-f) and the whole clone (g-i) of the invasive alien and native clonal species when the clone was grown in heterogeneous light, nutrient and water conditions

Fig. S2 Differences in the relative benefit of clonal integration, measured as the log-response ratio of biomass of intact clones to biomass of severed clones per species, between alien invasive and native species in the experimental heterogeneous light (a), nutrient (b) and water (c) conditions

 Table S1 Clonal plant species used in the experiment

Table S2 Results of generalized linear mixed models testing effects of origin and integration on leaf mass, clonal organ mass and root mass of the recipient ramets (A), the donor ramets (B) and the whole clone (C) when the clone was grown in heterogeneous light, nutrient and water conditions

Fig. S1 Leaf mass (\mathbf{a} , \mathbf{d} and \mathbf{g}), clonal organ mass (\mathbf{b} , \mathbf{e} and \mathbf{h}), and root mass (\mathbf{c} , \mathbf{f} and \mathbf{i}) of the recipient ramets (\mathbf{a} - \mathbf{c}), the donor ramets (\mathbf{d} - \mathbf{f}) and the whole clone (\mathbf{g} - \mathbf{i}) of the invasive alien and native clonal species when the clone was grown in heterogeneous light, nutrient and water conditions. Means \pm SEs are given.

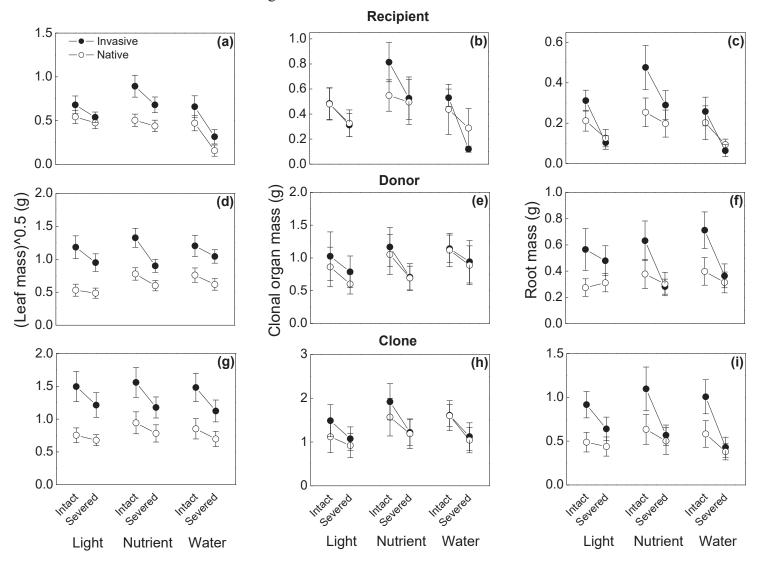
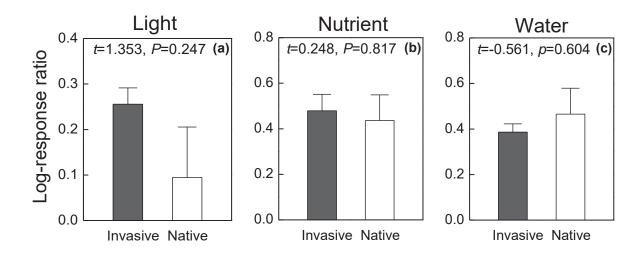



Fig. S2 Differences in the relative benefit of clonal integration, measured as the log-response ratio of biomass of intact clones to biomass of severed clones per species, between alien invasive and native species in the experimental heterogeneous light (a), nutrient (b) and water (c) conditions. Means \pm SEs are given. Values of *t* and *P* are based on paired *t*-tests (*n* = 5 pairs of invasive and native species).

Species	Family	Origin	Native range	Clonal	Typical habitat
				organ	
<i>Wedelia trilobata</i> (L.) Hitchc	Asteraceae	Invasive alien	North and South America	Stolon	Moist grasslands, edges of canals, roadsides
<i>Wedelia chinensis</i> (Osbeck.) Merrill	Asteraceae	Native	Asia	Stolon	Moist grasslands, edges of canals, crop fields, roadsides
<i>Alternanthera</i> <i>philoxeroides</i> (Mart.) Griseb	Amaranthaceae	Invasive alien	South America	Stolon	Wetlands, canals, nearby fields
<i>Alternanthera sessilis</i> (Linn.) DC	Amaranthaceae	Native	Asia, Africa	Stolon	Wetlands, other moist habitats
Hydrocotyle vulgaris L.	Araliaceae	Invasive alien	North America, Europe	Stolon	Wetlands, other moist habitats
Hydrocotyle sibthorpioides	Araliaceae	Native	Asia	Stolon	Wetlands, other moist habitats
Paspalum notatum Flugge	Poaceae	Invasive alien	North and South America	Rhizome	Roadsides and grasslands
Paspalum orbiculare Forst.	Poaceae	Native	Asia, Oceania	Rhizome	Roadsides, other moist habitats
Paspalum virgatum L.	Poaceae	Invasive alien	South America	Rhizome	Moist grasslands
Paspalum distichum L.	Poaceae	Native ¹	Tropics and subtropics of Asia, America	Rhizome	Roadsides, nearby fields, grasslands

Table S1 Clonal plant species used in the experiment.

Origin and habitat information are based on the Flora of China (www.efloras.org), Scientific Database of China Plant Species (DCP) (http://www.plants.csdb.cn/eflora) and other references He (2012) and Wan *et al.* (2012). ¹ The native status of this species in China is not fully resolved, with some references to support this, and exclusion of the species and the species pair which it is part of does not change the results qualitatively (results not shown).

References

He JQ. 2012. Exotic plants in China. Shanghai, China: Shanghai Scientific & Technical Publishes.

Wan FH, Liu QR, Xie M. 2012. *Biological invasions: color illustrations of invasive alien plants in China*. Beijing, China: Science Press.

Table S2 Results of generalized linear mixed models for effects of origin and integration on leaf mass, clonal organ mass and root mass of the recipient ramets (A), the donor ramets (B) and the whole clone (C) when the clone was grown in heterogeneous light, nutrient and water conditions

			Light experiment		Nutrient		Water	
Variable	Effect	DE			experiment 2		experiment	
Variable Leaf mass ¹	(A) Recipient <i>Fixed factor</i>	DF	χ	<u> </u>	χ	Р	χ	Р
	Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	2.253 4.189 1.287 SD 0.155 0.176	0.141 0.045 0.276	4.628 7.536 4.036 SD <0.001 0.212	0.031 0.003 0.046	3.388 36.543 0.978 SD 0.169 0.120	0.066 < 0.001 0.345
	(B) Donor <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	8.240 4.583 <i>3.492</i> SD 0.024 0.200	0.004 0.032 0.057	5.330 20.515 3.788 SD <0.001 0.179	0.021 <0.001 0.049	6.117 3.891 0.285 SD 0.048 0.219	0.013 0.049 0.594
	(C) Clone <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	6.120 7.585 5.191 SD 0.173 0.262	0.013 0.005 0.022	5.735 32.351 <i>3.129</i> SD <0.001 0.263	0.017 < 0.001 0.075	4.917 34.964 <i>3.012</i> SD 0.125 0.245	0.027 < 0.001 0.089
Clonal organ mass	 (A) Recipient <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity (B) Donor 	1 1 1 N 5 10	0.409 4.243 1.963 SD 0.094 0.139	0.522 0.039 0.161	0.284 5.602 6.073 SD <0.001 0.278	0.594 0.018 0.014	0.200 17.059 3.996 SD 0.121 0.104	0.655 < 0.001 0.046

Fixed factor

	Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	1.886 9.930 1.085 SD 0.328 0.389	0.176 0.002 0.298	0.031 11.991 0.435 SD 0.218 0.360	0.861 < 0.001 0.510	0.034 10.301 0.203 SD 0.387 0.386	0.853 0.001 0.652
	(C) Clone <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	0.402 4.569 10.719 SD 0.392 0.488	0.526 0.033 0.001	0.184 26.593 7.158 SD <0.001 0.724	0.668 < 0.001 0.008	0.011 37.194 0.050 SD 0.330 0.503	0.914 < 0.001 0.823
Root mass	 (A) Recipient <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity 	1 1 N 5 10	3.421 18.939 3.821 SD 0.082 <0.001	0.066 < 0.001 0.048	4.172 0.202 4.352 SD 0.125 0.057	0.041 0.653 0.037	2.154 17.533 <i>3.212</i> SD 0.081 <0.001	0.142 < 0.001 0.075
	(B) Donor <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 1 N 5 10	5.090 4.028 4.897 SD 0.159 0.097	0.024 0.044 0.029	2.202 11.771 4.331 SD 0.169 0.085	0.138 < 0.001 0.037	2.686 5.533 22.457 SD 0.138 0.136	0.099 0.019 < 0.001
	(C) Clone <i>Fixed factor</i> Origin (O) Integration (I) O × I <i>Random factor</i> Taxonomic pair Species identity	1 1 N 5 10	5.246 5.576 3.968 SD 0.248 0.121	0.022 0.019 0.044	3.005 7.111 5.817 SD 0.282 0.162	0.083 0.008 0.016	3.630 24.387 13.697 SD 0.219 0.133	0.057 < 0.001 < 0.001

¹ Data were square-root transformed. Values are in bold when P < 0.05 and in italic when 0.05 < P < 0.1.