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Chern insulators exhibit fascinating properties, which originate from the topologically nontrivial state
characterized by the Chern number. How these properties change if the system is quenched between topologically
distinct phases is, however, not fully understood. In this paper, we investigate the quench dynamics of the
prototypical massive Dirac model for topological insulators in two dimensions. We consider both dissipationless
dynamics and the effect of electron-phonon interactions, and ask how the transient dynamics and nonequilibrium
steady states affect simple observables. Specifically, we discuss a time-dependent generalization of the Hall effect
and the dichroism of the photoexcitation probability between left and right circularly polarized light. We present
optimized schemes based on these observables, which can reveal the evolution of the topological state of the

quenched system.
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I. INTRODUCTION

Topologically nontrivial phases of matter are a subject
of intense current research [1,2]. They exhibit a range of
intriguing and potentially useful properties, such as the
quantum anomalous Hall (QAH) effect. The usual notion
is that the intrinsic topology of a system cannot be altered
by local perturbations, which results in the protection of
certain properties due to time-reversal symmetry. In particular,
this effect leads to stable surface or edge states and their
extraordinary transport properties.

The relation between the topological phase and correspond-
ing observables is still under active investigation. Originally,
such a correspondence has been established in noninter-
acting systems in equilibrium via the Thouless-Kohmoto-
Nightingale-Tijs formula [3]. In this case, the Chern number C,
of each band (labeled by n) fully characterizes the QAH effect:
the Hall conductivity amounts to o,y = (€*/h) Y, coec Cn- The
bulk-insulating system (characterized by o, = Oand oy, # 0)
is then called a Chern or quantum Hall insulator (QHI).
The Chern number, on the other hand, is obtained via the
Berry curvature from the wave function |¢y,) directly—a
quantity that is, strictly speaking, available for noninteracting
systems (or within mean-field treatments) only. A possible
extension in the context of many-body perturbation theory can
be obtained by constructing an effective Hamiltonian involving
the self-energy at zero frequency [4], which allows us to study
the interplay of topological properties and correlation effects
in QHIs [5-7]. This approach is based on the connection of
the Chern number to the winding number [8]. Alternatively,
topological states can be classified by studying the response of
a system to external gauge fields [9]. While these approaches
work for noninteracting as well as for interacting electrons,
the underlying assumption is that the system is in its ground
state. Hence the established concepts are not necessarily
applicable to finite temperature or nonequilibrium scenarios,
which involve excited states.

This is particularly true for global perturbations such as
quenches of the Hamiltonian parameters. For instance, a
straightforward definition of a time-dependent Chern number
Cn(t) from the time-evolving wave functions |¢k,(¢)) of a
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noninteracting system will remain constant under unitary
evolution. On the other hand, the Hall conductivity oy, can
change, e.g., after a quench, which means that it is generally
not identical to the Chern number (up to the prefactor e/ h),
in contrast to the equilibrium case [10-12]. Similarly, the
bulk-boundary correspondence might be lost after a quench
[13,14]. It is thus a relevant task to identify experimentally
accessible quantities, which allow us to trace the nonequilib-
rium evolution of topologically nontrivial systems.

In this paper, we investigate different schemes that enable
us to study the nonequilibrium and transient dynamics of
QHIs. We focus on (i) the time-resolved Hall effect using
appropriately shaped electromagnetic pulses, and (ii) the
photoabsorption asymmetry with respect to left/right circularly
polarized light—a novel approach, which has been suggested
recently [15]. Both methods are based on directly observable
quantities and are thus well suited for the study of (effectively)
noninteracting as well as correlated and/or dissipative systems.
We demonstrate their applicability by considering as a generic
example the well-known massive Dirac model (MDM) on
a square lattice [16], which captures [17] the topological
phase transition in HgTe quantum wells [18]. We focus on
quench dynamics and demonstrate how a transition between
phases of distinct topological character manifests itself in
these observables. Furthermore, we study the influence of
dissipation due to electron-phonon (EL-PH) coupling on
the transient dynamics to demonstrate the robustness of the
proposed schemes.

II. MODEL

As a paradigm model for two-dimensional systems we
consider the massive Dirac model on a square lattice. The
electronic Hamiltonian reads

Ay =" ha®laptl, b, ¢))

keBZ ab
where the k-dependent single-particle ~Hamiltonian
[Ahe](k)]ul7 = (kalh(k)|kb) has the generic form

ha(K) = ZOJ:X’N dy(K)6%. Here, the &% denote the
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pseudospin operators with respect to the underlying bands.
The coefficients d, (k) are defined by

dy(k) = Asin(ka), dy(k) = Asin(kya),
d.(K) = —2Tp[cos(kra) + cos(kya)] — M. 2)

The eigenstates of the single-particle Hamiltonian are denoted
by he(K)|¢kn) = £,(K) Pk ).

Note that we limit ourselves to a spin-restricted model
here, as the Hamiltonian (1) is spin independent. As shown
in Ref. [17], in HgTe quantum wells, which are well modeled
by Egs. (1) and (2), doping with manganese allows us to shift
the spin-up/spin-down bands in such a way that only one spin
channel remains important. Here we assume such a situation
and thus focus on the charge QAH effect instead of the usual
quantum spin Hall effect (QSH).

It is straightforward to see that diagonalizing the Hamil-
tonian (1) gives rise to a trivial band insulator (BI) for
M < —4|Ty|, while the system corresponds to a topological
insulator (TI)! for0 > M > —4|Ty|. The topological character
of the bands can be determined by the Chern number C,,, which
is defined (for each band n = 1,2, respectively) by the integral
over the Berry curvature

1 AW gA™
C,=— | dk Yo > ). 3
27 ( dk,y dk, 3

Here, A™(K) = —i (¢kn|Vkkn) is the Berry connection cor-
responding to the upper (n = 1) or lower (n = 2) band.

A. Quench dynamics

A quench from the Bl into the TI phase (or vice versa) offers
insight into the underlying topological properties. For instance,
the insulating state with nontrivial Chern number cannot
be altered under unitary time evolution (which preserves
time-reversal symmetry), hence, the question arises as to which
state the system is driven. Furthermore, quenches may induce
dynamical phase transitions, which have recently been studied
for the MDM [19]. Quenches can be realized, for instance,
by photodoping pulses in interacting electronic systems,
leading to transient band shifts [20,21], or by changing
the strength of the periodic driving in Floquet topological
insulators [22,23].

Here we study quenches of the gap parameter M
between the values Mt = —3|Ty| and Mgy = —5|Ty|. The
band hybridization is fixed at A = 0.2|Tp| in what fol-
lows. The transition from phase A (M = Mrypr) to B
(M = Mgym1) is triggered by a softened ramp of the
form

Hy(t) = [1 — a(O)]AL +a(t)AS, )

witha(t) =1 — cos[n (¢t — #4)/ T4, defined by the quench time
tq and the duration Ty (t; < t < tq + Tg).

'Even though the term topological insulator (TI) refers to a more
general concept than the QAH insulator, we use the abbreviation TI
throughout the text.
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In the absence of any further interactions, the dynamics
can be captured by solving the time-dependent Schrodinger
equation

d A
i V(D) = haOY1a D). [t = 0)) = Sn1ldir). )

where we have assumed half-filling. The time-dependent
single-particle Hamiltonian fzel(t) is defined in analogy to
Eq. (4). As mentioned above, a straightforward generalization
of the definition of the Chern number (3) as

1 AP BAM(r)
cn(t)_E/dk( TR (6)

with the time-dependent Berry connection A™(k,t) =
— i (Ykn ()| Vk Yk (¢)) will be invariant under any unitary time
evolution [10,14]. As discussed by Wang et al. (Ref. [11]), the
Hall conductance may, however, undergo a change. Assuming
that decoherence effects have suppressed the off-diagonal
elements of the density matrix after sufficiently long time,
the steady-state Hall conductance can be defined as

& DA A
L= dk )| —— -2 ) (7
o m;/ ful )( ) o

Here, A™-B(k) stands for the Berry connection of the
postquench Hamiltonian fll:l, whereas f;,(K) is the occupation
with respect to the postquench band structure. For the two-band
MDM, f,(K) is easily expressed in terms of the overlap of the
prequench and postquench basis and does not depend on the

quench details.

B. Electron-phonon coupling

The nonequilibrium Hall conductance (7) assumes that the
system has lost the coherences due to environmental coupling;
otherwise, the coherent oscillations after excitations induced
by the quench hamper a unambiguous definition of oy,. The
most important intrinsic source for such dephasing effects in
real systems is (besides structural defects) EL-PH coupling.

As demonstrated in Ref. [24], the MDM approaches the
respective ground state after an quench if the coupling to
the environment is dominated by dephasing. However, the
coupling to the lattice vibrations entails dissipative population
dynamics, as well. Therefore, the resulting steady state is, in
general, different from the quench calculation, which considers
dephasing only [25]. This has been shown, for instance,
in Floquet topological insulators subject to electron-phonon
coupling [26], where the out-of-equilibrium Hall conductance
differs from the TKNN relation [27]. In the current study,
we treat the EL-PH coupling explicitly by extending the
Hamiltonian to

[:I(t) = I:Iel(t) + I:Ielfph + I:Iph- (8)

For the interaction term, we use the Frohlich coupling [28] in
two dimensions:

A 14 q At A
H_ :—Eu -—Ecc,n . 9
1—ph \/Vkuq qukknkqu“l )

Here, y is a constant determining the overall coupling strength
and N; denotes the number of k points. The phonon modes
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FIG. 1. Top: Dispersion of the longitudinal acoustic (LA), trans-
verse acoustic (TA), longitudinal optical (LO), and transverse optical
(TO) phonon modes. The energy is measured in units of the hopping
constant Ty. Bottom: Corresponding density of states (DOS) along
with the occupation-weighted DOS for the LA and TA modes (filled
curves).

@ with momentum q are represented by the corresponding
mode vector u,q and the coordinate (momentum) operators

0 uq (ISMq). The latter define the phonon Hamiltonian by

: o) 4+ 5 At oA
th = Z “2 (P;];qpltq + QLunq)- (10)
nq

To compute the phonon modes in the square lattice, we
assume a diatomic basis characterized by masses M), and
three force constants c;» 3 describing the nearest-neighbor,
next-nearest-neighbor, and diagonal interaction, respectively.
Diagonalizing the dynamical matrix yields two acoustic and
two optical (longitudinal and transverse) phonon modes. The
parameters are chosen to produce a similar phonon dispersion
w,(q) as is known for HgTe [29]—up to an overall scaling
constant. We have slightly increased the phonon energies to
make the effects due to the EL-PH coupling more visible.
However, it is important to note that we stay in the realistic
parameter regime where only intraband transitions can be
induced by scattering from phonons. The phonon dispersion
and the corresponding density of states (DOS) is shown in
Fig. 1. In what follows, we assume low temperatures by fixing
the inverse temperature at 8 = 40|T,|~!, such that only the
acoustic phonons around the I" point are thermally activated.

It should be mentioned that the role of the EL-PH coupling
in topological insulators, in particular at the surface, is a topic
of recent discussions. While some works point out the strong
influence of EL-PH coupling for inelastic scattering [30-32]
and for intraband relaxation of photoexcited systems [33],
other measurements suggest weak EL-PH interaction effects
[34]. Here, we take a different angle and treat the coupling
strength y as a parameter.
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C. Equations of motion in the presence
of electron-phonon interactions

The full Hamiltonian (8) constitutes an interacting electron-
boson model. The numerically exact solution is out of reach for
the typical number of points in reciprocal space. Furthermore,
since the phonon energies w,(q) are much smaller than
the electronic energy scale, a weak-coupling treatment is
suitable. In this context, the nonequilibrium Green’s function
(NEGF) approach in its time-dependent formulation has
become an important tool recently [35—41]. However, most of
the approaches resort to a local approximation to the EL-PH
interaction. This approximation excludes intraband transitions,
which are, as discussed above, the only available relaxation
channel in our case. Therefore, a momentum-dependent
treatment of the phonons is required, which increases the com-
putational costs of the NEGF method considerably. Since
neither renormalization effects of the electronic structure due
to the coupling to the phonons nor the back action on the
phononic degrees of freedom is of particular significance for
the relaxation in the MDM, one can employ a simplified theory
based on a master-equation approach within the Markovian
approximation [42]. The usual Lindblad equation, however, is
formulated in terms of the many-body density matrix [43]. For
calculating the time evolution of the single-particle density
matrix, o;;(k;?7) = (é:(l.(t)@k j(1)), additional conditions are
required, reflecting not only the overall particle conservation,
but the fermionic statistics, as well. This can be achieved by
extending the linear Lindblad equation to a nonlinear master
equation [44,45]. Alternatively, equivalent master equations
can also be obtained from with NEGF formulation within
the generalized Kadanoff-Baym ansatz [46] and applying the
Markovian approximation [47].

Within the master-equation approach, the equation of
motion (EOM) for the single-particle density matrix reads

d
Zp(k; 1) = —ilha(k; 1), p(k; )] + I(k; 1), Y

where we have employed a more compact matrix notation.
Besides the unitary time evolution captured by the first term,
the EL-PH coupling is described by the scattering term

1
L0k 0) = = 3 2> [l ORI (kK — @pm(k — q31)
nq  klm

— k4 @ OR, k+ q. K)o, (k.0)].  (12)

Here, p;j(k;t) = &;; — pij(k; 1) is the density matrix of the hole
states, while R;:;? m (k;,ky) denotes the scattering rate, which
determines the transition probability. For the derivation of the
master equation (11)—-(12) we followed Ref. [44] and split
the indices into band indices and quasimomenta. Exploiting
the momentum conservation built into the EL-PH coupling
matrix elements, the scattering term can be readily formulated
in terms of electron (k) and phonon (q) momenta. As the
scattering events are limited to intraband transitions governed
by momentum (and energy) conservation, the scattering rates
simplify to [45]

Rkﬂl(,ljm(kl’kz) = Ok, . ko+q0kj Oim Rj'L[q(klakZ) (13)
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with
nq _ y2 1 2>
Ry (ki ko) = M?'um “qI"Dlaikr) — g;(kp)]. (14)

Here, the spectral function of the unoccupied phonon modes
(greater Green’s function in the NEGF context) is defined by

D (@) =27 [Ng(w) + 11{8[® — w,u(q)]
—d[o + wu (@1}, s)

where Np(w) denotes the Bose distribution. In practice, the
Dirac-§ functions in Eq. (15) are replaced by Gaussians with
a small broadening parameter 7.

In principle, the validity of the master EOM (11) is
limited to scenarios without external driving due to the energy
conservation implicit in the scattering term (14). However,
the time-dependent perturbations employed here are fast
compared to the time scale of the EL-PH scattering: (i) the
gap parameter M is ramped within a time interval of Ty = 5.0;
(i) the duration of the circularly polarized laser pulses is set
to T, = 5.0. Therefore, the driven dynamics is dominated by
the unitary dynamics, whereas dissipation effects manifest
themselves at a later stage of the time evolution, where energy
conservation holds.

Note that the definition of the scattering terms (12)—(14)
depends on the electronic eigenenergies explicitly. The EOM
(11) thus has to be solved in the eigenbasis of either the
prequench or the postquench Hamiltonian. Since we employ
aramped quench scheme here, we have chosen the prequench
Hamiltonian h¢(k; 7g) as the reference point and inserted the
corresponding electronic energies in Eq. (14). On the other
hand, in a sudden quench scenario it is natural to choose the
postquench basis and insert the prequench density matrix as
initial condition.

For each momentum K in the Brillouin zone, the EOM (11)
constitutes a nonlinear ordinary differential equation. For its
solution we split off the unitary time evolution and treat it using
exact matrix exponentials. In this way, the quench or driving
dynamics is treated accurately (and, when the Hamiltonian
is time independent, exactly). For the higher-order treatment
of the scattering term we have adopted a method similar to
the one discussed in Ref. [48]. The full numerical scheme is
detailed in the Appendix.

III. OBSERVABLES IN EQUILIBRIUM

Let us now proceed by defining the observables, which
will be used to trace the nonequilibrium dynamics. We first
consider the equilibrium case, where the system is either in
the band insulating or QHI phase and then discuss how to
extend the schemes to the time-dependent case.

A. Circular asymmetry

As suggested by Tran et al. [15], the depletion rate T'{"(w)
[Fg_)(a))] upon irradiation of left (right) circularly polarized
light with frequency w yields a direct measure of the Chern
number of band n. In particular, the frequency-integrated
asymmetry signal [ do [{P(w) — ') (w)] is proportional to
C,. This property was derived for a noninteracting system;
however, it is generic and can also be exploited in interacting
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FIG. 2. Circular asymmetry A(Kk) of the transition probability for
(a) the BI(M = My = —5|Tp]) and (b) the TI(M = My = —3|To)).

systems. A closely related effect is the pronounced polariza-
tion dependence observed in angle-resolved photoemission
(ARPES) from graphene, mapping out the Berry phase of the
individual bands [49,50]. Alternative ways of extracting the
topological character of the system in experiments, besides the
aforementioned Hall effect, are Aharonov-Bohm-type interfer-
ometry [51] in optical traps and spin-polarized measurements
[52]. However, here we focus on observables that can be easily
extended to the transient regime.
For the two-band MDM, Fermi’s golden rule yields

I (@) o el VE®) i) (k) — &1(K) — w).
k
(16)

Here, the transition operator, derived from the standard Peierls
substitution, reads

dhea(k) L aﬁel(k)_

VH (k) =
® =" ok,

a7
Provided the transition is permitted by energy conserva-
tion, the excitation probability is determined by the ma-

trix elements D@ (K) = |{pa| VE (K)|éir) |- The asymmetry
A(k) = DD (k) — DO)(K) is presented for the BI and the TI
in Figs. 2(a) and 2(b), respectively. We neglect the EL-PH
coupling at this point (y = 0).

As can be seen in Fig. 2, the main difference between BI
and TI is the strong negative asymmetry in the vicinity of the
I" point in the latter case [Fig. 2(b)], which is most pronounced
at the k points where the avoided crossing between the two
bands occurs. This can be understood from the fact that A(k) is
proportional to the Berry curvature in the two-band case [15].

In view of transient measurements, it would be most useful
to extract the topological character of the system by applying
short (circularly polarized) pulses rather than the continuous-
wave (plus integrating over frequencies) approach presented
in Ref. [15]. Figure 2 suggests to consider transitions close
to the I' point, where the difference in the Berry curvature
between the BI and TI is most pronounced. The thus required
spectral resolution has to be balanced against time resolution
determined by the pulse duration. We have chosen electric field
pulses of the form

(t — tp)

E®(r) = F,sin® (
P

)Re{e—fw0<f—’°>e<i>} (18)

for tg <t < t9+ T,. The left or right polarization vector
(superscript 4 or —, respectively) is given by €& = e, + ie,.
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FIG. 3. Population of the upper band after applying a pulse with
central frequency wy to the BI (top) and TI (bottom). The dashed line
marks the optimal pulse frequency w,, where the difference between
the BI and TI response is most pronounced.

In order to determine the corresponding asymmetry signal,
we propagate the time-dependent Schrodinger equation in
the presence of the electric field (18) by the Peierls substi-
tution A5V (k; 1) — ASY [k — A®(1); 1] [A®(1) is the vector
potential corresponding to the field] in the weak-field limit
(Fy = 0.5). The expected left-right asymmetry of the depletion
rate translates into an asymmetry of the photoexcitation
probability. After some tests we found that pulses as short
as T, = 5.0 offer a good comprise between sharpness in
frequency space and pulse duration. The excitation probability
for both the Bl and the TI case is depicted in Fig. 3 as a function
of the central frequency wy.

In line with Ref. [15], integrating over all frequencies
yields zero for the BI (since C; = 0), while a nonzero value
is obtained for the TI. As expected from the behavior of the
matrix elements (see Fig. 2), the region in reciprocal space
where the Berry curvature is the strongest in the TI case is
particularly suited for mapping out the topological character
of the system. This leads to the optimal frequency wep > 2.5
where the BI predominantly absorbs left circularly polarized
light [corresponding to the red region around the origin in
Fig. 2(a)], but where the Berry curvature leads to a strongly
enhanced absorption of right circularly polarized radiation
in the TI case. Choosing wg = wqp We obtain a field pulse,
which is ideally suited for tracing the transient dynamics
of the system upon photoexcitation or after a quench. Note
that the absorbance of the BI is reduced compared to the TI
due to the larger band gap.
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FIG. 4. Asymmetry signal analogous to Fig. 3, but for different
EL-PH coupling strengths y > 0.

The next important question to address is if a similar
behavior can be expected in the presence of EL-PH coupling.
To address this issue, we solved the master equation (11)
including the electromagnetic field and computed, as for the
noninteracting case, the photoexcitation probability. The result
for several moderate coupling strengths y is presented in Fig. 4.
Besides an overall suppression of the absorbance and the less
pronounced difference between the the excitation probabilities
for left/right circularly polarized light, the qualitative behavior
is consistent with the dissipationless case (Fig. 3). The visible
difference of the asymmetry for the relatively strong EL-PH
couplings demonstrated in Fig. 4 implies that one can obtain
valuable information on the topological character even for
weak to moderate strength of dissipative effects.

B. Time-resolved Hall effect

The emergence of the integer Hall effect o,y = (¢*/h)C)
provides direct access to the topological character in equilib-
rium. A possible extension of this concept to a time-dependent
scenario is—similarly as in Sec. IIl A—to apply suitably
shaped pulses with parameters optimized in the equilibrium
case. To this end, we computed the optical conductivity oyg(w)
for both the BI and the TI phase. The real part is shown in Fig. 5.

The plateau in o,,(w) at small frequencies gives us some
guidance in choosing the spectral features of a suitable probe
pulse E(¢), which allows us to map out the topological
character: (i) the pulse needs to be short to enable us to
trace the transient dynamics; (ii) the pulse in frequency
space needs to have a maximal overlap with the region
w ~ 0; and (iii) f dt E(t) = 0 is required within the dipole
approximation. Electromagnetic field pulses, which optimally
fulfill the criteria (i)—(iii) are half-cycle pulses (HCPs) [53].
HCPs are pulses with a dominant, short peak and a weak
and long tail (which hardly influences the dynamics). The
dominant peak makes the field effectively unipolar, as the
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FIG. 5. Real part of the optical conductivity for the BI (top) and
the TI (bottom). The filled curve illustrates the power spectrum of the
HCP used for the time-dependent calculations (see text). The small
but finite value of o, (@ = 0) is due a small broadening of the Fermi
surface.

spectral weight is maximal in the vicinity of w &~ 0. Here we
employ the parametrization Eycp(t) = Eo€ Fycp(t — fo) with

Fucp(t) = x(e_xz/z - %W”’), x = %p (19)
The parameters are the effective pulse duration 7, and the
shape parameter b, which we fix at b = 8§ in accordance [54]
with typical pulses generated in experiments [55,56]. The
analytical expression in Eq. (19) fulfils fooo dt Fyucp(t) =0
exactly. The corresponding power spectrum in frequency space
is shown in Fig. 5. We have found 7, = 10 to be a good
compromise between a short pulse duration and maximal
overlap with the plateau region of the TI, as can be seen in
Fig. 5.
The properties of the HCPs translate—in combination with
the frequency dependence of the optical conductivity—into a
distinct behavior of the time-dependent current

Jo(t) = Z Tr[v¥(k — A()p(Kk; 1)]. (20)
k

Here, v* (k) = dh¢(k)/0k, is the velocity matrix. Within the
weak-field regime, linear response theory applies and relates
the current to the driving field and the optical conductivity:

Jo(t)=Eo ) f dt' oup(t — t')ep Fucp(t' — 19).  (21)
0

B=x.y

Assuming a linearly polarized HCP in the x direction, the
linear response relation (21) yields for the current in the y
direction in frequency space

Jy(@) = Eqoyx (@) Fucp(®) = Egoy. (@ = 0)Fucp(@), (22)
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FIG. 6. (a) Time-dependent current J,(¢) induced by a HCP with
1, =10,1 =10, and E, = 10~*, polarized in the x direction. The
current has been normalized by the pulse strength. (b) Corresponding
pulse-current correlation functions [Eq. (24)] as functions of the delay
At.

which implies for the time-dependent current
Jy(t) = Egoy(@ = 0) Fycp(1). 23)

Thus, the current orthogonal to the field polarization is
expected to closely resemble the driving pulse in the TI case,
while the current will almost vanish for the BI. This behavior
is confirmed by the numerical solution of the Schrédinger
equation in the presence of the HCP (19) and the resulting
time-dependent current J,(¢), @ = x,y displayed in Fig. 6 for
the TI case. The Hall current J,(¢) has a strong peak for times
where the HCP has its maximum, while the current J, (¢) shows
an oscillatory behavior. As expected, the simulations show that
the Hall current is negligible for the BI phase (not shown).

Since detecting a time-dependent current on the typical time
scale of the pulse (which is in the femtosecond to picosecond
range) is difficult in experiments, we propose to analyze the
behavior of the pulse-current correlation function

Cy(At) = /00 dt Ju(t) Fucp(t — At). (24)
0

This signal could be detected similarly to the total induced
charge, but weighted with the known driving pulse. The
behavior of the Hall current J,(¢) observed in Fig. 6 can thus
be characterized by a peak at At = 0, while a transient current
response originating from a pronounced variation with respect
to the frequency will not possess this feature. This is confirmed
in Fig. 6.
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FIG. 7. Band structure of (a) the BI and (b) the TI. The coloring
of the lines indicates the orbital weight of the upper band underlying
the Hamiltonian (1). Band structure of (c) the BI and (d) the TI, where
the dots indicate that the occupation of the respective band after the
quench is larger than 0.5. The energy is measured in units of | 7|

IV. TRACING THE QUENCH DYNAMICS:
UNITARY TIME EVOLUTION

Let us now investigate the dynamics of the system after a
quench across the phase boundary and the manifestation of this
transition in the observables discussed in Sec. III. We focus on
the noninteracting case y = 0 first.

Assuming that the system is initially in equilibrium (M =
Mry/g1) with the lower band completely filled and the upper
band empty, the gap parameter is ramped up or down in a time
T, = 5 (see Sec. IT A). This short ramp time corresponds to an
almost ideal quench, i.e., the occupations of the postquench
bands is given by

FR00 = |68 [va = T) = (8B |60 @5

The postquench occupation (25) is shown along the standard
path in the Brillouin zone of the square lattice in Fig. 7, marked
by points where f2(k) > 0.5. In fact, £2(k) is close to one for
most points.

A. Time-dependent Hall effect

Examining the structure of the density matrix after the
quench, one realizes that coherent superpositions of the two
bands play a major role, such that the system is far away
from a steady state for which the Hall conductance (7) can
be defined. However, to have a measure of the postquench
state the system is driven to, we can investigate the response to
HCPs as discussed in Sec. III B. The current induced by a HCP
polarized along the x direction after performing the quench
Mgy — Mty is shown in Fig. 8(a). In comparison to the current
response in equilibrium (Fig. 6), the coherent oscillations of
the current dominate the hump at times when the electric field
of the pulse is strong. The magnitude of these oscillations is
considerably larger than in the equilibrium case, showing that
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FIG. 8. (a) Time-dependent current induced by a HCP (sketched
in the plot) after the quench from the BI state to the TI (illustrated
by the shaded background). The current in the y direction has been
multiplied by 5 for better visibility. The normalization of the current
is consistent with Fig. 6. (b) Corresponding pulse-current correlation
functions.

the superposition state after the quench is quite different from
the equilibrium TI state.

At first glance, is seems that the current in the y direction
is not displaying the behavior discussed in Sec. III B, as the
magnitude of the current is quite small even when the electric
field reaches its maximum. Nevertheless, the pulse-current
correlation function C,(At) defined in Eq. (24) and presented
in Fig. 8(b), exhibits the distinct feature of the QHI: C,(At)
possesses a clear maximum at Af = 0, which indicates a
plateau behavior of the optical conductivity o, at w = 0 and
thus the presence of a nonzero Hall effect. The magnitude
of C,(At =0) is, however, significantly (approximately by
a factor of four) reduced with respect to the equilibrium
case [Fig. 6(b)]. Hence one would expect a static Hall
conductance of about oy, >~ 0.25¢*/h. We also performed
analogous simulations for the M — Mp; quench and found
the emergence of a very small, but finite, Hall effect after the
quench.

The coherent superposition present in the postquench state
results in an internal dynamics, which might interfere with
transient measurements. However, one can expect decoherence
effects to diminish these coherences, leading to a mixed
steady state. In this case, the static Hall effect yields valuable
information on the postquench state, as discussed in the next
section.

B. Steady-state conductance

As can be inferred from Fig. 7, the occupation after the
quench reflects the prequench situation. For instance, the
complete filling of the lower BI band is preserved when
switching to the TI, apart from the avoided crossing points.
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FIG. 9. Optical conductivity of the postquench state af},(w)
according to the definition (26) for (a) the quench M1} — Mp; and
(b) Mgy — M.

This illustrates the conservation of the topological character
of the system as the occupation of bands with the same orbital
character (which is interchanged at the crossing points in the
TI band structure, see Fig. 7) remains constant. Nevertheless,
the Hall effect deviates from the equilibrium behavior, which
can be seen by evaluating the steady-state optical conductivity
in accordance with Ref. [11] by

Oy() = éz / dk fB(k) /0 Dodt et

x (¢i | [ Jicees Jicp ()] |y )- (26)

Here, fka = Bﬁf‘l / 9k, denotes the momentum-resolved current
operator. The resulting conductivity is shown in Fig. 9. Note
that computing the optical conductivity analogously to Eq. (7)
assumes that all off-diagonal elements of the density matrix,
which capture the coherent oscillations of the system after the
excitation, are zero.

As can be inferred from Fig. 9, the Hall conductance signif-
icantly deviates from the equilibrium value. In the Mt — Mp;
quench, the system acquires a finite Hall conductance oﬁ,(w =
0) ~ 0.0038¢%/h, while the quench My — Mg leads to
ofy(a) = 0) >~ 0.25¢2 / h. These values are consistent with the
time-dependent response discussed in Sec. IV A. Without the
unit factor e?/ h, the latter can be regarded as a nonequilibrium
generalization of the Chern number [ 11]. Note that the concrete
numbers depend on both the prequench and the postquench gap
parameter M.

C. Transient circular asymmetry

Let us now proceed to transient properties. As discussed
in Sec. III A, the circular asymmetry is a very promising
candidate for tracing the dynamics in real time. To find a
suitable analog to the equilibrium scenario, we performed test
calculations of the population dynamics driven by circularly
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FIG. 10. The circular asymmetry of the absorbed energy A FE
as a function of the delay Ar (bottom) between the quench and the
probe pulse (illustrated in the top). The color gradient shading of the
curves emphasizes the transition from positive (red) to negative (blue)
asymmetry.

polarized pulses (with the same parameters as in Sec. III A and
with central frequency wo = wep) after the system has been
quenched. For the case Mg — My one finds that the system
is preferably excited by right circular pulses, while a left
circular pulse results in a weaker depletion of the postquench
lower band. In contrast, circularly polarized pulses applied
to the BI after the quench from the TI result in a depletion
of the upper band instead (irrespective of the polarization).
Furthermore, one observes an oscillatory dependence of the
photoexcitation probability after a quench, which originates—
analogously to the current discussed in Sec. IV A—from the
coherent superposition of the states belonging to the upper and
lower band, respectively.
For these reasons, we propose to utilize the absorbed energy
E s of the left or right circular probe pulses as a footprint of the
topological character in nonequilibrium instead. Importantly,
the energy absorption can be measured in experiments directly
by placing photon detectors behind the sample. It should
be noted that E,us can also be negative when the system is
excited, which corresponds to stimulated emission rather than
absorption. This difference to the equilibrium case needs to be
taken into account. We thus define a transient generalization
of the circular asymmetry by
AEws = |Eg)l = |Eg)l, @7
where E;bis) is the energy of the probe pulse, which is
absorbed (or emitted) by the system. The time-resolved
circular asymmetry signal (27) for both quench scenarios is
presented in Fig. 10 as a function of the delay Ar =1y — 4
between the starting time of the pulse (7)) and the time when
the system is quenched (zy). The absorbed energy is computed

by taking the energy difference E\) = Eéﬁ)pr — E{°, where
E{® denotes the total energy of the quenched system in the
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absence of the probe pulse, while Eéﬂ)r is the total energy of
the quenched and probed target. The energy is measured at a
sufficiently large reference time after the quench and the pulse.

Figure 10 demonstrates that the quench dynamics can be
traced in the time domain by the circular asymmetry. For
the system with M = Mp; before switching, the asymmetry
is positive (see Fig. 3). Hence, for At < 0 one observes
AEps(Tief) > 0 in Fig. 10 for the Mg — M7y case (purple
curve). For At > 0, the asymmetry assumes negative values
(with larger modulus, as well) which, in accordance to Fig. 3,
indicates the transition to the TI. The opposite behavior can be
observed when switching My — Mp; (blue curve). Further
features are weakly pronounced coherent oscillations of the
asymmetry after the quench to the TI, which originate from the
off-diagonal elements of the time-dependent density matrix.
The corresponding time scale is determined by the energy
difference between the states whose occupation is changed by
the quench.

As our time-dependent simulations demonstrate, the time-
resolved quench-probe asymmetry signal based on the ab-
sorbed energy provides a robust tool to trace the transient
dynamics of the system after a quench. It primarily maps out
the circular asymmetry of the underlying bands and is less
sensitive to the nonequilibrium occupation. These features
clearly distinguish the time-resolved asymmetry from the
nonequilibrium Hall effect discussed above and render it a
powerful complementary tool.

V. TRACING THE QUENCH DYNAMICS:
DISSIPATIVE TIME EVOLUTION

After having analyzed the unitary dynamics of the system
after a quench, we now investigate how the picture changes
if EL-PH interactions, as discussed in Sec. II B, are present.
Generally, the effect of coupling to the phonon modes is
expected to give rise to dissipative dynamics, lowering the
energy after the quench excitation. Revisiting Fig. 7 one can
expect a qualitatively different behavior for the quench Mt —
Mgy as compared to the case Mg — Mry. If the system is
quenched from the TI to the BI, the occupation in the upper
band [see Fig. 7(a)] is located around the energy minimum
at the I" point. Hence, no energy can be extracted from the
system after the quench. The effect of the EL-PH coupling is
in this case primarily the dephasing of the coherences induced
by the quench.

A. Transient dynamics probed by time-resolved photoemission

We performed numerical simulations of the quench dynam-
ics by solving the master EOM (11) as described in Sec. I C.
The parameters are—apart from the EL-PH interaction—the
same as in Sec. IV. To understand the time evolution of
the band structure and the nonequilibrium occupation, the
most convenient quantity to look at is the time-dependent
occupation with respect to the postquench basis fB(k;7) =
poun(K; 1) and—as complementary information—the transient
photoelectron spectrum. Time-resolved ARPES (tr-ARPES)
has recently become a standard tool for tracing the time
evolution in correlated systems [57—60], in parallel with arapid
development of state-of-the-art theoretical descriptions within
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the NEGF framework [35,36,39]. Modeling the photoemission
process by a pump pulse [frequency w, pulse envelope Fy,(1)]
yields the photocurrent [36]

I(k; @) ocIm / dt / dt’ [For(D)] Fyu(t)e ™™
x Tr[G=(k;t,t)]. (28)

Here, G=(k; t,7’) denotes the lesser Green’s function, which
we express within the generalized Kadanoff-Baym ansatz as
G=(k;1,t") = iU(k; 1) p(k; t’) with the time-evolution operator
corresponding to the single-particle Hamiltonian h¢(k; ).
Varying the delay At between the excitation (the quench at 7 in
our case) and the time when the probe pulse is applied, Eq. (28)
provides a k- and energy-resolved pump-probe spectrum.

In Fig. 11 we present the time-dependent occupation

B(k; ) (top row) along with the corresponding tr-ARPES
spectra (bottom row) as a function time delay At for the quench
M1 — Mpg;. In the calculations of the tr-ARPES signals, we
used the same parameters for the pulse as in Sec. IV. The short
pulse length 7, = 5 gives rise to the broadening of the spectra
in Fig. 11. Since within the weak-coupling regime the steady
state does not depend on the strength of the EL-PH coupling,
we have chosen the intermediate value y = 0.5 for a faster
dynamics. An analogous relaxation dynamics occurs on longer
time scales for smaller y. At Ar = —20, the system is still
in equilibrium and the ARPES signal follows the prequench
band structure (orange dashed line). The postquench basis is
the BI—therefore, the occupation with respect to the BI bands
exhibits a hole around the I" point up to the region where
the avoided crossing occurs. This demonstrates a different
aspect of the topological state: The occupation of the first
Brillouin zone with respect to the dominant orbital character
of the lower band is not singly connected. Following the time
evolution right after the quench (At =5) we see a similar
picture as in Fig. 7: The ARPES spectrum now follows the
postquench band structure (solid purple lines), while the upper
band is populated around the I" point, whereas the lower band is
empty in this region. The population assumes values between
zero and one around the crossing region, such that a slight
lowering of the total energy by EL-PH relaxation is possible.
This effect can be observed for later times (Afr = 25). The
steady state (At = 120), however, shows only a slight blurring
of the occupation compared to directly after the quench.

The nonequilibrium dynamics is considerably more pro-
nounced in the quench scenario Mgy — My, analyzed again
in terms of the time-dependent population of the postquench
lower band in the tr-ARPES spectra in Fig. 12. Right after
the quench (Ar = 5), the ARPES spectrum closely resembles
the BI band structure, apart from a shift to larger energies.
However, as the occupation of the lower band shows, the
postquench TI band is empty between the I' point and the
crossing region, while the upper TI band is populated in this
region in the Brillouin zone. It is clear from Fig. 12 that this
nonequilibrium occupation does not correspond to an energy
minimum as filling the occupation hole in the lower band
and a relaxation towards the energy minimum at the crossing
points in the upper band result in a lowering of the total
electronic energy. These dissipation processes are efficiently
mediated by the EL-PH interaction as the time-dependent
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FIG. 11. Top row: time-dependent occupation with respect to the postquench Hamiltonian (defined by M = Mp) for different time delays

At relative to the quench time (at At

= 0). Bottom row: corresponding tr-ARPES spectra according to Eq. (28). The full purple lines indicate

the post-quench BI band structure, while the dashed orange lines is the lower band of the TI. The EL-PH coupling is set to y = 0.5.

occupation and the ARPES spectra for later times (Ar = 25)
demonstrate. The steady state reached at Ar = 120 has a
peculiar configuration: The occupation hole around the I" point
has been filled, while the population of the upper band has
relaxed down to the crossing point. Interestingly, from the
ARPES spectrum alone one could suspect that the system has
fully relaxed to a TI. However, the nonequilibrium occupation,
which involves both bands gives rise to a steady-state optical
conductivity (Fig. 13), which deviates considerably from
the equilibrium behavior (Fig. 5) in its strongly suppressed

conductance and Hall conductance. The direct current Hall
conductance is reduced to oy, ~ 0.003¢?/h for the quench
to the B, while we find o, >~ 0.05¢%/h in the Mp; — My
scenario. Note that the value of the Hall conductance in the TI
final state is considerably smaller than in the quench scenario
without EL-PH interaction (Fig. 9). This can be explained
by the distinct occupation in the postquench steady state
in the presence of the EL-PH coupling. The integer Hall
conductance o,, = ¢/ h originates from interband transitions
in the crossing region of the upper and lower band. Exactly

At =125 At =120

FIG. 12. Top row: Time-dependent occupation with respect to the postquench Hamiltonian (defined by M = M) for different time delays
At as in Fig. 11. Bottom row: tr-ARPES spectra according to Eq. (28). The full orange lines indicate the postquench TI band structure, while
the dashed purple line represents the lower band of the BI. The EL-PH coupling is set to y = 0.5.
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FIG. 13. Real part of the nonequilibrium optical conductivity
of the postquench steady-state reached in the presence of EL-PH
interactions, for (a) the transition My — Mg, and (b) the switching
Mgy — Mry.

those transitions are strongly suppressed in the steady state of
Fig. 12, as the occupation in the lower band in the crossing
region is depleted, while the available states in the upper band
are mostly occupied.

B. Transient circular asymmetry

Let us now investigate if the transition from the topologi-
cally trivial BI to the QHI or vice versa can be traced in the
time domain by circularly polarized pulses in an analogous
fashion as for the dissipationless case discussed in Sec. IV C.
We employ the same scheme: a left or right circularly polarized
pulse photoexcites the system before, during or after the
quench. The energy absorbed by the pulse and, in particular,
the left-right asymmetry should then reveal the character
of the steady state or transient state. We have applied this
recipe, using the definition (27), and present the respective
energy absorption asymmetry in Fig. 14 for two representative
cases of the EL-PH interaction: (i) weak coupling y = 0.1
[Figs. 14(a)-14(b)] and moderate coupling strength y = 0.3
[Figs. 14(c)-14(d)]. We represent the absorption asymmetry
as a function of the quench-pulse delay At as in Fig. 10.

For y = 0.1, Fig. 14(a) shows a transition Mgy — My
similarly to the unitary case. The asymmetry A E,, changes
from positive values (with small magnitude) to negative,
indicating the switch from BI to TI. On the other hand, the
quench Mt — Mp; [Fig. 14(b)] is accompanied by a switch of
A E s from negative to positive values (with strongly reduced
magnitude). Generally, the scheme for tracing the quench
dynamics works very well for the dissipative case with weak
EL-PH interaction.

Turning to stronger EL-PH couplings, the picture slightly
changes. For the quench Mgy — M7y [Fig. 14(c)], one can
observe the asymmetry A E,,s switching from small positive

PHYSICAL REVIEW B 96, 155122 (2017)

f T BT
w 0 ]
q -2 E
.3 -
-4 (b)_
-5 L L [ | IR S
T T T T T T Tl T BII T T T
0 B \ 0
2 F 1 Af ]
Lu:ﬁ
< 2r - 2+ J
_3 -(IC) 1 -II-I 1 1 1 : _3 i 1 1 1 1 1 (Id)-
10 0 10 20 30 40 50 10 0 10 20 30 40 50
At At

FIG. 14. Asymmetry of the absorbed energy A E s as a function
of the delay At between the quench and the probe pulse for (a)—(b)
weak EL-PH coupling y = 0.1, and (c)-(d) moderate EL-PH cou-
pling y = 0.3. The color gradient filling of the curves is analogous
to Fig. 10. The gray shaded area indicates the time when the system
is switched from BI to TI (left panels) or TI to BI (right panels),
respectively.

values to the negative region across the quench. The almost
linear decrease of A E s towards larger At is attributed to the
EL-PH induced relaxation after the pulse (see Fig. 12). One can
readily check that the photoexcitation probability due to the
specific pulse is larger in the postquench relaxed steady state
than right after the quench, because more states are occupied in
the energy window defined by the pulse frequency. Therefore,
the absorption of the left-circular probe pulse becomes more
efficient as At increases, until the steady state is reached (at
At ~ 200). Generally, the dependence of A E,ps on At is much
more pronounced in the TI phase, since the influence of the
EL-PH coupling (as discussed in Sec. V A) is stronger.

VI. CONCLUSIONS

We have studied the quench dynamics of the MDM as a
generic model for two-dimensional topological insulators with
a special emphasis on how the nonequilibrium and transient
properties are reflected in experimentally accessible quantities.
We have focused on two promising observables, which reveal
the topological character of the system: the steady-state and
time-dependent Hall effect and the asymmetry of photoexci-
tation with respect to left or right circularly polarized pulses.
Based on a realistic model for two-dimensional topological
insulators we have defined suitable probe-pulse shapes by
considering the equilibrium model, both for the dissipationless
case and including electron-phonon interactions. We then
applied these optimized pulses to trace the nonequilibrium
dynamics after a quench. Both the time-dependent Hall effect
and the circular dichroism of the absorbed energy provide
valuable information on the system. While the Hall current
can deliver important insights into the steady state, it turns out
to be less suitable for the analysis of transient states. This is due
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to the coherent superpositions in the system, which give rise to
an intrinsic transient dynamics. The circular asymmetry of the
absorbed energy, on the other hand, is much less sensitive to
these effects, since it is based on the occupation of the bands
only. The latter approach is thus particularly well suited for
the study of the switching process between different phases.

In the presence of electron-phonon coupling, the quench
dynamics can significantly differ from the dissipationless case,
provided the energy of the system is reduced by scattering
from phonons. We analyzed these effects in terms of the
time-resolved ARPES spectra. We investigated the steady-
state properties by the nonequilibrium Hall conductance
and, finally, analyzed the quench dynamics in terms of the
circular asymmetry. As an important point for the potential
experimental realization, we have demonstrated the robustness
of our proposed transient measurement in the presence of weak
to moderate electron-phonon coupling. The transient circular
dichroism is therefore a promising tool, which provides
insights into the little explored field of topological phases in
nonequilibrium.
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APPENDIX: NUMERICAL SOLUTION
OF THE MASTER EQUATION

For a stable numerical solution of a master equation of the
type of Eq. (11) we adapt a method for propagating NEGFs in
time [48]. The interval [0, #,,,,« ] is discretized into an equidistant
grid t, = nAt. In order to perform the step p(z,) — p(t,+1),
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we separate the unitary time evolution from the scattering term
by the ansatz
= U(ty + 7.1)P, (DUt + 7.1)
= U,(0)5, (1)UL (2),7 € [0,A1].

pt, + 1)
(A1)

Here, U(¢, + 7,1,) denotes the time-evolution operator, which
we approximate by U, (t) = exp[—i the(t, + At/2)]. Insert-
ing Eq. (A1) into the EOM (11) then yields

p(tar1) = Uy(AD (1)UL (AL)

At
+ / dt Ul (t — ADI(t, 4+ T)U,(z — Ar).
’ (A2)

Apart from the approximation to the time-evolution operator
U, (1), Eq. (A2) is still exact. A simple and numerically stable
propagation scheme is obtained by approximating I(z,, 4+ 7) =
I(t, + At/2) = L,41/2. Using the Baker-Hausdorff formula,
the time step (A2) can be expressed as

ptyi1) = U (ADP(1,) UL (AL)

—HAIZ

with CO =11, and C(k“) = [ha(t, + At/2),CP]. In
practice, we truncate Eq. (A3) after the fourth order (p = 4).
The half-step scattering term I, 1> is obtained by fourth-order
polynomial interpolation using Iy, K =0,...,3. This
requires knowing the scattering term at the next time step,
L, 1, which is a function of the yet unknown density matrix
p(t,+1). Therefore, we employ a predictor-corrector scheme
where I,11,, is first estimated by third-order polynomial
extrapolation, allowing to compute p(#,+;) and thus obtain
L, ;1. The latter two steps are then iterated at each time step
until p(z,) is converged.
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