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Many-body localization phase in a spin-driven chiral multiferroic chain
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Many-body localization (MBL) is an emergent phase in correlated quantum systems with promising
applications, particularly in quantum information. Here, we unveil the existence and analyze this phase
in a chiral multiferroic model system. Conventionally, MBL occurrence is traced via level statistics by
implementing a standard finite-size scaling procedure. Here, we present an approach based on the full
distribution of the ratio of adjacent energy spacings. We find a strong broadening of the histograms of counts
of these level spacings directly at the transition point from MBL to the ergodic phase. The broadening
signals reliably the transition point without relying on an averaging procedure. The fast convergence of
the histograms even for relatively small systems allows monitoring the MBL dynamics with much less
computational effort. Numerical results are presented for a chiral spin chain with a dynamical Dzyaloshinskii-
Moriya interaction, an established model to describe the spin excitations in a single-phase spin-driven
multiferroic system. The multiferroic MBL phase is uncovered and it is shown how to steer it via electric
fields.

DOI: 10.1103/PhysRevB.96.054440

I. INTRODUCTION

Disorder may localize propagating waves. This phe-
nomenon, first unraveled for noninteracting electronic systems
[1], applies also in a general setting involving even classical
waves [2–4]. For the ground state of a correlated system disor-
der is also of a great importance and may inhibit conductance
[5]. Between these two regimes interesting phenomena emerge
as well: For a certain disorder strength, a correlated excited
system may form a MBL phase [6–12] with distinct properties
such as boundary-law entropy, localization protected order,
and vanishing DC (even non-linear) conductivity with MBL
mobility edge between the localized and the thermalized
(we call it also ergodic) phase. There are indications of
the quantum nature of MBL [13]. Experiments on ultracold
atoms in optical lattices [14–16] and trapped ions [17]
provided evidence of MBL. Here, we propose studying the
signature of MBL in electromagnon excitations of spin-driven
multiferroic oxides [18]. A possible MBL is expected to
hinder the electromagnon transport, which can be traced
down, for instance, as in Ref. [19]. One currently discussed
question is how the spectrum of a system with MBL phase
is distributed. For integrable systems this issue has long been
in the focus of research with many interesting findings (cf.,
for instance, Refs. [20–27]). Generically, integrable systems
with a large number of degrees of freedom turn chaotic for a
weak perturbation. For interacting systems, the MBL phase is
possibly mappable onto a model with fewer degrees of freedom
[28,29] and hence is resistent to perturbations until reaching
a critical perturbation strength destroying the MBL phase.
This scenario can be assessed by indicators that signal the
transition from the MBL to the thermalized (ergodic) phase.
Conventionally, the levels statistics behavior is used for this
purpose [30]. In the ergodic phase the level spacing follows a
Wigner distribution function, while in the MBL phase it obeys
a Poisson distribution. A key quantity is the disorder average

of the ratio

rn = min(δn,δn−1)/ max(δn,δn−1),
(1)

r = 1

N − 2

N∑
n=3

rn,

where δn = En − En−1 is the distance between two neighbor
energy levels labelled by n and N is the number of eigenstates.
In the ergodic phase for the Gaussian orthogonal ensemble
(GOE) rGOE = 0.5307 is found [31], while in the MBL
phase rPoisson = 0.3863. The disorder strength has a strong
influence on the system’s spectral characteristics. Typically,
the transition to the MBL phase sets in at a certain critical
strength of disorder as deduced from conventional finite-size
scaling analysis, assumed to apply also to the MBL case [8,10].
The spectrum is obtained via exact diagonalization. In this
work, we present a new method based on the histograms of
counts (hereafter, histograms) of the interlevel distances. The
transition point is marked by a broadening of the histograms
and enhanced fluctuations. We will be dealing with a system
with a mixed symmetry having the Hamiltonian (GUE denotes
Gaussian unitary ensemble)

Ĥtotal = ĤGOE + λĤGUE, (2)

Systems with mixed GOE/GUE symmetries are of high
interest and widely studied in the recent literature [32].
Depending on the value of the parameter λ the spectrum of
the Hamiltonian Eq. (2) displays different features: In the
limit of small λ the level statistics obey GOE, for large λ

GUE prevails. Interestingly, in the crossover regime the system
shows qualitatively different properties than ĤGOE and ĤGUE.
Particularly for such cases, further methods to explore the
MBL phase in systems with mixed complex symmetries are
useful and needed. We observed that in spite of the difference
of the GOE and GUE statistics, the enhanced fluctuations at
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the MBL transition point bear a universal physical character
common for both GOE and GUE symmetries. Thus, our
method serves as a useful tool to explore MBL in systems
with complex symmetry properties.

The manuscript is structured as follows: In Sec. II, we
introduce the helical spin-1/2 Heisenberg model, in the
Sec. III, we explore the integrals and the transformation
properties of the helical spin-1/2 Heisenberg model. Section
IV is dedicated to the MBL phase in the helical spin-1/2
Heisenberg model, and in Sec. V, we introduce the histograms
of counts as a tool for sensing the MBL phase and explore the
enhanced fluctuations near the transition point.

II. HELICAL SPIN-1/2 HEISENBERG MODEL

MBL phenomena were analyzed for disordered quantum
spin chains (cf., for instance, Refs. [8–12]). Our focus here
is on a particular system, namely on low-energy excitations
of oxide-based, spin-driven multiferroics that were realized
experimentally in a chain form [18,33,34] (such as LiCu2O2),
and are charge insulators. Such systems exhibit at low tem-
peratures a helical spin order coupled to an effective electric
polarization. The ferroelectric polarization order is described
by Ref. [18], P = gME

∑L
i=1 〈ex × (Ŝi × Ŝi+1)〉. Here, gME is

the strength of the magnetoelectric coupling. The L effective
spin-1/2 moments localized at sites i are described by the
operators Ŝi and ex is the spatial unit vector along the x axis
connecting Ŝi and Ŝi+1. Thus, the low-energy excitations are
electromagnons. A possible MBL phase has a multiferroic
nature and is controllable by a magnetic B field (we assumed
it applied along the z axis) or an electric field E (applied below
along the y axis) that couples to P. Such a scenario is well
captured by the low-energy, effective spin-1/2 Hamiltonian
with a dynamical DM interaction [18,35]:

Ĥ = J1

L∑
i=1

Ŝi · Ŝi+1 + J2

L∑
i=1

Ŝi · Ŝi+2

+
L∑

i=1

Bz
i Ŝ

z
i + D

L∑
i=1

(Ŝi × Ŝi+1)z, D = EygME. (3)

Note, D combines the effect of the electric field and the
magnetoelectric coupling. The nearest-neighbor exchange
interaction is ferromagnetic J1 < 0, while the next-nearest-
neighbor one is antiferromagnetic J2 > 0 leading in general to
a frustrated spin order. For D = 0 and uniform magnetic field
Bz

i = Bz, Ĥ is of the Majumdar-Ghosh type [36]. Breaking
the SU(2) symmetry, for instance, by an intrinsic anisotropy,
the expectation value of the vector chirality κ i = 〈Ŝi × Ŝi+1〉
turns finite (see, e.g., Refs. [37,38]), signaling the emergence
of a spin ordering in the xy projection. The dependence on
D implies a variation in Ey for the material-specific gME. For
J2 = 0, the anisotropic Heisenberg chain is retrieved. We note
that electromagnon excitations may soften the phonon modes
due to different possible types of magnetoeleastic couplings
such as exchange-striction [39,40]. This effect in relation to
MBL is not addressed here. Generally, coupling MBL systems
to an incoherent environment may restore ergodicity washing
out MBL signatures [41–44]. Here, we qualitatively assess
the role of phonon modes on MBL by disordering D, as

discussed below. Computationally, we are able to deal with
only small chains as compared to experiment, for instance on
LiCu2O2 chain. On the other hand, our model is versatile
and captures also the noncollinear spiral order evidenced
experimentally in size-selected, individual biatomic Fe chains
on the (5 × 1) − Ir(001) surface [45].

III. INTEGRALS OF THE SYSTEM AND
TRANSFORMATION PROPERTIES

Our system Ĥ has certain integrals of motion. It is
straightforward to show that the total spin component Ŝz =∑L

i=1 Ŝz
i commutes with Ĥ . Therefore, Ĥ is block-diagonal.

Each block is identified via the conserved total spin component
Ŝz. Of special interest is the largest subspace of states
|�n〉 obeying Ŝz|�n〉 = M|�n〉 with M = 0 for even L or
M = 1 for odd L, respectively. A uniform magnetic field
Bz

i = Bz shifts equally the eigenvalues in each subspace and
has no prominent effect on the interlevel distance rn, while
randomness incorporated in the magnetic field Bz

i ∈ 〈−h,h〉
can induce a qualitative change of the spectral properties from
Wigner-Dyson to Poisson level spacing statistics. The strength
of disorder is measured on a scale set by J1. In what follows we
work with dimensionless units such that J1 = 1, J2 → J2/J1,
D → D/J1, B → B/J1. For simplicity, we omit the factor
of 1/2 in front of spin operator Ŝ ≡ σ̂ implying an extra
rescaling J1,2 = J1,2/4, D,Bz = D,Bz/2. Depending on the
experimental realization different boundary conditions have
to be taken into account. For open boundary conditions, a
unitary local rotation of spins Ŝ+

k → Ŝ+
k e−ik�, Ŝ−

k → Ŝ−
k eik�

around the z axis by the angle � = − arctan (D/J1) converts
the Hamiltonian Eq. (3) to

ĤT = J1

L∑
i=1

Ŝz
i Ŝ

z
i+1 + J ′

1

2

L∑
i=1

(Ŝ+
i Ŝ−

i+1 + Ŝ−
i Ŝ+

i+1)

× J2

L∑
i=1

Ŝz
i Ŝ

z
i+2 + J ′

2

2

L∑
i=1

(Ŝ+
i Ŝ−

i+2 + Ŝ−
i Ŝ+

i+2)

−
L∑

i=1

Bz
i Ŝ

z
i − D′

L∑
i=1

(Ŝi × Ŝi+2)z. (4)

Here, J ′
1 =√

J 2
1 +D2, J ′

2 = J2(J 2
1 − D2)/(J 2

1 + D2), D′ =
DJ1J2/(J 2

1 + D2). As evident, for J2 = 0 the DM interaction
term disappears and the Hamiltonian is equivalent to the XXZ

model; whereas for twisted periodic boundary conditions, a
reminiscent of a DM interaction remains [46].

IV. MANY-BODY LOCALIZATION
WITH MIXED SYMMETRIES

For systems of mixed GOE/GUE symmetries, Eq. (2), three
asymptotic cases are of interest: (a) ĤGOE term is the dominant
term and ĤGUE is the small perturbation, (b) both terms ĤGOE

and ĤGUE are of equal strength, (c) ĤGUE term is the dominant
term and ĤGOE is a small perturbation. Cases (a) and (c) are
relatively simple and well captured by a standard finite-size
scaling procedure. For case (b), the level statistics cannot
be identified in terms of GOE and GUE. Systems of different
size L manifest nonequivalence and different features. The role
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FIG. 1. Level statistics for a ferromagnetic nearest neighbor
interaction J1 = −1, as a function of the strength of disorder h of
the magnetic field Bz ∈ 〈−h,h〉. The DM interaction term is zero and
the system exhibits a precise GOE symmetry.

of GUE enhances at larger L (see below). In the numerically
inaccessible limit L → ∞, the system is characterized by GUE
statistics. However, the collapse of different data for different
numerically accessible finite L to a single universal curve (as
expected by a finite-size scaling procedure) is generally not
achievable. Here we focus on periodic boundary conditions.
Prior implementing a finite-size scaling procedure we present
results for systems of different lengths L = 9,10,..14.

Figure 1 shows the statistically averaged nearest-neighbor
interlevel distances for different strengths of disorder h of the
magnetic field Bz ∈ 〈−h,h〉. In particular, Fig. 1 corresponds
to case (a) when the symmetry of the system is precisely
identified as GOE and the DM term is zero. As inferred for zero
field, the statistics obtained for systems of different lengths
perfectly fits with a standard GOE 〈r〉 = 0.53. Increasing the
strength of disorder h, the system performs a transition to the
Poisson statistics and this transition grasps the concept of MBL
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FIG. 2. Level statistics for the ferromagnetic nearest neighbor
interaction J1 = −1, as a function of the strength of disorder h of the
magnetic field Bz ∈ 〈−h,h〉. The DM interaction term is small D =
0.01. The dominant symmetry of the system is GOE. The influence
of GUE enhances with the system’s size L.

phase. Figure 2 shows the results for the case when the DM
term is small and GOE is the main symmetry of the system,
while GUE is a perturbation. For this case, we conclude that
the larger the system size (L = 14) the more important is the
contribution of the DM term. Note that a finite-size scaling
procedure relies on the collapse of different data for different
L to a single universal curve. Here we face a problem because
for large L the deviation from GOE is more prominent. For
stronger DM term the deviations from GOE increase (see
Fig. 3). For D = 0.05, the system turns into mainly GUE
type and GOE is a perturbation; see Fig. 4. However, this
case still corresponds to case (b), meaning a mixed complex
symmetry and the finite-size scaling procedure fails. Only
for unrealistically large D = 0.2 we have the case (c) (the
ĤGUE term is dominant and ĤGOE is a small perturbation).
For a strong DM interaction D = 0.2 one observes a perfect
switching from the GOE to the GUE level statistics and
a finite-size scaling procedure provides reasonable results
[cf. Figs. 5(a) and 5(c)]. Thus, finite-size scaling is reliable
when the DM interaction term is either zero or large enough
and the symmetry of the system is mainly GOE or GUE,
respectively.

Each curve corresponds to a system with a different
size and is obtained by means of an extensive averaging
procedure over the ensemble of realizations of random disorder
(up to 10.000 realizations per single point of the curve).
For a detailed analysis of the dependence on the critical
strength of randomness hc, we employ the scaling function [8]
g[L1/ν(h − hc)], which allows collapsing all data to a single
curve. Thus, for a given exponent ν we identify a critical disor-
der strength hc. Figure 5(b) indicates a critical disorder strength
of hc = 4.7 in the case of a ferromagnetic nearest-neighbor
interaction. The next-nearest-neighbor antiferromagnetic spin
interaction causes frustration and opens an extra channel
for the energy redistribution in the system enhancing the
critical disorder required for the MBL phase to hc = 6.2.
For ferromagnetic J1 
= 0 and DM interaction D 
= 0, and
only J2 = 0, the required disorder strength for MBL phase
is noticeably decreased hc = 4.4. It was proposed [47] that
the transition to the MBL phase in the XXZ model occurs
for h > J1 with numerical results [48] indicating h > 3.5J1.
Implementing the scaling procedure, we infer hc = 4.6J1.
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FIG. 3. The same as for Fig. 2 but for D = 0.02.
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FIG. 4. Level statistics for J1 = −1, as a function of the strength
of disorder h of the magnetic field Bz ∈ 〈−h,h〉. The DM interaction
term is stronger D = 0.05. The symmetry of the system is mixed.

As follows from Eq. (4) for J2 = 0, the XXZ model is
retrieved with an effective XX constant J ′

1 = (
√

J 2
1 + D2)/2.

For D < J1 and J ′
1 < J1, the XXZ system is gapped in line

with the observation that MBL is reached at weaker disorder.
For J2 
= 0 the equivalence with the XXZ model no longer
holds and the DMI interaction extends the ergodic phase to
hc = 7.3.

As Fig. 5 shows, the intrinsically complex nature of
the Hamiltonian in the presence of a relatively strong DM
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FIG. 5. Level statistics for ferromagnetic nearest neighbor in-
teraction J1 = −1. For (a) D = 0. Increasing the randomness
range 2h of the magnetic field Bz ∈ 〈−h,h〉 the system spectrum
undergoes a transition from GOE to Poisson distribution, indicating a
transition from ergodic to MBL phase. Curves correspond to different
system sizes and are obtained by an ensemble average for random
disorder. (b) Scaling collapse in the vicinity of the MBL transition
is achieved by the scaling function f (h) = L1/ν(h − hc), ν = 1,
hc = 4.7. (c) With DM interaction (D = 0.2). Periodic boundary
conditions are implemented and the system is of GUE type. Increasing
randomness the system undergoes a transition from GUE to the
Poisson distribution. (d) The rescaled phase transition curves from
the ergodic to the MBL phase for D = 0.2, hc = 4.4, ν = 1, f (h) =
L1/ν(h − hc).
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FIG. 6. Histograms of counts for a fixed strength of disorder
h = 5 without DM interaction as a function of the consecutive level
spacing r . Convergence is indicated for L = 14.

interaction causes a transition from a GOE to a GUE. As
clarified by the mapping to Eq. (4), the complex part of the
Hamiltonian is only due to the twisted boundary conditions.
Hence, a gradual crossover from the GUE to the GOE with
increasing L is expected and confirmed by Fig. 5(c). For this
reason, a finite-size scaling is applicable for a large enough
disorder.

V. QUANTUM FLUCTUATIONS AND HISTOGRAMS
OF COUNTS

To formulate a possibly general criterion for MBL that is
applicable in such cases, we analyzed the full statistics for
each realization α of the random magnetic fields r (α). The
histograms corresponding to a counting classification of r (α)

for a given disorder strength h is presented on Fig. 7. As
can be inferred, the histograms are narrow far away from
the MBL transition, while the histograms become particularly
broad close to the transition point mimicking the behavior
of fluctuations near conventional phase transitions. The his-
tograms become more and more pronounced for increasing
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FIG. 7. Histograms of counts for the different strength of disorder
h with J1 = −1 without DM interaction as a function of the
consecutive level spacing r . Broadening of the histogram corresponds
to the critical strength of disorder and to the transition point. The larger
L is, the more distinguished the peaks are.
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FIG. 8. The fluctuation dependency on system size without D and
J1 = −1. The two datasets marked by red are the nearest to critical
disorder.

L. Figure 6 demonstrates the convergence of the histograms
of counts for the chains of different lengths. As we see
already for L = 14 counts histograms amalgamate underlying
that an analysis of the histograms can serve as a further
indicator in addition to finite-size scaling. The convergence
of histograms even for relatively small systems endorses
our method as less computationally demanding which is a
major advantageous for exact diagonalization approaches that
are considered as well suited for MBL studies. As for the
histograms of consecutive level spacing, Fig. 7 illustrates the
broadening of the histograms when approaching the transition
point between the ergodic and the MBL phases. As evident, the
effect of broadening is even more prominent for systems with
a larger size Fig. 7. We note that the observed phenomena is
not related to a particular type of level statistics but it is rather
akin to the transition regime. Away from the transition point
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FIG. 9. Full width at half maximum σ for the histograms as a
function of disorder h. The graphs on the right side are with finite
DM interaction, D = 0.2.
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FIG. 10. J1 = −1, D = 0.2, for fixed h = 5. Additional site-
dependent disorder of 10% in D was taken while different colors
and marks refer to various realizations.

on the ergodic side (GOE statistics) and on the MBL phase
side (Poisson statistics) the width of histograms are narrower.
The broadening is linked to the enhanced quantum fluctuations
Fig. 8. This behavior is of a general character and is maintained
even after adding next nearest neighbor interaction and DM
interaction terms.

Physically, the broadening of histograms is attributable to
the enhanced fluctuations near phase transitions (cf. Figs. 8
and 9). Hence, such broadening serves as a further indicator
for approaching the MBL phase.

Disorder in the exchange coupling or in D may also occur.
The latter [cf. Eq. (3)] can be viewed as random change in E
or a random elastic energy change (E · P = gMEE

∑L
i=1〈ex ×

(Ŝi × Ŝi+1)〉), and thus, it is important for spin-phonon-
coupled systems at finite temperatures. Calculations evidence
the robustness of the MBL phase against randomizing D

within a physically reasonable range, an example is depicted
in Fig. 10.

The results obtained for the different values of parameters
are listed in the Table I. Note, for several particular values of
the DM term that correspond to the mixed GOE/GUE statistics,
the MBL phase can be identified through the present method,
while a finite-size scaling procedure fails.

TABLE I. The estimated critical disorders h with J1 = −1, (a) hc

from a scaling procedure for 〈r〉, (b) hσ from an analysis of the full-
width at half-height of the histograms, (c) hf from the analysis of the

the fluctuations
√

〈r2〉 − 〈r〉2. The left dataset with L = {10,12,14}
and 4096 realizations for each mean of the consecutive level spacings
〈r〉. The right dataset was prepared with L = {10,11,12,13,14} and
10 240 realizations.

J2 D hc hσ hf J2 D hc hσ hf

4.6 4.5 4.8 4.7 4.5 4.8
1
4 6.2 5.3 5.7 1

100 5.0 4.5 4.8

− 1
4 5.4 4.6 5.2 1

50 5.3 4.4 4.6
1
5 4.4 4.4 4.7 1

20 5.6 4.0 4.5
1
4

1
5 7.3 5.0 5.5 1

10 5.4 4.2 4.6

− 1
4

1
5 6.4 4.9 5.1 1

5 4.3 4.4 4.7
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VI. CONCLUSIONS

Summarizing, our numerics and analysis evidence MBL
phase in a chiral multiferroic chain. A new, general indicator
for approaching the MBL phase is identified and tested against
conventional procedures. In view of the experimental feasibil-
ity of materials and settings, the predictions might have some
signatures experimentally, for instance, through investigating
the transport and excitation spectrum of electromagnons.
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APPENDIX: SCALING PROCEDURE

In Ref. [8] a systematic analysis of the fitting windows
and system sizes in relation to the critical disorder hc and ν

was performed. For the histograms windowing of the energy

spectrum from Sz = 0 block causes equalizing disproportions
of the histograms from different phases. Therefore, the full
spectrum of the biggest block is considered. Although, for a
bigger system size the middle part of the spectrum can be
successfully used. The level statistics of 〈r〉 as a function
of disorder h are scaled with fL(h) = L1/ν(h − hc), where
ν = 1 was assumed. For best fitting parameter hc, the scaling
procedure can be supported by a minimizing function w(h),

w =
∑
L,L′

h2∫

h1

|〈r〉(fL(h)) − 〈r〉(fL′(h))|dh, (A1)

where h1 and h2 are defined by the common integration do-

main h1 = max (L
1
ν

i (a − hc)), h2 = min (L
1
ν

i (b − hc)), where
Li denote the system sizes to be analyzed and a = 1, b = 10
are boundaries limit for unscaled data set.

The critical disorder also can be inferred by minimizing
the distances of the peaks positions for 〈r〉 first derivatives,
which is more accurate than minimizing global overlaps,
especially with nonzero DM interaction. With Eq. (A1), a
proper adjusting of integration limits is required.
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