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Abstract
My dissertation consists of three chapters, each of which focuses on a different

area of research in asset pricing. The first chapter’s focal point is the measurement of
the premium for jump risks in index option markets. The second chapter is devoted
to non-parametric measurement of pricing kernel dispersion. The third chapter con-
tributes to the literature on latent state variable recovery in option pricing models.

In the first chapter, Big Risk, I show how to replicate a large family of high-
frequency measures of realised return variation using dynamically rebalanced op-
tion portfolios. With this technology investors can generate optimal hedging pay-
offs for realised variance and several measures of realised jump variation in incom-
plete option markets. These trading strategies induce excess payoffs that are direct
compensation for second- and higher order risk exposure in the market for (index)
options. Sample averages of these excess payoffs are natural estimates of risk pre-
mia associated with second- and higher order risk exposures. In an application to
the market for short-maturity European options on the S&P500 index, I obtain new
important evidence about the pricing of variance and jump risk. I find that the vari-
ance risk premium is positive during daytime, when the hedging frequency is high
enough, and negative during night-time. Similarly, for an investor taking long vari-
ance positions, daytime profits are grater in absolute value than night-time losses.
Compensation for big risk is mostly available overnight. The premium for jump
skewness risk is positive, while the premium for jump quarticity is negative (con-
trary to variance, also during the trading day). The risk premium for big risk is
concentrated in states with large recent big risk realisations.

In the second chapter, Arbitrage free dispersion, co-authored with András Sali and
Fabio Trojani, we develop a theory of arbitrage-free dispersion (AFD) which allows
for direct insights into the dependence structure of the pricing kernel and storck
returns, and which characterizes the testable restrictions of asset pricing models.
Arbitrage-free dispersion arises as a consequence of Jensen’s inequality and the con-
vexity of the cumulant generating function of the pricing kernel and returns. It im-
plies a wide family of model-free dispersion constraints, which extend the existing
literature on dispersion and co-dispersion bounds. The new techniques are appli-
cable within a unifying approach in multivariate and multiperiod settings. In an
empirical application, we find that the dispersion of stationary and martingale pric-
ing kernel components in a benchmark long-run risk model yields a counterfactual
dependence of short- vs. long-maturity bond returns and is insufficient for pricing
optimal portfolios of market equity and short-term bonds.

In the third chapter, State recovery from option data through variation swap rates in
the presence of unspanned skewness, I show that a certain class of variance and skew
swaps can be thought of as sufficient statistics of the implied volatility surface in
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the context of uncovering the conditional dynamics of second and third moments of
index returns. I interpret the slope of the Cumulant Generating Function of index
returns in the context of tradable swap contracts, which nest the standard variance
swap, and share its fundamental linear pricing property in the class of Affine Jump
Diffusion models. Equipped with variance- and skew-pricing contracts, I investi-
gate the performance of a range of state variable filtering setups in the context of the
stylized facts uncovered by the recent empirical option pricing literature, which un-
derlines the importance of decoupling the drivers of stochastic volatility from those
of stochastic (jump) skewness. The linear pricing structure of the contracts allows
for an exact evaluation of the impact of state variables on the observed prices. This
simple pricing structure allows me to design improved low-dimensional state-space
filtering setups for estimating AJD models. In a simulated setting, I show that in
the presence of unspanned skewness, a simple filtering setup which includes only
prices of skew and variance swaps offers significant improvements over a high- di-
mensional filter which treats all observed option prices as observable inputs.
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1

1 Big risk

1.1 Introduction

The financial distinction between run-of-the-mill price variation and “disastrous
events” is usually made by introducing risks that scale with time (small risks) and
risks that are significant even at minuscule decision horizons (big risks). Aı̈t-Sahalia,
2004 succinctly states that “. . . the ability to disentangle jumps from volatility is the
essence of risk management, which should focus on controlling large risks leaving
aside the day-to-day Brownian fluctuations”. In this context, jumps are naturally
identified as big risk, and diffusive variation as small risk. While it is widely ac-
cepted in the literature that investors exhibit different attitudes to small and big risk,
the possibility of disentangling them for risk sharing purposes has not yet been fully
explored.

In this paper I introduce a general trading technology which allows for optimal
hedging of a family of realised risk measures in incomplete option markets. The
technology introduces two core innovations. First, it improves upon commonly em-
ployed techniques of hedging non-linear payoffs by providing a convenient optimal
option portfolio for a given set of observed price quotes. Second, through a dynamic
generalization, it renders many important measures of realised risk directly avail-
able to investors, as hedgeable payoffs.1 Equipped with this technology, I analyse
the traded properties of higher order risk in the market for one-week maturity Euro-
pean index options at the CBOE.2 The CBOE is one of the world’s most busy deriva-
tive trading venues, and the available data has enormous information content. I find
that the compensation for variance risk is positive at such short horizons, and that in
disaggregated results it is positive during market opening hours and negative dur-
ing overnight periods, the daytime effect being larger in magnitude. Furthermore,
I document the existence of compensation for directional jump risk, which is simi-
larly concentrated in overnight periods, and increases substantially after the S&P500
index is subject to a large shock.

The market for very short maturity index options remains severely under-studied
at a time when its importance is soaring. Despite the availability of data, most re-
search to-date treated it with distrust and often discarded it. To a large extent that
is because, option markets have been analysed through the lens of models, and the

1I give the exact sense in which the resulting trading strategies provide hedges in Section 1.2.
2At the time of writing, options with the weekly Friday settlement calendar constituted between

15% and 40% of trading volume in all SPX options. In 2016, the CBOE followed up on their success
and introduced weekly options settled on Mondays and Wednesdays.
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short end of the term structure turned out to be, to put it mildly, problematic to
fit. Jump risk, however, has been considered necessary for explaining many key ob-
servations about the option market, and in the extant mathematical framework it is
even more so at short maturities. The prices of weekly options, analysed with the use
of my technology offer the sharpest insights into investors’ perception of jump risk,
unobscured by modelling assumptions. I exploit the availability of high-frequency
records of trades and quotes and show how the intuition about realised variation
measures can be translated to analysing option data.

Realised variation measures were quickly embraced by the asset pricing liter-
ature, which treated them as risk factors in attempts to resolve a number of asset
pricing puzzles. Tradability of the newly introduced risk factors remained an open
question. In cases like variance swaps, where a tradable representation is available,
issues arise about the discrepancy between the trade’s complete-market form, and
its feasible incomplete-market implementation. This study is built on the premise
of ensuring that the hedging strategies are the exact representations of the realised
variation measures used for measuring risk premia for small and big risk in the
sense that the payoffs of the strategies at settlement should be as close as possible to
the realised variation calculated directly from high-frequency price records. Those
settlement payoffs, taken together with the accumulated cost of establishing option
positions, form excess payoffs.

I will illustrate the issues with an example based on the ubiquitous synthetic vari-
ance swap. In such a hedge, a single option position is established at its inception,
and an associated trading strategy is implemented in the forward market for the
underlying. At maturity, the accumulated forward and option positions are settled
and the payoffs should in principle be equal to realised variance calculated directly
from the forward prices. Once the cost of the initial option portfolio is subtracted,
the analyst has an excess payoff on the table. I form the swaps with the approach
prevailing in the literature and compare the resulting swap rates and payoffs with
those yielded by my technology.3 The left panel of Figure 1.1 shows the comparison
of hedging errors, measured as the absolute value of the difference between realised
variance and the traded payoff. In annualised terms, the often used approach yields
absolute hedging errors ranging up to 1 percentage point in variance terms, while
my technology reduces them by an order of magnitude. The right panel of Figure 1.1
plots the difference between the commonly calculated variance swap rate, and my
approach. The commonly calculated swap rates are lower, on average. As a result,
an unconditional estimate of the variance risk premium is 10% off when the stan-
dard technology is used. This is not innocuous: the unconditional estimate of the
premium is biased. The main conclusion is that in the common approach the trad-
ing strategy does not hedge realised variance, but also a noise component which should
be outside of the researcher’s focus. The noise is uncorrelated with realised variance

3An exact description of the procedures is available in Section 1.4.
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and the market return, but its magnitude increases with realised variance. Ensur-
ing that the settlement payoff is as close as possible to the hedged realised variation
measure gives the researcher confidence that she is indeed measuring a meaningful
risk premium. In this paper I show that this question becomes crucial when mea-
suring the premia for higher order risks, where issues related to replication accuracy
are a first-order effect.
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FIGURE 1.1: Trading technology: consequences of inadequate option hedging.

Jump variation proves especially significant when explaining the features of both
stock and derivative markets, and many recent studies suggest that a premium for
jump variation is the dominant component of both the equity and variance risk pre-
mia. In the literature, the standard approach to isolating a jump premium is via
holding a delta-hedged, short-maturity, deep out-of-the-money option. The intrin-
sic difficulty of estimating such a risk premium lies in the fact that such strategies
rarely pay off, yielding extremely skewed return distributions. The single option
has to be sufficiently far out of the money as to avoid payoffs in cases of increased
market volatility. Furthermore, this strategy does not hedge the investor against
jump movements, that are subsequently reversed, so that ultimately the option ex-
pires worthless. To the contrary, the technology introduced in this paper allows the
investor to hedge against adverse events on a continuous basis, through sequential
rebalancing of the initial swap portfolio. In an event such as the Flash Crash on May
6th 2010, the holder of an out-of-the-money, delta-hedged put would incur losses
stemming from the delta-hedging error, and her hedge of the final asset value would
expire worthless. An investor following the hedging strategy described in this paper
would accrue a payoff when the market was collapsing, and possibly when it was
recovering, depending on her hedging frequency.

The hedging technology has one additional advantage over a standard approach,
exemplified before with variance swaps. Allowing for sequential option trades makes
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it possible to hedge realised variation measures over arbitrary periods before option
maturity while maintaining the benefit of exact hedging. I exploit this feature of
the technology in order to investigate the difference in risk pricing between daytime
and overnight trading. Investors holding positions in realised variation measures
overnight are exposed to variance and higher order risk differently. While in day-
time trading they can dynamically hedge or close the position altogether, overnight
they face far more important constraints to trading, and much less efficient price dis-
covery, if the market is open at all. The patterns that I find are striking. Long vari-
ance positions4 are profitable, on average, during daytime trading, but in night-time
trades they entail losses. Evidence on aggregate variance risk premia for maturi-
ties longer than two weeks showed that the premia were uniformly negative, which
gave the variance swap the interpretation of an insurance contract. Not only is the
insurance feature present exclusively in night-time trading, but also the daytime
profits from long positions are greater than potential overnight losses: the aggregate
variance risk premium over weekly horizons is positive. Where premia for jumps –
big risk – are considered, similar patterns arise. Excess payoffs from long position
in jump skewness and short in jump quarticity are significantly higher in overnight
trades than in daytime trades. Additionally, the excess payoffs from such trades
greatly increase after large stock price movements, even if subsequent big risks do
not materialise. The effect of large innovations to the price of the index is thus clearly
seen in a persistently elevated level of premia for big risk hedges.

In this paper I only consider hedging realised variation measures which are cal-
culated indiscriminately for positive and negative returns. The technology is flexible
enough, however, to extend the study towards exactly hedging variation measures
such as realised semi-variances or third power of only negative jumps, for example.
Such quantities merit extra attention, as evidenced by many studies of “good” and
“bad” volatility.

1.1.1 Literature review

This paper is a direct off-shoot fo the literature on model-free hedging strategies.
Since Neuberger, 1994 posited the creation of a log-return derivative, the literature
gathered steam, culminating in several important studies. Jiang and Tian, 2005a
implemented Britten-Jones and Neuberger, 2000’s option-based estimator of model-
free implied volatility, i.e. essentially the VIX2 index. The most comprehensive,
model-independent study of variance risk premia came from Carr and Wu, 2009a,
who established the negative sign of the index variance risk premium, however used
the standard approach to forming option portfolios, and calculated the floating leg
of the swaps directly from the price process, instead of from the instrument pay-
offs; furthermore they noted that their floating leg corresponds only approximately

4A long position in a realised variation measure is a hedging strategy which at the settlement of the
option and forward contracts pays the investor the accrued realised measure, if the latter is positive,
and is paid by the investor otherwise.
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to the theoretical option payoff in the presence of jump risk. Martin, 2012 proposed
a change in definition of the option portfolio, and of the floating leg, this time cal-
culated from payoffs, in order to obtain a variance swap whose swap leg exactly
priced the floating leg even in the presence of jumps. Further on, Bondarenko, 2014
combined the previous approaches to develop a fully tradable setting, which also
paves the way towards fully hedgeable skewness measures. All these approaches
are generalised by the concept of realised divergence, and associated higher-order
measures, introduced by Schneider and Trojani, 2015a. This paper takes the latter
as a foundation to build upon, taking the realised divergence measures, recalled in
Section 1.3.1, as primitives. A separate branch of the literature focused on provid-
ing pricing bounds for the prices of certain realised variation hedges, for example
Hobson and Klimmek, 2012.

The semi-martingale model of asset prices has been the fundamental tool for
defining and identifying small and big risks, and – in various guises – it was cen-
tral for establishing the importance of big risks. The observation that stock returns
are leptokurtic (e.g. Fama, 1965, who reports earlier findings by Moore, 1962) en-
couraged the first forays into jump modelling (see e.g. Press, 1967), based on es-
timation of simple semi-martingale models on low frequency data. With time, the
frequency of returns and complexity of models and methods increased (Aı̈t-Sahalia,
2004; Bates, 2012), and more model-agnostic methods for intra-day data, based on
estimating quadratic variation, were developed (Barndorff-Nielsen and Shephard,
2006; Huang and Tauchen, 2005; Andersen, Bollerslev, and Huang, 2011).5 Option
price data has been used rarely in non-parametric studies (Li, 2011; Bollerslev and
Todorov, 2011b; Bollerslev and Todorov, 2011a) and often in model-based investi-
gations (Eraker, Johannes, and Polson, 2003; Andersen, Fusari, and Todorov, 2015b;
Andersen, Bondarenko, and Gonzalez-Perez, 2015). All of these studies concluded
that big risk is a significant contributor to the variation of asset prices (between 5
and 20% in most studies), and that big risk goes a long way towards explaining the
dynamics of option prices. Lately, evidence arose from the analysis of intra-day data
at tick frequencies which indicates that those estimates were inflated by an order of
magnitude because of model mis-specification or erroneous classification of market
movements as jumps, as in Christensen, Oomen, and Podolskij, 2014 and Bajgrow-
icz, Scaillet, and Treccani, 2015. Nevertheless, Christensen, Oomen, and Podolskij
write that such erroneous classification is the consequence of bursts in volatility, when
volatility suddenly rises and falls so fast, that on a given time scale continuous, yet
abrupt price movements are indistinguishable from jumps. Thus, even though the
latest evidence jump variation markedly diminishes its significance, it also shows
that the perception of what constitutes a jump movement depends on the investors’
profile. For a dynamic investor with a trading horizon of minutes or hours bursts

5The high-frequency methods do not posit parametric models for the stochastic volatility process
or the jump distribution, but are built upon the foundation of the semi-martingale model.
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in the drift or volatility of the underlying diffusion still constitute big risks. Further-
more, Liu, Longstaff, and Pan and Christensen, Oomen, and Podolskij point out the
relation of big risk realizations to drops in liquidity, further emphasizing the inabil-
ity to hedge them at the time adverse events hit.

A broad, yet more recent body of work investigates the pricing of big risk, and
its importance in portfolio formation. Liu, Longstaff, and Pan, 2003 underline the
infinitesimal impact of big risk on investor wealth, and the potential importance
(and difficulty) of hedging jump risk with options. In studies of the cross section
of stock returns, Bollerslev, Li, and Todorov, 2016 concluded that the exposure to
small risks is essentially not compensated, while the exposure to big risk – of jump
returns and overnight returns – is. Evidence from the aforementioned option pricing
literature also indicates that jump risk carries significant premia.

While those studies offer a way of measuring big risk and shed some light on
how investors price it, they offer little in way of hedging it separately from small
risk. The access to sharing big risk is restricted in financial markets. Investors can
purchase individual out-of-the-money, short-maturity options, however those do
not protect against the immediate consequences of jumps. They can purchase vari-
ance swaps, which offer protection from immediate events, but do not discriminate
between small and big risk. Through the dynamic option trading strategies one can
achieve both objectives, at the price of exposing oneself to cumulative weighted risk
of the price of volatility.

The remainder of this paper is laid out as follows. Section 1.2 makes precise the
idea of tradable realised variation measures. In Section 1.3 I describe a family of
tradable realised variation measures. In Section 1.4 I discuss the choice of strategies,
the methods for rendering the exercise feasible, and the properties of the data set,
as well as replication accuracy. I describe the empirical results in Section 1.6, and
summarize the conclusions in Section 3.5.

1.2 Realized variation in asset pricing

In this section I stress the importance of obtaining tradable counterparts of the re-
alized variation measures in order to ensure that the resulting estimates of higher
order risk premia are meaningful.

With log returns rtj : lnFj/Fj−1 realized variance is defined as,

RVt,t+1 :=
∑

t≤tj≤t+1

ln2 rtj →
∫ t+1

t
σ2
sds+

∑

t≤s≤t+1

J2
s =: QVt,t+1. (1.2.1)

RV was initially a concept confined to the domain of financial econometrics. Over
the course of twenty years of development, it gained importance in empirical asset
pricing. Many studies have observed that the variance risk premium,

V RPt := EP
t [QVt,t+1]− EQ

t [QVt,t+1]
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has important predictability properties for both future volatility and index stock re-
turns, and that it is important for the pricing of the cross-section of stocks. The rise of
V RP to its current prominence was only possible because researchers found a way
of approximately hedging the QVt,t+1 payoff with extant financial instruments. The
price of realized variance, EQ

t [QVt,t+1], can be approximately calculated as the price
of an option portfolio with readily calculable weights. The final payoff combines the
option settlement with this of a series of positions in the underlying market. The
V RP is typically available to investors through variance swaps, defined as paying re-
alized daily squared log returns in exchange for a fixed amount, paid by the buyer of
the swap upon inception. This approach is not exact, as explained in Carr and Wu,
2009b, and as I show below in Example 1, in the sense that there exists a discrepancy
between what the seller of the swap is contractually obliged to pay the buyer, and
what she can hedge in the market.

Nevertheless, since the success of realized variance as an asset pricing concept,
many researchers shifted their interest towards studying other realized variation
measures. At the same time, after Carr and Madan, 2001 showed how to replicate
non-linear payoffs with European options, another strand of literature sprang up,
investigating the relation between the prices of various non-linear replicating port-
folios and the cross-section of stock returns (ANG et al., 2006; Chang, Christoffersen,
and Jacobs, 2009; Goyal and Saretto, 2009; Amaya et al., 2011, , among others). These
two branches of the literature should be meeting in the middle: finding prices that
correspond to selected realized variation measures allows to calculate excess payoffs
and estimate risk premia. This is because in empirical asset pricing, tradable quan-
tities are of special importance, from the point of view of the financial theory (they
allow for a direct representation of risk factors in the market). The concept of alpha
as extraordinary returns beyond the fundamental compensation for risk is firmly
based upon the idea that all risk factors under consideration are actually tradable.
Unfortunately, it is not straightforward to engineer a trading strategy that replicates
an arbitrary realized variation measure.

Even in the case of variance swaps, the literature relied heavily on approxima-
tions. The simplest – and most widely known – example of a variation-replicating
strategy is the V IX2-based variance swap. Typically, researchers interested in the
variance risk premium calculate the payoffs of such swaps as

RVt,T − V IX2
t,T . (1.2.2)

In pure diffusion models the V IX2
t,T is the exact price of RVt,T . However, in the

presence of jumps there is a wedge between what the option portfolio prices, and
the limit of the floating leg of the swap. The wedge can be eliminated by slightly
tweaking the definition of the floating leg, or equivalently, of the hedged realised
variation measure. In order to put the V IX2-based variance swap firmer on asset
pricing footing, I present Schneider and Trojani’s example of how the floating leg, or
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equivalently, realized measure, should be defined so that the variance swap is exactly
priced by the V IX2 option portfolio.

Example 1 (The exact V IX2 variance swap). Schneider and Trojani, 2015a show that
an option portfolio with long positions φ(K) in out of the money options (with prices
OT (K) at strike K):

φ(K) =
2

K2
, price

∫ ∞

0
φ(K)OT (K)dK =: V IX2 and payoff −2

(
lnFT − lnF0 −

1

F0
(FT − F0)

)
,

(1.2.3)
coupled with the dynamic trading strategy:

n∑

j=1

(
2

Fj−1
− 2

F0

)

︸ ︷︷ ︸
trading weights

(Fj − Fj−1)︸ ︷︷ ︸
forward position

, (1.2.4)

pays at maturity the difference between the Itakura and Saito, 1968 divergence of
the stock price the price of the initial option portfolio:

n∑

j=1

2 [− lnFj/Fj−1 + (Fj/Fj−1 − 1)]

︸ ︷︷ ︸
realized divergence

−
∫ ∞

0
φ(K)OT (K)dK. (1.2.5)

The continuous-time limit of the divergence inside the summation in (1.2.5) is

∫ T

0
σ2
sds+

∑

0≤s≤T
2 [− lnFs/Fs− + (Fs/Fs− − 1)] ,

and the jump terms are of leading order ln2 Fs/Fs−. The divergence in the summa-
tion (1.2.5) is the sum of the option payoff in (1.2.3) and accumulated forward payoffs
(1.2.4). The strategy defined by (1.2.3)-(1.2.4) is model independent: the replication ar-
gument is valid for any no-arbitrage market set-up and the continuous-time limit is
valid in a semi-martingale setting. Equation (1.2.3) is the definition of the square of
the VIX index (CBOE, 2000) and as a consequence VIX-based variance swaps offer
exact replication of realised divergence.

Example 1 is firmly grounded in a complete option market setting, i.e. it assumes
that a continuum of options is purchased or sold at the inception of the hedging
strategy. In reality, an investor at the CBOE has to form a replicating portfolio for the
non-linear payoff with a finite (albeit large) number of options. In the introduction
I already hinted at the fact that the choice of the incomplete market replicating option
portfolio is not trivial, and may have significant consequences for the measured risk
premium. I defer further consideration of this subject to Section 1.4.
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1.2.1 Dynamic tradability

The trading strategy in Example 1 consists of a single option trade, at inception, ac-
companied by sequential trading in the (forward on the) underlying asset. Although
this framework offers many interesting extensions, in this paper I advocate the use
of strategies involving both dynamic option and forward trading. I start from two
fundamental results. First, Carr and Madan’s replication formula, which is essential
to understand how the derivatives are traded when the investor wants to replicate
a realized variation measure. Second, from the observation by Schneider and Tro-
jani, 2015a that Carr and Madan’s approach is strongly related to the information-
theoretic concept of divergence.

At time tj in a complete option market6 with maturity T , for an arbitrary twice-
differentiable function g : R+ → R, it is possible to form an option portfolio paying
at maturity the Bregman, 1967 divergence of g:

G(FT , Ftj ) : =

∫ ∞

0

[
g′′(K)(K − FT )1{FT≤Ftj } + g′′(K)(FT −K)1{FT≥Ftj }

]
dK

(1.2.6)

= g(FT )− g(Ftj )− g′(Ftj )(FT − Ftj ).

The option portfolio is comprised of positions of size g′′(K)dK in put (call) options
for K ≤ Ftj (K > Ftj ). The price of the non-linear payoff is calculated simply as
a weighted average of observed option prices:

Gtj :=

∫ ∞

0
g′′(K)Otj (K)dK. (1.2.7)

A long position (i.e. a purchase of options with positive weights, and sale of options
with negative weights) in the option portfolio pays exactly (1.2.6) at maturity.

Equipped with this concept of an option trade, I define the dynamic strategy. Let
δ, φ be sequences of real numbers, potentially depending on Ftj or other information
available at time tj .7 With these tools one can form dynamic option trading strategies

n−1∑

j=0

φtj
[
G(FT , Ftj )− Gtj

]
+ δtj (FT − Fi). (1.2.8)

Gtj was defined as the (tj , T ) forward price of G(FT , Ftj ), and under no-arbitrage8

there exists a forward-neutral measure QT such that Gtj = EQT
[
G(FT , Ftj )|Ftj

]
.

6If a continuum of options on the forward is available with strikes ranging from 0 to∞.
7Further in the text I consider continuous-time limits of the trading strategies. In order for them to

exist, technical conditions have to be imposed on δ and φ, such as adaptedness and boundedness.
8Acciaio et al., 2013 show conditions for the existence of QT and absence of arbitrage.
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I decompose the payoff of (1.2.8) into two components. The settlement payoff

n−1∑

j=0

φtjG(FT , Ftj ) + δtj (FT − Ftj ), (1.2.9)

consists of the trading gains in the forward market and the settlement payoffs of the
option positions. The aggregate cost

n−1∑

j=0

φtjGtj (1.2.10)

represents the total financial outlay, uncertain at time t0, that the investor has to
make in order to obtain the settlement payoff. The distinction is important: I design
strategies whose settlement payoff corresponds exactly to realized variation mea-
sures in the following sense:

n−1∑

j=0

φtjG(FT , Ftj ) + δtj (FT − Ftj ) =
n−1∑

j=0

G(Ftj+1 , Ftj ) (1.2.11)

The V IX2-based variance swap is a special case of strategy (1.2.8) with φtj = 0

for j > 0. The price for such a generalization of option trading is the blurring of
the distinction between the fixed and floating legs of the variance swap contract.
The strategy is, however, the only currently known way of obtaining equality in
(1.2.11) with the use of two categories of financial instruments: European options
and forwards. The concept of strategy costs returns into focus: it’s the financial
outlay necessary for obtaining the requisite settlement payoff.

By construction, the replication cost is not known at time t0, but instead is stochas-
tic. There are two sources of risk determining the aggregate option cost: the changes
in weights φtj and the changes in option prices. I give an interpretation of both in
Section 1.3.2. Thus overall, dynamic option trading strategies can be understood as
exchanges of the risk of the settlement payoff for the risk of the aggregate replication
cost. In this setting I take the natural definition of the risk premium associated with
replicating

∑n−1
j=0 G(Ftj+1 , Ftj ) at settlement to be:

E



n−1∑

j=0

G(Ftj+1 , Ftj )−
n−1∑

j=0

φtjGtj


 (1.2.12)

= E



n−1∑

j=0

φtjG(FT , Ftj ) + δtj (FT − Ftj )−
n−1∑

j=0

φtjE
QT
[
G(FT , Ftj )|Ftj

]

 ,

i.e. the final settlement payoff of the aggregate derivative position less the cost of
“producing” the payoff. Such excess payoffs can indeed be useful for evaluating
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asset pricing models. Write:

EQT



n−1∑

j=0

φtjE
QT
[
G(FT , Ftj )|Ftj

]

 = E



n−1∑

j=0

φtjE

[
j−1∏

k=0

Mtk+1

Mtk

G(FT , Ftj )|Ftj

]
 ,

(1.2.13)
and note that in order to evaluate this expression non-parametrically it would suffice
that at time t0 options for each maturity tj were quoted. Even in absence of such
an abundance of data, (1.2.12) or (1.2.13) can be of use for asset pricers willing to
characterise the higher moments of returns on assets such as hedge fund portfolios.
Both the settlement payoff and the aggregate cost components of such strategies
reflect all the risk factors to which the investors are exposed, contrary to resorting
to using a realised variation measure as the driving force of the stochastic discount
factor.

1.3 Tradable realized variation measures

In the previous Section I introduced the general concept of dynamic option trading,
with the objective of replicating certain realised variation measures. That frame-
work can be generalized even further, however I defer this discussion to the end of
this Section. The level of generality is already sufficient to consider trading big risk
separately from small risk. To fix ideas, before I move to defining the exactly repli-
cable realized variation measures, I start with considering those types of realized
variation measures that in a semi-martingale model separate jumps from Brownian
increments, and those that do not.

If the asset price indeed follows a semi-martingale with finite-activity jumps, it is
relatively easy to estimate hypothetical jump and Brownian variation separately. Re-
alized variance, as defined in (1.2.1), is an example of a measure that aggregates both
kind of risk. On the pure-jump side, the literature offers both indirect measures, such
as a difference between realised variance and multi-power variation (Barndorff-
Nielsen, Shephard, and Winkel, 2006), truncated measures (Mancini, 2001) or direct
measures, such as 3rd or 4th power variation of log returns (Jacod and Protter, 2012):

RVt,t+1 :=
∑

t≤tj≤t+1

ln2 rtj −→
∫ t+1

t
σ2
sds+

∑

t≤s≤t+1

J2
s (1.3.1)

RVt,t+1 −BVt,t+1 :=
∑

t≤tj≤t+1

ln2 rtj −
∑

t≤tj≤t+1

∣∣ln rtj
∣∣ ∣∣ln rtj−1

∣∣ −→
∑

t≤s≤t+1

J2
s

(1.3.2)

RPV 3 :=

n∑

j=1

ln3 rtj −→
∑

t0≤s<tn

J3
s (1.3.3)

RPV 4 :=

n∑

j=1

ln4 rtj −→
∑

t0≤s<tn

J4
s . (1.3.4)
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These realized measures are not directly replicable, i.e. there does not exist a strategy
of type (1.2.8), whose settlement payoff is equal to any of the quantities on the left-
hand side of the limits in equations (1.3.1) through (1.3.4).

This Section is devoted to describing the family of realized variation measures
which is replicable as settlement payoffs of dynamic option trading strategies intro-
duced in the previous Section, and to a closer look at the behaviour of the aggregate
option cost of the most important of such strategies.

1.3.1 Realised (jump) divergence

The starting point is the construction of realised weighted power divergence, a con-
cept which generalises realised variance. Realised power divergence and associ-
ated power divergence swaps were introduced and comprehensively described in
Schneider and Trojani, 2015a. Hereby I recall the basic definitions and properties.

Definition 1 (Realised power divergence). Let Ft denote the forward price of the under-
lying asset at time t and maturing at time T and let γt define an adapted process. Set a grid
of n + 1 times, 0 = t0 ≤ t1 ≤ . . . ≤ tn ≤ T . For function φp(x) := xp−1

p(p−1) and p ∈ R,9

define realised power divergence as:

Dn,p
γ (F ) :=

n∑

j=1

γtj−1Dp(Ftj , Ftj−1) :=

n∑

j=1

γtj−1

F ptj − F
p
tj−1

p(p− 1)
− γtj−1

F p−1
tj−1

p− 1

(
Ftj − Ftj−1

)
.

The weighting process γ plays an important role. Throughout this paper I con-
centrate on the fundamental case γt := F−pt , so that

γsDp(Ft, Fs) =
ep ln(Ft/Fs) − 1

p(p− 1)
− eln(Ft/Fs) − 1

p− 1
=

ln2(Ft/Fs)

2
+O

(
ln3(Ft/Fs)

)
.

(1.3.5)
Power divergence, for the appropriate γ scaling process, is locally quadratic in log
returns, and insensitive to the level of F . Furthermore, the leading order of the Taylor
expansion in (1.3.5) does not depend on p. Taking p-derivatives of (1.3.5) eliminates
the leading order terms and yields higher-order realised measures.

Definition 2 (Realised jump divergence). Let γJ = γtF
−p
t and γt does not depend on F

nor p. For p ∈ R define realised jump skewness

Sn,p
γJ

(F ) :=
∂Dn,p

γJ
(F )

∂p
=

n∑

j=1

γtj−1

∂

∂p

Dp(Ftj , Ftj−1)

F ptj−1

=

n∑

j=1

γtj
ln3(Ft/Fs)

6
+O

(
ln4(Ft/Fs)

)
,

9For p = 0 and p = 1 limits of all involved expressions exist.



1.3. Tradable realized variation measures 13

and realised jump quarticity:10

Qn,p
γJ

(F ) :=
∂2Dn,p

γJ
(F )

∂p2
=

n∑

j=1

γtj−1

∂2

∂p2

Dp(Ftj , Ftj−1)

F ptj−1

=
n∑

j=1

γtj
ln4(Ft/Fs)

12
+O

(
ln5(Ft/Fs)

)

Khajavi, Orłowski, and Trojani, 2016 provide the theoretical framework for in-
ference about realised (jump) divergence in a semi-martingale framework. Realised
jump divergence measures in Definition 2 have well-defined high-frequency limits
and their estimators based on discretized observations obey central limit theorems.
Finally, I fix the idea of what the former realised variation measures represent in
a semi-martingale framework.

Interpretation (1) (Continuous time limits). Let F follow a general semi-martingale
process with finite activity jumps:

dFs
Fs−

= µsds+ σsdWs +

∫

R\{0}
(ex − 1) νs(dx, dt). (1.3.6)

Let F be the filtration to which the forward price process F is adapted, potentially
greater than the one generated by F itself. Let γ be adapted to F and bounded. Let
the maturity T be fixed and let n → ∞ such that maxi∈{0...n−1} |ti+1 − ti| → 0. The
following limit holds under technical assumptions in Khajavi, Orłowski, and Trojani,
2016:

lim
n→∞

Dn,p
γ (F ) =

1

2

∫ T

0
γsF

p
s σ

2
sds+

∑

0≤s≤T
γs−F

p
s−Dp(Fs, Fs−) (1.3.7)

lim
n→∞

Dn,p

F−ps
=

1

2

∫ T

0
σ2
sds+

∑

0≤s≤T

Dp(Fs, Fs−)

F ps−
. (1.3.8)

The measures Sn,p
γJ

(F ) and Qn,p
γJ

(F ) have the following pure jump limits:

lim
n→∞

Sn,p
γF−ps

(F ) =
∑

t0≤s<T
γs−SF−ps−

(Fs, Fs−) (1.3.9)

lim
n→∞

Qn,p
γF−ps

(F ) =
∑

t0≤s<T
γs−QF−ps−

(Fs, Fs−) (1.3.10)

In Figure 1.2 I illustrate how the divergence, skewness and quarticity functions
behave for p ∈ {0, 1/2, 1}, when setting F0 = 1 and varying FT (the first argu-
ment). The bottom row of the Figure replicates the top row for a narrower range of
F values. Power divergences clearly exhibit locally quadratic behaviour, skewness
– locally cubic, while quarticity – locally quartic. The differences between payoff
function values become apparent mostly for large deviations of FT from 1, that is for
large returns. In Figure 1.3 I demonstrate how realised skewness Sn,1/2

F
−1/2
t

(F ) picks up

10Full formulae are given in equations (A.1.1) through (A.1.6) in Appendix A.1.1.A.1.1.
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FIGURE 1.2: Payoffs: power divergence, skewness divergence, and quarticity diver-
gence. Power divergence Gp plotted for p ∈ {1/2, 0, 1}. Skew and quarticity diver-

gences formed around the respective power divergence function.

jumps in a simulated data set. The leftmost panel presents a high-frequency simu-
lated price path. The top right panel presents log returns calculated from the path
and three return jumps (marked with dashed orange lines) are clearly seen in the
sample. The bottom right panel shows the cumulative skewness divergence during
the trading period: the measure markedly decreases at each jump movement.

It is possible to design trading strategies that replicate realised jump divergence
measures for arbitrary γ weighting strategies thanks to three fundamental results.
First, Schneider and Trojani, 2015a show that the difference Dp(FT , Fs)−Dp(FT , Ft)

is an affine function of FT−Ft, for t > s. Second, by linearity of differentiation, so are
the p-derivatives of the difference, which define realised jump divergence measures.
Third, Carr and Madan, 2001 show how to construct option portfolios replicating
non-linear payoffs such as Dp(FT , Fs), Sp(FT , Fs) and Qp(FT , Fs).

The exact replication of realised divergence measures associated with function g
and its Bregman divergence G is possible if, as noted before, the difference between
divergences is affine in FT − Ft. Schneider and Trojani, 2015a showed that this is
indeed the case for power divergences generated by function φp(x), Dn,p

γ (F ). For
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FIGURE 1.3: Sn
F
−p
t

(1/2): simulated data. The figure plots data from a simulated trad-

ing day at a 5-minute frequency. Three jumps (marked by vertical dashed orange lines)
occur within the day. The left panel presents the evolution of the underlying price F .
The top right panel plots the logarithmic returns. The bottom right panel plots cumu-

lative Hellinger skewness calculated over the course of the trading day.

any realised divergence G meeting that condition, one can rewrite it – or the corre-
sponding settlement payoff – as:

Gnγ (F ) =
n∑

j=1

γtj−1G
(
Ftj , Ftj−1

)
(1.3.11)

=
n∑

j=1

γtj−1

[
G
(
FT , Ftj−1

)
−G

(
FT , Ftj

)]
+

n∑

j=1

γtj−1

[
g′p(Ftj−1)− g′p(Ftj )

] (
FT − Ftj

)

= γt0G (FT , Ft0) +
n∑

j=1

[
γtj − γtj−1

]
G(FT , Ftj )− γtnG (FT , Ftn)

+
n∑

j=1

γtj−1

[
g′p(Ftj−1)− g′p(Ftj )

] (
FT − Ftj

)
.

The dynamic trading strategy (1.2.8) whose settlement payoff is equal to (1.3.11) is
sonsequently defined by φ such that φt0 = γt0 , φtj = γtj − γtj−1 and φtn = −γtn ,
and δ such that δt0 = 0 and δtj = γtj−1

[
g′p(Ftj−1)− g′p(Ftj )

]
. The strategy can

be implemented at an arbitrary frequency and its exactness for all considered re-
alised measures is purely a consequence of the fact that equation (1.3.11) is an al-
gebraic transformation of a high-frequency realised variation measure into expres-
sions which can be obtained as settlement payoffs of option and forward positions
assumed over time. A straightforward application of this basic strategy allows to
trade weigthted realised power divergence. An extension to jump divergences re-
quires some tedious algebra. An inspection of formulae (A.1.1) through (A.1.6) in
Appendix A.1.1.A.1.1 indicates that the requisite strategies are more complex in two
dimensions: first, these realised measures are combinations of four components:
FT /Fs−1 (a forward position), F−ps Dp(FT , Fs) (power divergence weighted by F−ps ),
K

(1)
s,p ln (FT /Fs)(FT /Fs)

p and K
(2)
s,p ln2 (FT /Fs)(FT /Fs)

p; second, equation (1.3.11) is
not directly applicable to the two latter components. Some manipulation is required
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to express them as portfolios of divergences with additional weighting. I defer full
expressions to Appendix A.1.1.A.1.1, equations (A.1.7) through (A.1.12).

The variation measuresDn,p
γJ

(F ), Sn,p
γJ

(F ) andQn,p
γJ

(F ) are replicable as settlement
payoffs (1.2.9) of portfolios of dynamic option trading strategies (1.2.8). The strategy
position processes (φ, δ) can be calculated by applying (1.3.11) to equations (A.1.7)
through (A.1.12). An investor who enters such a strategy faces outlays or proceeds
from dynamic option trading (1.2.10) which are uncertain at time t0. The investor
can decide to replicate the payoff until time tn < T , i.e. she can finish accruing the
settlement payoff before the option maturity. In this case, from time tn to time T
she holds an option position and a forward position such that their payoffs at settlement
will exactly offset each other, and while the payoff of any single instrument in the
portfolio is not known before T , the aggregate payoff is known.

The theory of realized divergence provides realized variation measures whose
interpretation is – to first order – identical will familiar power variation measures.
The theory exploits the small-time difference between small and big risk to develop
measures which isolate big risk. The great benefit of these measures is that – as
shown above – there exist dynamic trading strategies (1.2.8), which yield a settle-
ment payoff equivalent to the realised measure in the sense defined in equation
(1.2.11).

1.3.2 Costs of dynamic replication

In the dynamic strategy (1.2.8) the uncertain option cost component (1.2.10) merits
a closer look. The uncertainty means that an investor willing to obtain at settle-
ment one of the payoffs under consideration is exposed to risks of changing position
weights and changing option prices. In this section I investigate the most salient
features of the aggregate cost risks for weights γ = F−pt (scale-free divergence).
The most important findings are that a) the option rebalancing costs for Sn,p

γJ
(F ) and

Qn,p
γJ

(F ) are not 0 even if the realised measures are almost surely equal to 0, i.e. no
jumps are allowed in the model, b) the option rebalancing costs for Sn,p

γJ
(F ) are not 0

even if the price of a skewness swap is 0, and c) the rebalancing costs in each period
are of the order ln (Fti/Fti−1)Dp,tj , i.e. they depend on return realisations, the price
of divergence swaps, and the remaining maturity of the strategy.

The aggregate cost of implementing the dynamic trading strategy (1.2.8) is easiest
to infer from the second line of (1.3.11):

C[Gnγ ] :=
n∑

j=1

γj−1

[
EQT
tj−1

[
G(FT , Ftj−1)

]
− EQT

tj

[
G(FT , Ftj )

]]
(1.3.12)

P−→
∫ tn

t0

−γsdGs,

with Gt defined in equation (1.2.7). The option trading costs (or proceeds) are an
integral of the weighting function with respect to the changes in the price of the
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option portfolio that replicates the payoff G(FT , Ft). The option portfolio price Gt
changes, firstly, because Ft changes (G itself is not necessarily scale-free), secondly,
because of changes in relevant state variables that drive the forward price F (1.3.6)
and directly influence option prices (e.g. stochastic volatility), and thirdly, because
of the shrinking maturity of the traded contracts.

In this section I analyse the trading costs of a long strategy11 in the payoff Dn,p
γ

with weighting process γ = F−pt (see Definition 1), and I defer Sn,p
γJ

and Qn,p
γJ

to
the Appendix. The time-t swap rate for power divergence Dp(FT , Ft) can be conve-
niently expressed as:

Dp,t = EQT
t [Dp(FT , Ft)] =

F pt
p(p− 1)

EQT
t

[
ep logFT /Ft − 1

]
.

Define ϕt(p, T − t) := EQT
t

[
ep logFT /Ft − 1

]
and assume that all requisite moments

exist. Such a representation with the use of the moment-generating function of the
log-return is widely popular in Finance, mostly because of the developments in the
literature of affine jump-diffusion models (Duffie, Pan, and Singleton, 2000). The
MGF completely characterizes the conditional distribution of the return and under
the reasonable assumption that the return is independent of the level of the stock
price prevailing at time t, only depends on the values of the (potentially latent) state
variables. The total option costs/proceeds from settlement-replicatingDn,p

γ are thus:

C [Dp] = −
∫ tn

t0

F−ps
p(p− 1)

dF ps ϕs (p, T − s) .

By applying Itō’s formula to the function f(x, y) = xy, we can rewrite the integrator
as:

dF ps ϕs (p, T − s) = ϕs (p, T − s) dF ps + F ps dϕs (p, T − s) +
1

2
d [F p, ϕ (p, T − s)]cs ,

and plug it back into the cost expression.

C [Dp] =

Starting and ending swap rate︷ ︸︸ ︷
1

p(p− 1)
(ϕt0(p, T − t0)− ϕtn(p, T − tn)) (1.3.13)

−
∫ tn

t0

ϕs (p, T − s)
p(p− 1)

dF ps
F ps︸ ︷︷ ︸

Rebalancing of the divergence position

− 1

2

∫ tn

t0

F−ps
p(p− 1)

d [F p, ϕ (p, T − s)]cs
︸ ︷︷ ︸

Covariation between F and state variables

The costs of the dynamic option trading have three sources. First, establishing the
initial static swap position, the first term in the above equation. Second, two types
of costs associated with the rebalancing of the divergence position, the first of which
corrects for changes of scaling required so that the portfolio payoff at maturity tracks
the divergence of the log return, second, a term resulting from the fact that returns

11The trader receives the realised settlement payoff.



18 Chapter 1. Big risk

can be instantaneously correlated with changes in the price of divergence. The sec-
ond term in equation (1.3.13) indicates that whenever a trader replicates a strategy
that insures her against variance (i.e. she receives Dn,p

γ at settlement), a positive re-
turn decreases the replication cost, while for a trader providing the payoff (i.e. short
variance, paying Dn,p

γ at settlement) a negative return generates proceeds from the
option trading. Moreover, as noted before, the costs and proceeds from the rebal-
ancing depend on the maturity of the options used for replicating Dp(FT , Ft); when
replicating short-term payoffs, for example Dn,p

γ over the course of a week, a trader
might prefer to use options in the “weekly” CBOE series with the nearest maturity,
rather than the standard monthly-calendar instruments, especially because longer-
maturity instruments are exposed to risk long beyond the target maturity. The
third term in (1.3.13) is related to the leverage effect: the most important driver of
ϕs(p, T − s) is the time-varying volatility.

In Appendix A.1.4 I derive the distributions of cost or proceeds of high frequency
option replication of Dn,p

γ and associated jump measures Sn,p
γJ

and Qn,p
γJ

in the Black-
Scholes model. In this setting the asset price variance is constant and the limiting
divergence – non-stochastic, yet option trading costs are not zero. Similarly, even
though in the Black-Scholes settings the price paths are almost surely continuous,
the option strategy replicating zero at maturity does entail stochastic rebalancing
flows. This is most instructive: in order to analyse the risk factors driving the premia
associated with such dynamic option trading strategies, the Black-Scholes model
remains an intuitive benchmark. The most important takeaway from this analysis is
that the dynamic strategies are not purely exposed to jump risk, but they are the only
model-free method of receiving the pure jump settlement payoffs. Thus I interpret
average profits from such strategies as premia for big risk only because the settlement
profits time series does indeed contain realisations of big, non-scalable risk.

The investor willing to obtain realized variation payoffs at settlement enters into
an exchange of risks. The option cost component, described here in detail, exposes
him to an interaction of return and price-of-variance risk. In essence, and investor
gains from the incremental, single-period trade whenever the replicated power of
the return is greater than the same return times the prevailing price of variance.

1.4 Feasibility of high-frequency trading at the CBOE

In recent years most high frequency studies of stock returns concentrated on the five
minute frequency. It has been argued that at this frequency the return records are
sufficiently dense to separate jump from Brownian innovations while keeping con-
tamination from microstructure noise negligible. I investigate the results of dynamic
option trading at two frequencies: in addition to the base five-minute frequency,
I consider investors who rebalance every 1 hour during the trading day. I choose
this frequency in order to compare some trading results with other studies of option
payoffs, such as Muravyev and Ni, 2016. These two choices anchor my results in
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a wider context and allow to form a bridge between the high-frequency economet-
rics and the asset pricing literatures.

Before I move to the description of how I implement the trading technology,
I briefly describe the intra-day trading patterns in the market for short-maturity
options at the CBOE. Then I discuss the technical details of obtaining sufficiently
accurate replication, and finally I demonstrate the feasibility of accurate realized
variation trading.

1.4.1 Short-maturity option trading at the CBOE

I analyse a subset of the complete set of CBOE’s trade and quote records for S&P 500
index options, purchased from Market Data Express. The complete database holds
records from January 2001 until December 2015, a total of 41 billion observations,
99.6% of which are quotes. My object of interest is the trading in weekly SPX options,
between January 2011 and December 2015, over 261 option maturity cycles. Even
though weeklies have been introduced in September 2007, they became sufficiently
richly traded at the beginning of 2011. See Figure 1.4 for an illustration of how the
number of strikes for which quotes are available, changed over time.

I aggregate the data to an hourly frequency, and a five-minute, using the “previ-
ous tick” rule, prevalent in the high-frequency literature. For each hour of records,
for each option type (call or put), and for each strike, I pick the quotes with the
latest time stamp available.12 If multiple quotes share the same time stamp, I pick
the lowest available ask price and the highest available bid price. I set the forward
price of the underlying asset as the median of forward prices implied by put-call
parity in the 5-minute interval. Within each period, I discard in-the-money options,
as well as quotes for which pask/pbid > 5. Furthermore, I discard quotes for which
log(K/Ft)/(σ

IV
t
√
τt) is smaller than −12 and greater than 8.13 Finally, in order to al-

leviate the problem of using stale quotes, I use the procedure described in Appendix
A.1.3 to ensure that at each time stamp the resulting option price system does not
allow for static arbitrage.

1.4.2 Replication technology

At every time tj the trader takes a position in the option market according to equa-
tion (1.3.11): she replicates (a linear combination of) payoffsDp(FT , Ftj ) and Ψp,k(FT , Ftj ),
say Mp,γ(FT , Ftj ), generated by function m : R+ → R. If at each time options with
expiry date T and strikes K ∈ [0,∞) were quoted in the market, she would take the
following position in put (P (K,T )) and call (C(K,T )) options, following Carr and

12The quotes for many deep out of the money options are updated very infrequently because the
market makers post very wide bid-ask spreads. The previous-tick rule means that often option quotes
from many hours beforehand are used.

13This method of standardizing the strike range of analysed option data was used, among others, by
Andersen, Fusari, and Todorov, 2015b
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Madan: ∫ Fi

0
P (K,T )m′′(K)dK +

∫ ∞

Fi

C(K,T )m′′(K)dK. (1.4.1)

The most widely used method of forming an approximating portfolio resorts to a ba-
sic discretization of the integrals in the above formula, with options quoted for J
strikes:

max k s.t. Kk≤Ftj∑

k=1

P (Kk, T )m′′(Kk)(Kk−Kk−1)+

J∑

min k s.t. Kk>Ftj

C(Kk, T )m′′(Kk)(Kk−Kk−1) .

(1.4.2)
A similar technique with a special treatment of K0 and KJ is used in the calculation
of the VIX index (CBOE, 2000). The result is a portfolio of options with weights wk =

m′′(Kk)(Kk − Kk−1). Such an approach has been considered sufficiently accurate
in semi-static strategies. In dynamic option trading, such as settlement-replicating
the payoff Dn,p

γ , it yields approximately 5% errors (MAPE). Recall that the higher
order measures Sn,pγ and Qn,pγ accumulate quantities orders of magnitude smaller
than individual small time increments of Dn,p

γ .14 Moreover, in, for example, a week
of trading the replication has to be repeated up to 400 times: the accumulation of
individual replication inaccuracies renders the method inadequate.

I improve on (1.4.2) by implementing the following optimisation problem. At
time tj the trader chooses an importance function η : R+ → R+ and then option
portfolio weights w ∈ RJ which minimise the following objective:

min
w∈RJ

∫ ∞

0
η(FT )

(
Mp,γ(FT , Ftj )−

J∑

k=1

wkO(FT ,Kk)

)2

dFT , (1.4.3)

optionally s.t.

sign(wk) = sign(m′′(Kk)) (1.4.4)

where

O(FT ,Kk) ≡
{

max(FT −Kk, 0) if FT > Ftj
max(Kk − FT , 0) if FT ≤ Ftj

.

The most extreme available strikes are 0 < K1 < KJ <∞, hence for manyMp,γ crite-
rion (1.4.3) will be unbounded unless η decreases sufficiently fast for logFT → ±∞.
The importance function η determines where on the support of at-maturity asset
prices, payoff replication error is considered important. Natural choices for η are,
for example η(FT ) = fP0 (FT |Ft0) and η(FT ) = fQ0 (FT |Ft0), the statistical and risk-
neutral conditional distributions of FT , if one assumes that sufficiently high mo-
ments of both exist. Likewise, simple truncation, i.e. η(FT ) = 1{K0−ε≤FT≤KJ+ε},
yields sufficiently accurate results, because the terminal asset price is almost never
outside [K0,KJ ]. In practice, the choice of η is not crucial, however choices which

14Sn,pγ and Qn,pγ can be though of as limits of first (second) differences of Dp0±h around some p0,
scaled by h (h2), and any inaccuracy in replicating Dp will be significantly augmented.
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put more emphasis on accuracy around Ft0 than far away from that point are pre-
ferred, because they improve the relative replication error.

The problem in (1.4.3) is quadratic inw, irrespective of the choice of η. The details
on the formulation and division into convex sub-problems are given in Appendix
A.1.2. If no extra constraints such as (1.4.4) are required, (1.4.3) is equivalent to the
L2 projection of Mp,γ(FT , Fti) on the space of piecewise-linear functions, weighted
by η(FT ), and the weights can also be obtained as solutions of a system of linear
equations, if an adequate orthogonal basis is constructed from option payoffs. The
convex quadratic programming formulation allows for very efficient numerical im-
plementations.

This technology allows the investor who wishes to hedge a non-linear payoff in
an incomplete market to choose their hedge optimally, and to minimise the expected
discrepancy between the hedged quantity, and the received payoff.

1.5 Replication accuracy

I measure risk compensation by evaluating trading profits from big risk trading
strategies. While Section 1.3 presented the theoretical underpinnings of trading re-
alised variation measures, it remains to be shown that those strategies are indeed
implementable. Only then, if settlement payoffs are closed to realised variation mea-
sures calculated at corresponding frequencies, can one make statements about pre-
mia for big risk.
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FIGURE 1.5: Comparison of replication accuracy of SγJ (1/2) with the discretisation
method (left panel) and the quadratic programming method (right panel).

Replication accuracy hinges on the QP-formulation of the problem in Section
1.4.2. Figure 1.5 presents the results of implementing the jump skewness trading
strategy S1/2

γJ
(F ) between 2004 and 2011 along the monthly settlement calendar with
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nearest-to-maturity options.15 Both panels present scatterplots of true realised skew-
ness values, calculated from implied index forward prices, and corresponding repli-
cated settlement payoffs. They should be aligned along the 45-degree line. In the left
panel I present the simple discretization method (1.4.2). It is clearly inferior to the
QP method (1.4.3), which offers almost perfect alignment in this period of trading.

I present detailed results for trading along the settlement calendar of weekly
options, from 2010-12-31 to 2015-12-31. I consider two trading frequencies: with
rebalancing every 1 hour, and every 5 minutes. The results are collected in Tables A.1
and A.2, respectively. A graphical presentation of the results is available in Figures
1.6 and 1.7. For all trading strategies, I compare the unconditional distributions of
settlement payoffs and of the true realised measures, calculated from forward index
prices. The Kolmogorov-Smirnov test cannot reject the null that both payoffs and
realised measures come from the same distribution, but the p-values, reported in the
rightmost columns of both tables, indicate that higher-order variation measures are
indeed much harder to replicate accurately than divergence measures. This is clearly
seen in the first six columns of both tables, where I report order statistics of both
types of quantities. While in all cases the quartiles, mean and median are close, the
case of in-sample minima for positive-valued measures requires attention. At times
when D

1/2
γ (F ) and Q

1/2
γ (F ) are very low, the magnitude of replication error can

dominate the payoff, and the result is negative. A closer inspection of the scatterplots
in figures 1.6 and 1.7 indicates that the magnitude of the payoffs in such cases is
small and if no bearing on the final results, except for theQ1/2

γJV
(F ) strategy, where in

some cases the replication clearly fails. A final observation is that the magnitude of
replication error is proportional to the variation of the strategy weighting process, γ.

Overall, I find that trading profits follow realised variation measure values closely
enough to allow for an analysis of premia for big risk through the lens of dynamic
option trading strategies. In certain cases, the observations (i.e. individual options)
that cause significant replication error, can be identified and purged from the data.
In the case of higher-order strategies, inaccurately replicated observations are often
of outlying character, i.e. they are much greater in magnitude than the true realised
variation measures. As such, they are removed from the sample before a closer look
at the data.

1.6 Trading big risk

In this section I present empirical evidence about the compensation for big risk in
the market for short-maturity S&P 500 index options. I reiterate that even though at
times I made use of the semi-martingale continuous-time approach, mostly for the
purpose of interpreting certain quantities, the evidence for the significance of pricing
of big risks, presented below, does not depend on using that approach. The purely

15I do not present the general results for trading monthly options at this time.
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FIGURE 1.6: Scatterplots of realized divergence, skewness and quarticity with weight-
ing γJ , and dynamically replicated settlement payoffs, with weekly option settlement

and 1-hour hedging interval. Trading sample from 2010-12-31 to 2015-12-24.
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FIGURE 1.7: Scatterplots of realized divergence, skewness and quarticity with weight-
ing γJ and dynamically replicated settlement payoffs, with weekly option settlement

and 5-minute hedging interval. Trading sample from 2010-12-31 to 2015-12-24.
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algebraic transformation of the realized measure into a trading strategy in equation
(1.3.11) is the foundation of all the results.

I consider a risk exposure to carry significant risk compensation, if the corre-
sponding total payoff is persistently different from 0. While the theory of Finance
defines a risk premium as −cov(M,R), where M is the stochastic discount factor
and R is the total payoff, M is unobservable and is not measurable in a purely non-
parametric setting. The hurdle of non-zero profitability is a difficult one to clear from
a statistical point of view, given the high variation of trading profits and settlement
payoffs. In some cases, it is cleared even after transaction costs, i.e. when the bid-
ask spread in the option market is taken into account. If a big risk strategy delivers
non-zero profits after transaction costs, and the settlement payoff exhibits extreme
variation, it is evidence that a premium is paid for the underlying exchange of risks.

I first briefly report on the statistical properties of settlement payoffs – or equiv-
alently, realised divergence measures. Then I break down the analysis of trading
profits into two parts. I report the unconditional descriptive statistics to provide an
overview of the properties of engaging in big risk trading. Further on, I attempt to
determine when, in what market conditions big risk trading is profitable. To that end,
I accompany the standard (i.e. weekly) trading results with disaggregated evidence.

The analysis starts with trading options along the weekly settlement calendar. At
the settlement of an option series,16 I start the trading strategy in options expiring at
the end of the following week,17 and I rebalance the position at fixed time intervals,
except for overnight trades (i.e. from 1515 to 0830 the following day, Chicago time)
when hedging is not available.

The construction of my dynamic strategies allows for trading over arbitrary pe-
riods and at arbitrary frequencies. In the disaggregate analysis I take the following
vantage points. First, I trade big risk from the opening to the closing of the Chicago
option market; such an implementation offers exposure to big risk on single days,
when active hedging is possible in many markets. Second, I trade close-to-open po-
sitions, which reduce to an opening trade around 1515 and a closing trade at 0830,
without intermittent option rebalancing nor trading in the forward contracts.18 In
the light of the findings in Muravyev and Ni, 2016, the daytime and night-time trad-
ing periods are significantly different in the option market to merit a more careful
treatment. From the point of view of an actively trading investor, the overnight pe-
riod is when she is forcefully exposed to big risk due to the inability to incrementally
hedge the accruing variation.

Settlement payoffs from trading strategies with γJ weighting are – by construc-
tion – of extremely small magnitude. Not only are they difficult to compare against

16Most SPX options are settled on Friday morning or afternoon.
17Unless there exists a contract which matures within one day of the default weekly option and is

far more traded. This occurs for some quarterly option settlements in the early part of the sample.
18While CBOE now offers extended trading hours for option contracts, this is not the case from the

start of my sample. Furthermore, outside regular trading hours liquidity virtually dries up.
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each other, but also in the dimension of varying trading horizons. In order to facili-
tate the interpretation of trading profits, I rescale the results of trading 2S

1/2
γ (F ) and

2Q
1/2
γ (F ) by the sample averages of the prices of the corresponding static absolute

variation swaps of corresponding maturity. Thus S1/2
γ (F0,T ) is rescaled by

2EQ
0

[∣∣∣SF−p0
(F )
∣∣∣
]
, (1.6.1)

and Q1/2
γ (F0,T ) by

2EQ
0

[
QF−p0

(F )
]
. (1.6.2)

The strategies
∣∣∣SF−p0

(F )
∣∣∣ and QF−p0

(F ) are constructed by taking p-derivatives of

γsDp with constant γ = F−p0 , as in Definitions 1 and 2. They correspond to simple
absolute third order variation, and kurtosis swaps with payoffs:

1

2

∫ T

0

∣∣∣∣ln(Fs/F0)
F ps
F p0

∣∣∣∣σ2
sds+

∑

0≤s≤T

∂

∂p

F ps−
F p0

Dp(Fs, Fs−) (1.6.3)
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∫ T

0
ln2(Fs/F0)

F ps
F p0

σ2
sds+

∑

0≤s≤T

∂2

∂p2

F ps−
F p0

Dp(Fs, Fs−). (1.6.4)

These payoffs arise naturally as a generalisation of Simple Variance Swaps (Martin,
2012) to higher order measures, and are studied, among others, in Schneider and
Trojani, 2015b. They can be seen as weighted realised variance measures, with more
weight put on variation far away from the forward price at inception due to the fac-
tor lnk(Fs/F0)F ps /F

p
0 . Rescaling the payoffs by sample averages of these quantities

renders the results easier to interpret. EQ
0

[∣∣∣SF−p0
(F )
∣∣∣
]

is typically about 1/8th of the
value of a variance swap. Thus trading results are given in multiples of the prices of
static higher order variation swaps.

The extreme nature of both settlement and total payoffs makes the estimation of
their distributions’ location parameter challenging. When evaluating the profitabil-
ity of the trading strategies, I turn not only to the averages of the payoffs, but also
to medians. I form confidence intervals for both estimates of location by bootstrap
methods.

1.6.1 Weekly trading

I implement the weekly trading strategies at two hedging frequencies: with hourly
and five-minute rebalancing. The summary statistics of realized variation measures,
aggregate option costs, and trading profits are collected in Tables A.3 and A.4, re-
spectively. I first briefly describe the time-series properties of the settlement payoffs,
and then move to reporting on risk compensation.
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Time-series properties of settlement payoffs

An overview of the time series of settlement payoffs is available in Figures 1.8 (for
hourly hedging) and 1.9 (for five-minute hedging). In both plots, the top-left panel
represents realised divergence, which does not have a big risk interpretation, but is
given as a reference whose time-series properties are well-known, an analogue of
realised variance. The top right figure plots the time series for realized big skewness
SγJ (1/2), while the bottom plot presents realized big quarticity, QγJ (1/2). This layout
and colour coding – orange for DγJ (1/2), blue for QγJ (1/2) and pink for QγJ (1/2) are
retained through the remainder of the paper.

It is immediately visible that the big risk measures have time series properties
that are very different from those of realised divergence. As the hedging interval
shrinks to 5 minutes, the clustering of large movements becomes less pronounced,
and two big risk periods stand out. These periods are of different character. The first,
in the second half of 2011, coincides with a prolonged period of raised uncertainty
due to the European debt crisis. Over the course of six months realisations of big
risk are of greater magnitude than in all of the ensuing sample, except for the second
stand-out moment. The latter is related to the Asian markets sell-off in August 2015,
and the extreme realisation of all jump variation measures happens on 2015-08-24,
the Monday when Asian markets dropped by 7%, and in the US the S&P500 was
reflecting that movement in early trading. This event, also known as the “mini flash-
crash” did not cause a prolonged period of large market movements.

At the higher hedging frequency the core properties of the time series of settle-
ment payoffs are the same as in Section 1.6.1. The key difference – as seen in Figure
1.9 – . The higher hedging frequency allows to capture the dip and recovery in the
price of the S&P500 index, which lasted around 30 minutes. The replicated skew-
ness is strongly negative, which implies that the downward movement in the “mini
flash-crash” was much more abrupt than the following recovery. The magnitude
of settlement payoffs in other periods is lower, but similar to levels recorded at the
one-hour trading frequency.

Contrary to measures of realised volatility, the measures of big risk variation
are neither persistent nor predictable, which can be seen in Figure 1.10. While the
reported plots present results for weekly trading at the 1-hour frequency, the results
at shorter trading horizons and higher frequencies are not unlike those presented.
These results are in line with other studies of jump variation.

Weekly trading profits

Trading profits for both trading frequencies are summarised in Tables A.3 and A.4.
Table A.3 contains summary statistics for the hourly hedging frequency, while ta-
bles A.4 contain summary statistics for the five-minute hedging frequency. In each
table, data on trading Dp

γ(F ) are contained in panel A, on S1/2
γ (F ) in panel B, and on

Q
1/2
γ (F ) in Panel C.
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FIGURE 1.8: Time series plots of replicated divergence, skewness and quarticity trad-
ing strategies with weighting γJ , with weekly option settlement and 1-hour hedging

frequency. Trading sample from 2010-12-31 to 2015-12-24.

The summary statistics are reported at both mid-quote and bid-ask option cost
calculation. The mid-quote profits, denoted P[·], are reported for long strategies, in
which the investor receives the settlement payoff at maturity. The transaction-cost
profits, denoted T [·], are reported for long strategies if average P[·] for the corre-
sponding strategy is positive, and from short strategies otherwise. This convention
makes evaluating the final profitability of the strategies easier. Thus, for example,
in panel A of Table A.3, the average profits for trading divergence at 1-hour fre-
quency are negative at mid-prices, while the profits after transaction costs reported
in the following line, are of a short strategy, and are positive; furthermore, the boot-
strapped confidence interval does not contain 0. Whenever the after-transaction-cost
profits T [·] are negative, it implies that the transaction costs render profiting from the
strategy infeasible in the CBOE option market.

First, I investigate the γJ pure-jump strategies and also comment on divergence
trading profits. At both trading frequencies I find that mid-price profits from trading
big skewness, P[S

1/2
γ (F )] are, on average, positive, and of similar size. The average

profits are between 0.14 (median) and 0.27 of the corresponding absolute third order
variation swap rates. The standard deviation of the profits is much higher than in
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FIGURE 1.9: Time series plots of replicated divergence, skewness and quarticity trading
strategies with weighting γJ , with weekly option settlement and 5-minute hedging

frequency. Trading sample from 2010-12-31 to 2015-12-24.

the case of divergence (variance) trading. Furthermore, the skewness strategies of-
fer a very different higher moment properties, than divergence strategies (exposed
to non-directional, small risk). Average P[S

1/2
γ (F )] are significantly different from 0

at both the 1-hour trading frequency, and at the 5-minute trading frequency. In both
cases, median profits are of the same size, positive, and significantly different from
0. After transaction costs are taken into account, in both cases the confidence inter-
vals for average trading profits contain 0. It is not the case for the median profits,
however.

Trading big quarticity at both frequencies is “insurance”, similarly to the results
reported in the literature on trading variance over longer horizons (e.g. Carr and
Wu, 2009b). P[Q

1/2
γ (F )] is significantly negative at both frequencies. Including trans-

action costs in the calculation erases all potential profitability at the high trading fre-
quency, but allows for positive average profits from a short strategy at the 1-hour
frequency; the latter quantity, however, is not statistically greater than 0. Median
estimates of location indicate in both cases that mid-price average profits are indeed
negative, and the median profits from the short strategy pass the statistical signifi-
cance hurdle after transaction costs.
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FIGURE 1.10: Autocorrelation function plots of traded divergence, skewness and quar-
ticity with weighting γJ (left-hand plots) and γJV . Trading sample from 2010-12-31 to

2015-12-24.
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FIGURE 1.11: Time series plots of cost of replicating divergence, skewness and quar-
ticity trading strategies with weighting γJ , with weekly option settlement and 1-hour

hedging frequency. Trading sample from 2010-12-31 to 2015-12-24.



1.6. Trading big risk 33

2011 2012 2013 2014 2015 2016

0
.0
0

0
.0
4

0.
0
8

0.
1
2

Cost of divergence (5-min)

Date

D
γ
J
(1
/2
)

(A)

2011 2012 2013 2014 2015 2016

-5
0

5

Cost of skewness (5-min)

Date

S
γ
J
(1
/2

)

(B)

2011 2012 2013 2014 2015 2016

-2
0

-1
0

0
1
0

Cost of quarticity (5-min)

Date

Q
γ
J
(1
/2

)

(C)

FIGURE 1.12: Time series plots of cost of replicating divergence, skewness and quar-
ticity trading strategies with weighting γJ , with weekly option settlement and five

minute hedging frequency. Trading sample from 2010-12-31 to 2015-12-24.
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An interesting finding is that the sign of the profits from trading divergence
with the use of short-maturity options, changes when the frequency increases to
5-minutes. That is, the short-maturity variance risk premium in the period under
consideration is positive, if hedging is frequent enough. This result is not driven by
rebalancing in the option market, because it prevails if the D0

γ(F ) strategy is consid-
ered, the V IX2-based variance swap.19 The profits from that strategy are virtually
identical, as can be seen in the lower part of panel A in Table A.4. As a matter of fact,
the higher divergence trading profits at the higher frequency are a result of an in-
crease in the settlement payoff. Simply put, it is due to a more precise measurement
of realized return divergence, which is fully reflected in the payoff.

To the contrary, the average and median quarticity strategy profits do not change
sign with a change in the hedging frequency. At a high frequency and with short-
maturity options, that price events only in the nearest future, investors are compen-
sated for taking on extreme risks such as in the quarticity and skewness strategies.
Compensation for the magnitude of small risks, which are the main driver of real-
ized return divergence, is positive in the sample and horizon under consideration.

The time series of trading profits can be inspected in Figures 1.13 and 1.14. When
viewed alongside Figures 1.11 and 1.12, which present the aggregate option costs
defined in equation (1.2.10). The fundamental observation is that total payoffs for
the big risk strategies are mostly generated by aggregate option costs, and not by
the settlement payoffs. In the case of skewness trading, the settlement payoff is
of greater magnitude than option rebalancing costs under 7% of the time, while for
quarticity there are only 2 such instances in weekly trading. This is hardly surprising
in light of the analysis in Section 1.3.2: the rebalancing costs accrue proportionally
to return-weighted price of divergence, which is a magnitude greater than skewness
or quarticity before rescaling is considered. This observation is important: it renders
how difficult it is to isolate big risk in extant financial markets. That some of these
strategies are profitable, on average, at mid-prices is indicative enough of the fact
that big risk is a distinct feature of the S&P500 index option market.

1.6.2 Disaggregated trading

One of the most interesting properties of the trading strategies I consider is that they
allow the investor to accrue the settlement payoff over arbitrary periods. I exploit
this feature in order to study the differences in trading small and big risk during
daytime (market opening hours), and overnight (from the time the market closes,
to the time it reopens). This investigation is directly motivated by Muravyev and
Ni, 2016, who found a striking pattern in option returns across all maturities (longer
than two weeks) and wide strike ranges. Returns on delta-hedged option positions
held from market open to market close are positive, while overnight returns are
negative and so big in magnitude that overall returns on options are negative. I

19Recall that this strategy corresponds to γJt := F 0
t ≡ 1, so it belongs to the family of semi-static

strategies.
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FIGURE 1.13: Time series plots of profits from replicating divergence, skewness and
quarticity trading strategies with weighting γJ , with weekly option settlement and

one-hmy hedging frequency. Trading sample from 2010-12-31 to 2015-12-24.
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FIGURE 1.14: Time series plots of profits from replicating divergence, skewness and
quarticity trading strategies with weighting γJ , with weekly option settlement and

five-minute hedging frequency. Trading sample from 2010-12-31 to 2015-12-24.
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FIGURE 1.15: Time series plots of profits (including transaction costs) from replicating
divergence, skewness and quarticity trading strategies with weighting γJ , with weekly
option settlement and one-hour hedging frequency. Trading sample from 2010-12-31

to 2015-12-24.
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present results from trading during the day and overnight separately in Tables A.5
and A.6.

Time series properties of settlement payoffs

The general properties of the time series of daytime and night-time settlement pay-
offs are identical with those already reported for weekly trading. It is most instruc-
tive, however, to compare the two time series side by side (Figure 1.16). In the case
of non-directional strategies, the overnight variation captured by the settlement pay-
offs is of significantly smaller magnitude than variation during daytime. In the ex-
treme case of trading Qγ(1/2), all payoffs except for the “mini-flash-crash” are vir-
tually equal to 0. In the case of a directional trade – big skewness – the daytime
variation is smaller than overnight variation due to the fact that during daytime, fre-
quent measurement will allow for cancelling out potential upwards and downwards
jump movements.

Daily and overnight trading profits

In daytime trading, the average mid-price profits for trading big skewness are neg-
ative, but not significantly different from 0. The median mid-price profits remain
positive. Transaction costs are, however, high enough to erase all potential prof-
itability. Daytime average mid-price quarticity profits are positive, however median
mid-price quarticity profits are not significantly greater from 0. Both average and
median post-transaction cost quarticity profits are negative. These results imply that
during daytime trading there is scant unconditional evidence for compensation for
big risk.

The compensation seems to be present, however, in overnight trading. Aver-
age mid-price profits for trading big skewness are positive, as are median mid-
price profits. Both location estimates are significantly greater than 0. The bid-ask
spread, however, seems an obstacle to actually cash in on those payoffs – average
transaction-price profits from a long strategy are negative, but median profits re-
main significantly greater than 0. Trading big quarticity is – unlike during the day
– “insurance”, in the sense that it carries a negative premium overnight. Both av-
erage and median profits are significantly negative, and the compensation is high
enough so that the average profits remain positive after transaction costs are taken
into account. When one takes into account how small overnight quarticity is on all
days except around 2015-08-24, it is clear that the strategy is a hedge against really
crippling events.

Overnight profits from trading big risk are also much greater (in absolute value)
than daytime profits. After scaling by the 1/τk factor, they are also greater than
aggregate week-time profits, which is another indicator that compensation for big
risks is present – unconditionally – in overnight trading.
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The data on the divergence trading strategy Dγ(1/2) offers additional insights
into the question of the sign of the divergence premium. In Section 1.6.1 I noted
that at the 5-minute trading frequency divergence profits over the weekly trading
horizon are positive, on average. After disaggregation into daytime and night-time
profits, a clear patter emerges: during daytime, the high-frequency divergence trade
earns a positive risk premium, but overnight the premium is negative. The daytime
premium is, however, of greater magnitude than the negative night-time premium.

The difference in premia when trading at various frequencies is, as noted before,
mostly due to obtaining more precise “measurements” of the realized measures in
the settlement payoffs. It remains an open question as to what hedging frequencies
investors have in mind when engaging in such trades. One hypothesis is that there
are many kinds of agents in the financial market, heterogeneous in their decision
horizons. In that case the explanation of the option prices being “insufficiently high”
to bring around a negative divergence risk premium – compatible with most to-
date evidence – would lie in the interplay between the two groups of traders in the
financial market.

Overall, I conclude that the compensation for big risk strategies in extant finan-
cial markets comes mostly through overnight trading. Thus, it is related to the fact
that in these periods agents cannot engage in actively hedging their positions.

Conditioning

A careful look at the time-series plots of realised big variation measures (Figure 1.9)
and trading profits (Figure 1.14 indicates that trading big risk might become highly
profitable after such an event is actually observed. Such outcomes prevail in weekly
trading for the big skewness strategy S1/2

γJ
(F )] and the short big quarticity strategy

Q
1/2

γJ
(F )] (Figure 1.14b and 1.14c, respectively). In disaggregate trading results more

than 1200 daytime and overnight observations are available for a more detailed anal-
ysis.

I present more evidence backing up this claim in Figure 1.17. In all four panels,
median mid-price profits from big risk trading strategies are plotted, conditional on
the realisations of the previous period’s corresponding realised big variation mea-
sure. For daytime trading (in the left two panels), the preceding period is from the
previous market close to the current day’s market opening. For night-time trading,
the preceding period is from the current day’s market opening, until market clos-
ing, when the position is taken. The top two plots present results for trading big
skewness, while the lower two – big quarticity.

During daytime trading, there is no evidence for the dependence between me-
dian profits and realised variation. The patterns are striking for overnight trading.
For both strategies, there exists a non-linear relation between the magnitude of pre-
ceding period’s realised big variation, and the current period’s trading profits. Com-
pensation for skewness increases dramatically after a big risk event in the 10th decile,
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FIGURE 1.16: Time series plots of profits from replicating divergence, skewness and
quarticity trading strategies with weighting γJ , with daily and overnight option set-
tlement and five-minute hedging frequency. Trading sample from 2010-12-31 to 2015-

12-24.



1.6. Trading big risk 41

2 4 6 8 10

-0
.0
2

-0
.0
1

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

Profits from trading big skewness conditional on

prior nighttime realized big skewness

decile of
∣∣∣Snightt−1 (1/2)

∣∣∣

P
[S
d
a
y

γ
J
(1
/
2
)]

robust mean
median

2 4 6 8 10

0
.0
5

0
.1
0

0.
1
5

0
.2
0

Profits from trading big skewness conditional on

prior daytime realized big skewness

decile of
∣∣∣Sdayt (1/2)

∣∣∣

P
[S
n
ig
h
t

γ
J

(1
/2
)]

robust mean
median

2 4 6 8 10

-0
.0
10

-0
.0
05

0.
00
0

0.
00
5

0.
01
0

0
.0
15

Profits from trading big quarticity conditional on

prior nighttime realized big quarticity

decile of Qnightt−1 (1/2)

P
[Q

d
a
y

γ
J
(1
/2
)]

robust mean
median

2 4 6 8 10

-0
.0
25

-0
.0
20

-0
.0
15

-0
.0
10

-0
.0
05

Profits from trading big quarticity conditional on

prior daytime realized big quarticity

decile of Qdayt (1/2)

P
[Q

n
ig
h
t

γ
J

(1
/2
)]

robust mean
median

FIGURE 1.17: Profits from trading big skewness and big quarticity with weekly op-
tions, conditionally on realised big variation over the preceding period. For daytime
trading, the preceding period is from previous closing until opening of markets on day
of trading. For nighttime trading, the preceding period is from the day’s market open-
ing until market closing on night of trading. During the day hedging is at 5-minute

frequency.

and so does the price of insurance against quarticity. Both these strategies load heav-
ily on out of the money options. The increase in skewness compensation (or in the
price of insurance against quarticity) reflects an increase in put prices after a truly
large market movement. This result is consistent with evidence presented by An-
dersen, Fusari, and Todorov, 2015b, who parametrically model option prices and
postulate the existence of a “tail risk” factor, which mostly influences deep out of
the money put option prices. This factor is very persistent under the risk-neutral
measure, but such extreme jump movements very rarely occur under the statistical
probability measure.
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1.7 Conclusions

In this work I introduced a general concept of dynamic option and forward trading,
which opens new avenues for the asset pricing literature. The trading strategies’
settlement payoffs can exactly hedge a family of realized return variation measures,
that until now could only be calculated from asset price data. Rendering such spe-
cialized payoffs tradable allows researchers to put a price on precise concepts of as-
set price variation, including the possibility of separating big (jump) risk from small
(diffusive). The strategies are based on active rebalancing of positions in currently
known synthetic derivatives similar to variance swaps.

The feasibility of implementing such trading strategies in the option data hinges
on using option portfolio formation methods that improve upon simple discretiza-
tion, as has been used by practitioners and researchers alike. I show how to imple-
ment a conceptually simple and computationally fast method for obtaining optimal
replicating option portfolios in incomplete option markets.

I expect the strategies to be useful for expanding the knowledge about the contri-
bution of higher-order risks to the cross section of stock returns. The excess payoffs
of the strategies, that is the difference between the settlement payoff and the aggre-
gate option costs, reflect accumulated information about the investors’ perception
of higher order risk, and their reward for engaging into trading it. In hereby unre-
ported results I find that the excess payoffs are not related to currently fundamental
risk factors, such as Market, Size, Value (Fama and French, 1993) and Momentum
(Carhart, 1997). Their response to investor perception of the price of variance can
be useful in capturing yet unexplained cross-sectional expected return puzzles, es-
pecially in fields such as returns on hedge fund investments, which have relatively
disorderly higher moment properties.

The properties of the trading strategies allow me to provide evidence about com-
pensation for divergence (variance) and jump risk on an aggregate (over the weekly
settlement horizon) and disaggregate (separately for daily and overnight trading)
basis. There is a number of important findings. First, the divergence (variance) risk
premium in weekly trading is negative at the hourly trading frequency, and positive
at the very high 5-minute trading frequency. The change comes from the fact that in
the latter case the realized measure is higher: an increased measurement frequency
better captures small Brownian variation, which otherwise washes away. This effect
for the divergence premium prevails also for the V IX2-based divergence strategy,
which does not involve active option between opening and closing the position. The
finding complements a large body of literature about the term structure of variance
risk premia. Almost all of this literature is based on longer-maturity contracts, and
reports a negative risk premium for index variance.

The premia for big risk do not change that dramatically with an increase in the
hedging frequency. I consider two contracts, paying of “big skewness” and “big
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quarticity”. The fundamental difference between them is that the former is direc-
tional, i.e. a long position brings losses if negative jumps occur, while the latter is
convex and similar to a variance swap: large positive and negative jumps count
positively towards the settlement payoff. The compensation for big skewness risk is
positive in the market for very short maturity options, albeit the profits are smaller
than in the case of divergence trading after similar financing capacity of the investor
is considered. The compensation for big quarticity risk is negative, i.e. the strategy
serves as a hedge against the magnitude of jumps. The profitability of the strat-
egy on a weekly basis is, however very low, especially with five-minute hedging. If
transaction costs (bid-ask spread in the option market) are taken into account, the
average profits from the strategies are not statistically different from 0 anymore. It is
worth noting, however that median profits are different from zero, and that transac-
tion costs in the CBOE SPX option market are considered high among practitioners.
Overall, I find evidence that investors require a premium for taking on directional
jump risk, and are willing to pay to hedge against the magnitude of jump risk. The
premium should be understood as this for an exchange of two risk profiles, how-
ever: of the pure realized variation measure for appropriately weighted price of
divergence (variance).

The disaggregate analysis brings further insights into the nature of dynamic op-
tion trading. I report three important findings. One is about trading the divergence
of stock returns, i.e. a contract exposed to both small and big risk. The latter two
are about pure big risk trading. First, in trading the divergence of returns, I ob-
tain a result similar in spirit to Muravyev and Ni: excess payoffs from trading di-
vergence are positive during the day, and negative in the overnight periods. The
daytime profits are, on average, much higher than night-time losses associated with
a long position. The difference in excess payoffs from trading return divergence
can mostly be attributed to the fact that overnight return divergence is on average
smaller than daytime return divergence. Second, in big risk trading the compen-
sation for risk is earned mostly in the overnight period. Profits from trading big
skewness during daytime are not significantly different from zero, but they are con-
siderable during night-time: profits from trading big skewness are of the same mag-
nitude as profits from trading return divergence. Compensation for selling protec-
tion against big overnight quarticity is smaller than in the case of overnight return
divergence. The third finding is about the conditional magnitudes of premia for
trading big risk. I find that in night-time trading profits from big skewness and big
quarticity strategies are, respectively, significantly higher and lower, if the preced-
ing daytime-measured jump variation (in any direction) falls in its top decile. In
those strategies, the aggregate option cost is the dominant component of the final
excess payoff. This, together with the fact that I do not observe clusterings of big
risk events, suggests that after a “jump” investors hike their expectations of another
jump occurring, which is reflected in option prices. The effect is persistent. This ev-
idence is similar to findings of Andersen, Fusari, and Todorov, 2015b who find that
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put options become – and stay – more expensive after a negative jump in returns.
Overall, my empirical investigation brings around a new method of direct mea-

surement of compensation for big risk, often identified with jump risk. Through this
lens I report novel evidence on risk premia available to investors in the market for
European index options. The evidence raises new challenges for theoretical asset
pricing models, as well as for the option pricing literature.
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2 Arbitrage free dispersion

2.1 Introduction

Arbitrage-free markets are characterized by tight relations between unobservable
pricing kernels, observable asset payoffs and their arbitrage-free price. These re-
lations constrain the joint stochastic properties of pricing kernels and asset returns
along several dimensions, which are informative about the market price of the rele-
vant uncertain economic states and the set of arbitrage-free prices of untraded assets
in incomplete markets. In this paper, we introduce a new systematic approach for
testing asset pricing models, which parsimoniously aggregates the observable asset
pricing information from multivariate arbitrage-free markets and comprehensively
characterize tight arbitrage-free constraints on the joint distribution of potentially
multivariate pricing kernels and asset returns. We complement and extend the exist-
ing literature, by introducing a new systematic approach to test multivariate pricing
kernel specifications on multiple investment horizons.

We first summarize the observable arbitrage-free information by a well-defined
subset of observed values on the joint cumulant generating function (CGF) of pricing
kernels and asset returns. To illustrate, in the simplified setting of a single pricing
kernel M and a traded return R, the joint CGF is defined by

KMR(m, r) := logE[MmRr] ; (m, r) ∈ R2 , (2.1.1)

and the asset pricing constraint for the traded return is KMR(1, 1) = logE[MR] =

0. When the marginal distribution of returns is also observable, then KMR(0, ·) is
observed and the observable information on KMR is summarized by the values of
the CGF on the observable set OKMR

:= {(m, r) ∈ dom(KMR) : m = 0 or (m, r) =

(1, 1)}.
Second, we derive a broad class of multivariate arbitrage-free inequalities be-

tween observable and unobservable regions of the joint CDF, which are a conse-
quence of the convexity of cumulant generating functions. In this way, the observ-
able information on traded asset returns restricts the class of joint distributions for
pricing kernels and returns that are consistent with arbitrage-free markets.1 We also
show that while convex arbitrage-free inequalities hold and are computable for gen-
eral multivariate settings, their application to lower dimensional settings provides

1For instance, it constraints the marginal distribution of pricing kernels, by bounding the range of
admissible nonlinear moments. Similarly, it constrains the range of admissible prices for untraded
nonlinear payoffs, such as the prices of payoffs with nonlinear exposure in the underlying return.
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a direct derivation of a large class of pricing kernel bounds in the literature. For
instance, convexity of KMR in equation (2.1.1) implies for any α ∈ (0, 1) the bound:

logE[Mα] = KMR(α, 0) ≤ αKMR(1, 1) + (1− α)KMR(0,−α/(1− α)) (2.1.2)

= logE[R−α/(1−α)]1−α ,

which naturally implies E(M) := − logE[M/E[M ]] ≥ log(E[R]E[M ]), i.e., the en-
tropy pricing kernel bound in Bansal and Lehmann, 1997, Alvarez and Jermann,
2005, Liu, 2015 and Backus, Chernov, and Zin, 2014, among others.2

Third, we show that convex arbitrage-free inequalities are interpretable as arbitrage-
free constraints on the multivariate dispersion of pricing kernels and returns, where
dispersion is defined using a family of so-called Jensen’s gaps generated by the mul-
tivariate CGF. In this sense, violations of certain convex inequalities or pricing kernel
bounds are equivalent to an insufficient arbitrage-free dispersion in some regions of
the multivariate state space. To illustrate, given CGF (2.1.1) and a non degenerate
prior distribution π, Jensen’s inequality induces the Jensen’s gap:

Jπ(M,R) := Eπ[KMR(m, r)]−KMR(Eπ[(m, r)]) ≥ 0 , (2.1.3)

with equality if and only if (M,R) = E[(M,R)]. Jensen’s gap Jπ(M,R) is a measure
of multivariate dispersion and directly contrains the arbitrage-free CGF whenever
Eπ[KMR(m, r)] or KMR(Eπ[(m, r)]) is observable.3 In this way, we identify unique
model-free constraints for the joint distribution of pricing kernels and returns that
are directly interpretable as specification constraints for their joint dispersion prop-
erties.

Fourth, we parsimoniously incorporate arbitrage-free dispersion constraints into
lower and upper bounds on the CGF of pricing kernels and returns. Precisely, we
introduce the upper (lower) arbitrage-free CGF KUMR (KLMR), which is defined as
the smallest (largest) observable upper (lower) bound implied by convex arbitrage-
free inequalities on any arbitrage-free CGF, and we naturally derive upper (lower)
arbitrage-free CGFs from basic arbitrage-free dispersion properties. To illustrate,
given an arbitrage-free CGF evaluated at point (m?, r?) and a prior with support in
OKMR

such that (m?, r?) = Eπ? [(m, r)], inequality (2.1.3) gives:

Eπ? [KMR(m, r)] ≥ KMR(m?, r?) . (2.1.4)

2The bound follows by continuity, taking limits as α → 1 in the convex arbitrage-free inequality
(2.1.2) .

3For instance, the inequality Eπ[KMR(m, r)] ≥ KMR(Eπ[(m, r)]) implied by a Bernoulli prior with
π(1, 1) = α ∈ (0, 1) and π(0,−α/(1 − α)) = 1 − α directly generates pricing kernel bound bound
(2.1.2). We discuss in detail below the properties of Jπ(M,R) as a measure of multivariate dispersion.
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As the left side of this inequality is observable, we obtain the following upper arbitrage-
free CGF KUMR evaluated in (m?, r?):4

KUMR(m?, r?) := inf
π?
Eπ? [KMR(m, r)] ≥ KMR(m?, r?) . (2.1.5)

Upper and lower arbitrage-free CGFs are observable in a model-free way and nat-
urally constrain the joint distribution of pricing kernels and returns. We show in
a number of important cases that these constraints are the tightest attainable, given
an observed arbitrage-free price system. Thus, upper and lower CGFs meaningfully
synthesize the available model-free information on the distribution of pricing ker-
nels and returns that can be inferred from statistical return observation and existing
arbitrage-free relations.

We make use of our theory of AFD to specify a coherent diagnostics approach for
systematically testing the multivariate dispersion properties of asset pricing models.
We apply this diagnostics approach to test the multivariate dispersion properties of
transient and martingale pricing kernel components in the benchmark Bansal and
Yaron, 2004-model of Long Run Risks (LRR), where the transient component is ap-
proximated empirically from the observed return of a long-maturity bond. While
the marginal dispersion properties of pricing kernel components are broadly consis-
tent with the data, multivariate dispersion tests provide sharper evidence of a model
failure, in terms of (i) a counterfactural dependence of long vs. short maturity bond
returns and (ii) an insufficient dispersion for pricing the optimal returns of a class of
power utility investors invested in short-term bonds and aggregate market equity.

The remainder of the paper proceeds as follows. In Section 2.2, we introduce the
joint CGF of pricing kernels and asset returns, showing that a number of interesting
model settings – including multiple SDF components, countries and time horizons –
can naturally be incorporated in this framework. Section 2.3 exploits the convexity
of the joint CGF to specify general multivariate dispersion measures in a variety of
relevant asset pricing contexts. Section 2.4 shows how they induce natural model-
free bounds on the arbitrage-free CGF and the dispersion of pricing kernels and
returns, motivating a systematic diagnostics approach for testing the multivariate
dispersion implications of asset pricing models. Section 2.5 addresses in more detail
concrete asset pricing contexts and explicitly computable dispersion constraints in
these settings. It demonstrates the sharpeness of pricing kernel dispersion bounds
resulting from our approach in a number of important cases and delivers testable
multivariate dispersion constraints for the benchmark Long Run Risk (LRR) model
in Bansal and Yaron, 2004. Section 2.6 characterize and tests empirically the multi-
variate arbitrage-free dispersion properties of recent empirical parameterizations of
LRR models. Section 2.7 concludes.

4The infimum on the left hand side of this inequality is over priors with support inOKMR such that
(m?, r?) = Eπ? [(m, r)].
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2.2 Arbitrage Free Cumulant Generating Function

Under weak assumptions, arbitrage-free markets imply tight relations between un-
observable pricing kernels and the arbitrage-free price of marketed asset payoffs.
Such constraints are conveniently summarized by particular restrictions on the joint
CGF of pricing kernels and payoffs.

2.2.1 Definition

We introduce the joint CGF of pricing kernel and asset returns using a general mul-
tivariate structure, in which uncertainty is generated by a vector of returns priced
by another vector of pricing kernel components. Examples of pricing kernel compo-
nents are vectors of domestic and foreign pricing kernels in international arbitrage-
free markets, the vector of single-period pricing kernels that price returns over dif-
ferent horizons or the distinct frequency components of a pricing kernel, as, e.g., in
Alvarez and Jermann (2005).

Definition 3 (CGF of Pricing Kernel and Returns). Given a set of strictly positive pricing
kernel components M := (M1, . . . ,Md1) and a set of positive marketed gross returns R :=

(R1, . . . , Rd2), the arbitrage-free cumulant generating function of (M,R) is the function
KMR : Rd1+d2 → R, defined for any m := (m1, . . . ,md1) and r := (r1, . . . , rd2) by

KMR(m, r) := logE [M rRr] := logE



d1∏

i=1

Mmi
i

d2∏

j=1

R
rj
j


 . (2.2.1)

The marginal pricing kernel (returns) CGF is defined by KM (·) := KMR(·, 0) (KR(·) :=

KMR(0, ·)).

The joint CGF uniquely identifies the joint distribution of pricing kernel com-
ponents and returns.5 Therefore, it also identifies the arbitrage-free pricing system
implied by a (parametric or nonparametric) specification of an asset pricing model.
Conversely, the empirically observable arbitrage-free pricing restrictions are natu-
rally summarized by the values of an arbitrage-free CGF on a corresponding subset
of points (m, r) ∈ Rd1+d2 . Such restrictions generate natural specification constraints
for asset pricing models.

Definition 4 (Observable Arbitrage-Free CGF). An arbitrage-free CGF is observable in
(m, r) ∈ Rd1+d2 , whenever KMR(m, r) is known through the statistical observation of as-
set returns or the prices of extant payoffs. We denote by OKMR

:= {(m, r) ∈ Rd1+d2 :

KMR(m, r) is observed} the set of observable points of an arbitrage-free CGF and callKMR|OKMR

the observable aribtrage-free CGF.
5Throughout the paper we assume that the joint cumulant generating function is finite in a non-

degenerate open domain containing the origin.
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2.2.2 Observability and Marginal CGF

Whenever we can assume statistical observability of the return distribution, the
marginal return CGF is observable, i.e., (0, r) ∈ OKMR

for any r ∈ Rd2 . In gen-
eral, the marginal CGF of a pricing kernel is never empirically completely observ-
able. Whenever the price B of a risk-free zero bond is observable, then KM (1) =

logE[M ] = logB and (1, 0) ∈ OKMR
. Additional points on the marginal CGF may

be directly observable due to normalizing conditions. For instance, when a pricing
kernel is decomposed into the product of a transient and a permanent martingale
component MT and MP , the martingale condition KMTMP (0, 1) = logE[MP ] = 0

yields (0, 1, 0) ∈ OK
MTMPR

; see again Alvarez and Jermann (2005), among others.

2.2.3 Univariate Return and Pricing Kernel (d1 = d2 = 1)

Given the statistical observability of a univariate return distribution, the additional
set of observable points depends on the structure of observable arbitrage-free con-
strains. Whenever a risk-free bond is priced, then obviously (1, 0) ∈ OKMR

. When-
ever a risky return is also priced, then KMR(1, 1) = logE[MR] = 0 and (1, 1) ∈
OKMR

. Figure 2.1a plots the observable set OKMR
generated by statistical return in-

formation and such arbitrage-free constraints. This set is not convex. It contains the
vertical line with abscissa in m = 0, i.e., the domain of the observable moment gen-
erating function of returns, and only two additional points of the vertical line with
abscissa in m = 1, which is the region collecting information about the risk-neutral
distribution of returns. The sparsity of points in this region reflects the large degree
of market incompleteness of this setting, in which no nonlinear payoff on underly-
ing return R is traded. The other extreme is a market extended to complete option
trading, allowing to trade any smooth nonlinear function of R using portfolios of
out-of-the-money options. In such a case, we have for any p ∈ R, following Carr and
Madan, 1998 and Schneider and Trojani, 2015a:

KMR(1, p) = logE[MRp] = log[p+ (1− p)B + p(p− 1)

∫ ∞

0
Kp−2O(R,K)dK] ,

where O(R,K) is the arbitrage-free price of an out-of-the-money option on R with
strike price K > 0. Figure 2.1b illustrates the enrichment of the (non convex) set
of empirically observable CGF points generated by complete option markets, which
now includes the vertical line with abscissa in m = 1.

2.2.4 Transient and Persistent Pricing Kernel Components (d1 = 2 and
d2 = 1)

Whenever the long end of the yield curve is observable, the pricing kernel decom-
position MPMT into transient and persistent components produces additional ob-
servable constraints. Following Alvarez and Jermann (2005), MP does not affect the
price of infinitely long maturity zero coupon bonds and R∞ = 1/MT , where R∞ is
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FIGURE 2.1: Observable sets in (M,R) space for d1 = d2 = 1. The red points and seg-
ments represent the tuples (m, r) ∈ OKMR ⊂ R2 where the joint arbitrage-free CGF
is observable, based on statistical return observations and asset pricing restrictions on
the risk-free bond and the risky asset (panel (a)). In panel (b) the additional observable
points on the m = 1 line result from observing the prices of a continuum of options

which can be used to replicate portfolios with final payoff Rr .

the return of the infinitely long maturity zero coupon bond. Therefore,

KMR(mT , 0, r) = logE[(MT )mTRr] = logE[R−mT∞ Rr] , (2.2.2)

where M := (MT ,MP ) and (mT , 0, r) ∈ OKMR
for each (mT , r) ∈ R2. The pricing

constraints for the short term zero bond and the risky return imply (1, 1, 0), (1, 1, 1) ∈
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OKMR
. Non convex set OKMR

is illustrated in Figure 2.2. The observable points re-
sulting from arbitrage-free pricing relations are marked as violet circles ( ), while
those that are observable statistically span the red (mT , r) plane. Two such points,
corresponding to the CGF valuesKMR(0, 0, 1) = logE [R] andKMR(1, 0, 0) = logE

[
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,

are marked as violet squares ( ).
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FIGURE 2.2: Observable points OKMR of the joint CGF in the single risky asset case
with persistent and transient pricing kernel components. The red surface and the pur-
ple points represent the tuples (m, r) ∈ OKMR ⊂ R3 where the joint CGF is observed
based on statistical observations and asset pricing restrictions on the short-term risk-

free bond, the long-term risk-free bond and the risky asset.

2.2.5 Domestic and Foreign Pricing Kernels (d1 = 2 and d2 = 2)

In an international context, the pricing kernel components can be domestic and for-
eign pricing kernels Md and Mf , pricing domestic and foreign risk-free bonds and
risky returns. The empirically observable points follow as in the previous examples,
so that points (1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0) and (0, 1, 0, 1) are all elements ofOKMR

,
where M := (Md,Mf ) and R := (Rd, Rf ) is the vector of domestic and foreign risky
returns. Whenever domestic and foreign option markets are complete, it also fol-
lows (1, 0, rd, 0), (0, 1, 0, rf ) ∈ OKMR

for any (rd, rf ) ∈ R2. Additional observable
constraints can emerge from the spot exchange rate market, as the exchange rate
return Re := (Mf/Md) · E needs to satisfy the additional arbitrage-free conditions:

1 = E[MdRe] = E[MfE ] ; 1 = E[Mf (1/Re)] = E[Md(1/E)] .

When domestic and foreign markets are complete, Re = Md/Mf and the joint CGF
of pricing kernels and returns characterizes the observable arbitrage-free restrictions
from domestic, foreign and spot exchange rate markets. Further CGF constraints
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arise when complete exchange rate option markets allow the trading of smooth func-
tions of Re. Indeed, in this case (1− p, p, 0, 0) ∈ OKMR

for every p ∈ R, since

KMR(1− p, p, 0, 0) = logE[MdR
p
e ] = log[p+ (1− p)Bd + p(p− 1)

∫ ∞

0
Kp−2O(Re,K)dK] .

A non degenerate exchange rate component E due to market incompleteness can
also be naturally incorporated into our framework, by means of an arbitrage-free
joint CGF of variables (Md,Mf , Rd, Rf , E) and the corresponding non convex set of
observable points.

2.2.6 Multi-Period Pricing Kernels and Returns (d1 = d2)

Given an investment horizon consisting of d = d1 = d2 periods, we can easily incor-
porate multi-period arbitrage-free information into our framework. Let {Mi : i =

1, . . . , d} ({Ri : i = 1, . . . , d}) be a sequence of single-period pricing kernels (risky
returns) for pricing time i payoffs at time i − 1 (priced at time i − 1 and paying off
at time i). Whenever risk-free bond prices Bi for maturity i = 1, . . . , d are observed,
then arbitrage-free CGF yields:

KMR(ιi, 02d−i) = logE

(
i∏

k=1

Mk

)
= logBi , (2.2.3)

where ιi is a vector of ones in Ri and 02d−i a vector of zeros in R2d−i, i.e., (ιi, 02d−i) ∈
OKMR

. Similarly,

KMR(ιi, 0d−i, ιi, 0d−i) = logE

[
i∏

k=1

MkRk

]
= 0 , (2.2.4)

i.e., (ιi, 0d−i, ιi, 0d−i) ∈ OKMR
.

2.3 Dispersion Measured by Jensen’s Gap

The convexity properties of arbitrage free CGF’s are directly linked to the dispersion
of pricing kernel and returns. Therefore, asset pricing restrictions are naturally for-
mulated using appropriate measures of dispersion. In this way, we obtain a general
unifying approach for testing asset pricing models.6

2.3.1 Jensen’s Gap and Multivariate Dispersion

We propose to measure multivariate dispersion by a family of Jensen gaps implied
by the joint CGF.

6Given that we measure dispersion by the convexity of a CGF, dispersion constraints implied by
our approach are particularly appropriate to test log-linear, or nearly log-linear, models. Similarly,
dispersion measured by the convexity of a CGF extends from Gaussian to non Gaussian settings in a
transparent way.
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Definition and Main Properties

Definition 5. (i) For a prior distribution π on Rd1+d2 and a joint CGF KMR, the Jensen’s
gap under prior π is:

Jπ(M,R) := Eπ[KMR(m, r)]−KMR(Eπ[(m, r)]) ≥ 0 . (2.3.1)

(ii) The marginal Jensen’s gaps implied by prior π are defined similarly: Jπ(M) := Eπ[KM (m)]−
KM (Eπ[m]) and Jπ(R) := Eπ[KR(r)]−KR(Eπ[r]).

Jπ(M,R) (Jπ(M) and Jπ(R)) measures (measure) the multivariate (marginal)
dispersion of pricing kernels and returns, consistently with a number of useful prop-
erties, collected in Proposition 1. Among these, additivity under independent ex-
periments is a useful property, e.g., when studying a term structure of dispersion in
pricing kernels and returns.

Proposition 1. Jensen’s gap Jπ(M,R) ≥ 0 is a dispersion measure with the following
properties:

1. Jπ(M,R) = 0, whenever (M,R) is a degenerate random vector.

2. For any prior π with support not included in a strict subspace of Rd1+d2 , Jπ(M,R) =

0 if and only if (M,R) is a degenerate random vector.

3. Given stochastically independent pricing kernel components and returns, it follows:

Jπ(M,R) = Jπ(M) + Jπ(R) . (2.3.2)

4. Given two independent random vectors (M,R) and (N,Q) in Rd1+d2 , it follows:

Jπ(M ×N,R×Q) = Jπ(M,R) + Jπ(N,Q) , (2.3.3)

where M ×N := (M1N1, . . . ,Md1Nd1) and R×Q := (R1Q1, . . . , Nd2Qd2).

5. Jπ(M,R) is positively homogenous of degree 0, in the sense that for any λM :=

(λM1, . . . , λMd1) and λR := (λM1, . . . , λMd2): Jπ(λM ◦M,λR ◦R) = Jπ(M,R).7

6. For any prior π on Rd1+d2 , having prior covariance matrix V arπ(m, r):

Jπ(M,R) =
tr(ΣV arπ(m, r))

2
, (2.3.4)

whenever (logM, logR) is a vector of Gassian variables with covariance matrix Σ.

Property 1. implies a necessary requirement for a measure of multivariate dis-
persion, i.e., that it is zero whenever (M,R) is a degenerate random vector. This
property follows from the linearity of the joint CGF in such a case. From Property

7◦ denotes the Hadamard product. For two n × m matrices A,B with elements Aij , Bij , matrix
A ◦B is the n×m matrix with elements (A ◦B)ij = AijBij .
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2, a strictly positive Jensen’s gap is generated by the strict convexity of the joint
CGF of multivariate non degenerate random variables, whenever prior π is not con-
centrated on a strict subspace of Rd1+d2 . In this case, Jπ(M,R) = 0 if and only if
random vector (M,R) is degenerate. Property 3. is an additive decomposition of the
joint Jensen’s gap into the sum of marginal Jensen’s gaps, when pricing kernel and
returns are stochastically independent. Property 4. implies additivity of Jπ(M,R)

under independent experiments, a desirable aggregation property that generalizes
the additivity of univariate dispersion measures such as entropy; see, e.g., Backus,
Chernov, and Zin, 2014. Property 5. implies scale invariance, while Property 6. gives
the expression for Jπ(M,R) in the benchmark case of jointly Gaussian log pricing
kernel and returns.

Jensen’s Gap Dimension

The support of prior π in equation (2.3.1) introduces a degree of flexibility inJπ(M,R),
which can be used to localize dispersion on particular regions of a multivariate sub-
space. An obvious localization is on the marginals of (M,R). More generally, a prior
with support in a subspace of dimension d < d1 + d2 can measures the dispersion of
particular linear combinations of pricing kernel and returns.

Definition 6. (i) Given a prior distribution with prior covariance matrix V arπ(m, r) such
that 0 < tr(V arπ(m, r)) <∞, we call dπ := rank(V arπ(m, r)) the dimension ofJπ(M,R).
(ii) Given a Jensen’s gap of dimension dπ, a standardized Jensen’s gap of dimension dπ is de-
fined by

Dπ(M,R) :=
Jπ(M,R)

tr(V arπ(m, r))
. (2.3.5)

When dπ < d1 + d2 the prior π is concentrated on a dπ−dimensional subspace
of Rd1+d2 . As a consequence, if Jπ(M,R) = 0 the components of random vec-
tor (logM, logR) are related by an affine deterministic relationship. According to
Proposition 1, a standardized Jensen’s gap satisfies the convenient normalization
Dπ(M,R) = σ2/2 , whenever (logM, logR) is an iid vector of Gaussian variables
with variance σ2. In presence of deviations from Gaussianity, the leading contribu-
tion to Dπ(M,R) is approximatively given by

Dπ(M,R) ≈ tr(K′′MR(Eπ[m], Eπ[r])V arπ(m, r))

2tr(V arπ(m, r))
, (2.3.6)
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where K′′MR(·, ·) is the Hessian of K.8 This approximation is exact for Gaussian ran-
dom vectors and likely sufficiently accurate for priors with moderate degree of mul-
tivariate skewness and kurtosis.

2.3.2 Jensen’s Gap and Entropy Measures

Jensen’s gaps extend well-known concepts of dispersion in the literature, such as
several useful measures of entropy and co-entropy.9 They also induce a broad family
of new concrete measures, such as, e.g., generalized entropy and generalized co-
entropy, dispersion measures linked to Chernoff, 1952 information, or asymmetric
measures of co-dispersion. We illustrate their properties in the context of simple
asset pricing settings.

Univariate Return and Pricing Kernel (d1 = d2 = 1)

Generalized Entropy. Given a Bernoulli prior πα with mass α ∈ (0, 1) in (m, r) = (1, 0)

and mass 1− α in (m, r) = (0, 0), we obtain:

Dπα(M,R) =
αKMR(1, 0) + (1− α)KMR(0, 0)−KMR(α, 0)

α(1− α)

=
logE[(M/E(M))α]

α(α− 1)
=: Eα(M) , (2.3.8)

i.e., the α−Rényi, 1960 entropy of the stochastic discount factor. Eα(M) is a stan-
dardized Jensen’s gap of dimension dπ = 1. It’s geometric interpretation based on
dispersion measure Dπα(M,R) is illustrated in Figure 2.3.

As α → 0, we obtain E0(M) = E[− log(M/E(M))], i.e., the stochastic discount
factor entropy in Alvarez and Jermann, 2005, Backus, Chernov, and Martin, 2011,
Backus, Chernov, and Zin, 2014, among others.
Co-Generalized Entropy. When returns and pricing kernel are stochastically indepen-
dent, Proposition 1 implies Eα(MR) = Eα(M) + Eα(R) =: E⊥α (MR). We can define
the α−Rényi co-entropy by

Cα(M,R) :=
α− 1

α

(
Eα(MR)− E⊥α (MR)

)
=

1

α2
log

(
E[(MR)α]

E[Mα]E[Rα]

)
, (2.3.9)

8Higher order contributions can be computed following the multivariate cumulant expansion ap-
proach in Jammalamadaka, Rao, and Terdik, 2006. Note that

Dπ(M,R) ≈
dπ∑
i=1

λiπ
tr(V arπ(m, r))

· 〈qiπ,K′′MR(Eπ[m], Eπ[r])qiπ〉 , (2.3.7)

with the nonzero eigenvalues λiπ and the corresponding orthonormal eigenvectors qiπ of V arπ(m, r),
denoting by 〈·, ·〉 the Euclidean scalar product. It follows that whenever dimension dπ is strictly less
than d1 + d2, some linear combinations of the columns of K′′MR(Eπ[m], Eπ[r]) do not contribute to
the right hand of approximation (2.3.7). For instance, in the one dimensional case, Dπ(M,R) can be
approximated by a single quadratic form of matrix K′′MR(Eπ[m], Eπ[r]).

9See, e.g., Alvarez and Jermann, 2005, Backus, Chernov, and Martin, 2011, Backus, Chernov, and
Zin, 2014, Backus, Boyarchenko, and Chernov, 2016, Bakshi and Chabi-Yo, 2014 and Chabi-Yo and
Colacito, 2013, among others.
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which for α → 0 yields the co-entropy introduced in Backus, Boyarchenko, and
Chernov, 2016 and Bakshi and Chabi-Yo, 2014, among others. Note that when-
ever (logM, logR) is jointly normally distributed, Proposition 1 implies Cα(M,R) =

Cov(logM, logR).
Power Generalized Entropy. Given a Bernoulli prior πα with mass α ∈ (0, 1) in (m, r) =

(p, 0) (p ∈ R) and mass 1− α in (m, r) = (0, 0), we obtain

Dπα(M,R) =
logE[(Mp/E(Mp))α]

p2α(α− 1)
=

1

p2
Eα(Mp) =: Epα(M) , (2.3.10)

i.e., Dπα(M,R) is proportional to the α−Rényi, 1960 entropy of the p−th power of
the pricing kernel. Epα(M) is a standardized Jensen’s gap of dimension dπ = 1. For
α → 0 we obtain 4E2

0 (M) = E0(M2), i.e., the entropy of the squared pricing kernel
adopted in Bakshi and Chabi-Yo, 2014 to specify tractable multivariate pricing kernel
bounds.10

Dimension dπ > 1. Most dispersion measures rely on a dimension dπ = 1. Jensen’s
gaps of dimension dπ > 1 are easily constructed. To illustrate, consider a prior πα,β
with mass α > 0 in (m, r) = (1, 0), mass β > 0 in (m, r) = (0, 1) and mass 1− (α+β)

in (m, r) = (0, 0). It then follows:

Dπα,β (M,R) =
αKMR(1, 0) + βKMR(0, 1)−KMR(α, β)

α(1− α) + β(1− β)

=
logE[(M/E(M))α(R/E[R])β]

α(α− 1) + β(β − 1)
=: Eα,β(M,R) . (2.3.11)

Eα,β(M,R) is a standardized Jensen’s gap of dimension dπ = 2 and a proper measure
of bivariate dispersion. Independence of pricing kernel and returns additionally
implies

Eα,β(M,R) =
α(α− 1)Eα(M) + β(β − 1)Eβ(R)

α(α− 1) + β(β − 1)
=: E⊥α,β(M,R) , (2.3.12)

i.e., E⊥α,β(M,R) equals a convex combination of Rényi, 1960 entropies. A measure
of co-dispersion that (i) is zero if and only if M and R are stochastically indepen-
dent and (ii) equals Cov(logM, logR) when returns and pricing kernel are jointly
log normal, then naturally follows:

Cα,β(M,R) :=
α(α− 1) + β(β − 1)

αβ
(Eα,β(M,R)− E⊥α,β(M,R)) =

1

αβ
log

(
E
[
MαRβ

]

E [Mα]E [Rβ]

)
.

Cα,β(M,R) is in general not a symmetric measure of co-dispersion. This property can
be useful, e.g., to characterize pricing kernel and return dependence while explicitly

10Using power generalized entropy and Proposition 1, it is also possibe to specify convenient mea-
sures of co-dispersion, which are consistent with Pearson’s measure of correlation in the log Gaussian
case.
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accounting for the asymmetric role of pricing kernels and individual asset returns in
arbitrage-free markets.11

Domestic and Foreign Pricing Kernels (d1 = 2 and d2 = 2)

Chernoff, 1952 Information. Given a Bernoulli prior πα with mass α ∈ (0, 1) in (m, r) =

(1, 0, 0, 0) and mass 1− α in (0, 1, 0, 0), we obtain:

Jπα(M,R) = αKMR(1, 0, 0, 0) + (1− α)KMR(0, 1, 0, 0)−KMR(α, 1− α, 0, 0)

= − logE[(Md/E(Md))
α(Mf/E(Mf ))1−α] =: − logCCα(Md,Md) ,

with the α−Chernoff, 1952 coefficient CCα(Md,Md). The optimal Chernoff, 1952
coefficient

CCα∗(Md,Mf ) := min
α∈(0,1)

CCα(Md,Mf ) , (2.3.13)

is a symmetric measure of similarity between pricing kernels, while Chernoff, 1952
information (or Chernoff divergence):

CI∗(Md,Mf ) := − ln CCα∗(Md,Mf ) = max
α∈(0,1)

Jπα(M,R) , (2.3.14)

is a symmetric measure of discrepancy between pricing kernels.

2.4 Informative and Observable Arbitrage Free Dispersion

The convexity of the joint CGF imposes constraints on the dispersion properties of
pricing kernels and returns. Therefore, we make use of Jensen’s gaps to characterize
the testable dispersion properties that any asset pricing model needs to satisfy.

2.4.1 Definition

If quantities Eπ[KMR(m, r)] and KMR(Eπ[(m, r)]) in Definition 5 are directly com-
putable from the known values of KMR on observable set OKMR

, then Jπ(M,R)

is observable and directly produces verifiable constraints on the convexity features
of any arbitrage-free CGF. The situation is different when either Eπ[KMR(m, r)] or
KMR(Eπ[(m, r)]) is unobservable.

Definition 7. (i) Jensen’s gap Jπ(M,R) in Definition 5 is an informative arbitrage-free
dispersion whenever (1) π has support inOKMR

or (2) Eπ[(m, r)] ∈ OKMR
. (ii) Inequalities

{Jπ(M,R) ≥ 0 : prior π is such that (1) holds} , (2.4.1)

11By construction, Cα,α(M,R) = Cα(M,R), illustrating that lower-dimensional dispersion or co-
dispersion measures are special cases of higher-dimensional dispersion or co-dispersion measures.
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define the set of observable arbitrage-free dispersion constraints of Type (1). (iii) Inequalities

{Jπ(M,R) ≥ 0 : prior π is such that (2) holds} , (2.4.2)

define the set of observable dispersion constraints of Type (2). (iv) An informative arbitrage-
free dispersionJπ(M,R) is observable, whenever both π has support inOKMR

andEπ[(m, r)] ∈
OKMR

.

Informative dispersion restricts the range of possible values of an arbitrage-free
CGF in unobservable parts of its domain.12 Observable dispersion uniquely con-
strains the convexity properties of the observable arbitrage-free CGF. Further ob-
servable constraints on the convexity of the arbitrage-free CGF can be obtained using
observable differences of informative dispersions.

Definition 8. Given priors π1 and π2 with support in OKMR
and such that Eπ1 [(m, r)] =

Eπ2 [(m, r)], ∆Jπ1,π2(M,R) := Jπ1(M,R)−Jπ2(M,R) is called an observable arbitrage-
free excess dispersion.

2.4.2 Implications of Observable Dispersion and Excess Dispersion

Observable dispersions and excess dispersions naturally reflect the observability of
the arbitrage-free CGF in particular regions of its domain. In order to avoid obvi-
ous model mispecifications, the model-implied and the arbitrage-free CGF have to
coincide on the observable set. Therefore, the model-implied CGF convexity has
to be consistent with the observable dispersion and excess dispersion. In all other
cases, a dispersion violation is directly observed and a new model specification is
necessary.

Definition 9. Given model M, an observable dispersion (excess dispersion) violation arises
whenever Jπ(M,R) 6= JM

π (M,R) (∆Jπ1,π2(M,R) 6= ∆JM
π1,π2(M,R)) for some observ-

able arbitrage-free dispersion Jπ(M,R) (excess dispersion ∆Jπ1,π2(M,R)).

Transient vs. Persistent Pricing Kernel Components and Horizon Dependence

Despite the fact that observable dispersion and excess dispersion depend on directly
observable convexity properties of the arbitrage-free CGF, under plausible assump-
tions they already characterize important properties of asset prices, including the
joint dependence of permanent and transient pricing kernel components or the hori-
zon depedence of zero-coupon bond prices.

Example 2 (Dependence of transient and persistent pricing kernel components). Fol-
lowing Bakshi and Chabi-Yo, 2014, the covariance between transient and persistent
pricing kernel components is observable when the returnR∞ of the infinite maturity

12This is in contrast to the observable parts of the domain, where the arbitrage-free CGF is fully
identified.
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bond is observable: cov(MT ,MP ) = B − E[1/R∞]. A suitable monotonic transfor-
mation and an appropriate scaling of this equality, gives:

1

2
log
(
cov(MT /E(MT ),MP ) + 1

)
= Eπ1 [KMTMP (mT ,mP )]−Eπ2 [KMTMP (mT ,mP )] ,

(2.4.3)
where π1 (π2) has mass 1/2 in (mT ,mP ) = (1, 1) ((mT ,mP ) = (1, 0)) and mass 1/2
in (mT ,mP ) = (0, 0) ((mT ,mP ) = (0, 1)). Since Eπ1 [(mT ,mP )] = Eπ2 [(mT ,mP )] =

(1/2, 1/2), equation (2.4.3) induces an observable excess dispersion ∆Jπ1,π2(MT ,MP ).
In contrast to cov(MT ,MP ), excess dispersion (2.4.3) is independent of the scale of
MT , i.e., its first moment. In this sense, it implies a definition of an excess dispersion
violation that is robust with respect to an incorrect measurement of the first moment
of 1/R∞.

Example 3 (Horizon dependence). Given a vector M = (M1, . . . ,Mn) of strictly sta-
tionary single-period stochastic discount factors Mi, pricing at time i − 1 payoffs
paid at time i, Backus, Chernov, and Zin, 2014 measure horizon dependence as

H(n) :=
1

n
E0

(
n∏

i=1

Mi

)
− E0 (M1) =

ln(Bn)

n
− ln(B1) , (2.4.4)

where Bi (i = 1, . . . , n) is the price of a zero bond with maturity i. Therefore, H(n) is
a measure of the (negative) slope of the yield curve at horizon n. Denoting by ι (ei)
the vector of ones (the i−th unit vector) in Rn, we can writeH(n) as an arbitrage-free
excess dispersion:13

H(n) =
KM (ι)

n
−
∑n

i=1KM (ei)

n
= ∆Jπ1,π2(M) , (2.4.5)

using a prior π1 (π2) with mass 1/n in m = ι and mass 1− 1/n in m = 0n (with uni-
form mass 1/n in each unit vector ei). Thus, horizon dependence can be understood
as a particular convexity requirement, along the main diagonal in the domain of the
arbitrage-free CGF of M .

Implications for Observable Model-Implied CGFs

Intuitively, the absence of observable dispersion or excess dispersion violations must
constrain the convexity of the arbitrage-free CGF on observable set OKMR

quite
strongly. Indeed, in that case the observable model-implied CGF KM

MR|OKMR
is al-

ready uniquely identified, up to a linear transformation, as is stated precisely in the
next proposition, proven in the Supplemental Appendix.

Proposition 2. If there are no observable arbitrage free dispersion or excess dispersion vio-
lations, then KMR|OKMR

−KM
MR|OKMR

is linear, i.e., there exists a vector e ∈ Rd1+d2 such
that KMR(o) = KM

MR(o) + e′ · o for every o = (m, r) ∈ OKMR
.

13Note that Eπ1 [m] = Eπ2 [m] = ι/n.
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From Proposition 2, the absence of observable dispersion or excess dispersion
violations implies an observable model-implied CGF that is uniquely identified, up
to a possibly inappropriate scaling of pricing kernel components or returns. Inap-
propriate scaling can be corrected by rescaling, e.g., when the scaling discrepancy
is concentrated in the marginal distribution of pricing kernel components. In con-
trast, rescaling does not correct observable dispersion or excess dispersion violation,
as Jensen’s gap is homogenous of degree zero (see point 5. of Proposition 1). This
motivates the next definition.

Definition 10 (Scaling Discrepancy). Whenever KMR|OKMR
−KM

MR|OKMR
is linear, we

say that there is a pure scaling discrepancy between observable model-implied and arbitrage-
free CGFs.

In summary, a discrepancy between observable arbitrage-free and model-implied
CGFs can emerge either from a scaling discrepancy or from a dispersion or excess
dispersion violation. Dispersion violations in the marginal CGF of returns can in
principle be corrected quite precisely, when the return distribution is observable
with sufficient accuracy. In contrast, correcting dispersion violations in the marginal
CGF of the pricing kernel is more challenging, because dispersion is only sparsely
observable along that dimension.

2.4.3 Implications of Constraints of Type (1) and Upper Arbitrage Free
CGF

When informative arbitrage-free dispersion is unobservable, dispersion constraints
of Type (1) imply testable constraints for the arbitrage-free CGF on the convex hull
of all observable points, defined by:

OKMR
:= {Eπ[(m, r)] : prior π has support in OKMR

} . (2.4.6)

In this way, the arbitrage-free CGF is restricted also in not directly observable regions
of its domain. Positivity of Jensen’s gap yields for any (m?, r?) ∈ OKMR

the upper
bound:

KMR(m?, r?) ≤ Eπ[KMR(m, r)] , (2.4.7)

where the right hand side of this inequality is observable because π has support on
OKMR

. The tightest such upper bound follows from the infimum over all priors with
support in OKMR

and such that (m?, r?) = Eπ[(m, r)]. This motivates the concept of
an upper arbitrage-free CGF.
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Definition 11 (Upper Arbitrage Free CGF). The upper arbitrage free CGF is the function
KUMR : Rd1+d2 → R ∪ {+∞}, defined for any (m?, r?) ∈ Rd1+d2 by:14

KUMR(m?, r?) := inf
π
{Eπ[KMR(m, r)]} , (2.4.8)

where the infimum is over priors with support onOKMR
and such that (m?, r?) = Eπ[(m, r)].

The upper arbitrage-free CGF is a convex upper extension of KMR to Rd1+d2 ,
which coincides with KMR on the observable set OKMR

and defines a finite upper
bound for KMR on the convex hull OKMR

.15 By definition, KUMR is computable from
the set OKMR

of observable points and implies for any (m?, r?) ∈ OKMR
a nontrivial

inequality for the specification of an arbitrage-free CGFs:

KMR(m?, r?) ≤ KUMR(m?, r?) . (2.4.9)

Figure 2.4a illustrates the convex domain OKMR
of finite upper arbitrage-free CGF

values, generated by the following empirically observable CGF points: KMR(1, 0) =

logB, KMR(1, 1) = 0 and KMR(0, r) = logE[Rr] for r ∈ (0, 1). OKMR
is convex and

closed. Outside this region, the upper bound on KMR generated by Type (1) disper-
sion constraints is trivial. Naturally, a violation of bound (2.4.9) in regions where it is
non-trivial provides useful information for the specification of asset pricing models.

Definition 12. Given a model M and unobservable point (m?, r?) ∈ OKMR
\OKMR

, an arbitrage-
free dispersion violation of Type (1) arises whenever KM

MR(m?, r?) > KUMR(m?, r?).

2.4.4 Implications of Constraints of Type (2) and Lower Arbitrage Free
CGF

Given an informative unobservable arbitrage-free dispersion, dispersion constraints
of Type (2) imply a second set of observable constraints for an arbitrage-free CGF:

KMR(Eπ[(m, r)]) ≤ Eπ[KMR(m, r)] , (2.4.10)

where the left hand side of this inequality is observable when Eπ[(m, r)] ∈ OKMR
.

Inequality (2.4.10) is a lower bound for the expected arbitrage-free CGF under any
prior π with observable expectation Eπ[(m, r)]. From inequality (2.4.10), we obtain
directly computable lower bounds for the arbitrage-free CGF in unobservable re-
gions of its domain. Given unobservable point (m?, r?), consider a prior π with
support in OKMR

∪ {(m?, r?)} and such that Eπ[(m, r)] ∈ OKMR
. Inequality (2.4.10)

then gives:

KMR(Eπ[(m, r)]) ≤ Eπ[KMR(m, r)1OKMR
(m, r)] + π(m?, r?)KMR(m?, r?) ,(2.4.11)

14By definition, inf∅Eπ[KMR(m, r)] := +∞.
15See Peters and Wakker (1987), among other, for the properties of finite convex extensions of a con-

vex function.
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where 1OKMR
is the indicator function of set OKMR

. In (2.4.11) all quantities but
KMR(m?, r?) are observable and the following lower bound holds:

KMR(m?, r?) ≥
KMR(Eπ[(m, r)])− Eπ[KMR(m, r)1OKMR

(m, r)]

π(m?, r?)
. (2.4.12)

The tightest such lower bound is given by the supremum of the right hand side
of inequality (2.4.12) over priors with support in OKMR

∪ {(m?, r?)} and such that
Eπ[(m, r)] ∈ OKMR

. This motivates the concept of a lower arbitrage-free CGF.

Definition 13 (Lower Arbitrage Free CGF). The lower arbitrage-free CGF is the function
KLMR : Rd1+d2 → R ∪ {−∞}, defined for any (m?, r?) ∈ Rd1+d2 by:16

KLMR(m?, r?) := sup
π

{
KMR(Eπ[(m, r)])− Eπ[KMR(m, r)1OKMR

(m, r)]

π(m?, r?)

}
,(2.4.13)

where the supremum is over priors with support in OKMR
∪ {(m?, r?)} and such that

Eπ[(m, r)] ∈ OKMR
.

The lower arbitrage-free CGF is a convex lower extension of KMR to Rd1+d2 ,
which coincides with KMR on the observable set OKMR

. By construction, KLMR is
observable from the set OKMR

of empirically observable points and implies a non-
trivial inequality on the arbitrage-free CGF:

KMR(m?, r?) ≥ KLMR(m?, r?) . (2.4.14)

This lower bound is finite whenever a prior exists with support inOKMR
∪{(m?, r?)}

and such that Eπ[(m, r)] ∈ OKMR
17. The set of points where KLMR is finite follows

from the following identity:

(m?, r?) = (Eπ[(m, r)]− Eπ[(m, r)1OMR
(m, r)])/π(m?, r?) . (2.4.15)

We denote by OKMR
⊂ Rd1+d2 the domain on which KLMR is finite. Figure 2.4b illus-

trates the non-convex domain OKMR
of finite lower arbitrage-free CGF values, gen-

erated by the following observable CGF points: KMR(1, 0) = logB, KMR(1, 1) = 0

and KMR(0, r) = logE[Rr] for r ∈ (0, 1). OKMR
is not convex, but is closed. Outside

this region, the lower bound on KMR generated by Type (2) dispersion constraints is
trivial. A violation of a nontrivial bound (2.4.14) thus provides additional informa-
tion for the specification of asset pricing models.

Definition 14. Given a model M and unobservable point (m?, r?) ∈ OKMR
\OKMR

, an arbitrage-
free dispersion violation of Type (2) arises whenever KM

MR(m?, r?) < KLMR(m?, r?).

16By definition, sup∅Eπ[KMR(m, r)] := −∞.
17KLMR is also related to the minimal convex extension of convex function KMR; see Dragomirescu

and Ivan (1992), among others.
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2.4.5 Implications of Dispersion Constrains for Dispersion Bounds

Violations of Type (1) and (2) can be generated both by an inappropriate model
dispersion or an inappropriate model scaling of pricing kernel or returns. Often,
scale-invariant dispersion bounds easily follow from the upper and lower CGF’s in
Definition 6. Indeed, for any two priors π, π′, it directly follows from the definitions:

Dπ(M,R) ≥
(
Eπ[KLMR(m, r)]−KUMR(Eπ[(m, r)])

tr(V arπ(m, r))

)+

=: DLπ (M,R) ,(2.4.16)

Dπ′(M,R) ≤ Eπ′ [KUMR(m, r)]−KLMR(Eπ′ [(m, r)])

tr(V arπ′(m, r))
=: DUπ′(M,R) , (2.4.17)

where (x)+ := max(x, 0) is the positive part of x. Dispersion bounds (2.4.16) and
(2.4.17) are not binding when the right hand side equals 0 and +∞, respectively. A
necessary condition for a binding bound (2.4.16) is that π has support in OKMR

and
Eπ[(m, r)] ∈ OKMR

. If π has support in OKMR
, this bound directly reflects Type (1)

constraints. Whenever two such priors with identical mean exist, then dispersion
bound (2.4.16) is always binding. Bound (2.4.17) is binding if and only if prior π′ has
support in OKMR

and Eπ′ [(m, r)] ∈ OKMR
.18

2.4.6 Diagnostic Tests of Asset Pricing Models

A general approach for testing asset pricing models can rely on a test of the null
hypothesis:

H0(m?, r?) : KLMR(m?, r?) ≤ KM
MR(m?, r?) ≤ KUMR(m?, r?) , (2.4.18)

over a range of relevant arguments (m?, r?) ∈ Rd1+d2 . On observable set OKMR
,

these inequalities are equalities and the relevant (composite) null hypothesis is:

H0(OKMR
) : KMR|OKMR

= KM
MR|OKMR

. (2.4.19)

On unobservable set OcKMR
null hypothesis (2.4.18) depends on true inequalities.

Consistently with the discussion in Section 2.4.3, the inequality on the right hand
side of this null hypothesis is binding on set OKMR

and the resulting (composite)
null hypothesis is:

H0(OKMR
) : KM

MR|OKMR
≤ KMR|OKMR

. (2.4.20)

18In general, bounds (2.4.16) and (2.4.17) are not both always binding for the same prior π:
DLπ (M,R) ≤ Dπ(M,R) ≤ DUπ (M,R). A necessary condition is that π has support in OKMR ∩ OKMR
and is such thatEπ[(m, r)] ∈ OKMR∩OKMR . Such a situation can arise when the observable setOKMR
is not extremal.
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Similarly, the inequality on the left hand side of null hypothesis (2.4.18) is binding
on set OKMR

and the resulting (composite) null hypothesis is:

H0(OKMR
) : KMR|OKMR

≤ KM
MR|OKMR

. (2.4.21)

Model Diagnostics Based on Null HypothesisH0(OKMR
)

A diagnostics test of null hypothesis

H0(OKMR
) =

⋂

(m?,r?)∈OKMR

H0(m?, r?) , (2.4.22)

tests the specification of a CGF in observable parts of the domain of the arbitrage-
free CGF. Such a test is naturally complemented by a test of the observable model-
implied dispersion and excess dispersion properties, which is a test of the (compos-
ite) null hypothesis:

JM
π (M,R) = Jπ(M,R) , (2.4.23)

∆JM
π1,π2(M,R) = ∆Jπ1,π2(M,R) , (2.4.24)

for any observable arbitrage-free dispersion and excess dispersion. Consistent with
Proposition 2, this two-step approach isolates potential rejections of H0(OKMR

) due
to an observable scaling mismatch from those due to an inappropriate observable
model dispersion or excess dispersion.

Model Diagnostics Based on Null HypothesesH0(OKMR
) andH0(OKMR

)

A diagnostics test of null hypotheses

H0(OKMR
) =

⋂

(m?,r?)∈OKMR

H0(m?, r?) ; H0(OKMR
) =

⋂

(m?,r?)∈OKMR

H0(m?, r?) ,(2.4.25)

tests the specification of an asset pricing model in unobservable parts of the domain
of the arbitrage-free CGF. In order to isolate a potential violation of H0(OKMR

) or
H0(OKMR

) due to inappropriate scaling from those due to inappropriate unobserv-
able dispersion or excess disperion, it is convenient to complement these tests by
a set of scale invariant dispersion tests, based on the dispersion bounds introduced
in Section 2.4.5. Using dispersion bounds, a scale independent diagnostics test for
asset pricing models can rely on a test of the inequalities:

DLπ (M,R) ≤ DM
π (M,R) ≤ DUπ (M,R) , (2.4.26)

over a range of relevant priors π implying a binding dispersion bound. When two
priors π1, π2 with support in OKMR

exist, such that Eπ1 [(m, r)] = Eπ2 [(m, r)] and
Eπ1 [KMR(m, r)] > Eπ2 [KMR(m, r)], a binding lower bound in the LHS of inequality
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(2.4.26) is easily available, using the convexity of KUMR:

DLπ1(M,R) ≥ Eπ1 [KMR(m, r)]−KUMR(Eπ1 [(m, r)])

tr(V arπ1(m))
≥ Eπ1 [KMR(m, r)]− Eπ2 [KMR(m, r)]

tr(V arπ1(m))
> 0 .

In contrast, a binding upper bound in the RHS of inequalities (2.4.26) emerges only
when observable setOKMR

is not extremal. The observable set implied by the Bansal
and Yaron, 2004 long-run risk model introduced in Section 2.6 is extremal. Therefore,
our empirical analysis of the arbitrage free dispersion properties of long-run risk
models in Section 2.6 is based on tests of lower dispersion bounds.

2.5 Explicit Pricing Kernel Bounds Induced by Dispersion
Constraints

We derive with a unifying dispersion approach explicit model-free pricing kernel
bounds induced by constrainst of Type (1) or (2). This approach allows an easy
derivation of existing sharp univariate bounds in the literature. Moreover, it is suit-
able for a natural extension to economies with multiple pricing kernel components,
for which we obtain new sharp pricing kernel bounds. We illustrate our approach
in the benchmark economy with a single pricing kernel. We then extend it to pricing
kernels with transienst and persistent components and to international economies
with domestic and foreign pricing kernels.

2.5.1 Univariate Pricing Kernel Bounds

Given a univariate pricing kernel (d1 = 1) and d2 risky returns, we consider an arbitrage-
free joint CGF restricted by complete return observability ((0, r) ∈ OKMR

for any
r ∈ Rd2), a risk-free bond with price B ((1, 0d2) ∈ OKMR

) and risky returns R =

(R1, . . . , Rd2) ((1, ei) ∈ OKMR
for each unit vector ei in Rd2).

Dispersion Constraints of Type (1) and Entropy Bounds

For any α ∈ (0, 1), a first set of dispersion constraints of Type (1) follows using
a Bernoulli prior π with mass α ∈ (0, 1) on (1, ei) and mass 1 − α on (0,− α

1−αei).
Indeed, from the dispersion constraint

Jπ(M,R) = Eπ[KMR(m, r)]−KMR(Eπ[m, r]) ≥ 0 , (2.5.1)

we have KMR(1, ei) = 0 and (0,− α
1−αei) ∈ OKMR

, i.e., prior π has support in OKMR
.

Consequently, inequality (2.5.1) defines an arbitrage-free dispersion constraint of
Type (1). Explicit calculations give:

1

1− α logE[Mα] =
1

1− αKMR(α, 0d2) ≤ KMR(0,− α

1− αei) = logE[R
−α/(1−α)
i ] .(2.5.2)
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Equivalently, this is a lower bound on the Rényi, 1960 entropy of the pricing kernel:

Eα(M) =
1

α(α− 1)
logE[(M/E(M))α] ≥ − 1

α
logE[R

−α/(1−α)
i ]− 1

α− 1
logE[M ] .(2.5.3)

As α → 0, this is the entropy bound in, e.g., Alvarez and Jermann, 2005: E0(M) ≥
logE[RiE(M)].

Dispersion Constraints of Type (2) and Entropy Bounds

For any α > 1, a dispersion constraint of Type (2) follows using a prior with mass
1/α ∈ (0, 1) in (α, 0d2) and mass (α − 1)/α in (0, α

α−1ei). Indeed, since Eπ[m, r] =

(1, ei) ∈ OKMR
, we obtain:

0 = KMR(1, ei) ≤
1

α
KMR(α, 0d2) +

α− 1

α
KMR

(
0,− α

1− αei
)
, (2.5.4)

which is pricing kernel bound (2.5.2) for α > 1. Such pricing kernel bounds for α > 0

are equivalent to the pricing kernel bounds derived in Liu (2015) using Hölder-type
inequalities. For α < 0, we obtain a second set of constraints of Type (2) using a prior
with mass 1/(1 − α) ∈ (0, 1) in (α, 0d2) and mass −α/(1 − α) in (1, ei). Indeed, as
Eπ[m, r] = (0,− α

1−αei) ∈ OKMR
and KMR(1, ei) = 0, we have:

KMR(0,− α

1− αei) ≤
1

1− αKMR(α, 0d2) , (2.5.5)

which is the reversed pricing kernel bound (2.5.2) for α < 0. Equivalently,

Eα(M) ≤ (1− α) logE[R
−α/(1−α)
i ]− α logE[M ]

α(α− 1)
. (2.5.6)

These bounds for α < 0 are equivalent to the bounds derived in Snow (1991) using
Hölder-type inequalities. In summary, we have obtained the following proposition.

Proposition 3. For any α ∈ R, the following dispersion constraints hold:

KM (α)

α(α− 1)
≥ −KRi(α/(α− 1))

α
; i = 1, . . . , d2 . (2.5.7)

Figure 2.5 illustrates for d1 = d2 = 1 the construction of the above pricing ker-
nel bounds. For α = 1/2, we appy a constraint of Type (1) with observable points
(m, r) = (1, 1) and (m, r) = (0,−1). In this case, the unobserved point (m, r) =

(0, 1/2) lies in the convex hull of the observable points. For α = 2 (α = −1), we ap-
ply a constraint of Type (2) with observable points (m, r) = (1, 1) and (m, r) = (0, 2)

(points (m, r) = (1, 1) and (m, r) = (0, 1/2). In these last two cases, the unobserved
point (m, r) = (0, 2) ((m, r) = (0,−1)) lies outside of the convex hull of the observ-
able points.
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Bound Tightness

An important question is whether the pricing kernel bounds resulting from the dis-
persion constaints in Proposition 3 are tight, in the sense that they are the sharpest
bounds implied by the arbitrage-free constraints on returns (R0, R1, . . . , Rd2), where
R0 is the risk-free return.19 Given the joint distribution of returns, the tightest lower
bound on KM (α)

α(α−1) is the one implied by the minimum divergence pricing kernel in
Almeida and Garcia (2017).20 We find that the pricing kernel bounds implied by
arbitrage-free dispersion constraints are sharp, after a maximization of the right
hand side on inequality (2.5.7) over all returns of portfolios with weights 1−∑d2

i=1 λi, λ1, . . . , λd2
in returns R0, . . . , Rd2 .

Proposition 4 (Bound Tightness). LetM? be the solution of the minimal divergence prob-
lem in Almeida and Garcia (2017):

inf
M

{ KM (α)

α(α− 1)

}
, (2.5.10)

subject to M > 0 and KMR(1, ei) = 0 for i = 0, . . . , d2. Consider the following maximiza-
tion problem:

sup
λ

{
−KRλ(α/(α− 1))

α

}
, (2.5.11)

where Rλ =
∑d2

i=1 λiRi + (1 −∑d2
i=1 λi)R0. (with the constraint Rλ > 0). Given the

solution λ? to this problem, it follows:

KM?(α)

α(α− 1)
= −KRλ? (α/(α− 1))

α
, (2.5.12)

and the minimal divergence stochastic discount factor is given byM? = R
−1/(1−α)
λ? /E[R

−α/(1−α)
λ? ].

Proposition 4 shows that the tightest lower bound on KM (α)
α(α−1) , which is compatible

with a stochastic discount factor pricing returns R0, . . . , Rd2 , follows from a single

19Bansal and Lehmann (1997) and Alvarez and Jermann (2005), among others, show that the tightest
pricing kernel entropy bound, which is obtained for α → 0 in our setting, is the one generated by
the return of the growth optimal portfolio. By construction, that bound is equivalent to the bound
generated for α = 0 by arbitrage-free dispersion constraints incorporating the observability of the
return on the growth optimal portfolio.

20This follows from the equivalence of the optimization problem:

inf
M

{
KM (α)

α(α− 1)

}
s.t. KMR(1, ei) = 0 (i = 0, . . . , d2) , (2.5.8)

with the minimal divergence problem:

inf
M

{
E[Mα]− E[M ]α

α(α− 1)

}
s.t. E[MRi] = 1 (i = 0, . . . , d2) , (2.5.9)

in Almeida and Garcia (2017).
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arbitrage-free dispersion constraint for portfolio return Rλ? .21 The bound tightness
in Proposition 4 also implies closed-form upper and lower arbitrage free CGF of
the pricing kernel, wich explicit domains DU = [0, 1] and DL = [0, 1]c where these
functions take finite values:

KM (α) ≥ KLM (α) = (1− α)KR(α/(α− 1)) > −∞ ; α ∈ DL , (2.5.13)

KM (α) ≤ KUM (α) = (1− α)KR(α/(α− 1)) <∞ ; α ∈ DU . (2.5.14)

2.5.2 Multivariate Pricing Kernel Bounds

Using the same general dispersion approach as in the previous section, we now
address multivariate settings with multiple pricing kernel components.

Dispersion Constraints on Transient and Persistent Pricing Kernel Components

In the context of Section 2.2.4, we directly obtain a family of dispersion constraints of
Type (1), using for given 0 < β < 1 a prior with mass β in (m, r) = (1, 1, 1) ∈ OKMR

and mass 1− β in (m, r) = (−(β − α), 0,−β)/(1− β) ∈ OKMR
. In this way, we have

for any α ∈ R:

KMTMP (α, β)

β(β − 1)
≥ −
KMTR

(
−β−α

1−β ,−
β

1−β

)

β
= −
KR∞R

(
β−α
1−β ,−

β
1−β

)

β
. (2.5.15)

This bound constraints the joint distribution of transient and persistent pricing ker-
nel components and coincides with the univariate pricing kernel bound (2.5.7) when
β = α. Note that a violation of bound (2.5.15) can arise from an inappropriate model-
implied scaling of MT = 1/R∞. A scale-independent bound equivalent to bound
(2.5.15) is given in the next proposition, proven in the Supplemental Appendix.

Proposition 5 (Bound Tightness with SDF Decomposition). Given the physical distri-
bution P of pricing kernel components and returns, let equivalent measure T be defined

by the Radon-Nikodym derivative dT
dP :=

(MT )
γ

E[(MT )γ ]
for some γ ∈ R.22 Then MT :=

M(MT )−γE[(MT )γ ] is a stochastic discount vector with respect to measure T and the fol-
lowing bound is sharp for any β ∈ R:

KT
MT(β)

β(β − 1)
≥ −K

T
R(−β/(1− β))

β
. (2.5.16)

21Proposition 4 also implies that while the pricing kernel bounds in Snow (1991) and Liu (2015)
derived from univariate pricing constraints are not sharp in general, they are after an optimization
with respect to the family of portfolio returns generated by the priced underlying assets in an arbitrage
free market. This follows directly from the equivalence of the minimum divergence stochastic discount
factor bound in Almeida and Garcia (2017) and the optimized dispersion bound in Proposition 4.

22This change of measure is well-defined if and only if the marginal CGF ofMT in γ is well-defined.
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This bound is equivalent to the bound

KMTMP (γ + (1− γ)β, β)

β(β − 1)
≥ −KMTR(γ,−β/(1− β))

β
, (2.5.17)

in the sense that the difference of the LHS and the RHS of inequalities (2.5.16) and (2.5.17)
is identical.

The parameter choice γ = α−β
1−β in Proposition 5 implies bound (2.5.15) for any

α, β ∈ R such that KM ((α− β)/(1− β)) is well-defined. Note while bound (2.5.16)
is equivalent to bound (2.5.17), it is also robust to the scale of MT . In this sense,
a violation of bound (2.5.16) by an asset pricing model has the desirable property of
being robust to an inappropriate model-implied scaling of MT , deriving, e.g., from
an inappropriate empirical measurement of long term real bond returns.

Chernoff, 1952 Entropy Bounds on Domestic and Foreign Pricing Kernels

In the context of Section 2.3.2, inequality min(x, y) ≤ xαy1−α yields for any α ∈ (0, 1)

the following Chernoff, 1952 information bound on the average minimal pricing
kernel:23

E[min(Md/E[Md],Mf/E[Mf ])] ≤ exp(−CI∗(Md,Mf )) . (2.5.18)

When markets are complete, the forward exchange rate returnFe = (Mf/E[Mf ])/(Md/E[Md])

implies:

E

[
Md

E[Md]
max (0, 1− Fe)

]
≥ 1− exp(−CI∗(Md,Mf )) ≈ CI∗(Md,Mf ) , (2.5.19)

i.e., the (forward) price of an at-the-money put option on the (forward) exchange rate
is a tight upper bound on the Chernoff information of domestic and foreign pricing
kernels.24

Dispersion Constraints of Type (1) on Domestic and Foreign Pricing Kernels

In a d−country economy with pricing kernel componentsM = (M1, . . . ,Md) pricing
the gross returns R = (R1, . . . , Rd), the following pricing constraints hold for i =

1, . . . , d:
KMiRi(1, 1) = KMR([e′i, e

′
i]) = 0 . (2.5.20)

23Recall Definition (2.3.13) of Chernoff information. We make use of inequality min(x, y) ≤ xαy1−α

for x, y ≥ 0 and α ∈ (0, 1).
24From the symmetry of Chernoff information, the same bound applies for the (forward) price of

an at-the-money put option on the (forward) exchange return 1/Fe.
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Given strictly positive vector α = (α1, . . . , αd) such that ||α||1 :=
∑d

i=1 αi < 1, we
also have:

[α, 0d] =

(
1−

d∑

i=1

αi

)[
0d,−

α

1−∑d
i=1 αi

]
+ αi

d∑

i=1

[ei, ei] . (2.5.21)

Dispersion constraints of Type (1) then directly imply following multivariate pricing
kernel bound:

KM (α)

(
∑d

i=1 αi − 1)
∏d
i=1 αi

≥ −
KR
(
α/(
∑d

i=1 αi − 1)
)

∏d
i=1 αi

. (2.5.22)

This bound is a natural multivariate version of bound (2.5.2). Moreover, it can be
optimally sharpened in economies with multiple domestic and foreign returns. Pre-
cisely, let pricing kernel Mi price returns Ri0, . . . RiNi in market i = 1, . . . , d, where
Ri0 is the i−th risk-free return. Then, the optimization of lower bound (2.5.22) over
portfolios of these returns provides in Proposition 6 the sharpest bound.25

Proposition 6 (Multivariate Bound Tightness). Consider for α ∈ Rd++ such that ||α||1 <
1 the pricing kernel vector M? = (M?

1 , . . . ,M
?
d ) that solves the following minimum diver-

gence problem:26

inf
M

{
KM (α)

(
∑d

i=1 αi − 1)
∏d
i=1 αi

}
, (2.5.23)

subject to the following moment conditions, indexed by i = 1, . . . , d and ki = 0, . . . , Ni:

KMiRiki
(1, 1) = 0 . (2.5.24)

Further, consider the solution λ? of the maximization problem:

sup
λ

{
−KRλ(α/(

∑d
1=1 αi − 1))

∏d
i=1 αi

}
, (2.5.25)

where Rλ = (R1λ1 , . . . , Rdλd) and Riλi =
∑Ni

ki=1 λikRik + (1 −∑Ni
ki=1 λikRi0) is the

return of a portfolio of returns (with constraintRiλi > 0) denominated in the i−th domestic
currency. It then follows:

KM?(α)

(
∑d

i=1 αi − 1)
∏d
i=1 αi

= −KRλ? (α/(1−∑d
1=1 αi))∏d

i=1 αi
. (2.5.26)

25The proof is collected in the Supplemental Appendix.
26Rd++ denotes the d−dimensional strictly positive cone.
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The optimal pricing kernel M? := (M?
1 , . . . ,M

?
d ) has components given explicitly by:

M?
i =

[
R

1−
∑
j 6=i αj

iλ?i

∏d
j 6=iR

αj
jλ?j

]1/(
∑d
j=1 αj−1)

E

[∏d
j=1R

αj/(
∑d
j=1 αj−1)

jλ?j

] ; i = 1, . . . , d . (2.5.27)

From Proposition 6, the tightest lower bound on KM (α)/((
∑d

i=1 αi− 1)
∏d
i=1 αi),

which is compatible with a d−dimensional vector M of pricing kernels for the given
sets of returns, is obtained from a single dispersion constraint of Type (1) applied to
the vector of portfolio returns Rλ? = (R1λ?1

, . . . , Rdλ?d). By construction, the tightness
result in Proposition 6 also identifies in closed-form the upper arbitrage-free CGF on
domain D := {α ∈ Rd++ : ||α||1 < 1}:

KM (α) ≤ KUM (α) =

(
1−

d∑

i=1

αi

)
KRλ?

(
α/(1−

d∑

1=1

αi)

)
; α ∈ D . (2.5.28)

This result also induce an obvious generalization of univariate dispersion bounds.
For instance, a prior πα with mass αi on observable point [e′i, 0

′
d] (i = 1, . . . , d) and

mass 1−∑d
i=1 αi on point 02d implies the lower dispersion bound

Dπα(M) =
Eπα [KM (m)]−KM (Eπα [m])

∑d
i=1 αi(1− αi)

≥ −∑d
i=1 αi logRi0 + (

∑d
i=1 αi − 1)KRλ? (α/(

∑d
i=1 αi − 1))

∑d
i=1 αi(1− αi)

,(2.5.29)

which is a natural multivariate extension of the univariate entropy bound (2.5.3).
This bound is computable from the marginal distribution of returns across different
markets and it yields restrictions on both the marginal distribution of pricing kernel
components and their joint dependence.

It is useful to recall that no assumption on market completeness has been made
in Proposition 6, such as assumptions about the structure of the exchange rates be-
tween domestic and foreign markets. Obviously, the optimal bound in Proposition
6 is sharper whenever the set of returns Ri1, . . . , RiNi is wider in each market. Us-
ing exchange rate markets, the set of domestic asset returns is naturally extended,
by adding to each set of domestic returns the set of foreign returns converted in
domestic currency with the correponsing exchange rate return.

2.5.3 Relation to Other Bounds in the Literature

Bakshi and Chabi-Yo, 2012 investigate the variance of the permanent / transitory
component stochastic discount factor. Clearly the variance of the permanent com-
ponent of the SDF can be written as:

V ar
(
MP

)
= E

[
(MP )2

]
− E2

[
MP

]
= exp(κ(2))− 1 (2.5.30)
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which is just a monotone transformation of the divergence measureDH withH bino-
mially distributed over {0,2}. Finding the optimal value for DH by optimizing over
λ as in Proposition 4 provides the entropy bound given in Bakshi and Chabi-Yo,
2012. Similar conclusion holds for the transitory component as well.

Bakshi and Chabi-Yo, 2014 introduce the “entropy” of M2 as:

L(M2) = log(E(M2))− E(log(M2)) =
1

4
lim
α→0
DHα (2.5.31)

where Hα is a binomial distribution taking values in {0, 2}with probabilities (1−α)

and α respectively. For each α we can optimize over λ to achieve the maximal value
ofDHα given the lower bound (2.5.22). Taking the limit as α→ 0 results in the lower
bound given in Bakshi and Chabi-Yo, 2014.

2.6 Arbitrage Free Dispersion in Long Run Risk Models

We characterize the AFD of Bansal and Yaron, 2004 long-run risk (LRR) model, based
on the recent model estimation in Bansal, Kiku, and Yaron, 2016, which incorporates
temporal aggregation.

2.6.1 LRR Model

The LRR model is based on a representative agent with recursive preferences maxi-
mizing the life-time utility,

Vt =

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V

1−γ
t+1 ]

)1/θ
] θ

1−γ
, (2.6.1)

where Ct is consumption at time t, 0 < δ < 1 the time preference rate, γ the pa-
rameter of relative risk aversion and θ := 1−γ

1−1/ψ , with ψ is the elasticity of inter-
temporal substitution (IES). Utility maximization is subjec to to the budget constraint
Wt+1 = (Wt−Ct)Rc,t+1, whereRc,t+1 is the return on invested wealth, and consump-
tion growth ∆ct+1 satisfies the LRR dynamics:

∆ct+1 = µc + xt + σtηt+1 ,

xt+1 = ρxt + ψeσtet+1 , (2.6.2)

σ2
t+1 = σ2

0 + ν(σ2
t − σ2

0) + σwwt+1 .

with (ηt+1, et+1, wt+1) ∼ IIN(0, I3). The resulting (single-period) pricing kernel is

Mt,t+1 = δθ(Ct+1/Ct)
−θ/ψRθ−1

c,t+1 . (2.6.3)

We borrow from the headline estimated specification with monthly aggregation in-
tervals in Bansal, Kiku, and Yaron, 2016, making use of the parameter estimates in
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the right-hand-side panel of Table II in their paper, and study the joint AFD prop-
erties of transient and persistent pricing kernel components in the LRR model.27

Bansal, Kiku, and Yaron estimate the parameters in the LRR model using annual
time series of real consumption, the stock market portfolio and real risk-free rates,
in the sample period from 1930 to 2009.28 In order to factorize the pricing kernel in
the LRR model into transient and persistent conponents, we follow Alvarez and Jer-
mann, 2005 and make use of proxies based on the return of long-maturity bonds.
This data is available from CRSP’s Fixed Term Indices dataset at a monthly fre-
quency. Consistently with the aggregation procedure in Bansal, Kiku, and Yaron,
2016, we aggregate these returns to an annual frequency and convert them to real
returns using the CPI from the BLS.

2.6.2 Joint CGF of Transient and Persistent Pricing Kernel Components

We factorize the annual pricing kernel in the LRR model as Mt+1 = MT
t+1M

P
t+1,

where permanent component MP is such that Et[MP
t+1] = 1. Following Alvarez

and Jermann, 2005, we identify the transient component using the annual return
on the infinite maturity bond: MT

t+1 = 1/R∞,t+1. We calculate the model-implied
CGF of M = (MT ,MP ) by Monte Carlo simulation. Precisely, using monthly ag-
gregation steps s = 1, . . . , 12 we simulate N = 106 annual paths of state dynam-
ics (2.6.2) in the LRR model, based on parameter estimates from Table II in Bansal,
Kiku, and Yaron, 2016. Along each of the N annual simulated paths, we calculate
on a monthly frequency the time series of single-period stochastic discount fac-
tors (2.6.3) and model-implied long-maturity bond prices, from which we obtain
the annual pricing kernel Mt+1(u) =

∏12
s=1Ms,s+1(u) and the annual long matu-

rity bond returns R∞,t+1(u), u = 1, . . . , N .29 Given the simulated distribution of
MT
t+1(u) = 1/R∞,t+1(u) andMt+1(u) realizations, we calculate the simulated realiza-

tion ofMP
t+1(u) = Mt+1(u)/MT

t+1(u). Finally, for powers (t, p) in domainD = (0, 1)2,
we compute the Monte Carlo CGF estimate as:

KM
M (p, t) = logEM

[(
MT
t+1

)t (
MP
t+1

)p] ≈ 1

N

N∑

u=1

(MT
t+1(u))t(MP

t+1(u))p , (2.6.4)

27This specification is not rejected by the overidentification tests in Bansal, Kiku, and Yaron, 2016.
28Consumption represents per-capita real consumption expenditures on nondurables and services

from NIPA tables. Aggregate stock market data consist of annual observations of returns, dividends,
and prices of the CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and NAS-
DAQ. The ex-ante real risk-free rate is constructed from a projection of the ex-post real rate on the
current nominal yield and inflation over the previous year. Market data are converted to real using the
consumer price index (CPI) from the BLS.

29The yields of discount real bonds are affine functions of the state variables in the LRR model after
a log-linearization. These affine functions can be calculated recursively as bond maturity increases. In
this way, we obtain the price of the infinite maturity bond numerically for a sufficiently long maturity,
avoiding to solve the eigenfunction problem implied by Perron-Frobenius theorem; see, e.g., Bakshi
and Chabi-Yo, 2014. We follow Bansal, Kiku, and Yaron, 2016 and log-linearize around the mean value
of the price-consumption ratio. This provides a fixed-point problem that is solved numerically.
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where M emphasizes the model-implied character of this CGF. The CGF KM
M |D in

the LRR model is plotted in the left panel of Figure 2.6. It features a pronounced
convexity along the p-axis and a much flatter profile along the t-axis. Consistent
with the intuition in, e..g, Alvarez and Jermann, 2005, these convexity properties in-
duce a significant dispersion in the permanent pricing kernel component and a much
lower dispersion in the transient pricing kernel component of the LRR model.

2.6.3 Observable Set OKMR
for the LRR Model

Given a suitable risky portfolio return Rλ, we obtain the observable arbitrage-free
CGF using following observable set OKMRλ

.

Assumption 1 (Observable Set). Set OKMRλ
is defined by the following observable

points:

(1) Restriction at the origin: (0, 0, 0) ∈ OKMRλ
.

(2) Martingale normalization: (0, 1, 0) ∈ OKMRλ
.

(3) Pricing of short-term bond: (1, 1, 0) ∈ OKMRλ
.

(4) Pricing of risky return: (1, 1, 1) ∈ OKMRλ
.

(5) Statistically observable risky and long-horizon bond returns: (t, 0, r) ∈ OKMRλ

for (t, r) ∈ R2.

Figure 2.2 illustrates the observable set OKMRλ
implied by assumptions (1)-(5).

The vertical red plane in (mT , r) coordinates is generated by observability assump-
tion (5). This assumption follows from the CGF condition:

KMRλ(t, 0, r) = logE[(MT )tRrλ] = logE[R−t∞R
r
λ] , (2.6.5)

which reflects Alvarez and Jermann, 2005 identification MT = 1/R∞. The remain-
ing points in the graph, highlighted with purple circles, correspond to assumptions
(1)-(4). To generate risky portfolio return Rλ, we consider distinct sets of benchmark
assets. ReturnRλA := R0 +λA(RM−R0) (Set A = Mkt + Bond) is the return of a port-
folio invested in the short-term zero bond and the aggregate equity market. Return
RλB := R0 + λB1(R1 − R0) + λB2(R2 − R0) is the return of a portfolio invested in
the short-term zero bond and two size-sorted portfolios with book-to-market ratio
in the top 50% quantile of the CRSP universe (Set B = S-G + L-G + Bond).30 Finally,
return RλC := R0 +

∑2
i,j=1 λCij(Rij −R0) is the return of a portfolio invested in the

short-term bond and four double-sorted portfolios with respected to size and book-
to-market (Set C = S-G + L-G + S-V + L-V + Bond).31 We focus on the restrictions

30For brevity, S (L) stays for Small (Large) stocks and G (V) for Growth (Value) stocks.
31We obtain these stock return data from Kenneth French’s website. http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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implied by Assumption 1 for the marginal arbitrage-free CGF of pricing kernel vec-
torM = (MT ,MP ) on domainD = (0, 1)2. AsD ⊂ OKMRλ

, the upper arbitrage-free
CGF KUMRλ

is finite on D and provides a useful observable upper bound for KM on
this domain. In order to obtain the sharpest upper bound KUMRλ?

= infλKUMRλ
in

our tests of the LRR model, we optimize the portfolio composition λ, with respect to
weights λu corresponding to benchmark investment sets u = A, u = B and u = C,
respectively.

2.6.4 Omnibus Diagnostic Tests of Null HypothesisH0(OKMRλ?
)

Motivated by the diagnostics testing approach of Section 2.4.6, we first focus on
dispersion constraints of Type (1) for the LRR model, over the domain D ⊂ OKMRλ?

:

H0(D) : KM
M |D ≤ KUMRλ?

|D . (2.6.6)

The estimated upper arbitrage free CGF K̂UMRλ̂?
|D for data sets A and C is presented

in the middle and the right panel of Figure 2.6, respectively. Similar to the model-
implied CGF, the upper CGFs imply a pronounced convexity along the p-axis and
a flatter profile along the t-axis, supporting a dominating dispersion of permanent
relative to transient pricing kernel components in the data. However, shapes and
levels of the upper and model-implied CGFs are also different in a number of cases.

In order to rely on an accurate finite-sample inference on the LRR model, we
develop a suitable bootstrap procedure for estimating bootstrap confidence intervals
about point estimate K̂UMRλ̂?

(p, t, 0) for each (p, t) ∈ D.32 Conservative bootstrap
p-values for the test of null hypothesis (2.6.6) are presented in Figure 2.8a. Using
dataset A, we obtain no significant violation of this null hypothesis over the vast
majority of domainD. In constrast, using datasetsB and C, we progressively obtain
wider regions of rejection of null hypothesis (2.6.6), also in the interior of domain
D, at standard significance levels. While the violations highlighted by investment
sets B and C indicate a possible misspecification of the joint CGF of (MT ,MP ) in
the LRR model, it is useful to recall that null hypothesis (2.6.6) is not robust with
respect to the model-implied scale of MT = 1/R∞. Therefore, a violation of this
hypothesis is not directly interpretable as a (scale-invariant) dispersion violation or
as an observable scale discrepancy between the model-implied and the arbitrage-
free CGF. Similarly, the non rejection of null hypothesis (2.6.6) using investment set
A could be the consequence of a low power of the omnibus test in the joint presence
of a dispersion violation and an observable scaling discrepancy. Consistently with
the concepts developed in Section 2.4, we adress the separation of model violations
due to inappropriate dispersion from those due to a scaling discrepancy in the next
sections.

32Details on this bootstrap procedure are provided in the Supplemental Appendix, available from
the authors upon request.
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FIGURE 2.3: Illustration of Jensen’s gap and generalized entropy of the SDF in equation
(2.3.8). The SDFM is centered so thatE[M ] = 1. The standard deviation ofM is set to

0.65.
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2.6.5 Diagnostic Test of a Scaling Discrepancy in MT = 1/R∞

Due to the normalization of the permanent pricing kernel component in the LRR
model, a potential model-implied scaling discrepancy can only arise from an inap-
propriate scale of MT = 1/R∞. Empirically, a scaling discrepancy in MT can follow
from the fact that in the data there is no exact analogue of the long maturity bond re-
turn R∞. For instance, a natural empirical proxy for R∞ is the return RLT of a bond
with the highest observed maturity. Thus, a discrepancy between scales E[1/R∞]

and E[1/RLT ] can be motivated by a limitation of proxy 1/RLT for measuring the
scale of 1/R∞, rather than by a broader empirical violation of the LRR model.

-10 -5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Model long term bond CGF vs. bootstrapped bounds

mT

K M
T
(−
m

T
)

Model, adjusted mean
Model, unadjusted
10/90% quantile
5/95% quantile

FIGURE 2.7: Model-based and estimated CGF confidence bounds of the transitory com-
ponent of the stochastic discount factor, with MT estimated with real returns on long-
maturity bonds. Bootstrapped confidence bounds are denoted by red solid and dashed
lines. The LRR model-implied CGF is given by the blue line. The black line depicts the
LRR model implied CGF once the mean effective return is matched to the data mean

(through a constant translation of logarithmic returns).
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FIGURE 2.8: Omnibus and marginal SDF space dispersion tests.
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We can address the properties of 1/RLT as an empirical proxy for 1/R∞, by com-
paring in Figure 2.7 their marginal CGFs. We find that the marginal CGF of 1/R∞

in the LRR model (plotted in blue) is outside the 95% pointwise bootstrap confi-
dence interval around the empirical marginal CGF of 1/RLT (plotted in black). How-
ever, a rescaled transient component M̃T := K/R∞ (K > 0) such that EM[M̃T ] =

E[1/RLT ] produces a marginal model-implied CGF well-inside the bootstrap con-
fidence intervals.33 Therefore, while a violation of Type (1) due to scaling can be
explained by the limitations of proxy 1/RLT for measuring the scale of 1/R∞, a vi-
olation due to inappropriate dispersion cannot be explained by the limitations of
proxy 1/RLT for measuring the dispersion of 1/R∞. Indeed, we can directly mea-
sure the dispersion of MT = 1/R∞, e.g., using the generalized entropy Eα(MT ) in
Section 2.3.2, based on a Bernoulli prior πα such that πα(1, 0, 0) = α ∈ (0, 1) and
πα(0, 0, 0) = 1− α:

Dπα(MT ) =
Eπα [KMT (t)]−KMT (Eπα [t])

α(1− α)
=
αKMT (1)−KMT (α)

α(1− α)
= Eα(MT ) ,

(2.6.7)
which is observable under Assumption 1 (5). Figure 2.9 collects the results of a di-
agnostics test of null hypothesis H0 : Eα(1/R∞) = Eα(1/RLT ), for parameters α ∈
(0, 1). We find that the model-implied dispersion of 1/R∞ is well inside the 95%
bootstrap confidence interval of the estimated dispersion Êα(1/RLT ), confirming
that the dispersion of 1/R∞ well reproduces the empirical dispersion of 1/RLT .
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FIGURE 2.9: Observable dispersion of the transitory part of the SDF (2.6.7), calculated
under the assumption that real returns on nominal long-maturity bonds are a proxy
for real returns on infinite-maturity real bonds, which in turn are the inverse of the

transitory component of the SDF, i.e. R∞ =
(
MT

)−1.

33A rescaling fromMT to M̃T is equivalent to modifying the model-implied CGF by a linear function
such that KM

MT (1) = KM̃T (1).
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2.6.6 Diagnostics Tests of Observable Excess Dispersion

From Definition 8, an excess dispersion ∆Jπ1,π2 is observable when two priors with
identical mean and support in OKMR

exist. In the LRR model, we obtain a family
of observable excess dispersions for bivariate vector M = (MT ,MP ), using pri-
ors π1, π2 such that π1 has support in {(1, 1), ((t − p)/(1 − p), 0)}, π2 has support in
{(0, 1), (t/(1− p), 0)}, and π1(1, 1, 0) = π2(0, 1, 0) = p ∈ (0, 1). The resulting observ-
able excess dispersion is:

∆Jπ1,π2 = p logB − (1− p) log

(
E

[
R
− t

1−p
∞

]
/ E

[
R
− t−p

1−p
∞

])
, (2.6.8)

where we used Assumption 1 (5) to write MT = 1/R∞. Similar to the observable
covariance measure cov(MT ,MP ) = B − E[1/R∞] in Bakshi and Chabi-Yo (2014),
excess dispersion (2.6.8) is not in general robust with respect to the scaling of 1/R∞.
However, for t = p = 1/2 we obtain the scale invariant observable excess dispersion
in Example 2:

∆Jπ1,π2(R∞) :=
1

2
log
(
cov(R∞/E[R∞],MP ) + 1

)
. (2.6.9)

Table A.7 presents the results of a direct test of null hypothesisH0(∆J ) : ∆Jπ1,π2(RLT ) =

∆JM
π1,π2(R∞) based on excess dispersion (2.6.9). We find that the model-implied ex-

cess dispersion is negative, while its point estimate ∆̂J π1,π2(RLT ) in the data is pos-
itive. The difference is statistically significant, as the model-implied excess disper-
sions does not fit within the 95% bootstrap confidence interval about ∆̂J π1,π2(RLT ).
As excess dispersion (2.6.9) is robust with respect to the scale ofMT , such a violation
is independent of the model’s ability to fit average long-maturity bond returns and
reflects a deeper failure of the LRR model in explaining the unconditional slope of
the yield curve.

2.6.7 Diagnostics Tests of Marginal Lower Dispersion Bounds

As illustrated by Figure 2.10, for any point (t0, p0) ∈ D := (0, 1)2 we can obtain
multiple dispersion constraints of Type (1), using distinct priors π with support in
OKM and mean Eπ[(t, p)] = (t0, p0), which exclusively use information from the
permanent and transient pricing kernel components. Given set Π(t0, p0) of such
priors and π0 ∈ Π(t0, p0), following observable lower dispersion bound emerges:

Dπ0(M) =
Eπ0 [KM (t, p)]−K(Eπ0 [(t, p)])

tr(V arπ0(t, p))

≥
Eπ0 [KM (t, p)]− infπ∈Π(t0,p0)Eπ[KM (t, p)]

tr(V arπ0(t, p))
=: DLπ0,Π(t0,p0)(M) > 0 ,(2.6.10)

where the last strict inequality holds if the infimum is not attained in π0.
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FIGURE 2.10: Dispersion bounds in the marginal CGF space. Red points and lines depict the observable set OKMR . Black points belong to the convex span of the observable
set, OKMR . In 2.10a the value of the CGF in each point is bounded in two ways: by taking the CGF value at (1, 1) (the log-bond price) or at (0, 1) (the martingale restriction),
respectively, and the corresponding points on the mT axis. In 2.10c and 2.10b the purple triangles provide two more ways of constructing Type (1) dispersion bounds. In order

to construct KUMR one has to pick the lowest available bound value.
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Consistently with the graphical description in Figure 2.10, we construct set Π(t0, p0)

by including the following priors. First, we include prior π1 with support in {(1, 1), ((t0−
p0)/(1−p0), 0)} and prior π2 with support in {(0, 1), (t0/(1−p0), 0)} such that π1(1, 1) =

π1(0, 1) = p0 (see Figure 2.10a). Second, for any 0 < t0 ≤ p0 < 1 (any 1 > t0 > p0 > 1)
we include priors π3 with support in {(0, 0), (0, 1), (1, 1)} (in {(0, 0), (1, 0), (1, 1)})
such that π3(0, 0) = (1− t0) and π3(0, 1) = t0 − p0 (π1(0, 0) = (1− t0) and π1(1, 0) =

t0 − p0); see Figure 2.10c (Figure 2.10b).
The left and the middle panels of Figure 2.8b plot for any (t0, p0) ∈ D the esti-

mated lower bound D̂Lπ0,Π(t0,p0)(M) and the model-implied dispersion DM
π0(M), re-

spectively, where prior π0 = arg supπ∈Π(t0,p0)Eπ[KM (t, p)] is selected to ensure a non
trivial lower dispersion bound (2.6.10). We find that typically the estimated lower
bound is much lower than the model-implied dispersion, with bootstrap p-values
for the test of null hypothesis DM

π0(M) ≥ DLπ0,Π(t0,p0)(M), in the right panel of Figure
2.8b, which never produce a rejection even at large significance levels. This evidence
shows that the information in the marginal distribution of pricing kernel compo-
nents, which is generated by the return of short-term and long-maturity bonds, is
insufficient to reject the CGF specification of the LRR model in unobservable parts
of its domain.

2.6.8 Diagnostics Tests of Joint Lower Dispersion Bounds

Marginal lower dispersion bound (2.6.10) can be substantially improved, based on
the information generated by traded portfolio return Rλ, giving rise to joint lower
dispersion bounds. Indeed, for (t0, p0) ∈ D we can obtain additional multiple dis-
persion constraints of Type (1), using the joint arbitrage-free CGF of pricing kernels
and returns and a prior π with support in OKMRλ

such that (t0, p0, 0) = Eπ[(m, r)].
For instance, using prior π1 in the previous section, we obtain:

Dπ1(M) =
Eπ1 [KM (t, p)]−KM (t0, p0)

tr(V arπ1(t, p))

≥
Eπ1 [KM (t, p)]−KUMRλ

(t0, p0, 0)

tr(V arπ1(t, p))
=: DLπ1(M,Rλ) > 0 , (2.6.11)

whereDLπ1(M,Rλ) is observable empirically. By construction,KUMRλ
(t0, p0, 0) is finite

and has the following explicit expression from Proposition 5: 34

KUMRλ
(t0, p0, 0) = (1− p0)KMTRλ

(
t0 − p0

1− p0
,− p0

1− p0

)

= (1− p0)KR∞Rλ
(
p0 − t0
1− p0

,− p0

1− p0

)
. (2.6.12)

34 Finiteness of KUMRλ
(t0, p0, 0) follows from the fact that (t0, p0, 0) is in the convex hull of set

{(t, 0, r) : t, r ∈ R} ∪ {(1, 1, 1), (1, 1, 0)} ⊂ OKMRλ . Figure 2.2 illustrates the observable points in
set OKMRλ .
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By optimizing portfolio weight vector λ as in Proposition 4, we obtain the sharpest
dispersion bound:

Dπ1(M) ≥ DLπ1(M,Rλ?) , (2.6.13)

where λ? = arg infλKUMRλ
(t0, p0, 0). This bound is also robust with respect to the

scale of R∞, whenever portfolio return Rλ? does not depend on a position in the
long-maturity bond, giving rise to the scale-independent null hypothesis:35

H0 : DM
π1 (M) ≥ DLπ1 (M,R?λ) . (2.6.14)

Figure 2.11 summarizes the test results of null hypothesis (2.6.14), using investment
sets A, B and C and for (t0, p0) ∈ D. For each dataset, we obtain a substantial vari-
ability of the test p−values over domain D. The test results are especially interesting
in the left panel of Figure 2.11a, which corresponds to the very simple investment
set A, consisting of the short-term risk-free bond and the aggregate equity market.
In this panel, we obtain a large number of rejections of the lower dispersion bound
(2.6.14) at standard significance levels below 5%, basically for all points above the
main diagonal in (t, p) coordinates. In this way, we reject the LRR model by using
portfolios of asset returns that were used to estimate the model and by additionally
incorporating only the information generated by the long-maturity bond return, in
order to construct an observable proxy of the transient pricing kernel component.
Note that a multivariate dispersion test, able to exploit the decomposition of the
pricing kernel into transient and persistent components, is important in order to un-
cover these violations. Indeed, the p-value of the dispersion test for p, t → 0, which
correponds to a univariate test of the standard entropy bound (2.5.3), does not imply
a model rejection at the 5% significance level.

35Scale invariance of the bound follows from the fact that KR∞
(
− t−p

1−p

)
− KR∞R

(
− t−p

1−p ,−
p

1−p

)
does not depend on the scale of R∞. Including the long-maturity bond in the investment set makes
the lower dispersion bound sharper, but it obscures whether a potential dispersion violation is due to
an inappropriate convexity or an inappropriate scaling of the model-implied CGF.
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FIGURE 2.11: Dispersion tests in (M,R) space (see Section 2.6.8): p-values. The null hypothesis (2.6.14) is tested for Dπt,p as in (2.6.11) for (t, p) ∈ (0, 1) × (0, 1). Tests
without RLT in the investor’s portfolio are immune to the mean level of logRLT in the data. Data set A considers a portfolio of the value-weighted stock index return
and short-term bond. Data set B additionally takes size-sorted Fama-French portfolios. Data set C extends to size- and value- sorted Fama-French portfolios. Data set

description is available in Section 2.6.3.
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For investment set B, the rejection area expands to almost all of domain D, ex-
cept regions with either high p and small t or high t and small p. A further expansion
of the rejection region to virtually all of D arises for investment set C, when book-
to-market-sorted returns are taken into account. This finding highlights a difficulty
of the LRR model in explaining the dispersion properties of growth and value re-
turns, which complements the model’s ability to produce a ”cross-section” of value
premia close to the extant CAPM, as documented by Bansal, Kiku, and Yaron, 2016.
Finally, when returnR?λ in null hypothesis (2.6.13) depends on the return of the long-
maturity bond, we get in Figure 2.11b even stronger violations for all investment
sets, which additionally reflect the weak properties of proxy 1/RLT for measuring
the scale of 1/R∞, shown in Section 2.6.5.

2.7 Conclusion

We introduce a general theory of arbitrage-free dispersion (AFD) that characterizes
the testable properties of multivariate asset pricing models. We measure multivari-
ate dispersion by a family of Jensen’s gaps that directly reflect the convexity proper-
ties of the arbitrage-free cumulant generating function (CGF) of pricing kernels and
returns. We show that the observable asset pricing restrictions and the statistical in-
formation on asset returns produce tight constraints on the arbitrage-free CGF and
its AFD, which are helful to test multivariate pricing kernel specifications with a uni-
fying approach. While our approach naturally incorporates existing AFD constrains
in the literature based on univariate pricing kernel bounds, we show that it nat-
urally extends to general multivariate pricing kernel specifications, incorporating,
e.g., transient and persistent pricing kernel components, domestic and foreign state
prices or horizon dependence.36 For general multivariate specifications, we system-
atically develop a wide family of testable AFD constraints, for which we derive
closed-form expressions and optimality properties in a number of concrete model
settings. Using a recent estimation of the Bansal and Yaron, 2004 model in the litera-
ture, we empirically test the multivariate AFD properties of Long Run Risk models,
focusing on the joint model-implied distribution of permanent and transient pric-
ing kernel components. We find that while the arbitrage-free and the model-implied
CGF both imply a dominating degree of dispersion associated with the permanent
component, the joint model-implied dispersion implies a counterfactual dependence
of short vs. long-maturity bond returns and is insufficient for pricing the return of
a simple portfolio of short-term riskless bonds and market equity. Such dispersion
violations are robust with respect to the quality of empirical proxies for long ma-
turity bond returns and are sharper when pricing the return of optimal portfolios
invested in double-sorted size and value stocks.

36Univariate pricing kernel bounds that are embedded in our AFD approach include Bansal and
Lehmann, 1997, Alvarez and Jermann, 2005, Bakshi and Chabi-Yo, 2012, Liu, 2015, Bakshi and Chabi-
Yo, 2014 and Backus, Chernov, and Zin, 2014, among others.
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3 State recovery from option data
through variation swap rates in the
presence of unspanned skewness

3.1 Introduction

In this paper I show how certain established realized variation swaps can be inter-
preted in the context of the slope of the forward-neutral cumulant generating func-
tion of log-returns. I discuss the information content of both the fixed, and the float-
ing legs of the contracts. These swap rates succinctly summarize information avail-
able in the implied volatility surface. I leverage the fact that in affine jump-diffusion
models the swap rates are themselves affine in the state variables to demonstrate
(in a simulated setting) that a reduced-dimension filter based on selected swap rates
can outperform a non-linear filter based on the whole option panel in an AJD op-
tion pricing model. In what follows, I refer to this set of swaps as affine contracts.
The recommended contract selection – short-maturity skew swaps augmented with
longer-maturity variance swaps – is especially beneficial in settings with unspanned
skewness, which occurs in AJDs when stochastic factors driving asymmetric jumps
do not drive the Brownian volatility.

The importance of an unspanned skewness factor for modeling index option risk
dynamics is underlined by the recent literature. Gruber, Tebaldi, and Trojani, 2015
identify the unspanned risk factor with the dynamics of short-term implied volatility
skew through a stochastic correlation factor between volatility processes and show
that it is particularly important in the description of risk premia. Andersen, Todorov,
and Fusari, 2015 find that an extremely Q-persistent, self-exciting tail risk factor is
necessary to describe risk premia implied by out of the money put options. Impor-
tantly, the factor only drives premia, and is hardly detectable from return (volatility)
dynamics. A high-frequency non-parametric analysis of option implied volatilities
in Andersen et al., 2015 finds that markedly different factors impact the pricing of
low-struck puts as opposed to at-the-money calls: the former has a jump nature,
while the latter is a Gaussian process and is associated with volatility. Calvet et al.,
2015 link the jump factor to the dynamics of persistent changes in the level of volatil-
ity, again decoupling the jump intensity from the evolution of spot volatility. Li and
Zinna, 2017 lean upon the term structure of variance swaps to find that the short end
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of the volatility risk premium responds strongly to the jump factor whose intensity
is, again, independent of Brownian volatility dynamics.

Typically, the stochastic drivers of time-varying return moments and risk premia
are not directly observable, and have to be inferred from (option) data. Extracting
that information, however, requires considerable modeling and computational ef-
fort. The two dominant approaches in the literature rely either on (approximate)
maximum likelihood or on non-linear least squares or GMM. They differ impor-
tantly in how the latent states are estimated. The former method requires the knowl-
edge of the transition density of the state variables, and a probabilistic description
of observation error to then estimate the states in a Bayesian manner from panels
of data. Examples can be found in .e.g. Eraker, Johannes, and Polson, 2003; Calvet
et al., 2015; Fulop and Li, 2015; Li and Zinna, 2017. The latter treats state variables as
parameters to be estimated jointly with structural model parameters, and is exempli-
fied e.g. in Pan, 2002; Bates, 2000; Andersen, Fusari, and Todorov, 2015a; Andersen,
Todorov, and Fusari, 2015. In a third approach, Aı̈t-Sahalia, Karaman, and Mancini,
2015 treat a selection of variance swap contracts as free of observation error and
directly solve for the states, inverting the linear mapping postulated by the model.

These estimation approaches differ in what data the researchers take as primi-
tives, and can be grouped in two sets. Studies such as Bates, 2000; Pan, 2002; Eraker,
Johannes, and Polson, 2003; Calvet et al., 2015 and Andersen, Fusari, and Todorov,
2015a; Andersen, Todorov, and Fusari, 2015 estimate the models on data on the op-
tion implied volatility surface and their focus is on risk premia associated with the
factors driving return variation. Aı̈t-Sahalia, Karaman, and Mancini, 2015; Fulop
and Li, 2015 and Li and Zinna, 2017 turn their focus to variance risk premia, and
can thus limit their attention to variance swap data, which do not encode all the
information available in the option panel, however offer a dramatic reduction in
computational complexity and the benefits of linear filtering. Augmenting the term
structure of variance swaps with other affine contracts retains the simple form of the
filtering problem and the information content of the complete implied volatility sur-
face. Furthermore, as opposed to individual options, in the case of affine contracts
it is straightforward to identify a contract’s loadings on the factors. Such sharpness
brings along a potentially improved identification of the factors that have a major
impact only on the prices of a subset of options – the risks unspanned by volatility.

The paper proceeds with a discussion of the properties and the interpretation
of the forward-neutral cumulant generating function of log-returns in Section 3.2,
followed by the description and interpretation of CGF slope swaps 3.3. It presents
results of simulation studies of various observation equation specifications in filter-
ing in Section 3.4. Section 3.5 concludes.
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3.2 The forward-neutral cumulant generating function

The CGF, through no-arbitrage restrictions, has several interesting properties under
the forward-neutral probability measure. I show how under these restrictions the
derivatives of the CGF can be interpreted as measures of expected return variation.

The cumulant generating function of the log-return, defined by

K(p, τ |It) := lnE [(Ft+τ/Ft)
p |It], (3.2.1)

is a convex and continuous function of argument p. I also introduce the following
notation, which will simplify many upcoming expressions:

φp(x) := xp. (3.2.2)

The CGF uniquely identifies the forward-neutral probability distribution. Therefore,
if it is possible to evaluate the CGF at arbitrary p, then it is possible to uniquely deter-
mine the state pricing measure. In empirical applications, the forward-neutral CGF
has to be estimated from the prices of European option contracts, as in Section 3.3.2.
For small and large values of p the estimates require the knowledge of prices deep
out of the money put and call contracts, respectively. If they are at all available, these
prices are subject to high uncertainty through wide bid-ask spreads and potentially
infrequent updating. As a consequence, estimates of CGF values for p outside of the
[0, 2] interval are highly unreliable. This is because estimating the CGF (its slope)
from option prices requires weighing the option prices by weights of order Kp−2

(lnKKp−2). My experience with option data shows that below p = 0 (above = 2) the
put (call) option weights grow too fast to ensure decent swap rate approximations
with the available option quotes. Fortunately, the CGF and especially its first deriva-
tive on the smaller interval [0, 1] contain rich information about the second and third
moments of simple returns.

An example CGF is plotted in Figure 3.1. Under the forward measure Qt,τ the
time-t expectation of the forward return is EQt,τ [Ft+τ/Ft|It] = 1. 1 This property
translates to Kt(0, τ) = Kt(1, τ) = 0 and has important consequences for the inter-
pretation for the CGF. For instance, together with convexity and continuity, it implies
that there exists a p∗ ∈ (0, 1) which is a global minimum. It follows that the values
of the CGF on the unit interval are bounded and easier to estimate.

The derivatives of the CGF evaluated at 0 convey information about the cumu-
lants – and through them, moments – of the log-return. As a consequence of the
particular features of the forward measure, and of the concavity of the logarithm
function, the first derivative of the CGF evaluated at any p is informative of the sec-
ond or third moment of simple returns Ft+τ/Ft. To see that, note the form of K ′t(p, τ)

in equation (3.2.3), and its expansion in simple return, around its forward-neutral

1In order to de-clutter notation, I write Q for Qt,τ , Kt(p, τ) for K(p, τ |It), and EM
t [Xt+τ ] for

EMt,τ [Xt+τ |It] whenever the contextual understanding does not suffer.
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mean, 1, in equation (3.2.4).

K ′t(p, τ) = EQ
t

[(
Ft+τ
Ft

)p
ln
Ft+τ
Ft

]
/eKt(p,τ) (3.2.3)

=

EQ
t

[(
Ft+τ
Ft
− 1
)

+
(
p− 1

2

) (Ft+τ
Ft
− 1
)2

+
(
p2

2 − p+ 1
3

)(
Ft+τ
Ft
− 1
)3

+ . . .

]

eKt(p,τ)
.

(3.2.4)

K ′t(p, τ) above is the slope of Kt(p, τ) plotted in the right panel of Figure 3.1. Under
an arbitrary probability measure, K ′t(p, τ) would contain a first moment component.
Under no-arbitrage restrictions of the probability measure, the first element of the
expansion in (3.2.4) drops out, and the leading order of the expansion depends on
p. While it is not immediately obvious from (3.2.3) what this quantity measures, the
expansion (3.2.4) is rather instructive.

From expansion (3.2.4), the leading term in the slope of the CGF is determined
for almost all ps by the second moment of the forward return. In the left panel of
Figure 3.1 I plot the slope at three points of particular interest. The CGF’s slope at
0 (K ′t(0, τ)), marked with a green line, is the expectation of lnFt+τ/Ft. Evaluated
at 1 (K ′t(1, τ)), marked with a red line, it is the expectation of Ft+τ/Ft lnFt+τ/Ft.
The leading terms in these quantities are, to first order, determined by the forward-
neutral variance of simple returns. They differ in how higher moments of the dis-
tribution of simple returns impact them. Importantly, to the left (right) of p = 1/2

the second moment of simple returns enters with a negative (positive) sign, there-
fore the steeper the CGF descends (ascends) at 0 (at 1), the higher the variance of
simple returns. The slope at p = 1/2 (K ′t(1/2, τ)), marked with a brown line, is a
particularly interesting case. Indeed, in the expansion (3.2.4), the leading variance
term drops out precisely at p = 1/2, which implies that the CGF slope at p = 1/2 is a
measure of skewness of the simple return.

A precise notion of skewness can be assigned to the CGF slope at p = 1/2. In-
deed, note that (Ft+τ/Ft)

p/eKt(p,τ) can be interpreted as a Radon-Nikodym deriva-
tive, and (3.2.3) can be interpreted as the expectation of log return under a changed
probability measure. The particular feature of this measure, as shown in Schneider
and Trojani, 2015a, is that K ′(1/2, τ) = 0 if and only if the forward distribution is
put-call symmetric (Carr and Lee, 2009). In the case of put-call symmetry, the mini-
mum of the CGF falls at 1/2. Whenever the minimum falls to the left (right) of 1/2,
the associated distribution is left-skewed (right-skewed).

In summary, in this section I showed how the CGF and its first derivatives are
informative of the second and third moments of the forward-neutral distribution.
If the forward measure allows no arbitrage, then prices of payoffs can be found by
evaluating the relevant forward expectation. A natural consequence of this fact is
that there exist trading strategies whose prices are expressed by K ′(p, τ). I describe
the strategies and their payoffs in the Section 3.3.
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FIGURE 3.1: Example cumulant generating function and its derivative. Derivatives of
the CGF at three chosen points are illustrated with tangent lines in the left panel.

3.2.1 CGF in affine jump diffusions

I consider a general affine stock return dynamics, written as:

dFt
Ft−

= µ(Vt−)dt+ Φ(Vt−)dWS
t +

∫

R\{0}
(eg(x,y) − 1)νt(dx, dy)dt (3.2.5)

dVt = κ(Vt−)dt+ Σ(Vt−)dW V
t +

∫

RM+
yνt(dx, dy)dt

with µ : RM → R, κ : RM → RM , Φ′Φ, and the diagonal of Σ′Σ (the off-diagonal
elements are 0) affine in V . νt is a counting measure whose compensator is affine in
V . All components of dWS are independent, and so are those of dW V . It is, how-
ever, possible to allow for correlation between dWS and dW V to model the ”lever-
age effect”, that is to reflect the fact that negative returns often accompany icreases
in volatility. This notation covers basically all models existing in the literature on
standard state spaces.

Duffie, Pan, and Singleton, 2000 and Duffie, Filipovic, and Schachermayer, 2003
give the general form of the joint cumulant generating function of the log-return and
variance factors in settings like (3.2.5) and impose necessary technical conditions on
the jump measure ν. Borrowing from the intuitions of Section 3.2, I focus on the
marginal CGF of the log-return and its derivative. For p ∈ R, write

Kt(p, τ) = α(p, τ) + β(p, τ) · vt (3.2.6)

K ′t(p, τ) = α′(p, τ) + β′(p, τ) · vt. (3.2.7)

The coefficients α, α′, β, β′ can be found by solving systems of ordinary differential
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equations, as stated in Propositions 1 and 3 in Duffie, Pan, and Singleton, 2000, re-
spectively for the CGF and its derivative.

It is instructive to investigate the sensitivity of the shape of the CGF and its
derivative to the parameter values of a simple affine jump diffusion model. From
changes in the shape and values of the CGF and its derivative, induced by parame-
ter changes, one can infer (a) which risk-neutral moments of log-returns the param-
eter changes impact, and (b) how contract prices might reflect higher-order moment
information.

The Bates, 1996 specification is the simplest ”laboratory” which allows for a rich
comparative statics analysis. The model allows for jumps in the underlying (with a
constant jump intensity) and a Brownian leverage effect.

dFt
Ft−

= −λ0E[ex − 1]dt+
√
vtdW

S
t +

∫

R\{0}
(ex − 1) ν(dx)dt (3.2.8)

dvt = κ(η − vt)dt+ σ
√
vtdW

v
t

dWS
t dW

v
t = ρdt, and

ν(dx)

dx
=

λ0√
2π
e
− (x−µJ )2

2σ2
J

I modify the parameters from those contained in the paper so that they better re-
flect the characteristics of stock returns, rather than foreign currency returns, which
served as the estimation sample. I set a negative jump mean and add a substantial
leverage effect. The exact values are not of central interest, albeit they are reported
in Figure 3.2.

Consider the CGF and its derivative as mappings over the underlying model
parameter space, Θ, for fixed state variable value, and for a range of values of p.
I adopt the notation Kt(θ; p, τ) and K ′t(θ; p, τ) for the CGF and its derivative, re-
spectively. Both functions map from Θ to R. A direct graphical representation of
both functions for multiple parameter value sets is not informative, as it is hard
to visually discern the subtle shape changes induced even by substantial param-
eter modifications. Therefore, in Figure 3.2 I plot the mappings ∂

∂θj
Kt(θ; p, τ) (in

orange) and ∂
∂θj
K ′t(θ; p, τ) (in blue) for all forward-neutral parameters of the model,

while holding the vt = 0.02 constant. These curves, and particularly their values
at p ∈ {0, 1/2, 1}, illustrate how the forward-neutral moments change with model
parameters.

The interpretation of these curves requires some prudence. ∂
∂θj
K ′t(θ; p, τ), plotted

in blue in Figures 3.2, gives precisely the effect of a parameter change on the risk-
neutral moments of returns. Focus on p ∈ {0, 1/2, 1}. In the beginning of section 3.2 I
showed that at p = 0 and p = 1 (p = 1/2), the leading term in K ′t(p, τ) is determined
by the variance (skew) of returns. Recall, however, that K ′t(0, τ) ≈ −1/2Vt[yt+τ ],
K ′t(1, τ) ≈ 1/2Vt[yt+τ ], and K ′t(1/2, τ) ≈ −1/24Et[yt+τ − 1]3 for yt,τ = Ft+τ/Ft. It
follows that the lower (higher) the blue curve at p = 0 (p = 1) in Figure 3.2, the more
the forward-neutral variance increases with an increase in the parameter. Similarly,
the higher the blue curve at p = 1/2, the more negative skewness there is in the
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model. The parameters (λ0, µJ , σJ , η, κ) have an almost linear impact on the shape
of skewness, and the curves pass close to 0 at p = 1/2 in Figure 3.2. The values of
the blue curves for at 0 and 1 give directly their marginal impact on signed return
variance. Thus (λ0, µJ , σJ , η, κ) are the key determinants of return variance in this
model. For the remaining parameters, from the magnitudes of the response of the
CGF slope I can presuppose whether the perturbation of the parameter changes the
third or fourth risk-neutral moment. An increase in the leverage parameter from the
initial value of ρ = −1 or from σ = 0.38 has no impact on the expected log-return,
and thus on return variance, because the blue curves pass through 0 in Figure 3.2.
This implies that the price of the variance swap does not reflect Brownian skewness,
and it is also not affected by structural changes in volatility of volatility. The slope of
the CGF at p = 1/2 decreases in ρ at the starting parameter value, that is an inrease
in ρ decreases negative skewness. The two remaining parameters impact the slope
of the CGF at p = 1/2 via the fourth moment of returns rather than the third. An
increase in the volatility-of-volatility parameter σ increases the fourth moment of
returns, and the impact is visible in the CGF slope at p = 1/2.

Before considering ∂
∂θj
Kt(θ; p, τ), note that the CGF values at p = 0 and p = 1

are anchored at 0 by no-arbitrage. It follows that if the level of the CGF changes at
some point inside p ∈ [0, 1], it must, due to convexity and continuity, entail changes
in slope and/or curvature of the CGF at some points. Curvature is directly related to
the second derivative of the CGF with respect to the argument p, K ′′t (p, τ), and thus
to the second cumulant (variance) of the log-return, which translates to the third or
fourth moment of the simple return, depending on p. The shapes of ∂

∂θj
Kt(θ; p, τ)

in Figure 3.2 tells us whether a change in a parameter value predominantly impacts
CGF’s curvature or symmetry around 1/2. Note that ∂

∂θj
Kt(θ; p, τ) curves are almost

symmetric around p = 1/2 for λ0, µJ , σJ , κ and η, as opposed to other parameters.
Imagine, for each parameter, adding the orange curves in Figure 3.2 to the CGF
plot in the left panel of Figure 3.1. As values of these parameters increase, the CGF
becomes flatter (more curved) for µJ (λ0, σJ and η), for κ the sign of the parameter
derivative would be opposite were vt > η; these parameters predominantly govern
return variance. For the remaining parameters, the effect is not symmetric around
p = 1/2. Again, add the orange curve in the ρ panel of Figure 3.2 to the CGF plot in
Figure 3.1. This moves the minimum to the right, in this case decreasing the distance
between p∗ = argminKt(p, τ) and 1/2, which is a measure of skewness. In this
way, the curve ∂

∂θj
Kt(θ; p, τ) shows which parameters predominantly govern return

variance, and which govern higher moments, but does not show the magnitude of
the change.

The static analysis above, conducted in an example model, shows that, in iso-
lation, the price of a variance swaps conveys little information about leverage or
volatility-of-volatility parameters, while the price of a skew swap is not informa-
tive of jump intensity, or of the jump variance parameter. By no means is that a
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FIGURE 3.2: Comparative statics: sensitivity of cumulant generating function of the
log-return, and of its first derivative to changes in model parameters.

general rule, but rather a demonstration of how our intuitions about model pa-
rameters translate to the properties of the CGF. The following intuition should be
gleaned from this section: in an estimation exercise certain parameters can be better
identified from the dynamics of some contracts, than others. In the example model,
one would rightly expect that a single observation of the term structure of variance
swaps is completely uninformative of the values of ρ and σ. While in an estimation
exercise with variance swap and return, these parameters can be identified from,
respectively, the dynamics of returns, and the dynamics of variance swaps together
with returns, one can strengthen their identification by adding the term structure of
skewness swaps to the observation equation, as estimating skewness features from
returns is notoriously difficult.

3.3 CGF slope swaps

CGF slope swaps are financial contracts whose price (the fixed leg) is defined through
equation (3.2.3), and which have a floating leg defined below. The latter has a non-
linear component that arises directly from replicating the term inside the expecta-
tion in equation (3.2.3), and a delta-hedging component. Sufficiently frequent delta-
hedging allows to interpret the swap as a bet on realized variation of the underlying
forward return.

The payoff of a CGF slope swap can be constructed from (3.2.3) by taking the
term inside the expectation, delta-hedging it, and adjusting the size of the position
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by the numerator:

option position, non-linear payoff︷ ︸︸ ︷(
Ft+τ
Ft

)p
ln
Ft+τ
Ft
− (Ft+τ − Ft)

Ft
−

frequent delta-hedging︷ ︸︸ ︷
N∑

j=1

(
1

Ftj−1

− 1

Ft

)(
Ftj − Ftj−1

)

eK
′
t(p,τ)

. (3.3.1)

By construction, the forward-neutral expectation of this expression is equal to (3.2.3).
Consider an implementation of the strategy with a single hedging step, i.e. with

tN = t + τ and N = 1. For y := lnFt+τ/Ft the non-linear component of the payoff
in (3.3.1) can be written as yepy − (ey − 1). A Taylor expansion of the payoff at y = 0

yields

yepy − (ey − 1) =
∞∑

k=1

(
pk

k!
− 1

(k + 1)!

)
yk+1. (3.3.2)

For all p 6= 1/2 the leading order of this expansion is y2, while for p = 1/2 the first
element vanishes, and the leading order becomes y3. Whenever N > 1 and forward
trading is more frequent, with yj = lnFtj/Ftj−1 , it is possible to write (3.3.1) in terms
of sums of φp(yj) − 1 − p(eyj − 1) and of φ′p(yj) − (eyj − 1), weighted by functions
of Ftj−1/Ft. This coincides with the notion of realized divergence, as defined in
Schneider and Trojani, 2015a: CGF slope swaps are embedded in the family of power
divergence swaps and their higher-order descendants. The total payoff in (3.3.1) has
a well-defined limit for ultra-high frequency trading, that is for sup |tj − tj−1| → 0,
for every p ∈ [0, 1]. I give the limits for selected ps below.

The contracts of interest, with p ∈ {0, 1/2, 1} are already known in the literature,
albeit to the best of my knowledge they have not been interpreted jointly in the
context of the CGF. 2 In what follows, I give formulas of terminal payoffs and their
continuous-time limits together with leading references.

p = 0: Variance swap (VIX)

The value of the square of the VIX index (CBOE, 2000; Jiang and Tian, 2007) cor-
responds to −2EQ

t [lnFt+τ/Ft], i.e. the p = 0 slope swap is equivalent to the VIX2

variance swap, after suitable rescaling and adjustment of the payoff function. The
price and payoff of the variance swap are, respectively:

− 2EQ
t [lnFt+τ/Ft]

− 2 lnFt+τ/Ft +
N∑

j=1

Ftj − Ftj−1

Ftj−1

= −2
N∑

j=1

ln
Ftj
Ftj−1

− Ftj − Ftj−1

Ftj−1

.

Typically, this swap rate is used in transactions which exchange it for realized vari-
ance for returns, RVt,τ =

∑N
j=1

(
Ftj/Ftj−1 − 1

)2. Consider the high frequency limits

2Orłowski, Sali, and Trojani, 2015 in fact consider K′t(p) at p = 0 and p = 1 in the context of pricing
kernel dispersion bounds.
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of the realized variance and the payoff (floating leg) of the p = 0 swap as defined
above. In the absence of jumps, and after correcting for scale and sign, the two quan-
tities would have exactly the same limit, integrated variance:

∫ t+τ
t σ2

sds. If jumps are
present, this holds only approximately. For the details of the approximation, see
Jiang and Tian, 2005b. The floating leg given in the equation above is the one cor-
rectly priced by the VIX2 index (after rescaling), as shown by Schneider and Trojani,
2015a. Its continuous-time limit is:

∫ t+τ

t
σ2
sds+ 2

∑

t<s≤t+τ
φ′0

(
Ft+s
Ft+s−

)
. (3.3.3)

p = 1: Gamma swap

For p = 1 the CGF slope swap corresponds to the Gamma swap (Lee, 2010), also
referred to as a Kullback-Leibler swao (Schneider and Trojani, 2015a). The price and
payoff of are, respectively:

2EQ
t

[
Ft+τ
Ft

lnFt+τ/Ft

]

2Ft+τ/Ft lnFt+τ/Ft − 2
N∑

j=1

Ftj − Ftj−1

Ftj−1

=
N∑

j=1

Ftj/Ft lnFtj/Ftj−1 −
Ftj − Ftj−1

Ftj−1

.

The payoff’s continuous-time limit is, after appropriate scaling:

2

∫ t+τ

t

Ft+s
Ft

σ2
sds+ 2

∑

t<s≤t+τ

Ft+s−
Ft

φ′1

(
Ft+s
Ft+s−

)
, (3.3.4)

that is, it accumulates quadratic variation weighted by the cumulative return on the
asset.

p = 1/2: Hellinger skew swap

For p = 1/2, the CGF slope swap is a rescaled version of the Hellinger skew swap
found in Schneider and Trojani, 2015a, with price and payoff:

− 8

eKt(p,τ)
EQ
t

[(
Ft+τ
Ft

) 1
2

lnFt+τ/Ft

]
,

− 8

eKt(p,τ)

√
Ft+τ
Ft

lnFt+τ/Ft +
8

eKt(p,τ)

N∑

j=1

Ftj − Ftj−1

Ftj−1

= − 8

eKt(p,τ)

N∑

j=1

φ′1
2

(
Ftj−1

Ft

)(
φ 1

2

(
Ftj−1

Ft

)
− Ftj − Ftj−1

2Ftj−1

)
+ φ 1

2

(
Ftj−1

Ft

)(
φ′1

2

(
Ftj−1

Ftj

)
− Ftj − Ftj−1

2Ftj−1

)
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The continuous-time limit of the payoff is:

∫ t+τ

t

φ′1
2

(
Ft+s−
Ft

)

eKt(p,τ)
σ2
sds−

8

eKt(p,τ)

∑

t≤s≤t+τ

[
φ 1

2

(
Ft+s−
Ft

)
φ′1

2

(
Ft+s−
Ft+s

)
+ φ′1

2

(
Ft+s−
Ft

)(
φ 1

2

(
Ft+s−
Ft+s

)
− 1

)]

(3.3.5)

The payoff accumulates – in the first term – continuous quadratic variation with a
positive or negative weight, depending on whether Ftj−1 is smaller or greater than
the starting value Ft. Additionally, in the second term, it accumulates second-order
jump variation, with a similar weighting rule.

3.3.1 CGF slope swaps in AJDs

Equation (3.2.7) is a counterpart of (3.2.3) in affine jump diffusion settings. It follows
immediately that the prices of CGF slope contracts are affine in the state variables in
this class of models.

Proposition 7 (affine contracts). The price of a CGF slope swap at p is equal to:

EQ
t

[
φ′p

(
Ft+τ
Ft

)]

eKt(p,τ)
= α′(p, τ) + β′(p, τ) · vt,

where the coefficients α′, β′ are obtained by finding the transform in Proposition 3 in Duffie,
Pan, and Singleton, 2000.

This fact has been known and exploited for long for p = 0 (the variance swap).
Note that in Section 3.3 the payoffs were rescaled for an easier interpretation: the
CGF slope at p = 0 (p = 1/2) is, to first order, exposed to the negative of the second
(third) moment of returns.

As summarized in Section 3.1, unspanned skewness (i.e. stochastic skewness
that is not driven by factors impacting stochastic volatility) is a primary feature of
option implied volatility surfaces which are heavily skewed at the short end. In
many dimension-reduced estimation attempts in the literature, the term structure of
variance swaps is used, alongside the stock return, as an observable statistic sum-
marising option information. In what follows, I focus on the term structures of the
variance, Hellinger skew and Gamma swaps in example models, and analyse the
information about state variable values contained therein.

I build example models starting from the SVJCD2 specification in Bates, 2000.
The base specification is denoted M1. The three remaining specifications modify the
base model to introduce various degrees of unspanned skewness. Model parameters
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are given in Table 3.1.

dFt
Ft−

= −ν̄tdt+ φ1
√
v1tdW

S
1t + φ2

√
v2tdW

S
2t +

∫

R\{0}

(
eg(x,y) − 1

)
νt(dx, dy)dt

dv1t = κ1(η1 − v1t)dt+ σ1
√
v1tdW

v
1t +

∫

R+

yνt(dx)dt

dv2t = κ2(η2 − v2t)dt+ σ2
√
v2tdW

v
2t

dWS
itdW

v
it = ρidt,

M1 through M3:
νt(dx, dy)

dx
=
λ1v1t + λ2v2t√

2π
e
− (x−µJ )2

2σ2
J , while in M4:

νt(dx, dy)

dxdy
=
λ1v1t

ρJµJ
e

y
ρJµJ

name M1 M2 M3 M4
η1 0.0148 0.0148 0.0148 0.0148
κ1 3.21 3.21 3.21 3.21
σ1 0.24 0.24 0.24 0.24
ρ1 -1 − − −
η2 0.0195 0.0195 0.0195 0.0195
κ2 0.85 0.85 0.85 0.85
σ2 0.18 0.18 0.18 0.18
ρ2 -0.314 0 -0.314 -0.314
λ1 88.6 88.6 60.6 28.6
λ2 − − 15.2 −

µJV − − − 0.05
µJ -0.054 -0.054 -0.054 −
ρJV − − − -0.99
σJ 0.102 0.102 0.102 −
κQ1 2 2 2 2
κQ2 0.87 0.87 0.87 0.87
φ1 1 0 0 0
φ2 1

√
2

√
2

√
2

TABLE 3.1: Example model parameters

In the base specification (M1), both variance factors impact the level of the Brow-
nian volatility of the stock, but only v1 drives the jump intensity. Simultaneously,
the innovations to both factors are negatively correlated with corresponding inno-
vations to the forward stock price. Under the parameter choices, in all models the
(primary) jump-driving factor v1 mean-reverts quicker than v2. In specifications M1
through M3, the jump component only impacts returns, and apart from a negative
mean, the jumps have symmetric Gaussian tails. In specification M4, jumps in fac-
tor v1 are exponential and feed into the stock price process. In the supplementary
specification M2:

• I remove the intensity driver’s impact on Brownian asset volatility, setting λ1 =

0;

• remove v2’s leverage effect, setting ρ2 = 0;
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M1: spanned intensity 
 symmetric jumps with neg. mean 

 + Brownian leverage
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 + symmetric jumps with neg. mean
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Comparison of factor loadings in example models

FIGURE 3.3: Scaled factor loadings in affine contracts, β′j(p, τ |vt)/τ against time to
maturity in two-factor models.

• I increase the second factor’s impact on Brownian volatility, setting φ2 =
√

2

. Specification M3 retains the changes from M2 and:

• I set λ2 = 15.2 so that short-term skewness is influenced by both factors, but
Brownian volatility only by v2.

Specification M4 retains the features of M2, but alters the jump distribution:

• the asset price and v1 co-jump, and the jumps are exponentially distributed
self-exciting, i.e. λ1 = 28.6, µJV = 0.05, and the jump leverage parameter is set
to ρJ = −0.99;

Additionally, in specifications M2 through M4 I increase the remaining factor’s con-
tribution to Brownian volatility so as to achieve a similar level of total return vari-
ance as in M1.

Figure 3.3 contains plots of (maturity-scaled) factor loadings in affine contracts
β′j(p, τ)/τ , as given in Proposition 7. Loadings on the VIX variance swap (p = 0), the
Hellinger skewness swap (p = 1/2), and the Gamma swap (p = 1) (top-to-bottom)
in the aforementioned models (left-to-right) are compared. Loadings on v1 – un-
spanned by volatility dynamics in models M2 throgh M4 – are given in a solid line;
on v2 (volatility driver) in a dashed line.

While the plot is not a study of a general case, the changes in specification are
rich enough to generate a diverse range of loading term structure behaviours. Note
that the loadings of the variance and Gamma swap are almost identical in all models.
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This shifts the focus to the differences in variance and Hellinger swaps. The relative
loadings of the variance swap rates vary little across the term structure, especially
in models with unspanned intensity of symmetric jumps (M1 and M2), where the
loadings are approximately collinear; their shapes are similar, too, across models. To
the contrary, the value of loadings for the Hellingers skew swap vary with maturity
in significantly different ways than loadings of variance swaps. Across models, the
skew swap loadings also vary significantly more than the variance swap loadings.
The Hellinger swap loadings’ common feature is that at short maturites, the loadings
on factor v2 converge to 0 whenever it does not drive jump intensity. If additionally
this factor does not generate a leverage effect, the price of the Hellinger swap does
not depend on it at all. Finally, model M4 shows an example where the factor v1

that drives asymmetric, self-exciting co-jumps, is absent from the term structure of
variance swap prices.

Ex-ante, the econometrician does not know the characterization of factor load-
ings in the data. With recent empirical evidence pointing to the importance of un-
spanned skewness, the takeaway of this section is that using short-term Hellinger
skew swaps in estimation data offers new statistics about latent volatility and skew-
ness drivers, with richer information content than the term structure of variance
swaps. Furthermore, in certain extreme situations, the variance swap term struc-
ture can have a loading of essentially 0 on the isolated skewness driver, and Helliger
skew swaps become essential for uncovering its Q-dynamics.

3.3.2 Spanning in option markets

Carr and Madan, 2001 showed that in the presence of complete option markets, that
is if European options on the underlying are available for strikes K ∈ [0,∞], an arbi-
trary payoff function π(x), non-linear in the forward return, is available for trading
in the following sense:

π(Ft+τ )− π(Ft)− π′(Ft)(Ft+τ − Ft) =

∫ ∞

0
π′′(Kt)O(Kt, Ft+τ )dKt. (3.3.6)

In the equation above, O(Kt, Ft+τ ) is the payoff, at time t+ τ , of a maturing option.
The option is a call (put) if at time t, Kt was greater (smaller) than Ft (i.e. it’s an
out of the money option). The equation states that the delta-hedged increment 3 of
function π can be obtained as a payoff of a portfolio of options at their maturity.

Incomplete markets

Equation (3.3.6) is an unobtainable idealization. Investors in real markets face two
impediments: the option strike grid is discretized, and (more importantly), bounded.
Their impact on the ability to hedge non-linear contracts is two-fold: discretization

3Bregman1967 divergence, as noted by Schneider and Trojani, 2015a
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causes inaccuracies in the non-linear hedge if the final asset value stays within the
strike grid, while boundedness limits the ability to hedge extreme events. Bound-
edness also implies that the replicating portfolio’s price is only an approximation
of the true contract price, and the error uncertainty is unaccounted for. Such ex-
treme events, however, happen extremely rarely, as discussed in the appendix to
Martin, 2013 and by Orłowski, 2015. Martin also discusses the underpricing for vari-
ance contracts in the context of an implementation of 3.3.6 by simple discretization.
Orłowski, 2015 shows that there are better alternatives, and optimal static replica-
tions can be chosen at any point in time, as to minimize expected hedging error. I
use this method for calculating contract swap prices in the subsequent simulation
exercises.

The model-based theoretical quantities are thus approximated as values of op-
tion portfolios):

K ′t(p, τ) = α′(p, τ) + β′(p, τ) · vt ≈
N∑

j=1

w∗jOτ (Kt,j), (3.3.7)

where w∗j are portfolio weights that minimize expected hedging error. The choice
of method for estimating K ′t(p, τ) from option data can have important implications
for model estimation results. If a method such as (3.3.7) is chosen, the approximate
contract prices are no longer linear in state variables. For certain ranges of factor
values and availability of option contracts, the estimates can vary wildly from their
theoretical CGF slope counterparts. While Martin, 2013 discusses possible biases
when estimating the prices of variance swaps and concludes they would be small,
they might be much more significant for Hellinger skew swap contracts, which load
much stronger on far out of the money options than variance contracts. This is il-
lustrated in Figure 3.4, which plots the relative approximation error of the (3.3.7)
method. Other methods of estimating K ′t(p, τ) involve approximating the integral
in (3.3.6) through estimating the implied volatility curve (and thus option prices),
and extrapolating it both towards 0 and∞. Such approaches introduce biases which
are difficult to quantify and account for, as they are equivalent to making a statement
about the specification of the jump distribution.

I account for potential biases in the filtering and estimation by constructing the
filter directly on replicating portfolios,4 rather than on model-implied theoretcial
prices of variance and Hellinger skew swaps. I find that the departures from lin-
earity are small enough that the Unscented Kalman Filter (Wan and Merwe, 2000;
Merwe and Wan, 2001) is a formidable tool for the task at hand (for applications in
Finance, see for example Li, 2013 and Christoffersen et al., 2014).

4I find the prices of the replicating portfolios in the model in the follwing sense: if in the option
data, J strikes {K∗tj}J1 are available, and the optimal replicating portfolio for a given swap rate at time
t assigns weights {w∗tj}J1 to the options, then in the filter I construct the model-implied price of the
portfolio by finding the prices of options with the given strikes, and forming the portfolio with the
optimal weights estimated in the data.
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3.4 Simulation study

In the simulation study I focus on the consequences of estimation dataset choice for
state variable recovery. I look at three aspects of the results. First, I examine the
filtering error directly. The error feeds into further quantities of interest, such as fac-
tor premia and option prices. Thus, I translate the filtering error into option pricing
error. This setup abstracts from parameter estimation error and allows to quantify
signal fidelity losses that are solely due to factors under the econometrician’s control,
i.e. the composition of the dataset, while keeping the filtering method constant.

I scrutinize models M1 and M4, with specification as in Section 3.3.1 and param-
eters as in Table 3.1. The three datasets for filtering are:

1. opts: for each date, the dataset contains the prices of 30 options per maturity,
at 1- and 12-month maturities;

2. vs: for each date, the dataset contains the prices of the 1- and 12-month vari-
ance swaps;

3. hs+vs: for each date, the dataset contains the prices of the 1-month Hellinger
skew swap and 12-month variance swap.

The prices of Hellinger skew and variance swaps in the two reduced-dimension
datasets are calculated with the options available in dataset opts and in line with
remarks in Section 3.3.2. In each dataset I assume that the signal-to-noise ratio is
known, and I set the standard deviation of noise to 10% of a contract price’s standard
deviation. The noise is independent across contracts (be it swaps or options). Note
that this assumption puts the reduced-dimension filters at a disadvantage, because
independent noise in individual options would likely largely cancel out in portfolio
formation.

3.4.1 State filtering

Two of the dataset setups – vs and hs+vs – reduce the option surface observed at
each time point to a set of summary statistics. Opts, on the other hand, uses the
complete price set for the same maturities. All datasets are noisy. I demonstrate,
with the use of simulations, that the hs+vs dataset is no worse a base for the purpose
of state recovery than the complete opts dataset.

Filtered factor values for models M1 and M4 are plotted in Figures 3.5 and 3.7,
respectively. In M1, both factors are recovered with similar accuracy when using the
hs+vs and opts datasets. With vs, recovery significantly deteriorates. A summary
of filtering error distribution for model M1 is given in Figure 3.6. For factor v1,
which drives both volatility and jump intensity, recovery with hs+vs and opts is
approximately on par, whereas with vs the interquantile range of recovery error
increases two-fold. For factor v2, the opts dataset outperforms both hs+vs and vs,
albeit hs+vs still reduces the interquantile range of recovery error by approximately
50% with respect to focusing on variance swaps. Model M4 is of particular interest
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– in this setup, v1 drives strictly negative jumps the asset price, which correspond to
jumps in volatility, as inspired by the recent empirical literature (Andersen, Todorov,
and Fusari, 2015). For v2 the results are similar to those in model M1. Filtering v1,
on the other hand, poses an insurmountable challenge to a filter based on vs. It also
suffers with the opts dataset. The path of v1 filtered from vs seems to bear little
relation to the true path, with a correlation coefficient of approximately 30%. State
recovery with this dataset is equally bad across all factor levels. The opts based filter
correctly recovers the v1 path when v1 does not stray far from its long-run mean,
however the filtered values are extremely noisy after v1 jumps, when its value is very
high. To the contrary, the filter based on hs+vs does not suffer from such extreme
errors. Figure 3.8 plots filtering errors in model M4, stratified by the respective factor
quantiles. When factor v1 is below its 75th percentile, filtering with both the opts
and hs+vs dataset yields reasonable results. When v1 values rise, however, filtering
with the whole option surface yields very noisy estimates – the interquantile range
is equal to that for the variance swap dataset, and more extreme errors are recorded;
the estimates seem nonetheless unbiased, contrary to those recovered with vs.

Across the whole paths of v1 and v2, using the hs+vs dataset reduces mean abso-
lute filtering error by 57% and 44%, respectively, in model M1, and by 80% and 23%
in model M4. In the absence of unspanned skewness (M1) the hs+vs dataset offers
filtering performance equivalent to that of the full option panel in opts: it improves
the recovery of v1 by 20%, but hinders the recovery of v2 by 23%. In the setting with
significant unspanned skewness the hs+vs dataset, which compactifies the infor-
mation in the volatility surface into two informative signals, significantly improves
state recovery not only with respect to the usual vs approach, but also with respect
to the whole implied volatility surface, the unfavourable observation noise assump-
tion notwithstanding. Absolute filtering errors of v1 and v2 are reduced by 55% and
13%, respectively.

3.4.2 Option pricing

Section 3.4.1 gives a good indication of filtering performance gains when Hellinger
skew swaps are introduced to the dataset. Filtering quality translates directly to a
model’s utility for inference about quantities such as option prices, and the impor-
tance of any state recovery improvements should be judged through the lens of the
task at hand. From the point of view of an econometrician who estimates an asset
pricing model, there are three sources of error in estimates of option prices: the fil-
tering error, estimation error (understood as the distance between the estimated and
(pseudo-)true parameter values), and model specification error. I concentrate on the
former: in models with known parameters, similarly to the previous section, I inves-
tigate the impact of the filtering dataset specification on estimated option prices. I
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FIGURE 3.7: Filtered factor paths in model M4 with three dataset setups: full option
surface, opts; variance swaps, vs; Hellinger skew and variance swaps, hs+vs.

v_
1

v_
2

1st quartile 2nd quartile 3rd quartile 4th quartile

hs
+

vs
op

ts
vs

hs
+

vs
op

ts
vs

−
0.

08

−
0.

04

0.
00

0.
04

0.
08

−
0.

08

−
0.

04

0.
00

0.
04

0.
08

−
0.

08

−
0.

04

0.
00

0.
04

0.
08

−
0.

08

−
0.

04

0.
00

0.
04

0.
08

da
ta

se
t

error

da
ta

se
t

hs
+

vs
op

ts
vs

Fa
ct

or
 fi

lte
rin

g 
er

ro
r 

in
 m

od
el

 M
4.
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For each factor, errors are grouped by the quartile of the factor’s level.
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judge the setups in terms of relative error of an option’s implied volatility,

εt(k, τ) :=
IVtrue(k, τ)− IVfiltered(k, τ)

IVtrue(k, τ)
. (3.4.1)

The option panels used for evaluation span maturities from 1 week to 1 year, with
30 options per maturity. The state variables are filtered from dataset which contain
options with only two maturities: 1 month and 1 year. I include the single-week
maturing options, because of the rising importance of the short-term options market,
and because they are the most informative of jump risk determinants. Andersen,
Fusari, and Todorov, 2016 showed that the dynamics of ”weeklies’” prices is indeed
highly informative of tail risks prevailing in the index option market. I visualize the
distributions of relative pricing error, and the values of mean absolute pricing error
in Figures 3.9 through 3.12.

Distributions of option pricing errors are displayed in Figures 3.9 (model M1)
and 3.10 (model M4). The options are split into categories across three dimensions:
option maturity, option moneyness level (defined as lnK/F√

τIVATM
), and the quartiles

of prevailing implied volatility skew for options of given maturity. Options are
grouped in moneyness buckets in the following manner: the label denotes that the
bucket contains options with moneyness levels smaller than the label, i.e. for 0 the
bucket contains puts with moneyness levels (−2, 0]. The simulated option surfaces
contain more puts than calls, as is typical in observed panels. Implied volatility
skew is calculated as the difference between median implied volatility of options in
the (−4,−2] moneyness bucket and at the money implied volatility, for every time
stamp and maturity. In model M1, implied skew is strongly positively correlated
with factor v1 across all maturities and moneyness groups (correlations ranging from
0.8 to 0.95), and not correlated with factor v2 (correlations ranging from -0.2 to 0.2).
In model M4 the implied volatility skew is less correlated with factor v1, even if this
factor is the primary driver of time variation in the third moment of returns (corre-
lations range between 0.5 and 0.8). Factor v2, on the other hand, is strongly negative
correlated with the IV skew (-0.8 to -0.5).

There are important differences in the range of pricing errors resulting from mod-
ifying the filtering dataset. Certain regularities are clearly visible for both model
parametrizations: pricing errors decrease with option maturity (due to factor mean-
reversion: the present factor value has little impact on long-maturity options), and
for implied volatility skew levels above the median and maturities above 1 month,
call options and at the money put options offer a greater challenge than out of the
money put options. Most importantly, for most maturities and implied volatility
skew levels, the vs dataset yields the noisiest option price estimates. Judged in terms
on mean absolute percentage pricing error (MAPE), the vs dataset is the worst per-
fomer across the board, as seen in Figures 3.11 and 3.12.

The performance differences of filters based on hs+vs and opts datasets are more
nuanced. In terms of MAPE (Figures 3.11 and 3.12), in model M4 the hs+vs dataset
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offers an improvement over opts, with MAPEs of 1.76% and 1.94%, respectively.
In model M1, the opts dataset retains an advantage, with a MAPE of 0.87% vs
hs+vs’s 1.22%. Performance gains in model M4 are most significant when the im-
plied volatility skew is above its 75th percentile, for put options with maturities up
to 3 months. Interquantile ranges of pricing errors are reduced by 50%, and out-
lying pricing errors are practically eliminated. The filter based on the opts dataset
performs better when pricing call options, which are practically not impacted by the
dynamics of factor v1 in model M4.

As I argued in the introduction, recent literature implies that a model specifi-
cation in the spirit of M4 is more relevant for empirical research than such as M1.
A filter design which replaces short-maturity variance swaps with Hellinger skew
swaps offers an improved identification of the path of a skewness-driving factor in
a model such as M4, not only with respect to a variance-swap based filter, but also
with respect to employing the whole option surface. The improvements in filtering
translate into smaller option pricing errors when the model parameters are known.
While a general recommendation for filter design is beyond the scope of this study,
I present preliminary evidence that a dimension-reduced filter can perform on par
or better than a more computationally involved alternative. The discussion in this
paper also abstracts from the specifications of observation noise. It is self-evident
that proposing an observation noise structure for an option panel with hundreds of
observed assets opens more room for error than specifying one for a small number
of swap rate contracts.

3.5 Conclusions

The econometrician who faces the task of estimating an option pricing model when
state variables are unobservable, must specify the equations of the no-arbitrage pric-
ing model, and the blueprint for the filter to uncover the latent variables. Assuming
a given filtering method (a particle filter, or an UKF, as in this paper), the econome-
trician’s task is limited to choosing the right observed quantities, which will yield
good state recovery properties. This is much akin to the problem of sensor place-
ment in the control literature, e.g. Tzoumas, Jadbabaie, and Pappas, 2016: using sig-
nals from more sensors is not always optimal; a sensor’s signal to noise ratio changes
over time, and when it is low, the sensor should be excluded from the observation
set. Historically, the empirical option pricing literature resolved to use either all sen-
sors – complete option panels, with multiple maturities and hundreds of options per
each data point – or certain linear combinations of sensor signal – prices of variance
swaps, which can be interpreted as portfolios of options.

I demonstrated that the variance swap observation design performs significantly
worse in terms of both state filtering and, as a consequence, option pricing with fil-
tered states, than the complete option panel dataset. In a next step, I showed how
replacing short-term variance swaps with Hellinger skew contracts in filter design
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makes the reduced-dimension filter competitive with one based on the whole op-
tion surface. In a simulated setting with rich volatility and jump intensity dynamics,
which mimics features of factor dynamics uncovered by the recent literature, this
augmented filtering system outperforms a filter based on the complete option sur-
face. Furthermore, I characterized the variance swap and Hellinger skew contracts
in the context of a broader class of CGF slope swaps. The swap rates in this class
of contracts are linear in the unobserved latent states when affine jump diffusion
dynamics is assumed.

The question of optimal filter design in option pricing model estimation remains
open. I leave to extensions of this paper an empirical application of hereby devel-
oped methods and the problem of state-dependent observation equation design.
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A Appendices

A.1 Appendix to Chapter 1

A.1.1 Divergence: useful expressions

Higher-order measures

The following equations express the derivatives of F−ps Gp(Ft, Fs) with respect to p
expressed in terms of y := lnFt/Fs.

∂

∂p

Dp(Ft, Fs)

F ps
=
yepy − (ey − 1)

p(p− 1)
−
(

1

p2(p− 1)
+

1

p(p− 1)2

)
(epy − 1− p (ey − 1)) ,

(A.1.1)

lim
p→0

∂

∂p

Dp(Ft, Fs)

F ps
= −y

2

2
− y + (ey − 1) , (A.1.2)

lim
p→1

∂

∂p

Dp(Ft, Fs)

F ps
=
y2ey

2
− yey + (ey − 1) , (A.1.3)

∂2

∂p2

Dp(Ft, Fs)

F ps
=

y2epy

p(p− 1)
− 2

(
1

p2(p− 1)
+

1

p(p− 1)2

)
(yepy − (ey − 1))

(A.1.4)

+

(
2

p3(p− 1)
+

2

p2(p− 1)2
+

2

p(p− 1)3

)
(epy − 1− p(ey − 1)) ,

lim
p→0

∂2

∂p2

Dp(Ft, Fs)

F ps
= −y

3

3
− y2 − 2y + 2(ey − 1) , (A.1.5)

lim
p→0

∂2

∂p2

Dp(Ft, Fs)

F ps
=
y3e3

3
− y2ey + 2yey − 2(ey − 1). (A.1.6)

Higher-order tradability

The following equations express the quantities required for jump replication as port-
folios of weighted divergences. I start with defining additional functions to facilitate
notation.

ψp,k(x) :=
xp lnk x

p(p− 1)
Ψp,k(y, x) := ψp,k(y)− ψp,k(x)− ψ′p,k(x)(y − x)

The function Ψ is simply the Bregman divergence of ψ. I also define ψ0,k(x) :=

lnk x and ψ1,k(x) := x lnk x. The following equations express the scaled divergence
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derivatives as divergences to which equation (1.3.11) is applicable.

∂

∂p

Dp(Ft, Fs)

F ps
=

Ψp,1(Ft, Fs)

F ps
−

lnFs +
(

1
p + 1

p−1

)

F ps
Dp(Ft, Fs) (A.1.7)

lim
p→0

∂

∂p

Dp(Ft, Fs)

F ps
= −Ψ0,2(Ft, Fs)

2
− (1− lnFs)D0(Ft, Fs) (A.1.8)

lim
p→1

∂

∂p

Dp(Ft, Fs)

F ps
=

Ψ1,2(Ft, Fs)

2Fs
− lnFs − 1

Fs
D1(Ft, Fs) (A.1.9)

∂2

∂p2

Dp(Ft, Fs)

F ps
=

Ψp,2(Ft, F − s)
F ps

− 2
lnFs +

(
1
p + 1

p−1

)

F ps
Ψp,1(Ft, Fs) (A.1.10)

+
ln2 Fs + 2

(
1
p + 1

p−1

)(
lnFs + 1

p + 1
p−1

)
− 2

p(p−1)

F ps
Dp(Ft, Fs)

lim
p→0

∂2

∂p2

Dp(Ft, Fs)

F ps
= −Ψ0,3(Ft, Fs)

3
+ (lnFs − 1) Ψ0,2(Ft, Fs) (A.1.11)

+
(
ln2 Fs − 2 (lnFs − 1)

)
D0(Ft, Fs)

lim
p→1

∂2

∂p2

Dp(Ft, Fs)

F ps
=

Ψ0,3 (Ft, Fs)

3Fs
− lnFs + 1

Fs
Ψ0,2(Ft, Fs) (A.1.12)

+
ln2 Fs + 2 (lnFs + 1)

Fs
D1(Ft, Fs)

A.1.2 Option portfolio weights

In this section I give a detailed description of the quadratic programming problem
of optimal static replication. Rewrite the optimization criterion in equation (1.4.3)
more compactly and separate the terms, with g(x) the function to be replicated, η(x)

a weighting function and O(x,Kj) the payoff of an out-of-the money option:

∫ ∞

0
η(x)


g(x)−

J∑

j=1

wjO(x,Kj)




2

dx

=

∫ ∞

0
η(x)


g(x)2 +




J∑

j=1

wjO(x,Kj)




2

− 2g(x)
J∑

j=1

wjO(x,Kj)


 dx

= C +

∫ ∞

0
η(x)




J∑

j=1

J∑

k=1

wjwkO(x,Kj)O(x,Kk)− 2g(x)

J∑

j=1

wjO(x,Kj)


 dx

= C + wTQw − qTw
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Above, Q is a square J × J matrix with entry Qij :

Qii =

∫ ∞

0
η(x)O(x,Ki)

2dx =

{∫Ki
0 η(x)(Ki − x)2dx if Ki ≤ F∫∞
Ki
η(x)(x−Ki)

2dx if Ki > F

Qij =

∫ ∞

0
η(x)O(x,Ki)O(x,Kj)dx

=





0 if Ki < F < Kj or Kj < F < Ki∫ min(Ki,Kj)
0 η(x)(x−Ki)(x−Kj)dx if Ki,Kj ≤ F∫∞
max(Ki,Kj)

η(x)(Ki − x)(Kj − x)dx if Ki,Kj > F

,

q ∈ RJ with entries qj :

qj =

∫ ∞

0
2η(x)g(x)O(x,Kj)dx =

{∫Kj
0 2η(x)g(x)(x−Kj)dx if Kj ≤ F∫∞
Kj

2η(x)g(x)(Kj − x)dx if Kj > F
,

while C =
∫∞

0 η(x)g(x)2dx is a constant that can be ignored in the optimization. All
integrals can be easily evaluated numerically, and in special cases, for example with
η(x) ≡ 1{K1−ε≤x≤KJ+ε}, analytically.

The matrix Q is block-diagonal and block-wise positive definite. Thus for com-
putational efficiency and without loss of replication accuracy, it’s possible to split
the above problem into two convex subproblems for replicating the payoff function
g(x) separately for x ≤ F and x > F .

A.1.3 Data filters

I remove the following records from my dataset of all SPX option quotes and trades:

1. Options which are not those with monthly settlements effective on the morn-
ing of the third Friday of the month (e.g. weeklies and LEAPS), and which are
not the closest maturity;

2. Quotes with zero bid prices;

3. Quotes with non-positive bid-ask spreads;

4. Quotes with bid-ask spread greater than 500% of the bid price;

5. Options with strikes whose standardised moneyness, log (K/F )/(σATMIV

√
T − t)

is lower than −12 or higher than 6;

6. Quotes whose mid-prices are not contained in the bid-ask spread after impos-
ing the no-arbitrage mid-price system of the following subsubsection A.1.3.
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No-arbitrage option price system

The relative price of a put option is the integral of the risk-neutral distribution func-
tion of the return on the underlying asset:

pK,T ≡
PK,T
F

=

∫ K

0
P (FT /F ≤ x)dx, (A.1.13)

and as such, for Kj > Ki, I should have pKj ,T − pKi,t > 0. Based on this relation I
construct an L1 correction method for observed relative option prices which ensures
that the resulting mid-prices do not allow for arbitrage, and that does not rely on
parametric assumptions. Let J denote the number of option price quotes prevailing
at a given point in time. Let π̂K,T denote the price which ensures there is no arbitrage
in the system. I find π̂ = [π̂K1,T , . . . , π̂KJ ,T ]T as:

π̂ = argmin
π∈RN+

J∑

j=1

(
pKj ,T −X(j,·)π

)(1

2
− 1{pKj,T−X(j,·)π≤0}

)

with

X(·,1) = 1J×1

X(i,j) = Ki −Kj−1 for i ∈ 2, . . . , J and j ∈ 2, . . . , i .

Applying the above to mid-prices pK,T and subsequently discarding these records
for which π̂Kj ,T is outside the bid-ask spread allows us to find a set of no-arbitrage
“mid” prices which would not allow for arbitrage in a market free of transaction
profits.

A.1.4 High frequency option trading in the Black-Scholes model

The simplest Brownian-driven model of stock price behavimy allows us to learn
about risk compensation in benchmark cases. First, the model is put-call symmetric
with constant volatility. Second, asset price paths are continuous. Hence, at the high-
frequency trading limit the realized divergence strategies will pay exactly σ2(tn− t0)

while the skewness and quarticity strategies have zero payoffs. Furthermore, in the
known case of the log contract, i.e. D0

n(F ), where divergence weights are constant,
the risk premium for divergence is 0.

Assume the following dynamics of the forward price of a stock index under P:

dFs = µFsds+ σFsdWs , (A.1.14)

and under Q (where F is a martingale):

dFs = σFsdWs . (A.1.15)
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The statistical and risk-neutral characteristic functions of the log-return on F are,
respectively:

EP
s

[
eu logFt/Fs

]
= e(t−s)( 1

2
σ2(u2−u)+µu) and EQ

s

[
eu logFt/Fs

]
= e

1
2
σ2(t−s)(u2−u) .

(A.1.16)
I assume that the trading strategy is executed on a period [0, T ], where T is the ma-
turity of the options and forward contracts.

Dynamics of some functions of the underlying in the Black-Scholes model

Here I gather expressions that are useful in the following sections when studying
the trading profits in the Black-Scholes model:

φs(p, T − s) ≡ EQ
s

[
eu logFt/Fs

]
− 1, (A.1.17)

dF ps
F ps

=

(
pµ+

p(p− 1)

2
σ2

)
ds+ pσdWs, (A.1.18)

dF ps logFs
F ps

=

(
pµ logFs + µ+

1

2
σ2 [p(p− 1) logFs + (2p− 1)]

)
ds+σ (p logFs + 1) dWs

(A.1.19)

Realized divergence trading

I proceed with deriving the expressions for the payoff, trading profits, expected trad-
ings profits, and finally the premium for trading realized divergence in the Black-
Scholes model. First recall that equation (1.3.8) implies that the payoff Dp

n(F ) of the
options and forwards at maturity reaches the limit of integrated divergence:

Dp
n(F )

P−→ 1

2
σ2T ≡ Dp

∞(F ). (A.1.20)

From equation (1.3.13) I can decompose the costs of obtaining the payoff, C [Dp
∞], as:

C [Dp
∞(F )] =

φ0(p, T − s)
p(p− 1)

−
∫ T

0

φs(p, T − s)
p(p− 1)

dF ps
F ps

.

The conditional premium for trading is DPQT (p) ≡ EP
0 [Dp

∞(F )] − EQT
0 [C [Dp

∞(F )]]

if the market allows for contingent contracts such that the profits of rebalancing
can be contracted at time 0. The conditional premium in case where the profits of
rebalancing have to be borne along the trading path, is: DPP(p) ≡ EP

0 [Dp
∞(F )] −

EP
0 [C [Dp

∞(F )]]. DPQT (p) is not identically 0:

DPQT (p) = σ2T − 2
φ0(p, T )

p(p− 1)
, lim

p→0
DPQT (p) = lim

p→1
DPQT (p) = 0. (A.1.21)

DPQT (p) > 0 for p ∈ (0, 1), DPQT (p) < 0 for p 6∈ [0, 1]. The convexity adjustment for
p 6∈ {0, 1} arises because the second derivative of the price of divergence at p = 0 and
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p = 1 is polynomial in σ2, but has an exponential term for p 6∈ {0, 1}. The conditional
premium in case where rebalancing cannot be contracted at time 0, depends on the
risk premium µ:

DPP(p) = σ2T +
µT

p− 1
− 2µφ0(p, T )

p(p− 1)2σ2
− 2φ0(p, T )

p(p− 1)
, (A.1.22)

lim
p→0

DPP(p) = 0 and lim
p→1

DPP(p) = −µσ
2T 2

4
. (A.1.23)

From (A.1.18) and (A.1.20) I infer that C [Dp
∞(F )] is normally distributed, with mean

and variance given below:

C [Dp
∞(F )] ∼ N


−

(
2µ+ (p− 1)σ2

) ( 2φ0(p,T )
(p−1)pσ2 − T

)

2(p− 1)
,

(
−2

φ0(p, T )

p(p− 1)2σ
+

Tσ

p− 1

)2

 .

(A.1.24)
On p ∈ [0, 1] the convexity adjustment profit is an order of magnitude smaller than
the expected rebalancing profit.

Realized skewness trading

Trading jump skewness in the Black-Scholes model reveals more peculiar features
of dynamic option trading. Recall that from equation (1.3.9), the payoff Spn(F ) of the
options and forwards at maturity reaches the limit:

Spn(F )
P−→ 0 ≡ Sp∞(F ), (A.1.25)

because the path of F is continuous. Analogously to equation (1.3.13), I can decom-
pose the cost of obtaining the payoff, C [Sp∞], as:

C [Sp∞] =
φ′0(p, T )

p(p− 1)
− 2p− 1

(p(p− 1))2
φ0(p, T )−

∫ T

0

φs(p, T − s)
p(p− 1)

dF ps logFs
F ps

−
∫ T

0

φ′s(p, T − s)
p(p− 1)

dF ps
F ps

+

∫ T

0

logFsφs(p, T − s)
p(p− 1)

dF ps
F ps

+

∫ T

0

(2p− 1)φs(p, T − s)
(p(p− 1))2

dF ps
F ps

=
φ′0(p, T )

p(p− 1)
− 2p− 1

(p(p− 1))2
φ0(p, T )

−
∫ T

0

φ′s(p, T )

p(p− 1)

(
pµ+

p(p− 1)

2
σ2

)
ds−

∫ T

0

φ′s(p, T )

p(p− 1)
pσdWs,

−
∫ T

0

φs(p, T − s)
p(p− 1)

(
µ+

2p− 1

2
σ2

)
ds−

∫ T

0

φs(p, T − s)
p(p− 1)

σdWs

+

∫ T

0

(2p− 1)φs(p, T − s)
(p(p− 1))2

(
pµ+

p(p− 1)

2
σ2

)
ds+

∫ T

0

(2p− 1)φs(p, T − s)
(p(p− 1))2

pσdWs

The conditional premium for trading is SPQT (p) ≡ EP
0 [Sp∞(F )] − EQT

0 [C [Sp∞(F )]]

if the market allows for contingent contracts such that the profits of rebalancing
can be contracted at time 0. The conditional premium in case where the profits of
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rebalancing have to be borne along the trading path, is: SPP(p) ≡ EP
0 [Sp∞(F )] −

EP
0 [C [Sp∞(F )]]. Note that the swap rate for skewness is zero if and only if p = 1/2.

Similarly to the previous section, I can derive closed-form expressions for SPQT (p)

and SPP(p), but in order to save space, I only present the limiting cases:

SPQT (p) : lim
p→0

SPQT (p) =
σ4T 2

4
and lim

p→1
SPQT (p) = −σ

4T 2

4
(A.1.26)

SPP(p) : lim
p→0

SPP(p) =
σ2
(
σ2 − µ

)
T 2

4
and lim

p→1
SPP(p) = −σ

2
(
σ2 + µ

)
T 2

4
− µσ4T 3

24
.

(A.1.27)
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A.1.5 Tables

TABLE A.1: Trading and realised variation measures: replication accuracy. Weekly settlements.

RM Min q0.25 Med Mean q0.75 Max SD MAD MAE ME p-val
Panel A: divergence

D1/2 0.00106 0.00423 0.00714 0.0119 0.0132 0.178 0.0158 0.00591
D1/2 -0.00215 0.004 0.00706 0.0117 0.0132 0.178 0.0157 0.00599 0.000266 0.000175 0.999

Panel B: skewness

SγJ (1/2) -472 -3.02 0.825 -1.14 5.21 392 57.8 5.99
SγJ (1/2) -472 -3.18 1.18 -1.19 7.97 363 61.3 7.85 5.52 0.0478 0.808

Panel C: quarticity

QγJ (1/2) 0.0872 1 3.84 32 15.2 1.73e+03 127 5.07
QγJ (1/2) -1.09e+03 0.871 3.82 29.4 15.6 1.73e+03 177 5.2 21.2 2.59 0.808

Replication accuracy summary for divergence (Panel A), skewness (Panel B) and quarticity (Panel C) strategies associated with weighting γJ . The first and third rows of each panel report
the true realised measures calculated from forward prices. qx denotes 100xth percentile; Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation;
MAE denotes mean absolute error; ME denotes mean error.

.
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TABLE A.2: Trading and realised variation measures: replication accuracy. Weekly settlements, 5-min hedging.

RM Min q0.25 Med Mean q0.75 Max SD MAD MAE ME p-val
Panel A: divergence

D1/2 0.00106 0.00423 0.00714 0.0119 0.0132 0.178 0.0158 0.00591
D1/2 -0.00215 0.004 0.00706 0.0117 0.0132 0.178 0.0157 0.00599 0.000266 0.000175 0.999

Panel B: skewness

SγJ (1/2) -236 -1.51 0.413 -0.572 2.61 196 28.9 2.99
SγJ (1/2) -236 -1.59 0.591 -0.596 3.98 182 30.7 3.93 2.76 0.0239 0.808

Panel C: quarticity

QγJ (1/2) 0.0436 0.5 1.92 16 7.58 865 63.7 2.54
QγJ (1/2) -546 0.435 1.91 14.7 7.82 865 88.6 2.6 10.6 1.29 0.808

Replication accuracy summary for divergence (Panel A), skewness (Panel B) and quarticity (Panel C) strategies associated with weighting γJ . The first and third rows of each panel report
the true realised measures calculated from forward prices. qx denotes 100xth percentile; Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation;
MAE denotes mean absolute error; ME denotes mean error.

.
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TABLE A.3: Summary statistics of divergence trading with weeklies at one hour frequency

qty Min q0.25 Med CI (median) 90% q0.75 Max Mean SD CI (mean) 90%
Panel A: divergence

DγJ (1/2) 0.001029 0.003974 0.006537 0.00562 0.007515 0.01272 0.1779 0.01125 0.01625 0.009885 0.01336
C[DγJ (1/2)] 0.002626 0.006924 0.00997 0.009466 0.01068 0.01614 0.1258 0.01512 0.01586 0.01371 0.01705
P[DγJ (1/2)] -0.09832 -0.006246 -0.003358 -0.003731 -0.002765 -0.0006309 0.09479 -0.003864 0.01264 -0.00512 -0.002534
T [DγJ (1/2)] -0.1099 -0.0005735 0.002374 0.001949 0.00276 0.005057 0.09161 0.002348 0.01248 0.0008954 0.00347

Panel B: skewness

SγJ (1/2) -0.6292 -0.003806 0.0014 0.0006428 0.001934 0.006875 0.3067 -0.003219 0.06929 -0.01207 0.002467
C[SγJ (1/2)] -7.418 -0.2774 -0.1417 -0.1596 -0.1258 -0.0662 7.162 -0.239 0.8755 -0.3281 -0.1468
P[SγJ (1/2)] -7.791 0.06375 0.1479 0.1227 0.1641 0.2733 7.471 0.2357 0.9036 0.1401 0.3223
T [SγJ (1/2)] -10.75 -0.01135 0.08051 0.06109 0.09702 0.1746 5.907 0.0724 0.9869 -0.06306 0.1535

Panel C: quarticity

QγJ (1/2) 5.727e-06 0.0001766 0.0006414 0.0005001 0.0007549 0.002488 0.32 0.005494 0.02463 0.003719 0.00985
C[QγJ (1/2)] -14.25 0.08055 0.1394 0.1273 0.1526 0.2984 14.43 0.303 1.675 0.1186 0.463
P[QγJ (1/2)] -14.42 -0.2975 -0.1373 -0.1537 -0.1274 -0.08031 14.38 -0.2975 1.686 -0.4615 -0.1036
T [QγJ (1/2)] -24.25 0.03526 0.07528 0.06325 0.08464 0.1364 10.31 0.05263 2.037 -0.2669 0.2065

Descriptive statistics of hourly frequency divergence trading profits with weekly option settlement for strategy γJ . Trading period: from 2010-12-31 to 2015-12-24 with a total of 261 weeks.
C[·] denotes the integrated option cost at mid prices; P[·] denotes total trading profits at mid prices; T [·] denotes total trading profits after the transaction costs (bid-ask spread) are taken
into account. P[·] and T [·] are reported in the following way: if mean P[·] from a long strategy is negative, P[·] and T [·] from a short strategy are reported. qx denotes 100xth percentile;
Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation.

.
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TABLE A.4: Summary statistics of divergence trading with weeklies at five minute frequency

qty Min q0.25 Med CI (median) 90% q0.75 Max Mean SD CI (mean) 90%
Panel A: divergence

DγJ (1/2) 0.001459 0.007246 0.0121 0.01065 0.01294 0.01905 0.2688 0.01818 0.02479 0.01613 0.02139
C[DγJ (1/2)] 0.002819 0.00717 0.01031 0.009538 0.01064 0.016 0.1387 0.01541 0.01641 0.01395 0.01735
P[DγJ (1/2)] -0.05686 -0.003522 0.0009186 0.0003282 0.00158 0.005803 0.228 0.002774 0.01852 0.001339 0.005425
T [DγJ (1/2)] -0.06671 -0.00482 0.0004762 -0.0006722 0.001155 0.004921 0.2198 0.001267 0.01832 -0.0001882 0.003765

DV IX 0.001459 0.007246 0.01209 0.01072 0.01294 0.01904 0.2703 0.01819 0.02485 0.01611 0.0213
C[DV IX ] 0.00282 0.007213 0.01024 0.009548 0.01078 0.01607 0.1425 0.01551 0.0166 0.01406 0.01747
P[DV IX ] -0.05852 -0.003677 0.00087 0.0002947 0.001558 0.005733 0.2393 0.00268 0.01919 0.001179 0.00546
T [DV IX ] -0.06775 -0.004908 0.0004272 -0.0007096 0.001099 0.00492 0.2378 0.001265 0.01932 -0.0002345 0.004018

Panel B: skewness

SγJ (1/2) -0.2547 -0.004106 0.000539 0.0001603 0.0009623 0.004029 0.2361 -0.002871 0.04359 -0.007489 0.001221
C[SγJ (1/2)] -8.172 -0.2847 -0.1569 -0.1759 -0.1458 -0.07935 7.269 -0.2746 0.9273 -0.3714 -0.1834
P[SγJ (1/2)] -7.033 0.07723 0.158 0.1445 0.1717 0.2874 8.221 0.2717 0.9307 0.1773 0.3688
T [SγJ (1/2)] -13.82 -0.06591 0.04021 0.02469 0.05654 0.1201 4.915 -0.05125 1.179 -0.2232 0.0356

Panel C: quarticity

QγJ (1/2) 4.672e-06 0.0001729 0.0005 0.0003709 0.000607 0.00159 0.1813 0.003479 0.01398 0.002399 0.005714
C[QγJ (1/2)] -22.91 0.08741 0.1436 0.1234 0.1537 0.2823 15.87 0.3187 1.986 0.06931 0.4879
P[QγJ (1/2)] -15.86 -0.2819 -0.1431 -0.154 -0.1281 -0.08728 23.09 -0.3153 1.994 -0.4868 -0.06533
T [QγJ (1/2)] -48.68 -0.003656 0.03855 0.0327 0.04237 0.09346 8.409 -0.154 3.283 -0.8162 0.06882

Descriptive statistics of 5-minute frequency divergence trading profits with weekly option settlement for strategy γJ . Trading period: from 2010-12-31 to 2015-12-24 with a total of 261
weeks. C[·] denotes the integrated option cost at mid prices; P[·] denotes total trading profits at mid prices; T [·] denotes total trading profits after the transaction costs (bid-ask spread)
are taken into account. P[·] and T [·] are reported in the following way: if mean P[·] from a long strategy is negative, P[·] and T [·] from a short strategy are reported. qx denotes 100xth
percentile; Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation.
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TABLE A.5: Summary statistics of open-to-close divergence trading with weeklies at five minute frequency

qty Min q0.25 Med CI (median) 90% q0.75 Max Mean SD CI (mean) 90%
Panel A: divergence

DγJ (1/2) 0.0001151 0.002495 0.005041 0.004664 0.005358 0.01163 0.7204 0.0117 0.02824 0.01064 0.01344
C[DγJ (1/2)] -0.4276 0.001219 0.004199 0.003946 0.004414 0.008529 0.4149 0.006361 0.02443 0.005168 0.007492
P[DγJ (1/2)] -0.2294 -0.003282 0.0007545 0.0004215 0.001214 0.008023 0.6754 0.005334 0.03417 0.003959 0.00722
T [DγJ (1/2)] -0.3177 -0.009363 -0.003626 -0.004279 -0.003216 0.00263 0.5354 -0.003355 0.03102 -0.004775 -0.001795

DV IX 0.0001155 0.002493 0.005041 0.004672 0.005365 0.01163 0.7201 0.0117 0.02823 0.01066 0.01342
C[DV IX ] -0.4516 0.001125 0.00416 0.003936 0.00437 0.008577 0.4274 0.006352 0.02529 0.005148 0.007567
P[DV IX ] -0.2418 -0.003288 0.0007952 0.0003824 0.001168 0.007879 0.6746 0.005344 0.03478 0.003961 0.007314
T [DV IX ] -0.3285 -0.009429 -0.003648 -0.004302 -0.003251 0.002673 0.5543 -0.003344 0.03196 -0.004756 -0.00171

Panel B: skewness

SγJ (1/2) -0.06286 -0.0001898 4.38e-06 -3.979e-06 1.304e-05 0.0002412 0.1284 5.945e-06 0.004474 -0.0001434 0.0003139
C[SγJ (1/2)] -5.67 -0.03245 -0.005487 -0.00708 -0.003578 0.02172 11 0.004335 0.4408 -0.0125 0.02978
P[SγJ (1/2)] -11.01 -0.02218 0.005413 0.00354 0.007231 0.03271 5.673 -0.004329 0.4419 -0.02954 0.01217
T [SγJ (1/2)] -12.69 -0.1389 -0.05752 -0.06211 -0.05372 -0.02084 8.186 -0.1527 0.6282 -0.187 -0.1275

Panel C: quarticity

QγJ (1/2) 1.71e-09 3.616e-06 1.306e-05 1.09e-05 1.564e-05 5.551e-05 0.06128 0.0002529 0.002172 0.0001807 0.0004353
C[QγJ (1/2)] -12.05 -0.01531 -0.0004048 -0.001003 0.0001241 0.007236 6.577 -0.0233 0.5288 -0.05544 -0.00193
P[QγJ (1/2)] -6.569 -0.007201 0.0004722 -0.0001067 0.00101 0.01531 12.05 0.02356 0.5285 0.001757 0.05589
T [QγJ (1/2)] -18.81 -0.1136 -0.03534 -0.04063 -0.0317 -0.0109 8.237 -0.2049 1.009 -0.2702 -0.1642

Descriptive statistics of open-to-close (8:30 to 15:15) 5-minute frequency divergence trading profits with weekly option settlement for strategy γJ . Trading period: from 2010-12-30 to 2015-
12-30 with a total of 1258 days. C[·] denotes the integrated option cost at mid prices; P[·] denotes total trading profits at mid prices; T [·] denotes total trading profits after the transaction
costs (bid-ask spread) are taken into account. P[·] and T [·] are reported in the following way: if mean P[·] from a long strategy is negative, P[·] and T [·] from a short strategy are reported.
qx denotes 100xth percentile; Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation.
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TABLE A.6: Summary statistics of close-to-open divergence trading with weeklies

qty Min q0.25 Med CI (median) 90% q0.75 Max Mean SD CI (mean) 90%
Panel A: divergence

DγJ (1/2) 7.392e-08 0.0003514 0.00155 0.001441 0.001774 0.005503 0.1386 0.005493 0.01169 0.00497 0.006158
C[DγJ (1/2)] -0.07597 0.002953 0.00555 0.005194 0.005915 0.01093 0.2602 0.009274 0.01782 0.008477 0.01033
P[DγJ (1/2)] -0.2285 -0.006935 -0.003535 -0.003756 -0.003305 -0.0009259 0.2034 -0.003781 0.01885 -0.004744 -0.002836
T [DγJ (1/2)] -0.3184 -0.005829 -0.0007378 -0.001117 -0.000436 0.001779 0.166 -0.005119 0.02181 -0.006384 -0.004137

DV IX 8.525e-07 0.002267 0.01095 0.007766 0.01307 0.0272 0.3241 0.02312 0.03849 0.01933 0.02882
C[DV IX ] 0.01637 0.02971 0.04494 0.04062 0.04792 0.06418 0.5256 0.06586 0.07513 0.05824 0.07647
P[DV IX ] -0.4315 -0.04626 -0.02772 -0.03227 -0.02542 -0.01633 0.06974 -0.04273 0.06378 -0.05136 -0.03611
T [DV IX ] -0.1043 0.01143 0.0226 0.01969 0.02521 0.0381 0.3883 0.03297 0.05601 0.02705 0.04059

Panel B: skewness

SγJ (1/2) -0.7087 -0.0002245 2.721e-06 2.293e-07 6.231e-06 0.0005384 0.5688 -0.0001522 0.03928 -0.002119 0.001611
C[SγJ (1/2)] -4.45 -0.06159 -0.0239 -0.02629 -0.02239 -0.007998 2.09 -0.05744 0.2575 -0.07111 -0.04652
P[SγJ (1/2)] -2.799 0.00737 0.02474 0.02285 0.02745 0.0643 4.483 0.05728 0.2774 0.04472 0.07122
T [SγJ (1/2)] -3.262 -0.02571 0.001545 0.0002621 0.002658 0.01861 3.208 -0.01626 0.2439 -0.0278 -0.004963

Panel C: quarticity

QγJ (1/2) 8.806e-15 1.118e-07 9.929e-07 8.095e-07 1.3e-06 8.611e-06 0.004213 4.876e-05 0.0002752 3.677e-05 6.683e-05
C[QγJ (1/2)] -0.2191 0.0006619 0.002072 0.0019 0.002289 0.006414 0.7328 0.008294 0.03882 0.006689 0.01088
P[QγJ (1/2)] -0.7325 -0.006362 -0.002072 -0.002278 -0.001896 -0.0006347 0.2221 -0.008245 0.03883 -0.01079 -0.006484
T [QγJ (1/2)] -0.3063 -0.0002681 0.0003993 0.0003391 0.0004561 0.00174 0.4742 -0.0001248 0.02795 -0.001597 0.001335

Descriptive statistics of close-to-open (15:15 to 8:30) divergence trading profits with weekly option settlement for strategy γJ . 99% of payoffs with smallest absolute replication error are
retained. Trading period: from 2010-12-31 to 2015-12-24 with a total of 261 days C[·] denotes the integrated option cost at mid prices; P[·] denotes total trading profits at mid prices; T [·]
denotes total trading profits after the transaction costs (bid-ask spread) are taken into account. P[·] and T [·] are reported in the following way: if mean P[·] from a long strategy is negative,
P[·] and T [·] from a short strategy are reported. qx denotes 100xth percentile; Med denotes median; SD denotes standard deviation; MAD denotes median absolute deviation.

.
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A.2 Appendix to Chapter 2

A.2.1 Tables

1− α Annually
data 0.00302

model −0.01017
95% −0.007307 0.01371
99% −0.01025 0.01703

TABLE A.7: Excess dispersion in the Bansal, Kiku, and Yaron, 2016 model and in the
data. Model values calculated with the use of their best estimated model, whose pa-
rameters are reported in Table II of their paper. Data values calculated from sample
ranging from 1946-03-30 to 2012-10-31. Confidence intervals calculated with the use of

a time-series bootstrap (basic confidence interval type).
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