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Abstract Multidrug-resistant (MR) Gram-negative (GN)
pathogens pose a major and growing threat for healthcare
systems, as therapy of infections is often limited due to the
lack of available systemic antibiotics. Well-tolerated antisep-
tics, such as octenidine dihydrochloride (OCT), may be a very
useful tool in infection control to reduce the dissemination of
MRGN. This study aimed to investigate the bactericidal activ-
ity of OCTagainst international epidemic clones ofMRGN. A
set of five different species (Escherichia coli, Klebsiella
pneumoniae, Enterobacter cloacae, Acinetobacter
baumannii, and Pseudomonas aeruginosa) was studied to
prove OCT efficacy without organic load, under Bclean
conditions^ (0.3 g/L albumin) and under Bdirty conditions^
(3 g/L albumin + 3 mL/L defibrinated sheep blood), according
to an official test norm (EN13727). We used five clonally
unrelated isolates per species, including a susceptible wild-

type strain, and four MRGN isolates, corresponding to either
the 3MRGN or 4MRGN definition of multidrug resistance. A
contact time of 1 min was fully effective for all isolates by
using different OCT concentrations (0.01% and 0.05%), with
a bacterial reduction factor of >5 log10 systematically ob-
served. Growth kinetics were determined with two different
wild-type strains (A. baumannii and K. pneumoniae), proving
a time-dependent efficacy of OCT. These results highlight that
OCT may be extremely useful to eradicate emerging highly
resistant Gram-negative pathogens associated with nosocomi-
al infections.

Introduction

Multidrug-resistant (MR) Gram-negative (GN) bacteria pose a
major and growing threat for healthcare systems, given the pau-
city of available and efficient antibiotics drastically complicat-
ing the treatment of infections [1, 2]. MR Enterobacteriaceae,
Pseudomonas, and Acinetobacter strains have emerged as par-
ticularly serious concerns [3, 4].

Antiseptic molecules may help to reduce the dissemination
ofMR bacteria, especially in high-risk areas, such as intensive
care units, when used in patient decolonization procedures [5,
6]. However, reduced susceptibility of some MRGN isolates
to some frequently used biocides (i.e., chlorhexidine) has been
reported [7–9]. A significant bactericidal activity of octenidine
dihydrochloride (OCT) was demonstrated against mupirocin-
resistant methicillin-resistant Staphylococcus aureus (MRSA)
strains [10]. However, information about its efficacy against
MRGN remains poorly investigated [11, 12]. In the present
study, we aimed to assess the in vitro bactericidal activity of
OCT against the most relevant GN species responsible for
hospital-acquired infections, including isolates exhibiting
MR phenotypes.

* L. Poirel
laurent.poirel@unifr.ch

1 Emerging Antibiotic Resistance Unit, Medical and Molecular
Microbiology, Department of Medicine, Faculty of Science,
University of Fribourg, rue Albert Gockel 3,
1700 Fribourg, Switzerland

2 French INSERM European Unit, University of Fribourg
(LEA-IAME), Fribourg, Switzerland

3 National Reference Center for Emerging Antibiotic Resistance
(Switzerland), Fribourg, Switzerland

4 Hospital Universitario Virgen del Rocio y Virgen Macarena,
Seville, Spain

5 Escola Superior de Saúde da Cruz Vermelha Portuguesa,
Lisbon, Portugal

6 University of Lausanne and University Hospital Center,
Lausanne, Switzerland

1

ht
tp
://
do
c.
re
ro
.c
h

Published in "European Journal of Clinical Microbiology & Infectious Diseases 
doi: 10.1007/s10096-017-3070-0,  2017" which should be cited to refer to this work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/141539056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


T
ab

le
1

B
ac
te
ri
al
is
ol
at
es

te
st
ed
,t
he
ir
re
si
st
an
ce

m
ec
ha
ni
sm

s,
an
d
su
sc
ep
tib

ili
ty

pr
of
ile

S
pe
ci
es

R
es
is
ta
nc
e

m
ec
ha
ni
sm

*
Su

sc
ep
tib

ili
ty

to
an
tib

io
tic
s

C
hl
or
he
xi
di
ne

M
IC

(m
g/
L
)

A
M
X

P
PT

A
M
C

C
E
F

C
T
X

F
O
X

C
A
Z

FE
P

E
T
P

IP
M

M
E
M

A
T
M

T
G
C

S
X
T

C
IP

G
M
I

T
M
N

A
K
N

E
.c
ol
i

W
T

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

0.
5

E
.c
ol
i

C
T
X
-M

-1
R

S
S

R
R

S
S

R
S

S
S

S
S

R
S

S
S

S
2.
5

E
.c
ol
i

C
T
X
-M

-1
5

R
I

R
R

R
S

R
R

S
S

S
R

S
R

S
S

R
S

1.
2

E
.c
ol
i

N
D
M
-1

R
R

R
R

R
R

R
R

R
I

R
R

S
R

R
S

S
S

5

E
.c
ol
i

V
IM

-1
5

R
R

R
R

R
R

R
R

R
R

I
I

S
R

S
R

R
I

2.
5

K
.p
ne
um

on
ia
e

W
T

R
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

16
0

K
.p
ne
um

on
ia
e

C
T
X
-M

-1
5

R
S

S
R

R
S

R
R

S
S

S
R

S
S

S
R

R
S

40

K
.p
ne
um

on
ia
e

G
E
S
-1

R
R

R
R

S
S

S
S

S
S

S
S

S
R

S
S

S
S

80

K
.p
ne
um

on
ia
e

K
PC

-2
R

R
R

R
R

R
R

R
R

I
I

R
S

R
R

S
R

R
40

K
.p
ne
um

on
ia
e

O
X
A
-4
8

R
R

R
R

R
R

R
R

R
R

R
R

S
R

R
R

R
I

80

E
.c
lo
ac
ae

W
T

R
S

R
R

R
R

S
S

S
S

S
S

S
S

S
S

S
S

16
0

E
.c
lo
ac
ae

C
T
X
-M

-1
5

R
S

R
R

R
R

R
R

S
S

S
R

S
R

R
R

R
S

40

E
.c
lo
ac
ae

V
E
B
-1

R
I

R
R

R
R

R
S

R
S

S
R

S
S

S
S

R
S

80

E
.c
lo
ac
ae

K
PC

-2
R

R
R

R
R

R
R

R
R

I
I

R
S

R
R

S
R

S
16
0

E
.c
lo
ac
ae

N
D
M
-1

R
R

R
R

R
R

R
R

R
I

R
S

S
R

R
R

R
R

80

A
.b
au
m
an
ni
i

W
T

R
S

R
R

R
R

S
S

R
S

S
R

S
S

S
S

S
S

80

A
.b
au
m
an
ni
i

PE
R
-1

R
R

R
R

R
R

R
R

R
S

S
R

S
R

R
R

S
R

80

A
.b
au
m
an
ni
i

V
E
B
-1

R
R

R
R

R
R

R
R

R
S

S
R

S
R

R
R

R
R

80

A
.b
au
m
an
ni
i

N
D
M
-1

R
R

R
R

R
R

R
R

R
R

R
R

S
R

R
R

R
R

80

A
.b
au
m
an
ni
i

O
X
A
-2
3

R
R

R
R

R
R

R
R

R
R

R
R

S
R

R
S

S
S

80

P.
ae
ru
gi
no
sa

W
T

R
R

R
R

R
R

S
S

R
S

S
I

R
R

S
S

S
S

10

P.
ae
ru
gi
no
sa

PE
R
-1

R
R

R
R

R
R

R
R

R
S

S
R

R
R

R
R

R
R

40

P.
ae
ru
gi
no
sa

V
E
B
-1

R
R

R
R

R
R

R
R

R
S

I
R

R
R

R
R

R
R

40

P.
ae
ru
gi
no
sa

O
pr
D

R
R

R
R

R
R

S
S

R
R

I
I

R
R

R
R

R
S

40

P.
ae
ru
gi
no
sa

V
IM

-2
R

R
R

R
R

R
S

S
R

R
R

I
R

R
R

S
S

I
40

*W
T,
w
ild

-t
yp
e;
C
T
X
-M

-1
,C

T
X
-M

-1
5,
G
E
S-
1,
V
E
B
-1
,a
nd

PE
R
-1

ar
e
ex
te
nd
ed
-s
pe
ct
ru
m
β
-l
ac
ta
m
as
es
;N

D
M
-1
,K

PC
-2
,O

X
A
-4
8,
O
X
A
-2
3,
an
d
V
IM

-2
ar
e
ca
rb
ap
en
em

as
es
;O

pr
D
,d
ef
ic
ie
nt
po
ri
n
of

P.
ae
ru
gi
no
sa

2

ht
tp
://
do
c.
re
ro
.c
h



Methods

We selected bacterial isolates from five different clinically
relevant GN species (Escherichia coli, Klebsiella
pneumoniae, Enterobacter cloacae, Acinetobacter
baumannii, and Pseudomonas aeruginosa) from the Culture
Collection of the Emerging Antibiotic Resistance Unit
(University of Fribourg, Switzerland). Five clonally unrelated
isolates were chosen for each species, including, in each case,
a single susceptible wild-type strain, and four MR isolates
previously characterized for their sequence type and resistance
mechanisms, including the production of extended-spectrum
β-lactamases (ESBLs) and carbapenemases (Table 1).
Susceptibility to antibiotics was determined by disk diffusion,
according to European Committee on Antimicrobial
Susceptibility Testing (EUCAST) breakpoints [13]. All the
clinical isolates corresponded to either 3MRGN (resistance
to three out of the following antibiotic substances: penicillins,
cephalosporins, quinolones, and carbapenems) or 4MRGN
(resistance to all four pre-cited classes), according to the
Robert Koch Institute definition of multidrug resistance [14].

Evaluation of the minimum inhibitory concentrations
(MICs) of chlorhexidine digluconate (CHG; Sigma-Aldrich,
St. Louis, MO, USA) were carried out, following the stan-
dards of the Clinical and Laboratory Standards Institute

(CLSI) [15]. The range of concentrations tested was 0.3–
312.8 mg/L, as used previously [10].

The efficacy of OCT was determined in accordance with
BS EN 13727:2012+A1 [16], (a) without organic load, (b)
under Bclean conditions^ (0.3 g/L BSA, Sigma-Aldrich, St.
Louis, MO, USA), and (c) under Bdirty conditions^ (3 g/L
BSA + 3 mL/L defibrinated sheep blood, Oxoid, Pratteln,
Switzerland). Samples were incubated for different contact
times (30 s, 1, 2.5, or 5 min) with OCT (Schülke & Mayr
GmbH, Germany) diluted to the final test concentrations rang-
ing from 0.00001% to 0.01%. After the given contact times,
the activity of OCT was neutralized using a combination of
0.1% tryptone, 0.85% NaCl, 3% Tween 80, 0.3% lecithin, 3%
saponin, and 0.1% histidine, without interfering with bacterial
growth. Subsequently, serial dilutions of the final mixture
were spread onto neutralizing agar plates and incubated for
24 h and 48 h at 37 °C. Colonies were counted and the reduc-
tion factor (RF) was determined as the difference between the
log10 number of cells in the test solution at the beginning of
the contact time and the log10 number of recovered colonies in
the test solution. A 5 log10 reduction within ≤5 min was con-
sidered effective according to the test norm EN13727.

Results and discussion

Although all E. coli isolates had low MICs (ranging from 1 to
4 mg/L), all other isolates had MICs of CHG ranging from 32
to 128 mg/L, thus showing poor efficacy of the molecule
against most MRGN isolates (Table 1). Noteworthy, to date,
there is no breakpoint consensus to define biocide-reduced
susceptibility, including for CHG. Based on the epidemiolog-
ical cutoff (ECOFF) proposed by Morrissey et al. [17], we
might consider most of our isolates as non-susceptible to CHG.

A reduction of >5 log10 was obtained for all wild-type
strains after 30-s contact with OCT at a concentration of
0.01% (=100 ppm), 0.001% (=10 ppm), and 0.0005%
(=5 ppm). OCT at a concentration of 0.0001% (=1 ppm)
showed a time-dependent activity, achieving a reduction of
>5 log10 after a contact time of 2.5 min. Finally, a

Table 2 Log10 reduction factor
obtained with octenidine 0.01% at
a contact time of 1 min for all test
isolates, with or without organic
load

Test isolates Log10 reduction factor

Without organic load With albumin 0.3 g/L,
Bclean conditions^

With albumin
3 g/L + erythrocytes
3 mL/L, Bdirty conditions^

E. coli (all strains) >5 >5 >5

K. pneumoniae (all strains) >5 >5 >5

E. cloacae (all strains) >5 >5 >5

A. baumannii (all strains) >5 >5 >5

P. aeruginosa (all strains) >5 >5 >5
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Fig. 1 Time-dependent efficacy of different concentrations of octenidine
against Acinetobacter baumannii wild type. These data are representative
of the efficacy observed for the other strains tested
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concentration of 0.00001% (=0.01 ppm) was not effective for
any given time lapse (Fig. 1).

All strains showed sensitivity against 0.01% OCTat a con-
tact time of only 1 min, even in the presence of 0.3 g/L BSA
(Bclean conditions^) or of 3 g/L BSA + 3 mL/L erythrocytes
(Bdirty conditions^), resulting in a reduction factor of >5 log10
(Table 2).

Conclusions

The present study showed that octenidine dihydrochloride
(OCT) is highly effective against multidrug-resistant (MR)
Gram-negative (GN) pathogens within a very short period of
time, under either non-organic or organic conditions, indepen-
dent of increased minimum inhibitory concentrations (MICs)
towards chlorhexidine digluconate (CHG) or of the overall
susceptibility to antibiotics. Among the tested isolates, some
produced the most threatening resistance mechanisms that
may be encountered worldwide in MRGN pathogens, namely
carbapenemases.

The results obtained in this study encourage considering
OCT, which is well tolerated and without resistances reported
so far [18], as an alternative antiseptic for controlling the
spread of MR bacteria, either being Gram-positive or Gram-
negative. Further studies are required to better evaluate the
impact of OCT in clinical practice for preventing infections
caused by MRGN, such as that recently performed by
Gastmeier et al. [19], who showed no significant impact on
the prevention of MRGN acquisition in intensive care units.
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