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Cognitive neuroscience has seen rapid growth in the size and complexity of data

recorded from the human brain as well as in the computational tools available to

analyze this data. This data explosion has resulted in an increased use of multivariate,

model-based methods for asking neuroscience questions, allowing scientists to

investigate multiple hypotheses with a single dataset, to use complex, time-varying

stimuli, and to study the human brain under more naturalistic conditions. These tools

come in the form of “Encoding” models, in which stimulus features are used to model

brain activity, and “Decoding” models, in which neural features are used to generated a

stimulus output. Here we review the current state of encoding and decoding models in

cognitive electrophysiology and provide a practical guide toward conducting experiments

and analyses in this emerging field. Our examples focus on using linear models in the

study of human language and audition. We show how to calculate auditory receptive

fields from natural sounds as well as how to decode neural recordings to predict speech.

The paper aims to be a useful tutorial to these approaches, and a practical introduction

to using machine learning and applied statistics to build models of neural activity. The

data analytic approaches we discuss may also be applied to other sensory modalities,

motor systems, and cognitive systems, and we cover some examples in these areas.

In addition, a collection of Jupyter notebooks is publicly available as a complement to

the material covered in this paper, providing code examples and tutorials for predictive

modeling in python. The aim is to provide a practical understanding of predictivemodeling

of human brain data and to propose best-practices in conducting these analyses.

Keywords: encoding models, decoding models, predictive modeling, tutorials, electrophysiology/evoked

potentials, electrocorticography (ECoG), machine learning applied to neuroscience, natural stimuli

BACKGROUND

A fundamental goal of sensory neuroscience is linking patterns of sensory inputs from the
world to patterns of signals in the brain, and to relate those sensory neural representations to
perception. Widely used feedforward models assume that neural processing for perception utilizes
a hierarchy of stimulus representations in which more abstract stimulus features are extracted from
lower-level representations, and passed along to subsequent steps in the neural processing pipeline.
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Much of perceptual neuroscience attempts to uncover
intermediate stimulus representations in the brain and to
determine how more complex representations can arise from
these levels of representation. For example, human speech
enters the ears as air pressure waveform, but these are quickly
transformed into a set of narrow band neural signals centered
on the best frequency of auditory nerve fibers. From these
narrow-band filters arise a set of spectro-temporal features
characterized by the spectro-temporal receptive fields (STRFs)
of auditory neurons in the inferior colliculus, thalamus, and
primary auditory cortex (Eggermont, 2001). STRFs refer to
the patterns of stimulus power across spectral frequency
and time (spectro-temporal features). Complex patterns of
spectro-temporal features can be used to detect phonemes, and
ultimately abstract semantic concepts (DeWitt and Rauschecker,
2012; Poeppel et al., 2012). It should also be noted that there are
considerable feedback pathways that may influence this process
(Fritz et al., 2003; Yin et al., 2014).

Cognitive neuroscience has traditionally studied hierarchical
brain responses by crafting stimuli that differ along a single
dimension of interest (e.g., high- vs. low-frequency, or words
vs. non-sense words). This method dates back to Donders,
who introduced mental chronometry to psychological research
(Donders, 1969). Donders suggested crafting tasks such that they
differ in exactly one cognitive process to isolate the differential
mental cost of two processes. Following Donders, the researcher
contrasts the averaged brain activity evoked by two sets of stimuli
assuming that the neural response to these two stimuli/tasks is
well-characterized by averaging out the trial-to-trial variability
(Pulvermüller et al., 1999). One then performs inferential
statistical testing to assess whether the two mean activations
differ. While much has been learned about perception using
these methods, they have intrinsic shortcomings. Using tightly-
controlled stimuli focuses the experiment and its interpretation
on a restricted set of questions, inherently limiting the
independent variables onemay investigate with a single task. This
approach is time-consuming, often requiring separate stimuli
or experiments in order to study many feature representations
and may cause investigators to miss important brain-behavior
findings. Moreover, it can lead to artificial task designs in which
the experimental manipulation renders the stimulus unlike those
encountered in everyday life. For example, contrasting brain
activity between two types of stimuli requires many trials with a
discrete stimulus onset and offset (e.g., segmented speech) so that
evoked neural activity can be calculated, though natural auditory
stimuli (e.g., conversational speech) rarely come in this time-
segregated manner (Felsen and Dan, 2005; Theunissen and Elie,
2014). In addition, this approach requires a priori hypotheses
about the architecture of the cognitive processes in the brain
to guide the experimental design. Since these hypotheses are
often based on simplified experiments, the results do not readily
transfer to more realistic everyday situations.

There has been an increase in techniques that use
computationally-heavy analysis in order to increase the
complexity or scope of questions that researchers may ask. For
example, in cognitive neuroscience the “Multi-voxel pattern
analysis” (MVPA) framework utilizes a machine learning

technique known as classification to detect condition-dependent
differences in patterns of activity across multiple voxels in the
fMRI scan (usually within a Region of Interest, or ROI: Norman
et al., 2006; Hanke et al., 2009; Varoquaux et al., 2016). MVPA
has proven useful in expanding the sensitivity and flexibility
of methods for detecting condition-based differences in brain
activity. However, it is generally used in conjunction with
single-condition based block design that is common in cognitive
neuroscience.

An alternative approach studies sensory processes using
multivariate methods that allow the researcher to study multiple
feature representations using complex, naturalistic stimuli. This
approach entails modeling the activity of a neural signal while
presenting stimuli varying along multiple continuous stimulus
features as seen in the natural world. In this sense, it can be
seen as an extension of the MVPA approach that utilizes complex
stimuli and provides a more direct model of the relationship
between stimulus features and neural activity. Using statistical
methods such as regression, one may create an optimal model
that represents the combination of elementary stimulus features
that are present in the activity of the recorded neural signal. These
techniques have become more tractable in recent years with the
increase in computing power and the improvement ofmethods to
extract statistical models from empirical data. The benefits over
a traditional stimulus-contrast approach include the ability to
make predictions about new datasets (Nishimoto et al., 2011), to
take a multivariate approach to fitting model weights (Huth et al.,
2012), and to use multiple feature representations within a single,
complex stimulus set (Di Liberto et al., 2015; Hullett et al., 2016).

These models come in two complementary flavors. The first
are called “encoding” models, in which stimulus features are
used to predict patterns of brain activity. Encoding models
have grown in popularity in fMRI (Naselaris et al., 2011),
electrocorticography (Mesgarani et al., 2014), and EEG/MEG (Di
Liberto et al., 2015). The second are called “decoding” models,
which predict stimulus features using patterns of brain activity
(Mesgarani and Chang, 2012; Pasley et al., 2012; Martin et al.,
2014). Note that in the case of decoding, “stimulus features”
does not necessarily mean a sensory stimulus—it could be an
experimental condition or an internal state, though in this
paper we use the term “stimulus” or “stimulus features.” Both
“encoding” and “decoding” approaches fall under the general
approach of predictive modeling, and can often be represented
mathematically as either a regression or classification problem.

We begin with a general description of predictive modeling
and how it has been used to answer questions about the brain.
Next we discuss the major steps in using predictive models to
ask questions about the brain, including practical considerations
for both encoding and decoding and associated experimental
design and stimulus choice considerations. We then highlight
areas of research that have proven to be particularly insightful,
with the goal of guiding the reader to better understand
and implement these tools for testing particular hypotheses
in cognitive neuroscience. To facilitate using these methods,
we have included a small sample dataset, along with several
scripts in the form of jupyter notebooks that illustrate how one
may construct predictive models of the brain with widely-used
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packages in Python. These techniques can be run interactively in
the cloud as a GitHub repository1.

THE PREDICTIVE MODELING
FRAMEWORK

Predictive models allow one to study the relationship between
brain activity and combinations of stimulus features using
complex, often naturalistic stimulus sets. They have been
described with varying terminology and approaches (Wu et al.,
2006; Santoro et al., 2014; Yamins and DiCarlo, 2016), but
generally involve the following steps which are outlined below
(see Figure 1).

1. Input feature extraction: In an encoding model, features of
a stimulus (or experimental condition) are used as inputs.
These features are computed or derived from “real world”
parameters describing the stimulus (e.g., sound pressure
waveform in auditory stimuli, contrast at each pixel in visual
stimuli). The choice of input features is a key step in the
analysis: features must be adapted to the level in the sensory
processing stream being studied and multiple feature-spaces
can be tried to test different hypotheses. This is generally
paired with the assumption that the neural representation
of stimulus features becomes increasingly non-linear as one
moves along the sensory pathway. For example, if one is
fitting a linear model, a feature space based on the raw sound
pressure waveform could be used to predict the responses
of auditory nerve fibers (Kiang, 1984), but would perform
significantly worse in predicting activity of neurons in the
inferior colliculus (Andoni and Pollak, 2011) or for ECoG
signals recorded from auditory cortex (Pasley et al., 2012).
This is because the neural representation of the stimulus is
rapidly transformed such that neural activity no longer has
a linear relationship with the original raw signal. While a
linear model may capture some of this relationship, it will
be a poor approximation of the more complex stimulus-
response function. At the level of secondary auditory areas, the

1https://github.com/choldgraf/paper-encoding_decoding_electrophysiology

prediction obtained from higher-level features such as word
representations could be contrasted to that based on spectral
features (as the alternative feature space) to test the hypothesis
that these higher-level features (words) are particularly well-
represented in this brain region (de Heer et al., 2017). Other
examples of feature spaces for natural auditory signals are
modulation frequencies (Mesgarani et al., 2006; Pasley et al.,
2012; Santoro et al., 2014), phonemes (Mesgarani et al., 2014;
Khalighinejad et al., 2017), or words (Huth et al., 2012, 2016).
For stimulus features that are not continuously-varying, but
are either “present” or not, one uses a binary vector indicating
that feature’s state at each moment in time. It may also be
possible to combine multiple feature representations with a
single model, though care must be taken account for the
increased complexity of the model and for dependencies
between features (Lescroart et al., 2015; de Heer et al., 2017).

2. Output feature extraction: Similarly, a representation of the
neural signal is chosen as an output of the encoding model.
This output feature is often a derivation of the “raw” signal
recorded from the brain, such as amplitude in a frequency
band of the time-varying voltage of an ECoG signal (Pasley
et al., 2012; Mesgarani et al., 2014; Holdgraf et al., 2016),
pixel intensity in fMRI (Naselaris et al., 2011), and spike
rates in a given window or spike patterns from single unit
recordings (Fritz et al., 2003; Theunissen and Elie, 2014).
Choosing a particular region of the brain fromwhich to record
can also be considered a kind of “feature selection” step. In
either case, the choice of features underlies assumptions about
how information is represented in the neural responses. In
combination with the choice of derivations of the raw signal
to use, as well as which brain regions to use in the modeling
process, the predictive framework approach can be used to
test how and where a given stimulus feature is represented.
For example, the assumption that sensory representations are
hierarchically organized in the brain (Felleman and Van Essen,
1991) can be tested directly.

3. Model architecture and estimation: A model is chosen
to map input stimulus features to patterns of activity
in a neural signal. The structure and complexity of the
model will determine the kind of relationships that can be

FIGURE 1 | Predictive modeling overview. The general framework of predictive models consists of three steps. First, input and output data are collected, for example

during passive listening to natural speech sentences. Next, features are extracted. Traditional features for the neural activity can be the time-varying power of various

frequency bins, such as high frequency range (70–150 Hz, shown above). For auditory stimuli, the audio envelope or spectrogram are often used. Finally, the data are

split into a training and test set. The training set is used to fit the model, and the test set is used to calculate predictive score of the model.
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represented between input and output features. For example,
a linear encoding model can only find a linear relationship
between input feature values and brain activity, and as
such it is necessary to choose features that are carefully
selected. A non-linear model may be able to uncover a more
complex relationship between the raw stimulus and the brain
activity, though it may be more difficult to interpret, will
require more data, and still may not adequately capture the
actual non-linear relationship between inputs and outputs
(Eggermont et al., 1983; Paninski, 2003; Sahani and Linden,
2003; Ahrens et al., 2008). In cognitive neuroscience it
is common to use a linear model architecture in which
outputs are a weighted sum of input features. Non-linear
relationships between the brain and the raw stimulus are
explicitly incorporated into the model in the choice of
input and output feature representations (e.g., performing
a Gabor wavelet decomposition followed by calculating
the envelope of each output is a non-linear expansion of
the input signal). Once the inputs/outputs as well we the
model architecture have been specified, the model is fit
(in the linear case, the input weights are calculated) by
minimizing a metric of error between the model prediction
and the data used to fit the model. The metric of error
can be rigorously determined based on statistical theory
(such as maximum likelihood) and a probability model for
the non-deterministic fraction of the response (the noise).
For example, if one assumes the response noise is normally
distributed, a maximum likelihood approach yields the sum
of squared errors as an error metric. Various analytical and
numerical methods are then used to minimize the error
metric and, by doing so, estimate the model parameters
(Wu et al., 2006; Hastie et al., 2009; Naselaris et al.,
2011).

4. Validation: Once model parameters have been estimated,
the model is validated with data which were not used
in the fit: in order to draw conclusions from the model,
it must generalize to new data. This means that it must
be able to predict new patterns of data that have never
been used in the original model estimation. This may
be done on a “held-out” set of data that was collected
using the same experimental task, or on a new kind of
task that is hypothesized to drive the neural system in a
similar manner. In the case of regression with normally
distributed noise, the variance explained by the model on
cross-validated data can be compared to the variance that
could be explained based on differences between single data
trials and the average response across multiple repetitions
of the same trial. This ratio fully quantifies the goodness of
fit of the model. While this can be difficult to estimate, it
allows one to calculate an “upper bound” on the expected
model performance and can be used to more accurately
gauge the quality of a model, see section What Is a
“Good” Model Score? (Sahani and Linden, 2003; Hsu et al.,
2004).

5. Inspection and Interpretation: If an encoding model is able
to predict novel patterns of data, then one may further
inspect the model parameters to gain insight into the

relationship between brain activity and stimulus features. In
the case of linear models, model parameters have a relatively
straightforward definition—each parameter’s weight is the
amount the output would be expected to change given a
unit increase in that parameter’s value. Model parameters can
then be compared across brain regions or across subjects
(Hullett et al., 2016; Huth et al., 2016). It is also possible to
inspect models by assessing their ability to generalize their
predictions to new kinds of data. See section Interpreting the
Model.

This predictive modeling framework affords many benefits,
making it possible to study brain activity in response to complex
“natural” stimuli, reducing the need for separate experiments for
each stimulus feature of interest, and loosening the requirement
that stimuli have clear-cut onsets and offsets. Moreover,
naturalistic stimuli are better-matched to the sensory statistics
of the environment in which the target organism of study has
evolved, leading to more generalizable and behaviorally-relevant
conclusions.

In addition, because a formal model describes a quantifiable
means of transforming input values into output values, it
can be “tested” in order to confirm that the relationship
found between inputs/outputs generalizes to new data. Given
a set of weights that have been previously fit to data, it is
possible to calculate the “predictive power” for a given set of
features and model weights. This is a reflection of the error
in predictions of the model, that is, the difference between
predicted outputs and actual outputs (also called the “prediction
score”).

While the underlying math is the same between encoding and
decoding models when using regression, the interpretation and
nature of model fitting differs between the two. The next section
describes the unique properties of each approach to modeling
neural activity.

Encoding Models
Encoding models are useful for exploring multiple levels
of abstraction within a complex stimulus, and investigating
how each affects activity in the brain. For example, natural
speech is a continuous stream of sound with a hierarchy of
complex information embedded within it (Hickok and Small,
2015). A single speech utterance contains many representations
of information, such as spectrotemporal features, phonemes,
prosody, words, and semantics. The neural signal is a continuous
response to this input with multiple embedded streams of
information in it due to recording the activity from many
neurons spread across a relatively large region of cortex. The
components of the neural signal operate on many timescales
[e.g., responding to the slow fluctuations of the speech envelope
vs. fast fluctuations of spectral content of speech (David
and Shamma, 2013)] as information propagates throughout
auditory cortex, and are not well-described by a single event-
related response to a stimulus onset (Khalighinejad et al.,
2017). Naturalistic stimuli pose a challenge for event-related
analysis, but are naturally handled in a predictive modeling
framework. In the predictive modeling approach, the solution
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takes the form of a linear regression problem. Hastie et al.
(2009)

activity(t) =

Nfeatures
∑

i

featurei(t)
∗weighti + error(t)

Where the neural activity at time t is modeled as a weighted
sum of N stimulus features. Note that it becomes clear from
this equation that features that have never been presented
will not enter the model and contribute to the sum. Thus,
both the choice of stimuli and input feature space are
critical and have a strong influence on the interpretation of
the encoding model. It is also common to include several
time-lagged versions of each feature as well, accounting for
the fact that the neural signal may respond to particular
feature patterns in time. In this case, the model formulation
becomes:

activity(t) =

Nlags
∑

j

Nfeatures
∑

i

featurei(t − j)∗weighti,j + error(t)

In other words, this model describes how dynamic
stimulus features are encoded into patterns of neural
activity. It is convenient to write this in linear algebra
terms:

activity = Sw + ǫ

In this case S is the stimulus matrix where each row corresponds
to a timepoint of the response, and the columns are the feature
values at that timepoint and time-lag (there are Nlags

∗Nfeatures

columns). w is a vector of model weights (one for each
feature ∗ time lag), and ǫ is a vector of random noise at
each timepoint (most often to be Gaussian for continuous
signals or Poisson for discrete signals). The observed output
activity can then be written as a single dot product assumed
between feature values and their weights plus additive noise.
This dot product operation is identical to explicitly looping
over features and time lags separately (each “iteration” over
lag/feature combinations becomes a column in S and a
single value in w, thus the dot-product achieves the same
result).

As mentioned above, the details of neural activity under
study (the output features), as well as the input features used
to predict that activity, can be flexibly changed, often using
the same experimental data. In this manner, one may construct
and test many hypotheses about the kinds of features that elicit
brain activity. For example to explore the neural response to
spectro-temporal features, one may use a spectrogram of audio
as input to the model (Eggermont et al., 1983; Sen et al., 2001).
To explore the relationship between the overall energy of the
incoming auditory signal (regardless of spectral content) and
neural activity, one may probe the correlation between neural
activity and the speech envelope (Zion Golumbic et al., 2013). To
explore the response to speech features such as phonemes, audio
may be converted into a collection of binary phoneme features,

with each feature representing the presence of a single phoneme
(Leonard et al., 2015; de Heer et al., 2017). Each of these stimulus
feature representations may predict activity in a different region
of the brain. Researchers have also used non-linearities to explore
different hypotheses about more complex relationships between
inputs and neural activity, see section Choosing a Modeling
Framework.

In summary, encoding models of sensory cortex attempt to
model cortical activity as a function of stimulus features. These
features may be complex and applied to “naturalistic” stimuli
allowing one to study the brain under conditions observed in the
real world. This provides a flexible framework for estimating the
neural tuning to particular features, and assessing the quality of a
feature set for predicting brain activity.

Decoding Models
Conversely, decoding models allow the researcher to use brain
activity to infer the stimulus and/or experimental properties that
were most likely present at each moment in time.

feature(t) =

Nlags
∑

j

Nchannels
∑

i

activityi(t + j)∗weighti,j + error(t)

which, in vector notation, is represented as the following:

s = Xw + ǫ

where s is a vector of stimulus feature values recorded over time,
andX is the channel activitymatrix where each row is a timepoint
and each column is a neural feature (with time-lags being treated
as a separate column each). w is a vector of model weights (one
for each neural feature ∗ time lag), and ǫ is a vector of random
noise at each timepoint (often assumed to be Gaussian noise).
Note that here the time lags are negative (“ +j ” in the equation
above) reflecting the fact that neural activity in the present is
being used to predict stimulus values in the past. This is known
as an acausal relationship because the inputs to the model are not
assumed to causally influence the outputs. If the model output
corresponds to discrete event types (e.g., different phonemes),
then the model is performing classification. If the output is a
continuously-varying stimulus property such as the power in one
frequency band of a spectrogram, the model performs regression
and can be used, for example, in stimulus reconstruction.

In linear decoding, the weights can operate on a multi-
dimensional neural signal, allowing the researcher to consider the
joint activity across multiple channels (e.g., electrodes or voxels)
around the same time (See Figure 3). By fitting a weight to each
neural signal, it is possible to infer the stimulus or experiment
properties that gave rise to the distributed patterns of neural
activity.

The decoder is a proof of concept: given a new pattern
of unlabeled brain activity (that is, brain activity without
its corresponding stimulus properties), it may be possible to
reconstruct the most likely stimulus value that resulted in the
activity seen in the brain (Naselaris et al., 2009; Pasley et al.,
2012). The ability to accurately reconstruct stimulus properties
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relies on recording signals from the brain that are tuned to a
diverse set of stimulus features. If neural signals from multiple
channels show a diverse set of tuning properties (and thus if they
contain independent information about the stimulus), one may
combine the activity of many such channels during decoding in
order to increase the accuracy and diversity of decoded stimuli,
provided that they carry independent information about the
stimulus (Moreno-Bote et al., 2014).

Benefits of the Predictive Modeling
Framework
As discussed above, predictive modeling using multivariate
analyses is one of many techniques used in studying the brain.
While the relative merits of one analysis over another is not black
and white, it is worth discussing specific pros and cons of the
framework described in this paper. Below are a few key benefits
of the predictive modeling approach.

1. Generalize on test set data. Classical statistical tests
compare means of measured variables, and statements about
significance are based on the error of the point estimates such
as the standard error of the mean. When using predictive
modeling, cross-validated models are tested for their ability
to generalize to new data, and thus are judged against
the variability of the population of measurements. As such,
classical inferential testing makes statements of statistical
significance, while cross-validated encoding/decoding models
make statements about the relevance of the model. This allows
for more precise statements about the relationship between
inputs and outputs. In addition, encoding models offer a
continuous measure of model quality, which is a more subtle
and complete description of the neural signal being modeled.

2. Jointly consider many variables. Many statistical analyses
(e.g., Statistical Parametric Mapping fMRI analysis; Friston,
2003) employ massive parallel univariate testing in which
variables are first selected if they pass some threshold (e.g.,
activity in response to auditory stimuli), and subsequent
statistical analyses are conducted on this subset of features.
This can lead to inflated family-wise error rate and is prone
to “double-dipping” if the thresholding is not carried out
properly. The predictive modeling approach discussed here
uses a multivariate analysis that jointly considers feature
values, describing the relative contributions of features as
a single weight vector. Because multiple parameters are
estimated simultaneously the parameters patterns should be
interpreted as a whole. This gives a more complex picture of
feature interaction and relative importance, and also reduces
the amount of statistical comparisons being made. However,
note that it is also possible to perform statistical inference on
individual model parameters.

3. Generate hypotheses with complex stimuli. Because
predictive models can flexibly handle complex inputs and
outputs, they can be used as an exploratory step in generating
hypotheses about the representation of stimulus features at
different regions of the brain. Using the same stimulus and
neural activity, researchers can explore hypotheses of stimulus
representation at multiple levels of stimulus complexity.

This is useful for generating new hypotheses about sensory
representation in the brain, which can be confirmed with
follow-up experiments.

4. Discover multivariate structure in the data. Because
predictive models consider input features jointly, they are able
to uncover structure in the input features that may not be
apparent when testing using univariate methods. For example,
STRFs describe complex patterns in spectro-temporal space
that are not apparent with univariate testing (see Figure 5).
It should be noted that any statistical technique will give
misleading results if the covariance between features is not
taken into consideration, though it is more straightforward
to consider feature covariance using the modeling approach
described here.

5. Model subtle time-varying detail in the data. Traditional
statistical approaches tend to collapse data over dimensions
such as time (e.g., when calculating a per-trial average). With
predictive modeling, it is straightforward to incorporate the
relationship between inputs and outputs at each timepoint
without treating between-trail variability as noise. This allows
one to make statements about the time-varying relationship
between inputs and outputs instead of focusing only on
whether activity goes up or down on average. Researchers
have used this in order to investigate more subtle changes in
neural activity such as those driven by subjective perception
and internal brain states (Chang et al., 2011; Reichert et al.,
2014).

Ultimately, predictive modeling is not a replacement of
traditional univariate methods, but should be seen as a
complementary tool for asking questions about complex,
multivariate inputs and outputs. The following sections describe
several types of stimuli and experimental setups that are
well-suited for predictive modeling. They cover the general
workflow in a predictive modeling framework analysis, as well
as a consideration of the differences between regression and
classification in the context of encoding and decoding.

IDENTIFYING INPUT/OUTPUT FEATURES

The application of linear regression or classification models
requires transforming the stimulus and the neural activity such
that they have a linear relationship with one another. This follows
the assumption that generally there is a non-linear relationship
between measures of neural responses (e.g., spike rate) and
those of the raw stimulus (e.g., air pressure fluctuations in the
case of speech), but that the relationship becomes linear after
some non-linear transformation of that raw stimulus (e.g., the
speech envelope of the stimulus). The nature of this non-linear
transformation is used to investigate what kind of information
the neural signal carries about the stimulus. As such, when
using the raw stimulus values, a linear model will not be able
to accurately model the neural activity, but after a non-linear
transformation that matches the transformations performed in
the brain, the linear model is now able to explain variance in
the neural signal. This is a process called linearizing the model
(David, 2004; David and Gallant, 2005).
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As the underlying math of linear models is straightforward,
picking the right set of input/output features is a crucial tool for
testing hypotheses. Stimulus linearization can be thought of as
a process of feature extraction/generation. Features are generally
chosen based on previous knowledge or assumptions about a
brain region under study, and have been used to investigate the
progression of simple to complex feature representations along
the sensory pathway.

The following sections describe common feature
representations that have been used for building linearized
encoding and decoding models in cognitive electrophysiology.
They reflect a restricted set of questions about stimulus
transformations in the brain drawn from the literature and
are not an exhaustive set of possible questions. Also note
that it is possible to use other neural signals as inputs to an
encoding model (for example, an autoregressive model uses past
timepoints of the signal being predicted as input, which is useful
for finding autocorrelations, repeating patterns, and functional
connectivity metrics; Bressler and Seth, 2011). However, this
article focuses on external stimuli.

Encoding Models
Encoding models define model inputs by decomposing the raw
stimulus (be it an image, an audio stream, etc.) into either
well-defined high-level features with both a direct relationship
with the physical world linked with a particular percept
(e.g., spectrogram modulations, center frequencies, cepstral
coefficients) or statistical descriptions of these features (e.g.,
principal or independent components). This is in contrast
to a classic approach that builds receptive field maps using
spectrograms of white noise used for stimulus generation. The
classic approach works well for neural activity in low-level
sensory cortex (Marmarelis and Marmarelis, 1978) but results in
sub-optimal models for higher-level cortical areas, due in part
to the fact that white noise contains no higher-level structure
(David, 2004).

The study of sound coding in early auditory cortices
commonly employs a windowed decomposition of the raw audio
waveform to generate a spectrogram of sound—a description of
the spectral content in the signal as it changes over time (see
Figure 2). Using a spectrogram as input to a linear model has
been used to create a spectro-temporal receptive field STRF. This
can be interpreted as a filter that describes the spectro-temporal
properties of sound that elicit an increase in activity in the neural
signal. The STRF is a feature representation used to study both
single unit behavior (Aertsen and Johannesma, 1981; Theunissen
et al., 2000; Depireux et al., 2001; Sen et al., 2001; Escabí and
Schreiner, 2002) and human electrophysiology signals (Pasley
and Knight, 2012; Di Liberto et al., 2015; Holdgraf et al., 2016;
Hullett et al., 2016).

It should be noted that spectrograms (or other time-frequency
decompositions) are not the only way to represent auditory
stimuli. Others researchers have used cepstral decompositions of
the spectrogram (Hermansky and Morgan, 1994), which embed
perceptual models within the definition of the stimuli features
or have chosen stimulus feature representations that are thought
to mimic the coding of sounds in the sensory periphery (Chi

et al., 2005; Pasley et al., 2012). Just as sensory systems are
believed to extract features of increasing abstraction as they
continue up the sensory processing chain, researchers have used
features of increasing complexity to model higher-order cortex
(Sharpee et al., 2011). For example, while spectrograms are
used to model early auditory cortices, researchers often perform
a secondary non-linear decomposition on the spectrograms
to implement hypothesized transformations implemented in
the auditory hierarchy such as phonemic, lexical, or semantic
information. These are examples of linearizing the relationship
between brain activity and the stimulus representation.

In one approach, the energymodulations across both time and
frequency are extracted from a speech spectrogram by using a
filter bank of two-dimensional Gabor functions (see Sidenote on
Gabors). This results extracts the Modulation Power Spectrum
of the stimulus (in the context of receptive fields, also called
the Modulation Transfer Function). This feature representation
has been used to study higher-level regions in auditory cortex
(Theunissen et al., 2001; Chi et al., 2005; Elliott and Theunissen,
2009; Pasley et al., 2012; Santoro et al., 2014). There have also
been efforts to model brain activity using higher-order features
that are not easily connected to low-level sensory features, such
as semantic categories (Huth et al., 2016). This also opens
opportunities for studying more abstract neural features such as
the activity of a distributed network of neural signals.

Alternatively, one could create features that exploit the
stimulus statistics, for example features that are made statistically
independent from each other (Bell and Sejnowski, 1995) or by
exploiting the concept of sparsity of stimulus representation
bases (Olshausen and Field, 1997, 2004; Shelton et al., 2015).
Feature sparseness of can improve the predictive power and
interpretability of models because the representation of stimulus
features in active neural populations may be inherently sparse
(Olshausen and Field, 2004). For example, researchers have used
the concept of sparseness to learn model features from the
stimuli set by means of an unsupervised approach that estimates
the primitives related to the original stimuli (e.g., for vision:
configurations of 2-D bars with different orientations). This
approach is also known as “dictionary learning” and has been
used to model the neural response to simple input features
in neuroimaging data (Henniges and Puertas, 2010; Güçlü
and van Gerven, 2014). It should be noted that more “data-
driven” methods for feature extraction often discover features
that are similar to those defined a priori by researchers. For
example, Gabor functions have proven to be a useful way to
describe both auditory (Lewicki, 2002) and visual (Touryan et al.,
2005) structure, and are both commonly used in the neural
modeling literature. In parallel, methods that attempt to define
features using methods that maximize between-feature statistical
independence (such as Independent Components Analysis) also
often discover features that look similar to Gabor wavelets
(Olshausen and Field, 1997; see Sidenote on Gabors for more
detail2).

2Sidenote on gabors: A Gabor function is a sinusoidal function windowed
with a Gaussian density function (in either 1- or 2-D), and is commonly
used to derive stimulus representations in both visual (Kay and Gallant, 2009;
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FIGURE 2 | Feature extraction. Several auditory representations are shown for the same natural speech utterance. (A) Raw audio. Generally used as a starting point

for feature extraction, rarely in linear models, though can be used with non-linear models (and sufficient amounts of data). (B) Speech envelope. The raw waveform

can be rectified and low-pass filtered to extract the speech envelope, representing the amount of time-varying energy present in the speech utterance.

(E) Spectrogram. A time-frequency decomposition of the raw auditory waveform can be used to generate a spectrogram that reflects spectro-temporal fluctuations

over time, revealing spectro-temporal structure related to higher-level speech features. (F) Modulation Power Spectrum. A two-dimensional Gabor decomposition of

the spectrogram itself can be used to create the MPS of the stimulus, which summarizes the presence or absence (i.e., power) of specific spectro-temporal

fluctuations in the spectrogram. (C) Phonemes. In contrast to previous features which are defined acoustically, one may also use linguistic features to code the

auditory stimulus, in this case with categorical variables corresponding to the presence of phonemes. (D) Words. Another higher-order feature that is not directly

related to any one spectrotemporal pattern, these types of features may be used to investigate higher-level activity in the brain’s response.

It is also possible to select different neural output features
(e.g., power in a particular frequency band of the LFP) to
ask different questions about neural activity. The choice of
neural feature impacts the model’s ability to predict patterns
of activity, as well as the conclusions one may draw from
interpreting the model’s weights. For example, encoding models
in electrocorticography are particularly useful because of “high-
frequency” activity (70–200 Hz) that reflects local neural
processing (Ray and Maunsell, 2011). This signal has a high
signal-to-noise ratio, making it possible to fit models with more
complicated features. Since it is tightly linked to ensembles of
neurons, it is more straightforward to interpret how the stimulus
features are encoded in the brain (Pasley et al., 2012; Hullett et al.,
2016) and to connect with the single-unit encoding literature
(Theunissen and Elie, 2014). Researchers have also used more
complex representations of neural activity to investigate the
type of information they may encode. For example, in order to

Naselaris et al., 2009; Nishimoto et al., 2011; Lescroart et al., 2016), and auditory
cortex (Theunissen et al., 2001; Qiu et al., 2003; Santoro et al., 2014). For
example, it is possible to create a spectro-temporal representation of sounds by
constructing a collection of Gabor wavelets with linearly- or logarithmically-
increasing frequencies, filtering the raw sound with each one, then calculating the
amplitude envelope of the output of each filter. If the nature of the stimulus is 2-
D (e.g., an image, movie, or spectro-temporal representation), a collection of 2-D
Gabor wavelets may be created with successive frequencies and orientations (Frye
et al., 2016). Gabor functions may also be a particularly efficient means of storing
stimulus information, and studies that use a sparse coding framework to model the
way that neurons represent information often result in Gabor-like decompositions
(Olshausen and Field, 1997).

investigate the interaction between attention and multiple speech
streams (Zion Golumbic et al., 2013), computed a “temporal
receptive field” of an auditory speech envelope for theta activity in
ECoG subjects. A similar analysis has been performed with EEG
(Di Liberto et al., 2015). It is also possible to describe patterns
of distributed activity in neural signals (e.g., using Principle
Components Analysis or network activity levels), and use this
as the output being predicted [though this document treats each
output (i.e., channel) as a single recording unit].

An important development in the field of linear encoding
models is loosening of the assumptions of stationarity to treat
the input/output relationship as a dynamic process (Meyer
et al., 2017). While a single model assumes stationarity in this
relationship, fitting multiple models on different points in time
or different experimental conditions allows the researcher to
make inferences about how (and why) the relationship between
stimulus features and neural activity changes. For example,
Fritz et al. recorded activity in the primary auditory cortex
of ferrets during a tone frequency detection task (Fritz et al.,
2005). The authors showed that STRFs of neurons changed their
tuning when the animal was actively attending to a frequency
vs. passively listening to stimuli, suggesting that receptive fields
are more plastic than classically assumed (Meyer et al., 2014).
Further support for dynamic encoding is provided by Holdgraf
et al. who implemented a task in which ECoG subjects listened
to degraded speech sentences. A degraded speech sentence
was played, followed by an “auditory context” sentence, and
then the degraded speech was repeated. The context created
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a powerful behavioral “pop-out” effect whereby the degraded
speech was rendered intelligible. The authors compared the STRF
of electrodes in the auditory cortex in response to degraded
speech before and after this context was given, and showed that
it exhibited plasticity that was related to the perceptual “pop-
out” effect (Holdgraf et al., 2016). Our understanding of the
dynamic representation of low-level stimulus features continues
to evolve as we learn more about the underlying computations
being performed by sensory systems, and the kinds of feature
representations needed to perform these computations (Thorson
et al., 2015).

Decoding Models
While decoding models typically utilize the same features as
encoding models, there are special precautions to consider
because inputs and outputs are reversed relative to encoding
models. Speech decoding is a complex problem that can be
approached with different goals, strategies, and methods. In
particular, two main categories of decoding models have been
employed: classification and reconstruction.

In a classification framework, the neural activity during
specific events is identified as belonging to one of a finite
set of possible event types. For instance, one of six words or
phrases. There are many algorithms (linear and non-linear) for
fitting a classification model, such as support-vector machines,
Bayesian classifiers, and logistic regression (Hastie et al., 2009).
All these algorithms involve weighting input features (neural
signals) and outputting a discrete value (the class of a datapoint)
or a value between 0 and 1 (probability estimate for the class of
a datapoint). This may be used to predict many types of discrete
outputs, such as the trial or stimulus “types” (e.g., consonant vs.
dissonant chords), image recognition (Rieger et al., 2008), finger
movements (Quandt et al., 2012), social decisions (Hollmann
et al., 2011), or even subjective conscious percepts (Reichert
et al., 2014). In this case, the experimental design requires a
finite number of repetitions of each stimulus type (or class). In
speech research, discrete speech features have been predicted
above chance levels, such as vowels and consonants (Pei et al.,
2011; Bouchard and Chang, 2014), phonemes (Chang et al., 2010;
Brumberg et al., 2011; Mugler et al., 2014), syllables (Blakely et al.,
2008), words (Kellis et al., 2010; Martin et al., 2016), sentences
(Zhang et al., 2012), segmental features (Lotte et al., 2015), and
semantic information (Degenhart et al., 2011).

In a reconstruction approach, continuous features of the
stimulus are reconstructed to match the original feature set. For
instance, upper limb movement parameters, such as position,
velocity, and force were successively decoded to operate a
robotic arm (Hochberg et al., 2012). In speech reconstruction,
features of the sound spectrum, such as formant frequencies
(Brumberg et al., 2010), amplitude power, and spectrotemporal
modulations (Pasley et al., 2012; Martin et al., 2014, 2016), mel-
frequency cepstral-coefficients (Chakrabarti et al., 2013), or the
speech envelope (Kubanek et al., 2013) have been accurately
reconstructed. In a recent study, formant frequencies of intended
speech were decoded in real-time directly from the activity of
neurons recorded from intracortical electrodes implanted in the
motor cortex, and speech sounds were synthesized from the
decoded acoustic features (Brumberg et al., 2010).

While both encoding and decoding models are used to relate
stimulus features and neural activity, decoding models have an
added potential to be used in applications that attempt to use
patterns of neural activity to control physical objects (such as
robotic arms) or predict the stimulus properties underlying the
neural activity (such as inner speech prediction). These are both
examples of neural prosthetics, which are designed to utilize
brain activity to help disabled individuals interact with the world
and improve their quality of life. However, it is also possible (and
preferable in some cases) to decode stimulus properties using an
encoding model. In this case, encoding model parameters may
be used to build probability distributions over the most likely
stimulus properties that resulted in a (novel) pattern of brain
activity (Kay et al., 2008; Naselaris et al., 2011; Nishimoto et al.,
2011).

In summary, linearizing stimulus features allows one to use
linear models to find non-linear relationships between datasets.
This approach is simpler, requires less computation, and is
generally more interpretable than using non-linear models, and
is flexible with respect to the kinds of features chosen (Naselaris
et al., 2011; Shamma, 2013; de Heer et al., 2017). The challenge
often lies in choosing these features based on previous literature
and the hypothesis one wants to test, and interpreting the
resulting model weights (see Interpreting the Models section,
as well as Figure 2 for a description of many features used in
predictive modeling).

CHOOSING AND FITTING THE MODEL

After choosing stimulus features (as inputs to an encodingmodel,
or outputs to a decoding model) as well as the neural signal of
interest, one must link these two data sets by “fitting” the model.
The choice of modeling framework will influence the nature of
the inputs and outputs, as well as the questions one may ask
with it. This section discusses commonmodeling frameworks for
encoding and decoding (see Figure 3 for a general description
of the components that make up each modeling framework). It
focuses on the linear model, an approach that has proven to be
powerful in answering complex questions about the brain. We
highlight some caveats and best-practices.

Choosing a Modeling Framework
The choice of modeling framework affects the relationship
one may find between inputs and outputs. Finding more
complex relationships usually requires more data and is
prone to overfitting, while finding simpler relationships can
be more straightforward and efficient, but runs the risk of
missing a more complex relationship between inputs and
outputs.

While many model architectures have been used in neural
modeling, this paper focuses on those that find linear
relationships between inputs and outputs. We focus on this
case because of the ubiquity and flexibility of linear models,
though it should be noted that many other model structures
have been used in the literature. For example, it is common
to include non-linearities on the output of a linear model
(e.g., a sigmoid that acts as a non-linear suppression of output
amplitude). This can be used to transform the output into a
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FIGURE 3 | Model fitting. An example of encoding (left) and decoding (right) models are depicted. In encoding models, one attempts to predict the neural activity

from the auditory representation by finding a set of weights (one for each feature/time lag) that minimizes the difference between true (black) and predicted (red)

values. In decoding with a classifier (right), brain activity in multiple electrodes is used to make a discrete prediction of the category of a stimulus. Note that decoding

models can also use regression to predict continuous auditory feature values from brain activity, though only classification is shown above.

value that corresponds to neural activity such as a Poisson firing
rate (Paninski, 2004; Christianson et al., 2008), to incorporate
knowledge of the biophysical properties of the nervous system
(McFarland et al., 2013), to incorporate the outputs of other
models such as neighboring neural activity (Pillow et al., 2011),
or to accommodate a subsequent statistical technique (e.g., in
logarithmic classification, see above). It is also possible to use
summary statistics or mathematical descriptions of the receptive
fields described above as inputs to a subsequent model (Thorson
et al., 2015).

It is possible to fit non-linear models directly in order to
find more complex relationships between inputs and outputs.
These may be an extension of linear modeling, such as models
that estimate input non-linearities (Ahrens et al., 2008), spike-
triggered covariance (Paninski, 2003; Schwartz et al., 2006), and
other techniques that fit multi-component linear filters for a
single neural output (Sharpee et al., 2004; Meyer et al., 2017).
Note that, after projecting the stimulus into the subspace spanned
by these multiple filters, the relationship between this projection
and the response can be non-linear, and this approach can be
used to estimate the higher-order terms of the stimulus-response
function (Eggermont, 1993). While non-linear methods find
a more complicated relationship between inputs and outputs,
they may be hard to interpret (but see Sharpee, 2016), require
significantly more data in order to generalize to test-set data,
and often contain many more free-parameters that must be
tweaked to optimize the model fit (Ahrens et al., 2008). In
addition, optimization-based methods for fitting these models
generally requires traversing a more complex error landscape,
with multiple local minima that do not guarantee that the
model will converge upon a global minimum (Hastie et al.,
2009).

As described in section Identifying Input/Output Features,
generalized linear models provide the complexity of non-linear
feature transformations (in the form of feature extraction steps)
with the simplicity and tractability of a linear model. For this
reason linear modeling has a strong presence in neuroscience
literature, and will be the focus of this manuscript. See (Meyer
et al., 2017) for an in-depth review of many (linear and

non-linear) modeling frameworks that have been used in neural
encoding and decoding.

The Least-Squares Solution
As described above, generalized linear models offer a balance
between model complexity and model interpretability. While any
kind of non-linear transformation can be made to raw input or
output features prior to fitting, the model itself will then find
linear relationships between the input and output features. At
its core, this means finding one weight per feature such that,
when each feature is weighted and summed, it either minimizes
or maximizes the value of some function (often called a “cost”
function). A common formulation for the cost function is to
include “loss” penalties such as model squared error (Hastie et al.,
2009) on both the training and the validation set of data. The
following paragraphs describe a common way to define the loss
(or error) in linear regression models, and how this can be used
to find values for model coefficients.

In the case of least-squares regression, we define the
predictions of a model as the dot product between the weight
vector and the input matrix:

ŷ = Xw

In this case, the cost function is simply the squared difference
between the predicted values and the actual values for the output
variable. It takes the following form:

CFLS = error =
1

n

(

ŷ − y
)T(

ŷ− y
)

In this case, X is the input training data and w are the model
weights, and the term ŷ represents model predictions given a set
of data. y is the “true” output values, and n is the total number of
data points. Both y and ŷ are column vectors where each row is
a point in time. CFLS stands for the “least squares” cost function.
In this case it contains a single loss function that measures the
average squared difference between model predictions and “true”
outputs.
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If there are many more data points than features (a rule
of thumb is to have at least 10 times more data points than
features, though this is context-dependent), then finding a set
of weights that minimizes this loss function (the squared error)
has a relatively simple solution, known as the Least Squares
Solution or the Normal equation. It is the solution obtained by
maximum likelihood with the assumption of Gaussian error. The
least square solution is:

weightsLS = (XTX)
−1

XTy

Where X is the (n time points or observations by m features)
input matrix, and y is an output vector of length n observations.

When X and y have a mean of zero, the expression (X
Ty
n ) is

the cross-covariance between each input feature and the output.
This is then normalized by the auto-covariance matrix of the

input features (X
TX
n ). The output will be a vector of length m

feature weights that defines how to mix input features together
to make one predicted output. It should be noted that while this
model weight solution is straightforward to interpret and quick
to find, it has several drawbacks such as a tendency to “overfit”
to data, as well as the inability to impose relationships between
features (such as a smoothness constraint). Some of these will
be discussed further in section From Regression to Classification,
Using Regularization to Avoid Overfitting.

From Regression to Classification
While classification and regression seem to perform very
different tasks, the underlying math between them is surprisingly
similar. In fact, a small modification to the regression equations
results in a model that makes predictions between two classes
instead of outputting a continuous variable. This occurs by taking
the output of the linear model and passing it through a function
that maps this output onto a number representing the probability
that a sample comes from a given class. The function that does
this is called the link function.

pclass = f−1(Xw + b)

Where p is the probability of belonging to one of the two classes
and f−1 is the inverse of the link function (called the inverse link
function). For example, in logistic regression, f is given by the
logistic function:

log

(

p

1− p

)

= Xw + b

Xw is the weighted sum of the inputs, and the scalar (b) is a bias
term. Taken together, this term defines the angle (w) and distance
from origin (b) of a line in feature space that separates the two
classes, often called the decision plane.

Datapoints will be categorized as belonging to one class of
another depending on which side of the line they lie. The quantity
Xw+ b provides a normalized distance from each sample in X to
the classifier’s decision plane (which is positioned at a distance, b,
from the origin). This distance can be associated with a particular
probability that the sample belongs to a class. Note that one can

also use a step function for the link function, thus generating
binary YES/NO predictions about class identity.

While the math behind various classifiers will differ, they are
all essentially performing the same task: define ameans of “slicing
up” feature space such that datapoints in one or another region
of this space are categorized according to that region’s respective
class. For example, Support Vector Machines also find a linear
relationship that separates classes in feature spaces, with an extra
constraint that controls the distance between the separating line
and the nearest member of each class (Hastie et al., 2009).

Using Regularization to Avoid Overfitting
The analytical least-squares solution is simple, but often fails
due to overfitting when there are a high number of feature
dimensions (m) relative to observations (n). In overfitting, the
weights become too sensitive to fluctuations in the data that
would average to zero in larger data sets. As the number of
parameters in the model grows, this sensitivity to noise increases.
Overfitting is most easily detected when the model performs well
on the training data, but performs poorly on the testing data (see
section Validating the Model).

Neural recordings are often highly variable either because of
signal to noise limitations of the measures or because of the
additional difficulty of producing a stationary internal brain state
(Theunissen et al., 2001; Sahani and Linden, 2003). At the same
time, there is increasing interest in using more complex features
to model brain activity. Moreover, the amount of available data
is often severely restricted, and in extreme cases there are fewer
datapoints than weights to fit. In these cases the problem is said
to be underconstrained, reflecting the fact that there is not enough
data to properly constrain the weights of the model. To handle
such situations and to avoid overfitting the data, it is common
to employ regularization when fitting models. The basic goal of
regularization is to add constraints (or equivalently priors) on
the weights to effectively reduce the number of parameters (m)
in the model and prevent overfitting. Regularization is also called
shrinking, as it shrinks the number or magnitude of parameters.
A common way to do this is to use a penalty on the total
magnitude of all weight values. This is called imposing a “norm”
on the weights. In the Bayesian framework, different types of
penalties correspond to different priors on the weights. They
reflect assumptions on the probability distribution of the weights
before observing the data (Wu et al., 2006; Naselaris et al., 2011).

In machine learning, norms follow the convention lN, where
N is generally 1 or 2 (though it could be any value in between).
Constraining the norm of the weights adds an extra term to the
model’s cost function, combining the traditional least squares loss
function with a function of the magnitude across all weights.
For example, using the 12 norm (in a technique called Ridge
Regression) adds an extra penalty to the squared sum of all
weights, resulting in the following value for the regression cost
function:

CFRidge =
1

n

(

Xw − y
)2

+ λ||w||2

Where w is the model weights, n is the number of samples, and
λ is a hyper-parameter (in this case called the Ridge parameter)
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that controls the relative influence between the weight magnitude
vs. the mean squared error. Ridge regression corresponds to a
Gaussian prior on the weight distribution with variance given
by 1

λ
. For small values of λ, the optimal model fit will be largely

driven by the squared error, for large values, the model fit will
be driven by minimizing the magnitude of model weights. As a
result, all of the weights will trend toward smaller numbers. For
Ridge regression, the weights can also be obtained analytically:

weightsRidge = (XTX + Iλ)
−1

XTy

There are many other forms of regularization, for example, ℓ1
regularization (also known as Lasso Regression) adds a penalty
for the sum of the absolute value of all weights and causes
many weights to be close to 0, while a few may remain larger
(known as fitting a sparse set of weights). It is also common to
simultaneously balance ℓ1 and ℓ2 penalties in the same model
(called Elastic Nets, (Hastie et al., 2009)).

In general, regularization tends to reduce the variance of
the weights, restricting them to a smaller space of possible
values and reducing their sensitivity to noise. In the case of lN
regression, this is often described as placing a finite amount of
magnitude that is spread out between the weights. The N in ℓN
regression controls the extent to which this magnitude is given to
a small subset of weights vs. shared equally between all weights.
For example, in Ridge regression, large weights are penalized
more, which encourages all weights to be smaller in value. This
encourages weights that smoothly vary from one to another, and
may discourage excessively highweights on any one weight which
may be due to noise. Regularization reduces the likelihood that
weights will be overfit to noise in the data and improves the
testing data score. ℓ2 regularization also has the advantage of
having an analytical solution, which can speed up computation
time. An exhaustive description of useful regularization methods
and their effect on analyses can be found in Hastie et al. (2009).

Parameters that are not directly fit to the training data (such
as the Ridge parameter) are called hyper-parameters or free
parameters. They exist at a higher level than the fitted model
weights, and influence the behavior of the model fitting process
in different ways (e.g., the number of non-zero weights in the
model, or the extent to which more complex model features can
be created out of combinations of the original features). They are
not determined in the standard model fitting process, however
they can be chosen in order to minimize the error on a validation
dataset (see below). Changing a hyper-parameter in order to
maximize statistics such as prediction score is called tuning the
parameter, which will be covered in the next section.

In addition, there are many choices made in predictive
modeling that are not easily quantifiable. For example, the choice
of the model form (e.g., ℓ2 vs. ℓ1 regularization) is an additional
free model parameter that will affect the result. In addition,
there are often multiple ways to “fit” a model. For example, the
least-squares solution is not always solved in its analytic form.
If the number of features is prohibitively large, it is common
to use numerical approximations to the above equation, such
as gradient descent, which uses an iterative approach to find
the set of weights that minimizes the cost function. With linear

models that utilize enough independent data points, there is
always one set of weight parameters that has the lowest error,
often described as a “global minimum.” In contrast, non-linear
models have a landscape of both local and global minima, in
which small changes to parameter values will increase model
error and so the gradient descent algorithmwill (incorrectly) stop
early. In this way, iterative methods may get “stuck” in a local
minimum without reaching a global minimum. Linear models
do not suffer from the problem of local minima. However, since
gradient descent often stops before total convergence, it may
result in (small) variations in the final solution given different
weight initializations.

Note that for linear time-invariant models (i.e., when the
weights of the model do not change over time) and when the
second order statistical properties of the stimulus are stationary
in time (i.e., the variance and covariance of the stimulus do not
change with time), then it is more efficient to find the linear
coefficients of the model in the Fourier domain. For stimuli with
those time-invariant properties, the eigenvectors of the stimulus

auto-covariance matrix (X
TX
n in the normal equation) are the

discrete Fourier Transform. Thus, by transforming the cross-

correlation between the stimulus and the response (X
Ty
n ) into the

frequency domain, the normal equation becomes a division of the
Fourier representation of XTy and the power of the stimulus at
each frequency. Moreover, by limiting the estimation of the linear
filter weights to the frequencies with significant power (i.e., those
for which there is sufficient sampling in the data), one effectively
regularizes the regression. See (Theunissen et al., 2001) for an
in-depth discussion.

VALIDATING THE MODEL

After data have been collected, model features have been
determined, and model weights have been fit, it is important
to determine whether the model is a “good” description of
the relationship between stimulus features and brain activity.
This is called validating the model. This critical step involves
making model predictions using new data and determining if the
predictions capture variability in the “ground truth” of data that
was recorded.

Validating a model should be performed on data that was
not used to train the model, including preprocessing, feature
selection, and model fitting. It is common to use cross-validation
to accomplish this. In this approach, the researcher splits the
data into two subsets. One subset is used to train the model
(a “training set”), and the other is used to validate the model
(a “test set”). If the model has captured a “true” underlying
relationship between inputs and outputs, then the model should
be able to accurately predict data points that it has never seen
before (those in the test set). This gives an indication for the
stability of themodel’s predictive power (e.g., howwell is it able to
predict different subsets of held-out data), as well as the stability
of the model weights (e.g., placing confidence intervals on the
weight values).

There are many ways to perform cross-validation. For
example, in K-fold cross validation, the dataset is split into K

Frontiers in Systems Neuroscience | www.frontiersin.org 12 September 2017 | Volume 11 | Article 61

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Holdgraf et al. Encoding and Decoding Models in Cognitive Electrophysiology

subsets (usually between 5 and 10). The model is fit on K-1
subsets, and then validated on the held-out subset. The cross
validation iterates over these sets until each subset was once
a test set. In the extreme case, there are as many subsets as
there are datapoints, and a single datapoint is left out for the
validation set on each iteration. This is called LeaveOneOut cross
validation, though it may bias the results and should only be used
if very little data for training the model is available (Varoquaux
et al., 2016). Because electrophysiology data is correlated with
itself (i.e., autocorrelated) in time, it is crucial when creating
training/test splits to avoid separating datapoints that occur
close to one another in time (for example, by keeping “chunks”
of contiguous timepoints together, such as a single trial that
consists of one spoken sentence). If this is not done, correlations
between datapoints that occur close to one another in time will
artificially inflate the model performance when they occur in
both the training and test sets. This is because the model will
be effectively trained and tested on the same set of data, due
to patterns in both the signal and the noise being split between
training/test sets. See Figure 4 for a description of the cross-
validation process, as well as the Jupyter notebook “Prediction
and Validation,” section “Aside: what happens if we don’t split by
trials?”3

Determining the correct hyper-parameter for regularization
requires an extra step in the cross-validation process. The first
step is the same: the full dataset is split into two parts, training
data and testing data (called the “outer loop”). Next, the training
data is split once more into training and validation datasets
(called the “inner loop”). In the inner loop, a range of hyper-
parameter values is used to fit models on a subset of the training
data, and each model is validated on the held-out validation data,
resulting in one model score per hyper-parameter value for each
iteration of the inner loop. The “best” hyper-parameter is chosen
by aggregating across inner loop iterations, and choosing the
hyper-parameter value with the best model performance. The
model with this parameter is then re-tested on the outer loop
testing data. The process of searching over many possible hyper-
parameter values is called a “grid search,” and the whole process
of splitting training data into subsets of training/validation data
is often called nested-loop cross validation. Efficient hyper-
parameter search strategies exist for some learning algorithms
(Hastie et al., 2009). However, there are caveats to doing this
effectively, and the result may still be biased with particularly
noisy data (Varoquaux et al., 2016).

Metrics for Regression Prediction Scores
As described previously, inputs and outputs to a predictive
model are generally created using one or more non-linear
transformations of the raw stimulus and neural activity. The
flexible nature of inputs and outputs in regression means that
there are many alternative fitted models. In general, a model’s
performance is gauged from its ability to make predictions about
data it has never seen before (data in a validation or test set)

3http://beta.mybinder.org/v2/gh/choldgraf/paper-encoding_decoding_
electrophysiology/master?filepath=notebooks/Prediction%20and%20Validation.
ipynb

requiring a criterion to perform objective comparisons among
all those models. The definition of model performance depends
on the type of output for the model (e.g., a time series in
regression vs. a label in categorization). It will also depend on the
metric of error (or loss function) used, which itself depends on
assumptions about the noise inherent in the system (e.g., whether
it is normally-distributed). Assumptions about noise will depend
on both the neural system being studied (e.g., single units vs.
continuous variables such as high-frequency activity in ECoG)
as well as the kind of model being used (Paninski, 2004). The
metric of squared error (described below) assumes normally-
distributed noise, and will be assumed for continuous signals in
the remainder of the text.

Coefficient of Determination (R2)
Encoding models as well as decoding models for stimulus
reconstruction use regression, which outputs a continuously
varying value. The extent to which regression predictions match
the actual recorded data is called model goodness of fit (GoF). A
robust measure is the Coefficient of Determination (R2), defined
as the squared error between the predicted and actual activity,
divided by the squared error that would have occurred with
a model that simply predicts the mean of the true output
data.

SSEtot =
∑

i

(

yi − ȳ
)2

SSEreg =
∑

i

(

yi − ŷi
)2

R2 = 1−
SSEreg

SSEtot

where ŷi is the predicted value of y at timepoint i, and ȳ is the
mean value of y over all timepoints. The first two terms are both
called the sum of squared error. One is the error defined by the
model (the difference between predicted and actual values), and
the other is the error defined by the output’s deviation around
its ownmean (closely related to the output variance). Computing
the ratio of errors provides an index for the increase in output
variability explained by the regression model. If R2 is positive
it means that the variance of the model’s error is less than the
variance of the testing data, if it is zero then the model makes
predictions no better than a model that simply predicts the mean
of the testing data, and if it is negative then the variance of the
model’s error is larger than the variance of the testing data (this
is only possible when the linear model is being tested on data on
which it was not fit).

The Coefficient of Determination, when used with a linear
model and without cross-validation, is related to Pearson’s
correlation coefficient, r, by R2 = r2. However, on held-out data
R2 can be negative whereas the correlation coefficient squared
(r2) must be positive. Finally,R2 is directly obtained from the sum
of square errors which is the value that is minimized in regression
with normally-distributed noise. Thus, it is a natural choice for
GoF in the selection of the best hyper-parameter in regularized
regression.
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FIGURE 4 | Validation and prediction. (A) Cross validation is used to tune hyperparameters and validate the model. In one iteration of the outer loop, the data is split

into training and test sets. Right: an inner loop is then performed on the training set, with a different subset of training data (blue shades) held out as a validation set for

assessing hyperparameter performance. The hyperparameter with the highest mean score across inner-loop iterations is generally chosen for a final evaluation on the

test set. Lower: The same neural timeseries across five iterations of the outer-loop. Each iteration results in a different partitioning of the data into training, test, and

validation sets. Note that timepoints are grouped together in time to avoid overfitting during hyperparameter tuning. (B) Examples of actual and predicted brain activity

for various cross-validated testing folds. The overall prediction score is averaged across folds, and displayed on the surface of the subject’s reconstructed brain. (C) In

decoding models when performing stimulus reconstruction (regression), a model is fit for each frequency band. Model predictions may be combined to create a

predicted spectrogram. The predicted and original auditory spectrograms are compared using metrics such as mean squared error. (D) When using classification for

decoding, the model predicts one of several classes for each test datapoint. These predictions are validated with metrics such as the Receiver Operating

Characteristic (ROC, left) that shows the performance of a binary classifier system as its discrimination threshold is varied. The ROC curve is shown for each outer CV

iteration (black) as well as the mean across CV iterations (red). If the classifier outputs the labels above chance level, the Area Under the ROC curve (AUC) will be larger

than 0.5. Alternatively, the model performance can be compared across classes resulting in a confusion matrix (right), which shows for what percent of the testing set

a class was predicted (columns) given the actual class (rows). The ith row and jth column represents the percent of trials that a datapoint of class i was predicted to

belong to class j.

Coherence and Mutual Information
Another option for assessing model performance in regression
is coherence. This approach uses Fourier methods to assess the
extent to which predicted and actual signals share temporal
structure. This is a more appropriate metric when the predicted
signals are time series, and is given by the following form:

γ (ω)2 =
〈 X (ω)Y∗(ω)〉〈X∗ (ω)Y(ω)〉

〈 X (ω)X∗(ω)〉〈Y∗ (ω)Y(ω)〉

where X (ω) and Y(ω) are complex numbers representing
the stimulus and neural Fourier component at frequency ω,
and X∗ (ω) represents the complex conjugate. It is common
to calculate the coherence at each frequency, ω, and then

convert the output into Gaussian Mutual Information (MI), an
information theoretic quantity with units of bits/sec (also known
as the channel capacity) that characterizes an upper bound for
information transmission for signals with a particular frequency
power spectrum, and for noise with normal distributions. The
Gaussian MI is given by:

MInorm (ω) = −

∞
∫

0

log2(1− γ 2(ω))dω

While this metric is more complex than using R2, it is well-suited
to the temporal properties of neural timeseries data. In particular,
it provides a data-driven approach to determining the relevant
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time scales (or bandwidth) of the signal and circumvents the need
for smoothing the signal or its prediction before estimating GoF
values such as R2 (Theunissen et al., 2001).

Metrics for Classification Prediction
Scores
Common Statistics and Estimating Baseline Scores
It is common to use classification models in decoding, which
output a discrete variable in the form of a predicted class
identity (such as a brain state or experimental condition). In
this case, there is a simple “yes/no” answer for whether the
prediction was correct. As such, it is common to report the
percent correct of each class type for model scoring. This is then
compared to a percent correct one would expect using random
guessing (e.g., 100 ∗ 1

nclasses
). If there are different numbers of

datapoints represented in each class, then a better baseline is
the percentage of datapoints that belong to the most common
class (e.g., 100 ∗ nA

nA+ nB
). It should be noted that these are

theoretical measures of guessing levels, but a better guessing
level can often be estimated from the data (Rieger et al., 2008).
For example, it is common to use a permutation approach to
randomly distribute labels among examples in the training set,
and to repeat the cross validation several hundred times to obtain
an estimate of the classification rate that can be obtained with
such “random” datasets. This classification rate then serves as
the “null” baseline. This approach may also reveal an unexpected
transfer of information between training and test data that leads
to an unexpectedly high guessing level.

ROC Curves
It is often informative to investigate the behavior of a classifier
when the bias parameter, b, is varied. Varying b and calculating
the ratio of “true-positive” to “false-positives” creates the Receiver
Operating Characteristic (ROC) curve of the classifier (Green and
Swets, 1988). This describes the extent to which a classifier is
able to separate the two classes. The integral over the ROC curve
reflects the separability of the two classes independent of the
decision criterion, providing a less-biased metric than percent
correct (Hastie et al., 2009).

A geometric interpretation may help to understand how the
ROC curve is calculated. The classifier’s decision surface is an
oriented plane in the space spanned by the features (e.g., a line in
a 2-D space, if there are only two features). In order to determine
the class of each sample, the samples are projected onto the
normal vector of the decision plane by calculating Xw . Samples
on one side of the place will result in a positive value for Xw,
while samples on the other side of the plane will be negative.
This corresponds to the two classes, and results in two histograms
for the values of Xw, one for each class. The decision criterion
informativetoinvestigate can then be varied, resulting in different
separations of the samples into two classes. By varying b for a
range of values, and comparing the predicted vs. the true labels
for each value of b, one calculates false positives (false alarms)
and true positives (hits) for several decision planes with the same
orientation but different positions. Calculating these values for
many positions of the decision boundary constructs the ROC
curve. A demonstration of the ROC curve and how it relates

to the model’s hyperplane can be found in the provided jupyter
notebooks.

The Area Under the Curve (AUC) is simply the total amount
of area under the ROC curve, and is often reported as a summary
statistic of the ROC curve. If the classifier is performing at
chance, then the AUC will be 0.5, and if it correctly labels all
datapoints for all decision thresholds, then the AUC will be 1.
More advanced topics relating to classifier algorithms are covered
in Hastie et al. (2009) and Pedregosa et al. (2011).

The Confusion Matrix
In the case of multi-class classification (e.g., multinomial logistic
regression), it is common to represent the results using a
confusion matrix. In this visualization, each row is the “known”
class, and each column is a predicted class. The i, jth value
represents the number of times that a datapoint known to
belong to class i was predicted to belong to class j. As such, the
diagonal line represents correct predictions (where classtrue =

classpredicted), and any off-diagonal values represent incorrect
predictions (see Figure 4D).

Confusion matrices are useful because they describe a more
complex picture of how the model predictions perform. This
makes it possible to account for more complex patterns in the
model’s predictions. To capture information about systematic
errors (for example if stimulus labels fall into subsets of groups
between which the model cannot distinguish), one can use
confusion matrices to estimate the mutual information that fully
describes the joint probabilities between the predicted class and
the actual class (e.g., Chang et al., 2010; Elie and Theunissen,
2016).

What Is a “Good” Model Score?
Determining whether a model’s predictive score is “good” or not
is not trivial. Many regression and classification scoring metrics
are a continuously varying number, and deciding a cutoff point
above which a score is not only “statistically significant” but also
large enough in effect size to warrant reporting is a challenging
problem. This is particularly critical for applications such as Brain
Computer Interfaces.

Statistical Significance
A common practice inmodel fitting is to determine whichmodels
pass some criteria for statistical “significance.” This usually
means assessing whether the model is able to make predictions
above chance (e.g., a coefficient of determination significantly
different from zero in the case of regression, or an AUC > 0.5
in the case of classification). To assess importance and model
generalizability, the researcher needs to compare the prediction
of the new model to those obtained in other models (i.e., with
other feature spaces or other, usually simpler, architectures). If
improvements in GoF are clearly observed, then the researcher
may investigate the model properties (such as the model weights)
to determine which features were most influential in predicting
outputs.

As mentioned above, there are multiple challenges with
using predictive power to assess the performance of an
encoding/decoding model. When fitting model parameters, most
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models assume that output signals have independent and either
Gaussian- or Poisson-distributed noise. If this assumption does
not hold (either because the signal and the noise are poorly
estimated by the model, or because the noise is not actually
Gaussian/Poisson), then the model parameters will be biased and
the model less reliable, leading to considerations about whether
the assumptions made by the model are valid. Note, however,
that there have been recent efforts to fit non-linear models of the
input/output function without explicitly assuming distributions
of error (Fitzgerald et al., 2011).

Moreover, as with any statistic of brain activity, metrics for
predictive power can be artificially inflated. For example, signals
that are averaged, smoothed, or otherwise have strong low-
frequency power will tend to give larger prediction scores, but
may not represent the true relationship between stimuli and brain
features. This is one reason to use metrics that are designed with
time-series in mind, such as coherence, which does not depend
on a particular level of smoothing applied to the data.

Estimating the Prediction Score Ceiling
Another useful technique involves determining the highest
possible prediction score one would expect given the variability in
the data collected. A given R2 value may be interpreted as “good”
or “bad” based off the maximum expected R2 possible for the
dataset. This is called the “noise ceiling” of the data, and it allows
one to calculate the percent of possible variance explainable by
the model, instead of the percent of total variance explained by
the model.

There is no guaranteed way to calculate the noise ceiling of a
model, as it must be estimated from the data at hand. However,
there have been attempts at defining principled approaches to
doing so. These follow the principle that the recorded neural data
is thought to be a combination of “signal” and “noise.”

datastim_i = signalstim_i + noise

Note that in this case, only the signal component of the data is
dependent on a given stimulus.

One may estimate the noise ceiling of a model based off of the
signal-to-noise ratio (SNR) of the neural response to repetitions
of the same stimulus. In this case, one randomly splits these
repetitions into two groups and calculates the mean response to
each, theoretically removing the noise component of the response
in each group. The statistic of interest (e.g., R2) is then calculated
between each group. This process is repeated many times, and
the resulting distribution of model scores can be used to calculate
the noise ceiling. This process is explained in more detail in Hsu
et al. (2004) (section Choosing and Fitting the Model) and code
for performing this is demonstrated in the Jupyter notebooks
associate with this manuscript.

It is possible to perform the same approach using different
stimuli by assuming that signals and noise have particular
statistics. For example, the signal can be assumed to be restricted
to low frequencies and the noise to have a normal distribution.
If these assumptions hold, then it may be possible to estimate
the maximum prediction score, but this risks arriving at a
conservative estimate of this value due to some parts of the signal

being treated as noise and averaged out. It is also important
to note that these approaches assume a linear, invariant neural
response to the stimulus, and it is more difficult to assess
the theoretical maximum prediction score of the non-linear
relationship between inputs and outputs (Sahani and Linden,
2003).

A Note on Multiple Comparisons
The ability to perform multivariate analyses is both a blessing
and a curse. On one hand, one can relate the activity of many
stimulus features to a neural signal within a single modeling
framework. On the other, this introduces new considerations
when controlling for multiple comparisons and statistical
inference.

The most notable benefit for multiple comparisons in the
encoding/decoding model framework is the fact that input
variables are considered jointly, meaning that it is not always
necessary to run an independent test for each variable of
interest. Instead, the researcher may inspect the pattern of
activity across all model coefficients. For example (Holdgraf
et al., 2016), fit STRFs when electrocorticography patients heard
degraded speech sentences. The authors compared the shape of
the receptive field rather than performing inference on individual
model coefficients. As such, relatively fewer statistical analyses
were carried out by focusing on patterns in the receptive field
rather than each parameter independently.

While predictive modeling can reduce the number of
statistical comparisons by considering the joint pattern of
coefficients across features, it also introduces new challenges
for statistical comparisons. For example, natural stimuli offer
an opportunity to investigate the relationship between neural
activity and many different sets of features (e.g., spectrotemporal
features, articulatory features, and words; de Heer et al., 2017).
As new features are used to fit models, there is an increased
likelihood of a type 1 error. In these cases, it is crucial to
define well-formulated hypotheses before fitting models with
many different input features. Alternatively, one may use
an encoding/decoding framework as an exploratory analysis
step for the purpose of generating new hypotheses about the
representation of stimulus features in the brain. These should
then be confirmed on held-out data that has not yet been
analyzed, or by follow-up experiments that are designed to test
the hypotheses generated from the exploratory step. Ultimately
it should be emphasized that while predictive models consider
input features simultaneously, they are not a silver bullet for
multiple comparisons problems, especially when performing
statistical inference on individual model parameters (Curran-
Everett, 2000; Maris and Oostenveld, 2007; Bennett et al., 2009).

Another challenge for multiple comparisons comes with
the choice of model and the parameters associated with this
model. While this paper focuses on linear models with standard
regularization techniques (Ridge regression), there are myriad
architectures for linking input and output activity. It is tempting
to try several types of encoding/decoding models when exploring
data, and researchers should be careful that they are not
introducing “experimenter free parameters” that may artificially
inflate their Type 1 error rate.
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Finally, the model itself often also has so-called
hyperparameters that control the behavior of the model
and the kind of structure that it finds in the input data. These
hyperparameters have a strong influence on the outcome of the
analysis, and should be tuned so that the model performs well
on held-out validation data. Importantly, researchers cannot use
the same set of data to both tune hyperparameters and test their
model. Instead, it is best practice to use an inner loop (see above).
This reduces the tendency of the model to over fit to training
data (Wu et al., 2006; Hastie et al., 2009; Naselaris et al., 2011).
If performing statistical inference on model parameters, this
should be done outside of the inner-loop, after hyperparameters
have already been tuned.

INTERPRETING THE MODEL

If one concludes that the model is capturing an important
element of the relationship between brain activity and stimulus
properties, one may use it to draw conclusions about the neural
process under study. While encoding and decoding models have
similar inputs and outputs, they can be interpreted in different,
and often complementary ways (Weichwald et al., 2015). The
proper method for fitting and interpreting model weights is
actively debated, and the reader is urged to consult the current
and emerging literature focused on predictive models of brain
function (Naselaris et al., 2011; Varoquaux et al., 2016). In
the following sections, we describe some challenges and best-
practices in using predictive power to make scientific statements
about the brain.

Encoding Models
The simplest method for interpreting the results of a model fit is
to investigate its weights. In a linear model, a positive weight for a
given feature means that higher values of that feature correspond
to higher values in the neural signal (they are correlated), a
negative weight suggests that increases in the feature values
are related to a decrease in the neural signal (they are anti-
correlated). If the magnitude of a weight is zero (or very small)
it means that fluctuations in the values for that feature will have
little effect on the neural signal. As such, investigating the weights
amounts to describing the features that a particular neural signal
will respond to, presumably because that feature (or one like it)
is represented within the neural information at that region of the
processing hierarchy. Note that the values of the different features
have to be appropriately normalized during model training so
that differences in the scale of features does not influence the
magnitude of feature weights. This is typically done by z-scoring
the values of each feature separately by subtracting its mean and
dividing by its standard deviation.

If stimulus features have been chosen such that they have
an interpretable meaning, then it is straightforward to assess
meaning to the weight of each feature. In addition, if the features
have a natural ordering to them (such as increasing frequency
bands of a spectrogram, along with multiple time lags for each
band), then the pattern of weights represents a receptive field for
the neural signal. For example, spectrotemporal receptive fields
have been shown to map onto higher-order acoustic features

(Woolley et al., 2009) and to increase in complexity as one
moves through the auditory pathway (Sen et al., 2001; Miller
et al., 2002; Sharpee et al., 2011). This approach has also been
used in humans to investigate the tuning properties as one
moves across the superior temporal gyrus (Hullett et al., 2016).
It is also possible to use statistical methods to find patterns in
model coefficients across large regions of cortex. For example
(Huth et al., 2012, 2016), fit semantic word models (where each
coefficient corresponded to one word) to each voxel in the human
cortex. The authors then used Principle Components Analysis to
investigate model coefficient covariance across widely distributed
regions of the brain, finding consistent axes along which these
coefficients covaried with one another.

Finally, another approach toward interpreting encoding
models entails comparing model performance across multiple
feature representations. For example, in de Heer et al. (2017),
the authors investigated the representation of three auditory
features (spectral, articulatory, and semantic features) across
the cortical surface. They accomplished this by partitioning
variance explained by each feature set individually, as well as by
joint models incorporating combinations of these features. This
enabled them to determine the extent to which each feature is
represented across the cortex.

Decoding Models
In a decoding approach, model weights are attached to each
neural signal. Higher values for a signal mean that it is more
important in predicting the output value of the stimulus/class
used in the model. Interpreting the weights of decoding models
can be challenging, as weights with a large amplitude do not
necessarily mean that the neural signal encodes information
about the stimulus (See “section Differences between Encoding
and Decoding Models” for a more thorough discussion of this
idea). It is important to rely on the statistical reliability of the
model weight magnitudes (e.g., low variance across random
partitions of data) to extract interpretable features (Reichert et al.,
2014).

Finally, it should be noted that in some cases, decodingmodels
are used purely for making optimal predictions about stimulus
values. For instance, in neurorehabilitation, decoding models
have been used to predict 3D trajectories of a robotic arm for
motor substitution (Hochberg et al., 2012). In this case, decoding
is approached as an engineering problem, wherein the goal is to
obtain the highest decoding predictions and interpreting model
weights is of less importance.

General Comments on Interpretation
It is possible to use the predictive power of either encoding
models (e.g., the R2 of a model) or decoding models (e.g., the
AUC calculated from an ROC curve) to make statements about
the nature of stimulus feature representations in the brain. For
example, if two models are fit on the same neural data, each
with a different set of input features, one may compare the
variance explained in the testing data by each model. By fitting
multiple models, each with a different feature representation, and
comparing their relative prediction scores, one may investigate
the extent to which each of these feature representations are a
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“good” description of the neural response (Huth et al., 2016).
However, comparing models with different types or numbers of
features is not straightforward, as there are often relationships
between the features used in each model, as well as difference
in the number of parameters used. In this case, a variance
partitioning approach can also be used to distinguish the variance
exclusively explained by two (or more) models from the one
exclusively explained by one and not the other. This is done by
comparing the prediction scores of each model separately, as well
as a joint model that includes all possible parameters (Lescroart
et al., 2015; de Heer et al., 2017).

It is also possible to investigate the weights and predictive
power across models trained in different regions of the brain
to investigate how the relationship between stimulus features
and brain activity varies across cortex. By plotting a model’s
predictive power as a function of its neural location, one may
construct a tuning map that shows which brain regions are well-
predicted by a set of features (Huth et al., 2016). Moreover, by
summarizing receptive fields by the feature value that elicits the
largest response in brain activity, and plotting the “preferred
feature” for each region of the brain, one may construct a tuning
map that describes how the neural response within a particular set
of features is distributed in the brain (Moerel et al., 2013; Hullett
et al., 2016; Huth et al., 2016).

By choosing the right representations of features to include
in the model, it may be possible to reliably predict all of the
variability in brain activity that is dependent on the controlled
experimental parameters. Note that the activity that arises from
non-experimental factors, e.g., from internal states not controlled
in the experiment or from neural and measurement noise,
cannot be predicted. This goal requires special considerations
for choosing stimuli and experimental design, which will be
discussed in the final section.

DIFFERENCES BETWEEN ENCODING AND
DECODING MODELS

Differences in Terminology and Causality
While it is tempting to treat encoding and decoding models
as two sides of the same coin, there are important differences
between them in an experimental context. Encoding and
decoding models have different assumptions about the direction
of causality that may influence the possible interpretations of the
model depending on the experiment being conducted.

Encoding models are often called Forward models, reflecting
the direction of time from stimulus to neural activity. Conversely,
decoding models are often called Backward or Inverse models,
as they move “backwards” in time in a traditional sensory
experiment (Thirion et al., 2006; Crosse et al., 2016). However,
it should be noted that this is not always the case, as sometimes
a decoded value (e.g., a movement) is actually driven by neural
activity. For this reason we prefer the more specific terminology
of encoding and decoding.

The nature of the experiment may also influence the
terminology employed. For example, in an experimental
paradigm in which stimuli in the world give rise to recorded brain

activity (e.g., an experiment where subjects listen to speech),
an encoding model naturally models the direction of causality
from stimuli to brain activity. As such, it is called a causal
model. On the other hand, in this experiment a decoding model
operates in the opposite direction, inferring properties of the
world from the neural activity. This is often called an acausal
model.

The importance of specifying the direction of causality,
and accounting for this in model choice and interpretation,
is discussed in greater detail in Weichwald et al.
(2015). The following sections describe some important
considerations.

Differences in Regression
It is possible for decoding models to be constructed with a
regression framework, similarly to how encodingmodels operate.
For example, in Mesgarani and Chang (2012) and Pasley et al.
(2012), the experimenters fit one model for each stimulus feature
being decoded. This amounts to simply reversing the terms in the
standard regression equations:

weightsencoding = (XTX)
−1

XTy

weightsdecoding = (YTY)
−1

YTx

It is tempting in this case to collect the coefficients of each
decoding model and interpret this as if they came from an
encoding model. However, it’s important to note that a primary
role of regression is to account for correlations between input
features when estimating model coefficients. As explained in
detail in Weichwald et al. (2015), if a stimulus feature Xi causally
influences a neural feature Yi, , and if the stimulus feature Xi is
correlated with another stimulus feature Xj (for example, if they
share correlated noise, or if the stimulus features are naturally
correlated), the decoder will give significant weights for both
Xi and Xj, even though it is only Xi that influences the neural
signal. This fact has important implications in the interpretation
of model weights.

Consider the case of receptive field modeling, in which
auditory stimuli are presented to the individual, and a model is
fit to uncover the spectral features to which the neural activity
responds. In the encoding model, correlations between stimulus
features are explicitly accounted for (XTX), while in the decoding
model, correlations between the neural features are accounted
for (YTY). While it is possible to retrieve a receptive field using
a decoding paradigm (e.g., by fitting one decoding model for
each frequency/time-lag and collecting coefficients into a STRF),
correlations in the stimulus features will skew the distribution of
model coefficients. This might result in a STRF that is smoothed
over a local region in delay/frequency. An encodingmodel should
(theoretically) take these stimulus correlations into account, and
only assign non-zero coefficient values to the proper features
(see Figure 5). In this case it is important to consider the
regularizer used in fitting the model, as there are differences
in how regularization techniques distribute model weights with
correlated features (Mesgarani et al., 2009).
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FIGURE 5 | Comparing encoding and decoding weights. An example of how using an encoding or a decoding framework can influence model results. In this case,

we attempt to find the relationship between spectral features of sound and the neural activity. Left, upper: Using an encoding model, we naturally control for the

covariance of the stimulus. Because the stimulus is natural speech, the correlations between lags and frequencies are accounted for, and the correct receptive field is

recovered. Left, lower: In a decoding model, the X and y terms are reversed, and we instead control for the covariance of the neural activity. Because we have only

one neural channel, the covariance term becomes a scalar (the variance of the neural signal). The decoded model weights are smeared in time and frequency. This is

because of correlations that exist between these stimulus features. Right, upper/lower: The same approach applied to white noise stimuli instead of natural speech.

In this case, there are no correlations between stimulus features, and so the covariance matrix becomes the identity matrix, making the receptive field in the encoding

and decoding approach roughly the same. While this example is shown for receptive field modeling, the same caveat applies to any modeling framework where there

are correlations between either inputs or outputs.

Differences in Classification
The direction of causality also has important implications in
the interpretation of classifiers. It is common to fit a classifier
that predicts a stimulus type or neural state using neural
features as inputs. In this case, it is tempting to interpret the
magnitude of each weight as the extent to which that neural signal
carries information about the state being decoded. However,
this may not be the case. Following the logic above, if a neural
signal with no true response to a stimulus is correlated with
a neural signal that does respond to a stimulus, the classifier
may (mistakenly) give positive magnitude to each. As such,
one must exercise caution when making inferences about the
importance of neural signals using model coefficients in an
Acausal decoding model (Mesgarani et al., 2009; Haufe et al.,
2014).

For example, monitoring the activity of brain regions not
involved in representing stimulus features but instead reflecting
some internal state (e.g., attention) may improve the quality of
the decoder performance if attention is correlated with stimulus
presentation. Such an effect would be due to the multivariate
nature of the decoding model and could, in principle, be
detected with additional univariate analyses. This is true of many
decoding models, and may cause erroneous conclusions about
an electrode’s role in processing sensory features. However, as
explained in Weichwald et al. (2015), the potential difficulty for
causal interpretations in decoding approaches does not negate
their usefulness: encoding and decoding models can be used in a
complementary fashion to describe potential causal relationships

between stimulus and corresponding neural activity in different
brain regions.

EXPERIMENTAL DESIGN

While much of this paper has covered the technical and data
analytic side of predictive modeling, it is also important to
design experiments with predictive models in mind. Fitting
encoding and decoding models effectively requires particular
considerations for the experimental manipulations and stimulus
choices. We will discuss some of these topics below.

Task Design
While traditional experiments manipulate a limited number
of independent variables between conditions, the strength of
predictive modeling lies in using complex stimuli with many
potential features of interest being presented continuously and
overlapping in time. This has the added benefit that complex
stimuli are generally closer to the “real world” of human
experience. This adds to the experiment’s external validity, which
can be difficult to achieve with traditional experimental designs
(Campbell and Stanley, 2015).

The simplest task for an encoding model framework is to ask
the subject to passively perceive a stimulus presented to them. For
example, Huth et al. asked subjects to listen to series of stories
told in the podcast The Moth (Huth et al., 2016). There was no
explicit behavioral manipulation required of the subjects, other
than attending to the stories. Using semantic features extracted
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from the audio, as well as BOLD activity collected with fMRI,
the researchers were able to build encodingmodels that described
how semantic categories drove the activity across wide regions of
the cortex.

The use of complex stimuli does not preclude performing
experimental manipulation. For example, Holdgraf et al. (2016)
presented a natural speech stimulus to ECoG subjects, who
were asked to passively listen to the sounds. These sentences
came in triplets following a degraded -> clean -> degraded
structure. By presenting the same degraded speech stimulus
before and after the presentation of a non-degraded version of
the sentence, the experimenters manipulated the independent
variable of comprehension, and tested its effect on the neural
response to multiple speech features.

It is also possible to ask subjects to actively engage in the
task to influence how their sensory cortex interacts with the
stimuli. Mesgarani et al. used a decoding paradigm to predict
the spectrogram of speech that elicited a pattern of neural
activity (Mesgarani and Chang, 2012). They asked the subject
to attend to one of two natural speech streams, the classic
cocktail party effect. Thus, they experimentally manipulated the
subject’s attention, while the natural speech stimuli were kept the
same. They compared the decoded spectrogram as a function
of which speaker the subject was attending to, suggesting that
attention modulates the cortical response to spectro-temporal
features.

Stimulus Construction
Choosing the proper stimuli is a crucial step in order to properly
construct predictive models. A model’s ability to relate stimulus
features to brain activity is only as good as the data on which
it is trained. For a model to be interpretable, it must be fit
with a rich set of possible feature combinations that cover the
stimulus statistics that are typical for the individual under study,
and for the feature representations of interest. For example, it
is difficult to make statements about how the brain responds
to semantic information if the stimuli presented do not broadly
cover semantic space.

There are many stimulus sets that are commonly used in
predictive modeling of the auditory system. For example, the
TIMIT corpus is a collection of spoken English sentences that are
designed to cover a broad range of acoustic and linguistic features
(Zue et al., 1990). This may be appropriate for studying lower-
order auditory processes, though it is unclear whether stimuli
such as these are useful for more abstract semantic processes, as
the sentences do not follow any high-level narrative. Efforts have
beenmade to construct more semantically rich stimuli (e.g., Huth
et al., 2016), though it is difficult to properly tag a stimulus with
the proper timing of linguistic features (e.g., phoneme and word
onsets). A database withmany types of linguistic/auditory stimuli
can be found at catalog.ldc.upenn.edu.

How Much Data to Collect?
The short answer to this question is always “as much as you
possibly can.” However, in practice many studies are time-limited
in their ability to collect large quantities of data. One should
take care to include enough stimuli such that the model has the

right amount of data to make predictions on test set data. It is
not possible to know exactly how much data is needed as this
depends on both the number of parameters in the model as well
as the noise in the signal being predicted. However, it is possible
to estimate the amount of training samples required to achieve a
reasonable predictive score given further assumptions about the
complexity of the model and the expected noise variance (similar
to traditional statistical power estimation).

Ideally, one should conduct pilot studies in order to
determine the minimum number of trials, time-points, and other
experimental manipulations required to model the relationship
between inputs/outputs to some degree of desired accuracy. It
is useful to plot a model’s predictive score on testing data as
a function of the number of data points included in fitting
the model, this is called a Learning Curve. At some point,
increasing the amount of data in the model fit will no longer
result in an improvement in prediction scores. One should
collect at least enough data such that predictive scores remain
stable as more data is added. For insight into what is meant by
“stable,” see the simulation performed by Willmore and Smyth
on a spiking neuron. These authors showed the shape of the
reconstruction error curve for a number of fitting procedures
and as a function of the number of stimulus presentations,
finding that error decreases as the number of presentations goes
up, and eventually bottoms-out (Willmore and Smyth, 2003,
Figure 5).

Finally, it is also advised to include multiple repetitions of
stimuli that will be used purely for validating the model. This
has two substantial benefits. First, having multiple instances of
the brain’s response to the same stimulus makes it easier to
estimate the ceiling on model performance (see section Metrics
for Regression Prediction Scores). Second, if these repetitions
happen at different points throughout the experiment, it is
possible to use them to assess the degree of stationarity in
the neural response. Most models assume that the relationship
between the stimulus features and the brain activity will be
stable over time. This is often not the case as brains are
inherently plastic (e.g., Meyer et al., 2014; Holdgraf et al.,
2016), and may change their responsiveness to stimuli based
on experimental manipulations or broader changes such as
levels of internal or external attention. Recording the neural
response to the same stimulus throughout the experiment
provides a metric of whether the assumption of stationarity
holds.

CONCLUSIONS

Predictive modeling allows researchers to relate neural activity to
complex and naturalistic stimuli in the world. Encoding models
provide an objective methodology to determine the ability of
different feature representations to account for variability in the
neural response. Decoding models play a complementary role
to encoding models, and allow for the reconstruction of stimuli
from ensembles of neural activity, opening the door for future
advancements in neuroprosthetics. Predictive models have been
successfully used to model the neural response of single units
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(e.g., Theunissen et al., 2001), high-frequency electrode activity
(e.g., (Mesgarani and Chang, 2012); Stéphanie (Martin et al.,
2014); Stephanie (Martin et al., 2016)), and BOLD responses to
low-level stimulus features (Nishimoto et al., 2011). They have
also been used to investigate the neural response to higher-level
stimulus features (e.g., Çukur et al., 2013; Huth et al., 2016), as
well as to investigate how this response changes across time or
condition (e.g., Fritz et al., 2003; Meyer et al., 2014; Slee and
David, 2015).

There are many caveats that come with a predictive modeling
framework, including considerations for feature extraction,
model selection, model validation, model interpretation, and
experimental design. We have discussed many of these
issues in this review and have provided python tutorials to
guide the reader in implementing these methods. We urge
the reader to examine the citations provided for further
details and to follow advances in this field closely as our
understanding of its drawbacks and its potential continues
to evolve.
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