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ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is
squalene epoxidase (SQLE). This agent has been extensively used in the therapy of
dermatophyte infections. The incidence of patients with tinea pedis or unguium tol-
erant to terbinafine treatment prompted us to screen the terbinafine resistance of
all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Univer-
sitaire Vaudois collected over a 3-year period and to identify their mechanism of re-
sistance. Among 2,056 tested isolates, 17 (�1%) showed reduced terbinafine suscep-
tibility, and all of these were found to harbor SQLE gene alleles with different single
point mutations, leading to single amino acid substitutions at one of four positions
(Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to
the corresponding amino acid substitutions were introduced into the endogenous
SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Tricho-
phyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants
expressing mutated SQLE proteins exhibited obvious terbinafine-resistant pheno-
types compared to the phenotypes of the parent strain and of transformants ex-
pressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in
A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum
SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb,
the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased
exposure to antifungal drugs could favor the generation of resistant strains.

KEYWORDS dermatophytes, squalene epoxidase, terbinafine, Trichophyton,
antifungal resistance, reverse genetics approach

Tinea pedis and tinea unguium are the most prevalent dermatophytoses. Both are
generally caused by Trichophyton rubrum and Trichophyton interdigitale, with prev-

alences of approximately 80% and 20%, respectively (1). Control of tinea pedis and
tinea unguium requires treatment with topical and/or oral fungicidal or fungistatic
drugs (2). With some exceptions, antifungal drugs commonly used to treat dermato-
phytosis target the ergosterol biosynthetic pathway. Imidazoles such as econazole and
triazoles such as itraconazole inhibit lanosterol 14-�-demethylase, which leads to the
accumulation of sterol precursors and results in altered plasma membrane structure
and function (3). In contrast, allylamines such as terbinafine are inhibitors of squalene
epoxidase, an enzyme involved in the early steps of ergosterol biosynthesis (4). This
inhibition results in the accumulation of squalene, which is toxic to fungi (5). Terbin-
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afine has been found to be (as the drug of choice) efficacious for curing both tinea
pedis and tinea unguium and is now used worldwide.

Although T. rubrum clinical isolates resistant to terbinafine are rarely described in the
literature, therapeutic failure has been recorded in Lausanne (Switzerland) in patients
with tinea pedis or onychomycosis. In these cases, the infectious agent was unambig-
uously identified as T. rubrum. To date, only two cases of terbinafine resistance have
been investigated at the biochemical and DNA levels in T. rubrum clinical isolates from
onychomycoses (6–9). Resistance was shown to be due to single point mutations in the
gene encoding squalene epoxidase. Both mutations introduced missense substitutions
(Leu393Phe in one case and Phe397Leu in the other), resulting in a more than 100-fold
higher MIC (9, 10). Antifungal resistance in many fungi is also mediated by overexpres-
sion of genes encoding multidrug transporters (11–13). However, no resistance medi-
ated by efflux pumps of the ATP-binding cassette (ABC) transporter family or by efflux
pumps of the major facilitator family has yet been documented in dermatophyte
clinical isolates.

Because of the incidence of patients with tinea pedis and tinea unguium insensitive
to terbinafine treatment, the aims of this work are (i) to determine the frequency of
terbinafine-resistant Trichophyton clinical isolates in a large screening of isolates from
patients for whom a mycological analysis was performed at the Centre Hospitalier
Universitaire Vaudois (CHUV) and (ii) to identify the mechanisms of resistance of
dermatophytes insensitive to terbinafine.

RESULTS
Isolation of dermatophyte strains showing reduced susceptibility to terbin-

afine. A total of 1,644 T. rubrum and 412 T. interdigitale clinical isolates, which were
mainly collected from patients with tinea pedis or tinea unguium, were tested for
growth ability on Sabouraud dextrose agar (SDA) containing 0.2 �g/ml terbinafine.
Only 16 T. rubrum and one T. interdigitale isolate grew on the medium (Table 1). To

TABLE 1 Phenotypic and genotypic characteristics of the clinical isolates obtained from patients with dermatophyte infections

Species and isolate no.a Infection type
Growth with
terbinafineb

Nucleotide substitution
within the SQLE gene

Amino acid
substitution

Terbinafine
MIC (�g/ml)

Fold expression of SQLE
(mean � SD)d

T. interdigitale
ATCC MYA-4439 None None 0.00625 ND

T. rubrum
CBS118892 None None NDc 1.08 � 0.47
TIMM20083 Tinea pedis ��� 1177TTA ¡ TTT Leu393Phe 6.4 1.26 � 0.48
TIMM20084 Tinea pedis ��� 1177TTA ¡ TTT Leu393Phe 3.2 0.67 � 0.25
TIMM20093 Tinea pedis ��� 1177TTA ¡ TTT Leu393Phe 6.4 ND
TIMM20094 Tinea unguium ��� 1177TTA ¡ TTT Leu393Phe 6.4 ND
TIMM20088 Tinea unguium ��� 1177TTA ¡ TCA Leu393Ser 1.6 ND
TIMM20095 Tinea unguium ��� 1177TTA ¡ TCA Leu393Ser ND ND
TIMM20085 Tinea unguium ��� 1189TTC ¡ TTA Phe397Leu 3.2 ND
TIMM20086 Tinea unguium ��� 1189TTC ¡ CTC Phe397Leu 6.4 0.72 � 0.29
TIMM20087 Tinea unguium ��� 1189TTC ¡ TTA Phe397Leu ND 0.64 � 0.27
TIMM20092 Tinea pedis ��� 1189TTC ¡ CTC Phe397Leu �12.8 ND
TIMM20091 Tinea pedis ��� 1189TTC ¡ ATC Phe397Ile 0.8 ND
TIMM20097 Tinea unguium � 1189TTC ¡ GTC Phe397Val ND ND
TIMM20090 Tinea unguium ��� 1305TTC ¡ ATC Phe415Ile 0.1 ND
TIMM20098 Tinea pedis � 1305TTC ¡ TCC Phe415Ser ND ND
TIMM20082 Tinea unguium ��� 1305TTC ¡ GTC Phe415Val 0.4 ND
TIMM20089 Tinea unguium � 1380CAT ¡ TAT His440Tyr 0.1 ND

T. interdigitale
TIMM20096 Tinea unguium ��� 1189TTC ¡ CTC Phe397Leu 3.2 ND

aAll the clinical isolates were obtained in Switzerland and deposited in the culture collection of Teikyo University Institute of Medical Mycology (TIMM).
bThe growth ability of the clinical isolates on SDA containing 0.2 �g/ml terbinafine is indicated as weak (�) to vigorous (���).
cND, not determined.
dResults represent expression levels from three independent real-time PCR experiments. Expression levels of SQLE genes were indicated as relative fold changes
compared to the CT mean of the wild-type strain CBS118892 data.
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investigate further the reduced terbinafine susceptibility of such strains, their squalene
epoxidase (SQLE) genes were amplified by PCR and sequenced. As shown in Table 1, the
SQLE genes of all the strains were revealed to contain point mutations leading to amino
acid substitutions at one of four amino acid positions (Leu393, Phe397, Phe415, and His440)
within the SQLE protein, strongly suggesting that a structural change in the SQLE protein
might be involved in the reduced susceptibility of these strains to terbinafine.

We used the length polymorphism of the tandem repetitive subelement 1 (TRS-1)
and TRS-2 amplicons tentatively to differentiate T. rubrum resistant isolates carrying
identical point mutations. The length polymorphism of TRS-1 allowed the differentia-
tion of TIMM20083 and TIMM20093 from TIMM20084 and TIMM20094 (Fig. 1A). These
four strains carried identical A-to-T substitutions at position 1179 of the open reading
frame (ORF) of the SQLE gene, leading to the replacement of Leu393 by Phe in the SQLE
protein. The length polymorphism of TRS-2 allowed the differentiation of TIMM20086
from TIMM20092 (Fig. 1B). These two strains carried identical T-to-C substitutions in
position 1189 of the open reading frame of the SQLE gene, leading to the replacement
of Phe397 by Leu in the SQLE protein. TIMM20085 and TIMM20087, which carried
identical C-to-A substitutions at position 1191 of the open reading frame of the SQLE
gene, could not be differentiated. Similar to TIMM20086 and TIMM20092, Phe397 was
replaced by Leu in the SQLE protein.

The MIC values, measured by the broth microdilution method, varied from one
isolate to another and appeared to depend on the detected mutation (Table 1). While
the MIC values were almost the same for all Leu393Phe mutants, substantial differences
were observed between Phe397Leu mutants. In particular, TIMM20092 showed a
higher terbinafine tolerance than the other two Phe397Leu mutants (TIMM20085 and
TIMM20086). The MIC values of TIMM20095 (Leu393Ser), TIMM20087 (Phe397Leu),
TIMM20097 (Phe397Val), and TIMM20098 (Phe415Ser) were not estimated because
these isolates dramatically decreased their conidial productivity.

Point mutations detected in the SQLE gene of resistant strains confer resis-
tance to terbinafine. We examined whether the single amino acid substitutions in the
SQLE protein of the 17 Trichophyton isolates were involved in the terbinafine resistance
phenotypes. Point mutations corresponding to the amino acid substitutions in these
isolates were introduced into the endogenous SQLE gene of a terbinafine-sensitive
dermatophyte strain by genetic manipulations. To enhance the generation of such
mutations, Arthroderma vanbreuseghemii was used as a recipient organism, for which a
variety of more efficient genetic manipulation tools have been developed than for T.
rubrum and T. interdigitale (14). A. vanbreuseghemii, T. rubrum, and T. interdigitale SQLE

FIG 1 Agarose gel electrophoresis of the TRS-1 (lanes 1 to 4) and TRS-2 (lanes 5 to 8) regions from
terbinafine-resistant T. rubrum clinical isolates with the same point mutation in the SQLE gene. (A) Strains
with the replacement of Leu393 with Phe in SQLE. Lanes 1 and 5, TIMM20083; lanes 2 and 6, TIMM20084;
lanes 3 and 7, TIMM20093; lanes 4 and 8, TIMM20094. (B) Strains with the replacement of Phe397 with Leu
in the SQLE. Lanes 1 and 5, TIMM20085; lanes 2 and 6, TIMM20086; lanes 3 and 7, TIMM20087; lanes 4
and 8, TIMM20092. Leu397 is encoded by TTA in TIMM20085 and TIMM20087 and by CTC in TIMM20086
and TIMM20092.
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genes each comprise a 1,532-bp ORF encoding 489 amino acids. The amino acid
sequence of A. vanbreuseghemii SQLE (AvSQLE) is completely identical to that of T.
interdigitale (GenBank accession number EZF33561). However, it differs in six amino
acids at distinct positions (Val24, Thr52, Glu174, Asp352, Ala392, and Ile483) from that of T.
rubrum SQLE (TrSQLE) (GenBank accession number EGD89476), with some potential
impacts on the structure of mutated AvSQLE proteins expressed in A. vanbreuseghemii.
Based on this possibility, expression of wild-type and mutated TrSQLE proteins in A.
vanbreuseghemii was also investigated. The synthetic SQLE gene (designated sSQLE),
which encodes the wild-type TrSQLE protein, and the SQLE gene alleles harboring point
mutations leading to single amino acid substitutions in SQLE proteins were generated
from the wild-type AvSQLE gene by overlap extension PCR. Four types of AvSQLE-
targeting vectors harboring those alleles (Table 2) were constructed and introduced
into the terbinafine-sensitive A. vanbreuseghemii strain 1062Av1401, according to the
gene replacement strategy shown in Fig. 2A and B. Our initial attempt at transformation
was unsuccessful, except for the production of transformants (named Av-FRT-1-3 and
Tr-FRT-52-9, where FRT is FLP recombinase target) harboring the AvSQLE or sSQLE gene
without any point mutation. However, subsequent attempts at transformation using
these two clones as the recipient strains led to the successful production of clones
harboring the mutated SQLE gene alleles, leading to the Leu393Phe, Leu393Ser,
Phe397Ile, Phe397Leu, Phe397Val, Phe415Val, or His440Tyr substitution in AvSQLE and
TrSQLE proteins (Fig. 2C). However, mutant strains harboring a Phe415Ser substitution
could not be generated.

The growth properties of the obtained A. vanbreuseghemii transformants harboring
the mutated AvSQLE or sSQLE gene on solid medium containing terbinafine were
compared with growth of the parent strain 1062Av1401. The two clones, i.e., Av-FRT-1-3
and Tr-FRT-52-9, which harbor the wild-type AvSQLE or sSQLE gene, were used as the
control strains. As shown in Fig. 3, 1062Av1401, Av-FRT-1-3, and Tr-FRT-52-9 were
unable to grow on SDA containing 0.005 �g/ml terbinafine, while all the clones
harboring the mutated SQLE genes maintained growth activity. The MICs of terbinafine
and itraconazole against these resistant clones were measured using the CLSI broth
microdilution method (15). As shown in Table 3, clones that harbor the mutated AvSQLE
and sSQLE genes were 8- to 512-fold less susceptible to terbinafine, respectively, than
their respective control strains, demonstrating that the terbinafine tolerance of the
clinical Trichophyton strains was conferred by single amino acid substitutions in the

TABLE 2 Plasmids used in this study

Plasmid Descriptiona Source or reference

pAg1 Streamlined version of the binary vector pBIN19 containing sequences necessary for replication
in E. coli and A. tumefaciens (oriV and trfA), E. coli neomycin phosphotransferase (nptII), and
the transferable DNA (T-DNA) region, with a multiple cloning site within the T-DNA region

37

pAg1-AbKu70/T2 AbKu70a fragment (the 5= UTR of AbKu70 gene; 2.49 kb), 5= FRT sequence, PtrpC (GenBank
accession no. X02390), nptII, TcgrA (AFUA_8G02750), Pctr4 (TERG_01401), Pcflp, Ttrp1 (M74901),
AbKu70b fragment (the 3= UTR of AbKu70 gene; 2.19 kb)

This study

pAg1-AvSQLE/T SQLEa fragment (5=-UTR and ORF of the AvSQLE gene; about 3.88 kb), 5= FRT sequence, PtrpC,
nptII, TcgrA, Pctr4, Pcflp, Ttrp1, 3= FRT sequence, SQLEb fragment (the 3=-UTR of the AvSQLE
gene; about 2.31 kb)

This study

pAg1-mAvSQLE/T series SQLEa fragment (the 5=-UTR of AvSQLE gene and each mutated AvSQLE ORF leading to the
Leu393Phe, Leu393Ser, Phe397Leu, Phe397Ile, Phe397Val, Phe415Ser, Phe415Val or His440Tyr
substitution in AvSQLE) (3.88kb), 5=-FRT sequence, PtrpC, nptII, TcgrA, Pctr4, Pcflp, Ttrp1, 3=-FRT
sequence, SQLEb fragment (the 3=-UTR of AvSQLE gene) (about 2.31kb)

This study

pAg1-sSQLE/T SQLEa fragment (5= UTR of the AvSQLE gene and the sSQLE ORF encoding wild-type TrSQLE;
3.88kb), 5= FRT sequence, PtrpC, nptII, TcgrA, Pctr4, Pcflp, Ttrp1, 3= FRT sequence, SQLEb fragment
(the 3= UTR of the AvSQLE gene; 2.31 kb)

This study

pAg1-msSQLE/T series SQLEa fragment (5= UTR of AvSQLE gene and each mutated sSQLE ORF leading to the
Leu393Phe, Leu393Ser, Phe397Leu, Phe397Ile, Phe397Val, Phe415Ser, Phe415Val, or
His440Tyr substitution in TrSQLE; 3.88kb), 5= FRT sequence, PtrpC, nptII, TcgrA, Pctr4, Pcflp, Ttrp1,
3= FRT sequence, SQLEb fragment (the 3= UTR of the AvSQLE gene; about 2.31 kb)

This study

aORF, open reading frame; sSQLE, synthetic SQLE.
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FIG 2 Introduction of point mutations into the endogenous SQLE gene of A. vanbreuseghemii by gene
replacement strategy. (A) Schematic representation of a series of binary AvSQLE-targeting vectors. DNA
fragments (SQLEa and SQLEb) containing the 5= UTR of the AvSQLE gene and the open reading frames
encoding wild-type and mutated A. vanbreuseghemii or T. rubrum SQLE proteins (ORF*) as well as the 3=
UTR of the AvSQLE gene were subcloned into the pAg1-AbKu70/T2 upstream (SpeI/ApaI) and down-
stream (BamHI/KpnI) of the PcFLP/FRT module, respectively (Table 2 and Fig. S1). The nptII cassette is
composed of Aspergillus nidulans trpC promoter (PtrpC), E. coli neomycin phosphotransferase gene (nptII),
and the A. fumigatus cgrA terminator (TcgrA). Pctr4, T. rubrum ctr4 promoter (34); Pcflp, the synthetic flp
gene with Penicillium chrysogenum-optimized codon usage (35); Ttrp1, Cryptococcus neoformans trp1
terminator (36); FRT, FLP recombinase target sequence; LB and RB, left and right borders, respectively; A,
ApaI; B, BamHI; C, ClaI; K, KpnI; Sc, SacI; Sh, SphI; Sp, SpeI. (B) Schematic representation of the AvSQLE
locus before and after homologous recombination and excision of the PcFLP/FRT module. Site-specific
recombination between the flanking FRT sequences was induced by conditional expression of Pcflp after
transformation. All the internal BamHI sites contained in the amplified fragments were inactivated by
overlap extension PCR. (C) Southern blotting. Aliquots of approximately 10 �g of total DNA from each
mutant strain were digested with BamHI and separated by electrophoresis on 0.8% (wt/vol) agarose gels.
1062Av1401 indicates the parent strain. Lane 1, Av-FRT-1-3 (AvSQLE’s control); lane 2, Av-S38A
(Leu393Phe); lane 3, Av-1-3 (Leu393Ser); lane 4, Av-S714J6 (Phe397Leu); lane 5, Av-7-5 (Phe397Ile); lane
6, Av-4-1 (Phe397Val); lane 7, Av-S28M (Phe415Val); lane 8, Av-2-4 (His440Tyr); lane 9, Tr-FRT-52-9
(TrSQLE’s control); lane 10, Tr-T31C (Leu393Phe); lane 11, Tr-2-3 (Leu393Ser); lane 12, Tr-T719J
(Phe397Leu); lane 13, Tr-4-1 (Phe397Ile); lane 14, Tr-75-6 (Phe397Val); lane 15, Tr-T4B (Phe415Val); lane
16, Tr-2-1 (His440Tyr). A 566-bp fragment of the AvSQLE gene was amplified by PCR with the primer pair
AvSQLE-F23 and AvSQLE-R21 (Table 4) and used as a hybridization probe. DNA standard fragment sizes
are shown on the left.

Terbinafine-Resistant Dermatophytes Antimicrobial Agents and Chemotherapy

July 2017 Volume 61 Issue 7 e00115-17 aac.asm.org 5

 on D
ecem

ber 11, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 LA
U

S
A

N
N

E
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


SQLE protein. Noteworthy clones with the Phe397Val substitution showed reduced
growth rates (Fig. 4A). This finding has correlates with the observation that the clinical
isolate TIMM20097 harboring the Phe397Val substitution grew slowly compared to
growth of the wild-type T. rubrum and the isolate TIMM20085 harboring the Phe397Leu
substitution (Fig. 4B). Similarly, the isolate TIMM20098 harboring the Phe415Ser sub-
stitution showed much more retarded growth than the wild-type T. rubrum and the
isolate TIMM20082 harboring the Phe415Val substitution.

No apparent difference was observed in the susceptibilities to itraconazole between
transformants harboring the mutated SQLE genes and control strains (Table 3).

FIG 3 The growth properties of A. vanbreuseghemii transformants expressing mutated AvSQLE and TrSQLE proteins
on solid terbinafine-containing medium. Aliquots of 10 �l of conidial suspensions containing 1 � 105 cells were
spotted onto SDA with (�) or without (�) 0.005 �g/ml terbinafine and incubated at 28°C for 3 days. Bar, 1.0 cm.

TABLE 3 Susceptibilities to terbinafine and itraconazole of A. vanbreuseghemii
transformants expressing mutated forms of the SQLE gene and corresponding
expression levels

Species and strain
Amino acid
substitution

MIC (�g/ml)
Fold expression of SQLE
(mean � SD)aTerbinafine Itraconazole

T. interdigitale
ATCC MYA-4439 None 0.00625 0.12 ND

A. vanbreuseghemii
1062Av1401 None 0.0125 0.06 1.02 � 0.24
Av-FRT-1-3 None 0.00625 0.12 1.28 � 0.06
Av-S38A Leu393Phe 1.6 0.12 1.08 � 0.11
Av-1-3 Leu393Ser 0.4 0.12 ND
Av-S714J6 Phe397Leu 3.2 0.12 1.37 � 0.11
Av-7-5 Phe397Ile 1.6 0.06 ND
Av-S28 M Phe415Val 0.4 0.12 ND
Av-2-4 His440Tyr 0.2 0.12 ND

T. rubrum
Tr-FRT-52-9 None 0.00625 0.06 1.27 � 0.14
Tr-T31C Leu393Phe 3.2 0.12 1.63 � 0.18
Tr-2-3 Leu393Ser 0.4 0.06 ND
Tr-T719J Phe397Leu 3.2 0.06 1.35 � 0.16
Tr-4-1 Phe397Ile 1.6 0.06 ND
Tr-T4B Phe415Val 0.4 0.12 ND
Tr-2-1 His440Tyr 0.05 0.25 ND

aResults are from three independent real-time PCR experiments. ND, not determined. Expression levels of
SQLE genes are indicated as relative fold changes compared to the CT mean of the parent strain
1062Av1401 data.
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Comparative analysis of the SQLE gene expression levels among terbinafine-
resistant dermatophyte strains. To examine whether the resistance shown by A.
vanbreuseghemii transformants was due to a point mutation in their SQLE genes or to
different expression levels of polymorphic alleles in the heterologous host, quantitative
real-time reverse transcription-PCR (qRT-PCR) was conducted. The SQLE gene expres-
sion levels in four T. rubrum clinical isolates and six A. vanbreuseghemii transformants,
harboring the corresponding mutated SQLE genes or the wild-type alleles, were eval-
uated. Relative SQLE gene expression levels in the two control strains (Av-FRT-1-3 and
Tr-FRT-52-9) did not show a significant difference from the level of their parent strain
1062Av1401 (Table 3). Likewise, no statistically significant differences in the SQLE gene
expression levels were found between four A. vanbreuseghemii transformants and their
respective parent strains, Av-FRT-1-3 and Tr-FRT-52-9 (Table 3). These results clearly
indicate that resistance to terbinafine in A. vanbreuseghemii transformants was due to
the respective point mutations. In addition, no statistically significant differences in
SQLE gene expression levels were found between the four T. rubrum clinical isolates and
the wild-type T. rubrum strain CBS118892 (Table 1).

DISCUSSION
Specific point mutations in squalene epoxidase genes causing terbinafine

resistance. Drug resistance of fungi has been increasing at an alarming rate over the
past few decades. An understanding of the underlying molecular mechanisms is
indispensable for successful therapies. In the current study, all 17 terbinafine-resistant
Trichophyton clinical isolates were revealed to harbor squalene epoxidase (SQLE) gene
alleles with point mutations, leading to amino acid substitutions at one of four amino
acid positions (Leu393, Phe397, Phe415, and His440) within the SQLE protein. The single
amino acid substitutions Leu393Phe and Phe397Leu in the SQLE protein have been

FIG 4 The growth properties of A. vanbreuseghemii transformants with the substitution Phe397Val in the
SQLE protein (A) and T. rubrum clinical isolates harboring the Phe397Val or Phe415Ser substitution in the
SQLE protein (TIMM20097 or TIMM20098, respectively) in comparison to a Leu or Val residue, respectively
(TIMM20085 and TIMM20082, respectively) (B) on solid medium. Aliquots of 10 �l of conidial suspensions
containing 1 � 105 cells were spotted onto SDA and incubated at 28°C for 4 days (A) or 5 days (B). The
wild-type T. rubrum CBS118892 was used as control. Bar, 1.0 cm.
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previously reported, marking the first two cases of terbinafine-resistant T. rubrum
strains isolated from patients (6, 9).

In a previous study, mutants of Saccharomyces cerevisiae resistant to terbinafine
were generated by chemical, UV, and PCR-based mutagenesis, and molecular analysis
revealed point mutations in the SQLE gene, leading to amino acid substitutions at one
of five amino acid positions, Leu231, Phe402, Phe420, Pro430, and Phe433, in the SQLE
protein (16). The residues Phe402 and Phe420 in S. cerevisiae SQLE correspond to Phe397

and Phe415 in T. rubrum SQLE, respectively. No amino acid substitutions equivalent to
Leu231, Pro430, and Phe433 in S. cerevisiae SQLE were identified in the 17 terbinafine-
resistant Trichophyton clinical isolates of the present study. Amino acid substitutions
corresponding to Phe397Leu in the Trichophyton SQLE protein were also found in
equivalent positions in the SQLE protein of Aspergillus fumigatus and Aspergillus nidu-
lans terbinafine-resistant strains (17). Accordingly, point mutations at one of a few sites
in the SQLE gene confer resistance to terbinafine in different fungi.

Identification of precise amino acid substitutions responsible for resistance to drugs
is helpful in the determination of the interaction between the drugs and their targets.
The atomic three-dimensional (3D) modeling of the S. cerevisiae SQLE protein was built
based on previously available experimental findings, and, furthermore, it would screen
the detailed amino acids critical for binding terbinafine to the enzyme (18). Among the
50 amino acids screened in that study, Phe402, Cys416, Phe417, Phe420, Tyr90, and Val92

seem to interact especially strongly with this agent. Similar to the S. cerevisiae SQLE
protein, all of the amino acid substitutions found in the SQLE protein of the terbinafine-
resistant Trichophyton clinical isolates reported in the present study and previously (6,
9) were also localized in the C-terminal region of SQLE. However, the A. van-
breuseghemii transformants carrying amino acid substitutions at Phe415, equivalent to
Phe420 in the S. cerevisiae SQLE, were 4- to 8-fold more susceptible to terbinafine than
those carrying amino acid substitutions at Leu393 and Phe397, equivalent to Leu398 and
Phe402 in the S. cerevisiae SQLE protein (Table 3). Hence, there is a possibility that
together with Phe397, Leu393 rather than Phe415 would make greater contributions to
the SQLE-terbinafine firm contacts in Trichophyton species. In addition, His440 in the
Trichophyton SQLE protein was shown to confer resistance to terbinafine for the first
time in the present study. However, there is a valine (Val447) in the equivalent position
of the S. cerevisiae SQLE protein, which was not screened by the 3D modeling study as
an amino acid critical for binding terbinafine to the enzyme. These results suggest a
subtle conformational difference of the terbinafine binding pocket within the enzyme
between S. cerevisiae and Trichophyton SQLE proteins, possibly leading to the difference
in their susceptibilities to this agent. Alternatively, an amino acid substitution may
cause conformational changes in the enzyme that result in reduced drug affinity.

Transfer of terbinafine resistance from one isolate to another. To investigate the
relationship between these amino acid substitutions and terbinafine tolerance, point
mutations leading to several amino acid substitutions found in the SQLE protein of the
Trichophyton clinical isolates were introduced into the endogenous SQLE gene of the
dermatophyte Arthroderma vanbreuseghemii using genetic manipulation tools. As
shown in Table 3, all of the A. vanbreuseghemii transformants expressing mutated SQLE
proteins showed significant reductions in susceptibilities to terbinafine, demonstrating
that the amino acid substitutions in the SQLE protein are a major cause of the
terbinafine resistance in Trichophyton clinical isolates. Interestingly, transformants with
the Phe397Val substitution displayed retarded growth (Fig. 4A). The clinical isolates
TIMM20097 and TIMM20098 harboring the Phe397Val and Phe415Ser substitutions,
respectively, also grew slowly compared to growth of the wild-type T. rubrum and the
isolates TIMM20085 and TIMM20082 harboring the Phe397Leu and Phe415Val substi-
tutions, respectively (Fig. 4B). These results suggest the possibility that the Phe397Val
and Phe415Ser substitutions in the SQLE protein affect both the susceptibility to
terbinafine and the squalene epoxidase activity. The report of fluconazole resistance in
Candida albicans associated with reduced affinity of sterol 14-�-demethylase (target of
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fluconazole) supports this hypothesis (19). Similarly, the growth of TIMM20098 was
more retarded than that of TIMM20097 (Fig. 4B). This may explain why A. van-
breuseghemii transformants harboring the Phe415Ser substitution could not be suc-
cessfully generated.

The discrepancy in terbinafine tolerance of our clinical isolates with the same
Phe397Leu mutation, particularly TIMM20092 displaying higher tolerance, could be
explained by additional mechanisms of resistance (Table 1). This hypothesis is sup-
ported by the abundant work on resistance to azole antifungal agents in Candida
albicans. The fungal target of these agents is a cytochrome P450 encoded by the gene
ERG11. Azole resistance of clinical isolates of C. albicans was mediated by various
mechanisms, including missense mutations in ERG11 and overexpression of genes
encoding multidrug transporters, and combined effects of such mechanisms were
observed in the same azole-resistant clinical isolate (20). It is possible that overexpres-
sion of genes coding for efflux pumps are also involved in terbinafine tolerance in some
of our clinical isolates. Moreover, disruption of a multidrug transporter in T. rubrum
resulted in an increased sensitivity to terbinafine among various tested antifungal
compounds, which was 2-fold higher than that of the nonmutated strains cloned (21).

Selectable markers used in site-directed mutagenesis may also have effects on the
susceptibility of generated mutants. A recent study on succinate dehydrogenase (Sdh),
the primary molecular target of the novel antifungal agent ME1111, showed that the
selectable marker cassette harboring the E. coli hygromycin B phosphotransferase gene
could increase the susceptibility to the drug (22). The finding was evidenced by the fact
that the generated control strains harboring the wild-type gene and the selectable
marker cassette were more susceptible to ME1111 than the recipient host strain or
reference strain. Hence, there is a possibility that the selectable marker, which was
retained in the downstream region of the ORFs of each subunit gene, could confer
reduced expression of such genes. To obviate the possibility, the point mutations in the
present study were introduced into the endogenous SQLE gene of A. vanbreuseghemii
using an FLP recombinase-mediated site-specific recombination system derived from S.
cerevisiae (Fig. 2A and B). Following transformation of a recipient strain using each
SQLE-targeting vector, the selectable marker (E. coli neomycin phosphotransferase
gene) cassette was excised from the SQLE locus in the transformants by FLP recombinase-
mediated site-specific recombination between the flanking FRT sequences. Nevertheless,
an FRT site remained between the coding sequence of the gene and its downstream
region. The FRT sequence is an inverted repeat and thus may affect transcription, mRNA
secondary structure, and transcript stability. However, differences in transcription levels of
the target gene with and without the added FRT sequence were found to be not
statistically significant (Table 3). Moreover, as shown in Table 3, the generated marker-free
control strains (Av-FRT-1-3 and Tr-FRT-52-9) showed susceptibilities to terbinafine and
itraconazole that are nearly identical to those in the parent strain (1062Av1401) and the
reference strain (T. interdigitale ATCC MYA-4439). The inserted wild-type gene could serve
as a proper control for comparison with the mutated alleles.

High frequency of terbinafine-resistant isolates. The frequency of our terbinafine-
resistant clinical isolates of about 1% is strikingly high, considering that the average size
of genomes of dermatophytes is about 22 Mb (23). The various sizes of the amplicons
obtained by specifically amplifying subrepeat elements in the ribosomal DNA nontran-
scribed spacer attested that different isolates with identical mutations did not belong
to the same strain. Therefore, we could exclude the possibility of the propagation of a
particular resistant strain in several patients. We also excluded the possibility that
resistance was developed during our screening on SDA containing terbinafine for two
reasons. (i) Trichophyton isolates were from patients with tinea pedis and/or onycho-
mycosis who did not respond to terbinafine treatment. In three cases where a remain-
ing portion of the sample was stored, the SQLE gene could be amplified by targeting
total DNA extracted from nails, which was found to harbor a mutation identical to that
identified in cultured Trichophyton (data not shown). (ii) The development of resistance

Terbinafine-Resistant Dermatophytes Antimicrobial Agents and Chemotherapy

July 2017 Volume 61 Issue 7 e00115-17 aac.asm.org 9

 on D
ecem

ber 11, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 LA
U

S
A

N
N

E
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


to terbinafine in T. rubrum was found to occur at a rare frequency in vitro (10).
Moreover, no resistant T. rubrum strain was generated from a terbinafine-sensitive
strain used as a negative control, which was always added with a terbinafine-resistant
strain as a positive control in each test plate during the screening procedure.

To explain this high frequency of terbinafine-resistant strains, it should be consid-
ered that treatments with terbinafine involve a prolonged exposure to the antifungal
drug, which could favor the selection of resistant strains. This hypothesis is supported
by the finding that fluconazole resistance in C. albicans is correlated with the total dose
of fluconazole administered to patients (24). The emergence of C. albicans strains that
are less susceptible to this antifungal agent is favored by the uptake of a total dose of
fluconazole of more than 5 g (24). Retrospective analysis of the follow-up of patients
revealed that 8 of the 17 patients harboring a terbinafine-resistant Trichophyton isolate had
already been treated with terbinafine when the skin and/or nail sample was sent to the
laboratory for mycological analysis. One patient was apparently not pretreated. Complete
data were not available for eight patients. Prospective studies would be of interest to
confirm the possible emergence of resistant strains during long-term treatment.

MATERIALS AND METHODS
Strains and medium. Trichophyton interdigitale ATCC MYA-4439 and T. rubrum CBS118892 were

obtained from the American Type Culture Collection (Manassas, VA) or CBS-KNAW Culture Collections
(Utrecht, Netherlands). Arthroderma vanbreuseghemii (formerly T. mentagrophytes) 1062Av1401 (25),
which lacks a homolog of the human Ku80 (26), was used as a recipient strain for genetic manipulation.
Microconidium formation was induced at 28°C using modified 1/10 Sabouraud dextrose agar (SDA) (27)
supplemented with 500 �g/ml cycloheximide (Wako Chemical) and 50 �g/ml chloramphenicol (Sigma-
Aldrich). Agrobacterium tumefaciens EHA105 (28) was maintained as previously described (29). Escherichia
coli DH5� (Nippon Gene) was used for molecular cloning.

Screening of Trichophyton isolates resistant to terbinafine. Over a 3-year period (2013 to 2016),
1,644 T. rubrum and 412 T. interdigitale isolates were obtained from clinical samples sent to the CHUV for
mycological analysis. The samples were mainly collected from patients with tinea pedis or tinea unguium.
All clinical isolates were tested for fungal growth on SDA containing 0.2 �g/ml terbinafine, a quantity
equivalent to twice that of the MIC for T. rubrum and T. interdigitale under these conditions (30).
Examination of fungal growth was performed after 7, 10, and 14 days. Growing strains were kept and
stored in Lausanne and Tokyo in SD broth supplemented with glycerol and dimethyl sulfoxide (DMSO)
at �80°C pending further analysis. Isolated terbinafine-resistant strains were deposited in the culture
collection of the Teikyo University Institute of Medical Mycology (TIMM) under the identification numbers
given in Table 1.

Trichophyton total DNA extraction and SQLE gene analysis. Trichophyton total DNA was extracted
from fresh fungal cultures on SD agar medium and nail samples as previously described using a DNeasy
Plant minikit (Qiagen) (31). A diameter of approximately 0.5 cm of growing mycelium was used. Before
DNA extraction, nail fragments (20 to 100 mg) were incubated overnight in 500 �l of sodium sulfide
dissolving solution (10% [wt/vol] Na2S, 25% [vol/vol] ethanol). After centrifugation at 8,000 � g for 2 min,
the sample precipitate containing fungal elements was washed twice with distilled water. The SQLE gene
of the terbinafine-resistant clinical isolates was amplified by PCR with High Fidelity DNA Polymerase
(Roche Diagnostics), the primer pair TrSQLE-F1 and TrSQLE-R1, and chromosomal DNA as the template.
Nucleotide sequences of these primers are shown in Table 4.

Trichophyton rubrum strain typing. Strain typing based on the length of the parts containing the
tandem repetitive subelements (TRSs), TRS-1 and TRS-2, in nontranscribed spacers of ribosomal DNA
(ribosomal DNA intergenic spacer regions) was performed as described by Jackson et al. (32). The primer
pair TrNTSF-2 and TrNTSR-4 and the pair TrNTSC-1 and TrNTSR-1 were used to amplify the TRS-1 and the
TRS-2 regions, respectively (32). Strains were characterized by the size of both TRS-1 and TRS-2
amplicons, which are polymorphic for length.

Construction of transformation vectors harboring wild-type and mutated SQLE. Genomic data
of the SQLE locus that shares homology with the T. rubrum SQLE gene (TrSQLE) (GenBank accession
number TERG_05717) were identified in A. vanbreuseghemii based on GenBank accession number
AB690298 and our private draft genome of the strain TIMM2789. A. vanbreuseghemii SQLE (designated
AvSQLE) differs in six amino acids at distinct positions (Val24, Thr52, Glu174, Asp352, Ala392, and Ile483) from
TrSQLE (GenBank accession number EGD89476). To generate the SQLE ORF fragment encoding the
wild-type TrSQLE protein, six point mutations were introduced into the AvSQLE gene by overlap
extension PCR with the corresponding six pairs of primers (listed in Table 4); the resultant fragment was
designated sSQLE (where s indicates synthetic gene). The SQLE gene alleles harboring point mutations
leading to Leu393Phe, Leu393Ser, Phe397Leu, Phe397Ile, Phe397Val, Phe415Ser, Phe415Val, or His440Tyr
in AvSQLE and TrSQLE were also generated from the wild-type AvSQLE gene by overlap extension PCR
with the corresponding pair of primers (listed in Table 4). All the amplified fragments were sequenced
to verify the introduction of correct nucleotide substitutions at the targeted sites.

To construct a series of AvSQLE locus-targeting binary vectors, two types of DNA fragments were
amplified by PCR; the SQLEa fragment contained the 5= untranslated region (UTR) of the AvSQLE gene
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and each SQLE ORF, and the SQLEb fragment contained the 3= UTR of the AvSQLE gene (Fig. 2A). Each
fragment was doubly digested with the SpeI/ApaI or the BamHI/KpnI enzymes, respectively, and
subsequently subcloned into the binary vector pAg1-AbKu70/T2 (Table 2; see Fig. S1 in the supplemental
material), resulting in the replacement of the 5= UTR and 3= UTR fragments of the Arthroderma benhamiae
Ku70 gene (ARB_06096) within the vector. Depending on the SQLE ORF contained in the SQLEa fragment,
four types of vectors were generated: pAg1-AvSQLE/T and pAg1-sSQLE/T harboring the AvSQLE ORF and
the sSQLE ORF encoding the wild-type TrSQLE protein, respectively, and the pAg1-mAvSQLE/T and
pAg1-msSQLE/T (where m indicates mutated gene constructs) series harboring the ORF of each mutated
SQLE allele, which contained a point mutation leading to the Leu393Phe, Leu393Ser, Phe397Leu,
Phe397Ile, Phe397Val, Phe415Ser, Phe415Val, or His440Tyr substitution in AvSQLE and TrSQLE proteins,
respectively (Table 2).

The PCRs were performed using PrimeSTAR HS DNA polymerase or Extaq DNA polymerase (TaKaRa
Bio). If necessary, the amplified fragments were gel purified with a QIAEX II gel extraction kit (Qiagen).
All the internal ApaI, BamHI, KpnI, and SpeI sites contained in the amplified fragments were inactivated
by overlap extension PCR with a corresponding pair of primers (Table S1).

Fungal genetic transformation. A. vanbreuseghemii 1062Av1401 was transformed by the A.
tumefaciens-mediated transformation (ATMT) method as described previously (29). After cocultiva-

TABLE 4 PCR primers used in this study

Purpose Primer Sequence (5=–3=)b Note

Amplification of SQLE genes for qRT-PCR qRT_erg1_2-F CCAGACTGATGGCAAGCAAGA
qRT_erg1_2-R ATAAGCTCCAGGCCCCAGAA
qRT_erg(Tr)1_2-F CCAGACTGATGGCAAACAAGA

Amplification of SQLE genes from
clinical isolates

TrSQLE-F1 ATGGTTGTAGAGGCTCCTCCC
TrSQLE-R1 CTAGCTTTGAAGTTCGGCAAA

Amplification of the DNA fragments
containing the 5= UTR of AvSQLE and
the SQLE ORF

AvSQLE-F15/SpeI TCACGAAGCTAACTAGTACCTGAAAGATGAC Inactivation of the KpnI
siteAvSQLE-R23/ApaI AAAAAGGGCCCCTAGCTTTGAAGTTCGGCAAATA

Amplification of the 3= UTR fragment of
AvSQLE

AvSQLE-F13/BamHI CAAGGATCCACAGATAGGCTTATCTCTAGCTCT
AvSQLE-R16/KpnI CAGGGTACCTCCGTTCATAGTCAACGAACGTCTCG

Generation of the sSQLE ORF encoding
wild-type TrSQLEa

AvSQLE-F21 TCCGCGAAGCCCAAGGTATACCGCGACGAA Ala24Val
AvSQLE-R18 TTCGTCGCGGTATACCTTGGGCTTCGCGGA
AvSQLE-F22 GGCATTGCTGGATGTACGCTGGCCGTTGCGTT Ala52Thr
AvSQLE-R19 AACGCAACGGCCAGCGTACATCCAGCAATGCC
AvSQLE-F23 TCCACGCACACAGGGGAGGTCCTTGGAGTTCAATG Asp174Glu
AvSQLE-R20 CATTGAACTCCAAGGACCTCCCCTGTGTGCGTGGA
AvSQLE-F24 ATGTCGTTCTCCTCCGGGATCTACTTAGTCCAGA Asn352Asp, hybridization

probeAvSQLE-R21 TCTGGACTAAGTAGATCCCGGAGGAGAACGACAT
AvSQLE-F25 TCAATATTCTTGCCCAGGCCTTATACTCTATATTC Ser392Ala
AvSQLE-R22 GAATATAGAGTATAAGGCCTGGGCAAGAATATTGA
AvSQLE-F26 GGTCATCCTTCCTTTCATATTTGCCGAACTT Val483Ile
AvSQLE-R24 AAGTTCGGCAAATATGAAAGGAAGGATGACC

Generation of point mutations in
AvSQLE and TrSQLEa

AvSQLE-F27 TTGCCCAGTCCTTCTACTCTATATT Leu393Phe (AvSQLE)
AvSQLE-R27 AATATAGAGTAGAAGGACTGGGCAA
AvSQLE-F29 TTCTTGCCCAGGCCTTCTACTCTATATT Leu393Phe (TrSQLE)
AvSQLE-R29 AATATAGAGTAGAAGGCCTGGGCAAGAA
AvSQLE-F35 TTGCCCAGTCCTCATACTCTATATT Leu393Ser (AvSQLE)
AvSQLE-R35 AATATAGAGTATGAGGACTGGGCAA
AvSQLE-F36 TTCTTGCCCAGGCCTCATACTCTATATT Leu393Ser (TrSQLE)
AvSQLE-R36 AATATAGAGTATGAGGCCTGGGCAAGAA
AvSQLE-F28 TACTCTATATTAGCCGCTGGTG Phe397Leu (both SQLE

proteins)AvSQLE-R28 CACCAGCGGCTAATATAGAGTA
AvSQLE-F31 TACTCTATAATCGCCGCTGGTG Phe397Ile (both SQLE

proteins)AvSQLE-R31 CACCAGCGGCGATTATAGAGTA
AvSQLE-F30 TACTCTATAGTCGCCGCTGGTG Phe397Val (both SQLE

proteins)AvSQLE-R30 CACCAGCGGCGACTATAGAGTA
AvSE-F37 GGCTGCTTCAGGTATTCCCAACTTGGACTTATA Phe415Ser (both SQLE

proteins)AvSE-R37 TATAAGTCCAAGTTGGGAATACCTGAAGCAGCC
AvSQLE-F14 GGCTGCTTCAGGTATGTCCAACTTGGACTTATA Phe415Val (both SQLE

proteins)AvSQLE-R8 TATAAGTCCAAGTTGGACATACCTGAAGCAGCC
AvSQLE-F29 CCTTGGTTCTATTACGATATTTTTACTCCGTAGCC His440Tyr (both SQLE

proteins)AvSQLE-R29 GGCTACGGAGTAAAAATATCGTAATAGAACCAAGG
aIntroduction of nucleotide substitutions into SQLE genes by overlap extension PCR.
bRestriction sites are underlined, and substitutions are in boldface.
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tion, nylon membranes were transferred onto SDA containing 250 �g/ml G418 (Sigma-Aldrich) and
10 �M CuSO4·7H2O, and overlaid with 10 ml of SDA supplemented with the same concentration of
G418 and CuSO4·7H2O. The plates were further overlaid after 48 h with 10 ml of SDA containing 350
�g/ml G418 and 10 �M CuSO4·7H2O and then incubated for 4 to 5 days. The colonies regenerating
on the selective medium were considered putative G418-resistant clones and transferred onto solid
morpholinepropanesulfonic acid (MOPS)-buffered RPMI 1640 medium (RPMI 1640A) supplemented
with 500 �g/ml cycloheximide, 50 �g/ml chloramphenicol, 200 �g/ml cefotaxime sodium (Sanofi-
Aventis) (if necessary), and 20 �M bathocuproine disulfonate (BCS) (Dojindo Laboratories) and
passaged several times. The T. rubrum ctr4 promoter (Pctr4) is a conditional promoter that is repressed
in the presence of copper. Chelation of copper by bathocuproine sulfate activates the Pctr4, leading
to the induction of Penicillium chrysogenum flp (Pcflp) gene expression. Expression of PcFLP recom-
binase leads to excision of the selectable marker via PcFLP-mediated site-specific recombination
between the flanking FRT sequences.

Screening of the desired transformants. The desired transformants were finally screened by PCR,
Southern blotting analyses, and nucleotide sequencing. Total DNA was extracted according to a method
described previously (29). Aliquots of 50 to 100 ng of the total DNA were used as templates in the PCRs.
For Southern blotting, aliquots of approximately 10 �g of the total DNA were digested with an
appropriate restriction enzyme, separated by electrophoresis on 0.8% (wt/vol) agarose gels, and trans-
ferred onto Hybond-N� membranes (GE Healthcare Ltd.). Southern hybridization was performed using an
ECL Direct Nucleic Acid Labeling and Detection System (GE Healthcare Ltd.) according to the manufac-
turer’s instructions.

Drug susceptibility testing. MICs were determined according to the broth microdilution method of
the Clinical and Laboratory Standards Institute (15).

Total RNA extraction and qRT-PCR. Plugs from fresh cultures of five T. rubrum strains (CBS118892,
TIMM20083, TIMM20084, TIMM20086, and TIMM20087) and seven A. vanbreuseghemii strains
(1062Av1401, Av-FRT-1-3, AvS38A, AvS714J6, Tr-FRT-52-9, Tr-T31C, and Tr-T719J) grown on SDA were
inoculated in about 15 ml of RPMI 1640 broth and cultivated at 28°C on a rotary shaker at 200 rpm. After
3 days, the growing mycelia from each strain were collected, frozen, and ground under liquid nitrogen
with a Multi-Beads shocker (Yasui Kikai) at 1,800 rpm for 10 s, which was repeated 3 times. Total RNA was
extracted using an RNeasy Plant minikit (Qiagen) and was treated with DNase I (Invitrogen). First-strand
cDNA was synthesized using a high-capacity RNA-to-cDNA kit (Applied Biosystems). The quantitative
real-time reverse transcription-PCR (qRT-PCR) analysis was performed using Fast SYBR green PCR master
mix on an ABI PRISM 7500 Fast real-time PCR system (Applied Biosystems) under standard conditions,
according to the manufacturer’s recommendations. Two sets of primers were used, one to amplify SQLE
alleles derived from A. vanbreuseghemii (qRT_erg1_2-F and qRT_erg1_2-R) and the other to amplify SQLE
alleles derived from T. rubrum [qRT_erg(Tr)1_2-F and qRT_erg1_2-R] (Table 4). Dissociation curves of the
q PCR-amplified products were plotted to confirm the absence of nonspecific products or primer
dimers. Normalization was done to the 18S rRNA gene using two primers, 18S-1-F and 18S-1-R (33),
and relative quantification of gene expression was calculated according to the 2�ΔΔCT (where CT is
threshold cycle) method. Expression levels of SQLE genes examined in six A. vanbreuseghemii
transformants and four T. rubrum clinical isolates are indicated as relative fold changes compared to
levels in the A. vanbreuseghemii parent strain 1062Av1401 or the wild-type T. rubrum strain
CBS118892, respectively. Statistical significance of SQLE gene expression levels among strains was
evaluated using Student’s t test.

Nucleotide sequence accession number. The nucleotide sequence of the A. vanbreuseghemii SQLE
(AvSQLE) locus containing the ORF was deposited in the GenBank under accession number KU242352.
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