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1. Introduction 

Unconventional natural gas extraction from tight shale reservoirs, or “shale gas”, has recently emerged as an 
attractive energy resource to face the rising worldwide demand. Over the past decade, advanced technologies of 
horizontal drilling and hydraulic fracturing (“fracking”) have allowed the economic viability of shale gas exploration 
from previously unattainable deposits. Despite optimistic growth projections from the U.S. Energy Information 
Administration (EIA, 2016a, 2016b), shale gas production is also responsible for worrying environmental and social 
implications, which are related, among others, to elevated freshwater consumption and hazardous wastewater 
generation (Thomas et al., 2017).  

Within this framework, the application of effective desalination processes is mandatory to treat the large amounts 
of polluting hypersaline wastewater, alleviating environmental and public health impacts and enhancing overall 
shale gas process sustainability (Onishi et al., 2017a, 2017b). Hence, the ability of zero-liquid discharge (ZLD) 
desalination to promote water reuse and/or water recycling (i.e., water reuse opportunities not related to shale 
gas operations) could be critical for further development of the shale gas industry. This work outlines the 
challenges and future directions for ZLD desalination of shale gas wastewater. 

2. ZLD Desalination for Wastewater Management: Emerging Zero-Emission Technologies 

ZLD desalination, as a strategy for shale gas wastewater management, has received increased interest in the past 
few years. This is mainly due to its capability to comply with the severe regulations on water quality—especially for 
allowing water recycling or safe disposal—by enhancing freshwater recovery efficiency, while reducing brine 
discharges (Tong and Elimelech, 2016). Emerging technologies for the ZLD desalination of shale gas wastewater 
include thermal and membrane-based processes. Thermal-based alternatives comprise multistage flash distillation 
(MSF), and single/multiple-effect evaporation systems combined with mechanical/thermal vapor compression 
(SEE/MEE - MVC/TVC) systems (Onishi et al., 2017c). On the other hand, membrane distillation (MD), forward 
osmosis (FO), reverse osmosis (RO), and electrodialysis (ED), are promising membrane-based processes. Clearly, 
the selection of the most appropriate desalination alternative is greatly dependent on the wastewater 
physicochemical composition (Lester et al., 2015).  

Apart from the possibility to be operated with low-grade energy sources, membrane-based schemes generally 
present high water recovery efficiencies, simple scale-up and modular features, and elevated permeability and 
selectivity for critical components (Drioli et al., 2016). However, thermal evaporation systems can be more 
advantageous than membrane ones for the zero-emission treatment of shale gas wastewater, as a result of their 
need for less intensive pretreatment and lower susceptibility to fouling and rusting problems that can be caused by 
the presence of greases, oil and scale-forming ions (Shaffer et al., 2013).  

3. Challenges of ZLD Desalination of Hypersaline Shale Gas Wastewater 

Shale gas wastewater generated by hydraulically-fractured wells can present chemical and physical properties 
varying according to different factors, which include geographic location and formation geology, hydrofracturing 
fluid composition, as well as its time of contact with shale deposits (Lester et al., 2015; Shaffer et al., 2013). Also, 
the concentration of chemicals in shale gas wastewater may change over the time of well exploration (Shaffer et 
al., 2013). In addition to the chemical additives used within fracking fluids, shale gas wastewater generally contains 
formation-based constituents, comprising salt and other minerals—such as the scale-forming divalent ions: Ca2+, 
Ba2+ and Mg2+—, organic matter and naturally occurring radioactive materials (NORM) (Rahm and Riha, 2012; 
Zhang et al., 2014).  

Among them, removal of the elevated salt contents from shale gas wastewater (average values >100k ppm TDS – 
Total Dissolved Solids) is notably challenging because of the energy-intensive consumption required to achieve the 
ZLD brine conditions. In Onishi et al. (2017b), thermal technologies for ZLD desalination (brine discharge at 300 g 
kg-1) have presented energy consumption in a range of 28.12−50.47 kWh m-3, with specific operational costs 
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estimated between 2.73−4.90 US$ m-3 for 77% conversion ratio. Furthermore, another complicating factor is 
related to the significant composition variations observed in wastewater from different shale basins, and even in 
distinct wellbores from the same well pad (Thiel and Lienhard, 2014).  

The elevated consumption of high-grade electrical energy is also responsible for significant greenhouse gas (GHG) 
emissions. Besides the prohibitive costs related to the raised energy consumption, high salt concentrations in the 
shale gas wastewater pose particular desalination challenges, mostly associated with operational problems caused 
by fouling, scaling and corrosion (Kaplan et al., 2017). Due to changes in process temperature conditions, fouling 
and scaling can reduce heat transfer in thermal systems and mass transfer rate in membrane-based technologies. 
Lastly, appropriate management of the generated solid brine should be considered to avoid potential 
environmental impacts. 

4. Future Directions 

Despite of the increasing worldwide interest on the implementation of ZLD desalination systems, their intensive 
energy consumption and high related operating costs remain as obstacles for their further adoption. Future 
advances on ZLD applications will ultimately be achieved by the development of more energy efficient and 
sustainable desalination processes, as well as by incrementing regulatory incentives to compensate eventual 
economic shortcomings. Eventually, stricter regulations on water quality and brine discharges will play a key role 
towards the implementation of cleaner ZLD desalination in shale gas industry. 
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